1
|
Sharma A, Hazarika M, Heisnam P, Pandey H, Devadas VASN, Kesavan AK, Kumar P, Singh D, Vashishth A, Jha R, Misra V, Kumar R. Controlled Environment Ecosystem: A Cutting-Edge Technology in Speed Breeding. ACS OMEGA 2024; 9:29114-29138. [PMID: 39005787 PMCID: PMC11238293 DOI: 10.1021/acsomega.3c09060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 05/25/2024] [Accepted: 05/31/2024] [Indexed: 07/16/2024]
Abstract
The controlled environment ecosystem is a meticulously designed plant growing chamber utilized for cultivating biofortified crops and microgreens, addressing hidden hunger and malnutrition prevalent in the growing population. The integration of speed breeding within such controlled environments effectively eradicates morphological disruptions encountered in traditional breeding methods such as inbreeding depression, male sterility, self-incompatibility, embryo abortion, and other unsuccessful attempts. In contrast to the unpredictable climate conditions that often prolong breeding cycles to 10-15 years in traditional breeding and 4-5 years in transgenic breeding within open ecosystems, speed breeding techniques expedite the achievement of breeding objectives and F1-F6 generations within 2-3 years under controlled growing conditions. In comparison, traditional breeding may take 5-10 years for plant population line creation, 3-5 years for field trials, and 1-2 years for variety release. The effectiveness of speed breeding in trait improvement and population line development varies across different crops, requiring approximately 4 generations in rice and groundnut, 5 generations in soybean, pea, and oat, 6 generations in sorghum, Amaranthus sp., and subterranean clover, 6-7 generations in bread wheat, durum wheat, and chickpea, 7 generations in broad bean, 8 generations in lentil, and 10 generations in Arabidopsis thaliana annually within controlled environment ecosystems. Artificial intelligence leverages neural networks and algorithm models to screen phenotypic traits and assess their role in diverse crop species. Moreover, in controlled environment systems, mechanistic models combined with machine learning effectively regulate stable nutrient use efficiency, water use efficiency, photosynthetic assimilation product, metabolic use efficiency, climatic factors, greenhouse gas emissions, carbon sequestration, and carbon footprints. However, any negligence, even minor, in maintaining optimal photoperiodism, temperature, humidity, and controlling pests or diseases can lead to the deterioration of crop trials and speed breeding techniques within the controlled environment system. Further comparative studies are imperative to comprehend and justify the efficacy of climate management techniques in controlled environment ecosystems compared to natural environments, with or without soil.
Collapse
Affiliation(s)
- Avinash Sharma
- Faculty of Agricultural Sciences, Arunachal University of Studies, Namsai, Arunachal Pradesh 792103, India
| | - Mainu Hazarika
- Faculty of Agricultural Sciences, Arunachal University of Studies, Namsai, Arunachal Pradesh 792103, India
| | - Punabati Heisnam
- College of Agriculture, Central Agricultural University, Iroisemba, Manipur 795004, India
| | - Himanshu Pandey
- PG Department of Agriculture, Khalsa College, Amritsar, Punjab 143002, India
| | | | - Ajith Kumar Kesavan
- Faculty of Agricultural Sciences, Arunachal University of Studies, Namsai, Arunachal Pradesh 792103, India
| | - Praveen Kumar
- Agricultural Research Station, Agriculture University, Jodhpur, Rajasthan 342304, India
| | - Devendra Singh
- Faculty of Biotechnology, Shri Ramswaroop Memorial University, Barabanki, Uttar Pradesh 225003, India
| | - Amit Vashishth
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar, Uttarakhand 249405, India
| | - Rani Jha
- ISBM University, Gariyaband, Chhattishgarh 493996, India
| | - Varucha Misra
- Division of Crop Improvement, ICAR-Indian Institute of Sugarcane Research, Lucknow, Uttar Pradesh 226002, India
| | - Rajeev Kumar
- Division of Plant Physiology and Biochemistry, ICAR-Indian Institute of Sugarcane Research, Lucknow, Uttar Pradesh 226002, India
| |
Collapse
|
2
|
Xu C, Huang X, Ma N, Liu Y, Xu A, Zhang X, Li D, Li Y, Zhang W, Wang K. MicroRNA164 Affects Plant Responses to UV Radiation in Perennial Ryegrass. PLANTS (BASEL, SWITZERLAND) 2024; 13:1242. [PMID: 38732457 PMCID: PMC11085334 DOI: 10.3390/plants13091242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024]
Abstract
Increasing the ultraviolet radiation (UV) level, particularly UV-B due to damage to the stratospheric ozone layer by human activities, has huge negative effects on plant and animal metabolism. As a widely grown cool-season forage grass and turfgrass in the world, perennial ryegrass (Lolium perenne) is UV-B-sensitive. To study the effects of miR164, a highly conserved microRNA in plants, on perennial ryegrass under UV stress, both OsmiR164a overexpression (OE164) and target mimicry (MIM164) transgenic perennial ryegrass plants were generated using agrobacterium-mediated transformation, and UV-B treatment (~600 μw cm-2) of 7 days was imposed. Morphological and physiological analysis showed that the miR164 gene affected perennial ryegrass UV tolerance negatively, demonstrated by the more scorching leaves, higher leaf electrolyte leakage, and lower relative water content in OE164 than the WT and MIM164 plants after UV stress. The increased UV sensitivity could be partially due to the reduction in antioxidative capacity and the accumulation of anthocyanins. This study indicated the potential of targeting miR164 and/or its targeted genes for the genetic manipulation of UV responses in forage grasses/turfgrasses; further research to reveal the molecular mechanism underlying how miR164 affects plant UV responses is needed.
Collapse
Affiliation(s)
- Chang Xu
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China; (C.X.); (X.H.); (N.M.); (Y.L.); (A.X.); (Y.L.)
| | - Xin Huang
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China; (C.X.); (X.H.); (N.M.); (Y.L.); (A.X.); (Y.L.)
| | - Ning Ma
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China; (C.X.); (X.H.); (N.M.); (Y.L.); (A.X.); (Y.L.)
| | - Yanrong Liu
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China; (C.X.); (X.H.); (N.M.); (Y.L.); (A.X.); (Y.L.)
| | - Aijiao Xu
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China; (C.X.); (X.H.); (N.M.); (Y.L.); (A.X.); (Y.L.)
| | - Xunzhong Zhang
- School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA;
| | - Dayong Li
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China;
| | - Yue Li
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China; (C.X.); (X.H.); (N.M.); (Y.L.); (A.X.); (Y.L.)
| | - Wanjun Zhang
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China; (C.X.); (X.H.); (N.M.); (Y.L.); (A.X.); (Y.L.)
| | - Kehua Wang
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China; (C.X.); (X.H.); (N.M.); (Y.L.); (A.X.); (Y.L.)
| |
Collapse
|
3
|
Milić Komić S, Živanović B, Dumanović J, Kolarž P, Sedlarević Zorić A, Morina F, Vidović M, Veljović Jovanović S. Differential Antioxidant Response to Supplemental UV-B Irradiation and Sunlight in Three Basil Varieties. Int J Mol Sci 2023; 24:15350. [PMID: 37895033 PMCID: PMC10607338 DOI: 10.3390/ijms242015350] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/09/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Three basil plant varieties (Ocimum basilicum var. Genovese, Ocimum × citriodorum, and Ocimum basilicum var. purpurascens) were grown under moderate light (about 300 µmol photons m-2 s-1) in a glasshouse or growth chamber and then either transferred to an open field (average daily dose: 29.2 kJ m-2 d-1) or additionally exposed to UV-B irradiation in a growth chamber (29.16 kJ m-2 d-1), to reveal the variety-specific and light-specific acclimation responses. Total antioxidant capacity (TAC), phenolic profile, ascorbate content, and class III peroxidase (POD) activity were used to determine the antioxidant status of leaves under all four light regimes. Exposure to high solar irradiation at the open field resulted in an increase in TAC, total hydroxycinnamic acids (HCAs, especially caffeic acid), flavonoids, and epidermal UV-absorbing substances in all three varieties, as well as a two-fold increase in the leaf dry/fresh weight ratio. The supplemental UV-B irradiation induced preferential accumulation of HCAs (rosmarinic acid) over flavonoids, increased TAC and POD activity, but decreased the ascorbate content in the leaves, and inhibited the accumulation of epidermal flavonoids in all basil varieties. Furthermore, characteristic leaf curling and UV-B-induced inhibition of plant growth were observed in all basil varieties, while a pro-oxidant effect of UV-B was indicated with H2O2 accumulation in the leaves and spotty leaf browning. The extent of these morphological changes, and oxidative damage depended on the basil cultivar, implies a genotype-specific tolerance mechanism to high doses of UV-B irradiation.
Collapse
Affiliation(s)
- Sonja Milić Komić
- Institute for Multidisciplinary Research, Department of Life Science, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia; (S.M.K.); (B.Ž.); (A.S.Z.)
| | - Bojana Živanović
- Institute for Multidisciplinary Research, Department of Life Science, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia; (S.M.K.); (B.Ž.); (A.S.Z.)
| | - Jelena Dumanović
- Department of Analytical Chemistry, Faculty of Chemistry, University of Belgrade, 11158 Belgrade, Serbia;
| | - Predrag Kolarž
- Institute of Physics Belgrade, University of Belgrade, 11080 Belgrade, Serbia;
| | - Ana Sedlarević Zorić
- Institute for Multidisciplinary Research, Department of Life Science, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia; (S.M.K.); (B.Ž.); (A.S.Z.)
| | - Filis Morina
- Biology Center of the Czech Academy of Sciences, Institute of Plant Molecular Biology, Department of Plant Biophysics and Biochemistry, Branišovska 31/1160, 370 05 Ceske Budejovice, Czech Republic;
| | - Marija Vidović
- Institute of Molecular Genetics and Genetic Engineering, Laboratory for Plant Molecular Biology, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia;
| | - Sonja Veljović Jovanović
- Institute for Multidisciplinary Research, Department of Life Science, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia; (S.M.K.); (B.Ž.); (A.S.Z.)
| |
Collapse
|
4
|
Chen J, Jiang T, Jiang J, Deng L, Liu Y, Zhong Z, Fu H, Yang B, Zhang L. The chloroplast GATA-motif of Mahonia bealei participates in alkaloid-mediated photosystem inhibition during dark to light transition. JOURNAL OF PLANT PHYSIOLOGY 2023; 280:153894. [PMID: 36525836 DOI: 10.1016/j.jplph.2022.153894] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Mahonia bealei and Mahonia fortunei are important plant resources in Traditional Chinese Medicine that are valued for their high levels of benzylisoquinoline alkaloids (BIAs). Although the phytotoxic activity of BIAs has been recognized, information is limited on the mechanism of action by which these compounds regulate photosynthetic activity. Here, we performed comparative chloroplast genome analysis to examine insertions and deletions in the two species. We found a GATA-motif located in the promoter region of the ndhF gene of only M. bealei. K-mer frequency-based diversity analysis illustrated the close correlation between the GATA-motif and leaf phenotype. We found that the GATA-motif significantly inhibits GUS gene expression in tobacco during the dark-light transition (DLT). The expression of ndhF was downregulated in M. bealei and upregulated in M. fortunei during the DLT. NDH-F activity was remarkably decreased and exhibited a significant negative correlation with BIA levels in M. bealei during the DLT. Furthermore, the NADPH produced through photosynthetic metabolism was found to decrease in M. bealei during the DLT. Taken together, our results indicate that this GATA-motif might act as the functional site by which BIAs inhibit photosynthetic metabolism through downregulating ndhF expression during the DLT.
Collapse
Affiliation(s)
- Jiaqi Chen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Tianfu Jiang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Jiajun Jiang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Linfang Deng
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310005, China
| | - Yiting Liu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
| | - Zhuoheng Zhong
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Hongwei Fu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Bingxian Yang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Lin Zhang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
5
|
Aphalo PJ, Sadras VO. Explaining pre-emptive acclimation by linking information to plant phenotype. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5213-5234. [PMID: 34915559 PMCID: PMC9440433 DOI: 10.1093/jxb/erab537] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
We review mechanisms for pre-emptive acclimation in plants and propose a conceptual model linking developmental and evolutionary ecology with the acquisition of information through sensing of cues and signals. The idea is that plants acquire much of the information in the environment not from individual cues and signals but instead from their joint multivariate properties such as correlations. If molecular signalling has evolved to extract such information, the joint multivariate properties of the environment must be encoded in the genome, epigenome, and phenome. We contend that multivariate complexity explains why extrapolating from experiments done in artificial contexts into natural or agricultural systems almost never works for characters under complex environmental regulation: biased relationships among the state variables in both time and space create a mismatch between the evolutionary history reflected in the genotype and the artificial growing conditions in which the phenotype is expressed. Our model can generate testable hypotheses bridging levels of organization. We describe the model and its theoretical bases, and discuss its implications. We illustrate the hypotheses that can be derived from the model in two cases of pre-emptive acclimation based on correlations in the environment: the shade avoidance response and acclimation to drought.
Collapse
Affiliation(s)
| | - Victor O Sadras
- South Australian Research and Development Institute, and School of Agriculture, Food and Wine, The University of Adelaide, Australia
| |
Collapse
|
6
|
Ekwealor JTB, Mishler BD. Transcriptomic Effects of Acute Ultraviolet Radiation Exposure on Two Syntrichia Mosses. FRONTIERS IN PLANT SCIENCE 2021; 12:752913. [PMID: 34777431 PMCID: PMC8581813 DOI: 10.3389/fpls.2021.752913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
Ultraviolet radiation (UVR) is a major environmental stressor for terrestrial plants. Here we investigated genetic responses to acute broadband UVR exposure in the highly desiccation-tolerant mosses Syntrichia caninervis and Syntrichia ruralis, using a comparative transcriptomics approach. We explored whether UVR protection is physiologically plastic and induced by UVR exposure, addressing the following questions: (1) What is the timeline of changes in the transcriptome with acute UVR exposure in these two species? (2) What genes are involved in the UVR response? and (3) How do the two species differ in their transcriptomic response to UVR? There were remarkable differences between the two species after 10 and 30 min of UVR exposure, including no overlap in significantly differentially abundant transcripts (DATs) after 10 min of UVR exposure and more than twice as many DATs for S. caninervis as there were for S. ruralis. Photosynthesis-related transcripts were involved in the response of S. ruralis to UVR, while membrane-related transcripts were indicated in the response of S. caninervis. In both species, transcripts involved in oxidative stress and those important for desiccation tolerance (such as late embryogenesis abundant genes and early light-inducible protein genes) were involved in response to UVR, suggesting possible roles in UVR tolerance and cross-talk with desiccation tolerance in these species. The results of this study suggest potential UVR-induced responses that may have roles outside of UVR tolerance, and that the response to URV is different in these two species, perhaps a reflection of adaptation to different environmental conditions.
Collapse
Affiliation(s)
- Jenna T. B. Ekwealor
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, United States
- The University and Jepson Herbaria, University of California, Berkeley, Berkeley, CA, United States
| | - Brent D. Mishler
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, United States
- The University and Jepson Herbaria, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
7
|
Ekwealor JTB, Clark TA, Dautermann O, Russell A, Ebrahimi S, Stark LR, Niyogi KK, Mishler BD. Natural ultraviolet radiation exposure alters photosynthetic biology and improves recovery from desiccation in a desert moss. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4161-4179. [PMID: 33595636 DOI: 10.1093/jxb/erab051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
Plants in dryland ecosystems experience extreme daily and seasonal fluctuations in light, temperature, and water availability. We used an in situ field experiment to uncover the effects of natural and reduced levels of ultraviolet radiation (UV) on maximum PSII quantum efficiency (Fv/Fm), relative abundance of photosynthetic pigments and antioxidants, and the transcriptome in the desiccation-tolerant desert moss Syntrichia caninervis. We tested the hypotheses that: (i) S. caninervis plants undergo sustained thermal quenching of light [non-photochemical quenching (NPQ)] while desiccated and after rehydration; (ii) a reduction of UV will result in improved recovery of Fv/Fm; but (iii) 1 year of UV removal will de-harden plants and increase vulnerability to UV damage, indicated by a reduction in Fv/Fm. All field-collected plants had extremely low Fv/Fm after initial rehydration but recovered over 8 d in lab-simulated winter conditions. UV-filtered plants had lower Fv/Fm during recovery, higher concentrations of photoprotective pigments and antioxidants such as zeaxanthin and tocopherols, and lower concentrations of neoxanthin and Chl b than plants exposed to near natural UV levels. Field-grown S. caninervis underwent sustained NPQ that took days to relax and for efficient photosynthesis to resume. Reduction of solar UV radiation adversely affected recovery of Fv/Fm following rehydration.
Collapse
Affiliation(s)
- Jenna T B Ekwealor
- Department of Integrative Biology, and University and Jepson Herbaria, University of California, Berkeley, CA, USA
| | - Theresa A Clark
- School of Life Sciences, University of Nevada, Las Vegas, NV, USA
| | - Oliver Dautermann
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | | | - Sotodeh Ebrahimi
- School of Life Sciences, University of Nevada, Las Vegas, NV, USA
| | - Lloyd R Stark
- School of Life Sciences, University of Nevada, Las Vegas, NV, USA
| | - Krishna K Niyogi
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Brent D Mishler
- Department of Integrative Biology, and University and Jepson Herbaria, University of California, Berkeley, CA, USA
| |
Collapse
|
8
|
Yoon HI, Kim HY, Kim J, Oh MM, Son JE. Quantitative Analysis of UV-B Radiation Interception in 3D Plant Structures and Intraindividual Distribution of Phenolic Contents. Int J Mol Sci 2021; 22:2701. [PMID: 33800078 PMCID: PMC7962183 DOI: 10.3390/ijms22052701] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 01/08/2023] Open
Abstract
Ultraviolet-B (UV-B) acts as a regulatory stimulus, inducing the dose-dependent biosynthesis of phenolic compounds such as flavonoids at the leaf level. However, the heterogeneity of biosynthesis activation generated within a whole plant is not fully understood until now and cannot be interpreted without quantification of UV-B radiation interception. In this study, we analyzed the spatial UV-B radiation interception of kales (Brassica oleracea L. var. Acephala) grown under supplemental UV-B LED using ray-tracing simulation with 3-dimension-scanned models and leaf optical properties. The UV-B-induced phenolic compounds and flavonoids accumulated more, with higher UV-B interception and younger leaves. To distinguish the effects of UV-B energy and leaf developmental age, the contents were regressed separately and simultaneously. The effect of intercepted UV-B on flavonoid content was 4.9-fold that of leaf age, but the effects on phenolic compound biosynthesis were similar. This study confirmed the feasibility and relevance of UV-B radiation interception analysis and paves the way to explore the physical and physiological base determining the intraindividual distribution of phenolic compound in controlled environments.
Collapse
Affiliation(s)
- Hyo In Yoon
- Department of Agriculture, Forestry and Bioresources (Horticultural Science and Biotechnology), Seoul National University, Seoul 08826, Korea; (H.I.Y.); (H.Y.K.); (J.K.)
| | - Hyun Young Kim
- Department of Agriculture, Forestry and Bioresources (Horticultural Science and Biotechnology), Seoul National University, Seoul 08826, Korea; (H.I.Y.); (H.Y.K.); (J.K.)
| | - Jaewoo Kim
- Department of Agriculture, Forestry and Bioresources (Horticultural Science and Biotechnology), Seoul National University, Seoul 08826, Korea; (H.I.Y.); (H.Y.K.); (J.K.)
| | - Myung-Min Oh
- Division of Animal, Horticultural and Food Sciences, Chungbuk National University, Cheongju 28644, Korea;
- Brain Korea 21 Center for Bio-Health Industry, Chungbuk National University, Cheongju 28644, Korea
| | - Jung Eek Son
- Department of Agriculture, Forestry and Bioresources (Horticultural Science and Biotechnology), Seoul National University, Seoul 08826, Korea; (H.I.Y.); (H.Y.K.); (J.K.)
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
9
|
Active thermography for real time monitoring of UV-B plant interactions. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 208:111900. [PMID: 32460117 DOI: 10.1016/j.jphotobiol.2020.111900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 02/08/2020] [Accepted: 05/15/2020] [Indexed: 11/23/2022]
Abstract
Although Ultraviolet-B (UV-B)-plant interactions have been extensively analysed in the past years, many physiological aspects of the complex plant response mechanisms still need to be elucidated. Depending on the energy dose, this part of the electromagnetic spectrum can induce detrimental or beneficial effects in plant and fruit. In the present work, active thermography is used to analyse in real time the response of plants under different doses of artificial UV-B. In particular, we investigated the temporal variations of the leaf surface temperature (LST) to UV-B exposure by Long Pulse and Lock-in thermography in Epipremnum aureum and in Arabidopsis plants overexpressing or knockout mutants of UVR8, the known UV-B photoreceptor. In both cases, UV-B irradiation triggers a cooling effect, namely a thermal response characterised by a LST lower respect to the initial value. Lock-in thermography demonstrated that the cooling effect is associated with an immediate mobilization and accumulation of water in the leaves. Also, we demonstrated that thermographic responses change according to the different capability of plants to tolerate high UV-B radiation. Our study highlights new physiological and physical aspects of the plants response to UV-B radiation and, more in general, it opens new opportunities for the use of the thermography as smart tool for real-time monitoring of plant environmental interactions.
Collapse
|
10
|
Cuadra P, Guajardo J, Carrasco-Orellana C, Stappung Y, Fajardo V, Herrera R. Differential expression after UV-B radiation and characterization of chalcone synthase from the Patagonian hairgrass Deschampsia antarctica. PHYTOCHEMISTRY 2020; 169:112179. [PMID: 31669976 DOI: 10.1016/j.phytochem.2019.112179] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 10/11/2019] [Accepted: 10/12/2019] [Indexed: 06/10/2023]
Abstract
Deschampsiaantarctica inhabits the maritime territory of Antarctica and South Patagonia. It grows under very harsh environmental conditions. The survival of this species in low freezing temperatures and under high levels of UV-B radiation may constitute some of the most remarkable adaptive plant responses and suggests that this plant possesses genes associated with cold and UV tolerance. Frequently, increased levels of flavonoids have been linked to highly UV-B irradiated plants. Studies examining the biosynthesis of flavonoids in D. antarctica may provide clues to its success in this extreme environment. In this study, we characterized the family of genes encoding chalcone synthase, a key enzyme of the flavonoid biosynthetic pathway. DaCHS was cloned, sequenced and characterized by using software tools. CHS contains two domains, the N-terminal domain ranges from amino acid 8 to 231 and the C-terminal domain ranges from amino acid 241 to 391. Sequence analysis of the three family members revealed a high degree of identity after comparison with other monocotyledons such as Oryza sativa L., Zea mays L. and Hordeum vulgare L. According to these results, DaCHS can be grouped together with H. vulgare CHS1 in the same branch. The phylogenetic tree was built using MEGA software and the neighbour join method with 1000 bootstrap replicates. A model of DaCHS was constructed by way of structural tools and key amino acid residues were identified at the active motif site.
Collapse
Affiliation(s)
- Pedro Cuadra
- Universidad de Magallanes, Laboratorio de Productos Naturales, P.O. Box 113-D, Punta Arenas, Chile.
| | - Joselin Guajardo
- Universidad de Talca, Instituto de Ciencias Biológicas, 2 norte 685, P.O. Box 747, Talca, Chile
| | | | - Yazmina Stappung
- Universidad de Talca, Instituto de Ciencias Biológicas, 2 norte 685, P.O. Box 747, Talca, Chile
| | - Víctor Fajardo
- Universidad de Magallanes, Laboratorio de Productos Naturales, P.O. Box 113-D, Punta Arenas, Chile
| | - Raúl Herrera
- Universidad de Talca, Instituto de Ciencias Biológicas, 2 norte 685, P.O. Box 747, Talca, Chile.
| |
Collapse
|
11
|
Ortega-Hernández E, Nair V, Welti-Chanes J, Cisneros-Zevallos L, Jacobo-Velázquez DA. Wounding and UVB Light Synergistically Induce the Biosynthesis of Phenolic Compounds and Ascorbic Acid in Red Prickly Pears ( Opuntia ficus-indica cv. Rojo Vigor). Int J Mol Sci 2019; 20:ijms20215327. [PMID: 31731568 PMCID: PMC6862142 DOI: 10.3390/ijms20215327] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 10/24/2019] [Accepted: 10/24/2019] [Indexed: 12/24/2022] Open
Abstract
The present study evaluated the effects of ultraviolet B (UVB) radiation and wounding stress, applied alone or combined, on the biosynthesis of phenolic compounds and ascorbic acid in the peel and pulp of red prickly pear (Opuntia ficus-indica cv. Rojo Vigor). Whole and wounded-fruit samples were treated with UVB radiation (6.4 W·m-2) for 0 and 15 min, and stored for 24 h at 16 °C. Phytochemical analyses were performed separately in the peel and pulp. The highest phenolic accumulation occurred after storage of the whole tissue treated with UVB, where the main phenolic compounds accumulated in the peel and pulp were quercetin, sinapic acid, kaempferol, rosmarinic acid, and sinapoyl malate, showing increases of 709.8%, 570.2%, 442.8%, 439.9%, and 186.2%, respectively, as compared with the control before storage. Phenylalanine ammonia-lyase (PAL) activity was increased after storage of the whole and wounded tissue treated with UVB light, and this increase in PAL activity was associated to phenolic accumulation. On the other hand, l-galactono-γ-lactone dehydrogenase (GalLDH) activity and ascorbic acid biosynthesis was enhanced due to UVB radiation, and the effect was increased when UVB was applied in the wounded tissue showing 125.1% and 94.1% higher vitamin C content after storage when compared with the control. Respiration rate was increased due to wounding stress, whereas ethylene production was increased by wounding and UVB radiation in prickly pears. Results allowed the generation of a physiological model explaining the UVB and wound-induced accumulation of phenolic compounds and ascorbic acid in prickly pears, where wounding facilitates UVB to access the underlying tissue and enhances an apparent synergistic response.
Collapse
Affiliation(s)
- Erika Ortega-Hernández
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. General Ramon Corona 2514, Colonia Nuevo Mexico, Zapopan 45138, Jal., Mexico;
| | - Vimal Nair
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843-2133, USA; (V.N.); (L.C.-Z.)
| | - Jorge Welti-Chanes
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. Eugenio Garza Sada 2501 Sur, Colonia Tecnologico, Monterrey, NL 64849, Mexico;
| | - Luis Cisneros-Zevallos
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843-2133, USA; (V.N.); (L.C.-Z.)
| | - Daniel A. Jacobo-Velázquez
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. General Ramon Corona 2514, Colonia Nuevo Mexico, Zapopan 45138, Jal., Mexico;
- Correspondence: ; Tel.: +52-33-3669-3000 (ext. 2396)
| |
Collapse
|
12
|
Gupta S, Gupta V, Singh V, Varadwaj PK. Extrapolation of significant genes and transcriptional regulatory networks involved in Zea mays in response in UV-B stress. Genes Genomics 2018; 40:973-990. [PMID: 30155715 DOI: 10.1007/s13258-018-0705-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/06/2018] [Indexed: 12/21/2022]
Abstract
A wide range of plant species growth influenced when they exposed to solar UV-B radiation. Leaves of the plant are highly affected by UV-B radiation lead to the reduction in the growth of the plant. Current work demonstrates the comparative transcriptional changes and visible symptoms occurred in the maize leaf growth zone (GZ). Primary objective of this study was to identify differentially expressed genes (DEGs) responsible for leaf growth and their association in the transcriptional regulatory network under UV-B stress. Whole transcriptomic data was analysed and the quality check was tested for each sample and further genome-wide mapping and DEGs were performed. Gene Ontology (GO) based functional annotation, associated transcriptional networks and molecular pathways were annotated. Reduction in cell production due to UV-B stress causes a decrease in leaf's length and size was observed. Further, the specific role of the DEGs, in UV-B signalling pathways and other molecular functions responsible for leaf cell death was discovered. Results also infer that the major changes occurred in the cell cycle, transcriptional regulation, post-transcriptional modification, phytohormones, flavonoids biosynthesis, and chromatin remodeling. UV-B signalling pathways and the transcriptional regulatory networks infer the different molecular steps along with downstream transcriptional and post-transcriptional control of metabolic enzymes used in long-term memory adoption and attainment resistance to UV-B stress identified. Effects of UV-B radiation on leaf growth was noted in this study. UV-B stress response genes and associated transcriptional regulatory networks were identified, can be used in developing the marker assist UB-B stress tolerant genotypes of the maize.
Collapse
Affiliation(s)
- Saurabh Gupta
- Department of Bioinformatics, Indian Institute of Information Technology-Allahabad, Devghat, Jhalwa, Allahabad, UP, 211015, India
| | - Vikas Gupta
- Department of Molecular and Cellular Engineering, JIBB, Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad, 211007, India
| | - Vishal Singh
- Department of Bioinformatics, Indian Institute of Information Technology-Allahabad, Devghat, Jhalwa, Allahabad, UP, 211015, India
| | - Pritish Kumar Varadwaj
- Department of Bioinformatics, Indian Institute of Information Technology-Allahabad, Devghat, Jhalwa, Allahabad, UP, 211015, India.
| |
Collapse
|
13
|
Li H, Li Y, Deng H, Sun X, Wang A, Tang X, Gao Y, Zhang N, Wang L, Yang S, Liu Y, Wang S. Tomato UV-B receptor SlUVR8 mediates plant acclimation to UV-B radiation and enhances fruit chloroplast development via regulating SlGLK2. Sci Rep 2018. [PMID: 29666396 DOI: 10.1016/s41598-018-24309-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023] Open
Abstract
Plants utilize energy from sunlight to perform photosynthesis in chloroplast, an organelle that could be damaged by solar UV radiation. The ultraviolet-B (UV-B) photoreceptor UVR8 is required for UV-B perception and signal transduction. However, little is known about how UVR8 influence chloroplast development under UV-B radiation. Here, we characterized tomato UVR8 gene (SlUVR8) and our results indicated that SlUVR8 facilitate plant acclimation to UV-B stress by orchestrating expression of the UVB-responsive genes (HY5 and CHS) and accumulating UV-absorptive compounds. In addition, we also discovered that SlUVR8 promotes fruit chloroplast development through enhancing accumulation of transcription factor GOLDEN2-LIKE2 (SlGLK2) which determines chloroplast and chlorophyll levels. Furthermore, UV-B radiation could increase expression of SlGLK2 and its target genes in fruits and leaves. SlUVR8 is required for UVB-induced SlGLK2 expression. Together, our work not only identified the conserved functions of SlUVR8 gene in response to UV-B stress, but also uncovered a novel role that SlUVR8 could boost chloroplast development by accumulating SlGLK2 proteins.
Collapse
Affiliation(s)
- Huirong Li
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
- CAS Center for Excellence in Molecular Plant Sciences, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Yuxiang Li
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - Heng Deng
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - Xiaochun Sun
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
- Shaanxi University of Chinese Medicine/Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi Sheng, China
| | - Anquan Wang
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xiaofeng Tang
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yongfeng Gao
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, China
| | - Ning Zhang
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - Lihuan Wang
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - Shuzhang Yang
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - Yongsheng Liu
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China.
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China.
| | - Songhu Wang
- CAS Center for Excellence in Molecular Plant Sciences, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| |
Collapse
|
14
|
Li H, Li Y, Deng H, Sun X, Wang A, Tang X, Gao Y, Zhang N, Wang L, Yang S, Liu Y, Wang S. Tomato UV-B receptor SlUVR8 mediates plant acclimation to UV-B radiation and enhances fruit chloroplast development via regulating SlGLK2. Sci Rep 2018; 8:6097. [PMID: 29666396 PMCID: PMC5904186 DOI: 10.1038/s41598-018-24309-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 03/27/2018] [Indexed: 12/20/2022] Open
Abstract
Plants utilize energy from sunlight to perform photosynthesis in chloroplast, an organelle that could be damaged by solar UV radiation. The ultraviolet-B (UV-B) photoreceptor UVR8 is required for UV-B perception and signal transduction. However, little is known about how UVR8 influence chloroplast development under UV-B radiation. Here, we characterized tomato UVR8 gene (SlUVR8) and our results indicated that SlUVR8 facilitate plant acclimation to UV-B stress by orchestrating expression of the UVB-responsive genes (HY5 and CHS) and accumulating UV-absorptive compounds. In addition, we also discovered that SlUVR8 promotes fruit chloroplast development through enhancing accumulation of transcription factor GOLDEN2-LIKE2 (SlGLK2) which determines chloroplast and chlorophyll levels. Furthermore, UV-B radiation could increase expression of SlGLK2 and its target genes in fruits and leaves. SlUVR8 is required for UVB-induced SlGLK2 expression. Together, our work not only identified the conserved functions of SlUVR8 gene in response to UV-B stress, but also uncovered a novel role that SlUVR8 could boost chloroplast development by accumulating SlGLK2 proteins.
Collapse
Affiliation(s)
- Huirong Li
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China.,CAS Center for Excellence in Molecular Plant Sciences, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Yuxiang Li
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - Heng Deng
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - Xiaochun Sun
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China.,Shaanxi University of Chinese Medicine/Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi Sheng, China
| | - Anquan Wang
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xiaofeng Tang
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yongfeng Gao
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China.,School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, China
| | - Ning Zhang
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - Lihuan Wang
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - Shuzhang Yang
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - Yongsheng Liu
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China. .,School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China.
| | - Songhu Wang
- CAS Center for Excellence in Molecular Plant Sciences, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| |
Collapse
|
15
|
Mariz-Ponte N, Mendes RJ, Sario S, Ferreira de Oliveira JMP, Melo P, Santos C. Tomato plants use non-enzymatic antioxidant pathways to cope with moderate UV-A/B irradiation: A contribution to the use of UV-A/B in horticulture. JOURNAL OF PLANT PHYSIOLOGY 2018; 221:32-42. [PMID: 29223880 DOI: 10.1016/j.jplph.2017.11.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/28/2017] [Accepted: 11/29/2017] [Indexed: 05/21/2023]
Abstract
Plants developed receptors for solar UV-A/B radiation, which regulate a complex network of functions through the plant's life cycle. However, greenhouse grown crops, like tomato, are exposed to strongly reduced UV radiation, contrarily to their open-field counterparts. A new paradigm of modern horticulture is to supplement adequate levels of UV to greenhouse cultures, inducing a positive mild stress necessary to stimulate oxidative stress pathways and antioxidant mechanisms. Protected cultures of Solanum (cv MicroTom) were supplemented with moderate UV-A (1h and 4h) and UV-B (1min and 5min) doses during the flowering/fruiting period. After 30days, flowering/fruit ripening synchronization were enhanced, paralleled by the upregulation of blue/UV-A and UV-B receptors' genes cry1a and uvr8. UV-B caused moreover an increase in the expression of hy5, of HY5 repressor cop1 and of a repressor of COP1, uvr8. While all UV-A/B conditions increased SOD activity, increases of the generated H2O2, as well as lipid peroxidation and cell mebrane disruption, were minimal. However, the activity of antioxidant enzymes downstream from SOD (CAT, APX, GPX) was not significant. These results suggest that the major antioxidant pathways involve phenylpropanoid compounds, which also have an important role in UV screening. This hypothesis was confirmed by the increase of phenolic compounds and by the upregulation of chs and fls, coding for CHS and FLS enzymes involved in the phenylpropanoid synthesis. Overall, all doses of UV-A or UV-B were beneficial to flowering/fruiting but lower UV-A/B doses induced lower redox disorders and were more effective in the fruiting process/synchronization. Considering the benefits observed on flowering/fruiting, with minimal impacts in the vegetative part, we demonstrate that both UV-A/B could be used in protected tomato horticulture systems.
Collapse
Affiliation(s)
- N Mariz-Ponte
- Department of Biology & LAQV/REQUIMTE, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal
| | - R J Mendes
- Department of Biology & LAQV/REQUIMTE, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal
| | - S Sario
- Department of Biology & LAQV/REQUIMTE, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal
| | - J M P Ferreira de Oliveira
- Department of Biology & LAQV/REQUIMTE, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal; UCIBIO, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira nº 228, 4050-313, Porto, Portugal
| | - P Melo
- Department of Biology & BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Porto, Rua Campo Alegre, 4169-007, Porto, Portugal
| | - C Santos
- Department of Biology & LAQV/REQUIMTE, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal.
| |
Collapse
|
16
|
Miyamori T, Nakasone Y, Hitomi K, Christie JM, Getzoff ED, Terazima M. Reaction dynamics of the UV-B photosensor UVR8. Photochem Photobiol Sci 2016; 14:995-1004. [PMID: 25811405 DOI: 10.1039/c5pp00012b] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
UVR8 is a recently discovered ultraviolet-B (UV-B) photoreceptor protein identified in plants and algae. In the dark state, UVR8 exists as a homodimer, whereas UV-B irradiation induces UVR8 monomerization and initiation of signaling. Although the biological functions of UVR8 have been studied, the fundamental reaction mechanism and associated kinetics have not yet been fully elucidated. Here, we used the transient grating method to determine the reaction dynamics of UVR8 monomerization based on its diffusion coefficient. We found that the UVR8 photodissociation reaction proceeds in three stages: (i) photoexcitation of cross-dimer tryptophan (Trp) pyramids; (ii) an initial conformational change with a time constant of 50 ms; and (iii) dimer dissociation with a time constant of 200 ms. We identified W285 as the key Trp residue responsible for initiating this photoreaction. Although the C-terminus of UVR8 is essential for biological interactions and signaling via downstream components such as COP1, no obvious differences were detected between the photoreactions of wild-type UVR8 (amino acids 1-440) and a mutant lacking the C-terminus (amino acids 1-383). This similarity indicates that the conformational change associated with stage ii cannot primarily be attributed to this region. A UV-B-driven conformational change with a time constant of 50 ms was also detected in the monomeric mutants of UVR8. Dimer recovery following monomerization, as measured by circular dichroism spectroscopy, was decreased under oxygen-purged conditions, suggesting that redox reactivity is a key factor contributing to the UVR8 oligomeric state.
Collapse
Affiliation(s)
- Takaaki Miyamori
- Department of Chemistry, Graduate School of Science, Kyoto University, Oiwake, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan.
| | | | | | | | | | | |
Collapse
|
17
|
Plessis A, Hafemeister C, Wilkins O, Gonzaga ZJ, Meyer RS, Pires I, Müller C, Septiningsih EM, Bonneau R, Purugganan M. Multiple abiotic stimuli are integrated in the regulation of rice gene expression under field conditions. eLife 2015; 4. [PMID: 26609814 PMCID: PMC4718725 DOI: 10.7554/elife.08411] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 11/25/2015] [Indexed: 02/06/2023] Open
Abstract
Plants rely on transcriptional dynamics to respond to multiple climatic fluctuations and contexts in nature. We analyzed the genome-wide gene expression patterns of rice (Oryza sativa) growing in rainfed and irrigated fields during two distinct tropical seasons and determined simple linear models that relate transcriptomic variation to climatic fluctuations. These models combine multiple environmental parameters to account for patterns of expression in the field of co-expressed gene clusters. We examined the similarities of our environmental models between tropical and temperate field conditions, using previously published data. We found that field type and macroclimate had broad impacts on transcriptional responses to environmental fluctuations, especially for genes involved in photosynthesis and development. Nevertheless, variation in solar radiation and temperature at the timescale of hours had reproducible effects across environmental contexts. These results provide a basis for broad-based predictive modeling of plant gene expression in the field. DOI:http://dx.doi.org/10.7554/eLife.08411.001 Plants need to be able to sense and respond to changes in temperature, light levels and other aspects of their environment. One way in which plants can rapidly respond to these changes is to modify how genes involved in growth and other processes are expressed. Therefore, understanding how this happens may help us to improve the ability of crops to grow when exposed to drought or other extreme environmental conditions. Most previous studies into the effect of the environment on plant gene expression have been carried out under controlled conditions in a laboratory. These findings cannot reflect the full range of gene expression patterns that occur in the natural environment, where multiple factors (e.g. sunlight, water, nutrients) may vary at the same time. Therefore, it is important to also analyze the effect of fluctuations in multiple environmental factors in more complex field experiments. Plessis et al. developed mathematical models to analyze the gene expression patterns of rice plants grown in the tropical environment of the Philippines using two different farming practices. One field of rice was flooded and constantly supplied with fresh water (referred to as the irrigated field), while the other field was dry and only received water from rainfall (the rainfed field). The experiments show that temperature and levels of sunlight (including UV radiation) have a strong impact on gene expression in the rice plants. Short-term variations in temperature and sunlight levels also have the most consistent effect across the different fields and seasons tested. However, for many genes, the plants grown in the irrigated field responded to the changes in environmental conditions in a different way to the plants grown in the rainfed field. Further analysis identified groups of genes whose expression combined responses to several environmental factors at the same time. For example, certain genes that responded to increases in sunlight in the absence of drought responded to both sunlight levels and the shortage of water when a drought occurred. The next step is to test more types of environments and climates to be able to predict gene expression responses under future climatic conditions. DOI:http://dx.doi.org/10.7554/eLife.08411.002
Collapse
Affiliation(s)
- Anne Plessis
- Department of Biology, New York University, New York, United States.,Center for Genomics and Systems Biology, New York University, New York, United States
| | - Christoph Hafemeister
- Department of Biology, New York University, New York, United States.,Center for Genomics and Systems Biology, New York University, New York, United States
| | - Olivia Wilkins
- Department of Biology, New York University, New York, United States.,Center for Genomics and Systems Biology, New York University, New York, United States
| | | | - Rachel Sarah Meyer
- Department of Biology, New York University, New York, United States.,Center for Genomics and Systems Biology, New York University, New York, United States
| | - Inês Pires
- Department of Biology, New York University, New York, United States.,Center for Genomics and Systems Biology, New York University, New York, United States
| | - Christian Müller
- Simons Center for Data Analysis, Simons Foundation, New York, United States
| | | | - Richard Bonneau
- Department of Biology, New York University, New York, United States.,Center for Genomics and Systems Biology, New York University, New York, United States.,Simons Center for Data Analysis, Simons Foundation, New York, United States
| | - Michael Purugganan
- Department of Biology, New York University, New York, United States.,Center for Genomics and Systems Biology, New York University, New York, United States
| |
Collapse
|
18
|
Simontacchi M, Galatro A, Ramos-Artuso F, Santa-María GE. Plant Survival in a Changing Environment: The Role of Nitric Oxide in Plant Responses to Abiotic Stress. FRONTIERS IN PLANT SCIENCE 2015; 6:977. [PMID: 26617619 PMCID: PMC4637419 DOI: 10.3389/fpls.2015.00977] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 10/26/2015] [Indexed: 05/20/2023]
Abstract
Nitric oxide in plants may originate endogenously or come from surrounding atmosphere and soil. Interestingly, this gaseous free radical is far from having a constant level and varies greatly among tissues depending on a given plant's ontogeny and environmental fluctuations. Proper plant growth, vegetative development, and reproduction require the integration of plant hormonal activity with the antioxidant network, as well as the maintenance of concentration of reactive oxygen and nitrogen species within a narrow range. Plants are frequently faced with abiotic stress conditions such as low nutrient availability, salinity, drought, high ultraviolet (UV) radiation and extreme temperatures, which can influence developmental processes and lead to growth restriction making adaptive responses the plant's priority. The ability of plants to respond and survive under environmental-stress conditions involves sensing and signaling events where nitric oxide becomes a critical component mediating hormonal actions, interacting with reactive oxygen species, and modulating gene expression and protein activity. This review focuses on the current knowledge of the role of nitric oxide in adaptive plant responses to some specific abiotic stress conditions, particularly low mineral nutrient supply, drought, salinity and high UV-B radiation.
Collapse
Affiliation(s)
- Marcela Simontacchi
- Instituto de Fisiología Vegetal, Universidad Nacional de La Plata–Consejo Nacional de Investigaciones Científicas y TécnicasLa Plata, Argentina
| | - Andrea Galatro
- Physical Chemistry – Institute for Biochemistry and Molecular Medicine, Faculty of Pharmacy and Biochemistry, University of Buenos Aires–Consejo Nacional de Investigaciones Científicas y TécnicasBuenos Aires, Argentina
| | - Facundo Ramos-Artuso
- Instituto de Fisiología Vegetal, Universidad Nacional de La Plata–Consejo Nacional de Investigaciones Científicas y TécnicasLa Plata, Argentina
| | - Guillermo E. Santa-María
- Instituto Tecnológico Chascomús, Consejo Nacional de Investigaciones Científicas y Técnicas–Universidad Nacional de San MartínChascomús, Argentina
| |
Collapse
|
19
|
Bidel LPR, Chomicki G, Bonini F, Mondolot L, Soulé J, Coumans M, La Fisca P, Baissac Y, Petit V, Loiseau A, Cerovic ZG, Gould KS, Jay-Allemand C. Dynamics of flavonol accumulation in leaf tissues under different UV-B regimes in Centella asiatica (Apiaceae). PLANTA 2015; 242:545-59. [PMID: 25896373 DOI: 10.1007/s00425-015-2291-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 03/30/2015] [Indexed: 05/02/2023]
Abstract
A cumulative effect of UV-B doses on epidermal flavonol accumulation was observed during the first week of a time course study in Centella asiatica (Apiaceae). However, once flavonol levels had peaked, additional accumulation was possible only if higher daily UV-B irradiances were applied. We aimed to understand the dynamics of flavonol accumulation in leaf tissues using non-destructive spectroscopy and HPLC-mass spectrometry. When leaves that had grown without UV-B were given brief daily exposures to low-irradiance UV-B, they accumulated flavonols, predominantly kaempferol-3-O-β-D-glucuronopyranoside and quercetin-3-O-β-D-glucuronopyranoside, in their exposed epidermis, reaching a plateau after 7 days. More prolonged UV-B exposures or higher doses eventually augmented flavonol concentrations even in non-exposed tissues. If UV-B irradiance was subsequently reduced, leaves appeared to lose their ability to accumulate further flavonols in their epidermis even if the duration of daily exposure was increased. A higher irradiance level was then necessary to further increase flavonol accumulation. When subsequently acclimated to higher UV-B irradiances, mature leaves accumulated less flavonols than did developing ones. Our study suggests that levels of epidermal flavonols in leaves are governed primarily by UV-B irradiance rather than by duration of exposure.
Collapse
Affiliation(s)
- Luc P R Bidel
- INRA, UMR AGAP, Centre de Recherche de Montpellier, 2 Place Pierre Viala-Bât. 21, 34060, Montpellier, France,
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Björn LO. On the history of phyto-photo UV science (not to be left in skoto toto and silence). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 93:3-8. [PMID: 25308920 DOI: 10.1016/j.plaphy.2014.09.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 09/17/2014] [Indexed: 05/22/2023]
Abstract
This review of the history of ultraviolet photobiology focuses on the effects of UV-B (280-315 nm) radiation on terrestrial plants. It describes the early history of ultraviolet photobiology, the discovery of DNA as a major ultraviolet target and the discovery of photoreactivation and photolyases, and the later identification of Photosystem II as another important target for damage to plants by UV-B radiation. Some experimental techniques are briefly outlined. The insight that the ozone layer was thinning spurred the interest in physiological and ecological effects of UV-B radiation and resulted in an exponential increase over time in the number of publications and citations until 1998, at which time it was realized by the research community that the Montreal Protocol regulating the pollution of the atmosphere with ozone depleting substances was effective. From then on, the publication and citation rate has continued to rise exponentially, but with an abrupt change to lower exponents. We have now entered a phase when more emphasis is put on the "positive" effects of UV-B radiation, and with more emphasis on regulation than on damage and inhibition.
Collapse
Affiliation(s)
- Lars Olof Björn
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, School of Life Science, South China Normal University, Guangzhou 510631, China; Lund University, Department of Biology, Sölvegatan 35, SE-22362 Lund, Sweden.
| |
Collapse
|
21
|
Robson TM, Hartikainen SM, Aphalo PJ. How does solar ultraviolet-B radiation improve drought tolerance of silver birch (Betula pendula Roth.) seedlings? PLANT, CELL & ENVIRONMENT 2015; 38:953-967. [PMID: 25041067 DOI: 10.1111/pce.12405] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 06/29/2014] [Indexed: 06/03/2023]
Abstract
We hypothesized that solar ultraviolet (UV) radiation would protect silver birch seedlings from the detrimental effects of water stress through a coordinated suite of trait responses, including morphological acclimation, improved control of water loss through gas exchange and hydraulic sufficiency. To better understand how this synergetic interaction works, plants were grown in an experiment under nine treatment combinations attenuating ultraviolet-A and ultraviolet-B (UVB) from solar radiation together with differential watering to create water-deficit conditions. In seedlings under water deficit, UV attenuation reduced height growth, leaf production and leaf length compared with seedlings receiving the full spectrum of solar radiation, whereas the growth and morphology of well-watered seedlings was largely unaffected by UV attenuation. There was an interactive effect of the treatment combination on water relations, which was more apparent as a change in the water potential at which leaves wilted or plants died than through differences in gas exchange. This suggests that changes occur in the cell wall elastic modulus or accumulation of osmolites in cells under UVB. Overall, the strong negative effects of water deficit are partially ameliorated by solar UV radiation, whereas well-watered silver birch seedlings are slightly disadvantaged by the solar UV radiation they receive.
Collapse
Affiliation(s)
- T Matthew Robson
- Department of Biosciences, Plant Biology, University of Helsinki, PO Box 65, 00014, Helsinki, Finland
| | | | | |
Collapse
|
22
|
Aphalo PJ, Jansen MAK, McLeod AR, Urban O. Ultraviolet radiation research: from the field to the laboratory and back. PLANT, CELL & ENVIRONMENT 2015; 38:853-5. [PMID: 25876767 DOI: 10.1111/pce.12537] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Affiliation(s)
- Pedro J Aphalo
- Department of Biosciences, University of Helsinki, Finland
| | | | | | | |
Collapse
|