1
|
Zhang X, Gao M, Dong Y, Pan L, Zhai M, Jin L. Novel Aminocoumarin-Based Schiff Bases: High Antifungal Activity in Agriculture. Chem Biodivers 2024:e202401390. [PMID: 39169237 DOI: 10.1002/cbdv.202401390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 08/23/2024]
Abstract
Structural modification is an effective way to improve the antifungal activity of natural products and has been widely used in the development of novel fungicides. In this work, a series of aminocoumarin-based Schiff bases were synthesized and characterized by 1H-NMR, 13C NMR and HR-MS spectra. The in vitro inhibition activity of all compounds was tested against four phytopathogenic fungi (Alternaria solani, Fusarium oxysporum, Botrytis cinerea, and Alternaria alternata) using the mycelial growth rate method. The results showed that most of the target compounds exhibited significant antifungal activities. In particular, compounds 5b, 5c, 5d, 5h, 5n, 7c, 7n, and 7p exhibited more effective antifungal activity than commercially available fungicides, chlorothalonil and azoxystrobin. The structure-activity relationship revealed that the electron-withdrawing groups with more electronegativity introduced at the C-3 position were effective in improving the inhibitory activity and that halogenated benzaldehydes would be necessary in the preparation of Schiff bases. The compound 5n against Fusarium oxysporum (EC50=8.73 μg/mL) and the compound 7p against Alternaria alternata (EC50=26.25 μg/mL) were much better than the positive controls (chlorothalonil and azoxystrobin). Therefore, compounds 5n and 7p could serve as promising lead compounds for the development of novel broad-spectrum fungicides, which could be useful for applications in the agriculture.
Collapse
Affiliation(s)
- Xin Zhang
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Ming Gao
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Yajie Dong
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Le Pan
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Manjun Zhai
- College of Animal Sciences, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Lu Jin
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumqi, 830052, China
| |
Collapse
|
2
|
Li Q, Li Y, Pu Q, Yang H, Du M, Li X, Li Y, Li X. Exposure estimation and neurotoxicity inhibition of dioxins in sensitive populations near domestic waste incineration plant through adverse outcome pathway. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134066. [PMID: 38522193 DOI: 10.1016/j.jhazmat.2024.134066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/09/2024] [Accepted: 03/16/2024] [Indexed: 03/26/2024]
Abstract
The neurotoxicity induced by dioxins has been recognized as a serious concern to sensitive population living near waste incineration plants. However, investigating the intracellular neurotoxicity of dioxin in humans and the corresponding mitigation strategies has been barely studied. Thus, a domestic waste incineration plant was selected in this study to characterize the neurotoxicity risks of sensitive populations by estimating the ratio of dioxin in human cells using membrane structure dynamics simulation; and constructing a complete dioxin neurotoxicity adverse outcome pathway considering the binding process of AhR/ARNT dimer protein and dioxin response element (DRE). Six dioxins with high neurotoxicity risk were identified. According to the composite neurotoxicity risk analysis, the highest composite neurotoxicity risk appeared when the six dioxins were jointly exposed. Dietary schemes were designed using 1/2 partial factor experimental design to mitigate the composite neurotoxicity risk of six dioxins and No. 16 was screened as the optimum combination which can effectively alleviate the composite neurotoxicity risk by 29.52%. Mechanism analysis shows that the interaction between AhR/ARNT dimer protein and DRE was inhibited under the optimal dietary scheme. This study provides theoretical feasibility and reference significance for assessing composite toxicity risks of pollutants and safety mitigation measures for toxic effects.
Collapse
Affiliation(s)
- Qing Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Yunxiang Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Qikun Pu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Hao Yang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Meijin Du
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Xinao Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Yu Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Xixi Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3×5, Canada.
| |
Collapse
|
3
|
Tiakouang EN, Ewonkem MB, Moto JO, Adjieufack AI, Deussom PM, Mbock MA, Ngeufa EH, Toze AFA, Wansi DJ. Synthesis, antimicrobial properties and in silico evaluation of coumarin derivatives mediated by 1,4-dibromobutane. J Biomol Struct Dyn 2024:1-14. [PMID: 38411010 DOI: 10.1080/07391102.2024.2321507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 02/15/2024] [Indexed: 02/28/2024]
Abstract
In this study, monobrominated coumarins (5-6) and bis-coumarins (7-9) were synthesized from 3-carboxylic coumarin and 7-hydroxy-4-methyl coumarin using 1,4-dibromobutane as a binding agent, according to the synthesis procedures described in the literature. Amongst these coumarins, three are new compounds: monobrominated coumarin 5 and bis-coumarins 7 and 9. The structures of the synthesized coumarins were confirmed by FTIR, NMR and HRMS-ESI. In vitro antimicrobial evaluation of these coumarins against strains of twelve bacteria and four fungi revealed their bactericidal and fungicidal properties, with increased antibacterial activity for monocoumarins and improved antifungal activity for bis-coumarins. It was also found that the antibacterial activity was enhanced by the etheric bond, Br atom and alkyl chain and reduced by the ester bonds at position 3 of the pyrone ring or an additional coumarin unit, while the antifungal activity was reinforced by ester bonds and deactivated by the Br atom. For the first time, the in silico investigations of such coumarins were carried out and it was observed that they are less toxic, suitable for oral administration with good permeability through cell membrane, are able to circulate freely in the bloodstream and cross Blood-Brain-Barriers. Moreover, their molecular docking in DNA indicated stable coumarin-DNA complexes with good scores. The results of molecular dynamics simulations performed for 200 ns revealed the rigidity and stability of bis-coumarins (7-9) in the DNA binding pocket and predict that they are potent binders.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Eunice N Tiakouang
- Department of Chemistry, Faculty of Sciences, University of Douala, Douala, Cameroon
| | - Monique B Ewonkem
- Department of Chemistry, Faculty of Sciences, University of Douala, Douala, Cameroon
| | - Jean O Moto
- Department of Chemistry, Faculty of Sciences, University of Douala, Douala, Cameroon
| | - Abel I Adjieufack
- Physical and Theoretical Chemistry Laboratory, University of Yaoundé 1, Yaoundé, Cameroon
| | - Pascaline M Deussom
- Department of Chemistry, Faculty of Sciences, University of Douala, Douala, Cameroon
| | - Michel A Mbock
- Department of Biochemistry, Faculty of Science, Laboratory of Biochemistry, University of Douala, Douala, Cameroon
| | - Emmanuel H Ngeufa
- Department of Chemistry, Faculty of Sciences, University of Douala, Douala, Cameroon
| | - Alfred F A Toze
- Department of Chemistry, Faculty of Sciences, University of Douala, Douala, Cameroon
| | - Duplex J Wansi
- Department of Chemistry, Faculty of Sciences, University of Douala, Douala, Cameroon
| |
Collapse
|
4
|
Ding Y, Xue X. Medicinal Chemistry Strategies for the Modification of Bioactive Natural Products. Molecules 2024; 29:689. [PMID: 38338433 PMCID: PMC10856770 DOI: 10.3390/molecules29030689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/17/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
Natural bioactive compounds are valuable resources for drug discovery due to their diverse and unique structures. However, these compounds often lack optimal drug-like properties. Therefore, structural optimization is a crucial step in the drug development process. By employing medicinal chemistry principles, targeted molecular operations can be applied to natural products while considering their size and complexity. Various strategies, including structural fragmentation, elimination of redundant atoms or groups, and exploration of structure-activity relationships, are utilized. Furthermore, improvements in physicochemical properties, chemical and metabolic stability, biophysical properties, and pharmacokinetic properties are sought after. This article provides a concise analysis of the process of modifying a few marketed drugs as illustrative examples.
Collapse
Affiliation(s)
- Yuyang Ding
- Shenzhen Borui Pharmaceutical Technology Co., Ltd., Shenzhen 518055, China;
| | - Xiaoqian Xue
- Medi-X Pingshan, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
5
|
Sunitha N, Isac Sobana Raj C, Sindhu Kumari B. Development of nanofunctionalized oxovanadium(IV) complex and its anticancer, antidiabetic, DNA cleavage and cell imaging studies. Int J Pharm 2023; 644:123339. [PMID: 37611853 DOI: 10.1016/j.ijpharm.2023.123339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/17/2023] [Accepted: 08/19/2023] [Indexed: 08/25/2023]
Abstract
VO(IV) complex is little toxic and highly effective than vanadium salts. A vanadyl metal complex from 8-formyl-7-hydroxy-4-methyl coumarin derivative has been synthesized and functionalized with copper nanoparticles. The Spectrochemical studies such as UV, FTIR, 1NMR and ESR spectra were recorded to characterize the ligand(CUAP), Vanadyl complex[VO(CUAP)SO4] and nano Cu-VO(IV)complex efficiently. The structural studies of vanadyl complex confirmed that the ligand coordinate with metal through nitrogen atom of azomethine, carbonyl oxygen and phenolic oxygen. ESR spectrum of vanadyl complex revealed the covalent nature. XRD pattern of nano Cu-VO(IV) complex indicated the crystalline nature and the average particle size was 20.91 nm. SEM image of nano Cu-VO(IV) complex showed that the nano particles accumulated to form spherical shaped particles. The particle size obtained from Transmission Electron Microscopy of nano functionalized metal complex is ∼ 20 nm. It is closely matched to the particle size calculated from XRD results. Fluorescence of vanadyl complex and nano Cu-VO(IV) complex exhibit the emission from 270 to 900 nm range with significant fluorescence at ∼ 750 nm. The DNA cleavage of all the compounds was evaluated using Agarose gel electrophoresis technique and showed greater cleavage of vanadyl complex. The anticancer activity of compounds was carried out against two cancer cell lines viz Human Breast Cancer Cell line (MCF-7) and Human Leukemia Cancer Cell Line(K-562). Oxovanadium complex exhibited good anticancer activities than ligand and nano-functionalized complex. The antidiabetic activities of vanadyl and nano functionalized complexes were studied against α-Amylase and β-Glucosidase inhibition assay. In this study vanadyl complex showed higher inhibition activity on α-Amylase compared with standard Acarbose. The bioimaging of nano-functionalized metal complex showed high fluorescent properties. The molecular docking study of ligand and vanadyl complex showed greater docking results with CDK2 receptor.
Collapse
Affiliation(s)
- N Sunitha
- Department of Chemistry & Research Centre, Nesamony Memorial Christian College, Marthandam 629157, (Affiliated to Manonmaniam Sundaranar University, Tirunelveli), India
| | - C Isac Sobana Raj
- Department of Chemistry & Research Centre, Nesamony Memorial Christian College, Marthandam 629157, (Affiliated to Manonmaniam Sundaranar University, Tirunelveli), India
| | - B Sindhu Kumari
- Department of Chemistry, Sree Devi Kumari Women's College, Kuzhithurai 629163, (Affiliated to Manonmaniam Sundaranar University, Tirunelveli), India.
| |
Collapse
|
6
|
Varshney A, Mishra AP. Synthesis, spectral characterization, computational studies, antifungal, DNA interaction, antioxidant and fluorescence property of novel Schiff base ligand and its metal chelates. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 297:122765. [PMID: 37099994 DOI: 10.1016/j.saa.2023.122765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/30/2023] [Accepted: 04/17/2023] [Indexed: 05/14/2023]
Abstract
Cobalt, Copper, Nickel and Zinc coordinated metal complexes were synthesized by novel thiazole Schiff base ligand 2-ethoxy-4-((5-methylthiazol-2-ylimino)methyl) phenol derived from 3-ethoxy-4-hydroxybenzaldehyde and 2-amino- 5-methylthiazol. The synthesized compounds were spectrochemically characterized by elemental analysis, molar conductance, FT-IR, UV-Vis, Mass spectral analysis, Powdered-XRD and cyclic voltammetry. The thermal stability of synthesized complexes were investigated by using thermogravimetric analysis (TGA). Theoretical computational study were performed for all the synthesized compounds utilizing the DFT/B3LYP method at the 6-31G basic set for Schiff base ligand whereas LANL2DZ basis set for metal complexes. Molecular Electrostatic Potential (MEP), HOMO-LUMO, Mulliken charges and global reactivity descriptors, including chemical potential (μ), global softness (S), chemical hardness (η), and electrophilicity index (ω) were measured and correlated with antimicrobial activity. The synthesized thiazole Schiff base ligand and its coordinated metal complexes shows good antifungal agreement against Fusarium Oxysporum and Aspergillus Niger species. These compounds also exhibit DNA binding, DNA cleaving and antioxidant activity. All the synthesized molecules indicate potential fluorescence property.
Collapse
Affiliation(s)
- Anshita Varshney
- Department of Chemistry, Dr. Hari Singh Gour Vishwavidyalaya (a Central University), Sagar, Madhya Pradesh 470003, India.
| | - A P Mishra
- Department of Chemistry, Dr. Hari Singh Gour Vishwavidyalaya (a Central University), Sagar, Madhya Pradesh 470003, India.
| |
Collapse
|
7
|
Kumar B, Devi J, Manuja A. Synthesis, structure elucidation, antioxidant, antimicrobial, anti-inflammatory and molecular docking studies of transition metal(II) complexes derived from heterocyclic Schiff base ligands. RESEARCH ON CHEMICAL INTERMEDIATES 2023. [DOI: 10.1007/s11164-023-04991-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
8
|
Sunitha N, Raj CIS, Kumari BS. SYNTHESIS, SPECTRAL STUDIES, BIOLOGICAL EVALUATION AND MOLECULAR DOCKING STUDIES OF METAL COMPLEXES FROM COUMARIN DERIVATIVE. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
9
|
Waziri I, Yusuf TL, Akintemi E, Kelani MT, Muller A. Spectroscopic, crystal structure, antimicrobial and antioxidant evaluations of new Schiff base compounds: An experimental and theoretical study. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Retnam CTG, Rose SV, Kumari BS. Synthesis, characterization, biological activity and molecular docking study of transition metal complexes from heterocyclic ligand system. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
11
|
Cui L, Peng C, Li J, Cheng X, Fan X, Li J, Yang Z, Zhao Y, Ma Y. The anti-inflammatory and analgesic activities of 2Br-Crebanine and Stephanine from Stephania yunnanenses H. S.Lo. Front Pharmacol 2023; 13:1092583. [PMID: 36686697 PMCID: PMC9845599 DOI: 10.3389/fphar.2022.1092583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/15/2022] [Indexed: 01/05/2023] Open
Abstract
Ethnopharmacological relevance: Crebanine (Cre) and Stephanine (Step) are isoquinoline aporphine-type alkaloids that are extracted from Stephania yunnanenses H. S. Lo. Plants of the Stephania genus are often used for treatment of stomach pain, abdominal pain, and rheumatoid arthritis. Both Cre and Step exhibit strong activities but are also associated with a certain level of toxicity, 10,11-dibrominecrebanine (2Br-Cre) is a bromine-modified derivative of Cre that we prepared and tested in order to reduce toxicity and enhance efficacy. Aim of this study: To investigate the anti-inflammatory and analgesic effects of 2Br-Cre and Step based on previous research findings and explore the specific biological mechanisms involved. Materials and methods: The anti-inflammatory and analgesic effects of 2Br-Cre and Step were investigated using a range of experimental models, including xylene-induced ear edema, carrageenan-induced pleurisy, carrageenan-induced paw edema, the hot-plate test, the naloxone antagonism test and the acetic acid writhing test. A model of chronic constriction injury (CCI) of the sciatic nerve was also established to investigate therapeutic effects. A RAW264.7 cell model was established using lipopolysaccharide (LPS) to estimate the effects of these compounds on cytokines levels. Results: 2Br-Cre and step significantly inhibited ear edema, paw edema and presented anti-inflammatory activity in the pleurisy model by inhibiting leukocyte migration and nitric oxide (NO) production, and by reducing the levels of PGE2. 2Br-Cre and Step significantly increased the pain threshold of mice subjected to heat stimulation; the effect was blocked by naloxone, thus suggesting that the analgesic effects of 2Br-Cre and Step were mediated by opioid receptors. 2Br-Cre and Step inhibited the frequency of writhing and prolonged the latency of writhing, and reduced the abnormal increase in the levels of BDNF in the serum and brain, thus alleviating the pain caused by CCI. In addition, 2Br-Cre and Step significantly inhibited the production of several inflammatory cytokines (IL-6, IL-1β and TNF-α) by LPS-induced RAW264.7 macrophages (p < .01). Conclusion: 2Br-Cre and Step exerted remarkable anti-inflammatory and analgesic effects. As a structural modification of Cre, 2Br-Cre retains the anti-inflammatory and analgesic activity of Cre but with better efficacy. Consequently, 2Br-Cre should be investigated further as a lead compound for analgesia.
Collapse
Affiliation(s)
- Lili Cui
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chaorui Peng
- Yunnan Xinxing Occupations College, Kunming, China
| | - Jun Li
- School of Chinese Material Medicine and Yunnan Key Laboratory of Dai and Yi Medicines, Yunnan University of Chinese Medicine, Kunming, China
| | - Xin Cheng
- School of Chinese Material Medicine and Yunnan Key Laboratory of Dai and Yi Medicines, Yunnan University of Chinese Medicine, Kunming, China
| | - Xiao Fan
- Key Laboratory of External Drug Delivery System and Preparation Technology in University of Yunnan Province, Kunming, China
| | - Jingyu Li
- Yunnan Center for Disease Control and Prevention, Kunming, China
| | - Zixian Yang
- School of Chinese Material Medicine and Yunnan Key Laboratory of Dai and Yi Medicines, Yunnan University of Chinese Medicine, Kunming, China
| | - Yuancui Zhao
- Health Center of Majie Town of Yiliang, Kunming, China
| | - Yunshu Ma
- School of Chinese Material Medicine and Yunnan Key Laboratory of Dai and Yi Medicines, Yunnan University of Chinese Medicine, Kunming, China,*Correspondence: Yunshu Ma,
| |
Collapse
|
12
|
Dettori T, Sanna G, Cocco A, Serreli G, Deiana M, Palmas V, Onnis V, Pilia L, Melis N, Moi D, Caria P, Secci F. Synthesis and Antiproliferative Effect of Halogenated Coumarin Derivatives. Molecules 2022; 27:molecules27248897. [PMID: 36558029 PMCID: PMC9786284 DOI: 10.3390/molecules27248897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
A series of 6- and 6,8-halocoumarin derivatives have been investigated as potential antiproliferative compounds against a panel of tumor and normal cell lines. Cytotoxic effects were determined by the MTT method. To investigate the potential molecular mechanism involved in the cytotoxic effect, apoptosis assay, cell cycle analysis, reactive oxygen species (ROS), and reduced glutathione analysis were performed. Among the screened compounds, coumarins 6,8-dibromo-2-oxo-2H-chromene-3-carbonitrile 2h and 6,8-diiodo-2-oxo-2H-chromene-3-carbonitrile 2k exhibited the most antiproliferative effect in thyroid cancer-derived cells TPC-1. The apoptosis assay showed that both 2h and 2k induced apoptosis in TPC-1 thyroid cancer cells. According to these experiments, both coumarins induced a slight increase in TPC-1 cells in the G2/M phase and a decrease in the S phase. A significant increase in ROS levels was observed in TPC-1 treated with diiodocoumarin 2k, while the dibromocoumarin 2h induced a decrease in ROS in a dose and time-dependent manner.
Collapse
Affiliation(s)
- Tinuccia Dettori
- Department of Biomedical Sciences, University of Cagliari, University Campus, 09042 Monserrato, CA, Italy
| | - Giuseppina Sanna
- Department of Biomedical Sciences, University of Cagliari, University Campus, 09042 Monserrato, CA, Italy
| | - Andrea Cocco
- Department of Chemical and Geological Sciences, University of Cagliari, University Campus, 09042 Monserrato, CA, Italy
| | - Gabriele Serreli
- Department of Biomedical Sciences, University of Cagliari, University Campus, 09042 Monserrato, CA, Italy
| | - Monica Deiana
- Department of Biomedical Sciences, University of Cagliari, University Campus, 09042 Monserrato, CA, Italy
| | - Vanessa Palmas
- Department of Biomedical Sciences, University of Cagliari, University Campus, 09042 Monserrato, CA, Italy
| | - Valentina Onnis
- Department of Life and Environmental Sciences, University of Cagliari, University Campus, 09042 Monserrato, CA, Italy
| | - Luca Pilia
- Department of Mechanical, Chemical and Material Engineering, University of Cagliari, 09123 Cagliari, CA, Italy
| | - Nicola Melis
- Department of Mechanical, Chemical and Material Engineering, University of Cagliari, 09123 Cagliari, CA, Italy
| | - Davide Moi
- Department of Chemical and Geological Sciences, University of Cagliari, University Campus, 09042 Monserrato, CA, Italy
- Department of Life and Environmental Sciences, University of Cagliari, University Campus, 09042 Monserrato, CA, Italy
- Correspondence: (D.M.); (P.C.); (F.S.)
| | - Paola Caria
- Department of Biomedical Sciences, University of Cagliari, University Campus, 09042 Monserrato, CA, Italy
- Correspondence: (D.M.); (P.C.); (F.S.)
| | - Francesco Secci
- Department of Chemical and Geological Sciences, University of Cagliari, University Campus, 09042 Monserrato, CA, Italy
- Correspondence: (D.M.); (P.C.); (F.S.)
| |
Collapse
|
13
|
Lucia Ruiz Benitez M, Severo Sabedra Sousa F, Peter Furtado I, Carlos Rodrigues Junior J, Victoria Mascarenhas Borba M, Vieira Segatto N, Tabarelli G, Klein Couto G, Júlia Damé Fonseca Paschoal M, Silveira Pacheco B, E. D. Rodrigues O, Collares T, Kömmling Seixas F. Chiral β‐arylchalcogenium azide induce apoptosis and regulate Oxidative Damage on Human Bladder Cancer Cells. ChemistrySelect 2022. [DOI: 10.1002/slct.202203207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Martha Lucia Ruiz Benitez
- Laboratory of Cancer Biotechnology, Technology Development Center Federal University of Pelotas Pelotas Rio Grande do Sul Brazil
- School of Basic and Biomedical Sciences Universidad Simón Bolívar Barranquilla Colombia
| | - Fernanda Severo Sabedra Sousa
- Laboratory of Cancer Biotechnology, Technology Development Center Federal University of Pelotas Pelotas Rio Grande do Sul Brazil
| | - Izadora Peter Furtado
- Laboratory of Cancer Biotechnology, Technology Development Center Federal University of Pelotas Pelotas Rio Grande do Sul Brazil
| | - João Carlos Rodrigues Junior
- Laboratory of Cancer Biotechnology, Technology Development Center Federal University of Pelotas Pelotas Rio Grande do Sul Brazil
| | - Msc. Victoria Mascarenhas Borba
- Laboratory of Cancer Biotechnology, Technology Development Center Federal University of Pelotas Pelotas Rio Grande do Sul Brazil
| | - Natália Vieira Segatto
- Laboratory of Cancer Biotechnology, Technology Development Center Federal University of Pelotas Pelotas Rio Grande do Sul Brazil
| | - Greice Tabarelli
- LabSelen-NanoBio - Chemistry Department Federal University of Santa Maria, Santa Maria Rio Grande do Sul Brazil
| | - Gabriela Klein Couto
- Laboratory of Cancer Biotechnology, Technology Development Center Federal University of Pelotas Pelotas Rio Grande do Sul Brazil
| | - Msc. Júlia Damé Fonseca Paschoal
- Laboratory of Cancer Biotechnology, Technology Development Center Federal University of Pelotas Pelotas Rio Grande do Sul Brazil
| | - Bruna Silveira Pacheco
- Laboratory of Cancer Biotechnology, Technology Development Center Federal University of Pelotas Pelotas Rio Grande do Sul Brazil
| | - Oscar E. D. Rodrigues
- LabSelen-NanoBio - Chemistry Department Federal University of Santa Maria, Santa Maria Rio Grande do Sul Brazil
| | - Tiago Collares
- Laboratory of Cancer Biotechnology, Technology Development Center Federal University of Pelotas Pelotas Rio Grande do Sul Brazil
| | - Fabiana Kömmling Seixas
- Laboratory of Cancer Biotechnology, Technology Development Center Federal University of Pelotas Pelotas Rio Grande do Sul Brazil
| |
Collapse
|
14
|
Patil SA, Kandathil V, Sobha A, Somappa SB, Feldman MR, Bugarin A, Patil SA. Comprehensive Review on Medicinal Applications of Coumarin-Derived Imine-Metal Complexes. Molecules 2022; 27:5220. [PMID: 36014460 PMCID: PMC9413576 DOI: 10.3390/molecules27165220] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/11/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Abstract
Coumarins are fused six-membered oxygen-containing benzoheterocycles that join two synthetically useful rings: α-pyrone and benzene. A survey of the literature shows that coumarins and their metal complexes have received great interest from synthetic chemists, medicinal scientists, and pharmacists due to their wide spectrum of biological applications. For instance, coumarin and its derivatives have been used as precursors to prepare a large variety of medicinal agents. Likewise, coumarin-derived imine-metal complexes have been found to display a variety of therapeutic applications, such as antibacterial, antifungal, anticancer, antioxidant, anthelmintic, pesticidal, and nematocidal activities. This review highlights the current synthetic methodologies and known bioactivities of coumarin-derived imine-metal complexes that make this molecule a more attractive scaffold for the discovery of newer drugs.
Collapse
Affiliation(s)
- Siddappa A Patil
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bangalore 562112, India
| | - Vishal Kandathil
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bangalore 562112, India
| | - Anjali Sobha
- Organic Chemistry Section, Chemical Sciences & Technology Division, National Institute for Interdisciplinary Science and Technology (CSIR), Thiruvananthapuram 695019, India
| | - Sasidhar B Somappa
- Organic Chemistry Section, Chemical Sciences & Technology Division, National Institute for Interdisciplinary Science and Technology (CSIR), Thiruvananthapuram 695019, India
| | - Max R Feldman
- Department of Chemistry & Physics, Florida Gulf Coast University, 10501 FGCU Boulevard South, Fort Myers, FL 33965, USA
| | - Alejandro Bugarin
- Department of Chemistry & Physics, Florida Gulf Coast University, 10501 FGCU Boulevard South, Fort Myers, FL 33965, USA
| | - Shivaputra A Patil
- Pharmaceutical Sciences Department, College of Pharmacy, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA
| |
Collapse
|
15
|
Fang YQ, Chen T, Huang G, Ni S, Dang L. Reaction mechanism for copper catalyzed functionalization of unsaturated side chains of amides via domino rearrangement. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2021.122233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
16
|
Sumrra SH, Hassan AU, Zafar MN, Shafqat SS, Mustafa G, Zafar MN, Zubair M, Imran M. Metal incorporated sulfonamides as promising multidrug targets: Combined enzyme inhibitory, antimicrobial, antioxidant and theoretical exploration. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131710] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Valova TM, Venidiktova OV, Barachevsky VA, Shienok AI, Kol’tsova LS, Lyubimov AV, Lyubimova GV, Zaichenko NL, Popov LD. A Spectral Study of the Complexation between the Hybrid Spiropyran Molecules and Metal Ions. RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363221120379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Du W, Lu X, Yuan T, Sun Z, Li X, Li S, Zhang Q, Tian X, Li D, Tian Y. Halogen-modified carbazole derivatives for lipid droplet-specific bioimaging and two-photon photodynamic therapy. Analyst 2021; 147:66-71. [PMID: 34821886 DOI: 10.1039/d1an01826d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Lipid droplets (LDs) are dynamic multifunctional organelles that participate in the regulation of many metabolic processes, visualization of which is necessary for biological research. In this work, a series of two-photon responsive fluorescent probes (C-H, C-Br, and C-I) based on carbazole units were designed and synthesized. Thereinto, an iodine-modified carbazole derivative C-I exhibited an exciting lipid droplet targeting ability due to its excellent lipophilicity. Meanwhile, benefiting from its larger Stokes shift and two-photon absorption cross-section, C-I was employed for two-photon confocal laser scanning microscopy (CLSM) and stimulated emission depletion (STED) microscopy imaging to observe LDs more accurately. In addition, given the heavy atom effect, C-I can effectively generate reactive oxygen species (ROS) leading to cancer cell apoptosis under near-infrared light irradiation. Notably, we explained the process of cell apoptosis through in vitro simulation experiments. This study provides a promising platform for visualization of lipid droplets.
Collapse
Affiliation(s)
- Wenli Du
- Department of Chemistry, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei 230039, P. R. China.
| | - Xin Lu
- Department of Chemistry, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei 230039, P. R. China.
| | - Tong Yuan
- School of Life Science, Anhui University, Hefei 230601, P. R. China
| | - Zhimin Sun
- Institutes of Physics Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei 230601, P. R. China.
| | - Xiaocheng Li
- Department of Chemistry, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei 230039, P. R. China.
| | - Shengli Li
- Department of Chemistry, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei 230039, P. R. China.
| | - Qiong Zhang
- Department of Chemistry, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei 230039, P. R. China.
| | - Xiaohe Tian
- Huaxi MR Research Centre (HMRRC), Department of Radiology; Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China, 610041, China
| | - Dandan Li
- Institutes of Physics Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei 230601, P. R. China.
| | - Yupeng Tian
- Department of Chemistry, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei 230039, P. R. China. .,State Key Laboratory of Coordination Chemistry, Nanjing University, P. R. China
| |
Collapse
|
19
|
Excited State Proton Transfers in Hybrid Compound Based on Indoline Spiropyran of the Coumarin Type and Azomethinocoumarin in the Presence of Metal Ions. Molecules 2021; 26:molecules26226894. [PMID: 34833986 PMCID: PMC8624336 DOI: 10.3390/molecules26226894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 11/21/2022] Open
Abstract
Spectral-luminescence properties of a hybrid compound containing a coumarin-type spiropyran and an azomethinocoumarin fragment in toluene-acetonitrile solution in the presence of Li+, Ca2+, Zn2+ and Mg2+ ions are reported. Two excited state proton transfers can occur in the hybrid compound—the transfer of a proton from the OH group of the 7-hydroxy coumarin tautomer to the N atom of the C=N bond of the azomethine fragment leading to green ESIPT fluorescence with a maximum at 540 nm and from the OH group of the 7-hydroxy coumarin tautomer to the carbonyl group of the pyrone chromophore, which leads to the formation of the 2-hydroxyl-tautomer T of coumarin with blue fluorescence with a maximum at 475 nm. Dependence of these excited state proton transfers on the metal nature and irradiation with an external UV source is discussed.
Collapse
|
20
|
Aravindan P, Sivaraj K, Kamal C, Vennila P, Venkatesh G. Synthesis, Molecular structure, Spectral Characterization, Molecular docking and biological activities of (E)-N-(2-methoxy benzylidene) anthracene-2-amine and Co(II), Cu(II) and Zn(II) complexes. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129488] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
21
|
Ahmad F, Alkahtani MDF, Taj MB, Alnajeebi AM, Alzahrani SO, Babteen NA, Alelwani W, Bannunah AM, Noor S, Ayub R, Tirmizi SA, Alshater H. Synthesis of New Naphthyl Aceto Hydrazone-Based Metal Complexes: Micellar Interactions, DNA Binding, Antimicrobial, and Cancer Inhibition Studies. Molecules 2021; 26:molecules26041044. [PMID: 33671247 PMCID: PMC7923181 DOI: 10.3390/molecules26041044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/11/2021] [Accepted: 02/13/2021] [Indexed: 11/16/2022] Open
Abstract
In the present study, naphthyl acetohydrazide (HL) ligand was prepared and used for the synthesis of new six amorphous transition metal (Co(II), Ni(II), Cu(II), Zn(II), Pb(II), Cd(II)) complexes. All the compounds were characterized by elemental analysis, UV-vis, FT-IR, 1H- and 13C-NMR, and Matrix-Assisted Laser Desorption Ionization (MALDI). The solubilization study was carried out by estimating the interaction between the metal complexes with surfactants viz. sodium stearate (SS) and Cetyltrimethylammonium bromide (CTAB). UV-Visible spectroscopy was employed to determine partitioning and binding parameters, whereas electrical conductivity measurements were employed to estimate critical micellar concentration (CMC), the extent of dissociation, and free energy of micellization. The CT-DNA interaction of synthesized compounds with DNA represents the major groove binding. The synthesized ligand and metal complexes were also tested against bacterial and fungal strains and it has been observed that Cu(II) complex is active against all the strains except Candida albicans, while Cd(II) complex is active against all bacterial and fungal strains except Pseudomonas. Among all compounds, only the Pd(II) complex shows reasonable activity against cervical cancer HeLa cell lines, representing 97% inhibition.
Collapse
Affiliation(s)
- Fawad Ahmad
- Department of Chemistry, Quaid-e-Azam University Islamabad, Islamabad 44000, Pakistan;
| | - Muneera D. F. Alkahtani
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11675, Saudi Arabia
- Correspondence: (M.D.F.A.); (M.B.T.); (S.A.T.); Tel.: +92-300-754-2669 (M.B.T.)
| | - Muhammad Babar Taj
- Department of Chemistry, Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
- Department of Chemistry, University of Sahiwal, Sahiwal 57000, Pakistan
- Correspondence: (M.D.F.A.); (M.B.T.); (S.A.T.); Tel.: +92-300-754-2669 (M.B.T.)
| | - Afnan M. Alnajeebi
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah 80203, Saudi Arabia; (A.M.A.); (N.A.B.); (W.A.)
| | - Seraj Omar Alzahrani
- Department of Chemistry, College of Science, Taibah University, Madinah 42353, Saudi Arabia;
| | - Nouf Abubakr Babteen
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah 80203, Saudi Arabia; (A.M.A.); (N.A.B.); (W.A.)
| | - Walla Alelwani
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah 80203, Saudi Arabia; (A.M.A.); (N.A.B.); (W.A.)
| | - Azzah M. Bannunah
- Department of Basic Sciences, Common First Year Deanship, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Sadia Noor
- Department of Chemistry, Govt. College for Women University Faisalabad, Faisalabad 38000, Pakistan;
| | - Rabia Ayub
- Arrhenius Laboratory, Department of Organic Chemistry, Stockholm University, Svante Arrhenius Vag 16C, SE-10691 Stockholm, Sweden;
| | - Syed Ahmad Tirmizi
- Department of Chemistry, Quaid-e-Azam University Islamabad, Islamabad 44000, Pakistan;
- Correspondence: (M.D.F.A.); (M.B.T.); (S.A.T.); Tel.: +92-300-754-2669 (M.B.T.)
| | - Heba Alshater
- Department of Forensic Medicine and Clinical Toxicology, Menoufia University, Shbien El-Kom 32511, Egypt;
| |
Collapse
|
22
|
Ghosh M, Biswas S, Roy M, Biswas S, Ghosh P, Koner S, Mandal S, Saha S. A trinuclear Zn(ii) Schiff base azido compound: synthesis, structure and exploration of antimicrobial activity. NEW J CHEM 2021. [DOI: 10.1039/d1nj00468a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis, characterization, X-ray crystal structure and antimicrobial activity of a trinuclear zinc(ii) complex have been explored.
Collapse
Affiliation(s)
- Mrinmoy Ghosh
- Department of Chemistry
- Acharya Prafulla Chandra College
- Kolkata-700131
- India
| | - Samik Biswas
- Department of Microbiology
- University of Kalyani
- Kalyani
- India
| | - Moumita Roy
- Department of Chemistry
- Acharya Prafulla Chandra College
- Kolkata-700131
- India
| | | | - Pameli Ghosh
- Department of Chemistry
- Jadavpur University
- Kolkata 700032
- India
| | | | | | - Sandip Saha
- Department of Chemistry
- Acharya Prafulla Chandra College
- Kolkata-700131
- India
| |
Collapse
|
23
|
Ding Y, Zhao L, Fu Y, Hao L, Fu Y, Yuan Y, Yu P, Teng Y. Synthesis and Antiproliferatory Activities Evaluation of Multi-Substituted Isatin Derivatives. Molecules 2020; 26:E176. [PMID: 33396550 PMCID: PMC7795683 DOI: 10.3390/molecules26010176] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/14/2020] [Accepted: 12/18/2020] [Indexed: 11/17/2022] Open
Abstract
A series of multi-substituted isatin derivatives were synthesized using the powerful Sandmeyer reaction. The structures of these derivatives were confirmed by 1H-NMR, 13C-NMR, and HR-MS. Inhibition of proliferation activities of these derivatives against human leukemia cells (K562), human hepatocellular carcinoma cells (HepG2) and human colon carcinoma cells (HT-29) were evaluated in vitro using the MTT assay. Among the series, compound 4l exhibited strong antiproliferatory activities against K562, HepG2 and HT-29 cells with IC50 values of 1.75, 3.20, and 4.17 μM, respectively. The morphological, growth inhibitory and apoptosic effects of compound 4l in K562 cells, wound healing effect in HepG2 cells, and tube formating effect in matrix gel of HUVEC cells were evaluated consequently. All results indicated that compound 4l could be used as a potential antitumor agent in further investigations.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Peng Yu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Bioengineering, Tianjin University of Science and Technology, Tianjin 300457, China; (Y.D.); (L.Z.); (Y.F.); (L.H.); (Y.F.); (Y.Y.)
| | - Yuou Teng
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Bioengineering, Tianjin University of Science and Technology, Tianjin 300457, China; (Y.D.); (L.Z.); (Y.F.); (L.H.); (Y.F.); (Y.Y.)
| |
Collapse
|
24
|
Sumrra SH, Habiba U, Zafar W, Imran M, Chohan ZH. A review on the efficacy and medicinal applications of metal-based triazole derivatives. J COORD CHEM 2020. [DOI: 10.1080/00958972.2020.1839751] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Umme Habiba
- Department of Chemistry, University of Gujrat, Gujrat, Pakistan
| | - Wardha Zafar
- Department of Chemistry, University of Gujrat, Gujrat, Pakistan
| | - Muhammad Imran
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Zahid Hussain Chohan
- Department of Chemistry, University College of Management and Sciences, Khanewal, Pakistan
| |
Collapse
|
25
|
Zhao Y, Xiong Y, Dong S, Guan X, Song Y, Yang Y, Zou K, Li Z, Zhang Y, Fang S, Li B, Zhu W, Chen K, Jia Q, Ge G. Synthesis and Structure-Activity Relationships of 3-Arylisoquinolone Analogues as Highly Specific hCES2A Inhibitors. ChemMedChem 2020; 16:388-398. [PMID: 32935462 DOI: 10.1002/cmdc.202000581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Indexed: 11/07/2022]
Abstract
Mammalian carboxylesterases (CES) are key enzymes that participate in the hydrolytic metabolism of various endogenous and exogenous substrates. Human carboxylesterase 2A (hCES2A), mainly distributed in the small intestine and colon, plays a significant role in the hydrolysis of many drugs. In this study, 3-arylisoquinolones 3 h [3-(4-(benzyloxy)-3-methoxyphenyl)-7,8-dimethoxyisoquinolin-1(2H)-one] and 4 a [3-(4-(benzyloxy)-3-methoxyphenyl)-4-bromo-7,8-dimethoxyisoquinolin-1(2H)-one] were found to have potent inhibitory effects on hCES2A (IC50 =0.68 μΜ, Ki =0.36 μΜ) and excellent specificity (more than 147.05-fold over hCES1 A). Moreover, 4 a exhibited threefold improved inhibition on intracellular hCES2A in living HepG2 cells relative to 3 h, with an IC50 value of 0.41 μΜ. Results of inhibition kinetics studies and molecular docking simulations demonstrate that both 3 h and 4 a can bind to multiple sites on hCES2A, functioning as mixed inhibitors. Structure-activity relationship analysis revealed that the lactam moiety on the B ring is crucial for specificity towards hCES2A, while a benzyloxy group is optimal for hCES2A inhibitory potency; the introduction of a bromine atom may enhance cell permeability, thereby increasing the intracellular hCES2A inhibitory activity.
Collapse
Affiliation(s)
- Yitian Zhao
- Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Yuan Xiong
- Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Sanfeng Dong
- Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Xiaoqing Guan
- Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Yunqing Song
- Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Yanqing Yang
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Kun Zou
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Zhao Li
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Yong Zhang
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Shengquan Fang
- Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Bo Li
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Weiliang Zhu
- Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Kaixian Chen
- Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Qi Jia
- Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Guangbo Ge
- Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| |
Collapse
|
26
|
Aggoun D, Fernández-García M, López D, Bouzerafa B, Ouennoughi Y, Setifi F, Ourari A. New nickel (II) and copper (II) bidentate Schiff base complexes, derived from dihalogenated salicylaldehyde and alkylamine: Synthesis, spectroscopic, thermogravimetry, crystallographic determination and electrochemical studies. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114640] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
27
|
Overview on developed synthesis procedures of coumarin heterocycles. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2020. [DOI: 10.1007/s13738-020-01984-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AbstractConsidering highly valuable biological and pharmaceutical properties of coumarins, the synthesis of these heterocycles has been considered for many organic and pharmaceutical chemists. This review includes the recent research in synthesis methods of coumarin systems, investigating their biological properties and describing the literature reports for the period of 2016 to the middle of 2020. In this review, we have classified the contents based on co-groups of coumarin ring. These reported methods are carried out in the classical and non-classical conditions particularly under green condition such as using green solvent, catalyst and other procedures.
Collapse
|
28
|
Kumbar M, Patil SA, Toragalmath SS, Kinnal SM, Shettar A, Hosakeri JH. Anticancer activity studies of novel metal complexes of ligands derived from polycyclic aromatic compound via greener route. J Organomet Chem 2020; 914:121219. [PMID: 32214459 PMCID: PMC7094295 DOI: 10.1016/j.jorganchem.2020.121219] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/02/2020] [Accepted: 03/06/2020] [Indexed: 12/23/2022]
Abstract
Methoxy and tert-butyl substituted carboxamide, carboxylic acid and hydrazone Schiff base groups have been assembled into our newly designed fluorenone based ligands and prepared coordination compounds of some first row transition metals and characterized thoroughly with spectroscopic (1H and 13C NMR, IR, GC-MS, UV-Vis), analytical, TGA and molar conductance measurements. The stoichiometry of all the metal complexes is found to be 1: 2 (M: L2) with the general formula, [M(L)2], where L is a singly deprotonated ligand and the geometry of all the metal complexes is found to be octahedral. Ligands and their metal complexes successfully cleaved the pBR322 plasmid DNA and in case of anticancer activity against MCF-7 (human breast adenocarcinoma) cell line, the synthesized compounds found to exhibit excellent activity with prominent apoptotic effect which is characterized by cell shrinkage, cell breakage and turgidity and results were compared with the standard drug cisplatin. Very significant anticancer activity was observed for compounds L1H, Cu(L1)2, Cu(L2)2, Ni(L1)2 and Ni(L2)2 with IC50 value of <10 μgmL-1. Molecular docking studies were performed to assess the bonding mode of synthesized compounds. In case of antioxidant activity study, the compounds L1H, Ni(L1)2, Ni(L2)2, Cu(L1)2 and Cu(L2)2 exhibited significant scavenging activity with good percentage when compared with remaining tested compounds.
Collapse
Affiliation(s)
- Mahantesh Kumbar
- P. G. Department of Chemistry, Karnatak University, Dharwad, 580003, Karnataka, India
| | - Sangamesh A. Patil
- P. G. Department of Chemistry, Karnatak University, Dharwad, 580003, Karnataka, India
| | | | | | - Arun Shettar
- P. G. Department of Biotechnology and Microbiology, Karnatak University, Dharwad, 580003, Karnataka, India
| | - Joy H. Hosakeri
- Department of Biotechnology and Bioinformatics, Akkamahadevi Women’s University, Vijayapura, 586108, Karnataka, India
| |
Collapse
|
29
|
Sumrra SH, Hassan AU, Imran M, Khalid M, Mughal EU, Zafar MN, Tahir MN, Raza MA, Braga AA. Synthesis, characterization, and biological screening of metal complexes of novel sulfonamide derivatives: Experimental and theoretical analysis of sulfonamide crystal. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5623] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Sajjad H. Sumrra
- Department of ChemistryUniversity of Gujrat Gujrat 50700 Pakistan
| | - Abrar U. Hassan
- Department of ChemistryUniversity of Gujrat Gujrat 50700 Pakistan
| | - Muhammad Imran
- Department of Chemistry, Faculty of ScienceKing Khalid University Abha 61413 Saudi Arabia
| | - Muhammad Khalid
- Department of ChemistryKhwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
| | - Ehsan U. Mughal
- Department of ChemistryUniversity of Gujrat Gujrat 50700 Pakistan
| | - Muhammad N. Zafar
- Department of ChemistryQuaid‐i‐Azam University Islamabad 45320 Pakistan
| | | | - Muhammad A. Raza
- Department of ChemistryUniversity of Gujrat Gujrat 50700 Pakistan
| | - Ataualpa A.C. Braga
- Departamento de Química Fundamental, Instituto de QuímicaUniversidade de São Paulo Av. Prof.LineuPrestes, 748 São Paulo 05508‐000 Brazil
| |
Collapse
|
30
|
Afsan Z, Roisnel T, Tabassum S, Arjmand F. Structure elucidation {spectroscopic, single crystal X-ray diffraction and computational DFT studies} of new tailored benzenesulfonamide derived Schiff base copper(II) intercalating complexes: Comprehensive biological profile {DNA binding, pBR322 DNA cleavage, Topo I inhibition and cytotoxic activity}. Bioorg Chem 2020; 94:103427. [PMID: 31735357 DOI: 10.1016/j.bioorg.2019.103427] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/10/2019] [Accepted: 11/06/2019] [Indexed: 12/13/2022]
Abstract
New tailored copper(II)-based intercalating complexes [Cu(L1)2] (1) and [Cu(L2)2] (2) were synthesized from Schiff base scaffold HL1 and HL2(E)-4-(2-((2-hydroxy-3-methoxybenzylidene)amino)ethyl)benzenesulfonamide and (E)-4-(2-((2-hydroxybenzylidene)amino)ethyl)benzenesulfonamide, respectively. The structure elucidation of complexes 1 and 2 was carried out by employing various spectroscopic techniques viz., FT-IR, UV-vis, ESI-MS, EPR and single X-ray crystal diffraction studies. The complexes 1 and 2 were crystallized in monoclinic P21/n and triclinic P-1 space group, respectively possessing square planar geometry around Cu(II) coordinated with N,O-donor Schiff base ligands. An analysis of Hirshfeld surfaces of complexes 1 and 2 were performed to ascertain different intra and intermolecular non-covalent interactions (H-bonding, CH⋯ πetc.) responsible for the stabilization of crystal lattices. Calculations based on Density functional theory (B3LYP/DFT), have been carried out to obtain energies of Frontier molecular orbitals. Comparative in vitro binding profile of complexes 1 and 2 with ct-DNA was evaluated employing various biophysical techniques viz., UV-vis, fluorescence, circular dichroism and cyclic voltammetry which suggested non-covalent intercalative binding mode with more avid binding propensity of complex 1 compared to complex 2. The cleavage experiments of complex 1 was performed by gel electrophoretic assay which revealed efficient cleavage mediated via oxidative pathway. Furthermore, topoisomerase I enzymatic activity of complex 1 was carried out employing gel electrophoretic assay which demonstrated significant inhibitory effects at a low concentration of 25 µM. The cytotoxic potential of complex 1 was analyzed by SRB assay on a panel of selected human cancer cell lines which revealed selective activity for MCF-7 (breast cancer) cell line with GI50 = 16.21 µg/ml.
Collapse
Affiliation(s)
- Zeenat Afsan
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Thierry Roisnel
- Institut des Sciences Chimiques de Rennes, UMR 6226, Université de Rennes 1, Campus de Beaulieu Bâtiment 10B, Bureau, 15335042 Rennes, France
| | - Sartaj Tabassum
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Farukh Arjmand
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
31
|
Mounesh, Jilani BS, Pari M, Reddy KV, Lokesh K. Simultaneous and sensitive detection of ascorbic acid in presence of dopamine using MWCNTs-decorated cobalt (II) phthalocyanine modified GCE. Microchem J 2019. [DOI: 10.1016/j.microc.2019.03.090] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
32
|
Design, synthesis, and biological activity of Schiff bases bearing salicyl and 7-hydroxycoumarinyl moieties. MONATSHEFTE FUR CHEMIE 2019. [DOI: 10.1007/s00706-018-2325-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
33
|
Synthesis, spectroscopic and electrochemical characterizations of new Schiff base chelator towards Ru3+, Pt4+ and Ir3+ metal ions. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.06.077] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
34
|
Jawoor SS, Patil SA, Kumbar M, Ramawadgi PB. Green synthesis of nano sized transition metal complexes containing heterocyclic Schiff base: Structural and morphology characterization and bioactivity study. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.03.084] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
35
|
Jawoor SS, Kumbar M, Patil SA. Green synthesis of biologically active transition metal nanoparticles containing novel Schiff base via catalyst free hydrothermal reaction: Structural, biological and morphology study. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Shailaja S. Jawoor
- P. G. Department of Chemistry; Karnatak University; Dharwad 580003 Karnataka India
| | - Mahantesh Kumbar
- P. G. Department of Chemistry; Karnatak University; Dharwad 580003 Karnataka India
| | - Sangamesh A. Patil
- P. G. Department of Chemistry; Karnatak University; Dharwad 580003 Karnataka India
| |
Collapse
|
36
|
Jawoor SS, Patil SA, Toragalmath SS. Synthesis and characterization of heteroleptic Schiff base transition metal complexes: a study of anticancer, antimicrobial, DNA cleavage and anti-TB activity. J COORD CHEM 2018. [DOI: 10.1080/00958972.2017.1421951] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Shailaja S. Jawoor
- P.G. Department of Studies in Chemistry, Karnatak University, Dharwad, India
| | - Sangamesh A. Patil
- P.G. Department of Studies in Chemistry, Karnatak University, Dharwad, India
| | | |
Collapse
|
37
|
Affiliation(s)
- Nadjet Rezki
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah, 30002, Saudi Arabia
- Department of Chemistry, Faculty of Sciences, University of Sciences and Technology Mohamed Boudiaf, Laboratoire de Chimie et Electrochimie des Complexes Metalliques (LCECM) USTO-MB, P.O. Box 1505, El M‘nouar, Oran 31000, Algeria
| |
Collapse
|
38
|
Knittl ET, Abou-Hussein AA, Linert W. Syntheses, characterization, and biological activity of novel mono- and binuclear transition metal complexes with a hydrazone Schiff base derived from a coumarin derivative and oxalyldihydrazine. MONATSHEFTE FUR CHEMIE 2017; 149:431-443. [PMID: 29497214 PMCID: PMC5818636 DOI: 10.1007/s00706-017-2075-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 10/16/2017] [Indexed: 12/16/2022]
Abstract
ABSTRACT A hydrazone Schiff base ligand was synthesized by the condensation of 3-formyl-4-hydroxycoumarin and oxalyldihydrazide in the molar ratio 2:1. The Schiff base ligand acts as a mono-, bi-, tri- or even tetradentate ligand with metal cations in the molar ratios 1:1 or 2:1 (M:L) to yield either mono- or binuclear complexes as keto or enol isomers, where M = Co(II), Ni(II), Cu(II), VO(IV), and Fe(III). The ligand and its metal complexes were characterized by elemental analyses, IR, 1H NMR, mass, and UV-Vis spectroscopy. Furthermore, the magnetic moments were calculated from the measured electric conductivities of the complexes. According to the received data, the dihydrazone ligand contains one or two units of ONO domains and can bind to the metal ions via the azomethine nitrogen, the carbonyl oxygen atoms, and/or the phenolic oxygen atoms. Electronic spectra and the magnetic moments of all complexes show that the complexes' geometries are either octahedral, tetrahedral, square planar, or square pyramidal. Cyclic voltammograms of the mononuclear Co(II) and Ni(II) complexes show quasi-reversible peaks. Tests against two pathogenic bacteria as Gram-positive and Gram-negative bacteria for both, the Schiff base ligand and its metal complexes were carried out. In addition, also one kind of fungi was tested. The synthesized complexes demonstrate mild antibacterial and antifungal activities against these organisms. GRAPHICAL ABSTRACT
Collapse
Affiliation(s)
- Esther Theresa Knittl
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt, 9/163-AC, 1060 Vienna, Austria
| | - Azza A. Abou-Hussein
- Faculty of Women for Arts, Science and Education, Ain Shams University, Heliopolis, Cairo, Egypt
| | - Wolfgang Linert
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt, 9/163-AC, 1060 Vienna, Austria
| |
Collapse
|
39
|
Abbasi Z, Salehi M, Kubicki M, Khaleghian A. New Ni(II) complexes involving symmetrical bidentate N,O-donor Schiff base ligands: synthesis at ambient temperature, crystal structures, electrochemical study, antioxidant and cytotoxic activities. J COORD CHEM 2017. [DOI: 10.1080/00958972.2017.1373189] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Zeinab Abbasi
- Department of Chemistry, Semnan University, Semnan, Iran
| | - Mehdi Salehi
- Department of Chemistry, Semnan University, Semnan, Iran
| | - Maciej Kubicki
- Faculty of Chemistry, Adam Mickiewicz University, Poznan, Poland
| | - Ali Khaleghian
- Faculty of Medicine, Biochemistry Department, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
40
|
Dehkhodaei M, Khorshidifard M, Amiri Rudbari H, Sahihi M, Azimi G, Habibi N, Taheri S, Bruno G, Azadbakht R. Synthesis, characterization, crystal structure and DNA, HSA-binding studies of four Schiff base complexes derived from salicylaldehyde and isopropylamine. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2017.05.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
41
|
Shakir M, Hanif S, Alam MF, Farhan M, Younus H. Hybrid pharmacophore approach for bio-relevant di-imines based homobimetallic complexes incorporating functionalized dicarboxylates as co-ligands: Synthesis, spectral and structural activity dependent biological insights (in-vitro DNA and HSA binding, antioxidant and cytotoxicity). JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 174:106-125. [PMID: 28756153 DOI: 10.1016/j.jphotobiol.2017.07.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 07/10/2017] [Accepted: 07/21/2017] [Indexed: 11/25/2022]
Abstract
Synthesis of bio-efficient homobimetallic complexes, [Cu2(L1)2(dipic)](NO3)2.3H2O (1), [Zn2(L1)2(dipic)](NO3)2.4H2O (2), [Cu2(L2)2(oxa)](NO3)2.4H2O (3) and [Zn2(L2)2(oxa)] (NO3)2.5H2O (4) was carried out using Schiff bases [(N1E,N2E)-N1,N2-bis(5-chlorothiophen-2-ylmethylene)-4-chlorobenzene-1,2-diamine; L1] and [(N1E,N2E)-N1,N2-bis(5-chlorofuran-2-ylmethylene)-4-chlorobenzene-1,2-diamine; L2] as main ligands and dicarboxylate moieties of 2,6-pyridine dicarboxylic acid (H2-dipic) and oxalic acid (H2-oxa) as co-ligands, respectively in order to apprehend their structure activity relationships on the basis of pharmacophore hybrid approach. The stoichiometry, geometry, thermal stability, morphology and crystallite size of the compounds were inferred by analytical, spectral (FT-IR, 1H NMR and 13C NMR and Mass), thermal (TGA/DTA), SEM and XRD studies. In-vitro DNA and HSA binding profiles of complexes were analysed by different biophysical measurements. The absorption study divulged that the observed alterations in the physico-chemical properties of complexes upon binding with DNA connoted their intercalative binding mode while fluorescence quenching mechanism was quantified by using Stern Volmer constant (KSV); 1.73×104 (1), 1.47×104 (2), 5.65×103 (3) and 3.60×103M-1 (4) which discerned that hybrid pharmacophore active metal complexes (1 and 2) exhibited efficient quenching effect with Ct-DNA in comparison to complexes (3 and 4) due to greater planarity and extent of conjugation (π-π interactions). The intercalative binding mode of complexes is further supported by competitive displacement assay by using fluorogenic dyes (EtBr and Hoechst 33258). The results of HSA fluorescence study divulged static quenching of the complexes (1-4) with KSV values of 7.24×104 (1), 6.03×104 (2), 5.06×104 (3) and 2.85×104 (4) while Kb values; 1.16×105 (1), 2.01×104 (2), 5.84×103 (3) and 8.60×102 (4) suggested them potent avid binder of HSA. Additionally, comparative estimation of scavenging properties using DPPH, superoxide(O2.-), hydroxyl (OH-) and ABTS method and in-vitro cytotoxicity against different cell lines (MCF-7, HeLa and Hep G2) brought out distinct biopotency of complexes due to diverse structural features and chelation effect.
Collapse
Affiliation(s)
- Mohammad Shakir
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| | - Summaiya Hanif
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Md Fazle Alam
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Mohd Farhan
- Department of Biochemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Hina Younus
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
42
|
Abdel Aziz AA, El-Sayed IS, Khalil MM. Some divalent metal(II) complexes of novel potentially tetradentate Schiff base N
,N
′-bis(2-carboxyphenylimine)-2,5-thiophenedicarboxaldhyde: Synthesis, spectroscopic characterization and bioactivities. Appl Organomet Chem 2017. [DOI: 10.1002/aoc.3730] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ayman A. Abdel Aziz
- Department of Chemistry, Faculty of Science; Ain Shams University; 11566 Cairo Egypt
| | - Ibrahim S.A. El-Sayed
- Department of Chemistry, Faculty of Science; Ain Shams University; 11566 Cairo Egypt
| | - Mostafa M.H. Khalil
- Department of Chemistry, Faculty of Science; Ain Shams University; 11566 Cairo Egypt
| |
Collapse
|
43
|
Shakir M, Hanif S, Alam MF, Younus H. Molecular hybridization approach of bio-potent CuII/ZnII complexes derived from N, O donor bidentate imine scaffolds: Synthesis, spectral, human serum albumin binding, antioxidant and antibacterial studies. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 165:96-114. [DOI: 10.1016/j.jphotobiol.2016.10.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 10/06/2016] [Indexed: 11/24/2022]
|
44
|
Redox chemistry, spectroelectrochemistry and catalytic activity of novel synthesized phthalocyanines bearing four schiff bases on the periphery. J Organomet Chem 2016. [DOI: 10.1016/j.jorganchem.2016.08.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|