1
|
Talwar DN, Becla P. Systematic Simulations of Structural Stability, Phonon Dispersions, and Thermal Expansion in Zinc-Blende ZnO. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:308. [PMID: 39997871 PMCID: PMC11858423 DOI: 10.3390/nano15040308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/11/2025] [Accepted: 02/13/2025] [Indexed: 02/26/2025]
Abstract
Zinc oxide (ZnO) has recently gained considerable attention due to its exceptional properties, including higher electron mobility, good thermal conductivity, high breakdown voltage, and a relatively large exciton-binding energy. These characteristics helped engineers to develop low dimensional heterostructures (LDHs)-based advanced flexible/transparent nanoelectronics, which were then integrated into thermal management systems. Coefficients of thermal expansion αT, phonon dispersions ωj(q→), and Grüneisen parameters γjq→ can play important roles in evaluating the suitability of materials in such devices. By adopting a realistic rigid-ion model in the quasi-harmonic approximation, this work aims to report the results of a methodical study to comprehend the structural, lattice dynamical, and thermodynamic behavior of zinc-blende (zb) ZnO. Systematic calculations of ωj(q→), γjq→, and αT have indicated negative thermal expansion (NTE) at low T. Soft transverse acoustic shear mode gammas γTA at critical points offered major contributions to NTE. Our results of ωj(q→) at ambient pressure compare reasonably well with Raman scattering spectroscopy measurements and first-principles calculations. By adjusting the layers of materials with positive and negative thermal expansion, it is possible to create LDHs with near-zero αT. Such a nanostructure might experience a minimal dimensional change with T fluctuations, making it ideal for devices where precise dimensional stability is crucial.
Collapse
Affiliation(s)
- Devki N. Talwar
- Department of Physics, University of North Florida, 1 UNF Drive, Jacksonville, FL 32224, USA
- Department of Physics, Indiana University of Pennsylvania, 975 Oakland Avenue, 56 Weyandt Hall, Indiana, PA 15705, USA
| | - Piotr Becla
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA;
| |
Collapse
|
2
|
Talwar DN, Becla P. Microhardness, Young's and Shear Modulus in Tetrahedrally Bonded Novel II-Oxides and III-Nitrides. MATERIALS (BASEL, SWITZERLAND) 2025; 18:494. [PMID: 39942167 PMCID: PMC11818265 DOI: 10.3390/ma18030494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/03/2025] [Accepted: 01/07/2025] [Indexed: 02/16/2025]
Abstract
Direct wide-bandgap III-Ns and II-Os have recently gained considerable attention due to their unique electrical and chemical properties. These novel semiconductors are being explored to design short-wavelength light-emitting diodes, sensors/biosensors, photodetectors for integration into flexible transparent nanoelectronics/photonics to achieve high-power radio-frequency modules, and heat-resistant optical switches for communication networks. Knowledge of the elastic constants structural and mechanical properties has played crucial roles both in the basic understanding and assessing materials' use in thermal management applications. In the absence of experimental structural, elastic constants, and mechanical traits, many theoretical simulations have yielded inconsistent results. This work aims to investigate the basic characteristics of tetrahedrally coordinated, partially ionic BeO, MgO, ZnO, and CdO, and partially covalent BN, AlN, GaN, and InN materials. By incorporating a bond-orbital and a valance force field model, we have reported comparative results of our systematic calculations for the bond length d, bond polarity αP, covalency αC, bulk modulus B, elastic stiffness C(=c11-c122), bond-stretching α and bond-bending β force constants, Kleinmann's internal displacement ζ, and Born's transverse effective charge eT*. Correlations between C/B, β/α, c12c11, ζ, and αC revealed valuable trends of structural, elastic, and bonding characteristics. The study noticed AlN and GaN (MgO and ZnO) showing nearly comparable features, while BN (BeO) is much harder compared to InN (CdO) material, with drastically softer bonding. Calculations of microhardness H, shear modulus G, and Young's modulus Y have predicted BN (BeO) satisfying a criterion of super hardness. III-Ns (II-Os) could be vital in electronics, aerospace, defense, nuclear reactors, and automotive industries, providing integrity and performance at high temperature in high-power applications, ranging from heat sinks to electronic substrates to insulators in high-power devices.
Collapse
Affiliation(s)
- Devki N. Talwar
- Department of Physics, University of North Florida, 1 UNF Drive, Jacksonville, FL 32224-7699, USA
- Department of Physics, Indiana University of Pennsylvania, 975 Oakland Avenue, 56 Weyandt Hall, Indiana, PA 15705-1087, USA
| | - Piotr Becla
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA;
| |
Collapse
|
3
|
AL-Shwaiman HA, Zairov RR, Dovzhenko AP, Syed A, Subramaniam M, Wong LS, Janani BJ. Facile preparation of polyethyleneimine-conjugated silver sulfide nanoparticles as near-infrared-responsive to sterilization of multidrug resistant uropathogens, and cytotoxicity activity. 3 Biotech 2025; 15:8. [PMID: 39676890 PMCID: PMC11638448 DOI: 10.1007/s13205-024-04168-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/21/2024] [Indexed: 12/17/2024] Open
Abstract
We present the chemical synthesis of polyethyleneimine-conjugated silver sulfide nanoparticles (PEI/AS) utilizing an economical solvothermal synthesis method, aimed at developing effective alternative antibacterial agents. The antibacterial efficacy of the synthesized materials, both with and without the application of near-infrared (NIR) laser irradiation, was evaluated in vitro against two distinct clinically relevant multi-drug-resistant (MDR) uropathogenic strains: Escherichia coli and methicillin-resistant Staphylococcus aureus. The bactericidal effects induced by NIR light indicate that the PEI/AS nanoparticles possess an efficiency that is five times greater than that of Ag2S alone. A suggested antibacterial mechanism posits that the wrapping of PEI increases electrostatic interactions, thereby facilitating the attachment of Ag2S nanoparticles to the bacterial surface. This process leads to the disruption of the outer membrane through the generation of localized heat and an increased concentration of reactive oxygen species (ROS), including superoxide anions (·O2 -) and hydroxyl radicals (·OH). In addition, the mechanism involves the regulated release of Ag+ ions when exposed to NIR light irradiation. The combined action led to an over 95.79% elimination of bacteria at a concentration as low as 50 μg mL-1, which can be primarily ascribed to the regulated photothermal effect induced by 808 nm near-infrared light irradiation, demonstrating exceptional photothermal conversion efficiency. These results paves a way for manufacturing innovation in future. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04168-3.
Collapse
Affiliation(s)
- Hind A. AL-Shwaiman
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451 Saudi Arabia
| | - Rustem R. Zairov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Str., 420088 Kazan, Russian Federation
- Aleksander Butlerov Institute of Chemistry, Kazan Federal University, 1/29 Lobachevskogo str., 420008 Kazan, Russian Federation
| | - Alexey P. Dovzhenko
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Str., 420088 Kazan, Russian Federation
- Aleksander Butlerov Institute of Chemistry, Kazan Federal University, 1/29 Lobachevskogo str., 420008 Kazan, Russian Federation
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451 Saudi Arabia
| | - Manjula Subramaniam
- Centre of Molecular Medicine and Diagnostics (COMManD), Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Ling Shing Wong
- Faculty of Health and Life Sciences, INTI International University, Putra Nilai, 718000 Nilai, Negeri Sembilan Malaysia
| | | |
Collapse
|
4
|
He M, Zhao L, Hu H, Yao L, Guo Y, Hou C, Gao S, Li R. Multifunctional property of N,N-bis (carboxymethyl) glutamic acid modified biomass material: adsorption and degradation removals of cationic dyes in wastewater. ENVIRONMENTAL RESEARCH 2024; 263:120193. [PMID: 39427942 DOI: 10.1016/j.envres.2024.120193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/06/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
As a common type of pollutants in industrial wastewater, cationic dyes have attracted great attentions. Using biodegradable N,N-di (carboxymethyl) glutamic acid (GLDA) as ligand and corn stalk (CS) as matrix, a novel and green biomass modified material GLDA-CS was successfully prepared. The multifunctional property of GLDA-CS for removing methylene blue (MB), malachite green (MG) and alkaline red 46 (R-46) from wastewater was evaluated. The dyes were removed by the electrostatic adsorption based on the cationic adsorption properties of GLDA-CS. The removal rates of MB, MG and R-46 can quickly reach 90.4%, 96.8% and 94.8% in short time. especially for MG and R-46 even only 20 min. The adsorption capacities of the dyes still remain more than 86.5% of the initial values after 5 cycles. In a heterogeneous system, the dyes were removed by Fenton-like degradation based on the metal chelating property of GLDA-CS. 100% degradation rates of the dyes can be achieved in 35 min under the acidic region. Even if at pH 7, degradation rates are 44.1%, 47.1% and 56.6% higher than those under the conventional homogeneous system, and the degradation rate remained at 83.7% after 5 cycles. Regardless of the adsorption or degradation, GLDA-CS shows strong anti-anion interference ability. The potential mechanisms of adsorption and degradation for the dyes by GLDA-CS were deduced by quantization calculation. It is concluded that the adsorption removal of the dyes by GLDA-CS follows MG > R-46 > MB, and mainly depends on the electrostatic interaction between -COOH in GLDA-CS and -N- in the dye molecules. Based on the degradation mechanism of Fenton-like reaction, the possible active sites of the dyes attacked by free radicals and their possible degradation intermediates were predicted by the calculations of Fukui function.
Collapse
Affiliation(s)
- Min He
- School of Chemical Engineering, Northwest University, No. 1 Xuefu Street, Guodu Education and Technology Industrial Zone, Chang'an District, Xi'an, Shaanxi Province, 710127, PR China
| | - Lang Zhao
- School of Chemical Engineering, Northwest University, No. 1 Xuefu Street, Guodu Education and Technology Industrial Zone, Chang'an District, Xi'an, Shaanxi Province, 710127, PR China
| | - Hongbin Hu
- School of Chemical Engineering, Northwest University, No. 1 Xuefu Street, Guodu Education and Technology Industrial Zone, Chang'an District, Xi'an, Shaanxi Province, 710127, PR China
| | - Lu Yao
- School of Chemical Engineering, Northwest University, No. 1 Xuefu Street, Guodu Education and Technology Industrial Zone, Chang'an District, Xi'an, Shaanxi Province, 710127, PR China
| | - Yinghuai Guo
- Sanmenxia Chaoyang Technology Co., LTD., Hubin Industrial Park, Sanmenxia City, Henan Province, 472000, PR China
| | - Chunjiang Hou
- Sanmenxia Chaoyang Technology Co., LTD., Hubin Industrial Park, Sanmenxia City, Henan Province, 472000, PR China
| | - Shaokun Gao
- Sanmenxia Chaoyang Technology Co., LTD., Hubin Industrial Park, Sanmenxia City, Henan Province, 472000, PR China
| | - Rong Li
- School of Chemical Engineering, Northwest University, No. 1 Xuefu Street, Guodu Education and Technology Industrial Zone, Chang'an District, Xi'an, Shaanxi Province, 710127, PR China.
| |
Collapse
|
5
|
Rajaram P, Jeice AR, Srinivasan M, Al-Ansari MM, Mythili R, Suganthi S, Rathi VH. Comparative analysis of the antimicrobial activity and dye degradation of metal oxides (TiO 2, CdO, Mn 2O 3, and ZnO) nanoparticles using a green approach. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:498. [PMID: 39508968 DOI: 10.1007/s10653-024-02270-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/14/2024] [Indexed: 11/15/2024]
Abstract
A tremendous amount of recent work has been done on different metal oxide nanomaterials for biological activities and photocatalytic dye degradation. This work used the Cissus quadrangularis leaf extract to prepare TiO2, CdO, Mn2O3, and ZnO nanoparticles using a green synthesis approach. To ascertain the physicochemical characteristics of the generated metal oxide nanoparticles, various characterisation techniques were used. The X-ray diffraction technique was used to determine the composition of the crystal and phase. Metal oxide nanoparticles have been proven to be present through surface morphological investigations using a scanning electron microscope and energy dispersive spectroscopy analysis. UV-Vis and Fourier transform infrared spectra were used for spectroscopic analysis. X-ray photoelectron spectroscopy can determine a material's elemental composition in addition to the electronic and chemical states of its atoms. The nanomaterial's distinct morphology, which resembles rods, rose petals, platelets, and spheres, was discovered by scanning electron microscope. Synthesized metal oxide nanoparticles have demonstrated a remarkable efficiency of 87.5-90.6% when utilized as a catalyst towards the removal of the malachite green dye under UV light irradiation. Additionally, we use the disc diffusion method to assess antibiotic efficacy against Bacillus subtilis, Candida tropicalis, and Escherichia coli. ZnO nanoparticles had the greatest zones of inhibition for 80 μL doses, measuring 26.99 mm for Bacillus subtilis, 27.57 mm for Escherichia coli, and 25.28 mm for Candida tropicalis. The antimicrobial activity was strongly impacted by the size of the nanoparticles and increased with decreasing particle size. Overall, our research demonstrates that metal oxide nanoparticles are a promising photocatalytic agent for wastewater treatment and biological applications.
Collapse
Affiliation(s)
- Prammitha Rajaram
- Department of Physics and SSN Research Centre, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India
| | - Ambrose Rejo Jeice
- St.Teresa Arts and Science College for Women, Mangalakuntu, TamilNadu, 629178, India.
| | - M Srinivasan
- Department of Physics and SSN Research Centre, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India
| | - Mysoon M Al-Ansari
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - R Mythili
- Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, 600077, India
| | - Sanjeevamuthu Suganthi
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 38541, Republic of Korea
| | - V Helen Rathi
- Department of Physics and Research Centre, Annai Velankanni College, Tholayavattam, 629157, Tamil Nadu, India
| |
Collapse
|
6
|
Adyani SH, Soleimani E. Green synthesis of magnetic silver nanocomposite: the photocatalytic performance of nanocomposite to decolorize organic dyes. ENVIRONMENTAL TECHNOLOGY 2024; 45:5244-5258. [PMID: 38158737 DOI: 10.1080/09593330.2023.2286453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 09/25/2023] [Indexed: 01/03/2024]
Abstract
The magnetite-silver nanocomposites (Fe3O4-Ag NCs) were synthesized via a facile and green process by Citrus sinensis peel extract. The deposition of silver nanoparticles (NPs) was confirmed by observing an absorption peak at the maximum wavelength at 422 nm in the suspension solution of samples, which is related to silver surface plasmon resonance (SPR). The characteristic diffraction patterns of Fe3O4 and Ag phases were characterized utilizing the XRD patterns and the average size of the crystals was 21 nm. The photocatalytic behavior of Fe3O4-Ag NCs was studied for the destruction of three organic dyes methyl green (MG), methyl orange (MO), and methylene blue (MB) below UV radiation. The effect of the amount of photocatalyst and volume of hydrogen peroxide as an oxidant in the process of dye degradation was also investigated. The complete degradation time of dyes MB, MG, and MO under UV irradiation in the presence of 0.002 g Fe3O4-Ag NCs were 57, 33, and 49 min, respectively. The time of degradation reactions showed the high photocatalytic performance of Fe3O4-Ag NCs. These results proved that the synergistic effect of magnetite in the role of supporting the silver NPs was a significant contribution to the excellent decolorization behavior of Fe3O4-Ag NCs.
Collapse
Affiliation(s)
- Sayyed Hamed Adyani
- Inorganic Chemistry Research Laboratory, Faculty of Chemistry, Shahrood University of Technology, Shahrood, Iran
| | - Esmaiel Soleimani
- Inorganic Chemistry Research Laboratory, Faculty of Chemistry, Shahrood University of Technology, Shahrood, Iran
| |
Collapse
|
7
|
Walter AD, Benamor H, Ferrer LM, Reji T, Curran T, Schwenk GR, Hadji M, Creighton MA, Barsoum MW. Self-sensitized photodegradation and adsorption of aqueous malachite green dye using one-dimensional titanium oxide nanofilaments. iScience 2024; 27:110647. [PMID: 39262812 PMCID: PMC11388164 DOI: 10.1016/j.isci.2024.110647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/05/2024] [Accepted: 07/30/2024] [Indexed: 09/13/2024] Open
Abstract
Truly one-dimensional titanium oxide nanofilaments with a lepidocrocite structure (1DLs) were explored in the adsorption and photocatalytic degradation of aqueous malachite green (MG), a toxic polluting dye. Decolorization is monitored by ultraviolet-visible spectroscopy, and mineralization is confirmed by total organic carbon analysis. The 1DL/MG flocs are characterized by scanning electron microscopy and X-ray diffraction. 1DLs, a colloidal nanomaterial, exhibit flocculating behavior while demonstrating high affinity for MG, with a maximum uptake of >680 mg/g rapidly via ion exchange. Additionally, 1DLs decolorize MG under visible light only, unlike most available titania products, via a self-sensitization effect. MG is decolorized by 1DLs by >70% in 30 min under 1 sun exposure of visible light. Counterintuitively, dye adsorption increases as the normalized concentration by mass of 1DL decreases. Demonstrating high adsorption capacity and dye mineralization supports the use of 1DLs in water treatment and self-sensitization for photoelectrochemical devices, like solar cells.
Collapse
Affiliation(s)
- Adam D Walter
- Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, USA
| | - Hiba Benamor
- Laboratoire d'Etudes et Recherche en Technologie Industrielle, Université of Saad Dahlab Blida 1, Blida, Algeria
| | - Lucas M Ferrer
- Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, USA
| | - Treesa Reji
- Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, USA
| | - Tracey Curran
- Academy of Natural Sciences of Drexel University, Philadelphia, PA, USA
| | - Gregory R Schwenk
- Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, USA
| | - Mohamed Hadji
- Laboratoire d'Etudes et Recherche en Technologie Industrielle, Université of Saad Dahlab Blida 1, Blida, Algeria
| | - Megan A Creighton
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, PA, USA
| | - Michel W Barsoum
- Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, USA
| |
Collapse
|
8
|
Nangan S, Verma D, Sukmas W, Gnanasekaran L, Okhawilai M, Uyama H. Lignocellulosic materials extraction from waste baby diaper to prepare light-responsive metal oxide/carbon composite for efficient organic dye pollutant removal. Int J Biol Macromol 2024; 280:135526. [PMID: 39276876 DOI: 10.1016/j.ijbiomac.2024.135526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/27/2024] [Accepted: 09/08/2024] [Indexed: 09/17/2024]
Abstract
The bimetal oxide comprising nickel incorporated β-Bi2O3 on graphitic carbon in the form of bismuth nickel oxide (BNO@C) was prepared by waste lignocellulosic materials collected from cheap and readily available baby diapers. The prepared BNO@C was used to photocatalytically degrade methylene blue under UV-light irradiation. Prior to the photocatalytic performance analysis, the formation of BNO@C was confirmed by various morphological and structural analysis including SEM, TEM, XRD, and XPS analyses. As a result, the two-dimensional nanosheet morphology and tetragonal primitive lattice-structure with 2+ and 3+ oxidation stated Ni and Bi in BNO@C structural formulation were confirmed. In photocatalysis experimentation examined with BNO@C, the maximum methylene blue removal percentage of 96.7 % was achieved within 16 min. The influence of Ni2+ in BNO@C was identified by performing the photocatalytic performance of bare NiO@C and Bi2O3@C, yielding maximum dye removal of 32.8 % and 64.5 %, respectively. The efficacy of Ni in BNO@C toward increasing catalytic efficiency was identified using DFT analysis, revealing the acting of Ni as active sites for improved light absorption tendency. These findings show a novel strategy to prepare a low-cost BNO@C catalyst with efficient photocatalytic activity, opening a new path for a cost-efficient wastewater treatment approach.
Collapse
Affiliation(s)
- Senthilkumar Nangan
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok 10330, Thailand
| | - Deepak Verma
- International Graduate Program of Nanoscience and Technology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
| | - Wiwittawin Sukmas
- Extreme Conditions Physics Research Laboratory and Center of Excellence in Physics of Energy Materials (CE: PEM), Department of Physics, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | | | - Manunya Okhawilai
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence in Polymeric Materials for Medical Practice Devices, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Hiroshi Uyama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
9
|
Sarkar S, Roy A, Mitra R, Kundu S, Banerjee P, Acharya Chowdhury A, Ghosh S. Escaping the ESKAPE pathogens: A review on antibiofilm potential of nanoparticles. Microb Pathog 2024; 194:106842. [PMID: 39117012 DOI: 10.1016/j.micpath.2024.106842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
ESKAPE pathogens, a notorious consortium comprising Enterococcusfaecium, Staphylococcusaureus, Klebsiellapneumoniae, Acinetobacterbaumannii, Pseudomonasaeruginosa, and Enterobacter species, pose formidable challenges in healthcare settings due to their multidrug-resistant nature. The increasing global cases of antimicrobial-resistant ESKAPE pathogens are closely related to their remarkable ability to form biofilms. Thus, understanding the unique mechanisms of antimicrobial resistance of ESKAPE pathogens and the innate resilience of biofilms against traditional antimicrobial agents is important for developing innovative strategies to establish effective control methods against them. This review offers a thorough analysis of biofilm dynamics, with a focus on the general mechanisms of biofilm formation, the significant contribution of persister cells in the resistance mechanisms, and the recurrence of biofilms in comparison to planktonic cells. Additionally, this review highlights the potential strategies of nanoparticles for managing biofilms in the ESKAPE group of pathogens. Nanoparticles, with their unique physicochemical properties, provide promising opportunities for disrupting biofilm structures and improving antimicrobial effectiveness. The review has explored interactions between nanoparticles and biofilms, covering a range of nanoparticle types such as metal, metal-oxide, surface-modified, and functionalized nanoparticles, along with organic nanoparticles and nanomaterials. The additional focus of this review also encompasses green synthesis techniques of nanoparticles that involve plant extract and supernatants from bacterial and fungal cultures as reducing agents. Furthermore, the use of nanocomposites and nano emulsions in biofilm management of ESKAPE is also discussed. To conclude, the review addresses the current obstacles and future outlooks in nanoparticle-based biofilm management, stressing the necessity for further research and development to fully exploit the potential of nanoparticles in addressing biofilm-related challenges.
Collapse
Affiliation(s)
| | - Ankita Roy
- Department of Biosciences, JIS University, Kolkata, India
| | - Rangan Mitra
- Department of Biosciences, JIS University, Kolkata, India
| | - Sweta Kundu
- Department of Biosciences, JIS University, Kolkata, India
| | | | | | - Suparna Ghosh
- Department of Biosciences, JIS University, Kolkata, India.
| |
Collapse
|
10
|
Norbert A, A SM, John SS, Shaji S, Jacob MV, Philip RR. Green synthesized Cu-doped CeO 2nanoparticles for Congo red dye adsorption and antibacterial action. NANOTECHNOLOGY 2024; 35:265708. [PMID: 38513271 DOI: 10.1088/1361-6528/ad3649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/20/2024] [Indexed: 03/23/2024]
Abstract
The removal of pollutants from water bodies is crucial for the well-being of humanity and is a topic of global research. Researchers have turned their attention to green synthesized nanoparticles for wastewater treatment due to their eco-friendly nature, biocompatibility, and cost-effectiveness. This work demonstrates the efficient removal of organic dye and both gram-positive and gram-negative bacteria from water bodies using copper-doped cerium oxide nanoparticles synthesized withMurraya Koenigiiextract. Characterized via various methods, the 15% copper doped cerium oxide nanoparticles (Cu 15% NPs) exhibited maximum Congo red dye adsorption (98% degradation in 35 min). Kinetic analysis favoured a pseudo-second-order model, indicating the chemical nature of adsorption. Equilibrium adsorption isotherms aligned with the Langmuir model, indicating homogenous monolayer dye adsorption on the doped adsorbent. The maximum uptake of adsorbate,Qmobtained from Langmuir model for Cu 15% NPs was 193 mg g-1. The study also showed enhanced antibacterial activity againstBacillus subtilis, Staphylococcus aureus, Escherichia coliandPseudomonas aeruginosafor Cu-doped ceria, attributed to generation of reactive oxygen species (ROS) induced by the redox cycling between Ce3+and Ce4+. This substantiated that the green synthesized copper doped cerium oxide nanoparticles are potential candidates for adsorptive removal of Congo red dye and as antibacterial agents.
Collapse
Affiliation(s)
- Aleena Norbert
- Thin Film Research Lab, Department of Physics, Union Christian College, Aluva, Kerala, India
- College of Science & Engineering, James Cook University, Australia
| | - Surya Mary A
- Thin Film Research Lab, Department of Physics, Union Christian College, Aluva, Kerala, India
| | - Sareen Sarah John
- Department of Biosciences, Union Christian College, Aluva, Kerala, India
| | - Sadasivan Shaji
- Facultad de Ingenieria Mecanica Y Electrica, Universidad Autonoma de Nuevo Leon, Av. Universidad s/n, Cd. Universitaria, San Nicolas de los Garza, Nuevo Leon, 66455, Mexico
| | - Mohan V Jacob
- College of Science & Engineering, James Cook University, Australia
| | - Rachel Reena Philip
- Thin Film Research Lab, Department of Physics, Union Christian College, Aluva, Kerala, India
- Srinivasa Ramanujan Institute for Basics Sciences, Velloor PO, Pampady, Kottayam, India
| |
Collapse
|
11
|
Alghamdi S, Khandelwal K, Pandit S, Roy A, Ray S, Alsaiari AA, Aljuaid A, Almehmadi M, Allahyani M, Sharma R, Anand J, Alshareef AA. Application of nanomaterials as potential quorum quenchers for disease: Recent advances and challenges. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 184:13-31. [PMID: 37666284 DOI: 10.1016/j.pbiomolbio.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/30/2023] [Accepted: 08/27/2023] [Indexed: 09/06/2023]
Abstract
Chemical signal molecules are used by bacteria to interact with one another. Small hormone-like molecules known as autoinducers are produced, released, detected, and responded to during chemical communication. Quorum Sensing (QS) is the word for this procedure; it allows bacterial populations to communicate and coordinate group behavior. Several research has been conducted on using inhibitors to prevent QS and minimize the detrimental consequences. Through the enzymatic breakdown of the autoinducer component, by preventing the formation of autoinducers, or by blocking their reception by adding some compounds (inhibitors) that can mimic the autoinducers, a technique known as "quorum quenching" (QQ) disrupts microbial communication. Numerous techniques, including colorimetry, electrochemistry, bioluminescence, chemiluminescence, fluorescence, chromatography-mass spectroscopy, and many more, can be used to test QS/QQ. They all permit quantitative and qualitative measurements of QS/QQ molecules. The mechanism of QS and QQ, as well as the use of QQ in the prevention of biofilms, are all elaborated upon in this writing, along with the fundamental study of nanoparticle (NP)in QQ. Q.
Collapse
Affiliation(s)
- Saad Alghamdi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Krisha Khandelwal
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University Greater Noida, India
| | - Soumya Pandit
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University Greater Noida, India
| | - Arpita Roy
- Department of Biotechnology, Sharda School of Engineering & Technology, Sharda University, Greater Noida, India.
| | - Subhasree Ray
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University Greater Noida, India
| | - Ahad Amer Alsaiari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Abdulelah Aljuaid
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Mazen Almehmadi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Mamdouh Allahyani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Jigisha Anand
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, Uttarakhand, India
| | - Ahmad Adnan Alshareef
- Laboratory and Blood Bank Department, Alnoor Specialist Hospital, Ministry of Health, Makkah, Saudi Arabia
| |
Collapse
|
12
|
Pagar K, Chavan K, Kasav S, Basnet P, Rahdar A, Kataria N, Oza R, Abhale Y, Ravindran B, Pardeshi O, Pawar S, Pagar B, Ghotekar S. Bio-inspired synthesis of CdO nanoparticles using Citrus limetta peel extract and their diverse biomedical applications. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
13
|
Huang T, Li X, Maier M, O'Brien-Simpson NM, Heath DE, O'Connor AJ. Using inorganic nanoparticles to fight fungal infections in the antimicrobial resistant era. Acta Biomater 2023; 158:56-79. [PMID: 36640952 DOI: 10.1016/j.actbio.2023.01.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/20/2022] [Accepted: 01/06/2023] [Indexed: 01/13/2023]
Abstract
Fungal infections pose a serious threat to human health and livelihoods. The number and variety of clinically approved antifungal drugs is very limited, and the emergence and rapid spread of resistance to these drugs means the impact of fungal infections will increase in the future unless alternatives are found. Despite the significance and major challenges associated with fungal infections, this topic receives significantly less attention than bacterial infections. A major challenge in the development of fungi-specific drugs is that both fungi and mammalian cells are eukaryotic and have significant overlap in their cellular machinery. This lack of fungi-specific drug targets makes human cells vulnerable to toxic side effects from many antifungal agents. Furthermore, antifungal drug resistance necessitates higher doses of the drugs, leading to significant human toxicity. There is an urgent need for new antifungal agents, specifically those that can limit the emergence of new resistant species. Non-drug nanomaterials have primarily been explored as antibacterial agents in recent years; however, they are also a promising source of new antifungal candidates. Thus, this article reviews current research on the use of inorganic nanoparticles as antifungal agents. We also highlight challenges facing antifungal nanoparticles and discuss possible future research opportunities in this field. STATEMENT OF SIGNIFICANCE: Fungal infections pose a growing threat to human health and livelihood. The rapid spread of resistance to current antifungal drugs has led to an urgent need to develop alternative antifungals. Nanoparticles have many properties that could make them useful antimycotic agents. To the authors' knowledge, there is no published review so far that has comprehensively summarized the current development status of antifungal inorganic nanomaterials, so we decided to fill this gap. In this review, we discussed the state-of-the-art research on antifungal inorganic nanoparticles including metal, metal oxide, transition-metal dichalcogenides, and inorganic non-metallic particle systems. Future directions for the design of inorganic nanoparticles with higher antifungal efficacy and lower toxicity are described as a guide for further development in this important area.
Collapse
Affiliation(s)
- Tao Huang
- Department of Biomedical Engineering, Graeme Clark Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Xin Li
- Department of Biomedical Engineering, Graeme Clark Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Michael Maier
- Department of Biomedical Engineering, Graeme Clark Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Neil M O'Brien-Simpson
- ACTV Research Group, Melbourne Dental School and The Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Daniel E Heath
- Department of Biomedical Engineering, Graeme Clark Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Andrea J O'Connor
- Department of Biomedical Engineering, Graeme Clark Institute, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
14
|
Varma A, Warghane A, Dhiman NK, Paserkar N, Upadhye V, Modi A, Saini R. The role of nanocomposites against biofilm infections in humans. Front Cell Infect Microbiol 2023; 13:1104615. [PMID: 36926513 PMCID: PMC10011468 DOI: 10.3389/fcimb.2023.1104615] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/30/2023] [Indexed: 03/08/2023] Open
Abstract
The use of nanomaterials in several fields of science has undergone a revolution in the last few decades. It has been reported by the National Institutes of Health (NIH) that 65% and 80% of infections are accountable for at least 65% of human bacterial infections. One of their important applications in healthcare is the use of nanoparticles (NPs) to eradicate free-floating bacteria and those that form biofilms. A nanocomposite (NC) is a multiphase stable fabric with one or three dimensions that are much smaller than 100 nm, or systems with nanoscale repeat distances between the unique phases that make up the material. Using NC materials to get rid of germs is a more sophisticated and effective technique to destroy bacterial biofilms. These biofilms are refractory to standard antibiotics, mainly to chronic infections and non-healing wounds. Materials like graphene and chitosan can be utilized to make several forms of NCs, in addition to different metal oxides. The ability of NCs to address the issue of bacterial resistance is its main advantage over antibiotics. This review highlights the synthesis, characterization, and mechanism through which NCs disrupt Gram-positive and Gram-negative bacterial biofilms, and their relative benefits and drawbacks. There is an urgent need to develop materials like NCs with a larger spectrum of action due to the rising prevalence of human bacterial diseases that are multidrug-resistant and form biofilms.
Collapse
Affiliation(s)
- Anand Varma
- Arundeep Akshay Urja Pvt. Ltd. Gorakhpur, Uttar Pradesh, India
| | - Ashish Warghane
- School of Applied Sciences and Technology (SAST), Gujarat Technological University, Ahmedabad, Gujarat, India
| | - Neena K. Dhiman
- Department of Zoology, Gargi College, University of Delhi, Delhi, India
| | - Neha Paserkar
- Faculty of Life Sciences, Mandsaur University, Mandsaur, Madhya Pradesh, India
| | - Vijay Upadhye
- Centre of Research for Development (CR4D), Parul University, Vadodara, Gujarat, India
| | - Anupama Modi
- School of Applied Sciences and Technology (SAST), Gujarat Technological University, Ahmedabad, Gujarat, India
| | - Rashmi Saini
- Department of Zoology, Gargi College, University of Delhi, Delhi, India
| |
Collapse
|
15
|
Bandgap engineering approach for designing CuO/Mn 3O 4/CeO 2 heterojunction as a novel photocatalyst for AOP-assisted degradation of Malachite green dye. Sci Rep 2023; 13:3009. [PMID: 36810633 PMCID: PMC9944963 DOI: 10.1038/s41598-023-30096-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 02/15/2023] [Indexed: 02/23/2023] Open
Abstract
A ternary nanohybrid CuO/Mn3O4/CeO2 was developed in the present work using a co-precipitation-assisted hydrothermal method. The designed photocatalyst's structural, morphology, elemental composition, electronic states of elements, and optical properties were studied using corresponding analytical techniques. Results from PXRD, TEM/HRTEM, XPS, EDAX, and PL showed that the desired nanostructure had formed. Using Tauc's energy band gap plot, it was determined that the nanostructures band gap was ~ 2.44 eV, which showed the band margins of the various moieties, CeO2, Mn3O4, and CuO, had modified. Thus, improved redox conditions led to a substantial decrease in the recombination rate of electron-hole pairs, which was further explained by a PL study in that charge separation plays a key role. Under exposure to visible light irradiation for 60 min, it was revealed that the photocatalyst achieved 98.98% of photodegradation efficiency for malachite green (MG) dye. The process of photodegradation proceeded according to a pseudo-first-order reaction kinetic model with an excellent rate of reaction of 0.07295 min-1 with R2 = 0.99144. The impacts of different reaction variables, inorganic salts, and water matrices were investigated. This research seeks to create a ternary nanohybrid photocatalyst with high photostability, visible spectrum activity, and reusability up to four cycles.
Collapse
|
16
|
Haitosa HH, Tesfamariam BB, Gultom NS, Kuo DH, Chen X, Wu YN, Zelekew OA. Stephania abyssinica leaf extract mediated (Mn, Ni) co-doped ZnO catalyst synthesis for the degradation of organic dye. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
17
|
Gharissah MS, Ardiansyah A, Pauziah SR, Muhammad NA, Rahmat R, Heryanto H, Tahir D. Composites cement/BaSO4/Fe3O4/CuO for improving X-ray absorption characteristics and structural properties. Sci Rep 2022; 12:19169. [PMID: 36357772 PMCID: PMC9649787 DOI: 10.1038/s41598-022-23908-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
Composite cement/BaSO4/Fe3O4/CuO with a thickness of 0.6 cm for various amounts of CuO: 2 wt%, 4 wt%, 6 wt%, and 8 wt% were successfully synthesized for the X-ray radiation shield. The bonding characteristics of composite and structural properties were determined using Fourier transform infrared spectra for the wavelength range of 4000–400 cm−1 and X-ray diffraction with the range of 2θ from 25° to 50°, respectively. The shielding ability was measured using a mobile X-ray with an energy of 55, 66, and 77 keV for determining the mass and linear attenuation coefficient, electronic and atomic cross-section. These shield characteristics best agreement with theoretical calculation from the XCOM database for energy < 77 keV with half value layer (HVL) < 0.3 cm. The best shielding in this study indicated by the lowest HVL and MFP is composite for CuO 8 wt%. The HVL and MFP shows better values compared to the previous reported using composite rubber-based, indicated high potentials composite in this study for design new and efficient radiology rooms as an alternative concrete, especially for X-ray radiation, in the future.
Collapse
|
18
|
Marcony Surya R, Mauliddiyah S, Bagus Apriandanu DO, Yulizar Y. SmMnO 3-decorated ZnO in a hexane-water interface for enhancing visible light-driven photocatalytic degradation of malachite green. CHEMOSPHERE 2022; 304:135125. [PMID: 35643164 DOI: 10.1016/j.chemosphere.2022.135125] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/01/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Malachite green (MG) contributes to water contamination because its accumulation adversely impacts aquatic systems. For the first time, we prepare a high photoresponse of ZnO/SmMnO3 heterojunction via a high-speed stirring method at the nonpolar-polar interface assisted by Alstonia scholaris leaves extract (ASLE) as natural hydrolyzing and stabilizing agents. The heterojunction formation boosts the photocatalytic activity of ZnO up to 91.74% under visible light irradiation. Photoluminescence analysis confirmed that modification with SmMnO3 increases the separation of photogenerated charges and plummets the recombination rates of electron-holes, which induces high photodegradation of MG. With 3 mg of catalyst, the %TOC removal efficiency for MG degradation over ZnO/SmMnO3 was found to be 53.09%, which is higher than that over ZnO. The kinetics model for the photocatalytic reaction was a pseudo-first-order with excellent stability in four consecutive cycles with no structural change. The radical trapping experiment suggests that h+ was the major species in the MG photodegradation reaction. Additionally, morphology and elemental analyses clearly present the formation of ZnO/SmMnO3 heterojunction without any impurities. The current research demonstrates a simple and advanced technique to design heterojunction photocatalyst at the interface of hexane-water.
Collapse
Affiliation(s)
- Rizki Marcony Surya
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, 16424, Indonesia
| | - Sri Mauliddiyah
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, 16424, Indonesia
| | - Dewangga Oky Bagus Apriandanu
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, 16424, Indonesia
| | - Yoki Yulizar
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, 16424, Indonesia.
| |
Collapse
|
19
|
Rout DR, Chaurasia S, Jena HM. Enhanced photocatalytic degradation of malachite green using manganese oxide doped graphene oxide/zinc oxide (GO-ZnO/Mn 2O 3) ternary composite under sunlight irradiation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 318:115449. [PMID: 35717692 DOI: 10.1016/j.jenvman.2022.115449] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/18/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
In this work, photocatalytic degradation of malachite green (MG) dye using manganese oxide doped graphene oxide/zinc oxide (GO-ZnO/Mn2O3) ternary composite under sunlight irradiation is studied. GO-ZnO/Mn2O3 is a novel composite, which is non-toxic and of low cost prepared by the conventional solvothermal route. The synthesized composite was characterized using Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET), X-ray diffraction (XRD), RAMAN spectra, photoluminescence (PL) spectroscopy, Diffuse reflectance spectroscopy (UV-Vis. DRS), and Barrett-Joyner-Halenda (BJH) pore size distribution. The GO-ZnO/Mn2O3 composite has a moderately large surface area of 75.35 m2/g and bandgap energy of 1.6 eV. Due to more pollutants adsorbed onto the photocatalyst surface and the reduction in bandgap energy, resulted less recombination rate and shifted the light absorption into the visible region to effectively utilize the sunlight and enhanced degradation of 98.75% is achieved within 30 min of sunlight irradiation for GO-ZnO/Mn2O3 composite. Using various scavengers, the main oxidizing radicals for the degradation of MG dye are identified as hydroxyl (•OH) and superoxide radical (•O2-). The synthesized composite is stable and reproducible as after five successful cycles, there was a small reduction in its degradation efficiency of 11.65%. Keywords: Graphene oxide; Photocatalyst; Malachite green; Bandgap; Scavengers.
Collapse
Affiliation(s)
- Dibya Ranjan Rout
- Department of Chemical Engineering, National Institute of Technology, Rourkela, 769008, Orissa, India.
| | - Shivam Chaurasia
- Department of Chemical Engineering, National Institute of Technology, Rourkela, 769008, Orissa, India.
| | - Hara Mohan Jena
- Department of Chemical Engineering, National Institute of Technology, Rourkela, 769008, Orissa, India.
| |
Collapse
|
20
|
|
21
|
Fu C, Xu X, Zheng C, Liu X, Zhao D, Qiu W. Photocatalysis of aqueous PFOA by common catalysts of In 2O 3, Ga 2O 3, TiO 2, CeO 2 and CdS: influence factors and mechanistic insights. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:2943-2953. [PMID: 35064382 DOI: 10.1007/s10653-021-01127-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/09/2021] [Indexed: 06/14/2023]
Abstract
Gallium oxide (Ga2O3), titanium dioxide (TiO2), cerium dioxide (CeO2), indium oxide (In2O3) and cadmium sulfide (CdS) were commonly used under UV light as photocatalysis system for the pollutants' degradation. In this study, these five catalysts were applied for the photodegradation of perfluorooctanoic acid (PFOA), a well-known perfluoroalkyl substance (PFAS). As a result, the PFOA photodegradation performance was sequenced as: Ga2O3 > TiO2 > CeO2 > In2O3 > CdS. To further explain the photocatalysis mechanism, the effects of initial pH, photon energy and band gap were evaluated. The initial pH of 3 ± 0.2 hinders the catalytic reaction of CdS, resulting in low degradation of PFOA, while it has no significant effect on Ga2O3, TiO2, CeO2 and In2O3. In addition, quantum yield was sequenced as TiO2 > CeO2 > Ga2O3 > In2O3, which may not be the main factor determining the degradation effect. Notably, the band gap energy from large to narrow was as: Ga2O3 > TiO2 > CeO2 > In2O3 > CdS, which exactly matched their degradation performance.
Collapse
Affiliation(s)
- Caixia Fu
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xiuru Xu
- School of Agricultural and Biological Technology, Wenzhou Vocational College of Science & Technology, Zhejiang, 325006, China.
| | - Chunmiao Zheng
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xinjie Liu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Dandan Zhao
- Department of Built Environment, Aalto University, PO Box 15200, 00076, Espoo, Finland
| | - Wenhui Qiu
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
22
|
Das D, Chouhan D, Roy D, Dakua VK, Chakrabarty R, Das J, Roy K, Barman A, Mandal P, Sikdar S, Roy MN. Synthesis, characterization, and applications with the manifestation of antifungal activity and seed germination properties of nickel doped zinc oxide nano platform by biochemical contrivance. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Specific charge separation of Sn doped MgO nanoparticles for photocatalytic activity under UV light irradiation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121189] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
24
|
Green Combustion Synthesis of CeO2 Nanostructure Using Aloe vera (L.) Burm f. Leaf Gel and Their Structural, Optical and Antimicrobial Applications. BIONANOSCIENCE 2022. [DOI: 10.1007/s12668-022-01001-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Collu DA, Carucci C, Piludu M, Parsons DF, Salis A. Aurivillius Oxides Nanosheets-Based Photocatalysts for Efficient Oxidation of Malachite Green Dye. Int J Mol Sci 2022; 23:5422. [PMID: 35628232 PMCID: PMC9140923 DOI: 10.3390/ijms23105422] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/28/2022] [Accepted: 05/09/2022] [Indexed: 02/01/2023] Open
Abstract
Aurivillius oxides ferroelectric layered materials are formed by bismuth oxide and pseu-do-perovskite layers. They have a good ionic conductivity, which is beneficial for various photo-catalyzed reactions. Here, we synthesized ultra-thin nanosheets of two different Aurivillius oxides, Bi2WO6 (BWO) and Bi2MoO6 (BMO), by using a hard-template process. All materials were characterized through XRD, TEM, FTIR, TGA/DSC, DLS/ELS, DRS, UV-Vis. Band gap material (Eg) and potential of the valence band (EVB) were calculated for BWO and BMO. In contrast to previous reports on the use of multi composite materials, a new procedure for photocatalytic efficient BMO nanosheets was developed. The procedure, with an additional step only, avoids the use of composite materials, improves crystal structure, and strongly reduces impurities. BWO and BMO were used as photocatalysts for the degradation of the water pollutant dye malachite green (MG). MG removal kinetics was fitted with Langmuir-Hinshelwood model obtaining a kinetic constant k = 7.81 × 10-2 min-1 for BWO and k = 9.27 × 10-2 min-1 for BMO. Photocatalytic dye degradation was highly effective, reaching 89% and 91% MG removal for BWO and BMO, respectively. A control experiment, carried out in the absence of light, allowed to quantify the contribution of adsorption to MG removal process. Adsorption contributed to MG removal by a 51% for BWO and only by a 19% for BMO, suggesting a different degradation mechanism for the two photocatalysts. The advanced MG degradation process due to BMO is likely caused by the high crystallinity of the material synthetized with the new procedure. Reuse tests demonstrated that both photocatalysts are highly active and stable reaching a MG removal up to 95% at the 10th reaction cycle. These results demonstrate that BMO nanosheets, synthesized with an easy additional step, achieved the best degradation performance, and can be successfully used for environmental remediation applications.
Collapse
Affiliation(s)
- David A. Collu
- Department of Chemical and Geological Sciences, University of Cagliari, S.P. 8 km 0.700, 09042 Monserrato, Italy; (D.A.C.); (C.C.); (D.F.P.)
| | - Cristina Carucci
- Department of Chemical and Geological Sciences, University of Cagliari, S.P. 8 km 0.700, 09042 Monserrato, Italy; (D.A.C.); (C.C.); (D.F.P.)
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Marco Piludu
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
- Department of Biomedical Sciences, University of Cagliari, S.P. 8 km 0.700, 09042 Monserrato, Italy;
| | - Drew F. Parsons
- Department of Chemical and Geological Sciences, University of Cagliari, S.P. 8 km 0.700, 09042 Monserrato, Italy; (D.A.C.); (C.C.); (D.F.P.)
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Andrea Salis
- Department of Chemical and Geological Sciences, University of Cagliari, S.P. 8 km 0.700, 09042 Monserrato, Italy; (D.A.C.); (C.C.); (D.F.P.)
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
26
|
Abukhadra MR, Saad I, Othman SI, Allam AA, Fathallah W. Synthesis of Co3O4 @ Organo/Polymeric Bentonite Structures as Environmental Photocatalysts and Antibacterial Agents for Enhanced Removal of Methyl Parathion and Pathogenic Bacteria. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02346-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
27
|
Karimi-Nazarabad M, Azizi-Toupkanloo H. Functionalization of beet waste by cross-linking to attach amine groups for efficient sorption of reactive black 5 anionic dye. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2022. [DOI: 10.1007/s13738-021-02398-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
28
|
Nathiya D, Alhaji NMI, Mohamed Jahangir AR, Ismail Fathima M, Gatasheh MK, Hatamleh AA, Zehra S, Ayeshamariam A. Synthesis and characterization of ZnGa 2O 4 composites and its photocatalytic properties for energy applications. ENVIRONMENTAL RESEARCH 2022; 204:112073. [PMID: 34537200 DOI: 10.1016/j.envres.2021.112073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
ZnGa2O4 nanocomposites have been widely used for photocatalytic degradation of industrial dyes. In this work, ZnGa2O4 was synthesized from zinc sulphate heptahydrate ZnSO4.10H2O and Gallium (III) oxide (Ga2O3) by hydrothermal method. As prepared, ZnGa2O4 nanocomposites was used as a photocatalyst degradation of three organic dyes rhodamine-B, methylene blue, and methyl orange, under ultraviolet (UV) light irradiation. The ZnGa2O4 nanocomposites structure, morphology, size and optical properties were studied by X-ray diffraction (XRD), Fourier transform Raman spectroscopy (FT-Raman), scanning electron microscopy (SEM), Transmission electron microscopes (TEM) and photoluminescence spectra (PL). Moreover, the results explained the rate-controlling mechanisms of the dye degradation process followed by second-order kinetics. After 100 min of adsorption kinetic models, the decomposition of rhodamine-B (7.2 Ct mg/L, 5.2 Ct mg/L, and 4.1 Ct mg/L), methylene blue (42.8 qt mg/g, 44.8 qt mg/g, and 45.9 qt mg/g), and methyl orange (42.8 qe mg/g, 44.8 qe mg/g, and 45.9 qe mg/g) respectively. This investigation study offers a promising method to design more efficient ZnGa2O4 nanocomposites based photocatalytic degradation of industrial organic dyes.
Collapse
Affiliation(s)
- D Nathiya
- PG & Research Department of Chemistry, KhadirMohideen College, Adirampattinam, (Affiliated to Bharathidasan University, Thiruchirappalli, 614701, India
| | - N M I Alhaji
- PG & Research Department of Chemistry, KhadirMohideen College, Adirampattinam, (Affiliated to Bharathidasan University, Thiruchirappalli, 614701, India
| | | | - M Ismail Fathima
- Department of Physics, Arul Anandar College (Autonomous), Karumathur, Madurai, 625514, India
| | - Mansour K Gatasheh
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Ashraf Atef Hatamleh
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Sadaf Zehra
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Ave., Windsor, ON, PO Box, N9B 3P4, Canada
| | - A Ayeshamariam
- PG & Research Department of Chemistry, KhadirMohideen College, Adirampattinam, (Affiliated to Bharathidasan University, Thiruchirappalli, 614701, India; PG & Research Department of Physics, KhadirMohideen College, Adirampattinam, (Affiliated to Bharathidasan University, Thiruchirappalli, 614701, India.
| |
Collapse
|
29
|
Ekennia AC, Uduagwu DN, Nwaji NN, Nwosa CC, Olowu OJ, Nwanji OL, Udu DA, Christopher SU, Andrew TA, Nkwor AN, Inya JE. Facile green synthesis and biological evaluation of biogenic silver nanoparticles using aqueous extract of Alchornea laxiflora leaf. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2021.2025398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Anthony C. Ekennia
- Department of Chemistry and Biochemistry, Alex Ekwueme Federal University, Ndufu-Alike, Ebonyi State, Nigeria
| | - Dickson N. Uduagwu
- Department of Chemistry and Biochemistry, Alex Ekwueme Federal University, Ndufu-Alike, Ebonyi State, Nigeria
| | - Njemuwa N. Nwaji
- Department of Chemistry and Biochemistry, Alex Ekwueme Federal University, Ndufu-Alike, Ebonyi State, Nigeria
| | - Chidimma C. Nwosa
- Department of Chemistry and Biochemistry, Alex Ekwueme Federal University, Ndufu-Alike, Ebonyi State, Nigeria
| | - Olawale J. Olowu
- Department of Chemistry and Biochemistry, Alex Ekwueme Federal University, Ndufu-Alike, Ebonyi State, Nigeria
| | - Obianuju L. Nwanji
- Department of Chemistry and Biochemistry, Alex Ekwueme Federal University, Ndufu-Alike, Ebonyi State, Nigeria
| | - David Agwu Udu
- Department of Science Education, Alex Ekwueme Federal University, Ndufu-Alike, Ebonyi State, Nigeria
| | - Sonde U. Christopher
- Department of Chemistry and Biochemistry, Alex Ekwueme Federal University, Ndufu-Alike, Ebonyi State, Nigeria
| | - Tyopine A. Andrew
- Department of Chemistry and Biochemistry, Alex Ekwueme Federal University, Ndufu-Alike, Ebonyi State, Nigeria
| | - Adachukwu N. Nkwor
- Department of Chemistry and Biochemistry, Alex Ekwueme Federal University, Ndufu-Alike, Ebonyi State, Nigeria
| | - Joseph E. Inya
- Department of Biochemistry, Federal University of Technology Owerri, Owerri, Imo State, Nigeria
| |
Collapse
|
30
|
Chani MTS. Fabrication and characterization of chitosan-CeO 2-CdO nanocomposite based impedimetric humidity sensors. Int J Biol Macromol 2022; 194:377-383. [PMID: 34800523 DOI: 10.1016/j.ijbiomac.2021.11.079] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 10/29/2021] [Accepted: 11/12/2021] [Indexed: 01/25/2023]
Abstract
Nanocomposites of chitosan and cerium oxide‑cadmium oxide (CeO2-CdO) nanopowder were developed to fabricate impedimetric humidity sensors. The low temperature-stirring was used to synthesize CeO2-CdO nanopowder. Average particle size of synthesized nanopowder was 100 ± 20 nm. Various composition of chitosan-CeO2-CdO nanocomposites were developed using echo-friendly (mechanical mixing) technique. Pellets of 13.0 mm diameter and 1.0 ± 0.1 mm thickness were prepared using hydraulic press under the pressure of 375 MPa. Silver paste was used to deposit the electrodes; the length of each electrode was 12.0 mm and the gap between two electrodes was 2.0 ± 0.5 mm. The mechanism of sensing is based on impedimetric change in response to humidity variation. Fabricated sensors showed high sensitivities ranging from -930.0 kΩ/%RH to -2091.1 kΩ/%RH. Response and recovery times are up to 1 s, while the humidity sensing range is 5 to 95%RH. The fabricated sensors are very attractive to use in several devices for environmental monitoring and biomedical applications.
Collapse
Affiliation(s)
- Muhammad Tariq Saeed Chani
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
31
|
Ramalingam G, Magdalane CM, Arjun Kumar B, Yuvakkumar R, Ravi G, Jothi AI, Rotte NK, Murugadoss G, Ananth A. Enhanced visible light-driven photocatalytic performance of CdSe nanorods. ENVIRONMENTAL RESEARCH 2022; 203:111855. [PMID: 34384750 DOI: 10.1016/j.envres.2021.111855] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/29/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
Cadmium selenide (CdSe) semiconductor nanorods are prepared in hydrothermal process using hydrazine hydrate (N2H4.H2O) and ammonia (NH3.H2O) as reducing agents. The reaction time is increased to 7 h and the amount of hydrazine hydrate used is also increased to 15 mL which have resulted in diminished stacking faults in the CdSe nanorods prepared. The crystal structure, morphological variations, and size of the prepared CdSe nanorods are examined by XRD analysis. The crystalline size of the CdSe nanorods is 20-30 nm in diameter. HRTEM images reveal the formation of high order CdSe nanorods of the length about 25-40 nm. The bandgap in the CdSe nanoparticles is determined to be 2.17 eV. The peak at 595 nm in photoluminescence (PL) spectrum indicates oxygen vacancy defects in the prepared CdSe sample. The variation of dielectric properties with respect to temperature and frequency of pelletized CdSe is studied. High photocatalytic efficiency (98%) of catalyst/H2O2 is also achieved for decomposition of Rhodamine-B dye.
Collapse
Affiliation(s)
- G Ramalingam
- Quantum Materials Research Lab (QMRL), Department of Nanoscience and Technology, Alagappa University, Karaikudi, 630003, Tamil Nadu, India.
| | - C Maria Magdalane
- Department of Chemistry, St. Xavier's College, Thirunelveli, 627002, Tamil Nadu-India
| | - B Arjun Kumar
- Quantum Materials Research Lab (QMRL), Department of Nanoscience and Technology, Alagappa University, Karaikudi, 630003, Tamil Nadu, India
| | - R Yuvakkumar
- Department of Physics, Alagappa University, Karaikudi, 630003, Tamil Nadu, India
| | - G Ravi
- Department of Physics, Alagappa University, Karaikudi, 630003, Tamil Nadu, India
| | - A Irudaya Jothi
- Department of Chemistry, St. Joseph's College (Affiliated to Bharathidasan University), Tiruchirappalli, 620002, Tamil Nadu, India
| | - Naresh Kumar Rotte
- Department of Chemistry, St. Xavier's College, Thirunelveli, 627002, Tamil Nadu-India
| | - G Murugadoss
- Centre for Nanoscience and Nanotechnology, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamil Nadu, India
| | | |
Collapse
|
32
|
Shalini Reghunath B, Davis D, Sunaja Devi KR. Synthesis and characterization of Cr 2AlC MAX phase for photocatalytic applications. CHEMOSPHERE 2021; 283:131281. [PMID: 34467941 DOI: 10.1016/j.chemosphere.2021.131281] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/04/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
MAX phase, a layered ternary carbide/nitride, displays both ceramic and metallic properties, which has significantly attracted the materials research. In this work, Cr2AlC MAX phase powder with high purity was fabricated via a facile and cost-effective pressure-less sintering methodology and utilized for photocatalytic degradation of different organic pollutants for the first time. Various characterization techniques were used for confirming the morphological and other physico-chemical properties of the catalyst. Cr2AlC MAX phase with a low band gap of 1.28 eV has shown 99% efficiency in the degradation of malachite green, an organic pollutant under visible light irradiation. The scavenger studies conclude that, O2•-and h+ as the active species during the photocatalytic reaction. Furthermore, the kinetic study revealed that the reaction obeys pseudo-first-order kinetics and can be reused for four cycles without losing the activity. This novel approach can give new insight into the potential application of MAX phase materials in the field of wastewater treatment under visible light irradiation.
Collapse
Affiliation(s)
- B Shalini Reghunath
- Department of Chemistry, CHRIST (Deemed to be University), Bangalore, Karnataka, 560029, India
| | - Deepak Davis
- Department of Physics and Nanotechnology, Faculty of Engineering and Technology, SRM Institute of Science and Technology (Deemed to be University), Chennai, 603203, Tamil Nadu, India
| | - K R Sunaja Devi
- Department of Chemistry, CHRIST (Deemed to be University), Bangalore, Karnataka, 560029, India.
| |
Collapse
|
33
|
Hexavalent chromium reduction by ZnO, SnO2 and ZnO-SnO2 synthesized using biosurfactants from extract of Solanum macrocarpon. SOUTH AFRICAN JOURNAL OF CHEMICAL ENGINEERING 2021. [DOI: 10.1016/j.sajce.2021.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
34
|
D’Souza JN, Nagaraja G, Meghana Navada K, Kouser S, Nityasree B, Manasa D. An ensuing repercussion of solvent alteration on biological and photocatalytic efficacy of Emilia sonchifolia (L.) phytochemicals capped zinc oxide nanoparticles. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127162] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
35
|
Du M, Zhao W, Ma R, Xu H, Zhu Y, Shan C, Liu K, Zhuang J, Jiao Z. Visible-light-driven photocatalytic inactivation of S. aureus in aqueous environment by hydrophilic zinc oxide (ZnO) nanoparticles based on the interfacial electron transfer in S. aureus/ZnO composites. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126013. [PMID: 34102362 DOI: 10.1016/j.jhazmat.2021.126013] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 03/15/2021] [Accepted: 04/30/2021] [Indexed: 06/12/2023]
Abstract
Waterborne diseases caused by pathogenic microorganisms pose severe threats to human health. ZnO nanoparticles (NPs) hold great potentials as an effective, economical and eco-friendly method for water disinfection, but the exact antimicrobial mechanism of ZnO NPs under visible-light illumination is still not clear. Herein, we investigate the visible-light-driven photocatalytic inactivation mechanism of amino-functionalized hydrophilic ZnO (AH-ZnO) NPs against Staphylococcus aureus (S. aureus) in aqueous environment from the perspective of electron transfer theory. The results show that the antibacterial effects of AH-ZnO NPs are dependent on the AH-ZnO NPs concentration and treatment time. The bulk ORP value and released Zn2+ concentration in AH-ZnO NPs solutions increase with AH-ZnO NPs concentration. The SEM and intracellular protein leakage results indicate that AH-ZnO NPs can adhere to S. aureus surface without causing obvious cell membrane disruption. The photoluminescence (PL) intensity and fluorescence lifetime of AH-ZnO NPs are remarkedly decreased after adding S. aureus, which confirms the electron transfer from S. aureus to AH-ZnO NPs. Moreover, the ΔPL intensity is closely correlated with the inactivation efficiency, demonstrating that the interfacial electron transfer in S. aureus/AH-ZnO NPs composites contributes to the antibacterial activity, which is speculated to disrupt the normal respiratory electron transfer chain of S. aureus, thereby causing intracellular ROS generation, cell membrane depolarization and eventually apoptosis-like death.
Collapse
Affiliation(s)
- Mengru Du
- Henan Key Laboratory of Ion-beam Bioengineering, College of Agricultural Science, Zhengzhou University, Zhengzhou 450052, China
| | - Wenbo Zhao
- Henan Key laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Ruonan Ma
- Henan Key Laboratory of Ion-beam Bioengineering, College of Agricultural Science, Zhengzhou University, Zhengzhou 450052, China.
| | - Hangbo Xu
- Henan Key Laboratory of Ion-beam Bioengineering, College of Agricultural Science, Zhengzhou University, Zhengzhou 450052, China
| | - Yupan Zhu
- Henan Key Laboratory of Ion-beam Bioengineering, College of Agricultural Science, Zhengzhou University, Zhengzhou 450052, China
| | - Chongxin Shan
- Henan Key laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Kaikai Liu
- Henan Key laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Jie Zhuang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Zhen Jiao
- Henan Key Laboratory of Ion-beam Bioengineering, College of Agricultural Science, Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
36
|
Habib IY, Burhan J, Jaladi F, Lim CM, Usman A, Kumara N, Tsang SCE, Mahadi AH. Effect of Cr doping in CeO2 nanostructures on photocatalysis and H2O2 assisted methylene blue dye degradation. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.04.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
37
|
Alsulami QA, Rajeh A, Mannaa MA, Albukhari SM, Baamer DF. Preparation of highly efficient sunlight driven photodegradation of some organic pollutants and H2 evolution over rGO/FeVO4 nanocomposites. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY 2021; 46:27349-27363. [DOI: 10.1016/j.ijhydene.2021.05.211] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
|
38
|
Monsef R, Soofivand F, Abbas Alshamsi H, Al-Nayili A, Ghiyasiyan-Arani M, Salavati-Niasari M. Sonochemical synthesis and characterization of PrVO4/CdO nanocomposite and their application as photocatalysts for removal of organic dyes in water. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116339] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
39
|
Zhang F, Shao Y, Shu M, Li C, Zheng Y. Exceptional Photocarriers Separation Efficiency Over Bi2WO6/BiOI Chemical Bonding Interface for Removal Organic Pollutant. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-02012-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
40
|
Synthesis, characterization and photocatalytic activity of a new type of high-efficiency polyacid composite. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04446-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
41
|
Gnanam S, Gajendiran J, Ashokkumar R, Ramachandran K, Ramya JR. Cd doped-Alpha-Dimanganese Trioxide Nanoparticles: Synthesis, Structural, Morphological, Optical, Luminescent, Magnetic, Photocatalytic and Antibacterial Characterization. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
42
|
Synthesis and Characterization of CeO2/CuO Nanocomposites for Photocatalytic Degradation of Methylene Blue in Visible Light. COATINGS 2021. [DOI: 10.3390/coatings11030305] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Removal of hazardous organic dyes from polluted water bodies requires the introduction of strong adsorbents and photocatalysts to industrial wastewaters. Herein, photocatalytic CeO2 nanoparticles and CeO2/CuO nanocomposite were synthesized following a co-precipitation method for low cost elution of methylene blue (MB) from water. The crystallinity and surface structure of the as-prepared materials have been analyzed using characterization techniques including X-ray powder diffraction (XRPD), field emission scanning electron microscopy (FE-SEM), energy-dispersive spectroscopy (EDS), ultra-violet visible spectroscopy (UV–Vis), and Fourier-transform infrared spectroscopy (FTIR). The average particle size of both the nano scaled samples were approximately 20–30 nm. The photocatalytic properties of CeO2/CuO were investigated under visible light against methylene blue (MB). The results showed 91% photodegradation of MB organic pollutant in 3 h as monitored by UV–Vis spectroscopy. Absorbance peaks appeared at around 670 nm corresponding to degradation of MB. Such output displayed the effectiveness of Ce nanocomposites for environmental benefits. Hence, CeO2/CuO nanocomposite could be useful for treatment of industrial wastewaters by removing hazardous MB dye.
Collapse
|
43
|
Sonophotocatalytic Degradation of Malachite Green by Nanocrystalline Chitosan-Ascorbic Acid@NiFe2O4 Spinel Ferrite. COATINGS 2020. [DOI: 10.3390/coatings10121200] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Statistics show that more than 700 thousand tons of dye are produced annually across the globe. Around 10–20% of this is used in industrial processes such as printing and dyeing, while about 50% of the dye produced is discharged into the environment without proper physicochemical treatment. Even trace amounts of dye in water can reduce oxygen solubility and have carcinogenic, mutagenic, and toxic effects on aquatic organisms. Therefore, before dye-containing wastewater is discharged into the environment, it must be properly treated. The present study investigates the green synthesis of nickel ferrite NiFe2O4 (NIFE) spinel magnetic nanoparticles (MNPs) via chemical coprecipitation of a solution of Ni2+/Fe3+ in the presence of a biopolymer blend of chitosan (CT) and ascorbic acid (AS). The magnetic nanomaterial was characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy–energy dispersive X-ray analysis (SEM-EDX), transmission electron microscopy (TEM), ultraviolet-visible spectroscopy (UV-Vis), differential scanning calorimetry (DSC), and vibrating-sample magnetometry (VSM). The material was further explored as a catalyst for the photocatalytic degradation of malachite green (MG) under visible light irradiation coupled with ultrasonic waves. The combination of 90 min of visible solar light irradiation with 6.35 W·mL−1 ultrasonic power at pH 8 resulted in 99% of the photocatalytic efficiency of chitosan-ascorbic acid@NIFE (CTAS@NIFE) catalyst for 70 mg·L−1 MG. The quenching of the photocatalytic efficiency from 98% to 64% in the presence of isopropyl alcohol (IPA) suggested the involvement of hydroxy (•OH) radicals in the mineralization process of MG. The high regression coefficients (R2) of 0.99 for 35, 55, and 70 mg·L−1 MG indicated the sonophotocatalysis of MG by CTAS@NIFE was best defined by a pseudo first-order kinetic model. The mechanism involves the adsorption of MG on the catalyst surface in the first step and thereby mineralization of the MG by the generated hydroxyl radicals (•OH) under the influence of visible radiation coupled with 6.34 W·mL−1 ultrasonic power. In the present study the application of photodegradation process with sonochemistry results in 99% of MG mineralization without effecting the material structure unlike happens in the case adsorption process. So, the secondary pollution (generally happens in case of adsorption) can be avoided by reusing the spent material for another application instead of disposing it. Thus, the ecofriendly synthesis protocol, ease in design of experimentation like use of solar irradiation instead of electric power lamps, reusability and high efficiency of the material suggested the study to be potentially economical for industrial development at pilot scale towards wastewater remediation.
Collapse
|
44
|
Shkodenko L, Kassirov I, Koshel E. Metal Oxide Nanoparticles Against Bacterial Biofilms: Perspectives and Limitations. Microorganisms 2020; 8:E1545. [PMID: 33036373 PMCID: PMC7601517 DOI: 10.3390/microorganisms8101545] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 09/25/2020] [Accepted: 10/02/2020] [Indexed: 12/17/2022] Open
Abstract
At present, there is an urgent need in medicine and industry to develop new approaches to eliminate bacterial biofilms. Considering the low efficiency of classical approaches to biofilm eradication and the growing problem of antibiotic resistance, the introduction of nanomaterials may be a promising solution. Outstanding antimicrobial properties have been demonstrated by nanoparticles (NPs) of metal oxides and their nanocomposites. The review presents a comparative analysis of antibiofilm properties of various metal oxide NPs (primarily, CuO, Fe3O4, TiO2, ZnO, MgO, and Al2O3 NPs) and nanocomposites, as well as mechanisms of their effect on plankton bacteria cells and biofilms. The potential mutagenicity of metal oxide NPs and safety problems of their wide application are also discussed.
Collapse
Affiliation(s)
- Liubov Shkodenko
- Microbiology Lab of SCAMT Institute, ITMO University, Lomonosova st. 9, 191002 St. Petersburg, Russia; (L.S.); (I.K.)
| | - Ilia Kassirov
- Microbiology Lab of SCAMT Institute, ITMO University, Lomonosova st. 9, 191002 St. Petersburg, Russia; (L.S.); (I.K.)
- Department of Epidemiology, Pasteur Institute, 197101 St. Petersburg, Russia
| | - Elena Koshel
- Microbiology Lab of SCAMT Institute, ITMO University, Lomonosova st. 9, 191002 St. Petersburg, Russia; (L.S.); (I.K.)
| |
Collapse
|
45
|
Rani N, Chahal S, Mahadevan SK, Kumar P, Shukla R, Singh SK. Development of hierarchical magnesium oxide anchored cerium oxide nanocomposites with improved magnetic properties and photocatalytic performance. NANOTECHNOLOGY 2020; 31:374004. [PMID: 32460264 DOI: 10.1088/1361-6528/ab96e8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A facile strategy was introduced for the development of pure MgO and its nanocomposites using different CeO2 contents (3%-7%) to enhance their magnetic properties and photocatalytic performance. Different morphologies (namely nanoflowers and rhombohedral type nanostructures) were obtained using an in situ hydrothermal method at different concentrations of CeO2. X-ray diffraction results revealed that peaks of CeO2 were observed along with peaks of MgO, which confirms the presence of both phases. The crystallite size and particle size were found to increase with changing CeO2 content in the host matrix of MgO. Moreover, the band gap reduces while the magnetic character increases with CeO2 content. The magnetic behaviour of the nanocomposites was elucidated on the basis of oxygen intrinsic defects, which are shown through XPS. EPR measurements were carried out to understand the valence electrons and establish the defects present in the material, which are related to the size of the nanostructures. The degradation of Rose Bengal dye was performed to probe the photocatalytic activity of the MgO@CeO2 nanocomposites. Hence the facile synthesis of these nanostructures conveyed good magnetic properties along with its application towards dye degradation.
Collapse
Affiliation(s)
- Neha Rani
- Department of Physics, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Sonepat, Haryana 131039, India
| | | | | | | | | | | |
Collapse
|
46
|
Zhang Q, Deng X, Tan C, Zhou Y, Chen X, Bai X, Li J, Tang B, Li S, Lin H. Gamma-phase CsPbBr3 perovskite nanocrystals/polymethyl methacrylate electrospun nanofibrous membranes with superior photo-catalytic property. J Chem Phys 2020; 153:024703. [DOI: 10.1063/5.0012938] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Qi Zhang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People’s Republic of China
- Fundamental Industry Training Center, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Xiaonan Deng
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People’s Republic of China
- Fundamental Industry Training Center, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Chengyu Tan
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People’s Republic of China
- Fundamental Industry Training Center, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Yangying Zhou
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Xing Chen
- Fundamental Industry Training Center, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Xuming Bai
- Fundamental Industry Training Center, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Jianbao Li
- State Key Laboratory of Marine Resource Utilization in South China Sea, Materials and Chemical Engineering Institute, Hainan University, Haikou 570228, People’s Republic of China
| | - Bin Tang
- Fundamental Industry Training Center, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Shuangshou Li
- Fundamental Industry Training Center, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Hong Lin
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People’s Republic of China
| |
Collapse
|
47
|
Salam MA, AbuKhadra MR, Mohamed AS. Effective oxidation of methyl parathion pesticide in water over recycled glass based-MCM-41 decorated by green Co 3O 4 nanoparticles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 259:113874. [PMID: 32032982 DOI: 10.1016/j.envpol.2019.113874] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 11/26/2019] [Accepted: 12/22/2019] [Indexed: 05/14/2023]
Abstract
Pieces of glass as solid wastes were recycled in the synthesis of highly order MCM-41 that decorated by green fabricated Co3O4 nanoparticles using the green extract of green tea leaves forming novel green nano-composite. The synthetic Co3O4/MCM-41 exhibit high surface area, low bandgap energy (1.63 eV), and typical spherical morphology decorated by Co3O4 nanoparticles. The composite was evaluated as green photocatalyst in effective oxidation of methyl parathion pesticide in the presence of a visible light source. The degradation results revealed complete removal of 50 mg/L and 100 mg/L after 60 min and 90 min, respectively using 0.25 of the catalyst at pH 8. The detection of the TOC in the treated methyl parathion solution gives strong indications about the formation of organic intermediate compounds during the oxidation steps. The main detected intermediate compound are C6H5OH(NO2), C6H5OH, (CH3O)3P(S), C6H4(OH)2, C6H3(OH)3, C6H4(NH2)OP(O)(OCH3)2, (CH3O)2P(O)OH, (CH2)2C(OH)OH(CHO)OC(O), and HO2C(CH2)2C(O)CHO. The detected intermediate compounds converted into SO42-, PO43-, NO3-, and CO2 under the extensive photocatalytic of them over Co3O4/MCM-41. The oxidizing species trapping test verified the controlling of the methyl parathion degradation pathway by the hydroxyl radicals. Finally, the composite showed significant reusability properties and applied five times in the oxidation of methyl parathion with considerable degradation percentages.
Collapse
Affiliation(s)
- Mohamed Abdel Salam
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, P.O Box 80200-Jeddah, 21589, Saudi Arabia
| | - Mostaf R AbuKhadra
- Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef City, Egypt; Materials Technologies and Their Applications Lab, Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef City, Egypt.
| | - Aya S Mohamed
- Materials Technologies and Their Applications Lab, Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef City, Egypt; Department of Environment and Industrial Development, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni- Suef, Egypt
| |
Collapse
|
48
|
Williams FE, Lee AK, Orandi S, Lewis DM. Antibacterial action of functional silicon dioxide: an investigation of the attachment and separation of bacteria. ENVIRONMENTAL TECHNOLOGY 2020; 41:703-710. [PMID: 30102131 DOI: 10.1080/09593330.2018.1509887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 07/29/2018] [Indexed: 06/08/2023]
Abstract
Bactericidal proteins from the Moringa oleifera seed are reported to be suitable alternatives to conventional methods of bacterial reduction in water. In this study the cationic bactericidal M. oleifera proteins were isolated by attachment onto the surface of silicon dioxide. This functionalised SiO2(ƒ-SiO2) was then exposed to Escherichia coli and Micrococcus luteus to examine whether the ƒ-SiO2 could be used to inactivate the bacteria. The effect of the non-ionic surfactant dodecyl glucoside on the attachment of these bacteria to the ƒ-SiO2 was examined with the aim of developing a method of reusable bacterial inactivation. The primary result of this study was that the E. coli could be readily separated from the ƒ-SiO2, allowing the ƒ-SiO2 to be used for further bacterial inactivation. The regeneration of the ƒ-SiO2 was demonstrated using fluorescence microscopy on bacterial cells stained with propidium iodide, and zeta potential measurements. Future applications of this work include a reusable method of removing bacteria from contaminated water.
Collapse
Affiliation(s)
- Frances E Williams
- School of Chemical Engineering, The University of Adelaide, Adelaide, Australia
| | - Andrew K Lee
- School of Chemical Engineering, The University of Adelaide, Adelaide, Australia
| | - Sanaz Orandi
- School of Chemical Engineering, The University of Adelaide, Adelaide, Australia
| | - David M Lewis
- School of Chemical Engineering, The University of Adelaide, Adelaide, Australia
| |
Collapse
|
49
|
Christy PN, Basha SK, Kumari VS, Bashir A, Maaza M, Kaviyarasu K, Arasu MV, Al-Dhabi NA, Ignacimuthu S. Biopolymeric nanocomposite scaffolds for bone tissue engineering applications – A review. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101452] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
50
|
Keshmirizadeh E, Modarress H, Jahedi F. Removal of Acid Blue 62 textile dye from aqueous solutions by cerium reagents. ENVIRONMENTAL TECHNOLOGY 2020; 41:785-796. [PMID: 30105935 DOI: 10.1080/09593330.2018.1511633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 07/01/2018] [Indexed: 06/08/2023]
Abstract
The removal of Acid Blue 62 (AB62) dye which is known as a pollutant agent and contains in wastewater of textile industry has been studied in this work by using five various cerium compounds as the oxidizing agents. The parameters involved in the oxidation reaction such as pH, initial dye concentration and the oxidizing agent dosage have been investigated using both batch and semi-batch reactors at ambient temperature. The results indicated that the rate of oxidation for various cerium reagents is in the following order: CeF4 > (NH4)2Ce (NO3)6 > Ce (SO4)2 > CeCl3 > Ce (CH3COO)3, where cerium fluoride (CeF4) had the highest removal yields, 99.9% and 95%, for dye de-colouration and COD (chemical oxygen demand), respectively. The analysis of the dye removal was done by using UV-VIS spectrometry, GC-MS and HPLC methods which indicated the aromatic ring cleavage of AB62 dye by CeF4. The half-life measurement was employed to evaluate the reaction rate model for decomposition of AB62 dye by CeF4.
Collapse
Affiliation(s)
| | - Hamid Modarress
- Department of Chemical Engineering, Amir-Kabir University of Technology, Tehran, Iran
| | - Fatemeh Jahedi
- Department of Chemistry, Karaj Branch, Islamic Azad University, Karaj, Iran
| |
Collapse
|