1
|
Kouri MA, Georgopoulos A, Manios GE, Maratou E, Spathis A, Chatziioannou S, Platoni K, Efstathopoulos EP. Preliminary Study on Lutetium-177 and Gold Nanoparticles: Apoptosis and Radiation Enhancement in Hepatic Cancer Cell Line. Curr Issues Mol Biol 2024; 46:12244-12259. [PMID: 39590321 PMCID: PMC11592690 DOI: 10.3390/cimb46110727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/24/2024] [Accepted: 10/27/2024] [Indexed: 11/28/2024] Open
Abstract
This study investigates a novel approach toward enhancing the efficacy of Lutetium-177 (Lu-177) radiopharmaceutical therapy by combining it with gold nanoparticles (AuNPs) in the HepG2 hepatic cancer cell line. Lu-177, known for its effective β radiation, also emits gamma rays at energies (113 keV and 208 keV) near the photoelectric absorption range, suggesting potential for targeted and localized radiation enhancement when used in conjunction with AuNPs. Thus, HepG2 cells were treated at two different activity levels (74 MBq and 148 MBq), with Lu-177 alone, with a combination of Lu-177 and AuNPs in two sizes (10 nm and 50 nm), while some received no treatment. Treatment efficacy was assessed by quantifying the radiation enhancement ratio (RER) and the apoptosis levels. The results reveal that combining Lu-177 with AuNPs significantly increases cell death and apoptosis compared to Lu-177 alone, with 10 nm AuNPs demonstrating superior effectiveness. Additionally, varying Lu-177 activity levels influenced the treatment outcomes, with higher activity levels further augmenting the therapeutic impact of combined therapy. These findings underscore the potential of utilizing Lu-177's beta, but also gamma, emissions, traditionally considered non-therapeutic, for localized radiation enhancement when combined with AuNPs. This novel strategy leverages Lu-177 as an internal irradiator to exploit gamma radiation for a targeted therapeutic advantage without requiring nanoparticle functionalization. The study provides a promising approach to improving radionuclide therapy and sets the stage for future research aimed at optimizing cancer treatments through the combined use of Lu-177 and AuNPs.
Collapse
Affiliation(s)
- Maria Anthi Kouri
- 2nd Department of Radiology, Medical Physics Unit, Medical School, National and Kapodistrian University of Athens, 1 Rimini Str., 12462 Athens, Greece; (M.A.K.); (A.G.); (G.E.M.); (S.C.); (K.P.)
- Medical Physics, General Hospital GHA Korgialeneio Mpenakeio-Hellenic Red Cross, Athanasaki 11, 11526 Athens, Greece
| | - Anastasios Georgopoulos
- 2nd Department of Radiology, Medical Physics Unit, Medical School, National and Kapodistrian University of Athens, 1 Rimini Str., 12462 Athens, Greece; (M.A.K.); (A.G.); (G.E.M.); (S.C.); (K.P.)
| | - George E. Manios
- 2nd Department of Radiology, Medical Physics Unit, Medical School, National and Kapodistrian University of Athens, 1 Rimini Str., 12462 Athens, Greece; (M.A.K.); (A.G.); (G.E.M.); (S.C.); (K.P.)
| | - Eirini Maratou
- Clinical Biochemistry Laboratory, Attikon General Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Aris Spathis
- 2nd Department of Pathology, School of Medicine, Attikon University Hospital, National and Kapoditrian University of Athens, 12462 Athens, Greece;
| | - Sofia Chatziioannou
- 2nd Department of Radiology, Medical Physics Unit, Medical School, National and Kapodistrian University of Athens, 1 Rimini Str., 12462 Athens, Greece; (M.A.K.); (A.G.); (G.E.M.); (S.C.); (K.P.)
- Department of Radiology, Nuclear Medicine Section, Baylor College of Medicine, St. Luke’s Episcopal Hospital, Houston, TX 77030, USA
| | - Kalliopi Platoni
- 2nd Department of Radiology, Medical Physics Unit, Medical School, National and Kapodistrian University of Athens, 1 Rimini Str., 12462 Athens, Greece; (M.A.K.); (A.G.); (G.E.M.); (S.C.); (K.P.)
| | - Efstathios P. Efstathopoulos
- 2nd Department of Radiology, Medical Physics Unit, Medical School, National and Kapodistrian University of Athens, 1 Rimini Str., 12462 Athens, Greece; (M.A.K.); (A.G.); (G.E.M.); (S.C.); (K.P.)
| |
Collapse
|
2
|
Yang W, Xia S, Jia X, Zhu Y, Li L, Jiang C, Ji H, Shi F. Utilizing surface-enhanced Raman spectroscopy for the adjunctive diagnosis of osteoporosis. Eur J Med Res 2024; 29:476. [PMID: 39343945 PMCID: PMC11440806 DOI: 10.1186/s40001-024-02081-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024] Open
Abstract
Osteoporosis (OP) is a chronic disease characterized by diminished bone mass and structural deterioration, ultimately leading to compromised bone strength and an increased risk of fractures. Diagnosis primarily relies on medical imaging findings and clinical symptoms. This study aims to explore an adjunctive diagnostic technique for OP based on surface-enhanced Raman scattering (SERS). Serum SERS spectra from the normal, low bone density, and osteoporosis groups were analyzed to discern OP-related expression profiles. This study utilized partial least squares (PLS) and support vector machine (SVM) algorithms to establish an OP diagnostic model. The combination of Raman peak assignments and spectral difference analysis reflected biochemical changes associated with OP, including amino acids, carbohydrates, and collagen. Using the PLS-SVM approach, sensitivity, specificity, and accuracy for screening OP were determined to be 77.78%, 100%, and 88.24%, respectively. This study demonstrates the substantial potential of SERS as an adjunctive diagnostic technology for OP.
Collapse
Affiliation(s)
- Weihang Yang
- Orthopedics Department, Affiliated Hospital 6 of Nantong University, Yancheng, 224001, China
| | - Shuang Xia
- Orthopedics Department, Affiliated Hospital 6 of Nantong University, Yancheng, 224001, China
| | - Xu Jia
- College of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng, 224005, China
| | - Yuwei Zhu
- Orthopedics Department, Suzhou BOE Hospital, Suzhou, 215000, China
| | - Liang Li
- Orthopedics Department, Affiliated Hospital 6 of Nantong University, Yancheng, 224001, China
| | - Cheng Jiang
- College of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng, 224005, China
| | - Hongjian Ji
- College of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng, 224005, China.
| | - Fengchao Shi
- Orthopedics Department, Affiliated Hospital 6 of Nantong University, Yancheng, 224001, China.
| |
Collapse
|
3
|
Hilal-Alnaqbi A, Dagher S, Alkhatib R, Karam S. Effect of Gold Nanoparticles on Growth Characteristics of Mouse Gastric Stem Cells in Vitro. MEASUREMENT: INTERDISCIPLINARY RESEARCH AND PERSPECTIVES 2024:1-10. [DOI: 10.1080/15366367.2024.2386629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2024]
Affiliation(s)
| | - Sawsan Dagher
- Electromechanical Engineering, Abu Dhabi Polytechnic
| | | | - Sherif Karam
- Anatomy, College of Medicine and Health Sciences, United Arab Emirates University
| |
Collapse
|
4
|
Hamida RS, AlMotwaa SM, Al-Otaibi WA, Alqhtani HA, Ali MA, Bin-Meferij MM. Apoptotic Induction by Biosynthesized Gold Nanoparticles Using Phormidesmis communis Strain AB_11_10 against Osteosarcoma Cancer. Biomedicines 2024; 12:1570. [PMID: 39062143 PMCID: PMC11274524 DOI: 10.3390/biomedicines12071570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/04/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
Phormidesmis communis strain AB_11_10 was isolated and identified using microscopy and 16s rRNA sequencing, and its phytochemical constituents were determined using liquid chromatography-quadrupole time-of-flight mass spectrometry. The isolate had a segmented filamentous shape with a blue-green color. Many biomolecules, including organic compounds, amino acids, and fatty acids, were detected. P. communis strain AB_11_10 was used to synthesize gold nanoparticles (Ph-AuNPs) by adjusting the optimum reaction conditions. The concentration, algal/precursor ratio, temperature, reaction time, and pH significantly influenced the synthesis of the Ph-AuNPs. Mixing 1 mL of 0.5 mM of HAuCl4 with 1 mL of algal extract and exposing the mixture to 100 °C for 30 min at pH 5.6 were the optimum conditions for the biosynthesis of Ph-AuNPs at a wavelength of 524.5 nm. The Ph-AuNPs were characterized using TEM, SEM, EDX, and mapping Zeta sizer and FTIR. The Ph-AuNPs had quasi-spherical to triangular shapes with an average diameter of 9.6 ± 4.3 nm. Ph-AuNPs composed of 76.10 ± 3.14% of Au and trace amounts of carbon and oxygen were detected, indicating that the P. communis strain AB_11_10 successfully synthesized Ph-AuNPs. The hydrodynamic diameter of the Ph-AuNPs was 28.5 nm, and their potential charge was -17.7 mV. O-H, N-H, C=C, N-O, C-H, and C-O were coated onto the surfaces of the Ph-AuNPs. These groups correspond to algal phytochemicals, which may have been the main reducing and stabilizing substances during the Ph-AuNP synthesis. The therapeutic activity of the Ph-AuNPs against osteosarcoma cancers was examined in MG-63 and SAOS-2 cell lines, while their biocompatibility was tested against Vero cell lines using a sulforhodamine B assay. The Ph-AuNPs had potent antitumor activity against the MG-63 and SAOS-2 cells, with a low toxicity toward Vero cells. Flow cytometry and cell cycle arrest analyses revealed that the Ph-AuNPs enhanced the apoptotic pathway and arrested the cell cycle in the MG-63 and SAOS-2 cells. P. communis strain AB_11_10 provides a new source to synthesize small, stable, and biocompatible AuNPs that act as apoptotic enhancers in osteosarcoma.
Collapse
Affiliation(s)
| | - Sahar M. AlMotwaa
- Department of Chemistry, College of Science and Humanities, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Waad A. Al-Otaibi
- Department of Chemistry, College of Science and Humanities, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Haifa A. Alqhtani
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Mohamed Abdelaal Ali
- Plant Production Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications (SRTA-CITY) New Borg El-Arab, Alexandria 21934, Egypt
| | - Mashael Mohammed Bin-Meferij
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| |
Collapse
|
5
|
Yang DH, Nah H, Lee D, Min SJ, Park S, An SH, Wang J, He H, Choi KS, Ko WK, Lee JS, Kwon IK, Lee SJ, Heo DN. A review on gold nanoparticles as an innovative therapeutic cue in bone tissue engineering: Prospects and future clinical applications. Mater Today Bio 2024; 26:101016. [PMID: 38516171 PMCID: PMC10952045 DOI: 10.1016/j.mtbio.2024.101016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/19/2024] [Accepted: 03/02/2024] [Indexed: 03/23/2024] Open
Abstract
Bone damage is a complex orthopedic problem primarily caused by trauma, cancer, or bacterial infection of bone tissue. Clinical care management for bone damage remains a significant clinical challenge and there is a growing need for more advanced bone therapy options. Nanotechnology has been widely explored in the field of orthopedic therapy for the treatment of a severe bone disease. Among nanomaterials, gold nanoparticles (GNPs) along with other biomaterials are emerging as a new paradigm for treatment with excellent potential for bone tissue engineering and regenerative medicine applications. In recent years, a great deal of research has focused on demonstrating the potential for GNPs to provide for enhancement of osteogenesis, reduction of osteoclastogenesis/osteomyelitis, and treatment of bone cancer. This review details the latest understandings in regards to GNPs based therapeutic systems, mechanisms, and the applications of GNPs against various bone disorders. The present review aims to summarize i) the mechanisms of GNPs in bone tissue remodeling, ii) preparation methods of GNPs, and iii) functionalization of GNPs and its decoration on biomaterials as a delivery vehicle in a specific bone tissue engineering for future clinical application.
Collapse
Affiliation(s)
- Dae Hyeok Yang
- Institute of Cell and Tissue Engineering, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Haram Nah
- Department of Dentistry, Graduate School, Kyung Hee University, 26 Kyungheedae-Ro, Dongdaemun-Gu, Seoul, 02447, Republic of Korea
| | - Donghyun Lee
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), 80 Cheombok-ro, Dong-gu, Daegu, 41061, Republic of Korea
| | - Sung Jun Min
- Department of Dentistry, Graduate School, Kyung Hee University, 26 Kyungheedae-Ro, Dongdaemun-Gu, Seoul, 02447, Republic of Korea
| | - Seulki Park
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), 80 Cheombok-ro, Dong-gu, Daegu, 41061, Republic of Korea
| | - Sang-Hyun An
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), 80 Cheombok-ro, Dong-gu, Daegu, 41061, Republic of Korea
| | - Jianxin Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, 201203, China
| | - Huining He
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Kyu-Sun Choi
- Department of Neurosurgery, College of Medicine, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Wan-Kyu Ko
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Jae Seo Lee
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Il Keun Kwon
- Department of Dental Materials, School of Dentistry, Kyung Hee University, 26 Kyungheedae-Ro, Dongdaemun-Gu, Seoul 02447, Republic of Korea
- Kyung Hee University Medical Science Research Institute, Kyung Hee University, 23 Kyungheedae-Ro, Dongdaemun-Gu, Seoul, 02447, Republic of Korea
| | - Sang Jin Lee
- Biofunctional Materials, Division of Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Sai Ying Pun, Hong Kong SAR, China
| | - Dong Nyoung Heo
- Department of Dental Materials, School of Dentistry, Kyung Hee University, 26 Kyungheedae-Ro, Dongdaemun-Gu, Seoul 02447, Republic of Korea
- Biofriends Inc, 26 Kyungheedae-Ro, Dongdaemun-Gu, Seoul, 02447, Republic of Korea
| |
Collapse
|
6
|
Osman N, Curley P, Box H, Liptrott N, Sexton D, Saleem I. In vitro evaluation of physicochemical-dependent effects of polymeric nanoparticles on their cellular uptake and co-localization using pulmonary calu-3 cell lines. Drug Dev Ind Pharm 2024; 50:376-386. [PMID: 38533688 DOI: 10.1080/03639045.2024.2332889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/15/2024] [Indexed: 03/28/2024]
Abstract
OBJECTIVE The study evaluated physicochemical properties of eight different polymeric nanoparticles (NPs) and their interaction with lung barrier and their suitability for pulmonary drug delivery. METHODS Eight physiochemically different NPs were fabricated from Poly lactic-co-glycolic acid (PLGA, PL) and Poly glycerol adipate-co-ω-pentadecalactone (PGA-co-PDL, PG) via emulsification-solvent evaporation. Pulmonary barrier integrity was investigated in vitro using Calu-3 under air-liquid interface. NPs internalization was investigated using a group of pharmacological inhibitors with subsequent microscopic visual confirmation. RESULTS Eight NPs were successfully formulated from two polymers using emulsion-solvent evaporation; 200, 500 and 800 nm, negatively-charged and positively-charged. All different NPs did not alter tight junctions and PG NPs showed similar behavior to PL NPs, indicating its suitability for pulmonary drug delivery. Active endocytosis uptake mechanisms with physicochemical dependent manner were observed. In addition, NPs internalization and co-localization with lysosomes were visually confirmed indicating their vesicular transport. CONCLUSION PG and PL NPs had shown no or low harmful effects on the barrier integrity, and with effective internalization and vesicular transport, thus, prospectively can be designed for pulmonary delivery applications.
Collapse
Affiliation(s)
- Nashwa Osman
- Nanoformulations and drug delivery group, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom
- Faculty of Medicine, Sohag University, Egypt
| | - Paul Curley
- Centre of Excellence for Long-acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, The University of Liverpool, Liverpool, United Kingdom
| | - Helen Box
- Centre of Excellence for Long-acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, The University of Liverpool, Liverpool, United Kingdom
| | - Neill Liptrott
- Centre of Excellence for Long-acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, The University of Liverpool, Liverpool, United Kingdom
- Immunocompatibility Group, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, The University of Liverpool, Liverpool, United Kingdom
| | - Darren Sexton
- Nanoformulations and drug delivery group, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Imran Saleem
- Nanoformulations and drug delivery group, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| |
Collapse
|
7
|
Li XT, Peng SY, Feng SM, Bao TY, Li SZ, Li SY. Recent Progress in Phage-Based Nanoplatforms for Tumor Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307111. [PMID: 37806755 DOI: 10.1002/smll.202307111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/18/2023] [Indexed: 10/10/2023]
Abstract
Nanodrug delivery systems have demonstrated a great potential for tumor therapy with the development of nanotechnology. Nonetheless, traditional drug delivery systems are faced with issues such as complex synthetic procedures, low reproducibility, nonspecific distribution, impenetrability of biological barrier, systemic toxicity, etc. In recent years, phage-based nanoplatforms have attracted increasing attention in tumor treatment for their regular structure, fantastic carrying property, high transduction efficiency and biosafety. Notably, therapeutic or targeting peptides can be expressed on the surface of the phages through phage display technology, enabling the phage vectors to possess multifunctions. As a result, the drug delivery efficiency on tumor will be vastly improved, thereby enhancing the therapeutic efficacy while reducing the side effects on normal tissues. Moreover, phages can overcome the hindrance of biofilm barrier to elicit antitumor effects, which exhibit great advantages compared with traditional synthetic drug delivery systems. Herein, this review not only summarizes the structure and biology of the phages, but also presents their potential as prominent nanoplatforms against tumor in different pathways to inspire the development of effective nanomedicine.
Collapse
Affiliation(s)
- Xiao-Tong Li
- Department of Anesthesiology, the Second Clinical School of Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Shu-Yi Peng
- Department of Anesthesiology, the Second Clinical School of Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Shao-Mei Feng
- Department of Anesthesiology, the Second Clinical School of Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Ting-Yu Bao
- Department of Clinical Medicine, the Third Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Sheng-Zhang Li
- Department of Clinical Medicine, the Second Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Shi-Ying Li
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| |
Collapse
|
8
|
Yu Y, Chen W, Wang L, Zhu Z, Zhang Z, Chen Q, Huang H, Li X. An auxiliary diagnostic technology and clinical efficacy evaluation in knee osteoarthritis based on serum surface-enhanced Raman spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 296:122654. [PMID: 37019002 DOI: 10.1016/j.saa.2023.122654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/06/2023] [Accepted: 03/17/2023] [Indexed: 06/19/2023]
Abstract
Knee osteoarthritis (KOA), a progressive joint disease, is a leading source of chronic pain and disability, and its diagnosis mainly depends on medical imaging findings and clinical symptoms. This study aimed to explore an auxiliary diagnostic technology and clinical efficacy evaluation in KOA based on surface-enhanced Raman scattering (SERS). Three sequential experiments were performed: 1) preliminary observation of the therapeutic effects of icariin (ICA); 2) using serum SERS spectra obtained from rat models belonging to sham group, KOA group and icariin treatment group, respectively, to analyze the KOA-related expression profiles; 3) employing partial least squares (PLS) and support vector machines (SVM) algorithms to establish KOA diagnosis model. Pathological changes verified the efficacy of icariin in KOA. Raman peak assignment combined with spectral difference analysis reflected the biochemical changes associated with KOA, including amino acid, carbohydrates and collagen. ICA intervention significantly reversed these changes, although full recovery could not be achieved. Based on PLS-SVM approach, the sensitivity, specificity and accuracy of 100%, 98.33% and 98.89%, respectively, were obtained for screening KOA. This work proves that SERS has great potential to be used as an auxiliary diagnostic technology for KOA, and is also helpful for the exploration of novel KOA treatment agent.
Collapse
Affiliation(s)
- Yun Yu
- College of Integrative Medicine, Laboratory of Pathophysiology, Key Laboratory of Integrative Medicine on Chronic Diseases (Fujian Province University), Synthesized Laboratory of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Weiwei Chen
- Department of Medical Technology, Fujian Health College, Fuzhou 350101, China
| | - Lili Wang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Zaishi Zhu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Zhongping Zhang
- The Third Affiliated People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou 350108, China
| | - Qin Chen
- The Second Affiliated People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou 350003, China
| | - Hao Huang
- College of Integrative Medicine, Laboratory of Pathophysiology, Key Laboratory of Integrative Medicine on Chronic Diseases (Fujian Province University), Synthesized Laboratory of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Xihai Li
- College of Integrative Medicine, Laboratory of Pathophysiology, Key Laboratory of Integrative Medicine on Chronic Diseases (Fujian Province University), Synthesized Laboratory of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| |
Collapse
|
9
|
Yuan P, Min Y, Zhao Z. Multifunctional nanoparticles for the treatment and diagnosis of osteosarcoma. BIOMATERIALS ADVANCES 2023; 151:213466. [PMID: 37229927 DOI: 10.1016/j.bioadv.2023.213466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/27/2023]
Abstract
Osteosarcoma (OS) is a common primary malignant bone tumor in adolescents. Currently, the commonly used treatment strategies for OS include surgery, chemotherapy and radiotherapy. However, these methods have some problems that cannot be ignored, such as postoperative sequelae and severe side effects. Therefore, in recent years, researchers have been looking for other means to improve the treatment or diagnosis effect of OS and increase the overall survival rate of patients. With the development of nanotechnology, nanoparticles (NPs) have presented excellent properties in improving the therapeutic efficacy of drugs for OS. Nanotechnology makes it possible for NPs to combine various functional molecules and drugs to achieve multiple therapeutic effects. This review presents the important properties of multifunctional NPs for the treatment and diagnosis of OS and focuses on the research progress of common NPs applied for drug or gene delivery, phototherapy and diagnosis of OS, such as carbon-based quantum dots, metal, chitosan and liposome NPs. Finally, the promising prospects and challenges of developing multifunctional NPs with enhanced efficacy are discussed, which lays the foundation and direction for improving the future therapeutic and diagnostic methods of OS.
Collapse
Affiliation(s)
- Ping Yuan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China
| | - Yajun Min
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China
| | - Zheng Zhao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China.
| |
Collapse
|
10
|
Amiryaghoubi N, Fathi M, Barar J, Omidian H, Omidi Y. Advanced nanoscale drug delivery systems for bone cancer therapy. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166739. [PMID: 37146918 DOI: 10.1016/j.bbadis.2023.166739] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/08/2023] [Accepted: 04/27/2023] [Indexed: 05/07/2023]
Abstract
Bone tumors are relatively rare, which are complex cancers and mostly involve the long bones and pelvis. Bone cancer is mainly categorized into osteosarcoma (OS), chondrosarcoma, and Ewing sarcoma. Of these, OS is the most intimidating cancer of the bone tissue, which is mostly found in the log bones in young children and older adults. Conspicuously, the current chemotherapy modalities used for the treatment of OS often fail mainly due to (i) the non-specific detrimental effects on normal healthy cells/tissues, (ii) the possible emergence of drug resistance mechanisms by cancer cells, and (iii) difficulty in the efficient delivery of anticancer drugs to the target cells. To impose the maximal therapeutic impacts on cancerous cells, it is of paramount necessity to specifically deliver chemotherapeutic agents to the tumor site and target the diseased cells using advanced nanoscale multifunctional drug delivery systems (DDSs) developed using organic and inorganic nanosystems. In this review, we provide deep insights into the development of various DDSs applied in targeting and eradicating OS. We elaborate on different DDSs developed using biomaterials, including chitosan, collagen, poly(lactic acid), poly(lactic-co-glycolic acid), polycaprolactone, poly(ethylene glycol), polyvinyl alcohol, polyethyleneimine, quantum dots, polypeptide, lipid NPs, and exosomes. We also discuss DDSs established using inorganic nanoscale materials such as magnetic NPs, gold, zinc, titanium NPs, ceramic materials, silica, silver NPs, and platinum NPs. We further highlight anticancer drugs' role in bone cancer therapy and the biocompatibility of nanocarriers for OS treatment.
Collapse
Affiliation(s)
- Nazanin Amiryaghoubi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marziyeh Fathi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jaleh Barar
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Hossein Omidian
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA.
| |
Collapse
|
11
|
Shi P, Cheng Z, Zhao K, Chen Y, Zhang A, Gan W, Zhang Y. Active targeting schemes for nano-drug delivery systems in osteosarcoma therapeutics. J Nanobiotechnology 2023; 21:103. [PMID: 36944946 PMCID: PMC10031984 DOI: 10.1186/s12951-023-01826-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/18/2023] [Indexed: 03/23/2023] Open
Abstract
Osteosarcoma, the most common malignant tumor of the bone, seriously influences people's lives and increases their economic burden. Conventional chemotherapy drugs achieve limited therapeutic effects owing to poor targeting and severe systemic toxicity. Nanocarrier-based drug delivery systems can significantly enhance the utilization efficiency of chemotherapeutic drugs through targeting ligand modifications and reduce the occurrence of systemic adverse effects. A variety of ligand-modified nano-drug delivery systems have been developed for different targeting schemes. Here we review the biological characteristics and the main challenges of current drug therapy of OS, and further elaborate on different targeting schemes and ligand selection for nano-drug delivery systems of osteosarcoma, which may provide new horizons for the development of advanced targeted drug delivery systems in the future.
Collapse
Affiliation(s)
- Pengzhi Shi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhangrong Cheng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Kangcheng Zhao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yuhang Chen
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Anran Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Weikang Gan
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yukun Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
12
|
Structural characterization, stability, and cytocompatibility study of chitosan BaTiO 3@ZnO:Er heterostructures. Int J Biol Macromol 2023; 235:123796. [PMID: 36822293 DOI: 10.1016/j.ijbiomac.2023.123796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/15/2023] [Accepted: 02/17/2023] [Indexed: 02/23/2023]
Abstract
New imaging agents are required in cancer diagnosis to enhance the diagnostic accuracy, classification, and therapeutic management of tumors. Nanomaterials have emerged as a promising alternative to developing new nanostructures with imaging applications. In this study, a heterostructure based on barium titanate (BT), zinc oxide (ZnO), and erbium (Er) was prepared and coated with Chitosan (CS) to investigate their stability and compatibility with biological systems. The structure, particle morphology, luminescence properties, stability, and cytotoxicity of different nanoparticles (NPs) were assessed. The results demonstrated the formation of a [BT@ZnO:Er]-CS heterostructure, which is consistent with the relative intensities and positions of peaks in the X-ray diffraction (XRD) with an average crystallite size of ~76 nm. The electrokinetic measurement results indicate that the coated NPs are the most stable and have an average size close to 200 nm when the pH is between 3 and 5. Finally, we presented a cytotoxicity study of naked and CS-coated NPs. The results indicate that naked NPs exhibit varying cellular toxicity, as indicated by decreased cell viability, morphological changes, and an increase in an apoptotic marker. The CS-coated NPs prevented the cytotoxic effect of the naked NPs, demonstrating the significance of CS as a stabilizing agent.
Collapse
|
13
|
Sisin NNT, Rahman WN. Potentials of Bismuth-Based Nanoparticles and Baicalein Natural Compounds as Radiosensitizers in Cancer Radiotherapy: a Review. BIONANOSCIENCE 2023. [DOI: 10.1007/s12668-022-01057-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
14
|
Lee S, Lee G, Jeon G, Lee H, Park S, Sohn Y, Park Y, Ryu S. Anti-Aging and Lightening Effects of Au-Decorated Zeolite-Based Biocompatible Nanocomposites in Epidermal Delivery Systems. J Funct Biomater 2023; 14:jfb14020066. [PMID: 36826865 PMCID: PMC9964384 DOI: 10.3390/jfb14020066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/15/2023] [Accepted: 01/20/2023] [Indexed: 01/28/2023] Open
Abstract
The main challenges in developing zeolites as cosmetic drug delivery systems are their cytotoxicities and the formation of drug-loading pore structures. In this study, Au-decorated zeolite nanocomposites were synthesized as an epidermal delivery system. Thus, 50 nm-sized Au nanoparticles were successfully deposited on zeolite 13X (super cage (α) and sodalite (β) cage structures) using the Turkevich method. Various cosmetic drugs, such as niacinamide, sulforaphane, and adenosine, were loaded under in vitro and in vivo observations. The Au-decorated zeolite nanocomposites exhibited effective cosmetic drug-loading efficiencies of 3.5 to 22.5 wt% under various conditions. For in vitro cytotoxic observations, B16F10 cells were treated with various cosmetic drugs. Niacinamide, sulforaphane, and adenosine-loaded Au-decorated zeolite nanocomposites exhibited clear cell viability of over 80%. Wrinkle improvement and a reduction in melanin content on the skin surface were observed in vivo. The adenosine delivery system exhibited an enhanced wrinkle improvement of 203% compared to 0.04 wt% of the pure adenosine system. The niacinamide- and sulforaphane-loaded Au-decorated zeolite nanocomposites decreased the skin surface melanin content by 123% and 222%, respectively, compared to 2 and 0.01 wt% of pure niacinamide and sulforaphane systems, respectively. As a result, Au-decorated zeolite nanocomposites show great potential as cosmetic drug epidermal delivery systems for both anti-aging and lightening effects.
Collapse
Affiliation(s)
- Seungyeon Lee
- Department of Materials Science and Engineering, The University of Suwon, 17 Wauan-Gil, Bongdam-Eup, Hwaseong-si 18323, Gyeonggi-do, Republic of Korea
| | - Geunjeong Lee
- Gragem Co., Ltd. 21999, Room1009, 10F, Meet you all Tower Main 12, Geatbeol-ro, Yeonsu-gu, Incheon 21990, Republic of Korea
| | - Giyoung Jeon
- Department of Materials Science and Engineering, The University of Suwon, 17 Wauan-Gil, Bongdam-Eup, Hwaseong-si 18323, Gyeonggi-do, Republic of Korea
| | - Hayeong Lee
- Department of Materials Science and Engineering, The University of Suwon, 17 Wauan-Gil, Bongdam-Eup, Hwaseong-si 18323, Gyeonggi-do, Republic of Korea
| | - Suhyeon Park
- Gragem Co., Ltd. 21999, Room1009, 10F, Meet you all Tower Main 12, Geatbeol-ro, Yeonsu-gu, Incheon 21990, Republic of Korea
| | - Youngju Sohn
- Gragem Co., Ltd. 21999, Room1009, 10F, Meet you all Tower Main 12, Geatbeol-ro, Yeonsu-gu, Incheon 21990, Republic of Korea
| | - Youngkum Park
- Gragem Co., Ltd. 21999, Room1009, 10F, Meet you all Tower Main 12, Geatbeol-ro, Yeonsu-gu, Incheon 21990, Republic of Korea
- Correspondence: (Y.P.); (S.R.); Tel.: +82-31-750-9766 (Y.P.); +82-32-458-5566 (S.R.)
| | - Seongwoo Ryu
- Department of Materials Science and Engineering, The University of Suwon, 17 Wauan-Gil, Bongdam-Eup, Hwaseong-si 18323, Gyeonggi-do, Republic of Korea
- Correspondence: (Y.P.); (S.R.); Tel.: +82-31-750-9766 (Y.P.); +82-32-458-5566 (S.R.)
| |
Collapse
|
15
|
Mioc M, Mioc A, Racoviceanu R, Ghiulai R, Prodea A, Milan A, Barbu Tudoran L, Oprean C, Ivan V, Șoica C. The Antimelanoma Biological Assessment of Triterpenic Acid Functionalized Gold Nanoparticles. Molecules 2023; 28:421. [PMID: 36615613 PMCID: PMC9823439 DOI: 10.3390/molecules28010421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/18/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023] Open
Abstract
One of several promising strategies for increasing the bioavailability and therapeutic potential of high-lipophilic biologically active compounds is gold nanoparticle formulation. The current study describes the synthesis and biological antimelanoma evaluation of three triterpen-functionalized gold nanoparticles, obtained using our previously reported antimelanoma benzotriazole-triterpenic acid esters. Functionalized gold nanoparticle (GNP) formation was validated through UV-VIS and FTIR spectroscopy. The conjugate's cytotoxic effects were investigated using HaCaT healthy keratinocytes and A375 human melanoma cells. On A375 cells, all three conjugates demonstrated dose-dependent cytotoxic activity, but no significant cytotoxic effects were observed on normal HaCaT keratinocytes. GNP-conjugates were found to be more cytotoxic than their parent compounds. After treatment with all three GNP-conjugates, 4,6'-diamidino-2-phenylindole (DAPI) staining revealed morphological changes consistent with apoptosis in A375 melanoma cells. Quantitative real-time polymerase chain reaction (RT-qPCR) analysis revealed that the triterpene-GNP conjugate treated A375 melanoma cells had a fold change increase in Bcl-2-associated X protein (BAX) expression and a fold change decrease in B-cell lymphoma 2 (Bcl-2) expression. In A735 melanoma cells, high-resolution respirometry studies revealed that all three GNP-conjugates act as selective inhibitors of mitochondrial function. Furthermore, by examining the effect on each mitochondrial respiratory rate, the results indicate that all three conjugates are capable of increasing the production of reactive oxygen species (ROS), an apoptosis trigger in cancer cells.
Collapse
Affiliation(s)
- Marius Mioc
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timişoara, Romania
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Alexandra Mioc
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
- Department of Anatomy, Physiology, Pathophysiology, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Roxana Racoviceanu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timişoara, Romania
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Roxana Ghiulai
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
- Department of Pharmacology-Pharmacotherapy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Alexandra Prodea
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timişoara, Romania
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Andreea Milan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timişoara, Romania
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Lucian Barbu Tudoran
- Electron Microscopy Laboratory “Prof. C. Craciun”, Faculty of Biology & Geology, “Babes-Bolyai” University, 5-7 Clinicilor Street, 400006 Cluj-Napoca, Romania
- Electron Microscopy Integrated Laboratory, National Institute for R & D of Isotopic and Molecular Technologies, 67-103 Donat Street, 400293 Cluj-Napoca, Romania
| | - Camelia Oprean
- Department of Chemistry and Toxicology, OncoGen Centre, County Hospital ‘Pius Branzeu’, Blvd. Liviu Rebreanu 156, 300736 Timisoara, Romania
- Department of Drug Analysis, Food and Environmental Chemistry, Legislation, Management and Pharmaceutical Marketing, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Viviana Ivan
- Department of Internal Medicine II, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Codruța Șoica
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
- Department of Pharmacology-Pharmacotherapy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| |
Collapse
|
16
|
Zhang W, Taheri-Ledari R, Ganjali F, Mirmohammadi SS, Qazi FS, Saeidirad M, KashtiAray A, Zarei-Shokat S, Tian Y, Maleki A. Effects of morphology and size of nanoscale drug carriers on cellular uptake and internalization process: a review. RSC Adv 2022; 13:80-114. [PMID: 36605676 PMCID: PMC9764328 DOI: 10.1039/d2ra06888e] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022] Open
Abstract
In the field of targeted drug delivery, the effects of size and morphology of drug nanocarriers are of great importance and need to be discussed in depth. To be concise, among all the various shapes of nanocarriers, rods and tubes with a narrow cross-section are the most preferred shapes for the penetration of a cell membrane. In this regard, several studies have focused on methods to produce nanorods and nanotubes with controlled optimized size and aspect ratio (AR). Additionally, a non-spherical orientation could affect the cellular uptake process while a tangent angle of less than 45° is better at penetrating the membrane, and Ω = 90° is beneficial. Moreover, these nanocarriers show different behaviors when confronting diverse cells whose fields should be investigated in future studies. In this survey, a comprehensive classification based on carrier shape is first submitted. Then, the most commonly used methods for control over the size and shape of the carriers are reviewed. Finally, influential factors on the cellular uptake and internalization processes and related analytical methods for evaluating this process are discussed.
Collapse
Affiliation(s)
- Wenjie Zhang
- Department of Nuclear Medicine, West China Hospital, Sichuan University No. 37, Guoxue Alley Chengdu 610041 Sichuan Province P. R. China
| | - Reza Taheri-Ledari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98 21 73021584 +98 21 77240640-50
| | - Fatemeh Ganjali
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98 21 73021584 +98 21 77240640-50
| | - Seyedeh Shadi Mirmohammadi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98 21 73021584 +98 21 77240640-50
| | - Fateme Sadat Qazi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98 21 73021584 +98 21 77240640-50
| | - Mahdi Saeidirad
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98 21 73021584 +98 21 77240640-50
| | - Amir KashtiAray
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98 21 73021584 +98 21 77240640-50
| | - Simindokht Zarei-Shokat
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98 21 73021584 +98 21 77240640-50
| | - Ye Tian
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University No. 14, 3rd Section of South Renmin Road Chengdu 610041 P. R. China
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98 21 73021584 +98 21 77240640-50
| |
Collapse
|
17
|
The Recent Development of Multifunctional Gold Nanoclusters in Tumor Theranostic and Combination Therapy. Pharmaceutics 2022; 14:pharmaceutics14112451. [PMID: 36432642 PMCID: PMC9696200 DOI: 10.3390/pharmaceutics14112451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/03/2022] [Accepted: 11/05/2022] [Indexed: 11/16/2022] Open
Abstract
The rising incidence and severity of malignant tumors threaten human life and health, and the current lagged diagnosis and single treatment in clinical practice are inadequate for tumor management. Gold nanoclusters (AuNCs) are nanomaterials with small dimensions (≤3 nm) and few atoms exhibiting unique optoelectronic and physicochemical characteristics, such as fluorescence, photothermal effects, radiosensitization, and biocompatibility. Here, the three primary functions that AuNCs play in practical applications, imaging agents, drug transporters, and therapeutic nanosystems, are characterized. Additionally, the promise and remaining limitations of AuNCs for tumor theranostic and combination therapy are discussed. Finally, it is anticipated that the information presented herein will serve as a supply for researchers in this area, leading to new discoveries and ultimately a more widespread use of AuNCs in pharmaceuticals.
Collapse
|
18
|
Ghiulai R, Mioc A, Racoviceanu R, Mioc M, Milan A, Prodea A, Semenescu A, Dehelean C, Barbu Tudoran L, Avram Ș, Trandafirescu C, Șoica C. The Anti-Melanoma Effect of Betulinic Acid Functionalized Gold Nanoparticles: A Mechanistic In Vitro Approach. Pharmaceuticals (Basel) 2022; 15:1362. [PMID: 36355533 PMCID: PMC9698836 DOI: 10.3390/ph15111362] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/02/2022] [Accepted: 11/02/2022] [Indexed: 07/28/2023] Open
Abstract
Implementing metallic nanoparticles as research instruments for the transport of therapeutically active compounds remains a fundamentally vital work direction that can still potentially generate novelties in the field of drug formulation development. Gold nanoparticles (GNP) are easily tunable carriers for active phytocompounds like pentacyclic triterpenes. These formulations can boost the bioavailability of a lipophilic structure and, in some instances, can also enhance its therapeutic efficacy. In our work, we proposed a biological in vitro assessment of betulinic acid (BA)-functionalized GNP. BA-GNP were obtained by grafting BA onto previously synthesized citrate-capped GNP through the use of cysteamine as a linker. The nanoformulation was tested in HaCaT human keratinocytes and RPMI-7951 human melanoma cells, revealing selective cytotoxic properties and stronger antiproliferative effects compared to free BA. Further examinations revealed a pro-apoptotic effect, as evidenced by morphological changes in melanoma cells and supported by western blot data showing the downregulation of anti-apoptotic Bcl-2 expression coupled with the upregulation of pro-apoptotic Bax. GNP also significantly inhibited mitochondrial respiration, confirming its mitochondrial-targeted activity.
Collapse
Affiliation(s)
- Roxana Ghiulai
- Department of Pharmacology-Pharmacotherapy, Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timișoara, Romania
- Research Centre for Pharmaco-Toxicological Evaluation, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timișoara, Romania
| | - Alexandra Mioc
- Research Centre for Pharmaco-Toxicological Evaluation, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timișoara, Romania
- Department of Anatomy, Physiology and Pathophysiology, Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timișoara, Romania
| | - Roxana Racoviceanu
- Research Centre for Pharmaco-Toxicological Evaluation, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timișoara, Romania
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timișoara, Romania
| | - Marius Mioc
- Research Centre for Pharmaco-Toxicological Evaluation, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timișoara, Romania
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timișoara, Romania
| | - Andreea Milan
- Research Centre for Pharmaco-Toxicological Evaluation, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timișoara, Romania
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timișoara, Romania
| | - Alexandra Prodea
- Research Centre for Pharmaco-Toxicological Evaluation, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timișoara, Romania
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timișoara, Romania
| | - Alexandra Semenescu
- Research Centre for Pharmaco-Toxicological Evaluation, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timișoara, Romania
- Department of Toxicology, Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timișoara, Romania
| | - Cristina Dehelean
- Research Centre for Pharmaco-Toxicological Evaluation, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timișoara, Romania
- Department of Toxicology, Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timișoara, Romania
| | - Lucian Barbu Tudoran
- Electron Microscopy Laboratory, Faculty of Biology and Geology, “Babes-Bolyai” University, 5–7 Clinicilor Street, 400006 Cluj-Napoca, Romania
- Electron Microscopy Integrated Laboratory, National Institute for R&D of Isotopic and Molecular Technologies, 67–103 Donat Street, 400293 Cluj-Napoca, Romania
| | - Ștefana Avram
- Research Centre for Pharmaco-Toxicological Evaluation, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timișoara, Romania
- Deparment of Pharmacognosy, Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timișoara, Romania
| | - Cristina Trandafirescu
- Research Centre for Pharmaco-Toxicological Evaluation, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timișoara, Romania
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timișoara, Romania
| | - Codruța Șoica
- Department of Pharmacology-Pharmacotherapy, Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timișoara, Romania
- Research Centre for Pharmaco-Toxicological Evaluation, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timișoara, Romania
| |
Collapse
|
19
|
Bai B, Weng S, Wu Z, Xie Z, Tang J, Yang Q. Fabrication of Dual-Responsive pH and Reduction of Dual Anticancer Drugs Conjugates Dextran Self-Assembly for Osteosarcoma Cancer Treatment. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Rehman Y, Qutaish H, Kim JH, Huang XF, Alvi S, Konstantinov K. Microenvironmental Behaviour of Nanotheranostic Systems for Controlled Oxidative Stress and Cancer Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2462. [PMID: 35889688 PMCID: PMC9319169 DOI: 10.3390/nano12142462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/06/2022] [Accepted: 07/12/2022] [Indexed: 02/04/2023]
Abstract
The development of smart, efficient and multifunctional material systems for diseases treatment are imperative to meet current and future health challenges. Nanomaterials with theranostic properties have offered a cost effective and efficient solution for disease treatment, particularly, metal/oxide based nanotheranostic systems already offering therapeutic and imaging capabilities for cancer treatment. Nanoparticles can selectively generate/scavenge ROS through intrinsic or external stimuli to augment/diminish oxidative stress. An efficient treatment requires higher oxidative stress/toxicity in malignant disease, with a minimal level in surrounding normal cells. The size, shape and surface properties of nanoparticles are critical parameters for achieving a theranostic function in the microenvironment. In the last decade, different strategies for the synthesis of biocompatible theranostic nanostructures have been introduced. The exhibition of therapeutics properties such as selective reactive oxygen species (ROS) scavenging, hyperthermia, antibacterial, antiviral, and imaging capabilities such as MRI, CT and fluorescence activity have been reported in a variety of developed nanosystems to combat cancer, neurodegenerative and emerging infectious diseases. In this review article, theranostic in vitro behaviour in relation to the size, shape and synthesis methods of widely researched and developed nanosystems (Au, Ag, MnOx, iron oxide, maghemite quantum flakes, La2O3-x, TaOx, cerium nanodots, ITO, MgO1-x) are presented. In particular, ROS-based properties of the nanostructures in the microenvironment for cancer therapy are discussed. The provided overview of the biological behaviour of reported metal-based nanostructures will help to conceptualise novel designs and synthesis strategies for the development of advanced nanotheranostic systems.
Collapse
Affiliation(s)
- Yaser Rehman
- Institute for Superconducting and Electronics Materials (ISEM), University of Wollongong (UOW), Wollongong, NSW 2522, Australia; (Y.R.); (H.Q.); (J.H.K.)
- Illawarra Health & Medical Research Institute (IHMRI), University of Wollongong (UOW), Wollongong, NSW 2522, Australia;
| | - Hamzeh Qutaish
- Institute for Superconducting and Electronics Materials (ISEM), University of Wollongong (UOW), Wollongong, NSW 2522, Australia; (Y.R.); (H.Q.); (J.H.K.)
| | - Jung Ho Kim
- Institute for Superconducting and Electronics Materials (ISEM), University of Wollongong (UOW), Wollongong, NSW 2522, Australia; (Y.R.); (H.Q.); (J.H.K.)
| | - Xu-Feng Huang
- Illawarra Health & Medical Research Institute (IHMRI), University of Wollongong (UOW), Wollongong, NSW 2522, Australia;
| | - Sadia Alvi
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia;
| | - Konstantin Konstantinov
- Institute for Superconducting and Electronics Materials (ISEM), University of Wollongong (UOW), Wollongong, NSW 2522, Australia; (Y.R.); (H.Q.); (J.H.K.)
- Illawarra Health & Medical Research Institute (IHMRI), University of Wollongong (UOW), Wollongong, NSW 2522, Australia;
| |
Collapse
|
21
|
Zhang Y, Elechalawar CK, Yang W, Frickenstein AN, Asfa S, Fung KM, Murphy BN, Dwivedi SK, Rao G, Dey A, Wilhelm S, Bhattacharya R, Mukherjee P. Disabling partners in crime: Gold nanoparticles disrupt multicellular communications within the tumor microenvironment to inhibit ovarian tumor aggressiveness. MATERIALS TODAY (KIDLINGTON, ENGLAND) 2022; 56:79-95. [PMID: 36188120 PMCID: PMC9523457 DOI: 10.1016/j.mattod.2022.01.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The tumor microenvironment (TME) plays a key role in the poor prognosis of many cancers. However, there is a knowledge gap concerning how multicellular communication among the critical players within the TME contributes to such poor outcomes. Using epithelial ovarian cancer (EOC) as a model, we show how crosstalk among cancer cells (CC), cancer associated fibroblasts (CAF), and endothelial cells (EC) promotes EOC growth. We demonstrate here that co-culturing CC with CAF and EC promotes CC proliferation, migration, and invasion in vitro and that co-implantation of the three cell types facilitates tumor growth in vivo. We further demonstrate that disruption of this multicellular crosstalk using a gold nanoparticle (GNP) inhibits these pro-tumorigenic phenotypes in vitro as well as tumor growth in vivo. Mechanistically, GNP treatment reduces expression of several tumor-promoting cytokines and growth factors, resulting in inhibition of MAPK and PI3K-AKT activation and epithelial-mesenchymal transition - three key oncogenic signaling pathways responsible for the aggressiveness of EOC. The current work highlights the importance of multicellular crosstalk within the TME and its role for the aggressive nature of EOC, and demonstrates the disruption of these multicellular communications by self-therapeutic GNP, thus providing new avenues to interrogate the crosstalk and identify key perpetrators responsible for poor prognosis of this intractable malignancy.
Collapse
Affiliation(s)
- Yushan Zhang
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | - Chandra Kumar Elechalawar
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | - Wen Yang
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Alex N. Frickenstein
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Sima Asfa
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | - Kar-Ming Fung
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | - Brennah N Murphy
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | - Shailendra K Dwivedi
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
- Department of Obstetrics and Gynecology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | - Geeta Rao
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | - Anindya Dey
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
- Department of Obstetrics and Gynecology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | - Stefan Wilhelm
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
- Institute for Biomedical Engineering, Science, and Technology (IBEST), Norman, Oklahoma, 73019, USA
| | - Resham Bhattacharya
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
- Department of Obstetrics and Gynecology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | - Priyabrata Mukherjee
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
- Corresponding Author: 975 NE 10th Street, BRC-1409B, Oklahoma City, Oklahoma 73104, USA. . Phone: 405-271-1133. Fax: 405-271-2472
| |
Collapse
|
22
|
Rohra N, Gaikwad G, Dandekar P, Jain R. Microfluidic Synthesis of a Bioactive Metal-Organic Framework for Glucose-Responsive Insulin Delivery. ACS APPLIED MATERIALS & INTERFACES 2022; 14:8251-8265. [PMID: 35113534 DOI: 10.1021/acsami.1c22153] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In the current study, we report the microfluidic synthesis of a metal-organic framework (MOF) for insulin delivery based on the stimulus response of glucose. Insulin- and gold nanoparticle (AuNP)-encapsulated zeolitic imidazolate framework-8 (ZIF-8) was synthesized using a continuous-flow, microfluidic mixing system via a single-step process. Glucose oxidase mimicking the activity of AuNPs was utilized for oxidizing glucose molecules that entered the porous ZIF-8. The AuNPs oxidized glucose into gluconic acid and hydrogen peroxide inside the MOF (Ins-AuNP-ZIF-8). The resulting acidic pH led to the disruption of ZIF-8 and released insulin. Thus, the presence of glucose molecules provided a stimulus for insulin release. The bioactive MOFs were characterized for the presence of functional groups, morphology, crystallinity, size, and elemental confirmation. The presence of fluorescein-5-isothiocyanate-labeled insulin in the composite was confirmed using confocal laser scanning microscopy. The loading of insulin per unit weight of the MOF, determined by size-exclusion-high-performance liquid chromatography, was 77 and 88% in the batch and microfluidic processes, respectively. Drug release studies confirmed the response of the MOFs to glucose, which triggered insulin release. The synthesis process did not affect the characteristics and application of ZIF-8 and Ins-AuNP-ZIF-8. This study involving the facile synthesis of bioactive MOFs offers a sustainable strategy to design stimulus-responsive drug delivery systems and could be exploited for biosensing applications.
Collapse
Affiliation(s)
- Nanda Rohra
- Department of Chemical Engineering, Institute of Chemical Technology, N.P. Marg, Matunga, Mumbai 400019, India
| | - Ganesh Gaikwad
- Department of Chemical Engineering, Institute of Chemical Technology, N.P. Marg, Matunga, Mumbai 400019, India
| | - Prajakta Dandekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N.P. Marg, Matunga, Mumbai 400019, India
| | - Ratnesh Jain
- Department of Chemical Engineering, Institute of Chemical Technology, N.P. Marg, Matunga, Mumbai 400019, India
| |
Collapse
|
23
|
Ameen F, Al-Maary KS, Almansob A, AlNadhari S. Antioxidant, antibacterial and anticancer efficacy of Alternaria chlamydospora-mediated gold nanoparticles. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-021-02047-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
24
|
Size-Dependent Cytotoxic and Molecular Study of the Use of Gold Nanoparticles against Liver Cancer Cells. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12020901] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The size of nanomaterials influences physicochemical parameters, and variations in the size of nanomaterials can have a significant effect on their biological activities in cells. Due to the potential applicability of nanoparticles (NPs), the current work was designed to carry out a size-dependent study of gold nanoparticles (GNPs) in different dimensions, synthesized via a colloidal solution process. Three dissimilar-sized GNPs, GNPs-1 (10–15 nm), GNPs-2 (20–30 nm), and GNPs-3 (45 nm), were prepared and characterized via transmission electron microscopy (TEM), high-resolution TEM (HR-TEM), hydrodynamic size, zeta potential, and UV-visible spectroscopy, and applied against liver cancer (HepG2) cells. Various concentrations of GNPs (1, 2, 5, 10, 50, and 100 µg/mL) were applied against the HepG2 cancer cells to assess the percentage of cell viability via MTT and NRU assays; reactive oxygen species (ROS) generation was also used. ROS generation was increased by 194%, 164%, and 153% for GNPs-1, GNPs-2, and GNPs-3, respectively, in the HepG2 cells. The quantitative polymerase chain reaction (qPCR) data for the HepG2 cells showed up-regulation in gene expression of apoptotic genes (Bax, p53, and caspase-3) when exposed to the different-sized GNPs, and defined their respective roles. Based on the results, it was concluded that GNPs of different sizes have the potential to induce cancer cell death.
Collapse
|
25
|
Lee DH, Choi SY, Jung KK, Yang JY, Jeong JY, Oh JH, Kim SH, Lee JH. The Research of Toxicity and Sensitization Potential of PEGylated Silver and Gold Nanomaterials. TOXICS 2021; 9:355. [PMID: 34941789 PMCID: PMC8705520 DOI: 10.3390/toxics9120355] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/06/2021] [Accepted: 12/14/2021] [Indexed: 02/02/2023]
Abstract
Polyethylene glycol (PEG) is a polymer used for surface modification of important substances in the modern pharmaceutical industry and biopharmaceutical fields. Despite the many benefits of PEGylation, there is also the possibility that the application and exposure of the substance may cause adverse effects in the body, such as an immune response. Therefore, we aimed to evaluate the sensitization responses that could be induced through the intercomparison of nanomaterials of the PEG-coated group with the original group. We selected gold/silver nanomaterials (NMs) for original group and PEGylated silver/gold NMs in this study. First, we measured the physicochemical properties of the four NMs, such as size and zeta potential under various conditions. Additionally, we performed the test of the NM's sensitization potential using the KeratinoSens™ assay for in vitro test method and the LLNA: 5-bromo-2-deoxyuridine (BrdU)-FCM for in vivo test method. The results showed that PEGylated-NMs did not lead to skin sensitization according to OECD TG 442 (alternative test for skin sensitization). In addition, gold nanomaterial showed that cytotoxicity of PEGylated-AuNMs was lower than AuNMs. These results suggest the possibility that PEG coating does not induce an immune response in the skin tissue and can lower the cytotoxicity of nanomaterials.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sung-Hyun Kim
- Division of Toxicological Research, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Korea; (D.-H.L.); (S.-Y.C.); (K.-K.J.); (J.-Y.Y.); (J.-y.J.); (J.-H.O.)
| | - Jin-Hee Lee
- Division of Toxicological Research, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Korea; (D.-H.L.); (S.-Y.C.); (K.-K.J.); (J.-Y.Y.); (J.-y.J.); (J.-H.O.)
| |
Collapse
|
26
|
Gold Nanoparticles as Potential Antitumor Agents (Review). Pharm Chem J 2021. [DOI: 10.1007/s11094-021-02518-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
27
|
Lee SJ, Lee H, Begildayeva T, Yu Y, Theerthagiri J, Kim Y, Lee YW, Han SW, Choi MY. Nanogap-tailored Au nanoparticles fabricated by pulsed laser ablation for surface-enhanced Raman scattering. Biosens Bioelectron 2021; 197:113766. [PMID: 34753095 DOI: 10.1016/j.bios.2021.113766] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 10/08/2021] [Accepted: 10/31/2021] [Indexed: 12/20/2022]
Abstract
Herein, gold nanoparticles (Au NPs) were synthesized by pulsed laser ablation (PLA) in a mixed-phase solvent of acetonitrile and water. The size of Au NPs and the number of graphitic carbon (GC) layers were controlled by varying the ratio of the solvent mixture. The surface-enhanced Raman scattering (SERS) of the Au NPs was investigated using 10-3 M 4-aminobenzenethiol and 10-4 M 4-nitrobenzenethiol as probe molecules. The SERS activity strongly depended on the nanogaps between particles owing to the formation of hot spots. In the present work, the nanogaps were controlled by changing the amount of GC layers. No GC layers were produced in water, resulting low SERS intensity. In contrast, Au NPs prepared in 30 vol% of acetonitrile showed significant SERS enhancement, which was attributed to the optimal size of the GC-coated NPs and a reasonable gap between them. The obtained results revealed that Au NPs produced by PLA in liquid could be applied in SERS-based microsensors.
Collapse
Affiliation(s)
- Seung Jun Lee
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry (BK21 FOUR) and Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, South Korea
| | - Hyeyeon Lee
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry (BK21 FOUR) and Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, South Korea
| | - Talshyn Begildayeva
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry (BK21 FOUR) and Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, South Korea
| | - Yiseul Yu
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry (BK21 FOUR) and Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, South Korea
| | - Jayaraman Theerthagiri
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry (BK21 FOUR) and Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, South Korea
| | - Yonghyeon Kim
- Center for Nanotectonics, Department of Chemistry and KI for the NanoCentury, KAIST, Daejeon, 34141, Republic of Korea
| | - Young Wook Lee
- Department of Chemistry Education and Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, South Korea.
| | - Sang Woo Han
- Center for Nanotectonics, Department of Chemistry and KI for the NanoCentury, KAIST, Daejeon, 34141, Republic of Korea.
| | - Myong Yong Choi
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry (BK21 FOUR) and Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, South Korea.
| |
Collapse
|
28
|
Korman DB, Ostrovskaya LA, Bluhterova NV, Rykova VA, Fomina MM. Gold Nanoparticles as Potential Radiosensitizing and Cytotoxic Agents. Biophysics (Nagoya-shi) 2021. [DOI: 10.1134/s0006350921060063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
29
|
Badashah SJ, Basha SS, Ahamed SR, Subba Rao SPV. Fractional‐Harris hawks optimization‐based generative adversarial network for osteosarcoma detection using Renyi entropy‐hybrid fusion. INT J INTELL SYST 2021. [DOI: 10.1002/int.22539] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Syed Jahangir Badashah
- Sreenidhi Institute of Science and Technology (Autonomous) Yanampet, Ghatkesar Hyderabad Telangana India
| | - Shaik Shafiulla Basha
- Y.S.R. Engineering College of Yogi Vemana University Korrapadu Road Proddatur Andhra Pradesh India
| | | | - S. P. V. Subba Rao
- Sreenidhi Institute of Science and Technology (Autonomous) Yanampet, Ghatkesar Hyderabad Telangana India
| |
Collapse
|
30
|
Mostafa AA, El-Sayed MMH, Emam AN, Abd-Rabou AA, Dawood RM, Oudadesse H. Bioactive glass doped with noble metal nanoparticles for bone regeneration: in vitro kinetics and proliferative impact on human bone cell line. RSC Adv 2021; 11:25628-25638. [PMID: 35478889 PMCID: PMC9036971 DOI: 10.1039/d1ra03876a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/12/2021] [Indexed: 12/01/2022] Open
Abstract
This work investigates the bioactivity of novel silver-doped (BG-Ag) and gold-doped (BG-Au) quaternary 46S6 bioactive glasses synthesized via a semi-solid-state technique. A pseudo-second-order kinetic model successfully predicted the in vitro uptake kinetic profiles of the initial ion-exchange release of Ca in simulated body fluid, the subsequent Si release, and finally, the adsorption of Ca and P onto the bioactive glasses. Doping with silver nanoparticles enhanced the rate of P uptake by up to approximately 90%; whereas doping with gold nanoparticles improved Ca and P uptake rates by up to about 7 and 2 times, respectively; as well as Ca uptake capacity by up to about 19%. The results revealed that the combined effect of Ca and Si release, and possibly the release of silver and gold ions into solution, influenced apatite formation due to their effect on Ca and P uptake rate and capacity. In general, gold-doped bioactive glasses are favoured for enhancing Ca and P uptake rates in addition to Ca uptake capacity. However, silver-doped bioactive glasses being less expensive can be utilized for applications targeting rapid healing. In vitro studies showed that BG, BG-Ag and BG-Au had no cytotoxic effects on osteosarcoma MG-63 cells, while they exhibited a remarkable cell proliferation even at low concentration. The prepared bioactive glass doped with noble metal nanoparticles could be potentially used in bone regeneration applications.
Collapse
Affiliation(s)
- Amany A Mostafa
- Refractories, Ceramics and Building Materials Department (Biomaterials Group), National Research Centre (NRC) El Bohouth St., Dokki 12622 Cairo Egypt
- Nanomedicine & Tissue Engineering Lab., Medical Research Center of Excellence (MRCE), NRC Egypt
| | - Mayyada M H El-Sayed
- Chemistry Department, School of Sciences and Engineering, American University in Cairo AUC Avenue New Cairo 11835 Egypt
| | - Ahmed N Emam
- Refractories, Ceramics and Building Materials Department (Biomaterials Group), National Research Centre (NRC) El Bohouth St., Dokki 12622 Cairo Egypt
- Nanomedicine & Tissue Engineering Lab., Medical Research Center of Excellence (MRCE), NRC Egypt
| | - Ahmed A Abd-Rabou
- Hormones Department, Medical Research Division, National Research Centre Dokki Giza Egypt
| | - Reham M Dawood
- Department of Microbial Biotechnology, Genetic Engineering Division, National Research Centre 33 EL Bohouth Street Dokki Giza 12622 Egypt
| | - Hassane Oudadesse
- Universite de Rennes 1, UMR CNRS 6226 263 Avenue du Général Leclerc 35042 Rennes Cedex France
| |
Collapse
|
31
|
Genomic Damage Induced in Nicotiana tabacum L. Plants by Colloidal Solution with Silver and Gold Nanoparticles. PLANTS 2021; 10:plants10061260. [PMID: 34205810 PMCID: PMC8234410 DOI: 10.3390/plants10061260] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/17/2021] [Accepted: 06/19/2021] [Indexed: 12/03/2022]
Abstract
Tobacco seedlings (Nicotiana tabacum L cv. Wisconsin 38) were treated for 24 h with colloidal solution of silver and gold nanoparticles (AgNPs and AuNPs) of different size or cultivated for 8 weeks on soil polluted with these NPs. DNA damage in leaf and roots nuclei was evaluated by the comet assay. AgNPs of the size 22–25 nm at concentrations higher than 50 mg·L−1 significantly increased the tail moments (TM) values in leaf nuclei compared to the negative control. Ag nanoparticles of smaller size 12–15 nm caused a slight increase in tail moment without significant difference from the negative control. The opposite effect of AgNPs was observed on roots. The increasing tail moment was registered for smaller NPs. Similar results were observed for AuNPs at a concentration of 100 mg·L−1. DNA damaging effects after growing tobacco plants for 8 weeks in soil polluted with AgNPs and AuNPs of different size and concentrations were observed. While lower concentrations of both types of particles had no effect on the integrity of DNA, concentration of 30 mg·kg−1 of AgNPs caused significant DNA damage in leaves of tobacco plants. AuNPs had no effect even at the highest concentration. The content of Ag was determined by ICP–MS in above-ground part of plants (leaves) after 8 weeks of growth in soil with 30 mg·kg−1. AgNPs and was 2.720 ± 0.408 µg·g−1. Long term effect is much less harmful probably due to the plant restoration capability.
Collapse
|
32
|
Tarkistani MAM, Komalla V, Kayser V. Recent Advances in the Use of Iron-Gold Hybrid Nanoparticles for Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1227. [PMID: 34066549 PMCID: PMC8148580 DOI: 10.3390/nano11051227] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 12/26/2022]
Abstract
Recently, there has been an increased interest in iron-gold-based hybrid nanostructures, due to their combined outstanding optical and magnetic properties resulting from the usage of two separate metals. The synthesis of these nanoparticles involves thermal decomposition and modification of their surfaces using a variety of different methods, which are discussed in this review. In addition, different forms such as core-shell, dumbbell, flower, octahedral, star, rod, and Janus-shaped hybrids are discussed, and their unique properties are highlighted. Studies on combining optical response in the near-infrared window and magnetic properties of iron-gold-based hybrid nanoparticles as multifunctional nanoprobes for drug delivery, magnetic-photothermal heating as well as contrast agents during magnetic and optical imaging and magnetically-assisted optical biosensing to detect traces of targeted analytes inside the body has been reviewed.
Collapse
Affiliation(s)
| | | | - Veysel Kayser
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia; (M.A.M.T.); (V.K.)
| |
Collapse
|
33
|
Lopes J, Ferreira-Gonçalves T, Figueiredo IV, Rodrigues CMP, Ferreira H, Ferreira D, Viana AS, Faísca P, Gaspar MM, Coelho JMP, Silva CO, Reis CP. Proof-of-Concept Study of Multifunctional Hybrid Nanoparticle System Combined with NIR Laser Irradiation for the Treatment of Melanoma. Biomolecules 2021; 11:511. [PMID: 33808293 PMCID: PMC8103244 DOI: 10.3390/biom11040511] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 12/18/2022] Open
Abstract
The global impact of cancer emphasizes the importance of developing innovative, effective and minimally invasive therapies. In the context of superficial cancers, the development of a multifunctional nanoparticle-based system and its in vitro and in vivo safety and efficacy characterization are, herein, proposed as a proof-of-concept. This multifunctional system consists of gold nanoparticles coated with hyaluronic and oleic acids, and functionalized with epidermal growth factor for greater specificity towards cutaneous melanoma cells. This nanoparticle system is activated by a near-infrared laser. The characterization of this nanoparticle system included several phases, with in vitro assays being firstly performed to assess the safety of gold nanoparticles without laser irradiation. Then, hairless immunocompromised mice were selected for a xenograft model upon inoculation of A375 human melanoma cells. Treatment with near-infrared laser irradiation for five minutes combined with in situ administration of the nanoparticles showed a tumor volume reduction of approximately 80% and, in some cases, led to the formation of several necrotic foci, observed histologically. No significant skin erythema at the irradiation zone was verified, nor other harmful effects on the excised organs. In conclusion, these assays suggest that this system is safe and shows promising results for the treatment of superficial melanoma.
Collapse
Affiliation(s)
- Joana Lopes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal; (J.L.); (T.F.-G.); (C.M.P.R.); (M.M.G.); (C.O.S.)
| | - Tânia Ferreira-Gonçalves
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal; (J.L.); (T.F.-G.); (C.M.P.R.); (M.M.G.); (C.O.S.)
| | - Isabel V. Figueiredo
- Pharmacology and Pharmaceutical Care Laboratory, Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Cecília M. P. Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal; (J.L.); (T.F.-G.); (C.M.P.R.); (M.M.G.); (C.O.S.)
| | - Hugo Ferreira
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Campo Grande, Universidade de Lisboa, 1749-016 Lisboa, Portugal; (H.F.); (J.M.P.C.)
| | - David Ferreira
- MED-Mediterranean Institute for Agriculture, Environment and Development, Department of Veterinary Medicine, University of Évora, Pólo da Mitra, 7002-554 Évora, Portugal;
| | - Ana S. Viana
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal;
| | - Pedro Faísca
- CBIOS-Research Center for Biosciences & Health Technologies, Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal;
- Faculty of Veterinary Medicine, Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Maria Manuela Gaspar
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal; (J.L.); (T.F.-G.); (C.M.P.R.); (M.M.G.); (C.O.S.)
| | - João M. P. Coelho
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Campo Grande, Universidade de Lisboa, 1749-016 Lisboa, Portugal; (H.F.); (J.M.P.C.)
| | - Catarina Oliveira Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal; (J.L.); (T.F.-G.); (C.M.P.R.); (M.M.G.); (C.O.S.)
- Department of Biomedical Sciences, Faculty of Pharmacy, Campus Universitario, University of Alcalá, Ctra. A2 km 33,600, 28871 Alcalá de Henares, Spain
| | - Catarina Pinto Reis
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal; (J.L.); (T.F.-G.); (C.M.P.R.); (M.M.G.); (C.O.S.)
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Campo Grande, Universidade de Lisboa, 1749-016 Lisboa, Portugal; (H.F.); (J.M.P.C.)
| |
Collapse
|
34
|
Superparamagnetic α-Fe 2O 3/Fe 3O 4 Heterogeneous Nanoparticles with Enhanced Biocompatibility. NANOMATERIALS 2021; 11:nano11040834. [PMID: 33805140 PMCID: PMC8064077 DOI: 10.3390/nano11040834] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/16/2021] [Accepted: 03/22/2021] [Indexed: 01/21/2023]
Abstract
A novel type of magnetic α-Fe2O3/Fe3O4 heterogeneous nanoparticles was prepared via a facile solution combustion process with ferric nitrate and urea as raw materials, and they were characterized by XRD, SEM, TEM, and VSM techniques. The effects of the calcination temperature, the calcination time, the ratio of ferric nitrate and urea, and the heating rate on the relative content of Fe3O4 in the heterogeneous nanoparticles were investigated. The toxicity of α-Fe2O3/Fe3O4 heterogeneous nanoparticles to human hepatocytes L-02, the blood routine, and the histopathological section observation of mice were explored. The results showed that the ratio of ferric nitrate and urea was a key factor to affect the relative content of Fe3O4 in the heterogeneous nanoparticles. The calcination temperature and the calcination time had similar influences, and the corresponding calcination temperature and the calcination time were selected according to their own needs. The CCK8 results initially revealed that α-Fe2O3/Fe3O4 heterogeneous nanoparticles had no effect on cell viability when the concentration of the heterogeneous nanoparticles was less than 100 ng/mL, which suggested their excellent biocompatibility. At the same time, the tail vein administration concentration of 0.9 mg/kg had good biological safety.
Collapse
|
35
|
Yang Y, Wang N, Zhu Y, Lu Y, Chen Q, Fan S, Huang Q, Chen X, Xia L, Wei Y, Zheng J, Liu X. Gold nanoparticles synergize with bacterial lipopolysaccharide to enhance class A scavenger receptor dependent particle uptake in neutrophils and augment neutrophil extracellular traps formation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 211:111900. [PMID: 33440266 DOI: 10.1016/j.ecoenv.2021.111900] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/02/2021] [Accepted: 01/03/2021] [Indexed: 02/05/2023]
Abstract
Gold nanoparticles (AuNPs) are extensively utilized in biomedical fields. However, their potential interaction with host cells has not been comprehensively elucidated. In this study, we demonstrated a size-dependent effect of AuNPs to synergize with bacterial lipopolysaccharide (LPS) in promoting neutrophil extracellular traps (NETs) release in human peripheral neutrophils. Mechanistically, LPS was more efficient to contact with 10 nm AuNPs and promote their uptake in neutrophils compared to 40 and 100 nm AuNPs, leading to a synergistic upregulation of class A scavenger receptor (SRA) which mediated AuNPs uptake and triggered activation of extracellular regulated protein kinase (ERK) and p38. Blocking SRA or inhibiting ERK and p38 activation remarkably abrogated the effect of AuNPs and LPS to induce NETs formation. Further experiments demonstrated that AuNPs and LPS augmented the production of cytosolic reactive oxygen species (ROS) in p38 and ERK dependent manner, through upregulating and activating NADPH oxidase 2 (NOX2). Accordingly, scavenging of ROS or inhibiting the NOX2 dampened NETs release induced by combined AuNPs and LPS treatment. AuNPs and LPS also synergized to upregulate reactive oxygen species modulator 1 (ROMO1) via activating ERK, thereby increasing mitochondrial ROS generation and promoting the release of NETs. In summary, we provide new evidences about the synergy of AuNPs and LPS to augment cellular responses in neutrophils, which implicates the need to consider the amplifying effect by pathogenic stimuli when utilizing nanomaterials in infectious or inflammatory conditions.
Collapse
Affiliation(s)
- Yongjun Yang
- Medical Research Center, Southwest Hospital, Army Military Medical University, Chongqing 400038, China
| | - Ning Wang
- Medical Research Center, Southwest Hospital, Army Military Medical University, Chongqing 400038, China; West China Biopharm Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yuanfeng Zhu
- Medical Research Center, Southwest Hospital, Army Military Medical University, Chongqing 400038, China
| | - Yongling Lu
- Medical Research Center, Southwest Hospital, Army Military Medical University, Chongqing 400038, China
| | - Qian Chen
- Medical Research Center, Southwest Hospital, Army Military Medical University, Chongqing 400038, China
| | - Shijun Fan
- Medical Research Center, Southwest Hospital, Army Military Medical University, Chongqing 400038, China
| | - Qianying Huang
- Medical Research Center, Southwest Hospital, Army Military Medical University, Chongqing 400038, China
| | - Xiaoli Chen
- Medical Research Center, Southwest Hospital, Army Military Medical University, Chongqing 400038, China
| | - Lin Xia
- Medical Research Center, Southwest Hospital, Army Military Medical University, Chongqing 400038, China
| | - Yan Wei
- Medical Research Center, Southwest Hospital, Army Military Medical University, Chongqing 400038, China
| | - Jiang Zheng
- Medical Research Center, Southwest Hospital, Army Military Medical University, Chongqing 400038, China
| | - Xin Liu
- Medical Research Center, Southwest Hospital, Army Military Medical University, Chongqing 400038, China.
| |
Collapse
|
36
|
Barani M, Mukhtar M, Rahdar A, Sargazi S, Pandey S, Kang M. Recent Advances in Nanotechnology-Based Diagnosis and Treatments of Human Osteosarcoma. BIOSENSORS 2021; 11:55. [PMID: 33672770 PMCID: PMC7924594 DOI: 10.3390/bios11020055] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/13/2021] [Accepted: 02/15/2021] [Indexed: 12/24/2022]
Abstract
Osteosarcoma (OSA) is a type of bone cancer that begins in the cells that form bones.OSA is a rare mesenchymal bone neoplasm derived from mesenchymal stem cells. Genome disorganization, chromosomal modifications, deregulation of tumor suppressor genes, and DNA repair defects are the factors most responsible for OSA development. Despite significant advances in the diagnosing and treatment of OSA, patients' overall survival has not improved within the last twenty years. Lately, advances in modern nanotechnology have spurred development in OSA management and offered several advantages to overcome the drawbacks of conventional therapies. This technology has allowed the practical design of nanoscale devices combined with numerous functional molecules, including tumor-specific ligands, antibodies, anti-cancer drugs, and imaging probes. Thanks to their small sizes, desirable drug encapsulation efficiency, and good bioavailability, functionalized nanomaterials have found wide-spread applications for combating OSA progression. This review invokes the possible utility of engineered nanomaterials in OSA diagnosis and treatment, motivating the researchers to seek new strategies for tackling the challenges associated with it.
Collapse
Affiliation(s)
- Mahmood Barani
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman 76169-14111, Iran;
| | - Mahwash Mukhtar
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, 6720 Szeged, Hungary;
| | - Abbas Rahdar
- Department of Physics, Faculty of Science, University of Zabol, Zabol 538-98615, Iran
| | - Saman Sargazi
- Cellular and Molecule Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan 98167-43463, Iran;
| | - Sadanand Pandey
- Particulate Matter Research Center, Research Institute of Industrial Science & Technology (RIST), 187-12, Geumho-ro, Gwangyang-si 57801, Korea
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Korea;
| | - Misook Kang
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Korea;
| |
Collapse
|
37
|
Das A, Datta P, Chowdhury AR, Barui A. Honey-incorporated nanofibre reduces replicative senescence of umbilical cord-derived mesenchymal stem cells. IET Nanobiotechnol 2021; 14:870-880. [PMID: 33399121 DOI: 10.1049/iet-nbt.2019.0288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Umbilical cord-derived mesenchymal stem cells (UCDMSC) are attractive candidates for cell-based regenerative medicine. However, they are susceptible to replicative senescence during repetitive passaging for in-vitro expansion and induced senescence in an oxidative, inflammatory microenvironment in vivo. Aim of this study is to investigate if honey-incorporated matrices can be employed to reduce senescence of UCDMSC. Matrices were prepared by electrospinning solutions of honey with poly-vinyl alcohol (PVA). PVA:honey matrices exhibited free radical scavenging activity. Culture of UCDMSC on PVA:honey matrices showed improvement in cell proliferation compared to pure PVA nanofibres. Expression of vimentin indicated that mesenchymal phenotype is preserved after culturing on these matrices. Further, UCDMSC were serially subcultured and cells of two passages (P2 and P6) were evaluated for reactive oxygen species (ROS) load and senescence parameters. P6 cells showed a higher ROS load and β-galactosidase (β-gal) positive senescent cells compared to P2. However, culturing on PVA:honey substrates significantly reduced both ROS and β-gal markers compared to cells on PVA substrates. Honey contains several antioxidant and anti-inflammatory components, which can reduce the ROS-related senescence. Thus, it is concluded that honey containing nanofibres can be effective substrates for stem cell-based wound healing and regenerative medicine.
Collapse
Affiliation(s)
- Ankita Das
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, West Bengal, India
| | - Pallab Datta
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, West Bengal, India
| | - Amit Roy Chowdhury
- Department of Aerospace Engineering and Applied Mechanics, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, West Bengal, India
| | - Ananya Barui
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, West Bengal, India.
| |
Collapse
|