1
|
Gayathri VG, Richard B, Chacko JT, Bayry J, Rasheed PA. Non-Ti MXenes: new biocompatible and biodegradable candidates for biomedical applications. J Mater Chem B 2024. [PMID: 39688533 DOI: 10.1039/d4tb01904k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
MXenes are a class of two-dimensional nanomaterials with the general formula Mn+1XnTx, where M denotes a transition metal, X denotes either carbon or nitrogen and Tx refers to surface terminations, such as -OH, -O, -F or -Cl. The unique properties of MXenes, including their tunable surface chemistry and high surface area-to-volume ratio, make them promising candidates for various biomedical applications, such as targeted drug delivery, photothermal therapy and so on. Among the family of MXenes, titanium (Ti)-based MXenes, especially Ti3C2Tx, have been extensively explored for biomedical applications. However, despite their potential, Ti-based MXenes have shown some limitations, such as low biocompatibility. Recent studies have also indicated that Ti MXenes may disrupt spermatogenesis and accumulate in the uterus. Non-Ti MXenes are emerging as promising alternatives to Ti-based MXenes due to their superior biodegradability and enhanced biocompatibility. Recently, non-Ti MXenes have been explored for a range of biomedical applications, including drug delivery, photothermal therapy, chemodynamic therapy and sonodynamic therapy. In addition, some non-Ti MXenes exhibit enzyme-mimicking activity, such as superoxide dismutase and peroxidase-like functions, which play a major role in scavenging reactive oxygen species (ROS). This review discusses the properties of non-Ti MXenes, such as biocompatibility, biodegradability, antibacterial activity, and neuroprotective effects, highlighting their potential in various biomedical applications. These properties can be leveraged to mitigate oxidative stress and develop safe and innovative strategies for managing chronic diseases. This review provides a comprehensive analysis of the various biomedical applications of non-Ti MXenes, including their use in drug delivery and combinatorial therapies and as nanozymes for sensing and therapeutic purposes. The theranostic applications of non-Ti MXenes are also discussed. Finally, the antibacterial properties of non-Ti MXenes and the proposed mechanisms are discussed. The review concludes with a summary of the key findings and future perspectives. In short, this review provides a thorough analysis of the biomedical applications of non-Ti MXenes, emphasizing their unique properties, potential opportunities and challenges in the field.
Collapse
Affiliation(s)
- Vijayakumar G Gayathri
- Department of Biological Sciences and Engineering, Indian Institute of Technology Palakkad, Palakkad, Kerala, 678 557, India.
| | - Bartholomew Richard
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala, 678 557, India
| | - Jithin Thomas Chacko
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala, 678 557, India
| | - Jagadeesh Bayry
- Department of Biological Sciences and Engineering, Indian Institute of Technology Palakkad, Palakkad, Kerala, 678 557, India.
| | - P Abdul Rasheed
- Department of Biological Sciences and Engineering, Indian Institute of Technology Palakkad, Palakkad, Kerala, 678 557, India.
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala, 678 557, India
| |
Collapse
|
2
|
Reyna-Bolaños I, Solís-García EP, Vargas-Vargas MA, Peña-Montes DJ, Saavedra-Molina A, Cortés-Rojo C, Calderón-Cortés E. Polydatin Prevents Electron Transport Chain Dysfunction and ROS Overproduction Paralleled by an Improvement in Lipid Peroxidation and Cardiolipin Levels in Iron-Overloaded Rat Liver Mitochondria. Int J Mol Sci 2024; 25:11104. [PMID: 39456885 PMCID: PMC11508176 DOI: 10.3390/ijms252011104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/28/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Increased intramitochondrial free iron is a key feature of various liver diseases, leading to oxidative stress, mitochondrial dysfunction, and liver damage. Polydatin is a polyphenol with a hepatoprotective effect, which has been attributed to its ability to enhance mitochondrial oxidative metabolism and antioxidant defenses, thereby inhibiting reactive oxygen species (ROS) dependent cellular damage processes and liver diseases. However, it has not been explored whether polydatin is able to exert its effects by protecting the phospholipid cardiolipin against damage from excess iron. Cardiolipin maintains the integrity and function of electron transport chain (ETC) complexes and keeps cytochrome c bound to mitochondria, avoiding uncontrolled apoptosis. Therefore, the effect of polydatin on oxidative lipid damage, ETC activity, cytochrome levels, and ROS production was explored in iron-exposed rat liver mitochondria. Fe2+ increased lipid peroxidation, decreased cardiolipin and cytochromes c + c1 and aa3 levels, inhibited ETC complex activities, and dramatically increased ROS production. Preincubation with polydatin prevented all these effects to a variable degree. These results suggest that the hepatoprotective mechanism of polydatin involves the attenuation of free radical production by iron, which enhances cardiolipin levels by counteracting membrane lipid peroxidation. This prevents the loss of cytochromes, improves ETC function, and decreases mitochondrial ROS production.
Collapse
Affiliation(s)
- Itzel Reyna-Bolaños
- Instituto Tecnológico Superior de Ciudad Hidalgo, Tecnológico Nacional de México, Ciudad Hidalgo 61100, Michoacán, Mexico; (I.R.-B.); (E.P.S.-G.)
| | - Elsa Paola Solís-García
- Instituto Tecnológico Superior de Ciudad Hidalgo, Tecnológico Nacional de México, Ciudad Hidalgo 61100, Michoacán, Mexico; (I.R.-B.); (E.P.S.-G.)
| | - Manuel Alejando Vargas-Vargas
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Michoacán, Mexico; (M.A.V.-V.); (D.J.P.-M.); (A.S.-M.)
| | - Donovan J. Peña-Montes
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Michoacán, Mexico; (M.A.V.-V.); (D.J.P.-M.); (A.S.-M.)
| | - Alfredo Saavedra-Molina
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Michoacán, Mexico; (M.A.V.-V.); (D.J.P.-M.); (A.S.-M.)
| | - Christian Cortés-Rojo
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Michoacán, Mexico; (M.A.V.-V.); (D.J.P.-M.); (A.S.-M.)
| | - Elizabeth Calderón-Cortés
- Facultad de Enfermería, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58260, Michoacán, Mexico
| |
Collapse
|
3
|
Rasheed PA, Rasool K, Younes N, Nasrallah GK, Mahmoud KA. Ecotoxicity and environmental safety assessment of two-dimensional niobium carbides (MXenes). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174563. [PMID: 38981534 DOI: 10.1016/j.scitotenv.2024.174563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/29/2024] [Accepted: 07/04/2024] [Indexed: 07/11/2024]
Abstract
Two-dimensional (2D) MXenes have gained great interest in water treatment, biomedical, and environmental applications. The antimicrobial activity and cell toxicity of several MXenes including Nb4C3Tx and Nb2CTx have already been explored. However, potential side effects related to Nb-MXene toxicity, especially on aquatic pneuma, have rarely been studied. Using zebrafish embryos, we investigated and compared the potential acute toxicity between two forms of Nb-MXene: the multilayer (ML-Nb4C3Tx, ML-Nb2CTx) and the delaminated (DL-Nb2CTx, and DL-Nb4C3Tx) Nb-MXene. The LC50 of ML-Nb4C3Tx, ML-Nb2CTx, DL-Nb2CTx, and DL-Nb4C3Tx were estimated to be 220, 215, 225, and 128 mg/L, respectively. Although DL-Nb2CTx, and DL-Nb4C3Tx derivatives have similar sizes, DL-Nb4C3Tx not only shows the higher mortality (LC50 = 128 mg/L Vs 225 mg/L), but also the highest teratogenic effect (NOEC = 100 mg/L Vs 200 mg/L). LDH release assay suggested more cell membrane damage and a higher superoxide anion production in DL-Nb4C3Tx than DL-Nb2CTx,. Interestingly, both DL-Nb-MXene nanosheets showed insignificant cardiac, hepatic, or behavioral toxic effects compared to the negative control. Embryos treated with the NOEC of DL-Nb2CTx presented hyperlocomotion, while embryos treated with the NOEC of DL-Nb4C3Tx presented hyperlocomotion, suggesting developmental neurotoxic effect and muscle impairment induced by both DL-Nb-MXene. According to the Fish and Wildlife Service (FSW) Acute Toxicity Rating Scale, all tested Nb-MXene nanosheets were classified as "Practically not toxic". However, DL-Nb4C3Tx should be treated with caution as it might cause a neurotoxic effect on fauna when it ends up in wastewater in high concentrations.
Collapse
Affiliation(s)
- P Abdul Rasheed
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, P. O. Box 34110, Doha, Qatar; Department of Biological Sciences and Engineering, Indian Institute of Technology Palakkad, Palakkad, Kerala 678 623, India
| | - Kashif Rasool
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, P. O. Box 34110, Doha, Qatar
| | - Nadine Younes
- Biomedical Research Center, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar; Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Gheyath K Nasrallah
- Biomedical Research Center, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar; Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar.
| | - Khaled A Mahmoud
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, P. O. Box 34110, Doha, Qatar; Center for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar.
| |
Collapse
|
4
|
Sudhakaran G, Priya PS, Haridevamuthu B, Murugan R, Kannan J, Almutairi MH, Almutairi BO, Guru A, Arockiaraj J. Mechanistic interplay of dual environmental stressors: Bisphenol-A and cadmium-induced ovarian follicular damage and hepatocyte dysfunction in vivo. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171706. [PMID: 38490420 DOI: 10.1016/j.scitotenv.2024.171706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/07/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
This study investigates the individual and combined toxic effects of Bisphenol A (BPA) and Cadmium (Cd) in zebrafish, recognizing the complex mixture of pollutants organisms encounter in their natural environment. Examining developmental, neurobehavioral, reproductive, and physiological aspects, the study reveals significant adverse effects, particularly in combined exposures. Zebrafish embryos exposed to BPA + Cd exhibit synergistically increased mortality, delayed hatching, and morphological abnormalities, emphasizing the heightened toxicity of the combination. Prolonged exposure until 10 days post-fertilization underscores enduring effects on embryonic development. BPA and Cd induce oxidative stress, as evidenced by increased production of reactive oxygen species and lipid peroxidation. This oxidative stress disrupts cellular functions, affecting lipid metabolism and immune response. Adult zebrafish exposed to BPA and Cd for 40 days display compromised neurobehavioral functions, altered antioxidant defenses, and increased oxidative stress, suggesting potential neurotoxicity. Additionally, disruptions in ovarian follicle maturation and skeletal abnormalities indicate reproductive and skeletal impacts. Histological analysis reveals significant liver damage, emphasizing the synergistic hepatotoxicity of BPA and Cd. Molecular assessments further demonstrate compromised cellular defense mechanisms, synaptic function, and elevated cellular stress and inflammation-related gene expression in response to combined exposures. Bioaccumulation analysis highlights differential tissue accumulation patterns. In conclusion, this study provides comprehensive insights into the multifaceted toxicological effects of BPA and Cd in zebrafish, raising concerns about potential adverse impacts on environmental ecosystems and human health.
Collapse
Affiliation(s)
- Gokul Sudhakaran
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - P Snega Priya
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203 Chengalpattu District, Tamil Nadu, India
| | - B Haridevamuthu
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203 Chengalpattu District, Tamil Nadu, India
| | - Raghul Murugan
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203 Chengalpattu District, Tamil Nadu, India
| | - Jagan Kannan
- Department of Biotechnology, SRM Arts and Science College, Kattankulathur, 603203 Chengalpattu District, Tamil Nadu, India
| | - Mikhlid H Almutairi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Bader O Almutairi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ajay Guru
- Department of Cardiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203 Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
5
|
Hamre K, Zhang W, Austgulen MH, Mykkeltvedt E, Yin P, Berntssen M, Espe M, Berndt C. Systemic and strict regulation of the glutathione redox state in mitochondria and cytosol is needed for zebrafish ontogeny. Biochim Biophys Acta Gen Subj 2024:130603. [PMID: 38521470 DOI: 10.1016/j.bbagen.2024.130603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/22/2024] [Accepted: 03/18/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND Redox control seems to be indispensable for proper embryonic development. The ratio between glutathione (GSH) and its oxidized disulfide (GSSG) is the most abundant cellular redox circuit. METHODS We used zebrafish harboring the glutaredoxin 1-redox sensitive green fluorescent protein (Grx1-roGFP) probe either in mitochondria or cytosol to test the hypothesis that the GSH:GSSG ratio is strictly regulated through zebrafish embryogenesis to sustain the different developmental processes of the embryo. RESULTS Following the GSSG:GSH ratio as a proxy for the GSH-dependent reduction potential (EhGSH) revealed increasing mitochondrial and cytosolic EhGSH during cleavage and gastrulation. During organogenesis, cytosolic EhGSH decreased, while that of mitochondria remained high. The similarity between EhGSH in brain and muscle suggests a central regulation. Modulation of GSH metabolism had only modest effects on the GSSG:GSH ratios of newly hatched larvae. However, inhibition of GSH reductase directly after fertilization led to dead embryos already 10 h later. Exposure to the emerging environmental pollutant Perfluorooctane Sulfonate (PFOS) disturbed the apparent regulated EhGSH as well. CONCLUSIONS Mitochondrial and cytosolic GSSG:GSH ratios are almost identical in different organs during zebrafish development indicating that the EhGSH might follow H2O2 levels and rather indirectly affect specific enzymatic activities needed for proper embryogenesis. GENERAL SIGNIFICANCE Our data confirm that vertebrate embryogenesis depends on strictly regulated redox homeostasis. Disturbance of the GSSG:GSH circuit, e.g. induced by environmental pollution, leads to malformation and death.
Collapse
Affiliation(s)
- Kristin Hamre
- Department of Feed and Nutrition, The Institute of Marine Research, Bergen, Norway.
| | - Wuxiao Zhang
- Department of Feed and Nutrition, The Institute of Marine Research, Bergen, Norway; College of Marine and Biology Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Maren Hoff Austgulen
- Department of Feed and Nutrition, The Institute of Marine Research, Bergen, Norway
| | - Eva Mykkeltvedt
- Department of Feed and Nutrition, The Institute of Marine Research, Bergen, Norway
| | - Peng Yin
- Department of Feed and Nutrition, The Institute of Marine Research, Bergen, Norway
| | - Marc Berntssen
- Department of Feed and Nutrition, The Institute of Marine Research, Bergen, Norway
| | - Marit Espe
- Department of Feed and Nutrition, The Institute of Marine Research, Bergen, Norway
| | - Carsten Berndt
- Department of Neurology, Medical Faculty, Heinrich-Heine-Universitaet, Duesseldorf, Germany.
| |
Collapse
|
6
|
Li Q, Pei R, Chen E, Zheng F, Zhang Y, Meng S. Efficacy of Jiuzao polysaccharides in ameliorating alcoholic fatty liver disease and modulating gut microbiota. Heliyon 2024; 10:e26167. [PMID: 38420496 PMCID: PMC10900577 DOI: 10.1016/j.heliyon.2024.e26167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/02/2024] [Accepted: 02/08/2024] [Indexed: 03/02/2024] Open
Abstract
Jiuzao, the residue from Baijiu production, has shown radical scavenging properties in prior investigations, suggesting its potential as a hepatoprotective agent against acute liver damage. This study reveals that Jiuzao polysaccharides ameliorated liver morphological damage in zebrafish larvae afflicted with alcoholic fatty liver disease (AFLD), as evidenced by Oil red O, H&E, and Nile red staining. These polysaccharides notably modulated antioxidant enzyme levels and lipid peroxidation components. The real-time quantitative polymerase chain reactions analyses illustrated the significant impact of Jiuzao polysaccharides on genes integral to ethanol and lipid metabolism. The 16 S rRNA results showed that Jiuzao polysaccharides could improve the intestinal flora in zebrafish larvae exposed to ethanol. In summary, Jiuzao polysaccharides efficaciously mitigate liver lipid accumulation, enhance ethanol metabolism, and reduce oxidative stress by downregulating genes involved in AFLD development. They also regulate the changes in gut microbiota, providing further protection against acute alcoholic liver insult in zebrafish larvae.
Collapse
Affiliation(s)
- Qing Li
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing, 100048, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, 100048, China
- Key Laboratory of Quality and Safety of Alcoholic Beverages of China Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | - Ronghong Pei
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing, 100048, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, 100048, China
- Key Laboratory of Quality and Safety of Alcoholic Beverages of China Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | - Erbao Chen
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing, 100048, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, 100048, China
- Key Laboratory of Quality and Safety of Alcoholic Beverages of China Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | - Fuping Zheng
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing, 100048, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, 100048, China
- Key Laboratory of Quality and Safety of Alcoholic Beverages of China Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | - Yuhang Zhang
- Hebei Hengshui Laobaigan Liquor Co., Ltd., Hengshui, 053009, China
| | - Shihao Meng
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing, 100048, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, 100048, China
- Key Laboratory of Quality and Safety of Alcoholic Beverages of China Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| |
Collapse
|
7
|
Sudhakaran G, Sreekutty AR, Subramaniyan S, Madesh S, Priya PS, Pachaiappan R, Hatamleh AA, Al-Dosary MA, Arockiaraj J. Skeletal and neurological risks demonstrated in zebrafish due to second-hand cigarette smoke and the neutralization of luteolin. Tissue Cell 2023; 85:102259. [PMID: 37922675 DOI: 10.1016/j.tice.2023.102259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/20/2023] [Accepted: 10/24/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND Cigarette smoke exposure poses significant health risks, including oxidative stress, inflammation, tissue damage, and neurodegenerative diseases. Luteolin, a natural flavonoid known for its antioxidant and anti-inflammatory properties, is of interest in countering these effects. AIM This study aims to assess luteolin's protective potential against cigarette smoke extract (CSE) in adult zebrafish. MATERIALS AND METHODS Adult zebrafish were exposed to CSE for 15 days, inducing smoke-related damage. Subsequent luteolin treatment assessed its impact. Evaluations included antioxidant enzymes (SOD, CAT), nitric oxide (NO), LDH activity (cellular damage), tissue integrity, fibrosis, amyloid plaque accumulation, and CSE component analysis via HPLC. KEY FINDINGS CSE exposure heightened oxidative stress, reducing SOD and CAT activity and elevating NO levels, leading to cellular damage and tissue disruption, notably fibrosis and amyloid plaque accumulation. Inflammatory markers TNF-α and IL-1β also increased. Luteolin treatment restored SOD and CAT activity, reduced LDH and NO activity, counteracting oxidative damage. It also mitigated fibrosis and reduced amyloid plaque deposition, preserving tissue integrity. Luteolin reduced TNF-α and IL-1β levels and CSE components, displaying anti-inflammatory effects. SIGNIFICANCE This study underscores luteolin's potential as a protective agent against cigarette smoke-induced harm in a zebrafish model.
Collapse
Affiliation(s)
- Gokul Sudhakaran
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| | - A R Sreekutty
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| | - Senthil Subramaniyan
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| | - S Madesh
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| | - P Snega Priya
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| | - Raman Pachaiappan
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| | - Ashraf Atef Hatamleh
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Munirah Abdullah Al-Dosary
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
8
|
Ke J, Li MT, Xu S, Ma J, Liu MY, Han Y. Advances for pharmacological activities of Polygonum cuspidatum - A review. PHARMACEUTICAL BIOLOGY 2023; 61:177-188. [PMID: 36620922 PMCID: PMC9833411 DOI: 10.1080/13880209.2022.2158349] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 10/22/2022] [Accepted: 12/08/2022] [Indexed: 06/01/2023]
Abstract
CONTEXT Polygonum cuspidatum Sieb. et Zucc (Polygonaceae), the root of which is included in the Chinese Pharmcopoeia under the name 'Huzhang', has a long history as a medicinal plant and vegetable. Polygonum cuspidatum has been used in traditional Chinese medicine for the treatment of inflammation, hyperlipemia, etc. OBJECTIVE This article reviews the pharmacological action and the clinical applications of Polygonum cuspidatum and its extracts, whether in vivo or in vitro. We also summarized the main phytochemical constituents and pharmacokinetics of Polygonum cuspidatum and its extracts. METHODS The data were retrieved from major medical databases, such as CNKI, PubMed, and SinoMed, from 2014 to 2022. Polygonum cuspidatum, pharmacology, toxicity, clinical application, and pharmacokinetics were used as keywords. RESULTS The rhizomes, leaves, and flowers of Polygonum cuspidatum have different phytochemical constituents. The plant contains flavonoids, anthraquinones, and stilbenes. Polygonum cuspidatum and the extracts have anti-inflammatory, antioxidation, anticancer, heart protection, and other pharmacological effects. It is used in the clinics to treat dizziness, headaches, traumatic injuries, and water and fire burns. CONCLUSIONS Polygonum cuspidatum has the potential to treat many diseases, such as arthritis, ulcerative colitis, asthma, and cardiac hypertrophy. It has a broad range of medicinal applications, but mainly focused on root medication; its aerial parts should receive more attention. Pharmacokinetics also need to be further investigated.
Collapse
Affiliation(s)
- Jia Ke
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Meng-Ting Li
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shuyang Xu
- Monteverde Academy Shanghai, Shanghai, China
| | - Jianpeng Ma
- Multiscale Research Institute of Complex Systems, Fudan University, Shanghai, China
| | - Ming-Yuan Liu
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan Han
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
9
|
Feng C, Bai H, Chang X, Wu Z, Dong W, Ma Q, Yang J. Aflatoxin B1-induced early developmental hepatotoxicity in larvae zebrafish. CHEMOSPHERE 2023; 340:139940. [PMID: 37634582 DOI: 10.1016/j.chemosphere.2023.139940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/31/2023] [Accepted: 08/22/2023] [Indexed: 08/29/2023]
Abstract
Aflatoxin B1 (AFB1) is a ubiquitous mycotoxin that causes oxidative damage in various organs. At present, the research studies on AFB1 are primarily focused on its effects on the terrestrial environment and animals. However, its toxicity mechanism in aquatic environments and aquatic animals has not been largely explored. Thus, in this study, zebrafish was used as a model to study the toxicity mechanism of AFB1 on the liver of developing larvae. The results showed that AFB1 exposure inhibited liver development and promoted fat accumulation in the liver. Transcriptome sequencing analysis showed that AFB1 affected liver redox metabolism and oxidoreductase activity. KEGG analysis showed that AFB1 inhibited the expression of gsto1, gpx4a, mgst3a, and idh1 in the glutathione metabolizing enzyme gene pathway, resulting in hepatic oxidative stress. At the same time, AFB1 also inhibited the expression of acox1, acsl1b, pparα, fabp2, and cpt1 genes in peroxidase and PPAR metabolic pathways, inducing hepatic steatosis and lipid droplet accumulation. Antioxidant N-Acetyl-l-cysteine (NAC) preconditioning up-regulated gsto1, gpx4a and idh1 genes, and improved the AFB1-induced lipid droplet accumulation in the liver. In summary, AFB1 induced hepatic oxidative stress and steatosis, resulting in abnormal liver fat metabolism and accumulation of cellular lipid droplets. NAC could be used as a potential preventative drug to improve AFB1-induced fat accumulation.
Collapse
Affiliation(s)
- Chi Feng
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology,Tongliao,Inner Mongolia, 028000, China; Department of Chemistry and Chemical Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Hongxia Bai
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology,Tongliao,Inner Mongolia, 028000, China; Inner Mongolia Minzu Univ, Coll Anim Sci & Technol, Tongliao,Inner Mongolia, 028000, China
| | - Xu Chang
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology,Tongliao,Inner Mongolia, 028000, China; Inner Mongolia Minzu Univ, Coll Anim Sci & Technol, Tongliao,Inner Mongolia, 028000, China
| | - Zhixuan Wu
- Inner Mongolia Minzu Univ, Coll Anim Sci & Technol, Tongliao,Inner Mongolia, 028000, China
| | - Wu Dong
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology,Tongliao,Inner Mongolia, 028000, China; Inner Mongolia Minzu Univ, Coll Anim Sci & Technol, Tongliao,Inner Mongolia, 028000, China
| | - Qianqian Ma
- Inner Mongolia Minzu Univ, Inst Pharmaceut Chem & Pharmacol, Tongliao, Inner Mongolia, 028000, China
| | - Jingfeng Yang
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology,Tongliao,Inner Mongolia, 028000, China; Inner Mongolia Minzu Univ, Coll Anim Sci & Technol, Tongliao,Inner Mongolia, 028000, China.
| |
Collapse
|
10
|
Zhou W, Shi W, Du X, Han Y, Tang Y, Ri S, Ju K, Kim T, Huang L, Zhang W, Yu Y, Tian D, Yu Y, Chen L, Wu Z, Liu G. Assessment of Nonalcoholic Fatty Liver Disease Symptoms and Gut-Liver Axis Status in Zebrafish after Exposure to Polystyrene Microplastics and Oxytetracycline, Alone and in Combination. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:47006. [PMID: 37027337 PMCID: PMC10081693 DOI: 10.1289/ehp11600] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/31/2022] [Accepted: 02/23/2023] [Indexed: 05/19/2023]
Abstract
BACKGROUND Environmental pollution may give rise to the incidence and progression of nonalcoholic fatty liver disease (NAFLD), the most common cause for chronic severe liver lesions. Although knowledge of NAFLD pathogenesis is particularly important for the development of effective prevention, the relationship between NAFLD occurrence and exposure to emerging pollutants, such as microplastics (MPs) and antibiotic residues, awaits assessment. OBJECTIVES This study aimed to evaluate the toxicity of MPs and antibiotic residues related to NAFLD occurrence using the zebrafish model species. METHODS Taking common polystyrene MPs and oxytetracycline (OTC) as representatives, typical NAFLD symptoms, including lipid accumulation, liver inflammation, and hepatic oxidative stress, were screened after 28-d exposure to environmentally realistic concentrations of MPs (0.69mg/L) and antibiotic residue (3.00μg/L). The impacts of MPs and OTC on gut health, the gut-liver axis, and hepatic lipid metabolism were also investigated to reveal potential affecting mechanisms underpinning the NAFLD symptoms observed. RESULTS Compared with the control fish, zebrafish exposed to MPs and OTC exhibited significantly higher levels of lipid accumulation, triglycerides, and cholesterol contents, as well as inflammation, in conjunction with oxidative stress in their livers. In addition, a markedly smaller proportion of Proteobacteria and higher ratios of Firmicutes/Bacteroidetes were detected by microbiome analysis of gut contents in treated samples. After the exposures, the zebrafish also experienced intestinal oxidative injury and yielded significantly fewer numbers of goblet cells. Markedly higher levels of the intestinal bacteria-sourced endotoxin lipopolysaccharide (LPS) were also detected in serum. Animals treated with MPs and OTC exhibited higher expression levels of LPS binding receptor (LBP) and downstream inflammation-related genes while also exhibiting lower activity and gene expression of lipase. Furthermore, MP-OTC coexposure generally exerted more severe effects compared with single MP or OTC exposure. DISCUSSION Our results suggested that exposure to MPs and OTC may disrupt the gut-liver axis and be associated with NAFLD occurrence. https://doi.org/10.1289/EHP11600.
Collapse
Affiliation(s)
- Weishang Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Xueying Du
- College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Yu Han
- College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Yu Tang
- College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Sanghyok Ri
- College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
- College of Life Science, Kim Hyong Jik University of Education, Pyongyang, DPR Korea
| | - Kwangjin Ju
- College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
- College of Aquaculture, Wonsan Fisheries University, Wonsan, DPR Korea
| | - Tongchol Kim
- College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
- College of Life Science, Kim Hyong Jik University of Education, Pyongyang, DPR Korea
| | - Lin Huang
- College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Weixia Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Yihan Yu
- College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Dandan Tian
- College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Yingying Yu
- College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Liangbiao Chen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, P.R. China
| | - Zhichao Wu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, P.R. China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
| |
Collapse
|
11
|
Cheng K, Niu J, Zheng X, Qiao Y, Zhang J, Guo R, Dong G, Song Z, Huang J, Wang J, Zhang Y. Aflatoxin-B1-Exposure-Induced Hepatic Injury Could Be Alleviated by Polydatin through Reducing Oxidative Stress, Inhibiting Inflammation and Improving Mitophagy. TOXICS 2023; 11:309. [PMID: 37112536 PMCID: PMC10145279 DOI: 10.3390/toxics11040309] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
Aflatoxin B1 (AFB1) is a toxic food/feed pollutant, exerting extensive deleterious impacts on the liver. Oxidative stress and inflammation are considered to be vital contributors to AFB1 hepatotoxicity. Polydatin (PD), a naturally occurring polyphenol, has been demonstrated to protect and/or treat liver disorders caused by various factors through its antioxidant and anti-inflammatory properties. However, the role of PD in AFB1-induced liver injury is still elusive. Therefore, this study was designed to investigate the protective effect of PD on hepatic injury in mice subjected to AFB1. Male mice were randomly divided into three groups: control, AFB1 and AFB1-PD groups. The results showed that PD protected against AFB1-induced hepatic injury demonstrated by the reduced serum transaminase activity, the restored hepatic histology and ultrastructure, which could be attributed to the enhanced glutathione level, the reduced interleukin 1 beta and tumor necrosis factor alpha concentrations, the increased interleukin 10 expression at transcriptional level and the up-regulated mRNA expression related to mitophagy. In conclusion, PD could alleviate AFB1-induced hepatic injury by reducing oxidative stress, inhibiting inflammation and improving mitophagy.
Collapse
Affiliation(s)
- Kang Cheng
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Jingyi Niu
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xiaotong Zheng
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yining Qiao
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Jinyan Zhang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Rui Guo
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Guorun Dong
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Zhihua Song
- School of International Education, Henan University of Technology, Zhengzhou 450001, China
| | - Jin Huang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Jinrong Wang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yong Zhang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
12
|
Han SC, Huang RP, Zhang QY, Yan CY, Li XY, Li YF, He RR, Li WX. Antialcohol and Hepatoprotective Effects of Tamarind Shell Extract on Ethanol-Induced Damage to HepG2 Cells and Animal Models. Foods 2023; 12:1078. [PMID: 36900595 PMCID: PMC10000874 DOI: 10.3390/foods12051078] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 02/28/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Alcohol liver disease (ALD) is one of the leading outcomes of acute and chronic liver injury. Accumulative evidence has confirmed that oxidative stress is involved in the development of ALD. In this study, we used chick embryos to establish ALD model to study the hepatoprotective effects of tamarind shell exttract (TSE). Chick embryos received 25% ethanol (75 μL) and TSE (250, 500, 750 μg/egg/75 μL) from embryonic development day (EDD) 5.5. Both ethanol and TSE were administrated every two days until EDD15. Ethanol-exposed zebrafish and HepG2 cell model were also employed. The results suggested that TSE effectively reversed the pathological changes, liver dysfunction and ethanol-metabolic enzyme disorder in ethanol-treated chick embryo liver, zebrafish and HepG2 cells. TSE suppressed the excessive reactive oxygen species (ROS) in zebrafish and HepG2 cells, as well as rebuilt the irrupted mitochondrial membrane potential. Meanwhile, the declined antioxidative activity of glutathione peroxidase (GPx) and superoxide dismutase (SOD), together with the content of total glutathione (T-GSH) were recovered by TSE. Moreover, TSE upregulated nuclear factor erythroid 2-related factor 2 (NRF2) and heme oxyense-1 (HO-1) expression in protein and mRNA level. All the phenomena suggested that TSE attenuated ALD through activating NRF2 to repress the oxidative stress induced by ethanol.
Collapse
Affiliation(s)
- Shao-Cong Han
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Rong-Ping Huang
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Qiong-Yi Zhang
- Guangdong Engineering Research Centre of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China
| | - Chang-Yu Yan
- Guangdong Engineering Research Centre of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China
| | - Xi-You Li
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Yi-Fang Li
- Guangdong Engineering Research Centre of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China
| | - Rong-Rong He
- Guangdong Engineering Research Centre of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China
| | - Wei-Xi Li
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China
| |
Collapse
|
13
|
Pozo-Morales M, Garteizgogeascoa I, Perazzolo C, So J, Shin D, Singh SP. In vivo imaging of calcium dynamics in zebrafish hepatocytes. Hepatology 2023; 77:789-801. [PMID: 35829917 DOI: 10.1002/hep.32663] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 06/30/2022] [Accepted: 07/04/2022] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND AIMS Hepatocytes were the first cell type for which oscillations of cytoplasmic calcium levels in response to hormones were described. Since then, investigation of calcium dynamics in liver explants and culture has greatly increased our understanding of calcium signaling. A bottleneck, however, exists in observing calcium dynamics in a noninvasive manner because of the optical inaccessibility of the mammalian liver. Here, we aimed to take advantage of the transparency of the zebrafish larvae to image hepatocyte calcium dynamics in vivo at cellular resolution. APPROACH AND RESULTS We developed a transgenic model expressing a calcium sensor, GCaMP6s, specifically in zebrafish hepatocytes. Using this, we provide a quantitative assessment of intracellular calcium dynamics during multiple contexts, including growth, feeding, ethanol-induced stress, and cell ablation. Specifically, we show that synchronized calcium oscillations are present in vivo , which are lost upon starvation. Starvation induces lipid accumulation in the liver. Feeding recommences calcium waves in the liver, but in a spatially restricted manner, as well as resolves starvation-induced hepatic steatosis. By using a genetically encoded scavenger for calcium, we show that dampening of calcium signaling accelerates the accumulation of starvation-related lipid droplets in the liver. Furthermore, ethanol treatment, as well as cell ablation, induces calcium flux, but with different dynamics. The former causes asynchronous calcium oscillations, whereas the latter leads to a single calcium spike. CONCLUSIONS We demonstrate the presence of oscillations, waves, and spikes in vivo . Calcium waves are present in response to nutrition and negatively regulate starvation-induced accumulation of lipid droplets.
Collapse
Affiliation(s)
- Macarena Pozo-Morales
- IRIBHM , Free University of Brussels, Université Libre de Bruxelles (ULB) , Brussels , Belgium
| | - Inés Garteizgogeascoa
- IRIBHM , Free University of Brussels, Université Libre de Bruxelles (ULB) , Brussels , Belgium
| | - Camille Perazzolo
- IRIBHM , Free University of Brussels, Université Libre de Bruxelles (ULB) , Brussels , Belgium
| | - Juhoon So
- Department of Developmental Biology , McGowan Institute for Regenerative Medicine , Pittsburgh Liver Research Center , University of Pittsburgh , Pittsburgh , Pennsylvania , USA
| | - Donghun Shin
- Department of Developmental Biology , McGowan Institute for Regenerative Medicine , Pittsburgh Liver Research Center , University of Pittsburgh , Pittsburgh , Pennsylvania , USA
| | - Sumeet Pal Singh
- IRIBHM , Free University of Brussels, Université Libre de Bruxelles (ULB) , Brussels , Belgium
| |
Collapse
|
14
|
Qin D, Lei Y, Xie W, Zheng Q, Peng Z, Liu Y, Dai B, Ma T, Wei P, Gao C, Guo X, Gao J, Zhao J, Du J, Zeng Q, Zhang Z, Dong X, Shen H. Methionine sulfoxide suppresses adipogenic differentiation by regulating the mitogen-activated protein kinase signaling pathway. Cell Biol Int 2023; 47:648-659. [PMID: 36448374 DOI: 10.1002/cbin.11964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 10/19/2022] [Accepted: 11/07/2022] [Indexed: 12/02/2022]
Abstract
In this study, methionine sulfoxide (MetO) was identified as an active metabolite that suppresses adipogenesis after screening obese individuals versus the normal population. MetO suppressed the gene and protein expression of CCAAT/enhancer binding protein (C/EBP) α, adipocyte fatty acid binding protein 4 (FABP4), and the nuclear receptor peroxisome proliferator-activated receptor γ (PPARγ) during human preadipocyte (HPA) differentiation. Adipogenesis decreased following MetO treatment; however, the preadipocyte number, proliferation, and apoptosis were unaffected. The activity of phosphorylated extracellular signal-related kinase (P-ERK) of the mitogen-activated protein kinase (MAPK) pathway was significantly inhibited in HPA after MetO treatment. Furthermore, treatment of preadipocytes with the selective P-ERK1/2 agonist Ro 67-7476 abolished the effect of MetO against adipogenesis suggesting that MetO function is dependent on the MAPK pathway. The mechanistic insights of adipogenesis suppression by MetO presented in this study shows its potential as an antiobesity drug.
Collapse
Affiliation(s)
- Dani Qin
- Department of Pediatrics, Yixing People's Hospital, Yixing, China
| | - Yong Lei
- Department of Pediatrics, Yixing People's Hospital, Yixing, China
| | - Wen Xie
- Department of Pediatrics, Yixing People's Hospital, Yixing, China
| | - Qiuju Zheng
- Department of Pediatrics, Yixing People's Hospital, Yixing, China
| | - Zhou Peng
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiwen Liu
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Biao Dai
- Department of Pediatrics, Yixing People's Hospital, Yixing, China
| | - Tieliang Ma
- Department of Pediatrics, Yixing People's Hospital, Yixing, China
| | - Ping Wei
- Department of Pediatrics, Yixing People's Hospital, Yixing, China
| | - Chunlin Gao
- Department of Pediatrics, Jinling Hospital, Nanjing, China
| | - Xirong Guo
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianfang Gao
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Zhao
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Juan Du
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qianyi Zeng
- Shenzhen Bay Laboratory, Bayray Innovation Center, Shenzhen, China
| | - Zhongxiao Zhang
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaohua Dong
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huiping Shen
- Department of Pediatrics, Yixing People's Hospital, Yixing, China
| |
Collapse
|
15
|
Sudhakaran G, Rajesh R, Guru A, Arasu MV, Gopinath P, Arockiaraj J. Nimbin analogs N5 and N7 regulate the expression of lipid metabolic genes and inhibit lipid accumulation in high-fat diet-induced zebrafish larvae: An antihyperlipidemic study. Tissue Cell 2023; 80:102000. [PMID: 36542946 DOI: 10.1016/j.tice.2022.102000] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/05/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Excess accumulation of lipids leads to obesity. Triterpenoids are a group of plant compounds which poses various biological activities. The biological activities of Nimbin analogs N5 and N7 were addressed in this study on inhibiting lipid aggregation and underlying the derivatives molecular mechanisms for a therapeutical approach. AIM This study aims to evaluate the anti-adipogenic activity of semi-natural Nimbin analogs, N5 and N7, on zebrafish larvae induced with oxidative stress due to a high-fat diet (HFD) and adipogenesis using specific fluorescent stains. MATERIALS AND METHODS Zebrafish at 4 days post fertilized (dpf) larvae were divided into groups for the HFD diet along with exposure to various concentrations of N5 and N7. HFD induced accumulation of neutral lipids and triglycerides (Oil Red O and Nile red staining, respectively) with weight gain, which generated intracellular ROS (DCFH-DA staining) and superoxide anion production (DHE staining) with depleted glutathione levels (NDA staining) were assayed. HFD exposure promoted the accumulation of inflammatory macrophages (Neutral red staining) and impaired glucose metabolism (2NBDG staining). The ability of N5 and N7 to reduce total regulating lipogenic specific genes C/EBP-α, SREBP-1 and FAS were evaluated using relative gene expression. KEY FINDINGS The Nimbin analogues N5 and N7 suppressed adipogenesis, forming intracellular ROS and superoxide anion while simultaneously restoring glutathione levels. The analogues significantly lowered total TC and TG levels, prevented inflammatory macrophage build-up and boosted glucose absorption. Also, N5 and N7 down-regulate the lipogenic-specific genes. SIGNIFICANCE Nimbin analogs N5 and N7 enhance lipolysis and inhibit adipogenesis in in-vivo zebrafish larvae model.
Collapse
Affiliation(s)
- Gokul Sudhakaran
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamil Nadu, India
| | - Ravi Rajesh
- Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamil Nadu, India
| | - Ajay Guru
- Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, SIMATS, Chennai 600077, Tamil Nadu, India
| | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Pusparathinam Gopinath
- Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamil Nadu, India.
| | - Jesu Arockiaraj
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamil Nadu, India.
| |
Collapse
|
16
|
Karami A, Fakhri S, Kooshki L, Khan H. Polydatin: Pharmacological Mechanisms, Therapeutic Targets, Biological Activities, and Health Benefits. Molecules 2022; 27:6474. [PMID: 36235012 PMCID: PMC9572446 DOI: 10.3390/molecules27196474] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/22/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022] Open
Abstract
Polydatin is a natural potent stilbenoid polyphenol and a resveratrol derivative with improved bioavailability. Polydatin possesses potential biological activities predominantly through the modulation of pivotal signaling pathways involved in inflammation, oxidative stress, and apoptosis. Various imperative biological activities have been suggested for polydatin towards promising therapeutic effects, including anticancer, cardioprotective, anti-diabetic, gastroprotective, hepatoprotective, neuroprotective, anti-microbial, as well as health-promoting roles on the renal system, the respiratory system, rheumatoid diseases, the skeletal system, and women's health. In the present study, the therapeutic targets, biological activities, pharmacological mechanisms, and health benefits of polydatin are reviewed to provide new insights to researchers. The need to develop further clinical trials and novel delivery systems of polydatin is also considered to reveal new insights to researchers.
Collapse
Affiliation(s)
- Ahmad Karami
- Student Research Committee, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah 6714415153, Iran
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Leila Kooshki
- Student Research Committee, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah 6714415153, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| |
Collapse
|
17
|
Zhang ZL, Li YZ, Wu GQ, Zhang DD, Deng C, Wang ZM, Song XM, Wang W. A comprehensive review of traditional uses, phytochemistry and pharmacology of Reynoutria genus. J Pharm Pharmacol 2022; 74:1718-1742. [DOI: 10.1093/jpp/rgac068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/22/2022] [Indexed: 11/14/2022]
Abstract
Abstract
Objectives
The genus Reynoutria belonging to the family Polygonaceae is widely distributed in the north temperate zone and used in folk medicine. It is administered as a sedative, tonic and digestive, also as a treatment for canities and alopecia. Herein, we reported a review on traditional uses, phytochemistry and pharmacology reported from 1985 up to early 2022. All the information and studies concerning Reynoutria plants were summarized from the library and digital databases (e.g. ScienceDirect, SciFinder, Medline PubMed, Google Scholar, and CNKI).
Key findings
A total of 185 articles on the genus Reynoutria have been collected. The phytochemical investigations of Reynoutria species revealed the presence of more than 277 chemical components, including stilbenoids, quinones, flavonoids, phenylpropanoids, phospholipids, lactones, phenolics and phenolic acids. Moreover, the compounds isolated from the genus Reynoutria possess a wide spectrum of pharmacology such as anti-atherosclerosis, anti-inflammatory, antioxidative, anticancer, neuroprotective, anti-virus and heart protection.
Summary
In this paper, the traditional uses, phytochemistry and pharmacology of genus Reynoutria were reviewed. As a source of traditional folk medicine, the Reynoutria genus have high medicinal value and they are widely used in medicine. Therefore, we hope our review can help genus Reynoutria get better development and utilization.
Collapse
Affiliation(s)
- Zi-Long Zhang
- School of Pharmacy, Shaanxi University of Chinese Medicine , Xian Yang, Shaanxi 712046 , China
| | - Yu-Ze Li
- School of Pharmacy, Shaanxi University of Chinese Medicine , Xian Yang, Shaanxi 712046 , China
| | - Guo-Qing Wu
- School of Pharmacy, Shaanxi University of Chinese Medicine , Xian Yang, Shaanxi 712046 , China
| | - Dong-Dong Zhang
- School of Pharmacy, Shaanxi University of Chinese Medicine , Xian Yang, Shaanxi 712046 , China
| | - Chong Deng
- School of Pharmacy, Shaanxi University of Chinese Medicine , Xian Yang, Shaanxi 712046 , China
| | - Zhi-Min Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences , BeiJing 100700 , China
| | - Xiao-Mei Song
- School of Pharmacy, Shaanxi University of Chinese Medicine , Xian Yang, Shaanxi 712046 , China
| | - Wei Wang
- School of Pharmacy, Shaanxi University of Chinese Medicine , Xian Yang, Shaanxi 712046 , China
| |
Collapse
|
18
|
Song L, Li M, Feng C, Sa R, Hu X, Wang J, Yin X, Qi C, Dong W, Yang J. Protective effect of curcumin on zebrafish liver under ethanol-induced oxidative stress. Comp Biochem Physiol C Toxicol Pharmacol 2022; 258:109360. [PMID: 35523403 DOI: 10.1016/j.cbpc.2022.109360] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/13/2022] [Accepted: 04/27/2022] [Indexed: 11/03/2022]
Abstract
Oxidative stress has an important role in determining severe damage to the liver, including steatosis. Curcumin (CUR) is a natural polyphenol compound with antioxidant potential but its mechanism is still unclear. In this study, 2% ethanol (ETH) was used to establish a liver injury model in Tg (fabp10: Ps Red) transgenic zebrafish with the fluorescent liver. Ethanol-treated zebrafish had an increased vacuole rate at 144 h post-fertilization (hpf), thus confirming the effectiveness of the proposed model in inducing liver damage. However, when ethanol was submitted to co-exposure with curcumin, fluorescence area and signal intensity, as well as vacuole rate, were similar to the levels found in the control group. RNA-seq results showed that ethanol and CUR affected the regulation of catalytic activity and phenylalanine metabolism, biosynthesis of amino acids, and arginine and proline metabolism signaling pathways. QRT-PCR analysis also showed that treatment with CUR led to the downregulation of genes involved in the Nrf2-Keap1 signaling pathway and altered the expression pattern of genes related to glutathione metabolism (gsr, gpx1a, gstp1, gsto1, and idh1a). CUR also induced an increase in GSH content and recovered decreased GSH caused by ethanol exposure. The findings discussed herein indicate that CUR can promote glutathione synthesis, which aided in the recovery from ethanol-induced liver damage in zebrafish larvae.
Collapse
Affiliation(s)
- Lei Song
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University for Nationalities, Tongliao, Inner Mongolia 028000, China
| | - Ming Li
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University for Nationalities, Tongliao, Inner Mongolia 028000, China
| | - Chi Feng
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University for Nationalities, Tongliao, Inner Mongolia 028000, China
| | - Rigaiqiqige Sa
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University for Nationalities, Tongliao, Inner Mongolia 028000, China
| | - Xiaodong Hu
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University for Nationalities, Tongliao, Inner Mongolia 028000, China
| | - Jie Wang
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University for Nationalities, Tongliao, Inner Mongolia 028000, China
| | - Xiaoyu Yin
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University for Nationalities, Tongliao, Inner Mongolia 028000, China
| | - Chelimuge Qi
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University for Nationalities, Tongliao, Inner Mongolia 028000, China
| | - Wu Dong
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University for Nationalities, Tongliao, Inner Mongolia 028000, China.
| | - Jingfeng Yang
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University for Nationalities, Tongliao, Inner Mongolia 028000, China.
| |
Collapse
|
19
|
Wang Y, Fan Z, Yang M, Wang Y, Cao J, Khan A, Liu Y, Cheng G. Protective effects of E Se tea extracts against alcoholic fatty liver disease induced by high fat/alcohol diet: In vivo biological evaluation and molecular docking study. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 101:154113. [PMID: 35490493 DOI: 10.1016/j.phymed.2022.154113] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/26/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND With the development of economy and increased workload, chronic a high-fat/alcohol diet intake may lead to alcoholic fatty liver disease (AFLD), which is considered as a crucial health problem worldwide. E Se tea is produced of the leaves and leaf buds of Malus toringoides (Rehd.) Hughes in Tibet and has human health benefits with anti-hyperglycemia, hypertension, and hyperlipidemia effects. PURPOSE The objective of this work was to investigate the protective effect of aqueous-ethanol and hot-water extracts of E Se tea against chronic high-fat/alcohol diet induced AFLD rats. METHODS Firstly, to determine the chemical profiling of E Se tea extracts, UHPLC-ESI-HRMS analysis was conducted. Secondly, Sprague-Dawley male rats were used to establish the AFLD animal model by feeding with high-fat/alcohol diet. The animals were treated with E Se tea extracts for 12 weeks. Serum parameters were determined, histologic sections were prepared, and activities of enzymes related to inflammatory response and lipid metabolism imbalance were analyzed. The underlying mechanisms of E Se tea extracts alleviating AFLD were analyzed by immunofluorescence staining and Western blotting analysis. Lastly, key targets of 11-MT against AFLD were verified through molecular docking. RESULTS In this study, seven main compounds were confirmed or tentatively identified in E Se tea extracts by UHPLC-ESI-HRMS. The results revealed that both the extracts could reverse histopathological steatotic alternation of the liver and reduced the activity of liver damage markers (ALT, AST). E Se tea extracts mitigated oxidative stress by inhibiting CYP2E1 protein and lipid peroxidation parameters (MDA), but enhancing the endogenous antioxidants (CAT, GSH, SOD). Moreover, E Se tea extracts ameliorated inflammation by restraining the activation of NF-κB, consequently releasing the expression of proinflammatory cytokines (TNF-α, IL-6, IL-1β, COX-2 and iNOS). Subsequently, E Se tea extracts reduced hepatocyte apoptosis by increasing capase-9, caspase-3 and Bax protein expression but decreasing Bcl-2 protein expression. Furthermore, E Se tea extracts improved metabolism imbalance by stimulating AMPK/SREBP1/FAS and PPAR-α/CPT1 signaling pathway by regulating lipid metabolism parameters (TC, TG, HDL-C, LHD-C). Furthermore, molecular docking results indicated that 7 chemical constituents of E Se tea extracts had strong docking affinity with 4 key target proteins (AMPK, PPAR-α, NF-кB and Caspase-9). CONCLUSION E Se tea ameliorated AFLD through ameliorating inflammatory response, apoptosis, and lipid metabolism imbalance.
Collapse
Affiliation(s)
- Yongpeng Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Zhifeng Fan
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China; College of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| | - Meilian Yang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yudan Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China; College of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China; National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming, 650500, China
| | - Jianxin Cao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Afsar Khan
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad-22060, Pakistan
| | - Yaping Liu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Guiguang Cheng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
20
|
Chen X, Shen M, Yang J, Yu Q, Chen Y, Wang X, Lu H, Tao X, Li H, Xie J. RNA-seq based elucidation of mechanism underlying Mesona chinensis Benth polysaccharide protected H2O2-induced oxidative damage in L02 cells. Food Res Int 2022; 157:111383. [DOI: 10.1016/j.foodres.2022.111383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/06/2022] [Accepted: 05/14/2022] [Indexed: 02/08/2023]
|
21
|
Yu LM, Dong X, Li N, Jiang H, Zhao JK, Xu YL, Xu DY, Xue XD, Zhou ZJ, Huang YT, Zhao QS, Wang ZS, Yin ZT, Wang HS. Polydatin attenuates chronic alcohol consumption-induced cardiomyopathy through a SIRT6-dependent mechanism. Food Funct 2022; 13:7302-7319. [PMID: 35726783 DOI: 10.1039/d2fo00966h] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Polydatin has attracted much attention as a potential cardioprotective agent against ischemic heart disease and diabetic cardiomyopathy. However, the effect and mechanism of polydatin supplementation on alcoholic cardiomyopathy (ACM) are still unknown. This study aimed to determine the therapeutic effect of polydatin against ACM and to explore the molecular mechanisms with a focus on SIRT6-AMP-activated protein kinase (AMPK) signaling and mitochondrial function. The ACM model was established by feeding C57/BL6 mice with an ethanol Lieber-DeCarli diet for 12 weeks. The mice received polydatin (20 mg kg-1) or vehicle treatment. We showed that polydatin treatment not only improved cardiac function but also reduced myocardial fibrosis and dynamin-related protein 1 (Drp-1)-mediated mitochondrial fission, and enhanced PTEN-induced putative kinase 1 (PINK1)-Parkin-dependent mitophagy in alcohol-treated myocardium. Importantly, these beneficial effects were mimicked by SIRT6 overexpression but abolished by the infection of recombinant serotype 9 adeno-associated virus (AAV9) carrying SIRT6-specific small hairpin RNA. Mechanistically, alcohol consumption induced a gradual decrease in the myocardial SIRT6 level, while polydatin effectively activated SIRT6-AMPK signaling and modulated mitochondrial dynamics and mitophagy, thus reducing oxidative stress damage and preserving mitochondrial function. In summary, these data present new information regarding the therapeutic actions of polydatin, suggesting that the activation of SIRT6 signaling may represent a new approach for tackling ACM-related cardiac dysfunction.
Collapse
Affiliation(s)
- Li-Ming Yu
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, P. R. China.
| | - Xue Dong
- The Third Outpatient Department, General Hospital of Northern Theater Command, 49 Beiling Road, Shenyang, Liaoning 110032, P. R. China
| | - Ning Li
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, P. R. China.
| | - Hui Jiang
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, P. R. China.
| | - Ji-Kai Zhao
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, P. R. China.
| | - Yin-Li Xu
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, P. R. China.
| | - Deng-Yue Xu
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, P. R. China.
| | - Xiao-Dong Xue
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, P. R. China.
| | - Zi-Jun Zhou
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, P. R. China.
| | - Yu-Ting Huang
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, P. R. China.
| | - Qiu-Sheng Zhao
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, P. R. China.
| | - Zhi-Shang Wang
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, P. R. China.
| | - Zong-Tao Yin
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, P. R. China.
| | - Hui-Shan Wang
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, P. R. China.
| |
Collapse
|
22
|
Reverse pharmacology of Nimbin-N2 attenuates alcoholic liver injury and promotes the hepatoprotective dual role of improving lipid metabolism and downregulating the levels of inflammatory cytokines in zebrafish larval model. Mol Cell Biochem 2022; 477:2387-2401. [DOI: 10.1007/s11010-022-04448-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/24/2022] [Indexed: 10/18/2022]
|
23
|
Flos Carthami Exerts Hepatoprotective Action in a Rat Model of Alcoholic Liver Injury via Modulating the Metabolomics Profile. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8158699. [PMID: 35547657 PMCID: PMC9085312 DOI: 10.1155/2022/8158699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/22/2022] [Accepted: 04/05/2022] [Indexed: 02/06/2023]
Abstract
This study was intended to identify the shifts in the metabolomics profile of the hepatic tissue damaged by alcohol consumption and verify the potential restorative action of flos carthami (the flowers of Carthamus tinctorius, FC) in the protection of alcohol-induced injury by attenuating the level of identified metabolites. Rats were treated with FC and subsequently subjected to alcohol administration. The serum samples were subjected to liquid chromatography-mass spectrometry (LC-MS)-based metabolomics followed by statistical and bioinformatics analyses. The clustering of the samples showed an obvious separation in the principal component analysis (PCA) plot, and the scores plot of the orthogonal partial least squares-discriminant analysis (OPLS-DA) model allowed the distinction among the three groups. Among the 3211 total metabolites, 1088 features were significantly different between the control and alcohol-treated groups, while 367 metabolites were identified as differential metabolites between the alcohol- and FC-treated rat groups. Time series clustering approach indicated that 910 metabolites in profile 6 were upregulated by alcohol but subsequently reversed by FC treatment; among them, the top 10 metabolites based on the variable importance in projection (VIP) scores were 1-methyladenine, phenylglyoxylic acid, N-acetylvaline, mexiletine, L-fucose, propylthiouracil, dopamine 4-sulfate, isoleucylproline, (R)-salsolinol, and monomethyl phthalate. The Pearson correlation analysis and network construction revealed 96 hub metabolites that were upregulated in the alcohol liver injury model group but were downregulated by FC. This study confirmed the hepatoprotective effects of FC against alcohol-induced liver injury and the related changes in the metabolic profiles, which will contribute to the understanding and the treatment of alcohol-induced acute liver injury.
Collapse
|
24
|
Dai W, Wang K, Zhen X, Huang Z, Liu L. Magnesium isoglycyrrhizinate attenuates acute alcohol-induced hepatic steatosis in a zebrafish model by regulating lipid metabolism and ER stress. Nutr Metab (Lond) 2022; 19:23. [PMID: 35331265 PMCID: PMC8944020 DOI: 10.1186/s12986-022-00655-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 03/01/2022] [Indexed: 12/15/2022] Open
Abstract
Background Alcoholism is a well-known risk factor for liver injury and is one of the major causes of hepatic steatosis worldwide. Although many drugs have been reported to have protective effects against acute alcohol-induced hepatotoxicity, there is limited available treatment for alcoholic liver disease (ALD), indicating an urgent need for effective therapeutic options. Herein, we first reported the protective effects of magnesium isoglycyrrhizinate (MgIG) on acute alcohol-induced hepatic steatosis and its related mechanisms in a zebrafish model. Methods Alcohol was administered directly to embryo medium at 5 days post-fertilization (dpf) for up to 32 h. MgIG was given to the larvae 2 h before the administration of alcohol and then cotreated with alcohol starting at 5 dpf. Oil red O staining was used to determine the incidence of steatosis, and pathological features of the liver were assessed by hematoxylin–eosin staining. Biological indexes, total cholesterol (TC) and triacylglycerol (TG) were detected in the livers of zebrafish larvae. Morphological changes in the livers of zebrafish larvae were observed using liver-specific EGFP transgenic zebrafish (Tg(lfabp10a:eGFP)). The expression levels of critical molecules related to endoplasmic reticulum (ER) stress and lipid metabolism were detected by qRT–PCR, whole-mount in situ hybridization and western blotting. Results Alcohol-treated larvae developed hepatomegaly and steatosis after 32 h of exposure. We found that MgIG improved hepatomegaly and reduced the incidence of steatosis in a dose-dependent manner by oil red O staining and diminished deposits of alcohol-induced fat droplets by histologic analysis. Moreover, MgIG significantly decreased the levels of TC and TG in the livers of zebrafish larvae. Furthermore, the expression levels of critical genes involved in ER stress (atf6, irela, bip, chop) and the key enzymes regulating lipid metabolism (acc1, fasn, hmgcs1 and hmgcra) were significantly higher in the alcohol-treated group than in the control group. However, in the MgIG plus alcohol-treated group, the expression of these genes was markedly decreased compared with that in the alcohol-treated group. Whole-mount in situ hybridization and western blotting also showed that MgIG had an effect on the expression levels of critical genes and proteins involved in lipid metabolism and ER stress. Our results revealed that MgIG could markedly regulate these genes and protect the liver from ER stress and lipid metabolism disorders. Conclusions Our study is the first to demonstrate that MgIG could protect the liver from acute alcohol stimulation by ameliorating the disorder of lipid metabolism and regulating ER stress in zebrafish larvae. Supplementary Information The online version contains supplementary material available at 10.1186/s12986-022-00655-7.
Collapse
Affiliation(s)
- Wencong Dai
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Kunyuan Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, Guangdong, China
| | - Xinchun Zhen
- Department of Infectious Diseases, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Zhibin Huang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Li Liu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
25
|
Tang D, Zhang Q, Duan H, Ye X, Liu J, Peng W, Wu C. Polydatin: A Critical Promising Natural Agent for Liver Protection via Antioxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9218738. [PMID: 35186191 PMCID: PMC8853764 DOI: 10.1155/2022/9218738] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 01/18/2022] [Indexed: 12/11/2022]
Abstract
Polydatin, one of the natural active small molecules, was commonly applied in protecting and treating liver disorders in preclinical studies. Oxidative stress plays vital roles in liver injury caused by various factors, such as alcohol, viral infections, dietary components, drugs, and other chemical reagents. It is reported that oxidative stress might be one of the main reasons in the progressive development of alcohol liver diseases (ALDs), nonalcoholic liver diseases (NAFLDs), liver injury, fibrosis, hepatic failure (HF), and hepatocellular carcinoma (HCC). In this paper, we comprehensively summarized the pharmacological effects and potential molecular mechanisms of polydatin for protecting and treating liver disorders via regulation of oxidative stress. According to the previous studies, polydatin is a versatile natural compound and exerts significantly protective and curative effects on oxidative stress-associated liver diseases via various molecular mechanisms, including amelioration of liver function and insulin resistance, inhibition of proinflammatory cytokines, lipid accumulation, endoplasmic reticulum stress and autophagy, regulation of PI3K/Akt/mTOR, and activation of hepatic stellate cells (HSCs), as well as increase of antioxidant enzymes (such as catalase (CAT), glutathione peroxidase (GPx), glutathione (GSH), superoxide dismutase (SOD), glutathione reductase (GR), and heme oxygenase-1 (HO-1)). In addition, polydatin acts as a free radical scavenger against reactive oxygen species (ROS) by its phenolic and ethylenic bond structure. However, further clinical investigations are still needed to explore the comprehensive molecular mechanisms and confirm the clinical treatment effect of polydatin in liver diseases related to regulation of oxidative stress.
Collapse
Affiliation(s)
- Dandan Tang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu 611137, China
| | - Qing Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu 611137, China
| | - Huxinyue Duan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu 611137, China
| | - Xun Ye
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu 611137, China
| | - Jia Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu 611137, China
| | - Wei Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu 611137, China
| | - Chunjie Wu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu 611137, China
| |
Collapse
|
26
|
Ye P, Wu H, Jiang Y, Xiao X, Song D, Xu N, Ma X, Zeng J, Guo Y. Old dog, new tricks: Polydatin as a multitarget agent for current diseases. Phytother Res 2021; 36:214-230. [PMID: 34936712 DOI: 10.1002/ptr.7306] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/19/2021] [Accepted: 09/22/2021] [Indexed: 12/24/2022]
Abstract
Polydatin (PD) is a natural single-crystal product that is primarily extracted from the traditional plant Polygonum cuspidatum Sieb. et Zucc. Early research showed that PD exhibited a variety of biological activities. PD has attracted increasing research interest since 2014, but no review comprehensively summarized the new findings. A great gap between its biological activities and drug development remains. It is necessary to summarize new findings on the pharmacological effects of PD on current diseases. We propose that PD will most likely be used in cardiac and cerebral ischaemia/reperfusion-related diseases and atherosclerosis in the future. The present work classified these new findings according to diseases and summarized the main effects of PD via specific mechanisms of action. In summary, we found that PD played a therapeutic role in a variety of diseases, primarily via five mechanisms: antioxidative effects, antiinflammatory effects, regulation of autophagy and apoptosis, maintenance of mitochondrial function, and lipid regulation.
Collapse
Affiliation(s)
- Penghui Ye
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hefei Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yinxiao Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaolin Xiao
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dan Song
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Nuo Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinhao Zeng
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yaoguang Guo
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
27
|
Zhao L, Mehmood A, Yuan D, Usman M, Murtaza MA, Yaqoob S, Wang C. Protective Mechanism of Edible Food Plants against Alcoholic Liver Disease with Special Mention to Polyphenolic Compounds. Nutrients 2021; 13:nu13051612. [PMID: 34064981 PMCID: PMC8151346 DOI: 10.3390/nu13051612] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 12/13/2022] Open
Abstract
Alcoholic liver disease (ALD) is one type of liver disease, causing a global healthcare problem and mortality. The liver undergoes tissue damage by chronic alcohol consumption because it is the main site for metabolism of ethanol. Chronic alcohol exposure progresses from alcoholic fatty liver (AFL) to alcoholic steatohepatitis (ASH), which further lead to fibrosis, cirrhosis, and even hepatocellular cancer. Therapeutic interventions to combat ALD are very limited such as use of corticosteroids. However, these therapeutic drugs are not effective for long-term usage. Therefore, additional effective and safe therapies to cope with ALD are urgently needed. Previous studies confirmed that edible food plants and their bioactive compounds exert a protective effect against ALD. In this review article, we summarized the hepatoprotective potential of edible food plants and their bioactive compounds. The underlying mechanism for the prevention of ALD by edible food plants was as follows: anti-oxidation, anti-inflammation, lipid regulation, inhibition of apoptosis, gut microbiota composition modulation, and anti-fibrosis.
Collapse
Affiliation(s)
- Liang Zhao
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; (L.Z.); (A.M.); (M.U.); (C.W.)
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Arshad Mehmood
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; (L.Z.); (A.M.); (M.U.); (C.W.)
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Dongdong Yuan
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; (L.Z.); (A.M.); (M.U.); (C.W.)
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- Correspondence: ; Tel.: +86-10-6898-4547
| | - Muhammad Usman
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; (L.Z.); (A.M.); (M.U.); (C.W.)
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Mian Anjum Murtaza
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha 40100, Pakistan;
| | - Sanabil Yaqoob
- Department of Food Science and Technology, University of Central Punjab, Punjab 54590, Pakistan;
| | - Chengtao Wang
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; (L.Z.); (A.M.); (M.U.); (C.W.)
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
28
|
Pasqualotto A, Ayres R, Longo L, Del Duca Lima D, Losch de Oliveira D, Alvares-da-Silva MR, Reverbel da Silveira T, Uribe-Cruz C. Chronic exposure to ethanol alters the expression of miR-155, miR-122 and miR-217 in alcoholic liver disease in an adult zebrafish model. Biomarkers 2021; 26:146-151. [PMID: 33435755 DOI: 10.1080/1354750x.2021.1874051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AIM The aim of this study was to evaluate the hepatic and circulating expression of miR-155, miR-122 and miR-217 in a model of chronic exposure to ethanol in adult zebrafish. METHODS Wild-type adult zebrafish were divided into two groups (n = 281): an EG (exposed to 0.5% v/v Ethanol in aquarium water) and a CG (without ethanol). After 28 days the animals were euthanized, followed by histopathological analysis, quantification of lipids, triglycerides and inflammatory cytokines in liver tissue. miR-155, miR-122 and miR-217 gene expression was quantified in liver tissue and serum. RESULTS We observed hepatic lesions and increased accumulation of hepatic lipids in the EG. The expression of il-1β was higher in the EG, but there were no differences in il-10 and tnf-α between groups. In the liver, expression of miR-122 and miR-155 was higher in the EG. The circulating expression of miR-155 and miR-217 was significantly higher in the EG. CONCLUSION Chronic exposure to ethanol in zebrafish leads to altered hepatic and circulating expression of miR-155, miR-122 and miR-217. This confirms its potential as a biomarker and therapeutic target.
Collapse
Affiliation(s)
- Amanda Pasqualotto
- Experimental Hepatology and Gastroenterology Laboratory, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Raquel Ayres
- Experimental Hepatology and Gastroenterology Laboratory, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Larisse Longo
- Experimental Hepatology and Gastroenterology Laboratory, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Diego Del Duca Lima
- Graduate Program in Biological Sciences-Biochemistry, Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Diogo Losch de Oliveira
- Graduate Program in Biological Sciences-Biochemistry, Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Mário Reis Alvares-da-Silva
- Experimental Hepatology and Gastroenterology Laboratory, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Themis Reverbel da Silveira
- Experimental Hepatology and Gastroenterology Laboratory, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Carolina Uribe-Cruz
- Experimental Hepatology and Gastroenterology Laboratory, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
29
|
Zhao P, Lu W, Hong Y, Chen J, Dong S, Huang Q. Long-term wet precipitation of PM 2.5 disturbed the gut microbiome and inhibited the growth of marine medaka Oryzias melastigma. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142512. [PMID: 33011596 DOI: 10.1016/j.scitotenv.2020.142512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/13/2020] [Accepted: 09/16/2020] [Indexed: 06/11/2023]
Abstract
Wet precipitation, as an important process of geochemical cycling and the most effective way of cleaning fine atmospheric particles (PM2.5), can introduce the toxic substances in the atmosphere into the water environment. The adverse effect of wet precipitation of PM2.5 on marine fish is still unclear. In this study, PM2.5 samples were collected from six locations along coastal areas of the south China sea for 30 days and used to simulate the impacts of multiday discontinuity wet precipitation of PM2.5 on marine medaka (Oryzias melastigma) in the case of 30 days discontinuity heavy rain (rainfall ≥ 7.6 mm/h and persist 1 h each day). Results showed that wet precipitation of PM2.5 significantly inhibited the body weight gain of fish. In accordance, the size and number of lipid droplets in liver of the exposed groups were lower than those in normal control (NC) group. The expressions of genes involving in lipid degradation including lipoprotein lipase gene (LPL) and carnitine palmitoyltransferase gene (CPT) were up-regulated after exposure. The composition, diversity and function of gut microbiome were affected by wet precipitation of PM2.5. PM2.5 from industrial areas that have higher concentrations of metal profiles show more obvious impacts than PM2.5 from agricultural leisure areas that possessed lower concentrations. All together, the results indicated that wet precipitation of PM2.5 can decrease the diversity of gut microbiome, affect the lipid metabolism, and finally suppress the growth of marine medaka. It confirmed the potential ecological risks of long-term rainfall in air pollution areas to the aquatic organisms.
Collapse
Affiliation(s)
- Peiqiang Zhao
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjia Lu
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Youwei Hong
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Jinsheng Chen
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Sijun Dong
- Institute of Life Science and Green Development, Hebei University, Baoding 071002, China.
| | - Qiansheng Huang
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
30
|
Pessina A, Di Vincenzo M, Maradonna F, Marchegiani F, Olivieri F, Randazzo B, Gioacchini G, Carnevali O. Polydatin Beneficial Effects in Zebrafish Larvae Undergoing Multiple Stress Types. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18031116. [PMID: 33513921 PMCID: PMC7908490 DOI: 10.3390/ijerph18031116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/17/2021] [Accepted: 01/22/2021] [Indexed: 12/11/2022]
Abstract
Polydatin is a polyphenol, whose beneficial properties, including anti-inflammatory and antioxidant activity, have been largely demonstrated. At the same time, copper has an important role in the correct organism homeostasis and alteration of its concentration can induce oxidative stress. In this study, the efficacy of polydatin to counteract the stress induced by CuSO4 exposure or by caudal fin amputation was investigated in zebrafish larvae. The study revealed that polydatin can reduced the stress induced by a 2 h exposure to 10 µM CuSO4 by lowering the levels of il1b and cxcl8b.1 and reducing neutrophils migration in the head and along the lateral line. Similarly, polydatin administration reduced the number of neutrophils in the area of fin cut. In addition, polydatin upregulates the expression of sod1 mRNA and CAT activity, both involved in the antioxidant response. Most of the results obtained in this study support the working hypothesis that polydatin administration can modulate stress response and its action is more effective in mitigating the effects rather than in preventing chemical damages.
Collapse
Affiliation(s)
- Andrea Pessina
- Department of Life and Environmental Sciences, DiSVA, Università Politecnica delle Marche, 60131 Ancona, Italy; (A.P.); (M.D.V.); (F.M.); (B.R.); (G.G.)
| | - Mariangela Di Vincenzo
- Department of Life and Environmental Sciences, DiSVA, Università Politecnica delle Marche, 60131 Ancona, Italy; (A.P.); (M.D.V.); (F.M.); (B.R.); (G.G.)
| | - Francesca Maradonna
- Department of Life and Environmental Sciences, DiSVA, Università Politecnica delle Marche, 60131 Ancona, Italy; (A.P.); (M.D.V.); (F.M.); (B.R.); (G.G.)
| | - Francesca Marchegiani
- Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA, 60100 Ancona, Italy; (F.M.); (F.O.)
| | - Fabiola Olivieri
- Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA, 60100 Ancona, Italy; (F.M.); (F.O.)
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, 60100 Ancona, Italy
| | - Basilio Randazzo
- Department of Life and Environmental Sciences, DiSVA, Università Politecnica delle Marche, 60131 Ancona, Italy; (A.P.); (M.D.V.); (F.M.); (B.R.); (G.G.)
| | - Giorgia Gioacchini
- Department of Life and Environmental Sciences, DiSVA, Università Politecnica delle Marche, 60131 Ancona, Italy; (A.P.); (M.D.V.); (F.M.); (B.R.); (G.G.)
| | - Oliana Carnevali
- Department of Life and Environmental Sciences, DiSVA, Università Politecnica delle Marche, 60131 Ancona, Italy; (A.P.); (M.D.V.); (F.M.); (B.R.); (G.G.)
- Correspondence:
| |
Collapse
|
31
|
Liu YS, Yuan MH, Zhang CY, Liu HM, Liu JR, Wei AL, Ye Q, Zeng B, Li MF, Guo YP, Guo L. Puerariae Lobatae radix flavonoids and puerarin alleviate alcoholic liver injury in zebrafish by regulating alcohol and lipid metabolism. Biomed Pharmacother 2020; 134:111121. [PMID: 33341668 DOI: 10.1016/j.biopha.2020.111121] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 11/27/2020] [Accepted: 12/07/2020] [Indexed: 01/01/2023] Open
Abstract
Exessive drinking is commonly associated with a wide spectrum of liver injuries. The term alcoholic liver disease (ALD) is generally used to refer to this spectrum of hepatic abnormalities, and the term hepatic steatosis denotes early lesions. Puerariae Lobatae Radix (PLR) is a common traditional Chinese medicine and has been widely used as an efficient treatment for alcohol-induced damage. Flavonoids are the principal components of PLR that could potentially be responsible for the activation of alcohol metabolism and lipid-lowering effects. However, little is known about the mechanisms underlying their activity against alcoholic injury. In this study, PLR flavonoids (PLF) were obtained by microwave extraction. A 2% ethanol solution was used to establish a model of alcoholic fatty liver disease by exposure of zebrafish larvae for 32 h, and then the zebrafish were administered PLF and puerarin. The results showed that PLF and puerarin significantly decreased lipid accumulation and the levels of total cholesterol and triglycerides in zebrafish larvae. Moreover, PLF and puerarin downregulated the expression of genes related to alcohol and lipid metabolism (CYP2y3, CYP3a65, ADH8a, ADH8b, HMGCRB, and FASN), endoplasmic reticulum stress, and DNA damage (CHOP, EDEM1, GADD45αa, and ATF6) and reduced levels of inflammatory factors (IL-1β, TNF-α) in zebrafish larvae. PLF and puerarin increased the phosphorylation of AMP-activated protein kinase-α (AMPKα) and decreased the total protein level of ACC1. The findings suggested that PLF and puerarin alleviated alcohol-induced hepatic steatosis in zebrafish larvae by regulating alcohol and lipid metabolism, which was closely related to the regulation of the AMPKα-ACC signaling pathway. In conclusion, the study provided a possible therapeutic drug for ALD treatment.
Collapse
Affiliation(s)
- Yu-Shi Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ming-Hao Yuan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cun-Yan Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Hong-Mei Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Juan-Ru Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ai-Ling Wei
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qiang Ye
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Bin Zeng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Mei-Feng Li
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yi-Ping Guo
- Quantitative and Systems Biology Graduate Program, School of Natural Sciences, University of California, Merced, CA, 95343, USA.
| | - Li Guo
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
32
|
Chen ZQ, Sun XH, Li XJ, Xu ZC, Yang Y, Lin ZY, Xiao HM, Zhang M, Quan SJ, Huang HQ. Polydatin attenuates renal fibrosis in diabetic mice through regulating the Cx32-Nox4 signaling pathway. Acta Pharmacol Sin 2020; 41:1587-1596. [PMID: 32724174 PMCID: PMC7921128 DOI: 10.1038/s41401-020-0475-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022] Open
Abstract
We previously found that polydatin could attenuate renal oxidative stress in diabetic mice and improve renal fibrosis. Recent evidence shows that NADPH oxidase 4 (Nox4)-derived reactive oxygen species (ROS) contribute to inflammatory and fibrotic processes in diabetic kidneys. In this study we investigated whether polydatin attenuated renal fibrosis by regulating Nox4 in vitro and in vivo. In high glucose-treated rat glomerular mesangial cells, polydatin significantly decreased the protein levels of Nox4 by promoting its K48-linked polyubiquitination, thus inhibited the production of ROS, and eventually decreasing the expression of fibronectin (FN) and intercellular adhesion molecule-1 (ICAM-1), the main factors that exacerbate diabetic renal fibrosis. Overexpression of Nox4 abolished the inhibitory effects of polydatin on FN and ICAM-1 expression. In addition, the expression of Connexin32 (Cx32) was significantly decreased, which was restored by polydatin treatment. Cx32 interacted with Nox4 and reduced its protein levels. Knockdown of Cx32 abolished the inhibitory effects of polydatin on the expression of FN and ICAM-1. In the kidneys of streptozocin-induced diabetic mice, administration of polydatin (100 mg·kg-1·d-1, ig, 6 days a week for 12 weeks) increased Cx32 expression and reduced Nox4 expression, decreased renal oxidative stress levels and the expression of fibrotic factors, eventually attenuating renal injury and fibrosis. In conclusion, polydatin promotes K48-linked polyubiquitination and degradation of Nox4 by restoring Cx32 expression, thereby decreasing renal oxidative stress levels and ultimately ameliorating the pathological progress of diabetic renal fibrosis. Thus, polydatin reduces renal oxidative stress levels and attenuates diabetic renal fibrosis through regulating the Cx32-Nox4 signaling pathway.
Collapse
Affiliation(s)
- Zhi-Quan Chen
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning, 530021, China
| | - Xiao-Hong Sun
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xue-Juan Li
- Department of Pharmacy, Shenzhen Children's Hospital, Shenzhen, 518026, China
| | - Zhan-Chi Xu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yan Yang
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ze-Yuan Lin
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Hai-Ming Xiao
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Meng Zhang
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Shi-Jian Quan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - He-Qing Huang
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
33
|
Cadena PG, Sales Cadena MR, Sarmah S, Marrs JA. Protective effects of quercetin, polydatin, and folic acid and their mixtures in a zebrafish (Danio rerio) fetal alcohol spectrum disorder model. Neurotoxicol Teratol 2020; 82:106928. [PMID: 32861842 PMCID: PMC7669573 DOI: 10.1016/j.ntt.2020.106928] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 12/26/2022]
Abstract
Protective effects of quercetin (QUE), polydatin (POL), and folic acid (FA) and their mixtures were tested using zebrafish to model fetal alcohol spectrum disorder in this study. Zebrafish embryos were exposed to 150 mM ethanol for 6 or 22 h and co-treated with QUE, POL, FA, and their mixtures (37.5-100.0 μM). Epiboly progression, teratogenic effects, and behavior were evaluated. Ethanol exposure reduced epiboly, and FA and QUE protected against these ethanol-induced defects. POL did not reduce epiboly defects. The mixture QUE + FA showed a possible antagonistic effect. The observed teratogenic effects were similar in all ethanol exposed groups. QUE, FA and QUE + POL reduced the percentage of affected animals, but treatments did not eliminate teratogenic effects. Behavioral measurements were divided into small (between 4 and 8 mm/s) and high swimming activity (>8 mm/s). All experimental groups displayed a reduction in small swimming activity as compared to control and ethanol groups when exposed to bright light. Additionally, larvae exposed to ethanol were more inhibited than control, not showing a habituation period (after 60 min of experiment) in high swimming activity. Chemical treatments like QUE and POL reduced behavioral defects induced by ethanol exposure. In conclusion, this study presents new evidence that QUE, POL, FA and their mixtures partially protected epiboly, teratogenic, and behavioral defects induced by ethanol exposure. QUE, FA and QUE + POL were more effective in reducing these defects than the other studied compounds and mixtures.
Collapse
Affiliation(s)
- Pabyton Gonçalves Cadena
- Departamento de Morfologia e Fisiologia Animal (DMFA), Universidade Federal Rural de Pernambuco, Av. Dom Manoel de Medeiros s/n, Dois Irmãos, 52171-900, Recife, PE, Brazil; Department of Biology, Indiana University Purdue University Indianapolis, 723 West Michigan St., Indianapolis, IN 46202, USA.
| | - Marilia Ribeiro Sales Cadena
- Departamento de Biologia (DB), Universidade Federal Rural de Pernambuco, Av. Dom Manoel de Medeiros s/n, Dois Irmãos, 52171-900 Recife, PE, Brazil; Department of Biology, Indiana University Purdue University Indianapolis, 723 West Michigan St., Indianapolis, IN 46202, USA
| | - Swapnalee Sarmah
- Department of Biology, Indiana University Purdue University Indianapolis, 723 West Michigan St., Indianapolis, IN 46202, USA
| | - James A Marrs
- Department of Biology, Indiana University Purdue University Indianapolis, 723 West Michigan St., Indianapolis, IN 46202, USA.
| |
Collapse
|
34
|
Jiang J, Chen L, Wu S, Lv L, Liu X, Wang Q, Zhao X. Effects of difenoconazole on hepatotoxicity, lipid metabolism and gut microbiota in zebrafish (Danio rerio). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114844. [PMID: 32480235 DOI: 10.1016/j.envpol.2020.114844] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 04/29/2020] [Accepted: 05/17/2020] [Indexed: 06/11/2023]
Abstract
In current study, larvae and adult zebrafish were exposed to difenoconazole to assess its effect on hepatotoxicity, lipid metabolism and gut microbiota. Results demonstrated that difenoconazole could induce hepatotoxicity in zebrafish larvae and adult, 0.400, 1.00, 2.00 mg/L difenoconazole caused yolk retention, yolk sac edema or liver degeneration after embryos exposure for 120 h, hepatocyte vacuolization and neoplasm necrosis were observed in adult liver after 0.400 mg/L difenoconazole exposure for 21 d. RNA sequencing showed that the 41 and 567 differentially expressed genes in zebrafish larvae and liver induced by 0.400 mg/L difenoconazole, were concentrated in pathways related to protein digestion and absorption, pancreatic secretion, steroid biosynthesis, and different metabolic pathways including galactose or sugar metabolism. Difenoconazole exposure caused lipid accumulation in larval yolk sac, and the elevated triglyceride (TG), malondialdehyde (MDA) and reactive oxygen species (ROS) levels in larvae and liver, which further confirmed the lipid metabolism disorders induced by difenoconazole. The results further showed that difenoconazole increased the abundance of gut microbiota such as Firmicutes, Aeromonas, Enterobacteriaceae and Bacteroides, further suggested that gut microbiota might participate in lipid metabolism and hepatotoxicity during zebrafish development. These findings advanced the field of the difenoconazole-induced developmental toxicity in larvae and adult zebrafish, and the imbalance of gut microbiota provided the plausible mode of action for the liver damage and disordered lipid metabolism in zebrafish.
Collapse
Affiliation(s)
- Jinhua Jiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Liezhong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Shenggan Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Lu Lv
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Xinju Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Qiang Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Xueping Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China.
| |
Collapse
|
35
|
Insights into pharmacological mechanisms of polydatin in targeting risk factors-mediated atherosclerosis. Life Sci 2020; 254:117756. [DOI: 10.1016/j.lfs.2020.117756] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 12/20/2022]
|
36
|
Proshkina E, Shaposhnikov M, Moskalev A. Genome-Protecting Compounds as Potential Geroprotectors. Int J Mol Sci 2020; 21:E4484. [PMID: 32599754 PMCID: PMC7350017 DOI: 10.3390/ijms21124484] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 02/06/2023] Open
Abstract
Throughout life, organisms are exposed to various exogenous and endogenous factors that cause DNA damages and somatic mutations provoking genomic instability. At a young age, compensatory mechanisms of genome protection are activated to prevent phenotypic and functional changes. However, the increasing stress and age-related deterioration in the functioning of these mechanisms result in damage accumulation, overcoming the functional threshold. This leads to aging and the development of age-related diseases. There are several ways to counteract these changes: 1) prevention of DNA damage through stimulation of antioxidant and detoxification systems, as well as transition metal chelation; 2) regulation of DNA methylation, chromatin structure, non-coding RNA activity and prevention of nuclear architecture alterations; 3) improving DNA damage response and repair; 4) selective removal of damaged non-functional and senescent cells. In the article, we have reviewed data about the effects of various trace elements, vitamins, polyphenols, terpenes, and other phytochemicals, as well as a number of synthetic pharmacological substances in these ways. Most of the compounds demonstrate the geroprotective potential and increase the lifespan in model organisms. However, their genome-protecting effects are non-selective and often are conditioned by hormesis. Consequently, the development of selective drugs targeting genome protection is an advanced direction.
Collapse
Affiliation(s)
- Ekaterina Proshkina
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
| | - Mikhail Shaposhnikov
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
| | - Alexey Moskalev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
- Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky prosp., 167001 Syktyvkar, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
37
|
Zhao Y, Cao X, Fu L, Gao J. n-3 PUFA reduction caused by fabp2 deletion interferes with triacylglycerol metabolism and cholesterolhomeostasis in fish. Appl Microbiol Biotechnol 2020; 104:2149-2161. [PMID: 31950220 DOI: 10.1007/s00253-020-10366-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/29/2019] [Accepted: 01/09/2020] [Indexed: 01/20/2023]
Abstract
Fatty acid-binding protein 2 (Fabp2), which is involved in the transport of long-chain fatty acids, is widely studied in mammals. Nevertheless, the role of this protein in teleost fish is mostly unknown. Here, we produced a fabp2-/- zebrafish (KO) animal model. Compared with wild-type zebrafish (WT), KO had a markedly decreased content of intestinal n-3 poly-unsaturated fatty acids (n-3 PUFAs) and increased levels of intestinal, hepatic, and serum triacylglycerols (TAG). The intestinal transcriptome analysis of KO and WT revealed an obviously disrupted TAG metabolism and up-regulated bile secretion in KO. Expression levels of the genes related to fatty acid transport and cholesterol (CL) absorption in the intestine of KO were significantly lower than those of WT, while the expression levels of genes related to intestinal TAG synthesis and hepatic CL synthesis were in the opposite direction. To confirm these findings, we further established fabp2 transgenic zebrafish (TG). Compared with WT, TG had a markedly increased content of intestinal n-3 PUFAs, a significantly decreased level of hepatic TAG, and significantly higher expression of genes related to fatty acid transport and CL absorption in the intestine. In conclusion, this study suggests that teleost fish fabp2 could promote intestinal n-3 PUFA absorption to mediate TAG synthesis and CL homeostasis, by regulating the genes involved in lipid metabolism.
Collapse
Affiliation(s)
- Yan Zhao
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaojuan Cao
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, No. 1 Shizishan Stress, Hongshan District, Wuhan, 430070, Hubei Province, China
| | - Lele Fu
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jian Gao
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China.
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, No. 1 Shizishan Stress, Hongshan District, Wuhan, 430070, Hubei Province, China.
| |
Collapse
|
38
|
Huang S, Zhou C, Zeng T, Li Y, Lai Y, Mo C, Chen Y, Huang S, Lv Z, Gao L. P-Hydroxyacetophenone Ameliorates Alcohol-Induced Steatosis and Oxidative Stress via the NF-κB Signaling Pathway in Zebrafish and Hepatocytes. Front Pharmacol 2020; 10:1594. [PMID: 32047433 PMCID: PMC6997130 DOI: 10.3389/fphar.2019.01594] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 12/09/2019] [Indexed: 12/12/2022] Open
Abstract
Alcoholic liver disease (ALD), which is recognized as an important health problem worldwide, is a direct consequence of alcohol consumption, which can induce alcoholic fatty liver, alcoholic steatohepatitis, fibrosis and cirrhosis. P-Hydroxyacetophenone (p-HAP) is mainly used as a choleretic and hepatoprotective compound and has anti-hepatitis B, antioxidative and anti-inflammatory effects. However, no experimental report has focused on p-HAP in ALD, and the effect and mechanism of p-HAP in ALD remain unknown. In addition, there is no research on p-HAP in the treatment of ALD. The potential molecular mechanisms of p-HAP against acute alcoholic liver injury remain unknown. In this study, we aimed to investigate whether p-HAP alleviates ALD and to clarify the potential molecular mechanisms. Zebrafish larvae were soaked in 350 mmol/l ethanol for 32 h at 4 days post fertilization (dpf) and then treated with p-HAP for 48 h. We chose various outcome measures, such as liver histomorphological changes, antioxidation and antiapoptosis capability and expression of inflammation-related proteins, to elucidate the essential mechanism of p-HAP in the treatment of alcohol-induced liver damage. Subsequently, we applied pathological hematoxylin and eosin (H&E) staining, Nile red staining and oil red O staining to detect the histomorphological and lipid changes in liver tissues. We also used TUNEL staining, immunochemistry and Western blot analysis to reveal the changes in apoptosis- and inflammation-related proteins. In particular, we used a variety of fluorescent probes to detect the antioxidant capacity of p-HAP in live zebrafish larvae in vivo. In addition, we discovered that p-HAP treatment relieved alcoholic hepatic steatosis in a dose-dependent manner and that the 50 μM dose had the best therapeutic effect. Generally, this research indicated that p-HAP might reduce oxidative stress and cell apoptosis in vivo and in vitro via the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Sha Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Chuying Zhou
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Ting Zeng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yujia Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,The Key Laboratory of Molecular Biology, State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yuqi Lai
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Chan Mo
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yuyao Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Shaohui Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Zhiping Lv
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Lei Gao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,The Key Laboratory of Molecular Biology, State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
39
|
Zheng Y, Hu G, Wu W, Qiu L, Bing X, Chen J. Time-dependent gut microbiota analysis of juvenile Oreochromis niloticus by dietary supplementation of resveratrol. Arch Microbiol 2019; 202:43-53. [PMID: 31463601 DOI: 10.1007/s00203-019-01712-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/24/2019] [Accepted: 07/31/2019] [Indexed: 02/07/2023]
Abstract
To evaluate the changes in bacterial diversity at various time points under resveratrol supplementation, we aimed to investigate the diversification of gut microbiota and the changes in total genetic diversity. We performed 16S rDNA gene sequencing at different time points (15, 30, and 45 days) to analyze the gut microbiota of tilapia. Fusobacteria, Proteobacteria, and Bacteroidetes (15 days) or Cyanobacteria (30 and 45 days) were found to be the three most abundant phyla. Cyanobacteria (15 and 30 days), Proteobacteria (15 days), Firmicutes and Chlamydiae (30 and 45 days), Planctomycetes (30 days), Bacteroidetes, Actinobacteria, and Fusobacteria (45 days) in the 0.05 g/kg RES group increased as compared to that in the controls. Proteobacteria and Cyanobacteria significantly decreased and increased at 30 and 45 days, respectively, while the reverse pattern was observed at 15 days. The Bacteroidetes:Firmicutes and Proteobacteria:Cyanobacteria ratios were significantly increased (15 and 45 days, P < 0.05) and decreased (30 days, P < 0.05). RES supplementation did not affect the richness and diversity of the gut microbiota in tilapia. Our findings may contribute to the development of strategies for the management of diseases.
Collapse
Affiliation(s)
- Yao Zheng
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences/Fishery Eco-Environment Monitoring Center of Lower Reaches of Yangtze River, Ministry of Agriculture/Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Environmental Factors (Wuxi), Ministry of Agriculture, No. 9 Shanshui East Rd., Wuxi, Jiangsu, 214081, People's Republic of China
| | - Gengdong Hu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences/Fishery Eco-Environment Monitoring Center of Lower Reaches of Yangtze River, Ministry of Agriculture/Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Environmental Factors (Wuxi), Ministry of Agriculture, No. 9 Shanshui East Rd., Wuxi, Jiangsu, 214081, People's Republic of China
| | - Wei Wu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences/Fishery Eco-Environment Monitoring Center of Lower Reaches of Yangtze River, Ministry of Agriculture/Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Environmental Factors (Wuxi), Ministry of Agriculture, No. 9 Shanshui East Rd., Wuxi, Jiangsu, 214081, People's Republic of China
| | - Liping Qiu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences/Fishery Eco-Environment Monitoring Center of Lower Reaches of Yangtze River, Ministry of Agriculture/Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Environmental Factors (Wuxi), Ministry of Agriculture, No. 9 Shanshui East Rd., Wuxi, Jiangsu, 214081, People's Republic of China
| | - Xuwen Bing
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences/Fishery Eco-Environment Monitoring Center of Lower Reaches of Yangtze River, Ministry of Agriculture/Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Environmental Factors (Wuxi), Ministry of Agriculture, No. 9 Shanshui East Rd., Wuxi, Jiangsu, 214081, People's Republic of China.
| | - Jiazhang Chen
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences/Fishery Eco-Environment Monitoring Center of Lower Reaches of Yangtze River, Ministry of Agriculture/Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Environmental Factors (Wuxi), Ministry of Agriculture, No. 9 Shanshui East Rd., Wuxi, Jiangsu, 214081, People's Republic of China. .,Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture, Beijing, 100141, People's Republic of China.
| |
Collapse
|