1
|
Saribal D, Çalis H, Ceylan Z, Depciuch J, Cebulski J, Guleken Z. Investigation of the structural changes in the hippocampus and prefrontal cortex using FTIR spectroscopy in sleep deprived mice. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 321:124702. [PMID: 38917751 DOI: 10.1016/j.saa.2024.124702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 06/27/2024]
Abstract
Sleep is a basic, physiological requirement for living things to survive and is a process that covers one third of our lives. Melatonin is a hormone that plays an important role in the regulation of sleep. Sleep deprivation affect brain structures and functions. Sleep deprivation causes a decrease in brain activity, with particularly negative effects on the hippocampus and prefrontal cortex. Despite the essential role of protein and lipids vibrations, polysaccharides, fatty acid side chains functional groups, and ratios between amides in brain structures and functions, the brain chemical profile exposed to gentle handling sleep deprivation model versus Melatonin exposure remains unexplored. Therefore, the present study, aims to investigate a molecular profile of these regions using FTIR spectroscopy measurement's analysis based on lipidomic approach with chemometrics and multivariate analysis to evaluate changes in lipid composition in the hippocampus, prefrontal regions of the brain. In this study, C57BL/6J mice were randomly assigned to either the control or sleep deprivation group, resulting in four experimental groups: Control (C) (n = 6), Control + Melatonin (C + M) (n = 6), Sleep Deprivation (S) (n = 6), and Sleep Deprivation + Melatonin (S + M) (n = 6). Interventions were administered each morning via intraperitoneal injections of melatonin (10 mg/kg) or vehicle solution (%1 ethanol + saline), while the S and S + M groups underwent 6 h of daily sleep deprivation from using the Gentle Handling method. All mice were individually housed in cages with ad libitum access to food and water within a 12-hour light-dark cycle. Results presented that the brain regions affected by insomnia. The structure of phospholipids, changed. Yet, not only changes in lipids but also in amides were noticed in hippocampus and prefrontal cortex tissues. Additionally, FTIR results showed that melatonin affected the lipids as well as the amides fraction in cortex and hippocampus collected from both control and sleep deprivation groups.
Collapse
Affiliation(s)
- Devrim Saribal
- Department of Biophysics, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Hakan Çalis
- Department of Internal Medicine, Bağcılar State Hospital, Istanbul, Turkey
| | - Zeynep Ceylan
- Samsun University, Faculty of Engineering, Department of Industrial Engineering, Samsun, Turkey
| | - Joanna Depciuch
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin 20-093, Poland; Institute of Nuclear Physics, PAS, 31342 Krakow, Poland
| | - Jozef Cebulski
- Institute of Physics, University of Rzeszow, 35-959 Rzeszow, Poland
| | - Zozan Guleken
- Department of Physiology, Faculty of Medicine, Gaziantep Islam Science and Technology University, Gaziantep, Turkey.
| |
Collapse
|
2
|
Kim P, Garner N, Tatkovic A, Parsons R, Chunduri P, Vukovic J, Piper M, Pfeffer M, Weiergräber M, Oster H, Rawashdeh O. Melatonin's role in the timing of sleep onset is conserved in nocturnal mice. NPJ BIOLOGICAL TIMING AND SLEEP 2024; 1:13. [PMID: 39493889 PMCID: PMC11530376 DOI: 10.1038/s44323-024-00013-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 09/23/2024] [Indexed: 11/05/2024]
Abstract
Melatonin supplementation strengthens non-restorative sleep rhythms and its temporal alignment in both humans and night-active rodents. Of note, although the sleep cycle is reversed in day-active and night-active (nocturnal) mammals, both, produce melatonin at night under the control of the circadian clock. The effects of exogenous melatonin on sleep and sleepiness are relatively clear, but its endogenous role in sleep, particularly, in timing sleep onset (SO), remains poorly understood. We show in nocturnal mice that the increases in mid-nighttime sleep episodes, and the mid-nighttime decline in activity, are coupled to nighttime melatonin signaling. Furthermore, we show that endogenous melatonin modulates SO by reducing the threshold for wake-to-sleep transitioning. Such link between melatonin and SO timing may explain phenomena such as increased sleep propensity in circadian rhythm sleep disorders and chronic insomnia in patients with severely reduced nocturnal melatonin levels. Our findings demonstrate that melatonin's role in sleep is evolutionarily conserved, effectively challenging the argument that melatonin cannot play a major role in sleep regulation in nocturnal mammals, where the main activity phase coincides with high melatonin levels.
Collapse
Affiliation(s)
- Pureum Kim
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD Australia
| | - Nicholas Garner
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD Australia
| | - Annaleis Tatkovic
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD Australia
| | - Rex Parsons
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD Australia
- Present Address: Australian Centres for Health Services Innovation and Healthcare Transformation, School of Public Health and Social Work, Faculty of Health, Queensland University of Technology, Kelvin Grove, QLD Australia
| | - Prasad Chunduri
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD Australia
| | - Jana Vukovic
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD Australia
- Queensland Brain Institute, University of Queensland, Brisbane, QLD Australia
| | - Michael Piper
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD Australia
- Queensland Brain Institute, University of Queensland, Brisbane, QLD Australia
| | - Martina Pfeffer
- Institute of Anatomy 2, Faculty of Medicine, Heinrich Heine University, Düsseldorf, Germany
| | - Marco Weiergräber
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices, Bonn, Germany
| | - Henrik Oster
- Institute of Neurobiology, Center of Brain, Behavior & Metabolism, University of Lübeck, Lübeck, Germany
| | - Oliver Rawashdeh
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD Australia
| |
Collapse
|
3
|
Sohn EH, Kim SN, Lee SR. Melatonin's Impact on Wound Healing. Antioxidants (Basel) 2024; 13:1197. [PMID: 39456451 PMCID: PMC11504849 DOI: 10.3390/antiox13101197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
Melatonin (5-methoxy-N-acetyltryptamine) is an indoleamine compound that plays a critical role in the regulation of circadian rhythms. While melatonin is primarily synthesized from the amino acid tryptophan in the pineal gland of the brain, it can also be produced locally in various tissues, such as the skin and intestines. Melatonin's effects in target tissues can be mediated through receptor-dependent mechanisms. Additionally, melatonin exerts various actions via receptor-independent pathways. In biological systems, melatonin and its endogenous metabolites often produce similar effects. While injuries are common in daily life, promoting optimal wound healing is essential for patient well-being and healthcare outcomes. Beyond regulating circadian rhythms as a neuroendocrine hormone, melatonin may enhance wound healing through (1) potent antioxidant properties, (2) anti-inflammatory actions, (3) infection control, (4) regulation of vascular reactivity and angiogenesis, (5) analgesic (pain-relieving) effects, and (6) anti-pruritic (anti-itch) effects. This review aims to provide a comprehensive overview of scientific studies that demonstrate melatonin's potential roles in supporting effective wound healing.
Collapse
Affiliation(s)
- Eun-Hwa Sohn
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea;
| | - Su-Nam Kim
- Natural Products Research Institute, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea
| | - Sung-Ryul Lee
- Department of Convergence Biomedical Science, Cardiovascular and Metabolic Disease Center, College of Medicine, Inje University, Busan 47392, Republic of Korea
| |
Collapse
|
4
|
Comai S, Gobbi G. Melatonin, Melatonin Receptors and Sleep: Moving Beyond Traditional Views. J Pineal Res 2024; 76:e13011. [PMID: 39400423 DOI: 10.1111/jpi.13011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/15/2024]
Abstract
Sleep, constituting approximately one-third of the human lifespan, is a crucial physiological process essential for physical and mental well-being. Normal sleep consists of an orderly progression through wakefulness, non-rapid eye movement (NREM) sleep, and rapid eye movement (REM) sleep, all of which are tightly regulated. Melatonin, often referred to as the "hormone of sleep," plays a pivotal role as a regulator of the sleep/wake cycle and exerts its effects through high-affinity G-protein coupled receptors known as MT1 and MT2. Selective modulation of these receptors presents a promising therapeutic avenue for sleep disorders. This review examines research on the multifaceted role of melatonin in sleep regulation, focusing on selective ligands targeting MT1 and MT2 receptors, as well as studies involving MT1 and MT2 knockout mice. Contrary to common beliefs, growing evidence suggests that melatonin, through MT1 and MT2 receptors, might not only influence circadian aspects of sleep but likely, also modulate the homeostatic process of sleep and sleep architecture, or could be the molecule linking the homeostatic and circadian regulation of sleep. Furthermore, the distinct brain localization of MT1 and MT2 receptors, with MT1 receptors primarily regulating REM sleep and MT2 receptors regulating NREM sleep, is discussed. Collectively, sleep regulation extends beyond the circulating levels and circadian peak of melatonin; it also critically involves the expression, molecular activation, and regulatory functions of MT1 and MT2 receptors across various brain regions and nuclei involved in the regulation of sleep. This research underscores the importance of ongoing investigation into the selective roles of MT1 and MT2 receptors in sleep. Such research efforts are expected to pave the way for the development of targeted MT1 or MT2 receptors ligands, thereby optimizing therapeutic interventions for sleep disorders.
Collapse
Affiliation(s)
- Stefano Comai
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Department of Psychiatry, McGill University and McGill University Health Center, Montreal, Québec, Canada
- IRCSS San Raffaele Scientific Institute, Milan, Italy
| | - Gabriella Gobbi
- Department of Psychiatry, McGill University and McGill University Health Center, Montreal, Québec, Canada
| |
Collapse
|
5
|
Liu Q, Xiong J, Kim DW, Lee SS, Bell BJ, Alexandre C, Blackshaw S, Latremoliere A, Wu MN. An amygdalar oscillator coordinates cellular and behavioral rhythms. Neuron 2024:S0896-6273(24)00609-3. [PMID: 39303704 DOI: 10.1016/j.neuron.2024.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 07/12/2024] [Accepted: 08/23/2024] [Indexed: 09/22/2024]
Abstract
Circadian rhythms are generated by the master pacemaker suprachiasmatic nucleus (SCN) in concert with local clocks throughout the body. Although many brain regions exhibit cycling clock gene expression, the identity of a discrete extra-SCN brain oscillator that produces rhythmic behavior has remained elusive. Here, we show that an extra-SCN oscillator in the lateral amygdala (LA) is defined by expression of the clock-output molecule mWAKE/ANKFN1. mWAKE is enriched in the anterior/dorsal LA (adLA), and, strikingly, selective disruption of clock function or excitatory signaling in adLAmWAKE neurons abolishes Period2 (PER2) rhythms throughout the LA. mWAKE levels rise at night and promote rhythmic excitability of adLAmWAKE neurons by upregulating Ca2+-activated K+ channel activity specifically at night. adLAmWAKE neurons coordinate rhythmic sensory perception and anxiety in a clock-dependent and WAKE-dependent manner. Together, these data reveal the cellular identity of an extra-SCN brain oscillator and suggest a multi-level hierarchical system organizing molecular and behavioral rhythms.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jiali Xiong
- Biochemistry, Cellular and Molecular Biology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Dong Won Kim
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sang Soo Lee
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Benjamin J Bell
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Chloe Alexandre
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Seth Blackshaw
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Alban Latremoliere
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mark N Wu
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
6
|
Liu Q, Zhang Y. Biological Clock Perspective in Rheumatoid Arthritis. Inflammation 2024:10.1007/s10753-024-02120-4. [PMID: 39126449 DOI: 10.1007/s10753-024-02120-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 06/13/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by systemic polyarticular pain, and its main pathological features include inflammatory cell infiltration, synovial fibroblast proliferation, and cartilage erosion. Immune cells, synovial cells and neuroendocrine factors play pivotal roles in the pathophysiological mechanism underlying rheumatoid arthritis. Biological clock genes regulate immune cell functions, which is linked to rhythmic changes in arthritis pathology. Additionally, the interaction between biological clock genes and neuroendocrine factors is also involved in rhythmic changes in rheumatoid arthritis. This review provides an overview of the contributions of circadian rhythm genes to RA pathology, including their interaction with the immune system and their involvement in regulating the secretion and function of neuroendocrine factors. A molecular understanding of the role of the circadian rhythm in RA may offer insights for effective disease management.
Collapse
Affiliation(s)
- Qingxue Liu
- Gengjiu Clinical College of Anhui Medical University; Anhui Zhongke Gengjiu Hospital, Hefei, 230051, China
| | - Yihao Zhang
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, 81 Meishan Rd, Hefei, 230032, China.
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
7
|
Yurtseven A, Kavalci C, Aydin YY, Aydin K, Demir ÖF, Özdemir Ş, Kavalci G. The investigation of relationship between serum melatonin levels with Beck Depression Inventory and Beck Scale for Suicidal Ideation in suicide patients. REVISTA DA ASSOCIACAO MEDICA BRASILEIRA (1992) 2024; 70:e20231614. [PMID: 39045956 PMCID: PMC11288271 DOI: 10.1590/1806-9282.20231614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/03/2024] [Indexed: 07/25/2024]
Abstract
OBJECTIVE Melatonin plays a role in many biological and physiological events. There are studies in the literature relating melatonin levels to many psychiatric disorders such as schizophrenia, bipolar disorder, and major depressive disorder. We aimed to investigate the relationship between serum melatonin levels with the Beck Depression Inventory and the Beck Scale for Suicidal Ideation in suicide patients. METHODS The study was conducted prospectively with volunteer patients aged 20-50 years who were admitted to the emergency department after a suicide attempt. The social and occupational status, educational levels, marital status, and stressor factors of patients were questioned. Beck Depression Inventory and Beck Scale for Suicidal Ideation were applied to each patient included in the study. Blood melatonin levels were evaluated using the enzyme-linked immunosorbent assay method. The data were analyzed with the SPSS 23.00 statistical program. Descriptive values were expressed by the number of cases (n), percentage (%), median (interquartile range), and mean±standard deviation. The Kolmogorov-Smirnov test was used to assess the distribution of continuous variables, and the Pearson or Spearman correlation test was used to assess the relationship between disease severity and melatonin level. A value of p<0.05 was considered statistically significant. RESULTS No statistically significant correlation was found between melatonin level and the Beck Depression Inventory score (r=-0.098, p=0.44). However, a statistically weak, inverse, and significant correlation was discovered between melatonin levels and the Beck Scale for Suicidal Ideation score (r=-0.465, p=0.00). CONCLUSION According to our results, it was determined that there was a significant negative relationship between melatonin level and the Beck Scale for Suicidal Ideation scoring.
Collapse
Affiliation(s)
- Aynur Yurtseven
- Dışkapı Yıldırım Beyazıt Training and Research Hospital, Department of Emergency – Ankara, Turkey
| | - Cemil Kavalci
- Health Science of Turkey, Antalya Training and Research Hospital, Department of Emergency – Antalya, Turkey
| | - Yasemin Yilmaz Aydin
- Dışkapı Yıldırım Beyazıt Training and Research Hospital, Department of Emergency – Ankara, Turkey
| | - Kemal Aydin
- Dışkapı Yıldırım Beyazıt Training and Research Hospital, Department of Emergency – Ankara, Turkey
| | - Ömer Faruk Demir
- Dışkapı Yıldırım Beyazıt Training and Research Hospital, Department of Emergency – Ankara, Turkey
| | - Şeyda Özdemir
- ışkapı Yıldırım Beyazıt Training and Research Hospital, Department of Biochemistry – Ankara, Turkey
| | - Gülsüm Kavalci
- Antalya Training and Research Hospital, Department of Anesthesiology – Antalya, Turkey
| |
Collapse
|
8
|
Salminen A. Aryl hydrocarbon receptor impairs circadian regulation in Alzheimer's disease: Potential impact on glymphatic system dysfunction. Eur J Neurosci 2024; 60:3901-3920. [PMID: 38924210 DOI: 10.1111/ejn.16450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/23/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024]
Abstract
Circadian clocks maintain diurnal rhythms of sleep-wake cycle of 24 h that regulate not only the metabolism of an organism but also many other periodical processes. There is substantial evidence that circadian regulation is impaired in Alzheimer's disease. Circadian clocks regulate many properties known to be disturbed in Alzheimer's patients, such as the integrity of the blood-brain barrier (BBB) as well as the diurnal glymphatic flow that controls waste clearance from the brain. Interestingly, an evolutionarily conserved transcription factor, that is, aryl hydrocarbon receptor (AhR), impairs the function of the core clock proteins and thus could disturb diurnal rhythmicity in the BBB. There is abundant evidence that the activation of AhR signalling inhibits the expression of the major core clock proteins, such as the brain and muscle arnt-like 1 (BMAL1), clock circadian regulator (CLOCK) and period circadian regulator 1 (PER1) in different experimental models. The expression of AhR is robustly increased in the brains of Alzheimer's patients, and protein level is enriched in astrocytes of the BBB. It seems that AhR signalling inhibits glymphatic flow since it is known that (i) activation of AhR impairs the function of the BBB, which is cooperatively interconnected with the glymphatic system in the brain, and (ii) neuroinflammation and dysbiosis of gut microbiota generate potent activators of AhR, which are able to impair glymphatic flow. I will examine current evidence indicating that activation of AhR signalling could disturb circadian functions of the BBB and impair glymphatic flow and thus be involved in the development of Alzheimer's pathology.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
9
|
Häusler S, Lanzinger E, Sams E, Fazelnia C, Allmer K, Binder C, Reiter RJ, Felder TK. Melatonin in Human Breast Milk and Its Potential Role in Circadian Entrainment: A Nod towards Chrononutrition? Nutrients 2024; 16:1422. [PMID: 38794660 PMCID: PMC11124029 DOI: 10.3390/nu16101422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Breastfeeding is the most appropriate source of a newborn's nutrition; among the plethora of its benefits, its modulation of circadian rhythmicity with melatonin as a potential neuroendocrine transducer has gained increasing interest. Transplacental transfer assures melatonin provision for the fetus, who is devoid of melatonin secretion. Even after birth, the neonatal pineal gland is not able to produce melatonin rhythmically for several months (with an even more prolonged deficiency following preterm birth). In this context, human breast milk constitutes the main natural source of melatonin: diurnal dynamic changes, an acrophase early after midnight, and changes in melatonin concentrations according to gestational age and during the different stages of lactation have been reported. Understudied thus far are the factors impacting on (changes in) melatonin content in human breast milk and their clinical significance in chronobiological adherence in the neonate: maternal as well as environmental aspects have to be investigated in more detail to guide nursing mothers in optimal feeding schedules which probably means a synchronized instead of mistimed feeding practice. This review aims to be thought-provoking regarding the critical role of melatonin in chrononutrition during breastfeeding, highlighting its potential in circadian entrainment and therefore optimizing (neuro)developmental outcomes in the neonatal setting.
Collapse
Affiliation(s)
- Silke Häusler
- Division of Neonatology, Department of Pediatrics, Paracelsus Medical University, 5020 Salzburg, Austria; (E.L.); (E.S.)
| | - Emma Lanzinger
- Division of Neonatology, Department of Pediatrics, Paracelsus Medical University, 5020 Salzburg, Austria; (E.L.); (E.S.)
| | - Elke Sams
- Division of Neonatology, Department of Pediatrics, Paracelsus Medical University, 5020 Salzburg, Austria; (E.L.); (E.S.)
| | - Claudius Fazelnia
- Department of Obstetrics and Gynecology, Paracelsus Medical University, 5020 Salzburg, Austria;
| | - Kevin Allmer
- Department of Laboratory Medicine, Paracelsus Medical University, 5020 Salzburg, Austria; (K.A.); (T.K.F.)
| | - Christoph Binder
- Division of Neonatology, Pediatric Intensive Care Medicine and Neuropediatrics, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, 1090 Vienna, Austria;
| | - Russel J. Reiter
- Department of Cell Systems & Anatomy, UT Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA;
| | - Thomas K. Felder
- Department of Laboratory Medicine, Paracelsus Medical University, 5020 Salzburg, Austria; (K.A.); (T.K.F.)
- Institute of Pharmacy, Paracelsus Medical University, 5020 Salzburg, Austria
| |
Collapse
|
10
|
Guo B, Mao T, Tao R, Fu S, Deng Y, Liu Z, Wang M, Wang R, Zhao W, Chai Y, Jiang C, Rao H. Test-retest reliability and time-of-day variations of perfusion imaging at rest and during a vigilance task. Cereb Cortex 2024; 34:bhae212. [PMID: 38771245 DOI: 10.1093/cercor/bhae212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/19/2024] [Accepted: 05/09/2024] [Indexed: 05/22/2024] Open
Abstract
Arterial spin-labeled perfusion and blood oxygenation level-dependent functional MRI are indispensable tools for noninvasive human brain imaging in clinical and cognitive neuroscience, yet concerns persist regarding the reliability and reproducibility of functional MRI findings. The circadian rhythm is known to play a significant role in physiological and psychological responses, leading to variability in brain function at different times of the day. Despite this, test-retest reliability of brain function across different times of the day remains poorly understood. This study examined the test-retest reliability of six repeated cerebral blood flow measurements using arterial spin-labeled perfusion imaging both at resting-state and during the psychomotor vigilance test, as well as task-induced cerebral blood flow changes in a cohort of 38 healthy participants over a full day. The results demonstrated excellent test-retest reliability for absolute cerebral blood flow measurements at rest and during the psychomotor vigilance test throughout the day. However, task-induced cerebral blood flow changes exhibited poor reliability across various brain regions and networks. Furthermore, reliability declined over longer time intervals within the day, particularly during nighttime scans compared to daytime scans. These findings highlight the superior reliability of absolute cerebral blood flow compared to task-induced cerebral blood flow changes and emphasize the importance of controlling time-of-day effects to enhance the reliability and reproducibility of future brain imaging studies.
Collapse
Affiliation(s)
- Bowen Guo
- Center for Magnetic Resonance Imaging Research & Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai 201620, China
| | - Tianxin Mao
- Center for Magnetic Resonance Imaging Research & Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai 201620, China
| | - Ruiwen Tao
- Center for Magnetic Resonance Imaging Research & Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai 201620, China
| | - Shanna Fu
- Center for Magnetic Resonance Imaging Research & Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai 201620, China
| | - Yao Deng
- Center for Magnetic Resonance Imaging Research & Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai 201620, China
| | - Zhihui Liu
- Center for Magnetic Resonance Imaging Research & Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai 201620, China
| | - Mengmeng Wang
- Business School, NingboTech University, Ningbo 315199, China
| | - Ruosi Wang
- Center for Magnetic Resonance Imaging Research & Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai 201620, China
| | - Weiwei Zhao
- Center for Magnetic Resonance Imaging Research & Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai 201620, China
| | - Ya Chai
- Center for Magnetic Resonance Imaging Research & Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai 201620, China
- Center for Functional Neuroimaging, Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Caihong Jiang
- Center for Magnetic Resonance Imaging Research & Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai 201620, China
| | - Hengyi Rao
- Center for Magnetic Resonance Imaging Research & Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai 201620, China
- Center for Functional Neuroimaging, Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, United States
- Unit for Experimental Psychiatry, Division of Sleep and Chronobiology, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, United States
| |
Collapse
|
11
|
Challet E, Pévet P. Melatonin in energy control: Circadian time-giver and homeostatic monitor. J Pineal Res 2024; 76:e12961. [PMID: 38751172 DOI: 10.1111/jpi.12961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/04/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024]
Abstract
Melatonin is a neurohormone synthesized from dietary tryptophan in various organs, including the pineal gland and the retina. In the pineal gland, melatonin is produced at night under the control of the master clock located in the suprachiasmatic nuclei of the hypothalamus. Under physiological conditions, the pineal gland seems to constitute the unique source of circulating melatonin. Melatonin is involved in cellular metabolism in different ways. First, the circadian rhythm of melatonin helps the maintenance of proper internal timing, the disruption of which has deleterious effects on metabolic health. Second, melatonin modulates lipid metabolism, notably through diminished lipogenesis, and it has an antidiabetic effect, at least in several animal models. Third, pharmacological doses of melatonin have antioxidative, free radical-scavenging, and anti-inflammatory properties in various in vitro cellular models. As a result, melatonin can be considered both a circadian time-giver and a homeostatic monitor of cellular metabolism, via multiple mechanisms of action that are not all fully characterized. Aging, circadian disruption, and artificial light at night are conditions combining increased metabolic risks with diminished circulating levels of melatonin. Accordingly, melatonin supplementation could be of potential therapeutic value in the treatment or prevention of metabolic disorders. More clinical trials in controlled conditions are needed, notably taking greater account of circadian rhythmicity.
Collapse
Affiliation(s)
- Etienne Challet
- Centre National de la Recherche Scientifique (CNRS), Institute of Cellular and Integrative Neurosciences, University of Strasbourg, Strasbourg, France
| | - Paul Pévet
- Centre National de la Recherche Scientifique (CNRS), Institute of Cellular and Integrative Neurosciences, University of Strasbourg, Strasbourg, France
| |
Collapse
|
12
|
Yehia A, Abulseoud OA. Melatonin: a ferroptosis inhibitor with potential therapeutic efficacy for the post-COVID-19 trajectory of accelerated brain aging and neurodegeneration. Mol Neurodegener 2024; 19:36. [PMID: 38641847 PMCID: PMC11031980 DOI: 10.1186/s13024-024-00728-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/15/2024] [Indexed: 04/21/2024] Open
Abstract
The unprecedented pandemic of COVID-19 swept millions of lives in a short period, yet its menace continues among its survivors in the form of post-COVID syndrome. An exponentially growing number of COVID-19 survivors suffer from cognitive impairment, with compelling evidence of a trajectory of accelerated aging and neurodegeneration. The novel and enigmatic nature of this yet-to-unfold pathology demands extensive research seeking answers for both the molecular underpinnings and potential therapeutic targets. Ferroptosis, an iron-dependent cell death, is a strongly proposed underlying mechanism in post-COVID-19 aging and neurodegeneration discourse. COVID-19 incites neuroinflammation, iron dysregulation, reactive oxygen species (ROS) accumulation, antioxidant system repression, renin-angiotensin system (RAS) disruption, and clock gene alteration. These events pave the way for ferroptosis, which shows its signature in COVID-19, premature aging, and neurodegenerative disorders. In the search for a treatment, melatonin shines as a promising ferroptosis inhibitor with its repeatedly reported safety and tolerability. According to various studies, melatonin has proven efficacy in attenuating the severity of certain COVID-19 manifestations, validating its reputation as an anti-viral compound. Melatonin has well-documented anti-aging properties and combating neurodegenerative-related pathologies. Melatonin can block the leading events of ferroptosis since it is an efficient anti-inflammatory, iron chelator, antioxidant, angiotensin II antagonist, and clock gene regulator. Therefore, we propose ferroptosis as the culprit behind the post-COVID-19 trajectory of aging and neurodegeneration and melatonin, a well-fitting ferroptosis inhibitor, as a potential treatment.
Collapse
Affiliation(s)
- Asmaa Yehia
- Department of Neuroscience, Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine, Phoenix, AZ, 58054, USA
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Osama A Abulseoud
- Department of Neuroscience, Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine, Phoenix, AZ, 58054, USA.
- Department of Psychiatry and Psychology, Mayo Clinic Arizona, 5777 E Mayo Blvd, Phoenix, AZ, 85054, USA.
| |
Collapse
|
13
|
Shan J, Guan H, Zhang Z, Ma W, Cai J, Gao G, Zhang Z. BDE-47-induced damage prevented by melatonin in grass carp hepatocytes (L8824). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:26089-26098. [PMID: 38492135 DOI: 10.1007/s11356-024-32856-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 03/07/2024] [Indexed: 03/18/2024]
Abstract
Polybrominated diphenyl ethers (PBDEs) are toxic to organisms with melatonin (MT) providing protection for tissues and cells against these. This study investigates the mechanism of damage of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) and the cellular protection of MT on grass carp hepatocytes. Grass carp hepatocytes were exposed to 25 μmol/L BDE-47 and/or 40 μmol/L MT for 24 h before testing. Acridine orange/ethidium bromide (AO/EB) double fluorescence staining results showed that BDE-47 could induce cell apoptosis. The expression levels of the endoplasmic reticulum (ER) stress-related genes ire1, atf4, grp78, perk, and chop were also significantly up-regulated (P < 0.01). The levels of the apoptosis-related genes caspase3, bax, and caspase9 were significantly up-regulated (P < 0.0001), while the level of bcl-2 was significantly down-regulated (P < 0.01). Compared with the BDE-47 group, the BDE-47 + MT group showed reduced levels of ER and apoptosis of hepatocytes, while the expression of the ER stress-related genes ire1, atf4, grp78, perk, and chop and the apoptosis-related genes caspase3, bax, and caspase9 were down-regulated (P < 0.05), and the level of bcl-2 was up-regulated (P < 0.01). In conclusion, BDE-47 can activate ER and apoptosis in grass carp hepatocytes, while MT can reduce these responses.
Collapse
Affiliation(s)
- Jianhua Shan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Haoyue Guan
- College of Animal Science and Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhuoqi Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Wenxue Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Jingzeng Cai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin, 150030, People's Republic of China
| | - Ge Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Ziwei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin, 150030, People's Republic of China.
| |
Collapse
|
14
|
Vohra A, Karnik R, Desai M, Vyas H, Kulshrestha S, Upadhyay KK, Koringa P, Devkar R. Melatonin-mediated corrective changes in gut microbiota of experimentally chronodisrupted C57BL/6J mice. Chronobiol Int 2024; 41:548-560. [PMID: 38557404 DOI: 10.1080/07420528.2024.2329205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/06/2024] [Indexed: 04/04/2024]
Abstract
Chronic consumption of a high-calorie diet coupled with an altered sleep-wake cycle causes disruption of circadian clock that can impact the gut microbiome leading to metabolic syndrome and associated diseases. Herein, we investigate the effects of a high fat high fructose diet (H) alone or in combination with photoperiodic shifts induced chronodisruption (CD) on gut microbiota of C57BL/6J male mice. Further, the merits of daily evening intraperitoneal administration of melatonin in restoring gut microbiota are studied herein. Experimental groups viz. H, CD and HCD mice recorded higher levels of serum pro-inflammatory cytokines (TNF-α and IL-6) and lower levels of the anti-inflammatory cytokine, IL-10. These findings correlate with a concomitant increase in the transcripts of TLR4, TNF-α, and IL-6 in small intestine of the said groups. A decrement in mRNA levels of Ocln, ZO-1 and Vdr in these groups implied towards an altered gut permeability. These results were in agreement with the observed decrement in percentage abundance of total gut microflora and Firmicutes: Bacteroidetes (F/B) ratio. Melatonin administration accounted for lower-level inflammation (serum and gut) along with an improvement in gut permeability markers. The total abundance of gut microflora and F/B ratio showed an improvement in all the melatonin-treated groups and the same is the highlight of this study. Taken together, our study is the first to report perturbations in gut microbiota resulting due to a combination of photoperiodic shifts induced CD and a high fat high calorie diet-induced lifestyle disorder. Further, melatonin-mediated rejuvenation of gut microbiome provides prima facie evidence of its role in improving gut dysbiosis that needs a detailed scrutiny.
Collapse
Affiliation(s)
- Aliasgar Vohra
- Division of Chronobiology and Metabolic Endocrinology, Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
- Department of Neurology, School of Medicine, Washington University, St. Louis, Missouri, USA
| | - Rhydham Karnik
- Division of Chronobiology and Metabolic Endocrinology, Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
- Dr Vikram Sarabhai Institute of Cell and Molecular Biology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Mansi Desai
- Department of Animal Biotechnology, College of Veterinary Sciences & A.H., Anand Agricultural University, Anand, India
| | - Hitarthi Vyas
- Department of Internal Medicine, Division of Gastroenterology & Hepatology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Shruti Kulshrestha
- Division of Chronobiology and Metabolic Endocrinology, Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Kapil Kumar Upadhyay
- Department of Internal Medicine, Division of Gastroenterology & Hepatology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Prakash Koringa
- Department of Animal Biotechnology, College of Veterinary Sciences & A.H., Anand Agricultural University, Anand, India
| | - Ranjitsinh Devkar
- Division of Chronobiology and Metabolic Endocrinology, Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| |
Collapse
|
15
|
Felder-Schmittbuhl MP, Hicks D, Ribelayga CP, Tosini G. Melatonin in the mammalian retina: Synthesis, mechanisms of action and neuroprotection. J Pineal Res 2024; 76:e12951. [PMID: 38572848 DOI: 10.1111/jpi.12951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/09/2024] [Accepted: 03/19/2024] [Indexed: 04/05/2024]
Abstract
Melatonin is an important player in the regulation of many physiological functions within the body and in the retina. Melatonin synthesis in the retina primarily occurs during the night and its levels are low during the day. Retinal melatonin is primarily synthesized by the photoreceptors, but whether the synthesis occurs in the rods and/or cones is still unclear. Melatonin exerts its influence by binding to G protein-coupled receptors named melatonin receptor type 1 (MT1) and type 2 (MT2). MT1 and MT2 receptors activate a wide variety of signaling pathways and both receptors are present in the vertebrate photoreceptors where they may form MT1/MT2 heteromers (MT1/2h). Studies in rodents have shown that melatonin signaling plays an important role in the regulation of retinal dopamine levels, rod/cone coupling as well as the photopic and scotopic electroretinogram. In addition, melatonin may play an important role in protecting photoreceptors from oxidative stress and can protect photoreceptors from apoptosis. Critically, melatonin signaling is involved in the modulation of photoreceptor viability during aging and other studies have implicated melatonin in the pathogenesis of age-related macular degeneration. Hence melatonin may represent a useful tool in the fight to protect photoreceptors-and other retinal cells-against degeneration due to aging or diseases.
Collapse
Affiliation(s)
- Marie Paule Felder-Schmittbuhl
- Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives (UPR 3212), Université de Strasbourg, Strasbourg, France
| | - David Hicks
- Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives (UPR 3212), Université de Strasbourg, Strasbourg, France
| | - Christophe P Ribelayga
- Department of Vision Sciences, College of Optometry, University of Houston, Houston, Texas, USA
| | - Gianluca Tosini
- Department of Pharmacology & Toxicology, Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
16
|
Pawlicki P, Yurdakok-Dikmen B, Tworzydlo W, Kotula-Balak M. Toward understanding the role of the interstitial tissue architects: Possible functions of telocytes in the male gonad. Theriogenology 2024; 217:25-36. [PMID: 38241912 DOI: 10.1016/j.theriogenology.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
Telocytes represent a relatively recently discovered population of interstitial cells with a unique morphological structure that distinguishes them from other neighboring cells. Through their long protrusions extending from the cell body, telocytes create microenvironments via tissue compartmentalization and create homo- and hetero-cellular junctions. These establish a three-dimensional network enabling the maintenance of interstitial compartment homeostasis through regulation of extracellular matrix organization and activity, structural support, paracrine and juxtracrine communication, immunomodulation, immune surveillance, cell survival, and apoptosis. The presence of telocytes has also been confirmed in testicular interstitial tissue of many species of animals. The objective of this review is to summarize recent findings on telocytes in the male gonad, on which conclusions have been deduced that indicate the involvement of telocytes in maintaining the cytoarchitecture of the testicular interstitial tissue, in the processes of spermatogenesis and steroidogenesis, and photoperiod-mediated changes in the testes in seasonally reproductive animals.
Collapse
Affiliation(s)
- Piotr Pawlicki
- Center of Experimental and Innovative Medicine, University of Agriculture in Krakow, Redzina 1c, 30-248, Krakow, Poland.
| | - Begum Yurdakok-Dikmen
- Department of Pharmacology and Toxicology, Ankara University Faculty of Veterinary Medicine, Ankara, 06110, Dışkapı, Turkey.
| | - Waclaw Tworzydlo
- Department of Developmental Biology and Invertebrate Morphology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Gronostajowa 9, 30-385, Krakow, Poland.
| | - Malgorzata Kotula-Balak
- Department of Animal Anatomy and Preclinical Sciences, University Centre of Veterinary Medicine JU-UA, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059, Krakow, Poland.
| |
Collapse
|
17
|
Bódizs R, Schneider B, Ujma PP, Horváth CG, Dresler M, Rosenblum Y. Fundamentals of sleep regulation: Model and benchmark values for fractal and oscillatory neurodynamics. Prog Neurobiol 2024; 234:102589. [PMID: 38458483 DOI: 10.1016/j.pneurobio.2024.102589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 01/26/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
Homeostatic, circadian and ultradian mechanisms play crucial roles in the regulation of sleep. Evidence suggests that ratios of low-to-high frequency power in the electroencephalogram (EEG) spectrum indicate the instantaneous level of sleep pressure, influenced by factors such as individual sleep-wake history, current sleep stage, age-related differences and brain topography characteristics. These effects are well captured and reflected in the spectral exponent, a composite measure of the constant low-to-high frequency ratio in the periodogram, which is scale-free and exhibits lower interindividual variability compared to slow wave activity, potentially serving as a suitable standardization and reference measure. Here we propose an index of sleep homeostasis based on the spectral exponent, reflecting the level of membrane hyperpolarization and/or network bistability in the central nervous system in humans. In addition, we advance the idea that the U-shaped overnight deceleration of oscillatory slow and fast sleep spindle frequencies marks the biological night, providing somnologists with an EEG-index of circadian sleep regulation. Evidence supporting this assertion comes from studies based on sleep replacement, forced desynchrony protocols and high-resolution analyses of sleep spindles. Finally, ultradian sleep regulatory mechanisms are indicated by the recurrent, abrupt shifts in dominant oscillatory frequencies, with spindle ranges signifying non-rapid eye movement and non-spindle oscillations - rapid eye movement phases of the sleep cycles. Reconsidering the indicators of fundamental sleep regulatory processes in the framework of the new Fractal and Oscillatory Adjustment Model (FOAM) offers an appealing opportunity to bridge the gap between the two-process model of sleep regulation and clinical somnology.
Collapse
Affiliation(s)
- Róbert Bódizs
- Institute of Behavioural Sciences, Semmelweis University, Budapest, Hungary.
| | - Bence Schneider
- Institute of Behavioural Sciences, Semmelweis University, Budapest, Hungary
| | - Péter P Ujma
- Institute of Behavioural Sciences, Semmelweis University, Budapest, Hungary
| | - Csenge G Horváth
- Institute of Behavioural Sciences, Semmelweis University, Budapest, Hungary
| | - Martin Dresler
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands
| | - Yevgenia Rosenblum
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands
| |
Collapse
|
18
|
Engin A. Misalignment of Circadian Rhythms in Diet-Induced Obesity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:27-71. [PMID: 39287848 DOI: 10.1007/978-3-031-63657-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The biological clocks of the circadian timing system coordinate cellular and physiological processes and synchronize them with daily cycles. While the central clock in the suprachiasmatic nucleus (SCN) is mainly synchronized by the light/dark cycles, the peripheral clocks react to other stimuli, including the feeding/fasting state, nutrients, sleep-wake cycles, and physical activity. During the disruption of circadian rhythms due to genetic mutations or social and occupational obligations, incorrect arrangement between the internal clock system and environmental rhythms leads to the development of obesity. Desynchronization between the central and peripheral clocks by altered timing of food intake and diet composition leads to uncoupling of the peripheral clocks from the central pacemaker and to the development of metabolic disorders. The strong coupling of the SCN to the light-dark cycle creates a situation of misalignment when food is ingested during the "wrong" time of day. Food-anticipatory activity is mediated by a self-sustained circadian timing, and its principal component is a food-entrainable oscillator. Modifying the time of feeding alone greatly affects body weight, whereas ketogenic diet (KD) influences circadian biology, through the modulation of clock gene expression. Night-eating behavior is one of the causes of circadian disruption, and night eaters have compulsive and uncontrolled eating with severe obesity. By contrast, time-restricted eating (TRE) restores circadian rhythms through maintaining an appropriate daily rhythm of the eating-fasting cycle. The hypothalamus has a crucial role in the regulation of energy balance rather than food intake. While circadian locomotor output cycles kaput (CLOCK) expression levels increase with high-fat diet-induced obesity, peroxisome proliferator-activated receptor-alpha (PPARα) increases the transcriptional level of brain and muscle aryl hydrocarbon receptor nuclear translocator (ARNT)-like 1 (BMAL1) in obese subjects. In this context, effective timing of chronotherapies aiming to correct SCN-driven rhythms depends on an accurate assessment of the SCN phase. In fact, in a multi-oscillator system, local rhythmicity and its disruption reflects the disruption of either local clocks or central clocks, thus imposing rhythmicity on those local tissues, whereas misalignment of peripheral oscillators is due to exosome-based intercellular communication.Consequently, disruption of clock genes results in dyslipidemia, insulin resistance, and obesity, while light exposure during the daytime, food intake during the daytime, and sleeping during the biological night promote circadian alignment between the central and peripheral clocks. Thus, shift work is associated with an increased risk of obesity, diabetes, and cardiovascular diseases because of unusual eating times as well as unusual light exposure and disruption of the circadian rhythm.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
19
|
Verma AK, Khan MI, Ashfaq F, Rizvi SI. Crosstalk Between Aging, Circadian Rhythm, and Melatonin. Rejuvenation Res 2023; 26:229-241. [PMID: 37847148 DOI: 10.1089/rej.2023.0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023] Open
Abstract
Circadian rhythms (CRs) are 24-hour periodic oscillations governed by an endogenous circadian pacemaker located in the suprachiasmatic nucleus (SCN), which organizes the physiology and behavior of organisms. Circadian rhythm disruption (CRD) is also indicative of the aging process. In mammals, melatonin is primarily synthesized in the pineal gland and participates in a variety of multifaceted intracellular signaling networks and has been shown to synchronize CRs. Endogenous melatonin synthesis and its release tend to decrease progressively with advancing age. Older individuals experience frequent CR disruption, which hastens the process of aging. A profound understanding of the relationship between CRs and aging has the potential to improve existing treatments and facilitate development of novel chronotherapies that target age-related disorders. This review article aims to examine the circadian regulatory mechanisms in which melatonin plays a key role in signaling. We describe the basic architecture of the molecular circadian clock and its functional decline with age in detail. Furthermore, we discuss the role of melatonin in regulation of the circadian pacemaker and redox homeostasis during aging. Moreover, we also discuss the protective effect of exogenous melatonin supplementation in age-dependent CR disruption, which sheds light on this pleiotropic molecule and how it can be used as an effective chronotherapeutic medicine.
Collapse
Affiliation(s)
| | - Mohammad Idreesh Khan
- Department of Clinical Nutrition, College of Applied Health Sciences in Ar Rass, Qassim University, Ar Rass, Saudi Arabia
| | - Fauzia Ashfaq
- Clinical Nutrition Department, Applied Medical Sciences College, Jazan University, Jazan, Saudi Arabia
| | | |
Collapse
|
20
|
Kong X, Meerlo P, Hut RA. Melatonin Does Not Affect the Stress-Induced Phase Shifts of Peripheral Clocks in Male Mice. Endocrinology 2023; 165:bqad183. [PMID: 38128120 PMCID: PMC11083644 DOI: 10.1210/endocr/bqad183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Indexed: 12/23/2023]
Abstract
Repeated or chronic stress can change the phase of peripheral circadian rhythms. Melatonin (Mel) is thought to be a circadian clock-controlled signal that might play a role in synchronizing peripheral rhythms, in addition to its direct suppressing effects on the stress axis. In this study we test whether Mel can reduce the social-defeat stress-induced phase shifts in peripheral rhythms, either by modulating circadian phase or by modulating the stress axis. Two experiments were performed with male Mel-deficient C57BL/6J mice carrying the circadian reporter gene construct (PER2::LUC). In the first experiment, mice received night-restricted (ZT11-21) Mel in their drinking water, resulting in physiological levels of plasma Mel peaking in the early dark phase. This treatment facilitated re-entrainment of the activity rhythm to a shifted light-dark cycle, but did not prevent the stress-induced (ZT21-22) reduction of activity during stress days. Also, this treatment did not attenuate the phase-delaying effects of stress in peripheral clocks in the pituitary, lung, and kidney. In a second experiment, pituitary, lung, and kidney collected from naive mice (ZT22-23), were treated with Mel, dexamethasone (Dex), or a combination of the two. Dex application affected PER2 rhythms in the pituitary, kidney, and lung by changing period, phase, or both. Administering Mel did not influence PER2 rhythms nor did it alleviate Dex-induced delays in PER2 rhythms in those tissues. We conclude that exogenous Mel is insufficient to affect peripheral PER2 rhythms and reduce stress effects on locomotor activity and phase changes in peripheral tissues.
Collapse
Affiliation(s)
- Xiangpan Kong
- Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen 9747AG, the Netherlands
- School of Medicine, Hunan Normal University, Changsha 410013, PR China
| | - Peter Meerlo
- Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen 9747AG, the Netherlands
| | - Roelof A Hut
- Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen 9747AG, the Netherlands
| |
Collapse
|
21
|
Zhang W, Zhao G, Li X, Han M, Zhang S, Deng H, Yang K. Dietary supplementation with tryptophan increases the plasma concentrations of tryptophan, kynurenine, and melatonin in Yili mares. ANIMAL PRODUCTION SCIENCE 2023; 64. [DOI: doi.org/10.1071/an23113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2024]
Abstract
Context Tryptophan (Trp) is the precursor of melatonin (MT) and the latter plays vital physiological roles in mares. Aims The purpose of this experiment was to investigate the effects of dietary Trp supplementation on the plasma Trp, kynurenine (Kyn), 5-hydroxytryptophan (5-HT), and melatonin (MT) concentrations in female Yili horses. Methods Twenty Yili mares aged 2 years with mean bodyweight (BW) of 263.5 ± 14.77 kg and of similar stature were selected and randomly allocated to the control (CON; basal diet), basal diet plus Trp at 20 mg/kg BW (TRP1), basal diet plus Trp at 40 mg/kg BW (TRP2), or basal diet plus Trp at 60 mg/kg BW (TRP3) group. Key results The plasma total Trp, Kyn, and MT concentrations in all Trp groups steadily increased, reached their peak values, and gradually decreased after Trp supplementation between 0 h and 12 h. However, the plasma 5-HT concentration displayed the opposite trend. Peak plasma total Trp and 5-HT concentrations were attained between 1 h and 3 h, while those of KYN and MT appeared between 4 h and 6 h after Trp supplementation. The plasma total Trp and Kyn concentrations were significantly higher in TRP2 and TRP3 than in CON between 1 h and 12 h (P < 0.05) after Trp supplementation. The plasma 5-HT concentration was significantly (P < 0.05) lower in TRP1 than in CON at 3 h, 4 h, 6 h, 9 h, and 12 h after Trp supplementation. The plasma MT concentrations in TRP1 and TRP2 were significantly (P < 0.05) higher than in CON at 3 h, 4 h, and 12 h, and at 0 h, 1 h, and 12 h after Trp supplementation (P < 0.05). Conclusions Dietary Trp supplementation can increase the plasma total Trp, Kyn, and MT concentrations in Yili mares and the optimal Trp dosage was 20 mg/kg BW. Implication The addition of Trp to a basal diet or feed may increase the plasma total Trp, Kyn, and MT concentrations in female horses.
Collapse
|
22
|
Gutiérrez-Pérez M, González-González S, Estrada-Rodriguez KP, Espítia-Bautista E, Guzmán-Ruiz MA, Escalona R, Escobar C, Guerrero-Vargas NN. Dim Light at Night Promotes Circadian Disruption in Female Rats, at the Metabolic, Reproductive, and Behavioral Level. Adv Biol (Weinh) 2023; 7:e2200289. [PMID: 36650949 DOI: 10.1002/adbi.202200289] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/09/2022] [Indexed: 01/19/2023]
Abstract
Inhabitants of urban areas are constantly exposed to light at night, which is an important environmental factor leading to circadian disruption. Streetlights filtering light through the windows and night dim light lamps are common sources of dim light at night (DLAN). The female population is susceptible to circadian disruption. The present study is aimed to determine the impact of DLAN on female Wistar rats circadian rhythms, metabolism, reproductive physiology, and behavior. After 5 weeks of DLAN exposure daily, oscillations in activity and body temperature of female rats are abolished. DLAN also decreases nocturnal food ingestion, which results in a diminishment in total food consumption. These alterations in the temporal organization of the body are associated with a significant decrease in melatonin plasmatic levels, reproductive disruptions, decreased exploration times, and marked anhedonia. This study highlights the importance of avoiding exposure to light at night, even at low intensities, to maintain the circadian organization of physiology, and denotes the great necessity of increasing the studies in females since the sexual dimorphism within the effects of desynchronizing protocols has been poorly studied.
Collapse
Affiliation(s)
- Mariana Gutiérrez-Pérez
- Departamento de Anatomía, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| | - Shellye González-González
- Departamento de Anatomía, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| | - Karla P Estrada-Rodriguez
- Departamento de Anatomía, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| | - Estefania Espítia-Bautista
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| | - Mara A Guzmán-Ruiz
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| | - Rene Escalona
- Departamento de Embriología y Genética, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| | - Carolina Escobar
- Departamento de Anatomía, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| | - Natalí N Guerrero-Vargas
- Departamento de Anatomía, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| |
Collapse
|
23
|
Barać M, Petrović M, Petrović N, Nikolić-Jakoba N, Aleksić Z, Todorović L, Petrović-Stanojević N, Anđelić-Jelić M, Davidović A, Milašin J, Roganović J. Melatonin Action in Type 2 Diabetic Parotid Gland and Dental Pulp: In Vitro and Bioinformatic Findings. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6727. [PMID: 37754589 PMCID: PMC10530673 DOI: 10.3390/ijerph20186727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/30/2023] [Accepted: 09/04/2023] [Indexed: 09/28/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is associated with functional deterioration of the salivary gland and dental pulp, related to oxidative stress. The aim was to integrate experimental and bioinformatic findings to analyze the cellular mechanism of melatonin (MEL) action in the human parotid gland and dental pulp in diabetes. Human parotid gland tissue was obtained from 16 non-diabetic and 16 diabetic participants, as well as human dental pulp from 15 non-diabetic and 15 diabetic participants. In human non-diabetic and diabetic parotid gland cells (hPGCs) as well as in dental pulp cells (hDPCs), cultured in hyper- and normoglycemic conditions, glial cell line-derived neurotrophic factor (GDNF), MEL, inducible nitric oxide synthase (iNOS) protein expression, and superoxide dismutase (SOD) activity were measured by enzyme-linked immunosorbent assay (ELISA) and spectrophotometrically. Bioinformatic analysis was performed using ShinyGO (v.0.75) application. Diabetic participants had increased GDNF and decreased MEL in parotid (p < 0.01) and dental pulp (p < 0.05) tissues, associated with increased iNOS and SOD activity. Normoglycemic hDPCs and non-diabetic hPGCs treated with 0.1 mM MEL had increased GDNF (p < 0.05), while hyperglycemic hDPCs treated with 1 mM MEL showed a decrease in up-regulated GDNF (p < 0.05). Enrichment analyses showed interference with stress and ATF/CREB signaling. MEL induced the stress-protective mechanism in hyperglycemic hDPCs and diabetic hPGCs, suggesting MEL could be beneficial for diabetes-associated disturbances in oral tissues.
Collapse
Affiliation(s)
- Milena Barać
- Department of Pharmacology in Dentistry, Faculty of Dental Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Milan Petrović
- Clinic for Maxillofacial Surgery, Faculty of Dental Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Nina Petrović
- Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (N.P.); (L.T.)
| | - Nataša Nikolić-Jakoba
- Department of Periodontology, Faculty of Dental Medicine, University of Belgrade, 11000 Belgrade, Serbia; (N.N.-J.); (Z.A.)
| | - Zoran Aleksić
- Department of Periodontology, Faculty of Dental Medicine, University of Belgrade, 11000 Belgrade, Serbia; (N.N.-J.); (Z.A.)
| | - Lidija Todorović
- Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (N.P.); (L.T.)
| | - Nataša Petrović-Stanojević
- Zvezdara University Medical Center, University of Belgrade, 11000 Belgrade, Serbia; (N.P.-S.); (M.A.-J.); (A.D.)
| | - Marina Anđelić-Jelić
- Zvezdara University Medical Center, University of Belgrade, 11000 Belgrade, Serbia; (N.P.-S.); (M.A.-J.); (A.D.)
| | - Aleksandar Davidović
- Zvezdara University Medical Center, University of Belgrade, 11000 Belgrade, Serbia; (N.P.-S.); (M.A.-J.); (A.D.)
| | - Jelena Milašin
- Department of Human Genetics, Faculty of Dental Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Jelena Roganović
- Department of Pharmacology in Dentistry, Faculty of Dental Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| |
Collapse
|
24
|
Pehlivan S. The circadian systems genes and their importance of human health. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 137:1-15. [PMID: 37709372 DOI: 10.1016/bs.apcsb.2023.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
The circadian rhythm is the timing mechanism that creates approximately 24-hour rhythms in cellular and bodily functions in almost all living species. These internal clock systems enable living organisms to predict and respond to daily changes in their environment, optimizing temporal physiology and behavior. Circadian rhythms are regulated by both genetic and environmental risk factors. Circadian rhythms play an important role in maintaining homeostasis at the systemic and tissue levels. Disruption of this rhythm lays the groundwork for human health and disease. Disruption in these rhythms increases the susceptibility to many diseases, such as cancer, psychiatric disorders, and neurodegenerative diseases. In this chapter, the characteristics of circadian rhythm and its relationship with diseases will be discussed.
Collapse
Affiliation(s)
- S Pehlivan
- Department of Medical Biology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey.
| |
Collapse
|
25
|
Booker LA, Lenz KE, Spong J, Deacon-Crouch M, Wilson DL, Nguyen TH, Skinner TC. High-Temperature Pasteurization Used at Donor Breast Milk Banks Reduces Melatonin Levels in Breast Milk. Breastfeed Med 2023. [PMID: 37257176 DOI: 10.1089/bfm.2023.0068] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Background and Objective: Donor human milk banks are used when breast milk directly from mothers is unavailable or insufficient. Breast milk contains melatonin, which exhibits a 24-hour pattern. Melatonin promotes sleep onset and is barely detected in daytime milk but rises in the evening and peaks early in the morning. Melatonin supports the development of an infant's own circadian rhythm and is important for neurodevelopment. Currently, donor banks pasteurize breast milk using a Holder Pasteurization (HoP) technique where breast milk is treated at a high temperature (+62°) for 30 minutes before cooling to eliminate any pathogens before it is given to infants. It is not known how the pasteurization process affects the melatonin levels in breast milk. The aim of this study was to investigate whether the pasteurization process reduces melatonin levels in breast milk. Materials and Methods: Ten night-time breast milk samples were collected and each divided into two groups; one group remained unpasteurized and the other group was pasteurized using the HoP technique. Results: Melatonin levels between the unpasteurized and pasteurized groups were compared. Results showed that there was a significant reduction after pasteurization (mean ± standard deviation = 51.92 pg/mL ± 19.54 versus 39.66 pg/mL ± 13.05, p = 0.01). Conclusions: It is important to understand that pasteurization can reduce melatonin levels in breast milk because this hormone is considered important to support the neurodevelopment of infants, especially those born preterm. Further focus on the effect of pasteurization techniques on melatonin in donor breast milk is warranted.
Collapse
Affiliation(s)
- Lauren A Booker
- School of Psychology & Public Health, La Trobe University, Bendigo, Victoria, Australia
- Institute for Breathing and Sleep, Austin Health, Melbourne, Australia
| | - Katrin E Lenz
- School of Psychology & Public Health, La Trobe University, Bendigo, Victoria, Australia
| | - Jo Spong
- Institute for Breathing and Sleep, Austin Health, Melbourne, Australia
- Rural Department of Health Sciences, La Trobe Rural Health School, La Trobe University, Bendigo, Victoria, Australia
| | - Melissa Deacon-Crouch
- Rural Department of Health Sciences, La Trobe Rural Health School, La Trobe University, Bendigo, Victoria, Australia
| | - Danielle L Wilson
- School of Psychology & Public Health, La Trobe University, Bendigo, Victoria, Australia
- Institute for Breathing and Sleep, Austin Health, Melbourne, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Australia
| | - Trang H Nguyen
- Department of Rural Clinical Sciences, La Trobe Rural Health School, La Trobe University, Bendigo, Australia
| | - Timothy C Skinner
- School of Psychology & Public Health, La Trobe University, Bendigo, Victoria, Australia
- Department of Psychology, Centre for Health and Society, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
26
|
Lehmann M, Haury K, Oster H, Astiz M. Circadian glucocorticoids throughout development. Front Neurosci 2023; 17:1165230. [PMID: 37179561 PMCID: PMC10166844 DOI: 10.3389/fnins.2023.1165230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/06/2023] [Indexed: 05/15/2023] Open
Abstract
Glucocorticoids (GCs) are essential drivers of mammalian tissue growth and maturation during one of the most critical developmental windows, the perinatal period. The developing circadian clock is shaped by maternal GCs. GC deficits, excess, or exposure at the wrong time of day leads to persisting effects later in life. During adulthood, GCs are one of the main hormonal outputs of the circadian system, peaking at the beginning of the active phase (i.e., the morning in humans and the evening in nocturnal rodents) and contributing to the coordination of complex functions such as energy metabolism and behavior, across the day. Our article discusses the current knowledge on the development of the circadian system with a focus on the role of GC rhythm. We explore the bidirectional interaction between GCs and clocks at the molecular and systemic levels, discuss the evidence of GC influence on the master clock in the suprachiasmatic nuclei (SCN) of the hypothalamus during development and in the adult system.
Collapse
Affiliation(s)
- Marianne Lehmann
- Institute of Neurobiology, University of Lübeck, Lübeck, Germany
| | - Katharina Haury
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, Leioa, Spain
| | - Henrik Oster
- Institute of Neurobiology, University of Lübeck, Lübeck, Germany
| | - Mariana Astiz
- Institute of Neurobiology, University of Lübeck, Lübeck, Germany
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, Leioa, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
27
|
The Circadian Clock of Polarized Microglia and Its Interaction with Mouse Brain Oscillators. Cell Mol Neurobiol 2023; 43:1319-1333. [PMID: 35821305 DOI: 10.1007/s10571-022-01252-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/28/2022] [Indexed: 11/03/2022]
Abstract
The activity of the immune system is controlled by circadian clocks present in different immune cells. The brain-resident subtype of immune cells, microglia, exhibits a wide range of functional phenotypes depending on the signaling molecules in their microenvironment. The exact role of microglia in the hypothalamic suprachiasmatic nuclei (SCN), the central circadian clock, has not been known. Therefore, the aim of this study was to determine (1) whether microenvironment-induced changes in microglial polarization affect circadian clocks in these cells and (2) whether the presence of microglia contributes to SCN clock function. Microglial and SCN clocks were monitored using PER2-driven bioluminescence rhythms at the tissue and single-cell levels. We found that polarization of resting microglia to a pro-inflammatory (M1) or anti-inflammatory (M2) state significantly altered the period and amplitude of their molecular circadian clock; importantly, the parameters changed plastically with the repolarization of microglia. This effect was reflected in specific modulations of the expression profiles of individual clock genes in the polarized microglia. Depletion of microglia significantly reduced the amplitude of the SCN clock, and co-cultivation of the SCN explants with M2-polarized microglia specifically improved the amplitude of the SCN clock. These results demonstrate that the presence of M2-polarized microglia has beneficial effects on SCN clock function. Our results provide new insight into the mutual interaction between immune and circadian systems in the brain.
Collapse
|
28
|
Lesicka M, Dmitrzak-Weglarz M, Jablonska E, Wieczorek E, Kapelski P, Szczepankiewicz A, Pawlak J, Reszka E. Methylation of melatonin receptors in patients with unipolar and bipolar depression. Mech Ageing Dev 2023; 211:111776. [PMID: 36706965 DOI: 10.1016/j.mad.2023.111776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/11/2023] [Accepted: 01/23/2023] [Indexed: 01/25/2023]
Abstract
Disturbances of melatonin secretion alter the circadian rhythm and sleep-wake cycle, which is observed among patients with depression. Melatonin acts via melatonin receptors MT1 and MT2, which are present in many tissues, including peripheral blood mononuclear cells (PBMC). We assume that disturbances of the melatonin pathway in the brain may be reflected by molecular changes in peripheral organs. The study objective was to evaluate the methylation profile of CpG island in the promoter region of melatonin receptor genes MTNR1A and MTNR1B in PBMC of patients with depression and compare it with healthy volunteers. The study group comprised 85 patients with unipolar (UP) and bipolar disorders (BP) and 83 controls. The methylation pattern of CpG island in the promoter region was analyzed using the quantitative methylation-specific real-time PCR (qMSP-PCR) method. We found that the methylation profile of the patients with depression varied in comparison to the control group. The methylation level of MTNR1A was significantly lower among depressed patients compared to controls. Additionally, melatonin concentration was negatively correlated with MTNR1B methylation level among the UP patients. The study may suggest that the methylation profile of melatonin receptors in PBMC may be used as a complementary molecular marker in depression diagnosis.
Collapse
Affiliation(s)
- Monika Lesicka
- Department of Translational Research, Nofer Institute of Occupational Medicine, Lodz, Poland.
| | - Monika Dmitrzak-Weglarz
- Department of Psychiatric Genetics, Department of Psychiatry, University of Medical Sciences, Poznan, Poland
| | - Ewa Jablonska
- Department of Translational Research, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Edyta Wieczorek
- Department of Translational Research, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Pawel Kapelski
- Department of Psychiatric Genetics, Department of Psychiatry, University of Medical Sciences, Poznan, Poland
| | - Aleksandra Szczepankiewicz
- Department of Psychiatric Genetics, Department of Psychiatry, University of Medical Sciences, Poznan, Poland
| | - Joanna Pawlak
- Department of Psychiatric Genetics, Department of Psychiatry, University of Medical Sciences, Poznan, Poland
| | - Edyta Reszka
- Department of Translational Research, Nofer Institute of Occupational Medicine, Lodz, Poland
| |
Collapse
|
29
|
Cruz-Sanabria F, Carmassi C, Bruno S, Bazzani A, Carli M, Scarselli M, Faraguna U. Melatonin as a Chronobiotic with Sleep-promoting Properties. Curr Neuropharmacol 2023; 21:951-987. [PMID: 35176989 PMCID: PMC10227911 DOI: 10.2174/1570159x20666220217152617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/26/2022] [Accepted: 02/10/2022] [Indexed: 11/22/2022] Open
Abstract
The use of exogenous melatonin (exo-MEL) as a sleep-promoting drug has been under extensive debate due to the lack of consistency of its described effects. In this study, we conduct a systematic and comprehensive review of the literature on the chronobiotic, sleep-inducing, and overall sleep-promoting properties of exo-MEL. To this aim, we first describe the possible pharmacological mechanisms involved in the sleep-promoting properties and then report the corresponding effects of exo-MEL administration on clinical outcomes in: a) healthy subjects, b) circadian rhythm sleep disorders, c) primary insomnia. Timing of administration and doses of exo-MEL received particular attention in this work. The exo-MEL pharmacological effects are hereby interpreted in view of changes in the physiological properties and rhythmicity of endogenous melatonin. Finally, we discuss some translational implications for the personalized use of exo-MEL in the clinical practice.
Collapse
Affiliation(s)
- Francy Cruz-Sanabria
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa - Italy
| | - Claudia Carmassi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa - Italy
| | - Simone Bruno
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa - Italy
| | - Andrea Bazzani
- Institute of Management, Scuola Superiore Sant’Anna, Pisa – Italy
| | - Marco Carli
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa - Italy
| | - Marco Scarselli
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa - Italy
| | - Ugo Faraguna
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa - Italy
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Pisa, Pisa, Italy
| |
Collapse
|
30
|
Nikkola V, Huotari-Orava R, Joronen H, Grönroos M, Kautiainen H, Ylianttila L, Snellman E, Partonen T. Melatonin immunoreactivity of epidermal skin is higher in the evening than morning but does not account for erythema sensitivity. Chronobiol Int 2022; 40:132-144. [PMID: 36576151 DOI: 10.1080/07420528.2022.2157733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The skin is a site of melatonin synthesis, and melatonin has a role in protecting against ultraviolet radiation-induced damage. Ultraviolet B (UVB) induced erythema seems to vary between morning and evening. We investigated whether epidermal melatonin immunoreactivities in the morning differed from those in the evening, and whether UVB-induced erythema was associated with these melatonin immunoreactivities in healthy volunteers. Erythema sensitivity of the skin was determined in the morning and in the evening by scoring the Minimal Erythema Dose and quantifying the erythema index (EI). We took biopsies from the non-UVB-exposed skin of healthy volunteers (n = 39) in the morning and in the evening to study melatonin immunoreactivity with immunohistochemistry (IHC). In the IHC staining, there was more melatonin immunoreactivity in the evening than in the morning (p < .001). Erythema was more pronounced in the evening than in the morning irradiated skin (p < .001). The graded amount of melatonin immunoreactivity in the samples was not associated with the EI. We discovered melatonin immunoreactivity of the non-irradiated skin to vary diurnally. However, endogenous skin melatonin does not seem to be the reason why NB-UVB induces more erythema in the evening than in the morning.
Collapse
Affiliation(s)
- Veera Nikkola
- Faculty of Medicine and Health Technology, Department of Dermatology and Venereology, Tampere University, Tampere, Finland.,Department of Dermatology and Allergology, Tampere University Hospital, Tampere, Finland.,Department of Dermatology and Allergology, Päijät-Häme Social and Health Care Group, Lahti, Finland
| | - Riitta Huotari-Orava
- Faculty of Medicine and Health Technology, Department of Pathology and FIMLAB, Tampere University, Tampere, Finland
| | - Heli Joronen
- Faculty of Medicine and Health Technology, Department of Dermatology and Venereology, Tampere University, Tampere, Finland.,Department of Dermatology and Allergology, Tampere University Hospital, Tampere, Finland.,Department of Dermatology and Allergology, Päijät-Häme Social and Health Care Group, Lahti, Finland
| | - Mari Grönroos
- Faculty of Medicine and Health Technology, Department of Dermatology and Venereology, Tampere University, Tampere, Finland.,Department of Dermatology and Allergology, Päijät-Häme Social and Health Care Group, Lahti, Finland
| | - Hannu Kautiainen
- Unit of Primary Health Care, Department of General Practice, Helsinki University Central Hospital, University of Helsinki, Helsinki, Finland.,Unit of Primary Health Care, Kuopio University, Kuopio, Finland
| | - Lasse Ylianttila
- Non-Ionizing Radiation Surveillance, Radiation and Nuclear Safety Authority (STUK), Helsinki, Finland
| | - Erna Snellman
- Faculty of Medicine and Health Technology, Department of Dermatology and Venereology, Tampere University, Tampere, Finland.,Department of Dermatology and Allergology, Tampere University Hospital, Tampere, Finland.,Department of Dermatology, University of Turku, Turku, Finland
| | - Timo Partonen
- Department of Public Health, Finnish Institute for Health and Welfare (THL), Helsinki, Finland
| |
Collapse
|
31
|
Granado MDJ, Pinato L, Santiago J, Barbalho SM, Parmezzan JEL, Suzuki LM, Cabrini ML, Spressão DRMS, Carneiro de Camargo AL, Guissoni Campos LM. Melatonin receptors and Per1 expression in the inferior olivary nucleus of the Sapajus apella monkey. Front Neurosci 2022; 16:1072772. [PMID: 36605547 PMCID: PMC9809291 DOI: 10.3389/fnins.2022.1072772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022] Open
Abstract
Melatonin is a transducer of photic environmental information and participates in the synchronization of various physiological and behavioral phenomena. Melatonin can act directly in several areas of the central nervous system through its membrane receptors coupled to G protein, called MT1 and MT2 receptors. In some structures, such as the retina, hypothalamus and pars tuberalis, the expression of both melatonin receptors shows circadian variations. Melatonin can act in the synchronization of the clock proteins rhythm in these areas. Using the immunohistochemistry technique, we detected the immunoexpression of the melatonin receptors and clock genes clock protein Per1 in the inferior olivary nucleus (ION) of the Sapajus apella monkey at specific times of the light-dark phase. The mapping performed by immunohistochemistry showed expressive immunoreactivity (IR) Per1 with predominance during daytime. Both melatonin receptors were expressed in the ION without a day/night difference. The presence of both melatonin receptors and the Per1 protein in the inferior olivary nucleus can indicate a functional role not only in physiological, as in sleep, anxiety, and circadian rhythm, but also a chronobiotic role in motor control mechanisms.
Collapse
Affiliation(s)
- Marcos Donizete Junior Granado
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Medical School, University of Marilia (UNIMAR), Marília, Brazil
| | - Luciana Pinato
- Department of Speech, Language and Hearing Sciences, São Paulo State University (UNESP), Marília, Brazil
| | - Jeferson Santiago
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Medical School, University of Marilia (UNIMAR), Marília, Brazil
| | - Sandra Maria Barbalho
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Medical School, University of Marilia (UNIMAR), Marília, Brazil
| | - Jessica Ellen Lima Parmezzan
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Medical School, University of Marilia (UNIMAR), Marília, Brazil
| | - Lenita Mayumi Suzuki
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Medical School, University of Marilia (UNIMAR), Marília, Brazil
| | - Mayara Longui Cabrini
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Medical School, University of Marilia (UNIMAR), Marília, Brazil
| | | | - Ana Letícia Carneiro de Camargo
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Medical School, University of Marilia (UNIMAR), Marília, Brazil
| | - Leila Maria Guissoni Campos
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Medical School, University of Marilia (UNIMAR), Marília, Brazil,*Correspondence: Leila Maria Guissoni Campos,
| |
Collapse
|
32
|
Du X, Cui Z, Ning Z, Deng X, Amevor FK, Shu G, Wang X, Zhang Z, Tian Y, Zhu Q, Wang Y, Li D, Zhang Y, Zhao X. Circadian miR-218-5p targets gene CA2 to regulate uterine carbonic anhydrase activity during egg shell calcification. Poult Sci 2022; 101:102158. [PMID: 36167021 PMCID: PMC9513254 DOI: 10.1016/j.psj.2022.102158] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/29/2022] [Accepted: 08/24/2022] [Indexed: 11/06/2022] Open
Abstract
MicroRNAs (miRNAs) are involved in regulating the circadian clock. In our previous work, miR-218-5p was found to be a circadian miRNA in the chicken uterus, but its role in the eggshell formation process was not clear. In the present study, we found that the expression levels of miR-218-5p and two 2 predicted target genes carbonic anhydrase 2 (CA2) and neuronal PAS domain protein 2 (NPAS2) were oscillated in the chicken uterus. The results of dual-luciferase reporter gene assays in the present study demonstrated that miR-218-5p directly targeted the 3' untranslated regions of CA2 and NPAS2. miR-218-5p showed an opposite expression profile to CA2 within a 24 h cycle in the chicken uterus. Moreover, over-expression of miR-218-5p reduced the mRNA and protein expression of CA2, while miR-218-5p knockdown increased CA2 mRNA and protein expression. Overexpression of CA2 also significantly increased the activity of carbonic anhydrase Ⅱ (P < 0.05), whereas knockdown of CA2 decreased the activity of carbonic anhydrase Ⅱ. miR-218-5p influenced carbonic anhydrase activity via regulating the expression of CA2. These results demonstrated that clock-controlled miR-218-5p regulates carbonic anhydrase activity in the chicken uterus by targeting CA2 during eggshell formation.
Collapse
Affiliation(s)
- Xiaxia Du
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan Province, P. R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agricultural and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, P. R., Chengdu, China
| | - Zhifu Cui
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan Province, P. R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agricultural and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, P. R., Chengdu, China
| | - Zifan Ning
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan Province, P. R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agricultural and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, P. R., Chengdu, China
| | - Xun Deng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan Province, P. R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agricultural and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, P. R., Chengdu, China
| | - Felix Kwame Amevor
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan Province, P. R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agricultural and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, P. R., Chengdu, China
| | - Gang Shu
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, P. R. China
| | - Xiaoqi Wang
- Agriculture and Animal Husbandry Comprehensive Service Center, Tibet Autonomous Region, P. R. China
| | - Zhichao Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan Province, P. R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agricultural and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, P. R., Chengdu, China
| | - Yaofu Tian
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan Province, P. R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agricultural and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, P. R., Chengdu, China
| | - Qing Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan Province, P. R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agricultural and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, P. R., Chengdu, China
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan Province, P. R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agricultural and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, P. R., Chengdu, China
| | - Diyan Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan Province, P. R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agricultural and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, P. R., Chengdu, China
| | - Yao Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan Province, P. R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agricultural and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, P. R., Chengdu, China
| | - Xiaoling Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan Province, P. R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agricultural and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, P. R., Chengdu, China.
| |
Collapse
|
33
|
Vágó J, Katona É, Takács R, Dócs K, Hajdú T, Kovács P, Zákány R, van der Veen DR, Matta C. Cyclic uniaxial mechanical load enhances chondrogenesis through entraining the molecular circadian clock. J Pineal Res 2022; 73:e12827. [PMID: 36030553 PMCID: PMC9786663 DOI: 10.1111/jpi.12827] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 07/28/2022] [Accepted: 08/20/2022] [Indexed: 12/30/2022]
Abstract
The biomechanical environment plays a key role in regulating cartilage formation, but the current understanding of mechanotransduction pathways in chondrogenic cells is incomplete. Among the combination of external factors that control chondrogenesis are temporal cues that are governed by the cell-autonomous circadian clock. However, mechanical stimulation has not yet directly been proven to modulate chondrogenesis via entraining the circadian clock in chondroprogenitor cells. The purpose of this study was to establish whether mechanical stimuli entrain the core clock in chondrogenic cells, and whether augmented chondrogenesis caused by mechanical loading was at least partially mediated by the synchronised, rhythmic expression of the core circadian clock genes, chondrogenic transcription factors, and cartilage matrix constituents at both transcript and protein levels. We report here, for the first time, that cyclic uniaxial mechanical load applied for 1 h for a period of 6 days entrains the molecular clockwork in chondroprogenitor cells during chondrogenesis in limb bud-derived micromass cultures. In addition to the several core clock genes and proteins, the chondrogenic markers SOX9 and ACAN also followed a robust sinusoidal rhythmic expression pattern. These rhythmic conditions significantly enhanced cartilage matrix production and upregulated marker gene expression. The observed chondrogenesis-promoting effect of the mechanical environment was at least partially attributable to its entraining effect on the molecular clockwork, as co-application of the small molecule clock modulator longdaysin attenuated the stimulatory effects of mechanical load. This study suggests that an optimal biomechanical environment enhances tissue homoeostasis and histogenesis during chondrogenesis at least partially through entraining the molecular clockwork.
Collapse
Affiliation(s)
- Judit Vágó
- Department of Anatomy, Histology and Embryology, Faculty of MedicineUniversity of DebrecenDebrecenHungary
| | - Éva Katona
- Department of Anatomy, Histology and Embryology, Faculty of MedicineUniversity of DebrecenDebrecenHungary
| | - Roland Takács
- Department of Anatomy, Histology and Embryology, Faculty of MedicineUniversity of DebrecenDebrecenHungary
| | - Klaudia Dócs
- Department of Anatomy, Histology and Embryology, Faculty of MedicineUniversity of DebrecenDebrecenHungary
| | - Tibor Hajdú
- Department of Anatomy, Histology and Embryology, Faculty of MedicineUniversity of DebrecenDebrecenHungary
| | - Patrik Kovács
- Department of Anatomy, Histology and Embryology, Faculty of MedicineUniversity of DebrecenDebrecenHungary
| | - Róza Zákány
- Department of Anatomy, Histology and Embryology, Faculty of MedicineUniversity of DebrecenDebrecenHungary
| | - Daan R. van der Veen
- Chronobiology Section, Faculty of Health and Medical SciencesUniversity of SurreyGuildfordSurreyUnited Kingdom
| | - Csaba Matta
- Department of Anatomy, Histology and Embryology, Faculty of MedicineUniversity of DebrecenDebrecenHungary
| |
Collapse
|
34
|
Tian H, Jiao Y, Guo M, Wang Y, Wang R, Wang C, Chen X, Tian W. Krüppel-like factor 7 deficiency causes autistic-like behavior in mice via regulating Clock gene. Cell Biosci 2022; 12:166. [PMID: 36207723 PMCID: PMC9547400 DOI: 10.1186/s13578-022-00903-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/23/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Krüppel-like factor 7 (klf7), a transcription factor in the nervous system to regulate cell proliferation and differentiation, has been recently identified as a causal gene for autism spectrum disorder (ASD), but the mechanism behind remains unknown. RESULT To uncover this mechanism, in this study we characterized the involvement of klf7 in circadian rhythm by knocking down klf7 in N2A cells and examining the rhythmic expression of circadian genes, especially Clock gene. We constructed klf7-/- mice and then investigated into klf7 regulation on the expression of rhythm genes in vivo as well as the use of melatonin to rescue the autism behavior. Our results illustrated that circadian rhythm was disrupted in klf7 knockdown cells and that klf7-/- mice showed autism-like behavior. Also, we found that Clock gene was downregulated in the brain of these klf7-/- mice and that the downstream rhythm genes of Clock were disturbed. Melatonin, as a circadian regulation drug, could regulate the expression level and amplitude of rhythm genes in klf7 knockout cells and further rescue the autistic behavior of klf7-/- mice. CONCLUSION Klf7 deficiency causes ASD by disrupting circadian rhythm related genes to trigger rhythm oscillations. To treat ASD, maintaining circadian homeostasis is promising with the use of melatonin.
Collapse
Affiliation(s)
- Hui Tian
- grid.19373.3f0000 0001 0193 3564School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150080 China
| | - Yanwen Jiao
- grid.19373.3f0000 0001 0193 3564School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150080 China
| | - Mingyue Guo
- grid.19373.3f0000 0001 0193 3564School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150080 China
| | - Yilin Wang
- grid.19373.3f0000 0001 0193 3564School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150080 China
| | - Ruiqi Wang
- grid.19373.3f0000 0001 0193 3564School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150080 China
| | - Cao Wang
- grid.19373.3f0000 0001 0193 3564School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150080 China
| | - Xiongbiao Chen
- grid.25152.310000 0001 2154 235XDepartment of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9 Canada
| | - Weiming Tian
- grid.19373.3f0000 0001 0193 3564School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150080 China
| |
Collapse
|
35
|
Booker LA, Spong J, Deacon-Crouch M, Skinner TC. Preliminary Exploration into the Impact of Mistimed Expressed Breast Milk Feeding on Infant Sleep Outcomes, Compared to Other Feeding Patterns. Breastfeed Med 2022; 17:853-858. [PMID: 36137055 DOI: 10.1089/bfm.2022.0125] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Background and Objective: The presence and fluctuation of melatonin in breast milk during the night and day may be providing sleep timing information to infants, thereby supporting/enabling the development of their own circadian cycle. If this is the case, then it is important that infants consume breast milk according to the time of day it is produced. However, breast milk is not always consumed at the "right" time. The aim of this study was to investigate whether consuming mistimed expressed breast milk impacts infant sleep compared with other feeding types. Methods: A total of 329 mothers completed an online anonymous survey. Mothers were grouped into one of five groups; direct breastfed only, formula only, express mistimed, express-timed, and combined breastfed/formula fed. Results: Cross-sectional analysis showed mistimed expressed breast milk was significantly associated with delayed sleep onset of the infant (p < 0.001), but direct breastfed infants had significantly more awakenings at night (p < 0.001). Conclusions: The findings from this study suggest a potential effect of mistimed expressed breast milk consumption on an infant's circadian rhythm, affecting some aspects of their sleep. This is an important first step in exploring mistimed feeding on infant sleep outcomes and provides preliminary evidence that warrants future research.
Collapse
Affiliation(s)
- Lauren A Booker
- University Department of Rural Health, La Trobe Rural Health School, La Trobe University, Bendigo, Victoria, Australia.,Institute for Breathing and Sleep, Austin Health, Melbourne, Australia
| | - Jo Spong
- Institute for Breathing and Sleep, Austin Health, Melbourne, Australia.,Rural Department of Community Health, La Trobe Rural Health School, La Trobe University, Bendigo, Victoria, Australia
| | - Melissa Deacon-Crouch
- Rural Department Nursing & Midwifery, La Trobe Rural Health School, La Trobe University, Bendigo, Victoria, Australia
| | - Timothy C Skinner
- University Department of Rural Health, La Trobe Rural Health School, La Trobe University, Bendigo, Victoria, Australia.,Department of Psychology, Centre for Health and Society, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
36
|
Jiang W, Jin L, Ju D, Lu Z, Wang C, Guo X, Zhao H, Shen S, Cheng Z, Shen J, Zong G, Chen J, Li K, Yang L, Zhang Z, Feng Y, Shen JZ, Zhang EE, Wan R. The pancreatic clock is a key determinant of pancreatic fibrosis progression and exocrine dysfunction. Sci Transl Med 2022; 14:eabn3586. [PMID: 36170444 DOI: 10.1126/scitranslmed.abn3586] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Chronic pancreatitis (CP) is characterized by progressive fibrosis and exocrine dysregulation, which have long been considered irreversible. As a peripheral oscillator, the pancreas harbors autonomous and self-sustained timekeeping systems in both its endocrine and exocrine compartments, although the role of the latter remains poorly understood. By using different models of CP established in mice with dysfunctional pancreatic clocks, we found that the local clock played an important role in CP pathology, and genetic or external disruption of the pancreatic clock exacerbated fibrogenesis and exocrine insufficiency. Mechanistically, an impaired retinoic acid receptor-related orphan receptor A (Rora)/nuclear receptor subfamily 1, group D, member 1 (Nr1d1)/aryl hydrocarbon receptor nuclear translocator-like (Arntl or Bmal1) loop, called the circadian stabilizing loop, resulted in the deficiency of pancreatic Bmal1, which was responsible for controlling the fibrogenic properties of pancreatic stellate cells (PSCs) and for rewiring the function of acinar cells in a clock-TGF signaling-IL-11/IL-11RA axis-dependent manner. During PSC activation, the antagonistic interaction between Nr1d1 and Rora was unbalanced in response to the loss of cytoplasmic retinoid-containing lipid droplets. Patients with CP also exhibited reduced production of endogenous melatonin. Enhancing the clock through pharmacological restoration of the circadian stabilizing loop using a combination of melatonin and the Rora agonist SR1078 attenuated intrapancreatic pathological changes in mouse models of CP. Collectively, this study identified a protective role of the pancreatic clock against pancreatic fibrosis and exocrine dysfunction. Pancreatic clock-targeted therapy may represent a potential strategy to treat CP.
Collapse
Affiliation(s)
- Weiliang Jiang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.,Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Linzi Jin
- Department of Emergency, Shanghai Fourth People's Hospital, Tongji University School of Medicine, Shanghai 200434, China
| | - Dapeng Ju
- National Institute of Biological Sciences, Beijing 102206, China.,Department of Anesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 401336, China
| | - Zhanjun Lu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.,Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Chuanyang Wang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.,Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Xingya Guo
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.,Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Haijiao Zhao
- National Institute of Biological Sciences, Beijing 102206, China
| | - Shien Shen
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.,Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Zhiyuan Cheng
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.,Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Jie Shen
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.,Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Guanzhao Zong
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.,Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Jiahui Chen
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.,Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Kai Li
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.,Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Lijuan Yang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.,Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Zhijian Zhang
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Yun Feng
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.,Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Jia Z Shen
- Tumor Initiation and Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | | | - Rong Wan
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.,Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| |
Collapse
|
37
|
Guerrero-Vargas NN, Espitia-Bautista E, Escalona R, Lugo-Martínez H, Gutiérrez-Pérez M, Navarro-Espíndola R, Setién MF, Boy-Waxman S, Retana-Flores EA, Ortega B, Buijs RM, Escobar C. Timed restricted feeding cycles drive daily rhythms in female rats maintained in constant light but only partially restore the estrous cycle. Front Nutr 2022; 9:999156. [PMID: 36204367 PMCID: PMC9531653 DOI: 10.3389/fnut.2022.999156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/29/2022] [Indexed: 11/24/2022] Open
Abstract
Light at night is an emergent problem for modern society. Rodents exposed to light at night develop a loss of circadian rhythms, which leads to increased adiposity, altered immune response, and increased growth of tumors. In female rats, constant light (LL) eliminates the estrous cycle leading to a state of persistent estrus. The suprachiasmatic nucleus (SCN) drives circadian rhythms, and it interacts with the neuroendocrine network necessary for reproductive function. Timed restricted feeding (RF) exerts a powerful entraining influence on the circadian system, and it can influence the SCN activity and can restore rhythmicity or accelerate re-entrainment in experimental conditions of shift work or jet lag. The present study explored RF in female rats exposed to LL, with the hypothesis that this cyclic condition can rescue or prevent the loss of daily rhythms and benefit the expression of the estrous cycle. Two different feeding schedules were explored: 1. A 12-h food/12-h fasting schedule applied to arrhythmic rats after 3 weeks in LL, visualized as a rescue strategy (LL + RFR, 3 weeks), or applied simultaneously with the first day of LL as a preventive strategy (LL + RFP, 6 weeks). 2. A 12-h window of food intake with food given in four distributed pulses (every 3 h), applied after 3 weeks in LL, as a rescue strategy (LL + PR, 3 weeks) or applied simultaneously with the first day of LL as a preventive strategy (LL + PP, 6 weeks). Here, we present evidence that scheduled feeding can drive daily rhythms of activity and temperature in rats exposed to LL. However, the protocol of distributed feeding pulses was more efficient to restore the day–night activity and core temperature as well as the c-Fos day–night change in the SCN. Likewise, the distributed feeding partially restored the estrous cycle and the ovary morphology under LL condition. Data here provided indicate that the 12-h feeding/12-h fasting window determines the rest-activity cycle and can benefit directly the circadian and reproductive function. Moreover, this effect is stronger when food is distributed along the 12 h of subjective night.
Collapse
Affiliation(s)
- Natalí N. Guerrero-Vargas
- Departamento de Anatomía, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Rene Escalona
- Departamento de Embriología y Genética, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Haydée Lugo-Martínez
- Departamento de Embriología y Genética, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Mariana Gutiérrez-Pérez
- Departamento de Anatomía, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Raful Navarro-Espíndola
- Departamento de Anatomía, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - María Fernanda Setién
- Departamento de Anatomía, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Sebastián Boy-Waxman
- Departamento de Anatomía, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Berenice Ortega
- Departamento de Anatomía, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ruud M. Buijs
- Departamento de Fisiología Celular y Biología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Carolina Escobar
- Departamento de Anatomía, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
- *Correspondence: Carolina Escobar,
| |
Collapse
|
38
|
Zhou Z, Wang R, Wang J, Hao Y, Xie Q, Wang L, Wang X. Melatonin pretreatment on exosomes: Heterogeneity, therapeutic effects, and usage. Front Immunol 2022; 13:933736. [PMID: 36189281 PMCID: PMC9524263 DOI: 10.3389/fimmu.2022.933736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
The therapeutic outcomes of exosome-based therapies have greatly exceeded initial expectations in many clinically intractable diseases due to the safety, low toxicity, and immunogenicity of exosomes, but the production of the exosomes is a bottleneck for wide use. To increase the yield of the exosomes, various solutions have been tried, such as hypoxia, extracellular acidic pH, etc. With a limited number of cells or exosomes, an alternative approach has been developed to improve the efficacy of exosomes through cell pretreatment recently. Melatonin is synthesized from tryptophan and secreted in the pineal gland, presenting a protective effect in pathological conditions. As a new pretreatment method, melatonin can effectively enhance the antioxidant, anti-inflammatory, and anti-apoptotic function of exosomes in chronic kidney disease, diabetic wound healing, and ischemia-reperfusion treatments. However, the current use of melatonin pretreatment varies widely. Here, we discuss the effects of melatonin pretreatment on the heterogeneity of exosomes based on the role of melatonin and further speculate on the possible mechanisms. Finally, the therapeutic use of exosomes and the usage of melatonin pretreatment are described.
Collapse
Affiliation(s)
- Zilan Zhou
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China
| | - Ruiping Wang
- Science and Technology Information and Strategy Research Center of Shanxi, Taiyuan, China
| | - Jie Wang
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China
| | - Yujia Hao
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China
| | - Qingpeng Xie
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China
| | - Lu Wang
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China
- *Correspondence: Xing Wang, ; Lu Wang,
| | - Xing Wang
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China
- *Correspondence: Xing Wang, ; Lu Wang,
| |
Collapse
|
39
|
Galasso L, Castelli L, Roveda E, Oliverio A, Baldassari I, Esposito F, Mulè A, Montaruli A, Patrizia P, Bruno E. Physical activity and sleep behaviour in women carrying BRCA1/2 mutations. Sci Rep 2022; 12:12873. [PMID: 35896655 PMCID: PMC9329454 DOI: 10.1038/s41598-022-16687-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 07/13/2022] [Indexed: 11/09/2022] Open
Abstract
The aim of the present study is to explore the potential association between sleep quality and physical activity (PA) in women carriers of BRCA1/2 mutations. 63 women completed the Pittsburgh Sleep Quality Index (PSQI) and Godin Shepard Leisure-Time Physical Activity Questionnaire (GSL-TPAQ) and were included in the present cross-sectional analysis. Globally, women showed a PSQI score of 7.0 ± 3.6 and a GSL-TPAQ score of 22.8 ± 18.3. Good sleepers (PSQI score ≤ 5) showed significantly higher PA levels compared to bad sleepers (PSQI score > 5). Women in the higher tertile of GSL-TPAQ total score (≥ 27 METs/week) have a prevalence ratio (PR) of being a good sleeper of 2.85 (1.25-6.52, 95% confidence intervals) compared to women in the lower tertile (≤ 11 METs/week). These results were consistent in BRCA1 and BRCA2 women. Considering each single question of PA intensity, the PR of being a good sleeper by unit of increase of MET/week was higher and significant in women engaged in strenuous and moderate intensity PA. These results suggests a direct association between PA and sleep quality in women carriers of BRCA mutations.
Collapse
Affiliation(s)
- Letizia Galasso
- Department of Biomedical Sciences for Health, University of Milan, Via G. Colombo 71, 20133, Milan, Italy
| | - Lucia Castelli
- Department of Biomedical Sciences for Health, University of Milan, Via G. Colombo 71, 20133, Milan, Italy
| | - Eliana Roveda
- Department of Biomedical Sciences for Health, University of Milan, Via G. Colombo 71, 20133, Milan, Italy.,IRCCS Istituto Ortopedico Galeazzi, Via R. Galeazzi 4, 20161, Milan, Italy
| | - Andreina Oliverio
- Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via G. Venezian 1, 20133, Milan, Italy
| | - Ivan Baldassari
- Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via G. Venezian 1, 20133, Milan, Italy
| | - Fabio Esposito
- Department of Biomedical Sciences for Health, University of Milan, Via G. Colombo 71, 20133, Milan, Italy.,IRCCS Istituto Ortopedico Galeazzi, Via R. Galeazzi 4, 20161, Milan, Italy
| | - Antonino Mulè
- Department of Biomedical Sciences for Health, University of Milan, Via G. Colombo 71, 20133, Milan, Italy
| | - Angela Montaruli
- Department of Biomedical Sciences for Health, University of Milan, Via G. Colombo 71, 20133, Milan, Italy.,IRCCS Istituto Ortopedico Galeazzi, Via R. Galeazzi 4, 20161, Milan, Italy
| | - Pasanisi Patrizia
- Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via G. Venezian 1, 20133, Milan, Italy.
| | - Eleonora Bruno
- Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via G. Venezian 1, 20133, Milan, Italy
| |
Collapse
|
40
|
Yamaguchi T, Hamada T, Iijima N. Differences in recovery processes of circadian oscillators in various tissues after sevoflurane treatment in vivo. Biochem Biophys Rep 2022; 30:101258. [PMID: 35434385 PMCID: PMC9006766 DOI: 10.1016/j.bbrep.2022.101258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/23/2022] [Accepted: 04/01/2022] [Indexed: 11/30/2022] Open
Abstract
The inhalation anesthetic sevoflurane reversibly suppresses Period2 (Per2) mRNA expression in the suprachiasmatic nucleus (SCN). However, a discrepancy exists in phase shifting of the Per2 expression rhythm between sevoflurane application in rats (in vivo application) and explants (ex vivo application). This investigation aimed to resolve this issue. First, tissues from the SCN, choroid plexus in the lateral ventricle (CP-LV), and choroid plexus in the fourth ventricle (CP–4V), which are robust circadian oscillators, and pineal gland (PG) tissue, which is a circadian influencer, were prepared from Per2::dLuc transgenic rats. Significant phase responses of bioluminescence rhythms for different preparation times were monitored in the four tissue explant types. Second, tissue explants were prepared from anesthetized rats immediately after sevoflurane treatment, and bioluminescence rhythms were compared with those from non-anesthetized rats at various preparation times. Regarding bioluminescence rhythm phases, in vivo application of sevoflurane induced phase shifts in CP-LV, CP-4V, and PG explants according to the times that rats were administered anesthesia and the explants were prepared. Phase shifts in these peripheral explants were withdrawn due to the recovery period after the anesthetic treatment, which suggests that peripheral tissues require the assistance of related tissues or organs to correct phase shifts. In contrast, no phase shifts were observed in SCN explants. These results indicated that SCN explants can independently correct bioluminescence rhythm phase. The bioluminescence intensity of explants was also decreased after in vivo sevoflurane application. The suppressive effects on SCN explants were withdrawn due to a recovery day after the anesthetic treatment. In contrast, the suppressive effects on the bioluminescence intensities of CP-LV, CP-4V, and PG explants remained at 30 days after anesthesia administration. These results suggest that anesthetic suppression is imprinted within the peripheral tissues. We monitored bioluminescence in explants from Per2::dLuc rats after anesthesia. Sevoflurane induced phase shifts in peripheral explants but not in the SCN. Phase shifts in peripheral explants were withdrawn due to recovery period. Sevoflurane weakened the bioluminescence intensity of all explant types. The suppressive effects on peripheral explants were remained in a week later.
Collapse
Affiliation(s)
- Takeshi Yamaguchi
- Center for Basic Medical Research, International University of Health and Welfare, Ohtawara, Tochigi, Japan
| | - Toshiyuki Hamada
- Department of Pharmacology, International University of Health and Welfare, Ohtawara, Tochigi, Japan
| | - Norio Iijima
- Center for Basic Medical Research, International University of Health and Welfare, Ohtawara, Tochigi, Japan
- Corresponding author.
| |
Collapse
|
41
|
Tobeiha M, Jafari A, Fadaei S, Mirazimi SMA, Dashti F, Amiri A, Khan H, Asemi Z, Reiter RJ, Hamblin MR, Mirzaei H. Evidence for the Benefits of Melatonin in Cardiovascular Disease. Front Cardiovasc Med 2022; 9:888319. [PMID: 35795371 PMCID: PMC9251346 DOI: 10.3389/fcvm.2022.888319] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/10/2022] [Indexed: 12/13/2022] Open
Abstract
The pineal gland is a neuroendocrine gland which produces melatonin, a neuroendocrine hormone with critical physiological roles in the circadian rhythm and sleep-wake cycle. Melatonin has been shown to possess anti-oxidant activity and neuroprotective properties. Numerous studies have shown that melatonin has significant functions in cardiovascular disease, and may have anti-aging properties. The ability of melatonin to decrease primary hypertension needs to be more extensively evaluated. Melatonin has shown significant benefits in reducing cardiac pathology, and preventing the death of cardiac muscle in response to ischemia-reperfusion in rodent species. Moreover, melatonin may also prevent the hypertrophy of the heart muscle under some circumstances, which in turn would lessen the development of heart failure. Several currently used conventional drugs show cardiotoxicity as an adverse effect. Recent rodent studies have shown that melatonin acts as an anti-oxidant and is effective in suppressing heart damage mediated by pharmacologic drugs. Therefore, melatonin has been shown to have cardioprotective activity in multiple animal and human studies. Herein, we summarize the most established benefits of melatonin in the cardiovascular system with a focus on the molecular mechanisms of action.
Collapse
Affiliation(s)
- Mohammad Tobeiha
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Ameneh Jafari
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Fadaei
- Department of Internal Medicine and Endocrinology, Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Ali Mirazimi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Dashti
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Atefeh Amiri
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, UT Health. Long School of Medicine, San Antonio, TX, United States
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Johannesburg, South Africa
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
42
|
YALCIN S, Özkan S, Shah T. Incubation Temperature and Lighting: Effect on Embryonic Development, Post-Hatch Growth, and Adaptive Response. Front Physiol 2022; 13:899977. [PMID: 35634161 PMCID: PMC9136109 DOI: 10.3389/fphys.2022.899977] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/18/2022] [Indexed: 11/29/2022] Open
Abstract
During incubation, the content of the egg is converted into a chick. This process is controlled by incubation conditions, which must meet the requirements of the chick embryo to obtain the best chick quality and maximum hatchability. Incubation temperature and light are the two main factors influencing embryo development and post-hatch performance. Because chicken embryos are poikilothermic, embryo metabolic development relies on the incubation temperature, which influences the use of egg nutrients and embryo development. Incubation temperature ranging between 37 and 38°C (typically 37.5–37.8°C) optimizes hatchability. However, the temperature inside the egg called “embryo temperature” is not equal to the incubator air temperature. Moreover, embryo temperature is not constant, depending on the balance between embryonic heat production and heat transfer between the eggshell and its environment. Recently, many studies have been conducted on eggshell and/or incubation temperature to meet the needs of the embryo and to understand the embryonic requirements. Numerous studies have also demonstrated that cyclic increases in incubation temperature during the critical period of incubation could induce adaptive responses and increase the thermotolerance of chickens without affecting hatchability. Although the commercial incubation procedure does not have a constant lighting component, light during incubation can modify embryo development, physiology, and post-hatch behavior indicated by lowering stress responses and fearful behavior and improving spatial abilities and cognitive functions of chicken. Light-induced changes may be attributed to hemispheric lateralization and the entrainment of circadian rhythms in the embryo before the hatching. There is also evidence that light affects embryonic melatonin rhythms associated with body temperature regulation. The authors’ preliminary findings suggest that combining light and cyclic higher eggshell temperatures during incubation increases pineal aralkylamine N-acetyltransferase, which is a rate-limiting enzyme for melatonin hormone production. Therefore, combining light and thermal manipulation during the incubation could be a new approach to improve the resistance of broilers to heat stress. This review aims to provide an overview of studies investigating temperature and light manipulations to improve embryonic development, post-hatch growth, and adaptive stress response in chickens.
Collapse
Affiliation(s)
| | - Sezen Özkan
- *Correspondence: Servet YALCIN, ; Sezen Özkan,
| | | |
Collapse
|
43
|
Paribello P, Manchia M, Bosia M, Pinna F, Carpiniello B, Comai S. Melatonin and aggressive behavior: A systematic review of the literature on preclinical and clinical evidence. J Pineal Res 2022; 72:e12794. [PMID: 35192237 PMCID: PMC9285357 DOI: 10.1111/jpi.12794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/04/2022] [Accepted: 02/18/2022] [Indexed: 11/27/2022]
Abstract
The melatonin system and circadian disruption have well-established links with aggressive behaviors; however, the biological underpinnings have not been thoroughly investigated. Here, we aimed at examining the current knowledge regarding the neurobiological and psychopharmacological involvement of the melatonin system in aggressive/violent behaviors. To this end, we performed a systematic review on Embase and Pubmed/MEDLINE of preclinical and clinical evidence linking the melatonin system, melatonin, and melatoninergic drugs with aggressive/violent behaviors. Two blinded raters performed an independent screening of the relevant literature. Overall, this review included 38 papers distributed between clinical and preclinical models. Eleven papers specifically addressed the existing evidence in rodent models, five in fish models, and 21 in humans. The data indicate that depending on the species, model, and timing of administration, melatonin may exert a complex influence on aggressive/violent behaviors. Particularly, the apparent contrasting findings on the link between the melatonin system and aggression/violence (with either increased, no, or decreased effect) shown in preclinical models underscore the need for further research to develop more accurate and fruitful translational models. Likewise, the significant heterogeneity found in the results of clinical studies does not allow yet to draw any firm conclusion on the efficacy of melatonin or melatonergic drugs on aggressive/violent behaviors. However, findings in children and in traits associated with aggressive/violent behavior, including irritability and anger, are emerging and deserve empirical attention given the low toxicity of melatonin and melatonergic drugs.
Collapse
Affiliation(s)
- Pasquale Paribello
- Section of Psychiatry, Department of Medical Sciences and Public HealthUniversity of CagliariCagliariItaly
- Unit of Clinical PsychiatryUniversity Hospital Agency of CagliariCagliariItaly
| | - Mirko Manchia
- Section of Psychiatry, Department of Medical Sciences and Public HealthUniversity of CagliariCagliariItaly
- Unit of Clinical PsychiatryUniversity Hospital Agency of CagliariCagliariItaly
- Department of PharmacologyDalhousie UniversityHalifaxNova ScotiaCanada
| | - Marta Bosia
- Division of NeuroscienceSan Raffaele Scientific InstituteMilanItaly
- School of MedicineVita Salute San Raffaele UniversityMilanItaly
| | - Federica Pinna
- Section of Psychiatry, Department of Medical Sciences and Public HealthUniversity of CagliariCagliariItaly
- Unit of Clinical PsychiatryUniversity Hospital Agency of CagliariCagliariItaly
| | - Bernardo Carpiniello
- Section of Psychiatry, Department of Medical Sciences and Public HealthUniversity of CagliariCagliariItaly
- Unit of Clinical PsychiatryUniversity Hospital Agency of CagliariCagliariItaly
| | - Stefano Comai
- Division of NeuroscienceSan Raffaele Scientific InstituteMilanItaly
- Department of PsychiatryMcGill UniversityMontrealQuebecCanada
- Department of Pharmaceutical and Pharmacological SciencesUniversity of PaduaPaduaItaly
- Department of Biomedical SciencesUniversity of PaduaPaduaItaly
| |
Collapse
|
44
|
Liu JA, Meléndez-Fernández OH, Bumgarner JR, Nelson RJ. Effects of light pollution on photoperiod-driven seasonality. Horm Behav 2022; 141:105150. [PMID: 35304351 PMCID: PMC10137835 DOI: 10.1016/j.yhbeh.2022.105150] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 12/23/2022]
Abstract
Changes to photoperiod (day length) occur in anticipation of seasonal environmental changes, altering physiology and behavior to maximize fitness. In order for photoperiod to be useful as a predictive factor of temperature or food availability, day and night must be distinct. The increasing prevalence of exposure to artificial light at night (ALAN) in both field and laboratory settings disrupts photoperiodic time measurement and may block development of appropriate seasonal adaptations. Here, we review the effects of ALAN as a disruptor of photoperiodic time measurement and season-specific adaptations, including reproduction, metabolism, immune function, and thermoregulation.
Collapse
Affiliation(s)
- Jennifer A Liu
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, West Virginia, USA.
| | | | - Jacob R Bumgarner
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, West Virginia, USA
| | - Randy J Nelson
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, West Virginia, USA
| |
Collapse
|
45
|
Cipolla-Neto J, Amaral FG, Soares JM, Gallo CC, Furtado A, Cavaco JE, Gonçalves I, Santos CRA, Quintela T. The Crosstalk between Melatonin and Sex Steroid Hormones. Neuroendocrinology 2022; 112:115-129. [PMID: 33774638 DOI: 10.1159/000516148] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/24/2021] [Indexed: 11/19/2022]
Abstract
Melatonin, an indolamine mainly released from the pineal gland, is associated with many biological functions, namely, the modulation of circadian and seasonal rhythms, sleep inducer, regulator of energy metabolism, antioxidant, and anticarcinogenic. Although several pieces of evidence also recognize the influence of melatonin in the reproductive physiology, the crosstalk between melatonin and sex hormones is not clear. Here, we review the effects of sex differences in the circulating levels of melatonin and update the current knowledge on the link between sex hormones and melatonin. Furthermore, we explore the effects of melatonin on gonadal steroidogenesis and hormonal control in females. The literature review shows that despite the strong evidence that sex differences impact on the circadian profiles of melatonin, reports are still considerably ambiguous, and these differences may arise from several factors, like the use of contraceptive pills, hormonal status, and sleep deprivation. Furthermore, there has been an inconclusive debate about the characteristics of the reciprocal relationship between melatonin and reproductive hormones. In this regard, there is evidence for the role of melatonin in gonadal steroidogenesis brought about by research that shows that melatonin affects multiple transduction pathways that modulate Sertoli cell physiology and consequently spermatogenesis, and also estrogen and progesterone production. From the outcome of our research, it is possible to conclude that understanding the correlation between melatonin and reproductive hormones is crucial for the correction of several complications occurring during pregnancy, like preeclampsia, and for the control of climacteric symptoms.
Collapse
Affiliation(s)
- José Cipolla-Neto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - José Maria Soares
- Laboratório de Ginecologia Estrutural e Molecular (LIM 58), Disciplina de Ginecologia, Departamento de Obstetrícia e Ginecologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, HCFMUSP, São Paulo, Brazil
| | | | - André Furtado
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - José Eduardo Cavaco
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Isabel Gonçalves
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | | | - Telma Quintela
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| |
Collapse
|
46
|
Association of Melatonin Administration in Pregnant Ewes with Growth, Redox Status and Immunity of Their Offspring. Animals (Basel) 2021; 11:ani11113161. [PMID: 34827893 PMCID: PMC8614450 DOI: 10.3390/ani11113161] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/31/2021] [Accepted: 11/02/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Melatonin is a known antioxidant and anti-inflammatory regime, while in sheep it is broadly used to accelerate the onset of the breeding season. Our recent study showed that melatonin administration during pregnancy in heat-stressed ewes improved fertility rate and number of lambs born per ewe, the redox status of the maternal organism and the produced milk quantity until weaning. In this study, we present the impact of melatonin administration in stressed ewes during pregnancy considering: (a) humoral response of both maternal organism and offspring during the first two days after parturition, (b) chemical composition and antioxidant parameters of colostrum and milk until weaning and (c) redox status of the offspring until weaning. The results indicated that melatonin improved the redox status of the offspring and the quality of colostrum. Moreover, melatonin could be administered as immune-modulatory regime, apart from antioxidant, in prenatally stressed offspring in order to cope with the crucial first days of their life, as the humoral response results suggested. Abstract In this study, the effects of melatonin treatment on growth, redox status and immunity in prenatally stressed newborn lambs were evaluated. Thirty-seven newborn lambs were allocated into two groups (melatonin-MEL and control-CON), based on whether their mothers were treated with melatonin implants or not, respectively. All pregnant ewes were exposed to heat stress. The body weight of lambs was recorded at birth (L0), and then on days 15 (L15) and 40 (L40). Redox biomarkers [total antioxidant capacity (TAC), glutathione (GSH), thiobarbituric acid reactive substances (TBARS)] were assayed in blood samples collected from lambs on days L0, L1, L2, L5, L10 and L40. Chemical analysis and antioxidant capacity were evaluated in colostrum and milk samples collected at the same time points with blood samples. Cytokines (IL-1β, IL-6, IL-10, IFN-γ) and immunoglobulin (IgG) were assayed in blood and colostrum samples collected from ewes on days L0 and L1, and in lambs’ blood on days L0, L1 and L2. The results revealed that body weight gain of newborn lambs did not differ between the two groups (p > 0.05). Better redox status was found in MEL lambs until L2, as well as higher antioxidant capacity in the colostrum of MEL ewes compared to CON ones on day L0 (p < 0.05). In MEL ewes’ colostrum, higher protein content was measured on day L0 and higher fat content on L1 compared to CON group (p < 0.05). The highest level of IL-6 was found in MEL ewes on L1, with a concomitant increase of IL-10 level in MEL lambs in comparison to CON lambs on L2. Moreover, CON colostrum resulted in a higher level of IL-10 within time, coupled with an increased level of IgG found in lambs’ plasma on L2 (p = 0.04). This study indicated that melatonin could be administered as antioxidant and immune-modulatory regime in prenatally stressed offspring in order to cope with the crucial first days of their life. This effect of melatonin was also amplified by crosstalk between IL-6, IL-10 and IgG production, resulting in an improved quality of produced milk.
Collapse
|
47
|
Cui Z, Zhang Z, Amevor FK, Du X, Li L, Tian Y, Kang X, Shu G, Zhu Q, Wang Y, Li D, Zhang Y, Zhao X. Circadian miR-449c-5p regulates uterine Ca 2+ transport during eggshell calcification in chickens. BMC Genomics 2021; 22:764. [PMID: 34702171 PMCID: PMC8547053 DOI: 10.1186/s12864-021-08074-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 10/06/2021] [Indexed: 12/27/2022] Open
Abstract
Background miRNAs regulate circadian patterns by modulating the biological clocks of animals. In our previous study, we found that the clock gene exhibited a cosine expression pattern in the fallopian tube of chicken uterus. Clock-controlled miRNAs are present in mammals and Drosophila; however, whether there are clock-controlled miRNAs in the chicken uterus and, if so, how they regulate egg-laying rhythms is unclear. In this study, we selected 18 layer hens with similar ovipositional rhythmicity (each of three birds were sacrificed for study per 4 h throughout 24 h); their transcriptomes were scanned to identify the circadian miRNAs and to explore regulatory mechanisms within the uterus of chickens. Results We identified six circadian miRNAs that are mainly associated with several biological processes including ion trans-membrane transportation, response to calcium ion, and enrichment of calcium signaling pathways. Verification of the experimental results revealed that miR-449c-5p exhibited a cosine expression pattern in the chicken uterus. Ca2+-transporting ATPase 4 (ATP2B4) in the plasma membrane is the predicted target gene of circadian miR-449c-5p and is highly enriched in the calcium signaling pathway. We speculated that clock-controlled miR-449c-5p regulated Ca2+ transportation during eggshell calcification in the chicken uterus by targeting ATP2B4. ATP2B4 mRNA and protein were rhythmically expressed in the chicken uterus, and dual-luciferase reporter gene assays confirmed that ATP2B4 was directly targeted by miR-449c-5p. The expression of miR-449c-5p showed an opposite trend to that of ATP2B4 within a 24 h cycle in the chicken uterus; it inhibited mRNA and protein expression of ATP2B4 in the uterine tubular gland cells. In addition, overexpression of ATP2B4 significantly decreased intracellular Ca2+ concentration (P < 0.05), while knockdown of ATP2B4 accelerated intracellular Ca2+ concentrations. We found similar results after ATP2B4 knockdown by miR-449c-5p. Taken together, these results indicate that ATP2B4 promotes uterine Ca2+ trans-epithelial transport. Conclusions Clock-controlled miR-449c-5p regulates Ca2+ transport in the chicken uterus by targeting ATP2B4 during eggshell calcification. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08074-3.
Collapse
Affiliation(s)
- Zhifu Cui
- Department of Animal Science, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Apt 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan Province, People's Republic of China
| | - Zhichao Zhang
- Department of Animal Science, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Apt 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan Province, People's Republic of China
| | - Felix Kwame Amevor
- Department of Animal Science, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Apt 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan Province, People's Republic of China
| | - Xiaxia Du
- Department of Animal Science, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Apt 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan Province, People's Republic of China
| | - Liang Li
- Department of Animal Science, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Apt 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan Province, People's Republic of China
| | - Yaofu Tian
- Department of Animal Science, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Apt 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan Province, People's Republic of China
| | - Xincheng Kang
- Department of Animal Science, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Apt 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan Province, People's Republic of China
| | - Gang Shu
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, People's Republic of China
| | - Qing Zhu
- Department of Animal Science, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Apt 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan Province, People's Republic of China
| | - Yan Wang
- Department of Animal Science, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Apt 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan Province, People's Republic of China
| | - Diyan Li
- Department of Animal Science, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Apt 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan Province, People's Republic of China
| | - Yao Zhang
- Department of Animal Science, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Apt 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan Province, People's Republic of China
| | - Xiaoling Zhao
- Department of Animal Science, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Apt 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan Province, People's Republic of China.
| |
Collapse
|
48
|
Bumgarner JR, Walker WH, Nelson RJ. Circadian rhythms and pain. Neurosci Biobehav Rev 2021; 129:296-306. [PMID: 34375675 PMCID: PMC8429267 DOI: 10.1016/j.neubiorev.2021.08.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 06/30/2021] [Accepted: 08/04/2021] [Indexed: 10/20/2022]
Abstract
The goal of this review is to provide a perspective on the nature and importance of the relationship between the circadian and pain systems. We provide: 1) An overview of the circadian and pain systems, 2) a review of direct and correlative evidence that demonstrates diurnal and circadian rhythms within the pain system; 3) a perspective highlighting the need to consider the role of a proposed feedback loop of circadian rhythm disruption and maladaptive pain; 4) a perspective on the nature of the relationship between circadian rhythms and pain. In summary, we propose that there is no single locus responsible for producing the circadian rhythms of the pain system. Instead, circadian rhythms of pain are a complex result of the distributed rhythms present throughout the pain system, especially those of the descending pain modulatory system, and the rhythms of the systems with which it interacts, including the opioid, endocrine, and immune systems.
Collapse
Affiliation(s)
- Jacob R Bumgarner
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA.
| | - William H Walker
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
| | - Randy J Nelson
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
49
|
Yang HJ, Kim MJ, Kim SS, Cho YW. Melatonin modulates nitric oxide-regulated WNK-SPAK/OSR1-NKCC1 signaling in dorsal raphe nucleus of rats. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2021; 25:449-457. [PMID: 34448462 PMCID: PMC8405441 DOI: 10.4196/kjpp.2021.25.5.449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/21/2021] [Accepted: 07/20/2021] [Indexed: 11/15/2022]
Abstract
The sleep-wake cycle is regulated by the alternating activity of sleep- and wake-promoting neurons. The dorsal raphe nucleus (DRN) secretes 5-hydroxytryptamine (5-HT, serotonin), promoting wakefulness. Melatonin secreted from the pineal gland also promotes wakefulness in rats. Our laboratory recently demonstrated that daily changes in nitric oxide (NO) production regulates a signaling pathway involving with-no-lysine kinase (WNK), Ste20-related proline alanine rich kinase (SPAK)/oxidative stress response kinase 1 (OSR1), and cation-chloride co-transporters (CCC) in rat DRN serotonergic neurons. This study was designed to investigate the effect of melatonin on NO-regulated WNK-SPAK/OSR1-CCC signaling in wake-inducing DRN neurons to elucidate the mechanism underlying melatonin's wake-promoting actions in rats. Ex vivo treatment of DRN slices with melatonin suppressed neuronal nitric oxide synthase (nNOS) expression and increased WNK4 expression without altering WNK1, 2, or 3. Melatonin increased phosphorylation of OSR1 and the expression of sodium-potassium-chloride co-transporter 1 (NKCC1), while potassium-chloride cotransporter 2 (KCC2) remained unchanged. Melatonin increased the expression of tryptophan hydroxylase 2 (TPH2, serotonin-synthesizing enzyme). The present study suggests that melatonin may promote its wakefulness by modulating NO-regulated WNK-SPAK/OSR1-KNCC1 signaling in rat DRN serotonergic neurons.
Collapse
Affiliation(s)
- Hye Jin Yang
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Mi Jung Kim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul 02447, Korea.,Biomedical Science Institute and Medical Research Center for Reactive Oxygen Species, College of Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Sung Soo Kim
- Biomedical Science Institute and Medical Research Center for Reactive Oxygen Species, College of Medicine, Kyung Hee University, Seoul 02447, Korea.,Department of Biochemistry and Molecular Biology, College of Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Young-Wuk Cho
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea.,Department of Physiology, College of Medicine, Kyung Hee University, Seoul 02447, Korea.,Biomedical Science Institute and Medical Research Center for Reactive Oxygen Species, College of Medicine, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|
50
|
Munmun F, Witt-Enderby PA. Melatonin effects on bone: Implications for use as a therapy for managing bone loss. J Pineal Res 2021; 71:e12749. [PMID: 34085304 DOI: 10.1111/jpi.12749] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/22/2021] [Accepted: 05/31/2021] [Indexed: 02/06/2023]
Abstract
Melatonin is the primary circadian output signal from the brain and is mainly synthesized in pinealocytes. The rhythm and secretion of melatonin are under the control of an endogenous oscillator located in the SCN or the master biological clock. Disruptions in circadian rhythms by shift work, aging, or light at night are associated with bone loss and increased fracture risk. Restoration of nocturnal melatonin peaks to normal levels or therapeutic levels through timed melatonin supplementation has been demonstrated to provide bone-protective actions in various models. Melatonin is a unique molecule with diverse molecular actions targeting melatonin receptors located on the plasma membrane or mitochondria or acting independently of receptors through its actions as an antioxidant or free radical scavenger to stimulate osteoblastogenesis, inhibit osteoclastogenesis, and improve bone density. Its additional actions on entraining circadian rhythms and improving quality of life in an aging population coupled with its safety profile make it an ideal therapeutic candidate for protecting against bone loss in susceptible populations. The intent of this review is to provide a focused discussion on bone loss and disorders of the bone as it relates to melatonin and conditions that modify melatonin levels with the hope that future therapies include those that include melatonin and correct those factors that modify melatonin levels like circadian disruption.
Collapse
Affiliation(s)
- Fahima Munmun
- Division of Pharmaceutical Sciences, Duquesne University School of Pharmacy, Pittsburgh, PA, USA
| | - Paula A Witt-Enderby
- Division of Pharmaceutical Sciences, Duquesne University School of Pharmacy, Pittsburgh, PA, USA
| |
Collapse
|