1
|
Zhang YB, Corrêa Scalon M, Liu JX, Song XY, Yang D, Zhang YJ, Ellsworth DS, Zhang JL. You are what you eat: nutrient and water relations between mistletoes and hosts. THE NEW PHYTOLOGIST 2023; 238:567-583. [PMID: 36651017 DOI: 10.1111/nph.18747] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Mistletoes play important roles in biogeochemical cycles. Although many studies have compared nutrient concentrations between mistletoes and their hosts, no general patterns have been found and the nutrient uptake mechanisms in mistletoes have not been fully resolved. To address the water and nutrient relations in mistletoes compared with their hosts, we measured 11 nutrient elements, two isotope ratios and two leaf morphological traits for 11 mistletoe and 104 host species from four sites across a large environmental gradient in southwest China. Mistletoes had significantly higher phosphorus, potassium, and boron concentrations, nitrogen isotope ratio, and lower carbon isotope ratio (δ13 C) indicative of lower water-use efficiency than hosts, but other elements were similar to those in hosts. Sites explained most of the variation in the multidimensional trait space. With increasing host nitrogen concentration, both mistletoe δ13 C and the difference between mistletoe and host δ13 C increased, providing evidence to support the 'nitrogen parasitism hypothesis'. Host nutrient concentrations were the best predictors for that of the mistletoe nutrient elements in most cases. Our results highlight the important roles of environmental conditions and host nutrient status in determining mistletoe nutrient pools, which together explain their trophic interactions with hosts in subtropical and tropical ecosystems.
Collapse
Affiliation(s)
- Yun-Bing Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Marina Corrêa Scalon
- Programa de Pós-graduação em Ecologia e Conservação, Universidade Federal do Paraná, Curitiba, PR, 81531-990, Brazil
| | - Jing-Xin Liu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
| | - Xiao-Yang Song
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
| | - Da Yang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
| | - Yong-Jiang Zhang
- School of Biology and Ecology, University of Maine, Orono, ME, 04469, USA
| | - David S Ellsworth
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Jiao-Lin Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
- Yuanjiang Savanna Ecosystem Research Station, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yuanjiang, Yunnan, 653300, China
| |
Collapse
|
2
|
Wdowikowska A, Reda M, Kabała K, Chohura P, Jurga A, Janiak K, Janicka M. Water and Nutrient Recovery for Cucumber Hydroponic Cultivation in Simultaneous Biological Treatment of Urine and Grey Water. PLANTS (BASEL, SWITZERLAND) 2023; 12:1286. [PMID: 36986974 PMCID: PMC10053017 DOI: 10.3390/plants12061286] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 06/19/2023]
Abstract
Water and nutrient deficiencies in soil are becoming a serious threat to crop production. Therefore, usable water and nutrient recovery from wastewater, such as urine and grey water, should be considered. In this work, we showed the possibility of using grey water and urine after processing in an aerobic reactor with activated sludge in which the nitrification process takes place. The resulting liquid (nitrified urine and grey water, NUG) contains three potential factors that can adversely affect plant growth in a hydroponic system: anionic surfactants, nutrient deficits, and salinity. After dilution and supplementation with small amounts of macro- and micro-elements, NUG was suitable for cucumber cultivation. Plant growth on this modified medium (enriched nitrified urine and grey water, NUGE) was similar to that of plants cultivated on Hoagland solution (HS) and reference commercial fertilizer (RCF). The modified medium (NUGE) contained a significant amount of sodium (Na) ions. Therefore, typical effects of salt stress were observed in cucumber plants, including reduced chlorophyll levels, slightly weaker photosynthesis parameters, increased H2O2 levels, lipid peroxidation, ascorbate peroxidase (APX) activity, and proline content in the leaves. In addition, reduced protein levels were observed in plants treated with recycled medium. At the same time, lower nitrate content in tissues was found, which may have resulted from their intensive use by nitrate reductase (NR), the activity of which significantly increased. Although cucumber is a glycophyte, it grew very well in this recycled medium. Interestingly, salt stress and possibly anionic surfactants promoted flower formation, which in turn could positively affect plant yield.
Collapse
Affiliation(s)
- Anna Wdowikowska
- Department of Plant Molecular Physiology, Faculty of Biological Sciences, University of Wrocław, Kanonia 6/8, 50-328 Wrocław, Poland
| | - Małgorzata Reda
- Department of Plant Molecular Physiology, Faculty of Biological Sciences, University of Wrocław, Kanonia 6/8, 50-328 Wrocław, Poland
| | - Katarzyna Kabała
- Department of Plant Molecular Physiology, Faculty of Biological Sciences, University of Wrocław, Kanonia 6/8, 50-328 Wrocław, Poland
| | - Piotr Chohura
- Faculty of Life Science and Technology, Wroclaw University of Environmental and Life Sciences, St. C. K. Norwida 27, 50-375 Wroclaw, Poland
| | - Anna Jurga
- Faculty of Environmental Engineering, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
| | - Kamil Janiak
- Faculty of Environmental Engineering, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
- Wroclaw Municipal Water and Sewage Company, Na Grobli 19, 50-421 Wroclaw, Poland
| | - Małgorzata Janicka
- Department of Plant Molecular Physiology, Faculty of Biological Sciences, University of Wrocław, Kanonia 6/8, 50-328 Wrocław, Poland
| |
Collapse
|
3
|
Lira-Martins D, Quesada CA, Strekopytov S, Humphreys-Williams E, Herault B, Lloyd J. Wood Nutrient-Water-Density Linkages Are Influenced by Both Species and Environment. FRONTIERS IN PLANT SCIENCE 2022; 13:778403. [PMID: 35444675 PMCID: PMC9014131 DOI: 10.3389/fpls.2022.778403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Tropical trees store a large amount of nutrients in their woody tissues, thus triggering the question of what the functional association of these elements with other wood traits is. Given the osmotic activity of mineral elements such as potassium, sodium, and calcium, these elements should be strong candidates in mediating the water storing capacity in tropical trees. We investigated the role of wood nutrients in facilitating wood water storage in trees by using branch samples from 48 tropical tree species in South America and examined their associations with wood density (ρ). Wood density varied from 316 kg/m3 in Peru plots, where the soil nutrient status is relatively higher, to 908 kg/m3 in Brazil plots, where the nutrient availability is lower. Phosphorus content in wood varied significantly between plots with lowest values found in French Guiana (1.2 mol/m3) and plots with highest values found in Peru (43.6 mol/m3). Conversely, potassium in woody tissues showed a significant cross-species variation with Minquartia guianensis in Brazil showing the lowest values (8.8 mol/m3) and with Neea divaricata in Peru having the highest values (114 mol/m3). We found that lower wood density trees store more water in their woody tissues with cations, especially potassium, having a positive association with water storage. Specific relationships between wood cation concentrations and stem water storage potential nevertheless depend on both species' identity and growing location. Tropical trees with increased water storage capacity show lower wood density and have an increased reliance on cations to regulate this reservoir. Our study highlights that cations play a more important role in tropical tree water relations than has previously been thought, with potassium being particularly important.
Collapse
Affiliation(s)
- Demetrius Lira-Martins
- Department of Life Sciences, Imperial College London, London, United Kingdom
- Department of Plant Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Carlos Alberto Quesada
- Coordination of Environmental Dynamics, National Institute for Amazonian Research (INPA), Manaus, Brazil
| | - Stanislav Strekopytov
- Imaging and Analysis Centre, Natural History Museum, London, United Kingdom
- National Measurement Laboratory, LGC, Teddington, United Kingdom
| | | | - Bruno Herault
- UR Forests and Societies, Centre de Coopération Internationale en Recherche Agronomique Pour le Développement (Cirad), Montpellier, France
- Université de Montpellier, Montpellier, France
- Institut National Polytechnique Félix Houphouët-Boigny, Yamoussoukro, Ivory Coast
| | - Jon Lloyd
- Department of Life Sciences, Imperial College London, London, United Kingdom
- Centre for Tropical, Environmental and Sustainability Sciences, College of Science and Engineering, James Cook University, Smithfield, QLD, Australia
- Faculdade de Filosofia, Ciencias e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
4
|
The Impact of Treated Wastewater Irrigation on the Metabolism of Barley Grown in Arid and Semi-Arid Regions. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19042345. [PMID: 35206534 PMCID: PMC8871893 DOI: 10.3390/ijerph19042345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/06/2022] [Accepted: 02/14/2022] [Indexed: 11/17/2022]
Abstract
The use of treated wastewater (TWW) for irrigation has gained global attention since it reduces pressure on groundwater (GW) and surface water. This study aimed to evaluate the effect of TWW on agronomic, photosynthetic, stomatal, and nutritional characteristics of barley plants. The experiment with barley was established on two bands: one band was irrigated with GW and the other with TWW. The evaluation was performed 25, 40, 60, 90, and 115 days after sowing (DAS). Results showed that irrigation with TWW increased (p < 0.01) grain yield by 54.3% and forage yield by 39.4% compared to GW irrigation. In addition, it increased plant height (PH) (p = 0.013), chlorophyll concentration index (CCI) (p = 0.006), and leaf area index (LAI) (p = 0.002). TWW also produced a positive effect (p < 0.05) in all the photosynthetic efficiency parameters evaluated. Barley plants irrigated with TWW had lower stomatal density (SD) and area (SA) (p < 0.001) than plants irrigated with GW. Plants irrigated with TWW had a higher P concentration (p < 0.05) in stems and roots and K concentration in leaves than plants irrigated with GW. We concluded that the use of TWW induced important biochemical, physiological, and agronomic changes in barley plants. Hence, the use of TWW may be a sustainable alternative for barley production in arid and semi-arid regions. This study was part of a government project, which aimed to develop a new metropolitan irrigation district with TWW. This study may contribute to the sustainability of water resources and agricultural practices in northern Mexico.
Collapse
|
5
|
Potassium (K+) Starvation-Induced Oxidative Stress Triggers a General Boost of Antioxidant and NADPH-Generating Systems in the Halophyte Cakile maritima. Antioxidants (Basel) 2022; 11:antiox11020401. [PMID: 35204284 PMCID: PMC8869740 DOI: 10.3390/antiox11020401] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 12/26/2022] Open
Abstract
Potassium (K+) is an essential macro-element for plant growth and development given its implication in major processes such as photosynthesis, osmoregulation, protein synthesis, and enzyme function. Using 30-day-old Cakile maritima plants as halophyte model grown under K+ deprivation for 15 days, it was analyzed at the biochemical level to determine the metabolism of reactive oxygen species (ROS), key photorespiratory enzymes, and the main NADPH-generating systems. K+ starvation-induced oxidative stress was noticed by high malondialdehyde (MDA) content associated with an increase of superoxide radical (O2•−) in leaves from K+-deficient plants. K+ shortage led to an overall increase in the activity of hydroxypyruvate reductase (HPR) and glycolate oxidase (GOX), as well as of antioxidant enzymes catalase (CAT), those of the ascorbate-glutathione cycle, peroxidase (POX), and superoxide dismutase (SOD), and the main enzymes involved in the NADPH generation in both leaves and roots. Especially remarkable was the induction of up to seven CuZn-SOD isozymes in leaves due to K+ deficiency. As a whole, data show that the K+ starvation has associated oxidative stress that boosts a biochemical response leading to a general increase of the antioxidant and NADPH-generating systems that allow the survival of the halophyte Cakile maritima.
Collapse
|
6
|
Zhang YB, Yang D, Zhang KY, Bai XL, Wang YSD, Wu HD, Ding LZ, Zhang YJ, Zhang JL. Higher water and nutrient use efficiencies in savanna than in rainforest lianas result in no difference in photosynthesis. TREE PHYSIOLOGY 2022; 42:145-159. [PMID: 34312678 PMCID: PMC8755031 DOI: 10.1093/treephys/tpab099] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 07/07/2021] [Indexed: 05/25/2023]
Abstract
Differences in traits between lianas and trees in tropical forests have been studied extensively; however, few have compared the ecological strategies of lianas from different habitats. Here, we measured 25 leaf and stem traits concerning leaf anatomy, morphology, physiology and stem hydraulics for 17 liana species from a tropical seasonal rainforest and for 19 liana species from a valley savanna in south-west China. We found that savanna lianas had higher vessel density, wood density and lower hydraulically weighted vessel diameter and theoretical hydraulic conductivity than tropical seasonal rainforest lianas. Compared with tropical seasonal rainforest lianas, savanna lianas also showed higher leaf dry matter content, carbon isotope composition (δ13C), photosynthetic water use efficiency, ratio of nitrogen to phosphorus, photosynthetic phosphorus use efficiency and lower leaf size, stomatal conductance and nitrogen, phosphorus and potassium concentrations. Interestingly, no differences in light-saturated photosynthetic rate were found between savanna and tropical seasonal rainforest lianas either on mass or area basis. This is probably due to the higher water and nutrient use efficiencies of savanna lianas. A principal component analysis revealed that savanna and tropical seasonal rainforest lianas were significantly separated along the first axis, which was strongly associated with acquisitive or conservative resource use strategy. Leaf and stem functional traits were coordinated across lianas, but the coordination or trade-off was stronger in the savanna than in the tropical seasonal rainforest. In conclusion, a relatively conservative (slow) strategy concerning water and nutrient use may benefit the savanna lianas, while higher nutrient and water use efficiencies allow them to maintain similar photosynthesis as tropical seasonal rainforest species. Our results clearly showed divergences in functional traits between lianas from savanna and tropical seasonal rainforest, suggesting that enhanced water and nutrient use efficiencies might contribute to the distribution of lianas in savanna ecosystems.
Collapse
Affiliation(s)
- Yun-Bing Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Da Yang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
| | - Ke-Yan Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Xiao-Long Bai
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Yang-Si-Ding Wang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Huai-Dong Wu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
| | - Ling-Zi Ding
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
| | - Yong-Jiang Zhang
- School of Biology and Ecology, University of Maine, Orono, ME 04469, USA
| | - Jiao-Lin Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
- Yuanjiang Savanna Ecosystem Research Station, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yuanjiang, Yunnan 653300, China
| |
Collapse
|
7
|
Chen H, Bullock DA, Alonso JM, Stepanova AN. To Fight or to Grow: The Balancing Role of Ethylene in Plant Abiotic Stress Responses. PLANTS (BASEL, SWITZERLAND) 2021; 11:plants11010033. [PMID: 35009037 PMCID: PMC8747122 DOI: 10.3390/plants11010033] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/18/2021] [Accepted: 12/19/2021] [Indexed: 05/04/2023]
Abstract
Plants often live in adverse environmental conditions and are exposed to various stresses, such as heat, cold, heavy metals, salt, radiation, poor lighting, nutrient deficiency, drought, or flooding. To adapt to unfavorable environments, plants have evolved specialized molecular mechanisms that serve to balance the trade-off between abiotic stress responses and growth. These mechanisms enable plants to continue to develop and reproduce even under adverse conditions. Ethylene, as a key growth regulator, is leveraged by plants to mitigate the negative effects of some of these stresses on plant development and growth. By cooperating with other hormones, such as jasmonic acid (JA), abscisic acid (ABA), brassinosteroids (BR), auxin, gibberellic acid (GA), salicylic acid (SA), and cytokinin (CK), ethylene triggers defense and survival mechanisms thereby coordinating plant growth and development in response to abiotic stresses. This review describes the crosstalk between ethylene and other plant hormones in tipping the balance between plant growth and abiotic stress responses.
Collapse
|
8
|
Nedjimi B. Determination of Some Major and Trace Elements in Cladodes of Barbary fig (Opuntia ficus-indica Mill.) by X-ray Fluorescence Spectrometry. Biol Trace Elem Res 2021; 199:4353-4359. [PMID: 33400153 DOI: 10.1007/s12011-020-02555-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/20/2020] [Indexed: 10/22/2022]
Abstract
Barbary fig (Opuntia ficus-indica) has attracted great attention in extensive rural agriculture for its potential agronomic, medicinal, and environmental benefits. However, there is only incomplete information about its chemical profile. Energy-dispersive X-ray fluorescence (EDXRF) spectrometry was applied to determine the concentrations of 11 major and trace elements (Br, Cr, Cu, Fe, K, Mn, P, Rb, Sr, Yb, and Zn) in cladodes of O. ficus-indica and the adjacent soil. For analytical accuracy, the standard reference materials CRM-IAEA 336 (Lichen) and CRM-NIST 1646a (Estuarine Sediment) were used. The relationships between the chemical elements were established by Pearson's correlation coefficient (r) and principal component analysis (PCA). The results show that K, P, Fe, and Mn were the dominant essential elements in O. ficus-indica cladodes; however, Br, Cr, Cu, Rb, Yb, and Zn were present at low concentrations. The cladodes showed high enrichment with K, Sr, and Br (BEF > 1), but the values of this coefficient were below 1 for the remaining elements. The PCA showed that in the O. ficus-indica cladodes, the higher concentrations of Br, K, and Sr were correlated; conversely, the highest contents of Cr, Cu, Fe, Mn, P, Rb, Yb, and Zn were retained in the soil. The present findings enabled us to determine that O. ficus-indica has a high ability to accumulate K, P, Fe, and Mn in its cladodes. Therefore, the data obtained from the analysis of this cactus will be useful for nutritional and medicinal purposes.
Collapse
Affiliation(s)
- Bouzid Nedjimi
- Laboratory of Exploration and Valorization of Steppe Ecosystem, Faculty of Science of Nature and Life, Ziane Achour University of Djelfa, Cité Aîn Chih, P.O. Box 3117, 17000, Djelfa, Algeria.
| |
Collapse
|
9
|
Oueslati A, Montevecchi G, Antonelli A, Mansour HB. Short-time irrigation on young olive tree (Olea europaea L. cv. Chemlali) with untreated industrial poultry wastewater: investigation of growth parameters and leaves chemical composition. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:50420-50429. [PMID: 33954919 DOI: 10.1007/s11356-021-14261-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
The purpose of this study was to evaluate the short-term irrigation effect with industrial poultry wastewater on young olive trees (Olea europaea L. cv. Chemlali). Industrial poultry wastewater can be considered as a bio-fertilizer due to its richness in nutritive elements (SO42-, HCO3-, total nitrogen, and K+). The physicochemical analysis of wastewater showed a high concentration of TSS, COD, BOD, COT, NO3-, and conductivity. Measurements indicated that poultry wastewater enhanced plant growth, leaves dry matter, and ashes in comparison with tap water, as well as poultry wastewater diluted with tap water; however, a decrease in total soluble sugars (glucose and fructose) was detected in leaves. The determination of fatty acid profile of young olive trees leaves irrigated with poultry wastewater showed richness on saturated fatty acids in comparison with mono- and poly-unsaturated ones. In addition, oleic acid (C18:1) presented the lowest content in leaves of trees irrigated with poultry wastewater irrigation. According to those results, poultry wastewater lends itself to being a hydric alternative and at the same time a source of nutrients that can help fill the water deficit in semi-arid countries and avoid costly waste disposal for slaughterhouses.
Collapse
Affiliation(s)
- Amira Oueslati
- Research Unit of Analysis and Process Applied on the Environmental - APAE UR17ES32 - Higher Institute of Applied Sciences and Technology Mahdia, University of Monastir, Monastir, Tunisia
- Department of Life Sciences (Agro-Food Science Area), BIOGEST-SITEIA Interdepartmental Centre, University of Modena and Reggio Emilia, Piazzale Europa 1, 42124, Reggio Emilia, Italy
| | - Giuseppe Montevecchi
- Research Unit of Analysis and Process Applied on the Environmental - APAE UR17ES32 - Higher Institute of Applied Sciences and Technology Mahdia, University of Monastir, Monastir, Tunisia
| | - Andrea Antonelli
- Research Unit of Analysis and Process Applied on the Environmental - APAE UR17ES32 - Higher Institute of Applied Sciences and Technology Mahdia, University of Monastir, Monastir, Tunisia
| | - Hedi Ben Mansour
- Research Unit of Analysis and Process Applied on the Environmental - APAE UR17ES32 - Higher Institute of Applied Sciences and Technology Mahdia, University of Monastir, Monastir, Tunisia.
| |
Collapse
|
10
|
Liu Q, Sterck FJ, Zhang JL, Scheire A, Konings E, Cao M, Sha LQ, Poorter L. Traits, strategies, and niches of liana species in a tropical seasonal rainforest. Oecologia 2021; 196:499-514. [PMID: 34023971 PMCID: PMC8241640 DOI: 10.1007/s00442-021-04937-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 05/05/2021] [Indexed: 11/27/2022]
Abstract
Plant functional traits and strategies hold the promise to explain species distribution, but few studies have linked multiple traits to multiple niche dimensions (i.e., light, water, and nutrients). Here, we analyzed for 29 liana species in a Chinese tropical seasonal rainforest how: (1) trait associations and trade-offs lead to different plant strategies; and (2) how these traits shape species' niche dimensions. Eighteen functional traits related to light, water, and nutrient use were measured and species niche dimensions were quantified using species distribution in a 20-ha plot combined with data on canopy gaps, topographic water availability, and soil nutrients. We found a tissue toughness spectrum ranging from soft to hard tissues along which species also varied from acquisitive to conservative water use, and a resource acquisition spectrum ranging from low to high light capture and nutrient use. Intriguingly, each spectrum partly reflected the conservative-acquisitive paradigm, but at the same time, the tissue toughness and the resource acquisition spectrum were uncoupled. Resource niche dimensions were better predicted by individual traits than by multivariate plant strategies. This suggests that trait components that underlie multivariate strategy axes, rather than the plant strategies themselves determine species distributions. Different traits were important for different niche dimensions. In conclusion, plant functional traits and strategies can indeed explain species distributions, but not in a simple and straight forward way. Although the identification of global plant strategies has significantly advanced the field, this research shows that global, multivariate generalizations are difficult to translate to local conditions, as different components of these strategies are important under different local conditions.
Collapse
Affiliation(s)
- Qi Liu
- Forest Ecology and Forest Management Group, Wageningen University and Research, P.O. Box 47, 6700 AA, Wageningen, The Netherlands
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yunnan, 666303, China
| | - Frank J Sterck
- Forest Ecology and Forest Management Group, Wageningen University and Research, P.O. Box 47, 6700 AA, Wageningen, The Netherlands
| | - Jiao-Lin Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yunnan, 666303, China.
| | - Arne Scheire
- Forest Ecology and Forest Management Group, Wageningen University and Research, P.O. Box 47, 6700 AA, Wageningen, The Netherlands
| | - Evelien Konings
- Forest Ecology and Forest Management Group, Wageningen University and Research, P.O. Box 47, 6700 AA, Wageningen, The Netherlands
| | - Min Cao
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yunnan, 666303, China
| | - Li-Qing Sha
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yunnan, 666303, China
| | - Lourens Poorter
- Forest Ecology and Forest Management Group, Wageningen University and Research, P.O. Box 47, 6700 AA, Wageningen, The Netherlands
| |
Collapse
|
11
|
Santos EF, Mateus NS, Rosário MO, Garcez TB, Mazzafera P, Lavres J. Enhancing potassium content in leaves and stems improves drought tolerance of eucalyptus clones. PHYSIOLOGIA PLANTARUM 2021; 172:552-563. [PMID: 33022105 DOI: 10.1111/ppl.13228] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/16/2020] [Accepted: 09/28/2020] [Indexed: 06/11/2023]
Abstract
Eucalyptus are widely planted in regions with low rainfall, occasioning frequent drought stresses. To alleviate the stress-induced effects on plants growing in these environments, soil fertilization with potassium (K) may affect drought-adaptive plant mechanisms, notably on tropical soils with low K availability. This work aimed to evaluate the K dynamic nutrition in eucalyptus in response to soil-K and -water availabilities, correlating the K-nutritional status with the physiological responses of contrasting eucalyptus clones to drought tolerance. A complete randomized design was used to investigate the effects of three water regimes (well-watered, moderate water deficit, and severe water deficit) and two K soil supplies (sufficient and low K) on growth and physiological responses of two elite eucalyptus clones: "VM01" (Eucalyptus urophylla × camaldulensis) and "AEC 0144" (E. urophylla). Results depicted that the K-well-nourished E. urophylla × camaldulensis clone under severe water deficit maintained shoot biomass accumulation by upregulating the K-content in leaves and stems, gas exchange, water-use efficiency (WUEI ), leaf water potential (Ψw), and chlorophyll a fluorescence parameters, compared to E. urophylla clone. Meanwhile, E. urophylla with a severe water deficit showed a decreased of K content in leaves and stem, as well as a reduction in the accumulation of dry mass. Therefore, the K-use efficiency and the apparent electron transport rate through photosystem II were positively correlated in plants grown in low K, indicating the importance of K in maintaining leaf photochemical processes. In conclusion, management strategy should seek to enhance K-nutrition to optimize water-use efficiencies and photosynthesis.
Collapse
Affiliation(s)
- Elcio Ferreira Santos
- Federal Institute of Mato Grosso do Sul, Laboratory of Plant Nutriton, Nova Andradina, Brazil
| | - Nikolas Souza Mateus
- University of São Paulo, Center for Nuclear Energy in Agriculture, Piracicaba, Brazil
| | | | - Tiago Barreto Garcez
- Federal University of Sergipe, Campus do Sertão, Nossa Senhora da Glória, Brazil
| | - Paulo Mazzafera
- University of São Paulo, Luiz de Queiroz College of Agriculture, Piracicaba, Brazil
- University of Campinas, Institute of Biology, Campinas, Brazil
| | - José Lavres
- University of São Paulo, Center for Nuclear Energy in Agriculture, Piracicaba, Brazil
| |
Collapse
|
12
|
Potassium: A key modulator for cell homeostasis. J Biotechnol 2020; 324:198-210. [PMID: 33080306 DOI: 10.1016/j.jbiotec.2020.10.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 09/28/2020] [Accepted: 10/14/2020] [Indexed: 02/06/2023]
Abstract
Potassium (K) is the most vital and abundant macro element for the overall growth of plants and its deficiency or, excess concentration results in many diseases in plants. It is involved in regulation of many crucial roles in plant development. Depending on soil-root interactions, complex soil dynamics often results in unpredictable availability of the elements. Based on the importance index, K is considered to be the second only to nitrogen for the overall growth of plants. More than 60 enzymes within the plant system depend on K for its activation, in which K act as a key regulator. K helps plants to resist several abiotic and biotic stresses in the environment. We have reviewed the research progress about K's role in plants covering various important considerations of K highlighting the effects of microbes on soil K+; K and its contribution to adsorbed dose in plants; the importance of K+ deficiency; physiological functions of K+ transporters and channels; and interference of abiotic stressor in the regulatory role of K. This review further highlights the scope of future research regarding K.
Collapse
|
13
|
Nedjimi B. Measurement of selected trace elements in Olea europaea L. cv. 'Sigoise'. J Trace Elem Med Biol 2020; 62:126595. [PMID: 32619918 DOI: 10.1016/j.jtemb.2020.126595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/17/2020] [Accepted: 06/15/2020] [Indexed: 11/25/2022]
Abstract
BACKGROUND Olive-trees (Olea europaea L.) are the dominant rustic trees cultivated in the Mediterranean agricultural zones. Major and micronutrients play an indispensable role in their plant physiological functions although; the effect of trace elements on metabolic processes has not been sufficiently investigated, especially in olive-trees. METHODS In the current study, we have used X-ray fluorescence (XRF) spectrometry to determine selected major and trace elements (Br, Cu, Fe, K, Mn, P, Rb and Zn) in the main olive cultivar cultivated in Algeria, cv.'Sigoise'. Certified reference materials viz. IAEA-336 (Lichen) and NIST-1646a (Estuarine sediment) were evaluated simultaneously with the soil and plant samples for quality control of the analytical method. RESULTS The results show that Fe and Mn concentrations were superior in leaves than fruits. However large amounts of K, Cu and Rb were accumulated in the olive-fruits. The contents of all chemical elements were above the threshold limits for possible plant nutrient deficiencies, except for P whose concentration was in borderline requirement of olive trees. High values of a translocation factor index were found for K, Cu and Rb (TFs > 4). Principal component analysis (PCA) indicated that K was highly related with olives-fruits, suggesting that the fruit was the principal organ of K storage. Furthermore, dietary element intake through consuming olives was also estimated and compared to recommended daily intakes (RDIs) and daily permissible limits (DPLs). The estimations of chemical element intakes were below the DPLs set by WHO/FAO guidelines for human nutrition. CONCLUSION The present work indicates that the concentrations of macro- and microelements (Cu, Fe, K, Mn and Zn) were above the threshold limits for possible plant deficiencies except for P, and this cultivar can easily accumulate high amount of K in their organs (predominance in olives). These findings will be used to achieve efficient fertilization for O. europaea orchards.
Collapse
Affiliation(s)
- Bouzid Nedjimi
- Laboratory of Exploration and Valorization of Steppe Ecosystem, Faculty of Science of Nature and Life, Ziane Achour University of Djelfa, Cité Aîn Chih, P.O. Box 3117, Djelfa, 17000, Algeria.
| |
Collapse
|
14
|
Nieves-Cordones M, Lara A, Ródenas R, Amo J, Rivero RM, Martínez V, Rubio F. Modulation of K + translocation by AKT1 and AtHAK5 in Arabidopsis plants. PLANT, CELL & ENVIRONMENT 2019; 42:2357-2371. [PMID: 31046137 DOI: 10.1111/pce.13573] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/24/2019] [Accepted: 04/28/2019] [Indexed: 05/16/2023]
Abstract
Root cells take up K+ from the soil solution, and a fraction of the absorbed K+ is translocated to the shoot after being loaded into xylem vessels. K+ uptake and translocation are spatially separated processes. K+ uptake occurs in the cortex and epidermis whereas K+ translocation starts at the stele. Both uptake and translocation processes are expected to be linked, but the connection between them is not well characterized. Here, we studied K+ uptake and translocation using Rb+ as a tracer in wild-type Arabidopsis thaliana and in T-DNA insertion mutants in the K+ uptake or translocation systems. The relative amount of translocated Rb+ to the shoot was positively correlated with net Rb+ uptake rates, and the akt1 athak5 T-DNA mutant plants were more efficient in their allocation of Rb+ to shoots. Moreover, a mutation of SKOR and a reduced plant transpiration prevented the full upregulation of AtHAK5 gene expression and Rb+ uptake in K+ -starved plants. Lastly, Rb+ was found to be retrieved from root xylem vessels, with AKT1 playing a significant role in K+ -sufficient plants. Overall, our results suggest that K+ uptake and translocation are tightly coordinated via signals that regulate the expression of K+ transport systems.
Collapse
Affiliation(s)
- Manuel Nieves-Cordones
- Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura-CSIC, Murcia, Spain
| | - Alberto Lara
- Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura-CSIC, Murcia, Spain
| | - Reyes Ródenas
- Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura-CSIC, Murcia, Spain
| | - Jesús Amo
- Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura-CSIC, Murcia, Spain
| | - Rosa María Rivero
- Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura-CSIC, Murcia, Spain
| | - Vicente Martínez
- Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura-CSIC, Murcia, Spain
| | - Francisco Rubio
- Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura-CSIC, Murcia, Spain
| |
Collapse
|
15
|
Araújo M, Ferreira de Oliveira JMP, Santos C, Moutinho-Pereira J, Correia C, Dias MC. Responses of olive plants exposed to different irrigation treatments in combination with heat shock: physiological and molecular mechanisms during exposure and recovery. PLANTA 2019; 249:1583-1598. [PMID: 30771046 DOI: 10.1007/s00425-019-03109-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 02/08/2019] [Indexed: 06/09/2023]
Abstract
A water-deficit period, leading to stomatal control and overexpression of protective proteins (sHSP and DHN), contributes to olive´s tolerance to later imposed stress episodes. Aquaporins modulation is important in olive recovery. Olive is traditionally cultivated in dry farming or in high water demanding irrigated orchards. The impact of climate change on these orchards remains to unveil, as heat and drought episodes are increasing in the Mediterranean region. To understand how young plants face such stress episodes, olive plants growing in pots were exposed to well-irrigated and non-irrigated treatments. Subsequently, plants from each treatment were either exposed to 40 °C for 2 h or remained under control temperature. After treatments, all plants were allowed to grow under well-irrigated conditions (recovery). Leaves were compared for photosynthesis, relative water content, mineral status, pigments, carbohydrates, cell membrane permeability, lipid peroxidation and expression of the protective proteins' dehydrin (OeDHN1), heat-shock proteins (OeHSP18.3), and aquaporins (OePIP1.1 and OePIP2.1). Non-irrigation, whilst increasing carbohydrates, reduced some photosynthetic parameters to values below the ones of the well-irrigated plants. However, when both groups of plants were exposed to heat, well-irrigated plants suffered more drastic decreases of net CO2 assimilation rate and chlorophyll b than non-irrigated plants. Overall, OeDHN1 and OeHSP18.3 expression, which was increased in non-irrigated treatment, was potentiated by heat, possibly to counteract the increase of lipid peroxidation and loss of membrane integrity. Plants recovered similarly from both irrigation and temperature treatments, and recovery was associated with increased aquaporin expression in plants exposed to one type of stress (drought or heat). These data represent an important contribution for further understanding how dry-farming olive will cope with drought and heat episodes.
Collapse
Affiliation(s)
- Márcia Araújo
- Department of Life Science, Centre for Functional Ecology (CFE), University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
- Integrated Biology and Biotechnology Laboratory, Department of Biology, Faculty of Sciences, University of Porto, Rua Campo Alegre, 4169-007, Porto, Portugal
- Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, 5001-801, Vila Real, Portugal
| | - José Miguel P Ferreira de Oliveira
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Conceição Santos
- Integrated Biology and Biotechnology Laboratory, Department of Biology, Faculty of Sciences, University of Porto, Rua Campo Alegre, 4169-007, Porto, Portugal
- LAQV, REQUIMTE, Faculty of Sciences, University of Porto, Porto, Portugal
| | - José Moutinho-Pereira
- Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, 5001-801, Vila Real, Portugal
| | - Carlos Correia
- Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, 5001-801, Vila Real, Portugal
| | - Maria Celeste Dias
- Department of Life Science, Centre for Functional Ecology (CFE), University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal.
- QOPNA and Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
16
|
Zhang M, Fu MM, Qiu CW, Cao F, Chen ZH, Zhang G, Wu F. Response of Tibetan Wild Barley Genotypes to Drought Stress and Identification of Quantitative Trait Loci by Genome-Wide Association Analysis. Int J Mol Sci 2019; 20:E791. [PMID: 30759829 PMCID: PMC6387302 DOI: 10.3390/ijms20030791] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/06/2019] [Accepted: 02/07/2019] [Indexed: 11/23/2022] Open
Abstract
Tibetan wild barley has been identified to show large genetic variation and stress tolerance. A genome-wide association (GWA) analysis was performed to detect quantitative trait loci (QTLs) for drought tolerance using 777 Diversity Array Technology (DArT) markers and morphological and physiological traits of 166 Tibetan wild barley accessions in both hydroponic and pot experiments. Large genotypic variation for these traits was found; and population structure and kinship analysis identified three subpopulations among these barley genotypes. The average LD (linkage disequilibrium) decay distance was 5.16 cM, with the minimum on 6H (0.03 cM) and the maximum on 4H (23.48 cM). A total of 91 DArT markers were identified to be associated with drought tolerance-related traits, with 33, 26, 16, 1, 3, and 12 associations for morphological traits, H⁺K⁺-ATPase activity, antioxidant enzyme activities, malondialdehyde (MDA) content, soluble protein content, and potassium concentration, respectively. Furthermore, 7 and 24 putative candidate genes were identified based on the reference Meta-QTL map and by searching the Barleymap. The present study implicated that Tibetan annual wild barley from Qinghai⁻Tibet Plateau is rich in genetic variation for drought stress. The QTLs detected by genome-wide association analysis could be used in marker-assisting breeding for drought-tolerant barley genotypes and provide useful information for discovery and functional analysis of key genes in the future.
Collapse
Affiliation(s)
- Mian Zhang
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China.
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, China.
| | - Man-Man Fu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China.
| | - Cheng-Wei Qiu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China.
| | - Fangbin Cao
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China.
| | - Zhong-Hua Chen
- School of Science and Health, Hawkesbury Campus, University of Western Sydney, Penrith, NSW 2751, Australia.
| | - Guoping Zhang
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China.
| | - Feibo Wu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China.
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
17
|
Fernández-Escobar R. Olive Nutritional Status and Tolerance to Biotic and Abiotic Stresses. FRONTIERS IN PLANT SCIENCE 2019; 10:1151. [PMID: 31608093 PMCID: PMC6769400 DOI: 10.3389/fpls.2019.01151] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 08/23/2019] [Indexed: 05/10/2023]
Abstract
The role of nutrients in plant growth is generally explained in terms of their functions in plant metabolism. Nevertheless, there is evidence that plant tolerance or resistance to biotic or abiotic stresses could be affected by the nutritional status. Although not well studied, an adequate nutritional status for optimal plant growth is thought to also be optimal for plant tolerance to stress. Considering the current global trend toward sustainability, studies that clarify the relationships between nutrition and stress are of great interest. For example, potassium plays an important role in the regulation of water status in the olive, improving drought tolerance, while calcium is involved in sodium exclusion mechanism, which can increase tolerance to salinity. Nitrogen excess, in contrast, increases susceptibility to spring frost and olive leaf spot. Silicon is not an essential element for plant growth, but it is considered a beneficial element; among its roles in the control of pests and diseases is the formation of a physical barrier that occurs through silicon deposition in the epidermal cells of the leaves. The presence of soluble silicon also facilitates the deposition of phenolic and other compounds at sites of infection, which is a general defense mechanism to pathogen attack. In olive, silicon application, either by foliar sprays or through irrigation water, reduces the incidence of olive leaf spot. This review summarizes the current status of olive nutrition, the relationships with biotic and abiotic stresses, and the effects of silicon.
Collapse
|
18
|
Maintenance of mesophyll potassium and regulation of plasma membrane H+-ATPase are associated with physiological responses of tea plants to drought and subsequent rehydration. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.cj.2018.06.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
19
|
Tränkner M, Tavakol E, Jákli B. Functioning of potassium and magnesium in photosynthesis, photosynthate translocation and photoprotection. PHYSIOLOGIA PLANTARUM 2018; 163:414-431. [PMID: 29667201 DOI: 10.1111/ppl.12747] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/22/2018] [Accepted: 04/10/2018] [Indexed: 05/03/2023]
Abstract
Potassium (K) and magnesium (Mg) are mineral nutrients that are required in large quantities by plants. Both elements critically contribute to the process of photosynthesis and the subsequent long-distance transport of photoassimilates. If K or Mg is not present in sufficient quantities in photosynthetic tissues, complex interactions of anatomical, physiological and biochemical responses result in a reduction of photosynthetic carbon assimilation. As a consequence, excessive production of reactive oxygen species causes photo-oxidation of the photosynthetic apparatus and causes an up-regulation of photoprotective mechanisms. In this article, we review the functioning of K and Mg in processes directly or indirectly associated with photosynthesis. Focus is given to chloroplast ultrastructure, light-dependent and -independent reactions of photosynthesis and the diffusion of CO2 - a major substrate for photosynthesis - into chloroplasts. We further emphasize their contribution to phloem-loading and long-distance transport of photoassimilates and to the photoprotection of the photosynthetic apparatus.
Collapse
Affiliation(s)
- Merle Tränkner
- Institute of Applied Plant Nutrition (IAPN), Georg-August University Goettingen, 37075, Goettingen, Germany
| | | | - Bálint Jákli
- Department of Crop Science, Section of Plant Nutrition & Crop Physiology, Georg-August University Goettingen, 37075, Goettingen, Germany
| |
Collapse
|
20
|
Benlloch-González M, Sánchez-Lucas R, Benlloch M. Effects of olive root warming on potassium transport and plant growth. JOURNAL OF PLANT PHYSIOLOGY 2017; 218:182-188. [PMID: 28886454 DOI: 10.1016/j.jplph.2017.07.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 07/24/2017] [Accepted: 07/25/2017] [Indexed: 06/07/2023]
Abstract
Young olive (Olea europaea L.) plants generated from seed were grown in liquid hydroponic medium exposing the roots system for 33days or 24h to high temperature (37°C) while the aerial part to 25°C aiming to determine the prolonged and immediate effects of root warming on K+(Rb+) transport in the root and consequently on plant growth. The exposition of the root system to 37°C for 24h inhibited K+ (Rb+) transport from root to shoot having no effect on its uptake. However, when the root system was exposed permanently to 37°C both the K+ (Rb+) uptake and translocation to the aerial part were inhibited as well as the growth in all plants organs. The ability of the root system to recover K+ (Rb+) uptake and transport capacity after being exposed to high temperature was also evaluated. Plants grown in a root medium at 37°C for 31days were transferred to another at 25°C for 48 or 96h. The recovery of K+ (Rb+) root transport capacity after high root temperature was slow. Any signal of recovery was observed after 48h without stress: both potassium root uptake and subsequent transport to above organs were inhibited yet. Whereas 96h without stress led to restore potassium upward transport capacity although the uptake was partially inhibited yet. The results obtained in this study have shown that the root system of young olive plants is very sensitive to high temperature related to root potassium transport and growth of the plant. Taking into account the two processes involved in root potassium transport, the discharge of K+ to the xylem vessels was more affected than the uptake at the initial phase of high root temperature stress. However, it was the first process to be re-established during recovery. All this could explain the symptoms frequently observed in olive orchards when dry and high temperature spells occur: a reduction in shoots growth and leaves with low levels of potassium contents and dehydration symptoms.
Collapse
Affiliation(s)
- María Benlloch-González
- Departamento de Agronomía, Escuela Técnica Superior de Ingeniería Agronómica y de Montes, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario, ceiA3, Ctra. Madrid-Cádiz, Km. 396, E-14071 Córdoba, Spain.
| | - Rosa Sánchez-Lucas
- Departamento de Bioquímica y Biología Molecular Escuela Técnica Superior de Ingeniería Agronómica y de Montes, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario, ceiA3, Ctra. Madrid-Cádiz, Km. 396, E-14071 Córdoba, Spain
| | - Manuel Benlloch
- Departamento de Agronomía, Escuela Técnica Superior de Ingeniería Agronómica y de Montes, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario, ceiA3, Ctra. Madrid-Cádiz, Km. 396, E-14071 Córdoba, Spain
| |
Collapse
|
21
|
Gale NV, Halim MA, Horsburgh M, Thomas SC. Comparative responses of early-successional plants to charcoal soil amendments. Ecosphere 2017. [DOI: 10.1002/ecs2.1933] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Nigel V. Gale
- Faculty of Forestry; University of Toronto; 33 Willcocks Street Toronto Ontario Canada
| | - Md Abdul Halim
- Faculty of Forestry; University of Toronto; 33 Willcocks Street Toronto Ontario Canada
- Department of Forestry and Environmental Science; School of Agriculture and Mineral Sciences; Shahjalal University of Science and Technology; Sylhet 3114 Bangladesh
| | - Mark Horsburgh
- Faculty of Forestry; University of Toronto; 33 Willcocks Street Toronto Ontario Canada
| | - Sean C. Thomas
- Faculty of Forestry; University of Toronto; 33 Willcocks Street Toronto Ontario Canada
| |
Collapse
|
22
|
|
23
|
Benlloch-González M, Quintero JM, Suárez MP, Sánchez-Lucas R, Fernández-Escobar R, Benlloch M. Effect of moderate high temperature on the vegetative growth and potassium allocation in olive plants. JOURNAL OF PLANT PHYSIOLOGY 2016; 207:22-29. [PMID: 27771503 DOI: 10.1016/j.jplph.2016.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/04/2016] [Accepted: 10/04/2016] [Indexed: 05/25/2023]
Abstract
There is little information about the prolonged effect of a moderately high temperature on the growth of olive (Olea europaea L.). It has been suggested that when the temperature of the air rises above 35°C the shoot growth of olive is inhibited while there is any reference on how growth is affected when the soil is warmed. In order to examine these effects, mist-cuttings and young plants generated from seeds were grown under moderate high temperature (37°C) for 64 and 42days respectively. In our study, plant dry matter accumulation was reduced when the temperature of both the air and the root medium was moderately high. However, when the temperature of the root medium was 25°C, the inhibitory effect of air high temperature on plant growth was not observed. The exposure of both the aerial part and the root to moderate high temperature also reduced the accumulation of K+ in the stem and the root, the water use efficiency and leaf relative water content. However, when only the aerial part was exposed to moderate high temperature, the accumulation of K+ in the stem, the water use efficiency and leaf relative water content were not modified. The results from this study suggest that the olive is very efficient in regulating the water and potassium transport through the plant when only the atmosphere surrounding the aerial part is warmed up. However, an increase in the soil temperature decrease root K+ uptake and its transport to the aerial parts resulting in a reduction in shoot water status and growth.
Collapse
Affiliation(s)
- María Benlloch-González
- Departamento de Agronomía, Escuela Técnica Superior de Ingeniería Agronómica y de Montes, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario, ceiA3, Ctra. Madrid-Cádiz, Km. 396, E-14071 Córdoba, Spain.
| | - José Manuel Quintero
- Departamento de Ciencias Agroforestales, Escuela Técnica Superior de Ingeniería Agronómica, Universidad de Sevilla, Ctra. Utrera, Km. 1, E-41013 Seville, Spain
| | - María Paz Suárez
- Departamento de Ciencias Agroforestales, Escuela Técnica Superior de Ingeniería Agronómica, Universidad de Sevilla, Ctra. Utrera, Km. 1, E-41013 Seville, Spain
| | - Rosa Sánchez-Lucas
- Departamento de Bioquímica y Biología Molecular, Escuela Técnica Superior de Ingeniería Agronómica y de Montes, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario, ceiA3, Ctra. Madrid-Cádiz, Km. 396, E-14071 Córdoba, Spain
| | - Ricardo Fernández-Escobar
- Departamento de Agronomía, Escuela Técnica Superior de Ingeniería Agronómica y de Montes, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario, ceiA3, Ctra. Madrid-Cádiz, Km. 396, E-14071 Córdoba, Spain
| | - Manuel Benlloch
- Departamento de Agronomía, Escuela Técnica Superior de Ingeniería Agronómica y de Montes, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario, ceiA3, Ctra. Madrid-Cádiz, Km. 396, E-14071 Córdoba, Spain
| |
Collapse
|
24
|
Párraga-Aguado I, González-Alcaraz MN, López-Orenes A, Ferrer-Ayala MA, Conesa HM. Evaluation of the environmental plasticity in the xerohalophyte Zygophyllum fabago L. for the phytomanagement of mine tailings in semiarid areas. CHEMOSPHERE 2016; 161:259-265. [PMID: 27434256 DOI: 10.1016/j.chemosphere.2016.07.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 07/05/2016] [Accepted: 07/06/2016] [Indexed: 06/06/2023]
Abstract
Phytomanagement by phytostabilisation of metal(loid)-enriched mine tailings in semiarid areas has been proposed as a suitable technique to promote a self-sustainable vegetal cover for decreasing the spread of polluted particles by erosion. The goal of this work was to evaluate the contribution of a pioneer plant species (Zygophyllum fabago) in ameliorating the soil conditions at two mine tailings piles located in a semiarid area in Southeast Spain. The ecophysiological performance of this plant species compared to a control population was assessed by analysing the nutritional and ecophysiological status. The presence of Z. fabago in mine tailings enhanced the soil microbial activity and increased the content of soil organic carbon within the rhizosphere (approx. 50% increasing). Metal(loid) concentrations in the tailings may play a minor role in the establishment of Z. fabago plants due to the low metal(loid) availability in the tailings (low CaCl2-extractable concentrations) and low uptake in the plants (e.g. up to 300 mg kg(-1) Zn in leaves). The lower δ13C and δ18O in the plants sampled at both tailings compared to the control ones may indicate softer stomatal regulation in relation to the control site plants and therefore lower WUE [corrected]. The Z. fabago plants may skip some energy-demanding mechanisms such as stomatal control and/or proline synthesis to overcome the environmental stresses posed at the tailings. The Z. fabago plants revealed high plasticity of the species for adapting to the low fertility soil conditions of the tailings and to overcome constraints associated to the dry season.
Collapse
Affiliation(s)
- I Párraga-Aguado
- Departamento de Ciencia y Tecnología Agraria, Escuela Técnica Superior de Ingeniería Agronómica, Universidad Politécnica de Cartagena, Paseo Alfonso XIII, 48, 30203, Cartagena, Spain
| | - M N González-Alcaraz
- Department of Ecological Science, Faculty of Earth and Life Sciences, VU University, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - A López-Orenes
- Departamento de Ciencia y Tecnología Agraria, Escuela Técnica Superior de Ingeniería Agronómica, Universidad Politécnica de Cartagena, Paseo Alfonso XIII, 48, 30203, Cartagena, Spain
| | - M A Ferrer-Ayala
- Departamento de Ciencia y Tecnología Agraria, Escuela Técnica Superior de Ingeniería Agronómica, Universidad Politécnica de Cartagena, Paseo Alfonso XIII, 48, 30203, Cartagena, Spain
| | - H M Conesa
- Departamento de Ciencia y Tecnología Agraria, Escuela Técnica Superior de Ingeniería Agronómica, Universidad Politécnica de Cartagena, Paseo Alfonso XIII, 48, 30203, Cartagena, Spain.
| |
Collapse
|
25
|
Ahanger MA, Morad‐Talab N, Abd‐Allah EF, Ahmad P, Hajiboland R. Plant growth under drought stress. WATER STRESS AND CROP PLANTS 2016:649-668. [DOI: 10.1002/9781119054450.ch37] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
26
|
Franco-Navarro JD, Brumós J, Rosales MA, Cubero-Font P, Talón M, Colmenero-Flores JM. Chloride regulates leaf cell size and water relations in tobacco plants. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:873-91. [PMID: 26602947 PMCID: PMC4737079 DOI: 10.1093/jxb/erv502] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Chloride (Cl(-)) is a micronutrient that accumulates to macronutrient levels since it is normally available in nature and actively taken up by higher plants. Besides a role as an unspecific cell osmoticum, no clear biological roles have been explicitly associated with Cl(-) when accumulated to macronutrient concentrations. To address this question, the glycophyte tobacco (Nicotiana tabacum L. var. Habana) has been treated with a basal nutrient solution supplemented with one of three salt combinations containing the same cationic balance: Cl(-)-based (CL), nitrate-based (N), and sulphate+phosphate-based (SP) treatments. Under non-saline conditions (up to 5 mM Cl(-)) and no water limitation, Cl(-) specifically stimulated higher leaf cell size and led to a moderate increase of plant fresh and dry biomass mainly due to higher shoot expansion. When applied in the 1-5 mM range, Cl(-) played specific roles in regulating leaf osmotic potential and turgor, allowing plants to improve leaf water balance parameters. In addition, Cl(-) also altered water relations at the whole-plant level through reduction of plant transpiration. This was a consequence of a lower stomatal conductance, which resulted in lower water loss and greater photosynthetic and integrated water-use efficiency. In contrast to Cl(-), these effects were not observed for essential anionic macronutrients such as nitrate, sulphate, and phosphate. We propose that the abundant uptake and accumulation of Cl(-) responds to adaptive functions improving water homeostasis in higher plants.
Collapse
Affiliation(s)
- Juan D Franco-Navarro
- Instituto de Recursos Naturales y Agrobiología, CSIC, Avda Reina Mercedes 10, 41012-Sevilla, Spain
| | - Javier Brumós
- Instituto Valenciano de Investigaciones Agrarias, Centro de Genómica, Ctra Moncada-Náquera Km 4.6, 46113-Moncada, Valencia, Spain
| | - Miguel A Rosales
- Instituto de Recursos Naturales y Agrobiología, CSIC, Avda Reina Mercedes 10, 41012-Sevilla, Spain
| | - Paloma Cubero-Font
- Instituto de Recursos Naturales y Agrobiología, CSIC, Avda Reina Mercedes 10, 41012-Sevilla, Spain
| | - Manuel Talón
- Instituto Valenciano de Investigaciones Agrarias, Centro de Genómica, Ctra Moncada-Náquera Km 4.6, 46113-Moncada, Valencia, Spain
| | - José M Colmenero-Flores
- Instituto de Recursos Naturales y Agrobiología, CSIC, Avda Reina Mercedes 10, 41012-Sevilla, Spain
| |
Collapse
|
27
|
Aguraijuja K, Klõšeiko J, Ots K, Lukjanova A. Effect of wood ash on leaf and shoot anatomy, photosynthesis and carbohydrate concentrations in birch on a cutaway peatland. ENVIRONMENTAL MONITORING AND ASSESSMENT 2015; 187:444. [PMID: 26092243 DOI: 10.1007/s10661-015-4681-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 06/09/2015] [Indexed: 06/04/2023]
Abstract
Trees in cutaway peatland are growing in difficult conditions. Fertilization with nutrient-rich wood ash helps improve growth conditions. Photosynthesis and carbohydrate concentration along leaf anatomy were studied on plots treated with 10 and 5 t ha(-1) wood ash (WA10 and WA5) and on untreated (Control) plot to explain the physiological background of the differences in tree growth. The leaves from WA10 had the largest leaf area, total thickness, the thickest mesophyll and also significantly larger average values of all anatomical parameters of the shoots. The photosynthetic assimilation was significantly higher on treated plots at 200 and 400 ppm CO2 levels. In leaves on the treated plots, the sucrose concentration was lower while that of starch was higher than in trees on untreated soil. The differences in the maximum photosynthesis were relatively small. At unit ground, the leaf area provided for a wood ash-treated tree an efficient surface for CO2 assimilation, light interception and some starch storage during the growing period.
Collapse
Affiliation(s)
- Karin Aguraijuja
- Department of Silviculture, Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, Kreutzwaldi 5, 51014, Tartu, Estonia
| | | | | | | |
Collapse
|
28
|
Schachtman DP. The Role of Ethylene in Plant Responses to K(+) Deficiency. FRONTIERS IN PLANT SCIENCE 2015; 6:1153. [PMID: 26734048 PMCID: PMC4686690 DOI: 10.3389/fpls.2015.01153] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 12/04/2015] [Indexed: 05/08/2023]
Abstract
Potassium is an essential macronutrient that is involved in regulating turgor, in driving plant growth, and in modulating enzyme activation. The changes in root morphology, root function, as well as cellular and molecular responses to low potassium conditions have been studied in the model plant Arabidopsis and in other plant species. In Arabidopsis ethylene plays a key role in roots in the transduction of the low potassium signal, which results in altered root function and growth. The first clues regarding the role of ethylene were detected through transcriptional profiling experiments showing changes in the expression of genes related to ethylene biosynthesis. Later it was shown that ethylene plays a foundational early role in the many responses observed in Arabidopsis. One of the most striking findings is the link between ethylene and reactive oxygen species (ROS) production, which is part of the signal transduction pathway in K(+) deprived plants. This mini-review will summarize what is known about the role ethylene plays in response to low potassium in Arabidopsis and other plant species.
Collapse
|
29
|
Erel R, Ben-Gal A, Dag A, Schwartz A, Yermiyahu U. Sodium replacement of potassium in physiological processes of olive trees (var. Barnea) as affected by drought. TREE PHYSIOLOGY 2014; 34:1102-17. [PMID: 25281842 DOI: 10.1093/treephys/tpu081] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Potassium (K) is a macro-nutrient understood to play a role in the physiological performance of plants under drought. In some plant species, sodium (Na) can partially substitute K. Although a beneficial role of Na is well established, information regarding its nutritional role in trees is scant and its function under conditions of drought is not fully understood. The objective of the present study was to evaluate the role of K and its possible replacement by Na in olive's (Olea europaea L.) response to drought. Young and bearing olive trees were grown in soilless culture and exposed to gradual drought. In the presence of Na, trees were tolerant of extremely low K concentrations. Depletion of K and Na resulted in ∼50% reduction in CO2 assimilation rate when compared with sufficiently fertilized control plants. Sodium was able to replace K and recover the assimilation rate to nearly optimum level. The inhibitory effect of K deficiency on photosynthesis was more pronounced under high stomatal conductance. Potassium was not found to facilitate drought tolerance mechanisms in olives. Moreover, stomatal control machinery was not significantly impaired by K deficiency, regardless of water availability. Under drought, leaf water potential was affected by K and Na. High environmental K and Na increased leaf starch content and affected the soluble carbohydrate profile in a similar manner. These results identify olive as a species capable of partly replacing K by Na. The nutritional effect of K and Na was shown to be independent of plant water status. The beneficial effect of Na on photosynthesis and carbohydrates under insufficient K indicates a positive role of Na in metabolism and photosynthetic reactions.
Collapse
Affiliation(s)
- Ran Erel
- Institute of Soil, Water and Environmental Sciences, Gilat Research Center, Agricultural Research Organization, Mobile Post Negev 85-280, Israel The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Alon Ben-Gal
- Institute of Soil, Water and Environmental Sciences, Gilat Research Center, Agricultural Research Organization, Mobile Post Negev 85-280, Israel
| | - Arnon Dag
- Institute of Plant Sciences, Gilat Research Center, Agricultural Research Organization, Mobile Post Negev 85-280, Israel
| | - Amnon Schwartz
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Uri Yermiyahu
- Institute of Soil, Water and Environmental Sciences, Gilat Research Center, Agricultural Research Organization, Mobile Post Negev 85-280, Israel
| |
Collapse
|
30
|
Battie-Laclau P, Laclau JP, Domec JC, Christina M, Bouillet JP, de Cassia Piccolo M, de Moraes Gonçalves JL, Moreira RME, Krusche AV, Bouvet JM, Nouvellon Y. Effects of potassium and sodium supply on drought-adaptive mechanisms in Eucalyptus grandis plantations. THE NEW PHYTOLOGIST 2014; 203:401-413. [PMID: 24725318 DOI: 10.1111/nph.12810] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Accepted: 03/13/2014] [Indexed: 06/03/2023]
Abstract
A basic understanding of nutrition effects on the mechanisms involved in tree response to drought is essential under a future drier climate. A large-scale throughfall exclusion experiment was set up in Brazil to gain an insight into the effects of potassium (K) and sodium (Na) nutrition on tree structural and physiological adjustments to water deficit. Regardless of the water supply, K and Na supply greatly increased growth and leaf area index (LAI) of Eucalyptus grandis trees over the first 3 yr after planting. Excluding 37% of throughfall reduced above-ground biomass accumulation in the third year after planting for K- supplied trees only. E. grandis trees were scarcely sensitive to drought as a result of the utilization of water stored in deep soil layers after clear-cutting the previous plantation. Trees coped with water restriction through stomatal closure (isohydrodynamic behavior), osmotic adjustment and decrease in LAI. Additionally, droughted trees showed higher phloem sap sugar concentrations. K and Na supply increased maximum stomatal conductance, and the high water requirements of fertilized trees increased water stress during dry periods. Fertilization regimes should be revisited in a future drier climate in order to find the right balance between improving tree growth and limiting water shortage.
Collapse
Affiliation(s)
- Patricia Battie-Laclau
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, CEP 13400-970, Piracicaba, SP, Brazil
| | - Jean-Paul Laclau
- CIRAD, UMR Eco&Sols, 2 Place Viala, 34060, Montpellier, France
- Departamento de Ciência Florestal, Universidade Estadual de São Paulo 'Júlio de Mesquita Filho', CEP 18610-300, Botucatu, SP, Brazil
- Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, CEP 13418-900, Piracicaba, SP, Brazil
| | - Jean-Christophe Domec
- Bordeaux Sciences Agro, INRA UMR 1391 ISPA, F-33170, Gradignan, France
- Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA
| | - Mathias Christina
- CIRAD, UMR Eco&Sols, 2 Place Viala, 34060, Montpellier, France
- Montpellier SupAgro, 34060, Montpellier, France
| | - Jean-Pierre Bouillet
- CIRAD, UMR Eco&Sols, 2 Place Viala, 34060, Montpellier, France
- Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, CEP 13418-900, Piracicaba, SP, Brazil
| | - Marisa de Cassia Piccolo
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, CEP 13400-970, Piracicaba, SP, Brazil
| | | | - Rildo Moreira E Moreira
- Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, CEP 13418-900, Piracicaba, SP, Brazil
| | - Alex Vladimir Krusche
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, CEP 13400-970, Piracicaba, SP, Brazil
| | | | - Yann Nouvellon
- CIRAD, UMR Eco&Sols, 2 Place Viala, 34060, Montpellier, France
- Departamento de Ciências Atmosféricas, Universidade de São Paulo, CEP 05508-900, São Paulo, SP, Brazil
| |
Collapse
|
31
|
Monodominance of Parashorea chinensis on fertile soils in a Chinese tropical rain forest. JOURNAL OF TROPICAL ECOLOGY 2014. [DOI: 10.1017/s0266467414000212] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract:Monodominance in the tropics is often seen as an unusual phenomenon due to the normally high diversity in tropical rain forests. Here we studied Parashorea chinensis H. Wang (Dipterocarpaceae) in a seasonal tropical forest in south-west China, to elucidate the mechanisms behind its monodominance. Twenty-eight 20 × 20-m plots were established in monodominant and mixed forest in Xishuangbanna, Yunnan province. All individuals ≥1 cm stem diameter and 16 soil variables were measured. Parashorea chinensis forest had a significantly higher mean tree dbh compared with mixed forest. Diversity did not differ significantly between the two forest types. However, within monodominant patches, all diversity indices decreased with an increase in P. chinensis dominance. Floristic composition of P. chinensis forest did differ significantly from the mixed forest. These differences were associated with more fertile soils (significantly higher pH, Mn, K and lower carbon pools and C:N ratio) in the P. chinensis forest than the mixed forest. In contrast to current paradigms, this monodominant species is not associated with infertile, but with fertile soils. Parashorea chinensis seems to be especially associated with high manganese concentrations which it can tolerate, and with edaphic conditions (water, K) that allow this tall and exposed emergent species to maintain its water balance. This is in contrast with most previous studies on monodominance in the tropics that found either no effect of soil properties, or predict associations with nutrient-poor soils.
Collapse
|
32
|
Song Z, Yang S, Zhu H, Jin M, Su Y. Heterologous expression of an alligatorweed high-affinity potassium transporter gene enhances salinity tolerance in Arabidopsis thaliana. AMERICAN JOURNAL OF BOTANY 2014; 101:840-850. [PMID: 24824834 DOI: 10.3732/ajb.1400155] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Accepted: 04/16/2014] [Indexed: 06/03/2023]
Abstract
UNLABELLED • PREMISE OF THE STUDY The potassium cation (K(+)), one of the most abundant cations in cells, improves plant tolerance to various abiotic stresses. Alligatorweed (Alternanthera philoxeroides) is well known for its strong capacity to accumulate K(+) The distinctive K(+) accumulation capability of alligatorweed is linked to a high-affinity K(+) transport facilitated by K(+)-uptake transporters (ApKUPs).• METHODS A putative K(+) transporter gene, ApKUP4, was isolated from alligatorweed using degenerate primers and rapid amplification of cDNA ends (RACE) techniques. Gene expression profiles were performed by quantitative real time PCR and northern blot analysis. Moreover, we introduced ApKUP4 into Arabidopsis to determine its function in improving crop nutrition and NaCl stress tolerance.• KEY RESULTS ApKUP4 was localized throughout the entire alligatorweed plant, and its expression was stimulated in the stems and roots under K(+) deficiency, osmotic stress, and salinity stress. Northern blot analysis revealed that ApKUP4 was present in all tested organs of transgenic Arabidopsis plants. Compared with the wild type, Arabidopsis plants overexpressing ApKUP4 showed improved growth and K(+) homeostasis. Moreover, ApKUP4 overexpression in Arabidopsis plants enhanced plant tolerance to salinity stress, as evidenced by reduced water loss and ROS generation, associated with enhanced photosynthesis, nutritional status, and enzymatic antioxidants.• CONCLUSIONS The present study provides direct evidence that the alligatorweed K(+) transporter gene, ApKUP4, contributes to salinity tolerance in transgenic Arabidopsis seedlings, demonstrating the essentiality of potassium homeostasis for plant salinity tolerance.
Collapse
Affiliation(s)
- Zhizhong Song
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210014, China Institute of Horticulture, Jiangsu Academy of Agricultural Sciences, Nanjing 210008, China
| | - Shunying Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210014, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Zhu
- Institute of Botany, Jiangsu Province and Chinese Academy of Science, Nanjing 210018, China
| | - Man Jin
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210014, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanhua Su
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210014, China
| |
Collapse
|
33
|
Chérel I, Lefoulon C, Boeglin M, Sentenac H. Molecular mechanisms involved in plant adaptation to low K(+) availability. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:833-48. [PMID: 24293613 DOI: 10.1093/jxb/ert402] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Potassium is a major inorganic constituent of the living cell and the most abundant cation in the cytosol. It plays a role in various functions at the cell level, such as electrical neutralization of anionic charges, protein synthesis, long- and short-term control of membrane polarization, and regulation of the osmotic potential. Through the latter function, K(+) is involved at the whole-plant level in osmotically driven functions such as cell movements, regulation of stomatal aperture, or phloem transport. Thus, plant growth and development require that large amounts of K(+) are taken up from the soil and translocated to the various organs. In most ecosystems, however, soil K(+) availability is low and fluctuating, so plants have developed strategies to take up K(+) more efficiently and preserve vital functions and growth when K(+) availability is becoming limited. These strategies include increased capacity for high-affinity K(+) uptake from the soil, K(+) redistribution between the cytosolic and vacuolar pools, ensuring cytosolic homeostasis, and modification of root system development and architecture. Our knowledge about the mechanisms and signalling cascades involved in these different adaptive responses has been rapidly growing during the last decade, revealing a highly complex network of interacting processes. This review is focused on the different physiological responses induced by K(+) deprivation, their underlying molecular events, and the present knowledge and hypotheses regarding the mechanisms responsible for K(+) sensing and signalling.
Collapse
Affiliation(s)
- Isabelle Chérel
- Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier 2, F-34060 Montpellier Cedex 1, France
| | | | | | | |
Collapse
|
34
|
Mohan Gupta S, Singh S, Pandey P, Grover A, Ahmed Z. Semi-quantitative analysis of transcript accumulation in response to drought stress by Lepidium latifolium seedlings. PLANT SIGNALING & BEHAVIOR 2013; 8:25388. [PMID: 23838956 PMCID: PMC4002603 DOI: 10.4161/psb.25388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Revised: 06/11/2013] [Accepted: 06/13/2013] [Indexed: 06/02/2023]
Abstract
Cross-amplification of five Arabidopsis abiotic stress-responsive genes (AtPAP, ZFAN, Vn, LC4 and SNS) in Lepidium has been documented in plants raised out of seeds pre-treated with potassium nitrate (KNO 3) for assessment of enhanced drought stress tolerance. cDNA was synthesized from Lepidium plants pre-treated with KNO 3 (0.1% and 0.3%) and exposed to drought conditions (5% and 15% PEG) at seedling stage for 30 d. Transcript accumulation of all the five genes were found suppressed in set of seedlings, which were pre-treated with 0.1% KNO 3 and were exposed to 15% PEG for 30 d. The present study establishes that different pre-treatments may further enhance the survivability of Lepidium plants under conditions of drought stress to different degrees.
Collapse
Affiliation(s)
- Sanjay Mohan Gupta
- Molecular Biology and Genetic Engineering Laboratory; Defence Institute of Bio-Energy Research; DRDO; Haldwani, India
- These authors contributed equally to this work
| | - Sadhana Singh
- Molecular Biology and Genetic Engineering Laboratory; Defence Institute of Bio-Energy Research; DRDO; Haldwani, India
- These authors contributed equally to this work
| | - Pankaj Pandey
- Molecular Biology and Genetic Engineering Laboratory; Defence Institute of Bio-Energy Research; DRDO; Haldwani, India
- These authors contributed equally to this work
| | - Atul Grover
- Molecular Biology and Genetic Engineering Laboratory; Defence Institute of Bio-Energy Research; DRDO; Haldwani, India
- These authors contributed equally to this work
| | - Zakwan Ahmed
- Molecular Biology and Genetic Engineering Laboratory; Defence Institute of Bio-Energy Research; DRDO; Haldwani, India
- These authors contributed equally to this work
| |
Collapse
|
35
|
Effects of Pseudomonas fluorescens on the Water Parameters of Mycorrhizal and Non-Mycorrhizal Seedlings of Pinus halepensis. AGRONOMY-BASEL 2013. [DOI: 10.3390/agronomy3030571] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
36
|
Wang M, Zheng Q, Shen Q, Guo S. The critical role of potassium in plant stress response. Int J Mol Sci 2013; 14:7370-90. [PMID: 23549270 PMCID: PMC3645691 DOI: 10.3390/ijms14047370] [Citation(s) in RCA: 452] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 02/23/2013] [Accepted: 03/21/2013] [Indexed: 02/02/2023] Open
Abstract
Agricultural production continues to be constrained by a number of biotic and abiotic factors that can reduce crop yield quantity and quality. Potassium (K) is an essential nutrient that affects most of the biochemical and physiological processes that influence plant growth and metabolism. It also contributes to the survival of plants exposed to various biotic and abiotic stresses. The following review focuses on the emerging role of K in defending against a number of biotic and abiotic stresses, including diseases, pests, drought, salinity, cold and frost and waterlogging. The availability of K and its effects on plant growth, anatomy, morphology and plant metabolism are discussed. The physiological and molecular mechanisms of K function in plant stress resistance are reviewed. This article also evaluates the potential for improving plant stress resistance by modifying K fertilizer inputs and highlights the future needs for research about the role of K in agriculture.
Collapse
Affiliation(s)
- Min Wang
- Agricultural Ministry Key Lab of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China; E-Mails: (M.W.); (Q.Z.); (Q.S.)
| | - Qingsong Zheng
- Agricultural Ministry Key Lab of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China; E-Mails: (M.W.); (Q.Z.); (Q.S.)
| | - Qirong Shen
- Agricultural Ministry Key Lab of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China; E-Mails: (M.W.); (Q.Z.); (Q.S.)
| | - Shiwei Guo
- Agricultural Ministry Key Lab of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China; E-Mails: (M.W.); (Q.Z.); (Q.S.)
| |
Collapse
|
37
|
Ibrahim MH, Jaafar HZE, Karimi E, Ghasemzadeh A. Primary, secondary metabolites, photosynthetic capacity and antioxidant activity of the Malaysian Herb Kacip Fatimah (Labisia Pumila Benth) exposed to potassium fertilization under greenhouse conditions. Int J Mol Sci 2012. [PMID: 23203128 PMCID: PMC3509644 DOI: 10.3390/ijms131115321] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
A randomized complete block design was used to characterize the relationship between production of total phenolics, flavonoids, ascorbic acid, carbohydrate content, leaf gas exchange, phenylalanine ammonia-lyase (PAL), soluble protein, invertase and antioxidant enzyme activities (ascorbate peroxidase (APX), catalase (CAT) and superoxide dismutase (SOD) in Labisia pumila Benth var. alata under four levels of potassium fertilization experiments (0, 90, 180 and 270 kg K/ha) conducted for 12 weeks. It was found that the production of total phenolics, flavonoids, ascorbic acid and carbohydrate content was affected by the interaction between potassium fertilization and plant parts. As the potassium fertilization levels increased from 0 to 270 kg K/ha, the production of soluble protein and PAL activity increased steadily. At the highest potassium fertilization (270 kg K/ha) L. pumila exhibited significantly higher net photosynthesis (A), stomatal conductance (gs), intercellular CO2 (Ci), apparent quantum yield (ξ) and lower dark respiration rates (Rd), compared to the other treatments. It was found that the production of total phenolics, flavonoids and ascorbic acid are also higher under 270 kg K/ha compared to 180, 90 and 0 kg K/ha. Furthermore, from the present study, the invertase activity was also found to be higher in 270 kg K/ha treatment. The antioxidant enzyme activities (APX, CAT and SOD) were lower under high potassium fertilization (270 kg K/ha) and have a significant negative correlation with total phenolics and flavonoid production. From this study, it was observed that the up-regulation of leaf gas exchange and downregulation of APX, CAT and SOD activities under high supplementation of potassium fertilizer enhanced the carbohydrate content that simultaneously increased the production of L. pumila secondary metabolites, thus increasing the health promoting effects of this plant.
Collapse
Affiliation(s)
- Mohd Hafiz Ibrahim
- Department of Crop Science, Faculty of Agriculture, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | | | | | | |
Collapse
|
38
|
Dominguez JA, Martin A, Anriquez A, Albanesi A. The combined effects of Pseudomonas fluorescens and Tuber melanosporum on the quality of Pinus halepensis seedlings. MYCORRHIZA 2012; 22:429-436. [PMID: 22068563 DOI: 10.1007/s00572-011-0420-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 10/27/2011] [Indexed: 05/31/2023]
Abstract
The ecological, economic and social values of the ectomycorrhizal fungi of the black truffle found in the rural Mediterranean are well known. The inoculation of Pinus halepensis seedlings with mycorrhizal fungi and rhizobacteria can improve the morphology and physiology of the seedlings and benefit the regeneration of arid regions and the reintroduction of inocula of mycorrhizal fungi into these areas. Some rhizobacteria can improve the establishment and functioning of ectomycorrhizal symbiosis. In this study, seedlings of P. halepensis were inoculated with the mycorrhizal fungus Tuber melanosporum and the rhizobacteria Pseudomonas fluorescens CECT 844 under non-limiting greenhouse conditions. Five months after inoculation, we analysed the growth, water parameters (osmotic potential at saturation, osmotic potential at turgor loss and modulus of elasticity), concentrations of mycorrhizal colonies, nutrient concentration and nutrient contents (N, P, K, Ca, Mg and Fe) in roots and aerial parts of the seedlings. Subsequently, tests were performed to estimate the root growth potentials. None of the treatments changed the water parameters or growth potentials of the roots. The inoculations improved the growth and nutrient uptake of the seedlings, although the combination of P. fluorescens CECT 844 and T. melanosporum did not generally lead to a significant improvement over the positive effects of a simple inoculation of T. melanosporum; however, the addition of P. fluorescens CECT 844 did double the rate of the mycorrhization of T. melanosporum. These results may be promising for enhancing the cultivation of truffles.
Collapse
Affiliation(s)
- J A Dominguez
- E.T.S.I Mountains and E.U.I.T Forestry, Polytechnic University of Madrid, Av/Ciudad Universitaria s/n., 28040, Madrid, Spain.
| | | | | | | |
Collapse
|
39
|
Siemens DH, Duvall-Jisha J, Jacobs J, Manthey J, Haugen R, Matzner S. Water deficiency induces evolutionary tradeoff between stress tolerance and chemical defense allocation that may help explain range limits in plants. OIKOS 2012. [DOI: 10.1111/j.1600-0706.2011.19944.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
40
|
Nieves-Cordones M, Caballero F, Martínez V, Rubio F. Disruption of the Arabidopsis thaliana Inward-Rectifier K+ Channel AKT1 Improves Plant Responses to Water Stress. ACTA ACUST UNITED AC 2011; 53:423-32. [DOI: 10.1093/pcp/pcr194] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
41
|
Oddo E, Inzerillo S, La Bella F, Grisafi F, Salleo S, Nardini A. Short-term effects of potassium fertilization on the hydraulic conductance of Laurus nobilis L. TREE PHYSIOLOGY 2011; 31:131-8. [PMID: 21367746 DOI: 10.1093/treephys/tpq115] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
This study reports experimental evidence on the effect of short-term potassium fertilization on potassium uptake, tissue concentration and hydraulic conductance of pot-grown laurel plants. Potassium uptake and loading into the xylem of laurel seedlings increased within 24 h after fertilization. Potassium was not accumulated in roots and leaves, but the [K(+)] of xylem sap was 80% higher in fertilized plants (+K) than in potassium-starved plants (-K), as a likely result of recirculation between xylem and phloem. Increased xylem sap [K(+)] resulted in a 45% increase in transpiration rate, a 30% increase in plant hydraulic conductance (K(plant)) and a 120% increase in leaf-specific conductivity of the shoot (k(shoot)). We suggest that this increase was due to ion-mediated up-regulation of xylem hydraulics, possibly caused by the interaction of potassium ions with the pectic matrix of intervessel pits. The enhancement of hydraulic conductance following short-term potassium fertilization is a phenomenon that can be of advantage to plants for maintaining cell turgor, stomatal aperture and gas exchange rates under moderate drought stress. Our data provide additional support for the important role of potassium nutrition in agriculture and forestry.
Collapse
Affiliation(s)
- Elisabetta Oddo
- Dipartimento di Scienze Botaniche, Università di Palermo, Via Archirafi 38, Palermo, Italy.
| | | | | | | | | | | |
Collapse
|
42
|
Benlloch-González M, Romera J, Cristescu S, Harren F, Fournier JM, Benlloch M. K+ starvation inhibits water-stress-induced stomatal closure via ethylene synthesis in sunflower plants. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:1139-45. [PMID: 20054030 DOI: 10.1093/jxb/erp379] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The effect of water stress on stomatal closure in sunflower plants has been found to be dependent on K(+) nutrient status. When plants with different internal K(+) content were subjected to a water-stress period, stomatal conductance was reduced more markedly in plants with an adequate K(+) supply than in K(+)-starved plants. K(+) starvation promoted the production of ethylene by detached leaves, as well as by the shoot of whole plants. Water stress had no significant effect on this synthesis. The effect on stomatal conductance of adding 5 microM cobalt (an ethylene synthesis inhibitor) to the growing medium of plants subjected to water stress was also dependent on their K(+) nutritional status: conductance was not significantly affected in normal K(+) plants whereas it was reduced in K(+)-starved plants. Cobalt had no harmful effects on growth, and did not alter the internal K(+) content in the plants. These results suggest that ethylene may play a role in the inhibiting effect of K(+) starvation on stomatal closure.
Collapse
Affiliation(s)
- María Benlloch-González
- Departamento de Agronomía, Escuela Técnica Superior de Ingenieros Agrónomos y Montes, Universidad de Córdoba, Campus de Rabanales, Ctra. Madrid-Cádiz Km. 396, E-14071 Córdoba, Spain.
| | | | | | | | | | | |
Collapse
|
43
|
Benlloch-González M, Fournier JM, Benlloch M. K+ deprivation induces xylem water and K+ transport in sunflower: evidence for a co-ordinated control. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:157-164. [PMID: 19861653 DOI: 10.1093/jxb/erp288] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The effect of K+ deprivation on water and K+ transport in roots was studied in sunflower plants. Deprivation was achieved in two different ways: by removing K+ from the growth medium for varying intervals; and by growing plants permanently in a low-K+ medium. Removal of K+ from the growth medium for a few hours prompted a significant increase in xylem sap exudation, associated with an increase in root hydraulic conductivity; however, it did not give rise to any significant change in plant K+ content, nor did it favour root K+ exudation. By contrast, prolonged K+ deprivation led to a decline in the internal K+ content and stimulated water and K+ transport in roots. Leaf application of K+ (Rb+) in plants grown permanently in a low-K+ medium inhibited the effect of K+ deprivation on root water and K+ transport, without significantly modifying the internal K+ content of the plants. This treatment had no effect on normal-K+ plants. These results suggest the existence of mechanisms enabling perception of plant K+ status and/or K+ availability in the medium, which trigger transduction processes governing the transport of water and K+ from the root to the shoot.
Collapse
Affiliation(s)
- María Benlloch-González
- Departamento de Agronomía, Escuela Técnica Superior de Ingenieros Agrónomos y Montes, Universidad de Córdoba, Campus de Rabanales, Ctra. Madrid-Cádiz Km. 396, E-14071 Córdoba, Spain.
| | | | | |
Collapse
|
44
|
Laclau JP, Almeida JCR, Gonçalves JLM, Saint-André L, Ventura M, Ranger J, Moreira RM, Nouvellon Y. Influence of nitrogen and potassium fertilization on leaf lifespan and allocation of above-ground growth in Eucalyptus plantations. TREE PHYSIOLOGY 2009; 29:111-124. [PMID: 19203937 DOI: 10.1093/treephys/tpn010] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Eucalyptus grandis (W. Hill ex Maiden) leaf traits and tree growth were studied over 3 years after the establishment of two adjacent complete randomized block designs in southern Brazil. In a nitrogen (N) input experiment, a treatment with the application of 120 kg N ha(-1) was compared to a control treatment without N addition, and in a potassium (K) input experiment a control treatment without K addition was compared to a treatment with the application of 116 kg K ha(-1). Young leaves were tagged 9 months after planting to estimate the effect of N and K fertilizations on leaf lifespan. Leaf mass, specific leaf area and nutrient concentrations were measured on a composite sample per plot every 28 days until the last tagged leaf fell. Successive inventories, destructive sampling of trees and leaf litter fall collection made it possible to assess the effect of N and K fertilization on the dynamics of biomass accumulation in above-ground tree components. Whilst the effects of N fertilization on tree growth only occurred in the first 24 months after planting, K fertilization increased the above-ground net primary production from 4478 to 8737 g m(-2) over the first 36 months after planting. The average lifespan of tagged leaves was not modified by N addition but it increased from 111 to 149 days with K fertilization. The peak of leaf production occurred in the second year after planting (about 800 g m(-2) year(-1)) and was not significantly modified (P < 0.05) by N and K fertilizations. By contrast, K addition significantly increased the maximum leaf standing biomass from 292 to 528 g m(-2), mainly as a consequence of the increase in leaf lifespan. Potassium fertilization increased the stand biomass mainly through the enhancement in leaf area index (LAI) since growth efficiency (defined as the ratio between woody biomass production and LAI) was not significantly modified. A better understanding of the physiological processes governing the leaf lifespan is necessary to improve process-based models currently used in Eucalyptus plantations.
Collapse
Affiliation(s)
- Jean-Paul Laclau
- CIRAD, Persyst, UPR80, TA10/D, 34398 Montpellier Cedex 5, France.
| | | | | | | | | | | | | | | |
Collapse
|