1
|
Meng XH, Pan YA, Lv H, Ding XQ, Yin DQ, Gai YN, Niu GT, Ren BR, Qian XG, Chen J. One new 12, 8-guaianolide sesquiterpene lactone with antihyperglycemic activity from the roots of Cichorium intybus. Nat Prod Res 2024; 38:3244-3252. [PMID: 37395502 DOI: 10.1080/14786419.2023.2230606] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 06/08/2023] [Accepted: 06/23/2023] [Indexed: 07/04/2023]
Abstract
Three 12, 8-guaianolide sesquiterpene lactones, including a new compound intybusin F (1), and a new natural product cichoriolide I (2), along with six known 12, 6-guaianolide compounds (4-9) were isolated from the roots of Cichorium intybus L. Their structures were determined by extensive spectroscopic analysis. The absolute configurations of new compounds were elucidated based on analysis of the experimental and calculated electronic circular dichroism spectra. Compounds 1, 2, 4, 7, 8 showed significant effects on facilitating the glucose uptake in oleic acid plus high glucose-stimulated HepG2 cells at 50 μM. In addition, compounds 1, 2, 3, 6, 7 exhibited obvious inhibitory effects against NO production, of them, compounds 1, 2, 7 can significantly decrease the secretion of inflammatory cytokines (TNF-α, IL-6 and COX-2) levels in this hyperglycemic HepG2 cell model.
Collapse
Affiliation(s)
- Xiu-Hua Meng
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Yin-An Pan
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Han Lv
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Xiao-Qin Ding
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - De-Quan Yin
- Fengning PingAn High-Tech Industrial Co., Ltd, Chengde, China
| | - Ya-Nan Gai
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Guan-Ting Niu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Bing-Ru Ren
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Xiao-Guo Qian
- Fengning PingAn High-Tech Industrial Co., Ltd, Chengde, China
| | - Jian Chen
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
2
|
Radosavljević M, Belović M, Cvetanović Kljakić A, Torbica A. Production, modification and degradation of fructans and fructooligosacharides by enzymes originated from plants. Int J Biol Macromol 2024; 269:131668. [PMID: 38649077 DOI: 10.1016/j.ijbiomac.2024.131668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 04/04/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
Non-starch polysaccharides exhibit numerous beneficial health effects but compounds belonging to FODMAP (Fermentable Oligo- Di- and Monosaccharides and Polyols) has been recently connected to several gastrointestinal disorders. This review presents integrated literature data on the occurrence and types of fructans and fructooligosaccharids (classified as FODMAPs) as well as their degrading enzymes present in plants. Plants from the family Asteraceae and many monocotyledones, including families Poaceae and Liliaceae, are the most abundant sources of both fructans and fructan-degrading enzymes. So far, vast majority of publications concerning the application of these specific plants in production of bakery products is related to increase of dietary fibre content in these products. However, there is limited research on their effect on FODMAP content and fibre balance. The authors emphasize the possibility of application of enzyme rich plant extract in food production casting light on the new scientific approach to fibre modification.
Collapse
Affiliation(s)
- Miloš Radosavljević
- University of Novi Sad, Faculty of Technology, Bulevar cara Lazara 1, 21102 Novi Sad, Serbia.
| | - Miona Belović
- University of Novi Sad, Institute of Food Technology, Bulevar cara Lazara 1, 21102 Novi Sad, Serbia
| | | | - Aleksandra Torbica
- University of Novi Sad, Institute of Food Technology, Bulevar cara Lazara 1, 21102 Novi Sad, Serbia
| |
Collapse
|
3
|
Draga S, Gabelli G, Palumbo F, Barcaccia G. Genome-Wide Datasets of Chicories ( Cichorium intybus L.) for Marker-Assisted Crop Breeding Applications: A Systematic Review and Meta-Analysis. Int J Mol Sci 2023; 24:11663. [PMID: 37511422 PMCID: PMC10380310 DOI: 10.3390/ijms241411663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Cichorium intybus L. is the most economically important species of its genus and among the most important of the Asteraceae family. In chicory, many linkage maps have been produced, several sets of mapped and unmapped markers have been developed, and dozens of genes linked to traits of agronomic interest have been investigated. This treasure trove of information, properly cataloged and organized, is of pivotal importance for the development of superior commercial products with valuable agronomic potential in terms of yield and quality, including reduced bitter taste and increased inulin production, as well as resistance or tolerance to pathogens and resilience to environmental stresses. For this reason, a systematic review was conducted based on the scientific literature published in chicory during 1980-2023. Based on the results obtained from the meta-analysis, we created two consensus maps capable of supporting marker-assisted breeding (MAB) and marker-assisted selection (MAS) programs. By taking advantage of the recently released genome of C. intybus, we built a 639 molecular marker-based consensus map collecting all the available mapped and unmapped SNP and SSR loci available for this species. In the following section, after summarizing and discussing all the genes investigated in chicory and related to traits of interest such as reproductive barriers, sesquiterpene lactone biosynthesis, inulin metabolism and stress response, we produced a second map encompassing 64 loci that could be useful for MAS purposes. With the advent of omics technologies, molecular data chaos (namely, the situation where the amount of molecular data is so complex and unmanageable that their use becomes challenging) is becoming far from a negligible issue. In this review, we have therefore tried to contribute by standardizing and organizing the molecular data produced thus far in chicory to facilitate the work of breeders.
Collapse
Affiliation(s)
| | | | - Fabio Palumbo
- Department of Agronomy Food Natural Resources Animals Environment, Campus of Agripolis, University of Padova, 35020 Legnaro, Italy; (S.D.); (G.G.)
| | - Gianni Barcaccia
- Department of Agronomy Food Natural Resources Animals Environment, Campus of Agripolis, University of Padova, 35020 Legnaro, Italy; (S.D.); (G.G.)
| |
Collapse
|
4
|
Boonmahome P, Namwongsa J, Vorasoot N, Jogloy S, Riddech N, Boonlue S, Mongkolthanaruk W. Single and co-inoculum of endophytic bacteria promote growth and yield of Jerusalem artichoke through upregulation of plant genes under drought stress. PLoS One 2023; 18:e0286625. [PMID: 37267258 DOI: 10.1371/journal.pone.0286625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 05/20/2023] [Indexed: 06/04/2023] Open
Abstract
Helianthus tuberosus L. (Jerusalem artichoke) produce inulin, a type of fructan, which possesses several biotechnology applications, e.g., sugar syrup, prebiotics, fiber in diabetic food, enabling blood sugar and cholesterol reduction. Drought reduces inulin accumulation in the tubers of Jerusalem artichoke as the plants protect themselves from this stress by induction of stress gene responses, effecting growth reduction. Endophytic bacteria are promising candidates to promote plant growth and yield particularly under abiotic stress. Therefore, three endophytic bacteria with plant growth promoting properties were examined for their ability to improve Jerusalem artichoke growth and yield under both well-watered and drought conditions when inoculated individually or in combinations in pot experiments with 2 factorial random complete block design. The interactions of the endophytic bacteria and plant host determined the differential gene expression in response to drought as revealed by quantitative polymerase chain reaction. Single inoculum of the endophytic bacteria increased the height, weight, root traits, and harvest index of Jerusalem artichoke compared to co-inocula under both well-watered and drought conditions. However, the co-inocula of Rossellomorea aquimaris strain 3.13 and Bacillus velezensis strain 5.18 proved to be a synergistic combination leading to high inulin accumulation; while the co-inocula of B. velezensis strain 5.18 and Micrococcus luteus strain 4.43 were not beneficial when used in combination. The genes, dehydrin like protein and ethylene responsive element binding factor, were upregulated in the plants inoculated with single inoculum and co-inocula of all endophytic bacteria during drought stress. Moreover, the gene expression of indole-3-acetic acid (IAA) amido synthetase were up-regulated in Jerusalem artichoke inoculated with M. luteus strain 4.43 during drought stress. The fructan:fructan 1-fructosyltransferase (1-FFT) was also stimulated by the endophytic bacteria particularly in drought condition; the results of this study could explain the relationship between endophytic bacteria and plant host for growth and yield promotion under well-watered and drought conditions.
Collapse
Affiliation(s)
- Patcha Boonmahome
- Faculty of Science, Department of Microbiology, Khon Kaen University, Khon Kaen, Thailand
| | - Junthima Namwongsa
- Faculty of Science, Department of Microbiology, Khon Kaen University, Khon Kaen, Thailand
| | - Nimitr Vorasoot
- Faculty of Agriculture, Department of Plant Science and Agricultural Resources, Khon Kaen University, Khon Kaen, Thailand
| | - Sanun Jogloy
- Faculty of Agriculture, Department of Plant Science and Agricultural Resources, Khon Kaen University, Khon Kaen, Thailand
| | - Nuntavan Riddech
- Faculty of Science, Department of Microbiology, Khon Kaen University, Khon Kaen, Thailand
| | - Sophon Boonlue
- Faculty of Science, Department of Microbiology, Khon Kaen University, Khon Kaen, Thailand
| | - Wiyada Mongkolthanaruk
- Faculty of Science, Department of Microbiology, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
5
|
Cichorium intybus L. Hairy Roots as a Platform for Antimicrobial Activity. Pharmaceuticals (Basel) 2023. [DOI: 10.3390/ph16020140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Industrial chicory is an important crop for its high dietary fibre content. Besides inulin, chicory taproots contain interesting secondary metabolite compounds, which possess bioactive properties. Hairy roots are differentiated plant cell cultures that have shown to be feasible biotechnological hosts for the production of several plant-derived molecules. In this study, hairy roots of industrial chicory cultivars were established, and their potential as a source of antimicrobial ingredients was assessed. It was shown that hot water extracts of hairy roots possessed antimicrobial activity against relevant human microbes, whereas corresponding chicory taproots did not show activity. Remarkably, a significant antimicrobial activity of hot water extracts of chicory hairy roots towards methicillin-resistant Staphylococcus aureus was observed, indicating a high potential of hairy roots as a host for production of antimicrobial agents.
Collapse
|
6
|
Enzyme-treated chicory for cosmetics: application assessment and techno-economic analysis. AMB Express 2022; 12:152. [PMID: 36472772 PMCID: PMC9727056 DOI: 10.1186/s13568-022-01494-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 11/20/2022] [Indexed: 12/12/2022] Open
Abstract
Chicory (Cichorium intybus L.) is an important industrial crop that produces large quantities of the dietary fiber inulin in its roots. Following inulin extraction, the bagasse is typically used as animal feed, but it contains numerous bioactive secondary metabolites with potential applications in healthcare and cosmetic products. Here we assessed the antimicrobial properties of chicory biomass pre-treated with various enzymes alone and in combination to release the bioactive compounds and increase their bioavailability. We found that pre-treatment significantly increased the antimicrobial activity of this industrial by-product, yielding an extract that inhibited typical skin pathogens in a cosmetic formula challenge test. We also evaluated the valorization of chicory biomass as a bioactive cosmetic ingredient. Economic feasibility was estimated by combining our experimental results with a conceptual techno-economic analysis. Our results suggest that chicory biomass can be utilized for the sustainable production of efficacious cosmetic ingredients.
Collapse
|
7
|
Meng XH, Lv H, Ding XQ, Jian TY, Guo DL, Feng XJ, Ren BR, Chen J. Sesquiterpene lactones with anti-inflammatory and cytotoxic activities from the roots of Cichorium intybus. PHYTOCHEMISTRY 2022; 203:113377. [PMID: 35988742 DOI: 10.1016/j.phytochem.2022.113377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 08/10/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
Cichorium intybus L. (Asteraceae), belonging to the tribe Cichorieae of the family Asteraceae, has a long history as an edible and medicinal food. Sesquiterpene lactones are commonly considered as its major active constituents. In the current study, five unreported sesquiterpene lactones, including one 12,8-guaianolide and four 12,6-guaianolides were isolated from C. intybus roots, as well as 16 known analogues. The planar structures and relative configurations of these compounds were elucidated by extensive spectroscopic analysis. The absolute configurations were determined by the time-dependent density functional theory (TDDFT)-based electronic circular dichroism (ECD) calculation method. Bioassay results showed that seven of the isolates exhibited remarkable NO production inhibitory activity in LPS-stimulated RAW264.7 macrophages, with IC50 values ranging from 1.83 to 38.81 μM. Some of them can significantly decrease the secretion of inflammatory cytokines (TNF-α and IL-6). Cytotoxicity assays demonstrated that intybusins B, as well as four known compounds, displayed obvious inhibitory activities against four human tumor cells, with IC50 values ranging from 9.01 to 27.07 μM.
Collapse
Affiliation(s)
- Xiu-Hua Meng
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Han Lv
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Xiao-Qin Ding
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Tun-Yu Jian
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Da-le Guo
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiu-Juan Feng
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China; Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Bing-Ru Ren
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Jian Chen
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China; Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
8
|
van Arkel J, Twarogowska A, Cornelis Y, De Marez T, Engel J, Maenhout P, de Vos RCH, Beekwilder J, Van Droogenbroeck B, Cankar K. Effect of Root Storage and Forcing on the Carbohydrate and Secondary Metabolite Composition of Belgian Endive ( Cichorium intybus L. Var. foliosum). ACS FOOD SCIENCE & TECHNOLOGY 2022; 2:1546-1557. [PMID: 36313154 PMCID: PMC9594316 DOI: 10.1021/acsfoodscitech.2c00182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 11/29/2022]
Abstract
![]()
Belgian endive is grown in a two-step cultivation process
that
involves growing of the plants in the field, cold storage of the taproots,
and a second growth period in dark conditions called forcing to yield
the witloof heads. In this study, the changes in the carbohydrate
content and the secondary metabolite composition were studied in different
tissues of Belgian endive during the cultivation process. Belgian
endive heads contain between 336–388 mg/g DW of total soluble
carbohydrates, predominantly fructose and glucose. The heads also
contain phenolic compounds and terpenoids that give Belgian endive
its characteristic bitter taste. The terpenoid and phenolic compound
composition of the heads was found to be constant during the cultivation
season, regardless of the root storage time. In roots, the main storage
carbohydrate, inulin, was degraded during storage and forcing processes;
however, more than 70% of total soluble carbohydrates remained unused
after forcing. Additionally, high amounts of phenolics and terpenoids
were found in the Belgian endive taproots, predominantly chlorogenic
acid, isochlorogenic acid A, and sesquiterpene lactones. As shown
in this study, Belgian endive taproots, which are currently discarded
after forcing, are rich in carbohydrates, terpenes, and phenolic compounds
and therefore have the potential for further valorization. This systematic
study contributes to the understanding of the carbohydrate and secondary
metabolite metabolism during the cultivation process of Belgian endive.
Collapse
Affiliation(s)
- Jeroen van Arkel
- Wageningen University and Research, BU Bioscience, Wageningen Plant Research, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| | - Anna Twarogowska
- ILVO, Flanders Research Institute for Agriculture, Fisheries, and Food, Technology and Food Science Unit, Brusselsesteenweg 370, BE-9090 Melle, Belgium
| | - Yannah Cornelis
- Praktijkpunt Landbouw Vlaams-Brabant vzw, Blauwe Stap 25, BE-3020 Herent, Belgium
| | - Tania De Marez
- Inagro vzw, Ieperseweg 87, BE-8800 Rumbeke-Beitem, Belgium
| | - Jasper Engel
- Wageningen University and Research, BU Bioscience, Wageningen Plant Research, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| | - Peter Maenhout
- Inagro vzw, Ieperseweg 87, BE-8800 Rumbeke-Beitem, Belgium
| | - Ric C. H. de Vos
- Wageningen University and Research, BU Bioscience, Wageningen Plant Research, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| | - Jules Beekwilder
- Wageningen University and Research, BU Bioscience, Wageningen Plant Research, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| | - Bart Van Droogenbroeck
- ILVO, Flanders Research Institute for Agriculture, Fisheries, and Food, Technology and Food Science Unit, Brusselsesteenweg 370, BE-9090 Melle, Belgium
| | - Katarina Cankar
- Wageningen University and Research, BU Bioscience, Wageningen Plant Research, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| |
Collapse
|
9
|
Lavrishcheva T, Osipova G, Lavtishchev A, Zhapparova A, Saljnikov E. Morphometric and biochemical properties of Cichorium intybus L. var. foliosum as affected by duration of growing period. ZEMLJISTE I BILJKA 2022. [DOI: 10.5937/zembilj2202102l] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cichorium intybus is a valuable crop due to its high nutritional and pharmaceutical value. In this work, the study of the effect of harvesting time on the biometric and biochemical properties of Cichorium intybus L. var. foliosum (chicory salad witloof) was carried out on five varieties. The period of vegetation affects rosette diameter, number of leaves and root weight. A strong correlation between the weight of roots before laying for forcing and the weight of forcing heads (r = 0.79) was revealed. The roots of variety Conus, managed to accumulate a sufficient amount of nutrients for the formation of heads in a 98 days. The accumulation of sugars in forcing heads depended on their initial content in roots with a 75% reliability (r = 0.75). The results showed that in the northern latitudes the forcing can be carried out in winter in any room without light at a temperature of 10 to 17°C. In addition, subsurface heating of the substrate or maintaining water in the containers with roots provided a larger yield of heads obtained in a shorter time.
Collapse
|
10
|
Cankar K, Bundock P, Sevenier R, Häkkinen ST, Hakkert JC, Beekwilder J, van der Meer IM, de Both M, Bosch D. Inactivation of the germacrene A synthase genes by CRISPR/Cas9 eliminates the biosynthesis of sesquiterpene lactones in Cichorium intybus L. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:2442-2453. [PMID: 34270859 PMCID: PMC8633505 DOI: 10.1111/pbi.13670] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/01/2021] [Accepted: 06/06/2021] [Indexed: 05/06/2023]
Abstract
Chicory (Cichorium intybus var. sativum) is an industrial crop species cultivated for the production of a fructose polymer inulin, which is used as a low-calorie sweetener and prebiotic. Besides, inulin chicory taproots also accumulate sesquiterpene lactones (STLs). These are bitter tasting compounds, which need to be removed during inulin extraction, resulting in additional costs. In this work, we describe chicory lines where STL accumulation is almost completely eliminated. Genome editing using the CRISPR/Cas9 system was used to inactivate four genes that encode the enzyme that performs the first dedicated step in STL synthesis, germacrene A synthase (CiGAS). Chicory lines were obtained that carried null mutations in all four CiGAS genes. Lines lacking functional CiGAS alleles showed a normal phenotype upon greenhouse cultivation and show nearly complete elimination of the STL synthesis in the roots. It was shown that the reduction in STLs could be attributed to mutations in genetically linked copies of the CiGAS-short gene and not the CiGAS-long gene, which is relevant for breeding the trait into other cultivars. The inactivation of the STL biosynthesis pathway led to increase in phenolic compounds as well as accumulation of squalene in the chicory taproot, presumably due to increased availability of farnesyl pyrophosphate (FFP). These results demonstrate that STLs are not essential for chicory growth and that the inhibition of the STL biosynthesis pathway reduced the STL levels chicory which will facilitate inulin extraction.
Collapse
Affiliation(s)
- Katarina Cankar
- Wageningen Plant ResearchWageningen University & ResearchWageningenThe Netherlands
| | | | | | | | | | - Jules Beekwilder
- Wageningen Plant ResearchWageningen University & ResearchWageningenThe Netherlands
| | | | | | - Dirk Bosch
- Wageningen Plant ResearchWageningen University & ResearchWageningenThe Netherlands
| |
Collapse
|
11
|
Seidavi A, Tavakoli M, Slozhenkina M, Gorlov I, Hashem NM, Asroosh F, Taha AE, Abd El-Hack ME, Swelum AA. The use of some plant-derived products as effective alternatives to antibiotic growth promoters in organic poultry production: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:47856-47868. [PMID: 34302240 DOI: 10.1007/s11356-021-15460-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
Improving poultry production, increasing poultry immunity, and reducing the disease spreading can be achieved by adding various potentially valuable ingredients to the feed or drinking water of poultry flocks. Because of the emergence of antimicrobial resistance, antibiotic growth promoters (AGP) in animal nutrition were prohibited. Additionally, consumer preferences tend towards purchasing products from livestock raised without antibiotics. Therefore, there is a critical need to find effective growth promoter alternatives and treatment methods for common poultry diseases. Some spice plants play important roles in improving the taste, aroma, and color of human food and their positive effects on human and animal health. The current review aimed to provide a broader perspective on some spice crops which can be effective alternatives to antibiotics in organic poultry production. These spices were including Thymus vulgaris, Cichorium intybus, Coriandrum sativum, Aloe vera, Heracleum persicum, Curcuma longa, and Glycyrrhiza glabra.
Collapse
Affiliation(s)
- Alireza Seidavi
- Department of Animal Science, Rasht Branch, Islamic Azad University, Rasht, Iran.
| | - Masomeh Tavakoli
- Department of Animal Science, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Marina Slozhenkina
- Volga Region Research Institute of Manufacture and Processing of Meat-and-Milk Production, Volgograd, Russia
| | - Ivan Gorlov
- Volga Region Research Institute of Manufacture and Processing of Meat-and-Milk Production, Volgograd, Russia
| | - Nesrein M Hashem
- Department of Animal and Fish Production, Faculty of Agriculture, Alexandria University, Alexandria, 21545, Egypt
| | - Fariborz Asroosh
- Department of Animal Science, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Ayman E Taha
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Edfina, 22578, Egypt
| | | | - Ayman A Swelum
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Sharkia, Egypt.
| |
Collapse
|
12
|
Romero-Luna HE, Peredo-Lovillo AG, Jiménez-Fernández M. Probiotic and Potentially Probiotic Bacteria with Hypocholesterolemic Properties. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1926481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Haydee Eliza Romero-Luna
- Subdirección de Posgrado e Investigación, Instituto Tecnológico Superior De Xalapa, Tecnológico Nacional De México, Xalapa Enríquez, Veracruz, México
| | - Audry Gustavo Peredo-Lovillo
- Subdirección de Posgrado e Investigación, Instituto Tecnológico Superior De Xalapa, Tecnológico Nacional De México, Xalapa Enríquez, Veracruz, México
| | - Maribel Jiménez-Fernández
- Departamento de Estabilidad de Alimentos, Centro De Investigación Y Desarrollo En Alimentos. Universidad Veracruzana. Dr. Castelazo Ayala S/n Industrial Ánimas, Xalapa, Veracruz, México
| |
Collapse
|
13
|
Yoshida M. Fructan Structure and Metabolism in Overwintering Plants. PLANTS 2021; 10:plants10050933. [PMID: 34067059 PMCID: PMC8151721 DOI: 10.3390/plants10050933] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 12/27/2022]
Abstract
In northern regions, annual and perennial overwintering plants such as wheat and temperate grasses accumulate fructan in vegetative tissues as an energy source. This is necessary for the survival of wintering tissues and degrading fructan for regeneration in spring. Other types of wintering plants, including chicory and asparagus, store fructan as a reserve carbohydrate in their roots during winter for shoot- and spear-sprouting in spring. In this review, fructan metabolism in plants during winter is discussed, with a focus on the fructan-degrading enzyme, fructan exohydrolase (FEH). Plant fructan synthase genes were isolated in the 2000s, and FEH genes have been isolated since the cloning of synthase genes. There are many types of FEH in plants with complex-structured fructan, and these FEHs control various kinds of fructan metabolism in growth and survival by different physiological responses. The results of recent studies on the fructan metabolism of plants in winter have shown that changes in fructan contents in wintering plants that are involved in freezing tolerance and snow mold resistance might be largely controlled by regulation of the expressions of genes for fructan synthesis, whereas fructan degradation by FEHs is related to constant energy consumption for survival during winter and rapid sugar supply for regeneration or sprouting of tissues in spring.
Collapse
Affiliation(s)
- Midori Yoshida
- NARO Hokkaido National Agricultural Research Center, Sapporo 062-8555, Japan
| |
Collapse
|
14
|
Mohammadi F, Naghavi MR, Peighambari SA, Dehaghi NK, Nasiri J, Khaldari I, Bravi E, Sileoni V, Marconi O, Perretti G. Comparison of carbohydrate partitioning and expression patterns of some genes involved in carbohydrate biosynthesis pathways in annual and biennial species of Cichorium spp. PHYTOCHEMISTRY 2021; 183:112620. [PMID: 33360645 DOI: 10.1016/j.phytochem.2020.112620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 12/04/2020] [Accepted: 12/05/2020] [Indexed: 06/12/2023]
Abstract
Variation in metabolism and partitioning of carbohydrates, particularly fructans, between annual and perennial Cichorium species remains a challenging topic. To address this problem, an annual (endive, Cichorium endive L. var. Crispum; Asteraceae) and a biennial species (chicory, Cichorium intybus L. var. Witloof; Asteraceae) were compared with in terms of variability in carbohydrate accumulation and expression patterns of fructan-active enzyme genes, as well as sucrose metabolism at various growth and developmental stages. In general, constituents such as 1-kestose, nystose, and inulin were detected only in the root of chicory and were not present in any of the endive tissues. For both species, flower tissue contained maximum levels of both fructose and glucose, while for sucrose, more fluctuations were observed. On the other hand, all the genes under study exhibited variation, not only between the two species but also among different tissues at different sampling times. In endive root compared to endive leaf, the expression of cell wall invertase genes and sucrose accumulation decreased simultaneously, indicating the limited capacity of its roots to absorb sucrose, a precursor to inulin production. In addition, low expression of fructan: fructan fructosyltransferase in endive root compared to chicory root confirmed the inability of endive to inulin synthesis. Overall, annual and biennial species were different in the production of inulin, transport, remobilization, and unloading of sucrose.
Collapse
Affiliation(s)
- Fatemeh Mohammadi
- Division of Biotechnology, Agronomy and Plant Breeding Dept, Agricultural and Natural Resources College, University of Tehran, Karaj, Iran
| | - Mohammad Reza Naghavi
- Division of Biotechnology, Agronomy and Plant Breeding Dept, Agricultural and Natural Resources College, University of Tehran, Karaj, Iran.
| | - Seyed Ali Peighambari
- Division of Biotechnology, Agronomy and Plant Breeding Dept, Agricultural and Natural Resources College, University of Tehran, Karaj, Iran
| | - Nafiseh Khosravi Dehaghi
- Evidence-based Phytotherapy & Complementary Medicine Research Center, Alborz University of Medical Sciences, Karaj, Iran; Department of Pharmacognosy, School of Pharmacy, Alborz University of Medical Sciences, Karaj, Iran
| | - Jaber Nasiri
- Division of Biotechnology, Agronomy and Plant Breeding Dept, Agricultural and Natural Resources College, University of Tehran, Karaj, Iran
| | - Iman Khaldari
- Division of Biotechnology, Agronomy and Plant Breeding Dept, Agricultural and Natural Resources College, University of Tehran, Karaj, Iran
| | - Elisabetta Bravi
- University of Perugia, Department of Agricultural, Food and Environmental Science, via San Costanzo s.n.c., 06126, Perugia, Italy.
| | - Valeria Sileoni
- University of Perugia, Department of Agricultural, Food and Environmental Science, via San Costanzo s.n.c., 06126, Perugia, Italy
| | - Ombretta Marconi
- University of Perugia, Department of Agricultural, Food and Environmental Science, via San Costanzo s.n.c., 06126, Perugia, Italy
| | - Giuseppe Perretti
- University of Perugia, Department of Agricultural, Food and Environmental Science, via San Costanzo s.n.c., 06126, Perugia, Italy
| |
Collapse
|
15
|
Pouille CL, Jegou D, Dugardin C, Cudennec B, Ravallec R, Hance P, Rambaud C, Hilbert JL, Lucau-Danila A. Chicory root flour – A functional food with potential multiple health benefits evaluated in a mice model. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
16
|
Paupière MJ, Tikunov YM, Firon N, de Vos RCH, Maliepaard C, Visser RGF, Bovy AG. The effect of isolation methods of tomato pollen on the results of metabolic profiling. Metabolomics 2019; 15:11. [PMID: 30830456 PMCID: PMC6326007 DOI: 10.1007/s11306-018-1471-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 12/31/2018] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Untargeted metabolomics is a powerful tool to detect hundreds of metabolites within a given tissue and to compare the metabolite composition of samples in a comprehensive manner. However, with regard to pollen research such comprehensive metabolomics approaches are yet not well developed. To enable isolation of pollen that is tightly enclosed within the anthers of the flower, such as immature pollen, the current pollen isolation protocols require the use of a watery solution. These protocols raise a number of concerns for their suitability in metabolomics analyses, in view of possible metabolic activities in the pollen and contamination with anther metabolites. OBJECTIVES We assessed the effect of different sample preparation procedures currently used for pollen isolation for their suitability to perform metabolomics of tomato pollen. METHODS Pollen were isolated using different methods and the metabolic profiles were analysed by liquid chromatography-mass spectrometry (LC-MS). RESULTS Our results demonstrated that pollen isolation in a watery solution led to (i) rehydration of the pollen grains, inducing marked metabolic changes in flavonoids, phenylpropanoids and amino acids and thus resulting in a metabolite profile that did not reflect the one of mature dry pollen, (ii) hydrolysis of sucrose into glucose and fructose during subsequent metabolite extraction, unless the isolated and rehydrated pollen were lyophilized prior to extraction, and (iii) contamination with anther-specific metabolites, such as alkaloids, thus compromising the metabolic purity of the pollen fraction. CONCLUSION We conclude that the current practices used to isolate pollen are suboptimal for metabolomics analyses and provide recommendations on how to improve the pollen isolation protocol, in order to obtain the most reliable metabolic profile from pollen tissue.
Collapse
Affiliation(s)
- Marine J Paupière
- Plant Breeding, Wageningen University & Research, PO Box 386, 6700 AJ, Wageningen, The Netherlands
| | - Yury M Tikunov
- Plant Breeding, Wageningen University & Research, PO Box 386, 6700 AJ, Wageningen, The Netherlands
| | - Nurit Firon
- Institute of Plant Sciences, The Volcani Center, ARO, Bet Dagan, Israel
| | - Ric C H de Vos
- Bioscience, Wageningen University & Research, PO Box 386, 6700 AJ, Wageningen, The Netherlands
| | - Chris Maliepaard
- Plant Breeding, Wageningen University & Research, PO Box 386, 6700 AJ, Wageningen, The Netherlands
| | - Richard G F Visser
- Plant Breeding, Wageningen University & Research, PO Box 386, 6700 AJ, Wageningen, The Netherlands
| | - Arnaud G Bovy
- Plant Breeding, Wageningen University & Research, PO Box 386, 6700 AJ, Wageningen, The Netherlands.
| |
Collapse
|
17
|
Effect of the prebiotic fiber inulin on cholesterol metabolism in wildtype mice. Sci Rep 2018; 8:13238. [PMID: 30185894 PMCID: PMC6125380 DOI: 10.1038/s41598-018-31698-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 08/15/2018] [Indexed: 12/22/2022] Open
Abstract
Dietary non-digestible carbohydrates are perceived to improve health via gut microbiota-dependent generation of products such as short-chain fatty acids (SCFA). In addition, SCFA are also precursors for lipid and cholesterol synthesis potentially resulting in unwanted effects on lipid metabolism. Inulin is a widely used model prebiotic dietary fiber. Inconsistent reports on the effects of inulin on cholesterol homeostasis have emerged in humans and preclinical models. To clarify this issue, the present study aimed to provide an in-depth characterization of the effects of short-chain (sc)- and long-chain (lc)- inulin on cholesterol synthesis, absorption and elimination in mice. Feeding wildtype C57BL/6J mice diets supplemented with 10% (w/w) of either sc- or lc-inulin for two weeks resulted in approximately 2.5-fold higher fecal SCFA levels (P < 0.01) compared with controls, but had no significant effects on plasma and liver lipids. Subtle shifts in fecal and plasma bile acid species were detected with beta-muricholic acid increasing significantly in plasma of the inulin fed groups (1.7-fold, P < 0.05). However, neither sc-inulin nor lc-inulin affected intestinal cholesterol absorption, mass fecal cholesterol excretion or trans-intestinal cholesterol excretion (TICE). Combined, our data demonstrate that sc- and lc-inulin have no adverse effects on cholesterol metabolism in mice despite increased generation of SCFA.
Collapse
|
18
|
Maroufi A, Karimi M, Mehdikhanlou K, De Loose M. Inulin chain length modification using a transgenic approach opening new perspectives for chicory. 3 Biotech 2018; 8:349. [PMID: 30073134 PMCID: PMC6068068 DOI: 10.1007/s13205-018-1377-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 07/27/2018] [Indexed: 12/19/2022] Open
Abstract
Chicory capable of synthesizing long-chain inulin is of great interest. During the growing season, the sucrose-sucrose 1-fructosyltransferase (1-SST) activity is vital for production of long-chain inulin in chicory. With the purpose to increase inulin chain length, we employed Agrobacterium-mediated transformation method. Transgenic chicory plants (Cichorium intybus L. var. sativum) cv. 'Melci' has been developed to overexpress sucrose-sucrose 1-fructosyltransferase (1-SST) under the control of the CaMV 35S promoter. The integration of the T-DNA into the plant genome was confirmed by PCR on genomic DNA using gene-specific primers. Quantification of the 1-SST transcript expression level revealed that transgenic plants showed higher 1-SST expression than those in non-transgenic plants. Further analyses proved that the fructan content of the roots significantly increased in the transgenic plants. These results revealed that overexpression of the 1-SST, the key gene in inulin biosynthesis in chicory, might serve as a novel approach to develop plants with the long-chain inulin content.
Collapse
Affiliation(s)
- Asad Maroufi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
- Research Center for Medicinal Plant Breeding and Development, University of Kurdistan, Sanandaj, Iran
| | - Mansour Karimi
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Khosro Mehdikhanlou
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Marc De Loose
- Technology and Food Sciences Unit, Institute for Agricultural and Fisheries Research (ILVO), Burg. Van Gansberghelaan 115 Bus 1, 9820 Merelbeke, Belgium
- Department of Plant Biotechnology and Bioinformatics, Faculty of Sciences, University of Gent (UGent), Technologiepark 927, 9052 Ghent, Belgium
| |
Collapse
|
19
|
Luo R, Song X, Li Z, Zhang A, Yan X, Pang Q. Effect of soil salinity on fructan content and polymerization degree in the sprouting tubers of Jerusalem artichoke (Helianthus tuberosus L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 125:27-34. [PMID: 29413628 DOI: 10.1016/j.plaphy.2018.01.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/24/2018] [Accepted: 01/25/2018] [Indexed: 05/07/2023]
Abstract
In addition to their role as reserve carbohydrates, fructans have been recognized as compounds that are protective against adverse environments. The aim of this study was to identify changes in the content and the degree of polymerization (DP) of fructan in sprouting tubers of Jerusalem artichoke under salt stress. Fructan was extracted from tubers at 1, 3, 5, and 7 days after planting in sandy loam soil irrigated with NaCl solution. Fructan accumulation and polymerization and the expression of genes encoding enzymes for fructan synthesis and degradation were evaluated. No significant differences between the control and treatment groups were observed until 5 days after sowing. The highest level of salinity (250 mM) not only inhibited sprouting and root growth but also decreased the level of fructan in the tubers. The proportion of fructan at DP 2-5 rapidly increased one day after sowing and then decreased over time. Under various NaCl treatments, at 7 days after sowing, all fructans except fructan at DP 6-10 were present in proportions less than or equal to the control. The variation in the DP of fructan was related to the transcription level of fructan metabolism genes. Fructan may support sprouting or resistance to salt stress by changing the DP of fructan molecules through hydrolysis without changing the total amount of fructan. The low-molecular-weight oligosaccharides (DP < 5) may be the major carbohydrates that support tuber sprouting or that are involved in protection from salt stress.
Collapse
Affiliation(s)
- Rui Luo
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University/Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Harbin 150040, People's Republic of China.
| | - Xiaoyang Song
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University/Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Harbin 150040, People's Republic of China.
| | - Ziwei Li
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University/Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Harbin 150040, People's Republic of China.
| | - Aiqin Zhang
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University/Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Harbin 150040, People's Republic of China.
| | - Xiufeng Yan
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University/Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Harbin 150040, People's Republic of China.
| | - Qiuying Pang
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University/Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Harbin 150040, People's Republic of China.
| |
Collapse
|
20
|
de Almeida LV, Ferri PH, Seraphin JC, de Moraes MG. Seasonal changes of fructans in dimorphic roots of Ichthyothere terminalis (Spreng.) Blake (Asteraceae) growing in Cerrado. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 598:404-412. [PMID: 28448932 DOI: 10.1016/j.scitotenv.2017.04.100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/12/2017] [Accepted: 04/13/2017] [Indexed: 06/07/2023]
Abstract
Cerrado is a floristically rich savanna in Brazil, whose vegetation consists of a physiognomic mosaic, influenced by rainfall seasonality. In the dry season rainfall is substantially lower and reduces soil water supply, mainly for herbs and subshrubs. Climatic seasonal variations may well define phenological shifts and induce fluctuations of plant reserve pools. Some Cerrado native species have thickened underground organs that bear buds and store reserves, as adaptive features to enable plant survival following environmental stresses. Asteraceae species accumulate fructans in storage organs, which are not only reserve, but also protecting compounds against the effects of cold and drought. Ichthyothere terminalis is one Asteraceae species abundant in cerrado rupestre, with underground organs consisting of thickened orthogravitropic and diagravitropic roots. The objectives of this study were to analyze how abiotic environmental factors and plant phenology influence fructan dynamics in field grown plants, and verify if fructan metabolism differs in both root types for one year. I. terminalis accumulates inulin-type fructans in 10-40% of the dry mass in both root types. Fructan dynamics have similar patterns described for other Asteraceae species, exhibiting a proportional increase of polysaccharides with the senescence of the aerial organs. Multivariate analyzes showed that, as rainfall decreased, environmental factors had a stronger influence on metabolite levels than phenological shifts in both root types. Only slight differences were found in fructan dynamics between orthogravitropic and diagravitropic roots, suggesting they may have similar fructan metabolism regulation. However, these small differences may reflect distinct microclimatic conditions in both root types and also represent the influence of sink strength.
Collapse
Affiliation(s)
- Lorrayne Veloso de Almeida
- Programa de Pós Graduação em Biodiversidade Vegetal, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Av. Esperança s/n, Campus Samambaia, Goiânia, GO 74690-900, Brazil
| | - Pedro Henrique Ferri
- Instituto de Química, Universidade Federal de Goiás, Goiânia, GO 74690-900, Brazil
| | - José Carlos Seraphin
- Instituto de Matemática e Estatística, Universidade Federal de Goiás, Goiânia, GO 74690-900, Brazil
| | - Moemy Gomes de Moraes
- Programa de Pós Graduação em Biodiversidade Vegetal, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Av. Esperança s/n, Campus Samambaia, Goiânia, GO 74690-900, Brazil.
| |
Collapse
|
21
|
Wei H, Zhao H, Su T, Bausewein A, Greiner S, Harms K, Rausch T. Chicory R2R3-MYB transcription factors CiMYB5 and CiMYB3 regulate fructan 1-exohydrolase expression in response to abiotic stress and hormonal cues. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4323-4338. [PMID: 28922763 PMCID: PMC5853547 DOI: 10.1093/jxb/erx210] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/31/2017] [Indexed: 05/17/2023]
Abstract
In the biennial Cichorium intybus, inulin-type fructans accumulate in the taproot during the first year. Upon cold or drought exposure, fructans are degraded by fructan exohydrolases, affecting inulin yield and degree of polymerization. While stress-induced expression of 1-FEH genes has been thoroughly explored, the transcriptional network mediating these responses has remained unknown. In this study, several R2R3-MYB transcriptional regulators were analysed for their possible involvement in 1-FEH regulation via transient transactivation of 1-FEH target promoters and for in vivo co-expression with target genes under different stress and hormone treatments. CiMYB3 and CiMYB5 selectively enhanced promoter activities of 1-FEH1, 1-FEH2a, and 1-FEH2b genes, without affecting promoter activities of fructosyltransferase genes. Both factors recognized the MYB-core motifs (C/TNGTTA/G) that are abundantly present in 1-FEH promoters. In chicory hairy root cultures, CiMYB5 displayed co-expression with its target genes in response to different abiotic stress and phytohormone treatments, whereas correlations with CiMYB3 expression were less consistent. Oligofructan levels indicated that the metabolic response, while depending on the balance of the relative expression levels of fructan exohydrolases and fructosyltransferases, could be also affected by differential subcellular localization of different FEH isoforms. The results indicate that in chicory hairy root cultures CiMYB5 and CiMYB3 act as positive regulators of the fructan degradation pathway.
Collapse
Affiliation(s)
- Hongbin Wei
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Hongbo Zhao
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Tao Su
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Anja Bausewein
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Steffen Greiner
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Heidelberg, Germany
| | | | - Thomas Rausch
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
22
|
Wei H, Bausewein A, Greiner S, Dauchot N, Harms K, Rausch T. CiMYB17, a stress-induced chicory R2R3-MYB transcription factor, activates promoters of genes involved in fructan synthesis and degradation. THE NEW PHYTOLOGIST 2017; 215:281-298. [PMID: 28452060 DOI: 10.1111/nph.14563] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 03/03/2017] [Indexed: 05/13/2023]
Abstract
In Cichorium intybus, inulin metabolism is mediated by fructan-active enzymes (FAZYs): sucrose:sucrose 1-fructosyltransferase (1-SST), fructan:fructan 1-fructosyltransferase (1-FFT), and fructan 1-exohydrolases 1, 2a and 2b (1-FEH1, -2a and -2b), respectively. While these enzymes have been rigorously characterized, the transcriptional network orchestrating their development- and stress-related expression has remained largely unknown. Here, the possible role of R2R3-MYB transcription factors in FAZY regulation was explored via bioinformatic identification of R2R3-MYBs (using an RNA sequencing (RNAseq) database), studies of co-expression of these factors with target genes, in vivo transient transactivation assays of FAZY target promoters (dual luciferase assay), and a yeast one-hybrid assay investigating the specificity of the binding of these factors to cis-elements. The chicory MYB transcription factor CiMYB17 specifically activated promoters of 1-SST and 1-FFT by binding to the consensus DNA-motif DTTHGGT. Unexpectedly, CiMYB17 also activated promoters of fructan exohydrolase genes. The stimulatory effect on promoter activities of sucrose transporter and cell wall invertase genes points to a general role in regulating the source-sink relationship. Co-induction of CiMYB17 with 1-SST and 1-FFT (and, less consistently, with 1-FEH1/2) in nitrogen-starved or abscisic acid (ABA)-treated chicory seedlings and in salt-stressed chicory hairy roots supports a role in stress-induced fructan metabolism, including de novo fructan synthesis and trimming of pre-existing fructans, whereas the reduced expression of CiMYB17 in developing taproots excludes a role in fructan accumulation under normal growth conditions.
Collapse
Affiliation(s)
- Hongbin Wei
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Heidelberg, D-69120, Germany
| | - Anja Bausewein
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Heidelberg, D-69120, Germany
| | - Steffen Greiner
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Heidelberg, D-69120, Germany
| | - Nicolas Dauchot
- Research Unit in Plant Biology, University of Namur, B-5000, Namur, Belgium
| | - Karsten Harms
- ZAFES, SÜDZUCKER AG Mannheim-Ochsenfurt, Obrigheim, D-67283, Germany
| | - Thomas Rausch
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Heidelberg, D-69120, Germany
| |
Collapse
|
23
|
Stolze A, Wanke A, van Deenen N, Geyer R, Prüfer D, Schulze Gronover C. Development of rubber-enriched dandelion varieties by metabolic engineering of the inulin pathway. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:740-753. [PMID: 27885764 PMCID: PMC5425391 DOI: 10.1111/pbi.12672] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 11/21/2016] [Indexed: 05/21/2023]
Abstract
Natural rubber (NR) is an important raw material for a large number of industrial products. The primary source of NR is the rubber tree Hevea brasiliensis, but increased worldwide demand means that alternative sustainable sources are urgently required. The Russian dandelion (Taraxacum koksaghyz Rodin) is such an alternative because large amounts of NR are produced in its root system. However, rubber biosynthesis must be improved to develop T. koksaghyz into a commercially feasible crop. In addition to NR, T. koksaghyz also produces large amounts of the reserve carbohydrate inulin, which is stored in parenchymal root cell vacuoles near the phloem, adjacent to apoplastically separated laticifers. In contrast to NR, which accumulates throughout the year even during dormancy, inulin is synthesized during the summer and is degraded from the autumn onwards when root tissues undergo a sink-to-source transition. We carried out a comprehensive analysis of inulin and NR metabolism in T. koksaghyz and its close relative T. brevicorniculatum and functionally characterized the key enzyme fructan 1-exohydrolase (1-FEH), which catalyses the degradation of inulin to fructose and sucrose. The constitutive overexpression of Tk1-FEH almost doubled the rubber content in the roots of two dandelion species without any trade-offs in terms of plant fitness. To our knowledge, this is the first study showing that energy supplied by the reserve carbohydrate inulin can be used to promote the synthesis of NR in dandelions, providing a basis for the breeding of rubber-enriched varieties for industrial rubber production.
Collapse
Affiliation(s)
- Anna Stolze
- Institute of Plant Biology and BiotechnologyUniversity of MuensterMuensterGermany
| | - Alan Wanke
- Institute of Plant Biology and BiotechnologyUniversity of MuensterMuensterGermany
| | - Nicole van Deenen
- Institute of Plant Biology and BiotechnologyUniversity of MuensterMuensterGermany
| | | | - Dirk Prüfer
- Institute of Plant Biology and BiotechnologyUniversity of MuensterMuensterGermany
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME)MuensterGermany
| | | |
Collapse
|
24
|
Srivastava S, Singh N, Srivastava G, Sharma A. miRNA mediated gene regulatory network analysis of Cichorium intybus (chicory). ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.aggene.2016.11.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
25
|
Mellado-Mojica E, González de la Vara LE, López MG. Fructan active enzymes (FAZY) activities and biosynthesis of fructooligosaccharides in the vacuoles of Agave tequilana Weber Blue variety plants of different age. PLANTA 2017; 245:265-281. [PMID: 27730409 DOI: 10.1007/s00425-016-2602-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 09/29/2016] [Indexed: 05/28/2023]
Abstract
Biosynthesis of agave fructans occurs in mesontle vacuoles which showed fluctuations in FAZY activities and synthesized a diverse spectrum of fructooligosaccharide isomers. Agave tequilana Weber Blue variety is an important agronomic crop in Mexico. Fructan metabolism in A. tequilana exhibits changes in fructan content, type, degree of polymerization (DP), and molecular structure. Specific activities of vacuolar fructan active enzymes (FAZY) in A. tequilana plants of different age and the biosynthesis of fructooligosaccharides (FOSs) were analyzed in this work. Vacuoles from mesontle (stem) protoplasts were isolated and collected from 2- to 7-year-old plants. For the first time, agave fructans were identified in the vacuolar content by HPAEC-PAD. Several FAZY activities (1-SST, 6-SFT, 6G-FFT, 1-FFT, and FEH) with fluctuations according to the plant age were found in protein vacuolar extracts. Among vacuolar FAZY, 1-SST activities appeared in all plant developmental stages, as well as 1-FFT and FEH activities. The enzymes 6G-FFT and 6-SST showed only minimal activities. Lowest and highest FAZY activities were found in 2- and 6-year-old plants, respectively. Synthesized products (FOS) were analyzed by TLC and HPAEC-PAD. Vacuolar FAZYs yielded large FOS isomers diversity, being 7-year-old plants the ones that synthesized a greater variety of fructans with different DP, linkages, and molecular structures. Based on the above, we are proposing a model for the FAZY activities constituting the FOS biosynthetic pathways in Agave tequilana Weber Blue variety.
Collapse
Affiliation(s)
- Erika Mellado-Mojica
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato. Km. 9.6 Lib. Norte Carretera Irapuato-León, Apartado Postal 629, 36821, Irapuato, Gto, Mexico
| | - Luis E González de la Vara
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato. Km. 9.6 Lib. Norte Carretera Irapuato-León, Apartado Postal 629, 36821, Irapuato, Gto, Mexico
| | - Mercedes G López
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato. Km. 9.6 Lib. Norte Carretera Irapuato-León, Apartado Postal 629, 36821, Irapuato, Gto, Mexico.
| |
Collapse
|
26
|
Wang D, Li FL, Wang SA. A one-step bioprocess for production of high-content fructo-oligosaccharides from inulin by yeast. Carbohydr Polym 2016; 151:1220-1226. [DOI: 10.1016/j.carbpol.2016.06.059] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 06/08/2016] [Accepted: 06/15/2016] [Indexed: 10/21/2022]
|
27
|
Wei H, Bausewein A, Steininger H, Su T, Zhao H, Harms K, Greiner S, Rausch T. Linking Expression of Fructan Active Enzymes, Cell Wall Invertases and Sucrose Transporters with Fructan Profiles in Growing Taproot of Chicory ( Cichorium intybus): Impact of Hormonal and Environmental Cues. FRONTIERS IN PLANT SCIENCE 2016; 7:1806. [PMID: 27994611 PMCID: PMC5136560 DOI: 10.3389/fpls.2016.01806] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 11/16/2016] [Indexed: 05/05/2023]
Abstract
In chicory taproot, the inulin-type fructans serve as carbohydrate reserve. Inulin metabolism is mediated by fructan active enzymes (FAZYs): sucrose:sucrose 1-fructosyltransferase (1-SST; fructan synthesis), fructan:fructan-1-fructosyltransferase (1-FFT; fructan synthesis and degradation), and fructan 1-exohydrolases (1-FEH1/2a/2b; fructan degradation). In developing taproot, fructan synthesis is affected by source-to-sink sucrose transport and sink unloading. In the present study, expression of FAZYs, sucrose transporter and CWI isoforms, vacuolar invertase and sucrose synthase was determined in leaf blade, petiole and taproot of young chicory plants (taproot diameter: 2 cm) and compared with taproot fructan profiles for the following scenarios: (i) N-starvation, (ii) abscisic acid (ABA) treatment, (iii) ethylene treatment (via 1-aminoyclopropane-1-carboxylic acid [ACC]), and (iv) cold treatment. Both N-starvation and ABA treatment induced an increase in taproot oligofructans. However, while under N-starvation this increase reflected de novo synthesis, under ABA treatment gene expression profiles indicated a role for both de novo synthesis and degradation of long-chain fructans. Conversely, under ACC and cold treatment oligofructans slightly decreased, correlating with reduced expression of 1-SST and 1-FFT and increased expression of FEHs and VI. Distinct SUT and CWI expression profiles were observed, indicating a functional alignment of SUT and CWI expression with taproot fructan metabolism under different source-sink scenarios.
Collapse
Affiliation(s)
- Hongbin Wei
- Plant Molecular Physiology, Centre for Organismal Studies Heidelberg, Heidelberg UniversityHeidelberg, Germany
| | - Anja Bausewein
- Plant Molecular Physiology, Centre for Organismal Studies Heidelberg, Heidelberg UniversityHeidelberg, Germany
| | - Heike Steininger
- Plant Molecular Physiology, Centre for Organismal Studies Heidelberg, Heidelberg UniversityHeidelberg, Germany
| | - Tao Su
- Plant Molecular Physiology, Centre for Organismal Studies Heidelberg, Heidelberg UniversityHeidelberg, Germany
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry UniversityNanjing, China
| | - Hongbo Zhao
- Plant Molecular Physiology, Centre for Organismal Studies Heidelberg, Heidelberg UniversityHeidelberg, Germany
- College of Horticulture, South China Agricultural UniversityGuangzhou, China
| | - Karsten Harms
- ZAFES, Südzucker AG Mannheim/OchsenfurtObrigheim, Germany
| | - Steffen Greiner
- Plant Molecular Physiology, Centre for Organismal Studies Heidelberg, Heidelberg UniversityHeidelberg, Germany
| | - Thomas Rausch
- Plant Molecular Physiology, Centre for Organismal Studies Heidelberg, Heidelberg UniversityHeidelberg, Germany
- *Correspondence: Thomas Rausch,
| |
Collapse
|
28
|
Abstract
This chapter describes the various compounds that can act as prebiotic fibers: their structure, occurrence, production, and physiological effects (health effects) will be presented. The basis for the description is the latest definitions for dietary fibers and for prebiotics. Using as much as possible data from human studies, both the fiber and the prebiotic properties will be described of a variety of compounds. Based on the presented data the latest developments in the area of prebiotics, fibers and gut and immune health will be discussed in more detail as they show best what the potential impact of prebiotics on health of the human host might be.
Collapse
|
29
|
Dauchot N, Raulier P, Maudoux O, Notté C, Draye X, Van Cutsem P. Loss of function of 1-FEH IIb has more impact on post-harvest inulin degradation in Cichorium intybus than copy number variation of its close paralog 1-FEH IIa. FRONTIERS IN PLANT SCIENCE 2015; 6:455. [PMID: 26157446 PMCID: PMC4477480 DOI: 10.3389/fpls.2015.00455] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 06/03/2015] [Indexed: 05/20/2023]
Abstract
Key Message: The loss of mini-exon 2 in the 1-FEH IIb glycosyl-hydrolase results in a putative non-functional allele. This loss of function has a strong impact on the susceptibility to post-harvest inulin depolymerization. Significant variation of copy number was identified in its close paralog 1-FEH IIa, but no quantitative effect of copy number on carbohydrates-related phenotypes was detected. Inulin polyfructan is the second most abundant storage carbohydrate in flowering plants. After harvest, it is depolymerized by fructan exohydrolases (FEHs) as an adaptive response to end-season cold temperatures. In chicory, the intensity of this depolymerization differs between cultivars but also between individuals within a cultivar. Regarding this phenotypic variability, we recently identified statistically significant associations between inulin degradation and genetic polymorphisms located in three FEHs. We present here new results of a systematic analysis of copy number variation (CNV) in five key members of the chicory (Cichorium intybus) GH32 multigenic family, including three FEH genes and the two inulin biosynthesis genes: 1-SST and 1-FFT. qPCR analysis identified a significant variability of relative copy number only in the 1-FEH IIa gene. However, this CNV had no quantitative effect. Instead, cloning of the full length gDNA of a close paralogous sequence (1-FEH IIb) identified a 1028 bp deletion in lines less susceptible to post-harvest inulin depolymerization. This region comprises a 9 bp mini-exon containing one of the three conserved residues of the active site. This results in a putative non-functional 1-FEH IIb allele and an observed lower inulin depolymerization. Extensive genotyping confirmed that the loss of mini-exon 2 in 1-FEH IIb and the previously identified 47 bp duplication located in the 3'UTR of 1-FEH IIa belong to a single haplotype, both being statistically associated with reduced susceptibility to post-harvest inulin depolymerization. Emergence of these haplotypes is discussed.
Collapse
Affiliation(s)
- Nicolas Dauchot
- Research Unit in Plant Biology, University of NamurNamur, Belgium
- *Correspondence: Nicolas Dauchot, Research Unit in Plant Biology, University of Namur,rue de Bruxelles 61, 5000 Namur, Belgium,
| | - Pierre Raulier
- Earth and Life Institute, Université Catholique de LouvainLouvain-la-Neuve, Belgium
| | | | | | - Xavier Draye
- Earth and Life Institute, Université Catholique de LouvainLouvain-la-Neuve, Belgium
| | | |
Collapse
|
30
|
van Arkel J, Sévenier R, Hakkert J, Bouwmeester H, Koops A, van der Meer I. Fructan Biosynthesis Regulation and the Production of Tailor-Made Fructan in Plants. POLYSACCHARIDES 2014. [DOI: 10.1201/b17121-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
31
|
Dauchot N, Raulier P, Maudoux O, Notté C, Bertin P, Draye X, Van Cutsem P. Mutations in chicory FEH genes are statistically associated with enhanced resistance to post-harvest inulin depolymerization. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:125-35. [PMID: 24129393 DOI: 10.1007/s00122-013-2206-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 10/03/2013] [Indexed: 05/05/2023]
Abstract
KEY MESSAGE Nucleotidic polymorphisms were identified in fructan exohydrolases genes which are statistically associated with enhanced susceptibility to post-harvest inulin depolymerization. Industrial chicory (Cichorium intybus L.) root is the main commercial source of inulin, a linear fructose polymer used as dietary fiber. Post-harvest, inulin is depolymerized into fructose which drastically increases processing cost. To identify genetic variations associated with enhanced susceptibility to post-harvest inulin depolymerization and related free sugars content increase, we used a candidate-gene approach focused on inulin and sucrose synthesis and degradation genes, all members of the family 32 of glycoside hydrolases (GH32). Polymorphism in these genes was first investigated by carrying out EcoTILLING on two groups of chicory breeding lines exhibiting contrasted response to post-harvest inulin depolymerization. This allowed the identification of polymorphisms significantly associated with depolymerization in three fructan exohydrolase genes (FEH). This association was confirmed on a wider panel of 116 unrelated families in which the FEH polymorphism explained 35 % of the post-harvest variance for inulin content, 36 % of variance for sucrose content, 18 % for inulin degree of polymerization, 23 % for free fructose content and 22 % for free glucose content. These polymorphisms were associated with significant post-harvest changes of inulin content, inulin chain length and free sugars content.
Collapse
Affiliation(s)
- Nicolas Dauchot
- Research Unit in Plant Biology, University of Namur, 61 rue de Bruxelles, 5000, Namur, Belgium,
| | | | | | | | | | | | | |
Collapse
|
32
|
Street RA, Sidana J, Prinsloo G. Cichorium intybus: Traditional Uses, Phytochemistry, Pharmacology, and Toxicology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2013; 2013:579319. [PMID: 24379887 PMCID: PMC3860133 DOI: 10.1155/2013/579319] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 10/22/2013] [Accepted: 10/22/2013] [Indexed: 12/15/2022]
Abstract
The genus Cichorium (Asteraceae) is made up of six species with major geographical presence in Europe and Asia. Cichorium intybus, commonly known as chicory, is well known as a coffee substitute but is also widely used medicinally to treat various ailments ranging from wounds to diabetes. Although this plant has a rich history of use in folklore, many of its constituents have not been explored for their pharmacological potential. Toxicological data on C. intybus is currently limited. This review focuses on the economic and culturally important medicinal uses of C. intybus. Traditional uses, scientific validation, and phytochemical composition are discussed in detail.
Collapse
Affiliation(s)
- Renée A. Street
- Medical Research Council, HIV Prevention Research Unit, Westville, Durban 4041, South Africa
| | - Jasmeen Sidana
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road (NH-1), Phagwara, Punjab 144411, India
| | - Gerhard Prinsloo
- Department of Agriculture and Animal health, University of South Africa (UNISA), Florida Campus, Florida 1710, South Africa
| |
Collapse
|
33
|
Corradini C, Lantano C, Cavazza A. Innovative analytical tools to characterize prebiotic carbohydrates of functional food interest. Anal Bioanal Chem 2013; 405:4591-605. [PMID: 23420135 DOI: 10.1007/s00216-013-6731-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 12/21/2012] [Accepted: 01/11/2013] [Indexed: 12/27/2022]
Abstract
Functional foods are one of the most interesting areas of research and innovation in the food industry. A functional food or functional ingredient is considered to be any food or food component that provides health benefits beyond basic nutrition. Recently, consumers have shown interest in natural bioactive compounds as functional ingredients in the diet owing to their various beneficial effects for health. Water-soluble fibers and nondigestible oligosaccharides and polysaccharides can be defined as functional food ingredients. Fructooligosaccharides (FOS) and inulin are resistant to direct metabolism by the host and reach the caecocolon, where they are used by selected groups of beneficial bacteria. Furthermore, they are able to improve physical and structural properties of food, such as hydration, oil-holding capacity, viscosity, texture, sensory characteristics, and shelf-life. This article reviews major innovative analytical developments to screen and identify FOS, inulins, and the most employed nonstarch carbohydrates added or naturally present in functional food formulations. High-performance anion-exchange chromatography with pulsed electrochemical detection (HPAEC-PED) is one of the most employed analytical techniques for the characterization of those molecules. Mass spectrometry is also of great help, in particularly matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS), which is able to provide extensive information regarding the molecular weight and length profiles of oligosaccharides and polysaccharides. Moreover, MALDI-TOF-MS in combination with HPAEC-PED has been shown to be of great value for the complementary information it can provide. Some other techniques, such as NMR spectroscopy, are also discussed, with relevant examples of recent applications. A number of articles have appeared in the literature in recent years regarding the analysis of inulin, FOS, and other carbohydrates of interest in the field and they are critically reviewed.
Collapse
|