1
|
Tuong HM, Méndez SG, Vandecasteele M, Willems A, Iancheva A, Ngoc PB, Phat DT, Ha CH, Goormachtig S. A novel Microbacterium strain SRS2 promotes the growth of Arabidopsis and MicroTom (S. lycopersicum) under normal and salt stress conditions. PLANTA 2024; 260:79. [PMID: 39182196 DOI: 10.1007/s00425-024-04510-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/14/2024] [Indexed: 08/27/2024]
Abstract
MAIN CONCLUSION Microbacterium strain SRS2 promotes growth and induces salt stress resistance in Arabidopsis and MicroTom in various growth substrates via the induction of the ABA pathway. Soil salinity reduces plant growth and development and thereby decreases the value and productivity of soils. Plant growth-promoting rhizobacteria (PGPR) have been shown to support plant growth such as in salt stress conditions. Here, Microbacterium strain SRS2, isolated from the root endosphere of tomato, was tested for its capability to help plants cope with salt stress. In a salt tolerance assay, SRS2 grew well up to medium levels of NaCl, but the growth was inhibited at high salt concentrations. SRS2 inoculation led to increased biomass of Arabidopsis and MicroTom tomato in various growth substrates, in the presence and in the absence of high NaCl concentrations. Whole-genome analysis revealed that the strain contains several genes involved in osmoregulation and reactive oxygen species (ROS) scavenging, which could potentially explain the observed growth promotion. Additionally, we also investigated via qRT-PCR, promoter::GUS and mutant analyses whether the abscisic acid (ABA)-dependent or -independent pathways for tolerance against salt stress were involved in the model plant, Arabidopsis. Especially in salt stress conditions, the plant growth-promotion effect of SRS2 was lost in aba1, abi4-102, abi3, and abi5-1 mutant lines. Furthermore, ABA genes related to salt stress in SRS2-inoculated plants were transiently upregulated compared to mock under salt stress conditions. Additionally, SRS2-inoculated ABI4::GUS and ABI5::GUS plants were slightly more activated compared to the uninoculated control under salt stress conditions. Together, these assays show that SRS2 promotes growth in normal and in salt stress conditions, the latter possibly via the induction of ABA-dependent and -independent pathways.
Collapse
Affiliation(s)
- Ho Manh Tuong
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, CauGiay, Hanoi, 100000, Vietnam
| | - Sonia García Méndez
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium
- Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, 9000, Ghent, Belgium
| | - Michiel Vandecasteele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium
| | - Anne Willems
- Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, 9000, Ghent, Belgium
| | - Anelia Iancheva
- AgroBioInstitute, Agricultural Academy, 1164, Sofia, Bulgaria
| | - Pham Bich Ngoc
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, CauGiay, Hanoi, 100000, Vietnam
| | - Do Tien Phat
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, CauGiay, Hanoi, 100000, Vietnam
| | - Chu Hoang Ha
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, CauGiay, Hanoi, 100000, Vietnam
| | - Sofie Goormachtig
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium.
- Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium.
| |
Collapse
|
2
|
Tan X, Long W, Ma N, Sang S, Cai S. Transcriptome analysis suggested that lncRNAs regulate rapeseed seedlings in responding to drought stress by coordinating the phytohormone signal transduction pathways. BMC Genomics 2024; 25:704. [PMID: 39030492 PMCID: PMC11264961 DOI: 10.1186/s12864-024-10624-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 07/15/2024] [Indexed: 07/21/2024] Open
Abstract
The growth, yield, and seed quality of rapeseed are negatively affected by drought stress. Therefore, it is of great value to understand the molecular mechanism behind this phenomenon. In a previous study, long non-coding RNAs (lncRNAs) were found to play a key role in the response of rapeseed seedlings to drought stress. However, many questions remained unanswered. This study was the first to investigate the expression profile of lncRNAs not only under control and drought treatment, but also under the rehydration treatment. A total of 381 differentially expressed lncRNA and 10,253 differentially expressed mRNAs were identified in the comparison between drought stress and control condition. In the transition from drought stress to rehydration, 477 differentially expressed lncRNAs and 12,543 differentially expressed mRNAs were detected. After identifying the differentially expressed (DE) lncRNAs, the comprehensive lncRNAs-engaged network with the co-expressed mRNAs in leaves under control, drought and rehydration was investigated. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of co-expressed mRNAs identified the most significant pathways related with plant hormones (expecially abscisic acid, auxin, cytokinins, and gibberellins) in the signal transduction. The genes, co-expressed with the most-enriched DE-lncRNAs, were considered as the most effective candidates in the water-loss and water-recovery processes, including protein phosphatase 2 C (PP2C), ABRE-binding factors (ABFs), and SMALL AUXIN UP-REGULATED RNAs (SAURs). In summary, these analyses clearly demonstrated that DE-lncRNAs can act as a regulatory hub in plant-water interaction by controlling phytohormone signaling pathways and provided an alternative way to explore the complex mechanisms of drought tolerance in rapeseed.
Collapse
Affiliation(s)
- Xiaoyu Tan
- School of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Zhenjiang, China
| | - Weihua Long
- School of Rural Revitalization, Jiangsu Open University, Nanjing, China.
| | - Ni Ma
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oilcrops Research Institute of the Chinese Academy of Agricultural, Wuhan, China
| | - Shifei Sang
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Shanya Cai
- School of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Zhenjiang, China
| |
Collapse
|
3
|
Sharma A, Dheer P, Rautela I, Thapliyal P, Thapliyal P, Bajpai AB, Sharma MD. A review on strategies for crop improvement against drought stress through molecular insights. 3 Biotech 2024; 14:173. [PMID: 38846012 PMCID: PMC11150236 DOI: 10.1007/s13205-024-04020-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/27/2024] [Indexed: 06/09/2024] Open
Abstract
The demand for food goods is rising along with the world population growth, which is directly related to the yield of agricultural crops around the world. However, a number of environmental factors, including floods, salinity, moisture, and drought, have a detrimental effect on agricultural production around the world. Among all of these stresses, drought stress (DS) poses a constant threat to agricultural crops and is a significant impediment to global agricultural productivity. Its potency and severity are expected to increase in the future years. A variety of techniques have been used to generate drought-resistant plants in order to get around this restriction. Different crop plants exhibit specific traits that contribute to drought resistance (DR), such as early flowering, drought escape (DE), and leaf traits. We are highlighting numerous methods that can be used to overcome the effects of DS in this review. Agronomic methods, transgenic methods, the use of sufficient fertilizers, and molecular methods such as clustered regularly interspaced short palindromic repeats (CRISPRs)-associated nuclease 9 (Cas9), virus-induced gene silencing (VIGS), quantitative trait loci (QTL) mapping, microRNA (miRNA) technology, and OMICS-based approaches make up the majority of these techniques. CRISPR technology has rapidly become an increasingly popular choice among researchers exploring natural tolerance to abiotic stresses although, only a few plants have been produced so far using this technique. In order to address the difficulties imposed by DS, new plants utilizing the CRISPR technology must be developed.
Collapse
Affiliation(s)
- Aditi Sharma
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, Uttarakhand 248001 India
| | - Pallavi Dheer
- Department of Biotechnology, School of Basic and Applied Sciences, Shri Guru Ram Rai University, Patel Nagar, Dehradun, Uttarakhand 248001 India
| | - Indra Rautela
- Department of Biotechnology, School of Applied and Life Sciences (SALS), Uttaranchal University, Dehradun, Uttarakhand 248001 India
| | - Preeti Thapliyal
- Department of Biotechnology, School of Applied and Life Sciences (SALS), Uttaranchal University, Dehradun, Uttarakhand 248001 India
| | - Priya Thapliyal
- Department of Biochemistry, H.N.B. Garhwal (A Central) University, Srinagar, Uttarakhand 246174 India
| | - Atal Bihari Bajpai
- Department of Botany, D.B.S. (PG) College, Dehradun, Uttarakhand 248001 India
| | - Manish Dev Sharma
- Department of Biotechnology, School of Basic and Applied Sciences, Shri Guru Ram Rai University, Patel Nagar, Dehradun, Uttarakhand 248001 India
| |
Collapse
|
4
|
Abulfaraj AA, Alshareef SA. Concordant Gene Expression and Alternative Splicing Regulation under Abiotic Stresses in Arabidopsis. Genes (Basel) 2024; 15:675. [PMID: 38927612 PMCID: PMC11202685 DOI: 10.3390/genes15060675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
The current investigation endeavors to identify differentially expressed alternatively spliced (DAS) genes that exhibit concordant expression with splicing factors (SFs) under diverse multifactorial abiotic stress combinations in Arabidopsis seedlings. SFs serve as the post-transcriptional mechanism governing the spatiotemporal dynamics of gene expression. The different stresses encompass variations in salt concentration, heat, intensive light, and their combinations. Clusters demonstrating consistent expression profiles were surveyed to pinpoint DAS/SF gene pairs exhibiting concordant expression. Through rigorous selection criteria, which incorporate alignment with documented gene functionalities and expression patterns observed in this study, four members of the serine/arginine-rich (SR) gene family were delineated as SFs concordantly expressed with six DAS genes. These regulated SF genes encompass cactin, SR1-like, SR30, and SC35-like. The identified concordantly expressed DAS genes encode diverse proteins such as the 26.5 kDa heat shock protein, chaperone protein DnaJ, potassium channel GORK, calcium-binding EF hand family protein, DEAD-box RNA helicase, and 1-aminocyclopropane-1-carboxylate synthase 6. Among the concordantly expressed DAS/SF gene pairs, SR30/DEAD-box RNA helicase, and SC35-like/1-aminocyclopropane-1-carboxylate synthase 6 emerge as promising candidates, necessitating further examinations to ascertain whether these SFs orchestrate splicing of the respective DAS genes. This study contributes to a deeper comprehension of the varied responses of the splicing machinery to abiotic stresses. Leveraging these DAS/SF associations shows promise for elucidating avenues for augmenting breeding programs aimed at fortifying cultivated plants against heat and intensive light stresses.
Collapse
Affiliation(s)
- Aala A. Abulfaraj
- Biological Sciences Department, College of Science & Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| | - Sahar A. Alshareef
- Department of Biology, College of Science and Arts at Khulis, University of Jeddah, Jeddah 21921, Saudi Arabia;
| |
Collapse
|
5
|
Inazu M, Nemoto T, Omata Y, Suzuki S, Ono S, Kanno Y, Seo M, Oikawa A, Masuda S. Complete Loss of RelA and SpoT Homologs in Arabidopsis Reveals the Importance of the Plastidial Stringent Response in the Interplay between Chloroplast Metabolism and Plant Defense Response. PLANT & CELL PHYSIOLOGY 2024; 65:631-643. [PMID: 37925598 DOI: 10.1093/pcp/pcad136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/23/2023] [Accepted: 10/30/2023] [Indexed: 11/06/2023]
Abstract
The highly phosphorylated nucleotide, guanosine tetraphosphate (ppGpp), functions as a secondary messenger in bacteria and chloroplasts. The accumulation of ppGpp alters plastidial gene expression and metabolism, which are required for proper photosynthetic regulation and robust plant growth. However, because four plastid-localized ppGpp synthases/hydrolases function redundantly, the impact of the loss of ppGpp-dependent stringent response on plant physiology remains unclear. We used CRISPR/Cas9 technology to generate an Arabidopsis thaliana mutant lacking all four ppGpp synthases/hydrolases and characterized its phenotype. The mutant showed over 20-fold less ppGpp levels than the wild type under normal growth conditions and exhibited leaf chlorosis and increased expression of defense-related genes as well as salicylic acid and jasmonate levels upon transition to nitrogen-starvation conditions. These results demonstrate that proper levels of ppGpp in plastids are required for controlling not only plastid metabolism but also phytohormone signaling, which is essential for plant defense.
Collapse
Affiliation(s)
- Masataka Inazu
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| | - Takanari Nemoto
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| | - Yuto Omata
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| | - Sae Suzuki
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| | - Sumire Ono
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| | - Yuri Kanno
- RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045 Japan
| | - Mitsunori Seo
- RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045 Japan
| | - Akira Oikawa
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502 Japan
| | - Shinji Masuda
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| |
Collapse
|
6
|
Ji X, Tang J, Zheng X, Li A, Zhang J. The regulating mechanism of salt tolerance of black walnut seedlings was revealed by the physiological and biochemical integration analysis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108548. [PMID: 38552263 DOI: 10.1016/j.plaphy.2024.108548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 05/12/2024]
Abstract
Salt stress is an important abiotic stress that seriously affects plant growth. In order to research the salt tolerance of walnut rootstocks so as to provide scientific basis for screening salt-tolerant walnut rootstocks, two kinds of black walnut seedlings, Juglans microcarpa L. (JM) and Juglans nigra L. (JN), were treated under salt stress with different concentrations of NaCl (0, 50, 100, and 200 mM) and the growth situation of seedlings were observed. The physiological indexes of JM and JN seedlings were also measured in different days after treatment. Our study showed salt stress inhibited seedlings growth and limited biomass accumulation. Walnut mainly increased osmotic adjustment ability by accumulation Pro and SS. Furthermore, with the duration of treatment time increased, SOD and APX activities decreased, TPC and TFC contents increased. Walnut accumulated Na mostly in roots and transported more K and Ca to aboveground parts. The growth and physiological response performance differed between JM and JN, specifically, the differences occurred in the ability to absorb minerals, regulate osmotic stress, and scavenge ROS. Salt tolerance of JM and JN was assessed by principal component analysis (PCA) and resulted in JN > JM. In conclusion, our results indicated that JN has higher salt tolerance than JM, and JN might be used as a potential germplasm resource for the genetic breeding of walnuts.
Collapse
Affiliation(s)
- Xinying Ji
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Jiali Tang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Xu Zheng
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Ao Li
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Junpei Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China.
| |
Collapse
|
7
|
Tang Q, Wang X, Ma S, Fan S, Chi F, Song Y. Molecular mechanism of abscisic acid signaling response factor VcbZIP55 to promote anthocyanin biosynthesis in blueberry (Vaccinium corymbosum). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108611. [PMID: 38615439 DOI: 10.1016/j.plaphy.2024.108611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/16/2024]
Abstract
A high content of anthocyanin in blueberry (Vaccinium corymbosum) is an important indicator to evaluate fruit quality. Abscisic acid (ABA) can promote anthocyanin biosynthesis, but since the molecular mechanism is unclear, clarifying the mechanism will improve for blueberry breeding and cultivation regulation. VcbZIP55 regulating anthocyanin synthesis in blueberry were screened and mined using the published Isoform-sequencing, RNA-Seq and qRT-PCR at different fruit developmental stages. Blueberry genetic transformation and transgenic experiments confirmed that VcbZIP55 could promote anthocyanin biosynthesis in blueberry adventitious buds, tobacco leaves, blueberry leaves and blueberry fruit. VcbZIP55 responded to ABA signals and its expression was upregulated in blueberry fruit. In addition, using VcbZIP55 for Yeast one hybrid assay (Y1H) and transient expression in tobacco leaves demonstrated an interaction between VcbZIP55 and a G-Box motif on the VcMYB1 promoter to activate the expression of VcMYB1. This study will lay the theoretical foundation for the molecular mechanisms of phytohormone regulation responsible for anthocyanin synthesis and provide theoretical support for blueberry quality improvement.
Collapse
Affiliation(s)
- Qi Tang
- Research Institute of Pomology of CAAS, Key Laboratory of Horticultural Crops Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Xingcheng, Liaoning, 125100, China.
| | - Xuan Wang
- Research Institute of Pomology of CAAS, Key Laboratory of Horticultural Crops Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Xingcheng, Liaoning, 125100, China.
| | - Shurui Ma
- Research Institute of Pomology of CAAS, Key Laboratory of Horticultural Crops Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Xingcheng, Liaoning, 125100, China.
| | - Shutian Fan
- Institute of Special Animal and Plant Sciences CAAS, Jilin Changchun, 130122, China.
| | - Fumei Chi
- Research Institute of Pomology of CAAS, Key Laboratory of Horticultural Crops Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Xingcheng, Liaoning, 125100, China.
| | - Yang Song
- Research Institute of Pomology of CAAS, Key Laboratory of Horticultural Crops Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Xingcheng, Liaoning, 125100, China.
| |
Collapse
|
8
|
Muthego D, Moloi SJ, Brown AP, Goche T, Chivasa S, Ngara R. Exogenous abscisic acid treatment regulates protein secretion in sorghum cell suspension cultures. PLANT SIGNALING & BEHAVIOR 2023; 18:2291618. [PMID: 38100609 PMCID: PMC10730228 DOI: 10.1080/15592324.2023.2291618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/28/2023] [Indexed: 12/17/2023]
Abstract
Drought stress adversely affects plant growth, often leading to total crop failure. Upon sensing soil water deficits, plants switch on biosynthesis of abscisic acid (ABA), a stress hormone for drought adaptation. Here, we used exogenous ABA application to dark-grown sorghum cell suspension cultures as an experimental system to understand how a drought-tolerant crop responds to ABA. We evaluated intracellular and secreted proteins using isobaric tags for relative and absolute quantification. While the abundance of only ~ 7% (46 proteins) intracellular proteins changed in response to ABA, ~32% (82 proteins) of secreted proteins identified in this study were ABA responsive. This shows that the extracellular matrix is disproportionately targeted and suggests it plays a vital role in sorghum adaptation to drought. Extracellular proteins responsive to ABA were predominantly defense/detoxification and cell wall-modifying enzymes. We confirmed that sorghum plants exposed to drought stress activate genes encoding the same proteins identified in the in vitro cell culture system with ABA. Our results suggest that ABA activates defense and cell wall remodeling systems during stress response. This could underpin the success of sorghum adaptation to drought stress.
Collapse
Affiliation(s)
- Dakalo Muthego
- Department of Plant Sciences, University of the Free State, Phuthaditjhaba, South Africa
| | - Sellwane J. Moloi
- Department of Plant Sciences, University of the Free State, Phuthaditjhaba, South Africa
| | | | - Tatenda Goche
- Department of Biosciences, Durham University, Durham, UK
- Department of Crop Science, Bindura University of Science Education, Bindura, Zimbabwe
| | | | - Rudo Ngara
- Department of Plant Sciences, University of the Free State, Phuthaditjhaba, South Africa
| |
Collapse
|
9
|
Guo M, Wang S, Liu H, Yao S, Yan J, Wang C, Miao B, Guo J, Ma F, Guan Q, Xu J. Histone deacetylase MdHDA6 is an antagonist in regulation of transcription factor MdTCP15 to promote cold tolerance in apple. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:2254-2272. [PMID: 37475182 PMCID: PMC10579720 DOI: 10.1111/pbi.14128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/20/2023] [Accepted: 07/07/2023] [Indexed: 07/22/2023]
Abstract
Understanding the molecular regulation of plant cold response is the basis for cold resistance germplasm improvement. Here, we revealed that the apple histone deacetylase MdHDA6 can perform histone deacetylation on cold-negative regulator genes and repress their expression, leading to the positive regulation of cold tolerance in apples. Moreover, MdHDA6 directly interacts with the transcription factor MdTCP15. Phenotypic analysis of MdTCP15 transgenic apple lines and wild types reveals that MdTCP15 negatively regulates cold tolerance in apples. Furthermore, we found that MdHDA6 can facilitate histone deacetylation of MdTCP15 and repress the expression of MdTCP15, which positively contributes to cold tolerance in apples. Additionally, the transcription factor MdTCP15 can directly bind to the promoter of the cold-negative regulator gene MdABI1 and activate its expression, and it can also directly bind to the promoter of the cold-positive regulator gene MdCOR47 and repress its expression. However, the co-expression of MdHDA6 and MdTCP15 can inhibit MdTCP15-induced activation of MdABI1 and repression of MdCOR47, suggesting that MdHDA6 suppresses the transcriptional regulation of MdTCP15 on its downstream genes. Our results demonstrate that histone deacetylase MdHDA6 plays an antagonistic role in the regulation of MdTCP15-induced transcriptional activation or repression to positively regulate cold tolerance in apples, revealing a new regulatory mechanism of plant cold response.
Collapse
Affiliation(s)
- Meimiao Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingChina
| | - Shicong Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingChina
| | - Han Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingChina
| | - Senyang Yao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingChina
| | - Jinjiao Yan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingChina
- College of HorticultureNorthwest A&F UniversityYanglingChina
| | - Caixia Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingChina
| | - Bingjie Miao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingChina
| | - Junxing Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingChina
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingChina
| | - Qingmei Guan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingChina
| | - Jidi Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingChina
| |
Collapse
|
10
|
Chieb M, Gachomo EW. The role of plant growth promoting rhizobacteria in plant drought stress responses. BMC PLANT BIOLOGY 2023; 23:407. [PMID: 37626328 PMCID: PMC10464363 DOI: 10.1186/s12870-023-04403-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 08/07/2023] [Indexed: 08/27/2023]
Abstract
Climate change has exacerbated the effects of abiotic stresses on plant growth and productivity. Drought is one of the most important abiotic stress factors that interfere with plant growth and development. Plant selection and breeding as well as genetic engineering methods used to improve crop drought tolerance are expensive and time consuming. Plants use a myriad of adaptative mechanisms to cope with the adverse effects of drought stress including the association with beneficial microorganisms such as plant growth promoting rhizobacteria (PGPR). Inoculation of plant roots with different PGPR species has been shown to promote drought tolerance through a variety of interconnected physiological, biochemical, molecular, nutritional, metabolic, and cellular processes, which include enhanced plant growth, root elongation, phytohormone production or inhibition, and production of volatile organic compounds. Therefore, plant colonization by PGPR is an eco-friendly agricultural method to improve plant growth and productivity. Notably, the processes regulated and enhanced by PGPR can promote plant growth as well as enhance drought tolerance. This review addresses the current knowledge on how drought stress affects plant growth and development and describes how PGPR can trigger plant drought stress responses at the physiological, morphological, and molecular levels.
Collapse
Affiliation(s)
- Maha Chieb
- Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, CA, 92507, USA
| | - Emma W Gachomo
- Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, CA, 92507, USA.
| |
Collapse
|
11
|
Du F, Wang Y, Wang J, Li Y, Zhang Y, Zhao X, Xu J, Li Z, Zhao T, Wang W, Fu B. The basic helix-loop-helix transcription factor gene, OsbHLH38, plays a key role in controlling rice salt tolerance. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:1859-1873. [PMID: 36988217 DOI: 10.1111/jipb.13489] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/27/2023] [Indexed: 05/11/2023]
Abstract
The plant hormone abscisic acid (ABA) is crucial for plant seed germination and abiotic stress tolerance. However, the association between ABA sensitivity and plant abiotic stress tolerance remains largely unknown. In this study, 436 rice accessions were assessed for their sensitivity to ABA during seed germination. The considerable diversity in ABA sensitivity among rice germplasm accessions was primarily reflected by the differentiation between the Xian (indica) and Geng (japonica) subspecies and between the upland-Geng and lowland-Geng ecotypes. The upland-Geng accessions were most sensitive to ABA. Genome-wide association analyses identified four major quantitative trait loci containing 21 candidate genes associated with ABA sensitivity of which a basic helix-loop-helix transcription factor gene, OsbHLH38, was the most important for ABA sensitivity. Comprehensive functional analyses using knockout and overexpression transgenic lines revealed that OsbHLH38 expression was responsive to multiple abiotic stresses. Overexpression of OsbHLH38 increased seedling salt tolerance, while knockout of OsbHLH38 increased sensitivity to salt stress. A salt-responsive transcription factor, OsDREB2A, interacted with OsbHLH38 and was directly regulated by OsbHLH38. Moreover, OsbHLH38 affected rice abiotic stress tolerance by mediating the expression of a large set of transporter genes of phytohormones, transcription factor genes, and many downstream genes with diverse functions, including photosynthesis, redox homeostasis, and abiotic stress responsiveness. These results demonstrated that OsbHLH38 is a key regulator in plant abiotic stress tolerance.
Collapse
Affiliation(s)
- Fengping Du
- Institute of Crop Sciences/State Key Laboratory of Crop Gene Resources and Breeding, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Yinxiao Wang
- Institute of Crop Sciences/State Key Laboratory of Crop Gene Resources and Breeding, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Juan Wang
- Institute of Crop Sciences/State Key Laboratory of Crop Gene Resources and Breeding, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yingbo Li
- Institute of Crop Sciences/State Key Laboratory of Crop Gene Resources and Breeding, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yue Zhang
- Institute of Crop Sciences/State Key Laboratory of Crop Gene Resources and Breeding, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiuqin Zhao
- Institute of Crop Sciences/State Key Laboratory of Crop Gene Resources and Breeding, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jianlong Xu
- Institute of Crop Sciences/State Key Laboratory of Crop Gene Resources and Breeding, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhikang Li
- Institute of Crop Sciences/State Key Laboratory of Crop Gene Resources and Breeding, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Anhui Agricultural University, Hefei, 230036, China
| | - Tianyong Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Wensheng Wang
- Institute of Crop Sciences/State Key Laboratory of Crop Gene Resources and Breeding, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Anhui Agricultural University, Hefei, 230036, China
- Hainan Yazhou Bay Seed Lab/National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572024, China
| | - Binying Fu
- Institute of Crop Sciences/State Key Laboratory of Crop Gene Resources and Breeding, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
12
|
Yang L, Wang X, Zhao F, Zhang X, Li W, Huang J, Pei X, Ren X, Liu Y, He K, Zhang F, Ma X, Yang D. Roles of S-Adenosylmethionine and Its Derivatives in Salt Tolerance of Cotton. Int J Mol Sci 2023; 24:ijms24119517. [PMID: 37298464 DOI: 10.3390/ijms24119517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/19/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Salinity is a major abiotic stress that restricts cotton growth and affects fiber yield and quality. Although studies on salt tolerance have achieved great progress in cotton since the completion of cotton genome sequencing, knowledge about how cotton copes with salt stress is still scant. S-adenosylmethionine (SAM) plays important roles in many organelles with the help of the SAM transporter, and it is also a synthetic precursor for substances such as ethylene (ET), polyamines (PAs), betaine, and lignin, which often accumulate in plants in response to stresses. This review focused on the biosynthesis and signal transduction pathways of ET and PAs. The current progress of ET and PAs in regulating plant growth and development under salt stress has been summarized. Moreover, we verified the function of a cotton SAM transporter and suggested that it can regulate salt stress response in cotton. At last, an improved regulatory pathway of ET and PAs under salt stress in cotton is proposed for the breeding of salt-tolerant varieties.
Collapse
Affiliation(s)
- Li Yang
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Xingxing Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Western Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Changji 831100, China
| | - Fuyong Zhao
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Xianliang Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Western Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Changji 831100, China
| | - Wei Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Western Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Changji 831100, China
| | - Junsen Huang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xiaoyu Pei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xiang Ren
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Yangai Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Kunlun He
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Fei Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xiongfeng Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Western Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Changji 831100, China
| | - Daigang Yang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| |
Collapse
|
13
|
Pineapple responses to postharvest applications of ABA, chitosan, and decrowning on the severity of internal browning and other fruit qualities. ACTA INNOVATIONS 2023. [DOI: 10.32933/actainnovations.47.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
Abstract
The shelf life of pineapple is significantly influenced by storage temperature and can be prolonged by maintaining an optimal temperature range of 5-12°C. However, there is still the problem of internal browning (IB) in the long-term storing of fresh harvest at cold temperatures. Postharvest application of 380 µM ABA (Abscisic Acid) to the crown, which is a source of ABA endogenous was found to suppress IB, while the concentration of 95 µM was not effective. Therefore, this research aimed to determine the response of GP3 and MD2 clones to postharvest treatment with the application of 50 mg/L ABA, chitosan and decrowning on the IB severity and other fruit qualities. The experimental design used a Completely Randomized Design with 3 factors of clone (GP3 and MD2), decrowning (crown and crownless), and fruit coating [chitosan 1%, ABA 50 mg/L, ABA + chitosan mix, and control (H2O)]. The fruits were kept at 7oC and observed at 0, 3, 6, 9, 16, 23, 30, and 37 days. The results showed that MD2 was significantly lower IB than GP3 and IB severity negatively correlated with ascorbic acid (AsA) content. MD2 had lower fruit weight loss (FWL) and skin dehydration (SD), higher AsA, soluble solid content (SSC), and SSC/titratable acidity (STA) ratios compared to GP3. The crown + ABA treatment decreased the IB severity of GP3, with a level of 0.75% after 37 days which was lower than crown + H2O by 9.17% and crownless + H2O by 8.42%. ABA treatment also showed higher SD and FWL, while AsA, SSC, TA, and STA were not different from the control.
Collapse
|
14
|
Liu Y, Wang J, Liu B, Xu ZY. Dynamic regulation of DNA methylation and histone modifications in response to abiotic stresses in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:2252-2274. [PMID: 36149776 DOI: 10.1111/jipb.13368] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
DNA methylation and histone modification are evolutionarily conserved epigenetic modifications that are crucial for the expression regulation of abiotic stress-responsive genes in plants. Dynamic changes in gene expression levels can result from changes in DNA methylation and histone modifications. In the last two decades, how epigenetic machinery regulates abiotic stress responses in plants has been extensively studied. Here, based on recent publications, we review how DNA methylation and histone modifications impact gene expression regulation in response to abiotic stresses such as drought, abscisic acid, high salt, extreme temperature, nutrient deficiency or toxicity, and ultraviolet B exposure. We also review the roles of epigenetic mechanisms in the formation of transgenerational stress memory. We posit that a better understanding of the epigenetic underpinnings of abiotic stress responses in plants may facilitate the design of more stress-resistant or -resilient crops, which is essential for coping with global warming and extreme environments.
Collapse
Affiliation(s)
- Yutong Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Jie Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Zheng-Yi Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
15
|
Fan X, Li H, Guo Y, Sun H, Wang S, Qi Q, Jiang X, Wang Y, Xu X, Qiu C, Li W, Han Z. Integrated multi-omics analysis uncovers roles of mdm-miR164b-MdORE1 in strigolactone-mediated inhibition of adventitious root formation in apple. PLANT, CELL & ENVIRONMENT 2022; 45:3582-3603. [PMID: 36000454 DOI: 10.1111/pce.14422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/01/2022] [Accepted: 03/22/2022] [Indexed: 06/15/2023]
Abstract
Apple is one of the most important fruit crops in temperate regions and largely relies on cutting propagation. Adventitious root formation is crucial for the success of cutting propagation. Strigolactones have been reported to function in rooting of woody plants. In this study, we determined that strigolactones have inhibitory effects on adventitious root formation in apple. Transcriptome analysis identified 12 051 differentially expressed genes over the course of adventitious root initiation, with functions related to organogenesis, cell wall biogenesis or plant development. Further analysis indicated that strigolactones might inhibit adventitious root formation through repressing two core hub genes, MdLAC3 and MdORE1. Combining small RNA and degradome sequencing, as well as dual-luciferase sensor assays, we identified and validated three negatively correlated miRNA-mRNA pairs, including mdm-miR397-MdLAC3 and mdm-miR164a/b-MdORE1. Overexpression of mdm-miR164b and silencing MdORE1 exhibited enhanced adventitious root formation in tobacco and apple, respectively. Finally, we verified the role of mdm-miR164b-MdORE1 in strigolactone-mediated repression of rooting ability. Overall, the identified comprehensive regulatory network in apple not only provides insight into strigolactone-mediated adventitious root formation in other woody plants, but also points to a potential strategy for genetic improvement of rooting capacity in woody plants.
Collapse
Affiliation(s)
- Xingqiang Fan
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, China
| | - Hui Li
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, China
| | - Yushuang Guo
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, China
| | - Haochen Sun
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, China
| | - Shiyao Wang
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, China
| | - Qi Qi
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, China
- National Engineering Laboratory for Tree Breeding, College of Life Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Xiangning Jiang
- National Engineering Laboratory for Tree Breeding, College of Life Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Yi Wang
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, China
| | - Xuefeng Xu
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, China
| | - Changpeng Qiu
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, China
| | - Wei Li
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, China
| | - Zhenhai Han
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, China
| |
Collapse
|
16
|
Bermejo NF, Munné-Bosch S. Mixing chia seeds and sprouts at different developmental stages: a cost-effective way to improve antioxidant vitamin composition. Food Chem 2022; 405:134880. [DOI: 10.1016/j.foodchem.2022.134880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/24/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
|
17
|
Feng X, Jia L, Cai Y, Guan H, Zheng D, Zhang W, Xiong H, Zhou H, Wen Y, Hu Y, Zhang X, Wang Q, Wu F, Xu J, Lu Y. ABA-inducible DEEPER ROOTING 1 improves adaptation of maize to water deficiency. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:2077-2088. [PMID: 35796628 PMCID: PMC9616520 DOI: 10.1111/pbi.13889] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/31/2022] [Accepted: 07/03/2022] [Indexed: 05/26/2023]
Abstract
Root architecture remodelling is critical for forage moisture in water-limited soil. DEEPER ROOTING 1 (DRO1) in Oryza, Arabidopsis, and Prunus has been reported to improve drought avoidance by promoting roots to grow downward and acquire water from deeper soil. In the present study, we found that ZmDRO1 responded more strongly to abscisic acid (ABA)/drought induction in Zea mays ssp. mexicana, an ancestral species of cultivated maize, than in B73. It was proposed that this is one of the reasons why Zea mays ssp. mexicana has a more noticeable change in the downward direction angle of the root and fewer biomass penalties under water-deficient conditions. Thus, a robust, synthetic ABA/drought-inducible promoter was used to control the expression of ZmDRO1B73 in Arabidopsis and cultivated maize for drought-resistant breeding. Interestingly, ABA-inducible ZmDRO1 promoted a larger downward root angle and improved grain yield by more than 40% under water-limited conditions. Collectively, these results revealed that different responses to ABA/drought induction of ZmDRO1 confer different drought avoidance abilities, and we demonstrated the application of ZmDRO1 via an ABA-inducible strategy to alter the root architecture of modern maize to improve drought adaptation in the field.
Collapse
Affiliation(s)
- Xuanjun Feng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaWenjingChina
- Maize Research Institute, Sichuan Agricultural UniversityWenjingChina
| | - Li Jia
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaWenjingChina
| | - Yunting Cai
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaWenjingChina
| | - Huarui Guan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaWenjingChina
| | - Dan Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaWenjingChina
| | - Weixiao Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaWenjingChina
| | - Hao Xiong
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaWenjingChina
| | - Hanmei Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaWenjingChina
| | - Ying Wen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaWenjingChina
| | - Yue Hu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaWenjingChina
| | - Xuemei Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaWenjingChina
| | - Qingjun Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaWenjingChina
| | - Fengkai Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaWenjingChina
| | - Jie Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaWenjingChina
| | - Yanli Lu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaWenjingChina
- Maize Research Institute, Sichuan Agricultural UniversityWenjingChina
| |
Collapse
|
18
|
Lu C, Tian Y, Hou X, Hou X, Jia Z, Li M, Hao M, Jiang Y, Wang Q, Pu Q, Yin Z, Li Y, Liu B, Kang X, Zhang G, Ding X, Liu Y. Multiple forms of vitamin B 6 regulate salt tolerance by balancing ROS and abscisic acid levels in maize root. STRESS BIOLOGY 2022; 2:39. [PMID: 37676445 PMCID: PMC10441934 DOI: 10.1007/s44154-022-00061-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/22/2022] [Indexed: 09/08/2023]
Abstract
Salt stress causes osmotic stress, ion toxicity and oxidative stress, inducing the accumulation of abscisic acid (ABA) and excessive reactive oxygen species (ROS) production, which further damage cell structure and inhibit the development of roots in plants. Previous study showed that vitamin B6 (VB6) plays a role in plant responses to salt stress, however, the regulatory relationship between ROS, VB6 and ABA under salt stress remains unclear yet in plants. In our study, we found that salt stress-induced ABA accumulation requires ROS production, in addition, salt stress also promoted VB6 (including pyridoxamine (PM), pyridoxal (PL), pyridoxine (PN), and pyridoxal 5'-phosphate (PLP)) accumulation, which involved in ROS scavenging and ABA biosynthesis. Furthermore, VB6-deficient maize mutant small kernel2 (smk2) heterozygous is more susceptible to salt stress, and which failed to scavenge excessive ROS effectively or induce ABA accumulation in maize root under salt stress, interestingly, which can be restored by exogenous PN and PLP, respectively. According to these results, we proposed that PN and PLP play an essential role in balancing ROS and ABA levels under salt stress, respectively, it laid a foundation for VB6 to be better applied in crop salt resistance than ABA.
Collapse
Affiliation(s)
- Chongchong Lu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection; Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Yuan Tian
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection; Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Xuanxuan Hou
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection; Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Xin Hou
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection; Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Zichang Jia
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection; Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Min Li
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection; Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Mingxia Hao
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection; Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Yanke Jiang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection; Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Qingbin Wang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection; Shandong Agricultural University, Taian, 271018, Shandong, China
- Shandong Pengbo Biotechnology Co., LTD, Taian, 271018, China
| | - Qiong Pu
- Shandong Agriculture and Engineering University, Jinan, 250000, Shandong, China
| | - Ziyi Yin
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection; Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Yang Li
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection; Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Baoyou Liu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection; Shandong Agricultural University, Taian, 271018, Shandong, China
- Yantai Academy of Agricultural Sciences, Yantai, 265500, Shandong, China
| | - Xiaojing Kang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection; Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Guangyi Zhang
- Shandong Xinyuan Seed Industry Co., LTD, Taian, 271000, China
| | - Xinhua Ding
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection; Shandong Agricultural University, Taian, 271018, Shandong, China.
| | - Yinggao Liu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection; Shandong Agricultural University, Taian, 271018, Shandong, China.
| |
Collapse
|
19
|
Kumar S, Shah SH, Vimala Y, Jatav HS, Ahmad P, Chen Y, Siddique KHM. Abscisic acid: Metabolism, transport, crosstalk with other plant growth regulators, and its role in heavy metal stress mitigation. FRONTIERS IN PLANT SCIENCE 2022; 13:972856. [PMID: 36186053 PMCID: PMC9515544 DOI: 10.3389/fpls.2022.972856] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 08/17/2022] [Indexed: 05/06/2023]
Abstract
Heavy metal (HM) stress is threatening agricultural crops, ecological systems, and human health worldwide. HM toxicity adversely affects plant growth, physiological processes, and crop productivity by disturbing cellular ionic balance, metabolic balance, cell membrane integrity, and protein and enzyme activities. Plants under HM stress intrinsically develop mechanisms to counter the adversities of HM but not prevent them. However, the exogenous application of abscisic acid (ABA) is a strategy for boosting the tolerance capacity of plants against HM toxicity by improving osmolyte accumulation and antioxidant machinery. ABA is an essential plant growth regulator that modulates various plant growth and metabolic processes, including seed development and germination, vegetative growth, stomatal regulation, flowering, and leaf senescence under diverse environmental conditions. This review summarizes ABA biosynthesis, signaling, transport, and catabolism in plant tissues and the adverse effects of HM stress on crop plants. Moreover, we describe the role of ABA in mitigating HM stress and elucidating the interplay of ABA with other plant growth regulators.
Collapse
Affiliation(s)
- Sandeep Kumar
- Plant Physiology and Tissue Culture Laboratory, Department of Botany, Chaudhary Charan Singh University, Meerut, India
| | - Sajad Hussain Shah
- Plant Physiology and Tissue Culture Laboratory, Department of Botany, Chaudhary Charan Singh University, Meerut, India
| | - Yerramilli Vimala
- Plant Physiology and Tissue Culture Laboratory, Department of Botany, Chaudhary Charan Singh University, Meerut, India
| | - Hanuman Singh Jatav
- Soil Science and Agricultural Chemistry, Sri Karan Narendra Agriculture University Jobner, Jaipur, India
| | - Parvaiz Ahmad
- Department of Botany, GDC Pulwama, Jammu and Kashmir, India
| | - Yinglong Chen
- The UWA Institute of Agriculture and School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| | - Kadambot H. M. Siddique
- The UWA Institute of Agriculture and School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
20
|
Xu Z, Wang F, Ma Y, Dang H, Hu X. Transcription Factor SlAREB1 Is Involved in the Antioxidant Regulation under Saline–Alkaline Stress in Tomato. Antioxidants (Basel) 2022; 11:antiox11091673. [PMID: 36139748 PMCID: PMC9495317 DOI: 10.3390/antiox11091673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 12/05/2022] Open
Abstract
Basic leucine zipper (bZIP) transcription factors of the ABA-responsive element binding factor/ABA-responsive element binding proteins (ABF/AREB) subfamily have been implicated in abscisic acid (ABA) and abiotic stress responses in plants. However, the specific function of ABF/AREB transcription factors under saline–alkaline stress is unclear. Here, we identified four ABF/AREB transcription factors in tomato and found that SlAREB1 strongly responded to both ABA and saline–alkaline stress. To further explore the function of SlAREB1 under saline–alkaline stress, SlAREB1-overexpressing lines were constructed. Compared with wild-type plants, SlAREB1-overexpressing transgenic tomato plants showed reduced malondialdehyde content, increased the relative water content, and alleviated the degradation of chlorophyll under saline–alkaline stress. Importantly, SlAREB1 directly physically interacted with SlMn-SOD, which improved the activity of antioxidant enzymes and increased the scavenging of excess reactive oxygen species. Overall, the overexpression of SlAREB1 increased the antioxidant capacity of the transgenic tomato under saline–alkaline stress.
Collapse
Affiliation(s)
- Zijian Xu
- College of Horticulture, Northwest AF University, Xianyang 712100, China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Xianyang 712100, China
- Shaanxi Protected Agriculture Research Centre, Xianyang 712100, China
| | - Fan Wang
- College of Horticulture, Northwest AF University, Xianyang 712100, China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Xianyang 712100, China
- Shaanxi Protected Agriculture Research Centre, Xianyang 712100, China
| | - Yongbo Ma
- College of Horticulture, Northwest AF University, Xianyang 712100, China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Xianyang 712100, China
- Shaanxi Protected Agriculture Research Centre, Xianyang 712100, China
| | - Haoran Dang
- College of Horticulture, Northwest AF University, Xianyang 712100, China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Xianyang 712100, China
- Shaanxi Protected Agriculture Research Centre, Xianyang 712100, China
| | - Xiaohui Hu
- College of Horticulture, Northwest AF University, Xianyang 712100, China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Xianyang 712100, China
- Shaanxi Protected Agriculture Research Centre, Xianyang 712100, China
- Correspondence:
| |
Collapse
|
21
|
Ethylene Signaling under Stressful Environments: Analyzing Collaborative Knowledge. PLANTS 2022; 11:plants11172211. [PMID: 36079592 PMCID: PMC9460115 DOI: 10.3390/plants11172211] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/26/2022]
Abstract
Ethylene is a gaseous plant growth hormone that regulates various plant developmental processes, ranging from seed germination to senescence. The mechanisms underlying ethylene biosynthesis and signaling involve multistep mechanisms representing different control levels to regulate its production and response. Ethylene is an established phytohormone that displays various signaling processes under environmental stress in plants. Such environmental stresses trigger ethylene biosynthesis/action, which influences the growth and development of plants and opens new windows for future crop improvement. This review summarizes the current understanding of how environmental stress influences plants’ ethylene biosynthesis, signaling, and response. The review focuses on (a) ethylene biosynthesis and signaling in plants, (b) the influence of environmental stress on ethylene biosynthesis, (c) regulation of ethylene signaling for stress acclimation, (d) potential mechanisms underlying the ethylene-mediated stress tolerance in plants, and (e) summarizing ethylene formation under stress and its mechanism of action.
Collapse
|
22
|
Yang Y, Wassie M, Liu NF, Deng H, Zeng YB, Xu Q, Hu LX. Genotypic-specific hormonal reprogramming and crosstalk are crucial for root growth and salt tolerance in bermudagrass ( Cynodon dactylon). FRONTIERS IN PLANT SCIENCE 2022; 13:956410. [PMID: 35991415 PMCID: PMC9386360 DOI: 10.3389/fpls.2022.956410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Salt stress is one of the major abiotic factors limiting the productivity of bermudagrass (Cynodon dactylon). However, the role of hormonal reprogramming and crosstalk in regulating root growth and salt tolerance in bermudagrass was not reported. Here, we examined the physiological and hormonal responses of two contrasting bermudagrass genotypes; 'C43,' salt-tolerant 'C198' salt-sensitive. Under salt stress, 'C43' had better membrane stability and higher photosynthetic activity than the 'C198.' Salt stress promoted root growth and improved root/shoot ratio and root activity in 'C43,' but the root growth of 'C198' was inhibited by salt stress, leading to diminished root activity. The two bermudagrass genotypes also showed critical differences in hormonal responses, especially in the roots. The root contents of indole-3-acetic acid (IAA), cytokinin derivatives, such as trans-zeatin riboside (tZR) and dihydrozeatin riboside (DHZR) were increased in 'C43,' but decreased in 'C198' when exposed to salt stress. The root growth rate was positively correlated with the root IAA, tZR and DHZR, indicating their crucial role in root growth under salt stress. The expressions of TAA/YUCCA and CYP735A involved in IAA and tZR biosynthesis were induced by salt stress in 'C43,' but inhibited in 'C198,' leading to reduced hormone accumulations. Salt stress decreased the iP, tZ, and DHZ content in the roots of both genotypes, and no significant difference was observed between the two genotypes. Salt stress reduced the content of GA3 in both genotypes by inhibiting GA20ox and GA2ox genes, which could be attributed to the reduced shoot growth in both genotypes. The increased ABA level by salt stress was significantly higher in 'C198' than 'C43.' Furthermore, there were positive and negative correlations between different hormones and root growth, suggesting that root growth could be regulated by complex hormonal reprogramming and crosstalk. This study provides a foundation for understanding the underlying mechanisms of hormonal-mediated root growth and salt tolerance in bermudagrass.
Collapse
Affiliation(s)
- Yong Yang
- College of Physical Education, Changsha University, Changsha, China
- Department of Pratacultural Sciences, College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Misganaw Wassie
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Ning-fang Liu
- Department of Pratacultural Sciences, College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Hui Deng
- College of Physical Education, Changsha University, Changsha, China
| | - Yi-bing Zeng
- College of Physical Education, Changsha University, Changsha, China
| | - Qian Xu
- Department of Pratacultural Sciences, College of Agronomy, Hunan Agricultural University, Changsha, China
- Grassland Research Center of Hunan Province, Changsha, China
| | - Long-xing Hu
- Department of Pratacultural Sciences, College of Agronomy, Hunan Agricultural University, Changsha, China
- Grassland Research Center of Hunan Province, Changsha, China
| |
Collapse
|
23
|
Ali S, Khan N, Tang Y. Epigenetic marks for mitigating abiotic stresses in plants. JOURNAL OF PLANT PHYSIOLOGY 2022; 275:153740. [PMID: 35716656 DOI: 10.1016/j.jplph.2022.153740] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 03/02/2022] [Accepted: 05/29/2022] [Indexed: 06/15/2023]
Abstract
Abiotic stressors are one of the major factors affecting agricultural output. Plants have evolved adaptive systems to respond appropriately to various environmental cues. These responses can be accomplished by modulating or fine-tuning genetic and epigenetic regulatory mechanisms. Understanding the response of plants' molecular features to abiotic stress is a priority in the current period of continued environmental changes. Epigenetic modifications are necessary that control gene expression by changing chromatin status and recruiting various transcription regulators. The present study summarized the current knowledge on epigenetic modifications concerning plant responses to various environmental stressors. The functional relevance of epigenetic marks in regulating stress tolerance has been revealed, and epigenetic changes impact the effector genes. This study looks at the epigenetic mechanisms that govern plant abiotic stress responses, especially DNA methylation, histone methylation/acetylation, chromatin remodeling, and various metabolites. Plant breeders will benefit from a thorough understanding of these processes to create alternative crop improvement approaches. Genome editing with clustered regularly interspaced short palindromic repeat/CRISPR-associated proteins (CRISPR/Cas) provides genetic tools to make agricultural genetic engineering more sustainable and publicly acceptable.
Collapse
Affiliation(s)
- Shahid Ali
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Longhua Institute of Innovative Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, Guangdong Province, China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Naeem Khan
- Department of Agronomy, Institute of Food and Agricultural Sciences, University of Florida, FL, 32611, USA
| | - Yulin Tang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Longhua Institute of Innovative Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, Guangdong Province, China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
24
|
Sadhukhan A, Prasad SS, Mitra J, Siddiqui N, Sahoo L, Kobayashi Y, Koyama H. How do plants remember drought? PLANTA 2022; 256:7. [PMID: 35687165 DOI: 10.1007/s00425-022-03924-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
Plants develop both short-term and transgenerational memory of drought stress through epigenetic regulation of transcription for a better response to subsequent exposure. Recurrent spells of droughts are more common than a single drought, with intermittent moist recovery intervals. While the detrimental effects of the first drought on plant structure and physiology are unavoidable, if survived, plants can memorize the first drought to present a more robust response to the following droughts. This includes a partial stomatal opening in the watered recovery interval, higher levels of osmoprotectants and ABA, and attenuation of photosynthesis in the subsequent exposure. Short-term drought memory is regulated by ABA and other phytohormone signaling with transcriptional memory behavior in various genes. High levels of methylated histones are deposited at the drought-tolerance genes. During the recovery interval, the RNA polymerase is stalled to be activated by a pause-breaking factor in the subsequent drought. Drought leads to DNA demethylation near drought-response genes, with genetic control of the process. Progenies of the drought-exposed plants can better adapt to drought owing to the inheritance of particular methylation patterns. However, a prolonged watered recovery interval leads to loss of drought memory, mediated by certain demethylases and chromatin accessibility factors. Small RNAs act as critical regulators of drought memory by altering transcript levels of drought-responsive target genes. Further studies in the future will throw more light on the genetic control of drought memory and the interplay of genetic and epigenetic factors in its inheritance. Plants from extreme environments can give queues to understanding robust memory responses at the ecosystem level.
Collapse
Affiliation(s)
- Ayan Sadhukhan
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Karwar, Jodhpur, 342037, India.
| | - Shiva Sai Prasad
- Department of Agriculture, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, Andhra Pradesh, 522502, India
| | - Jayeeta Mitra
- Department of Botany, Arunachal University of Studies, Arunachal Pradesh, Namsai, 792103, India
| | - Nadeem Siddiqui
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, Andhra Pradesh, 522502, India
| | - Lingaraj Sahoo
- Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Yuriko Kobayashi
- Faculty of Applied Biological Sciences, Gifu University, Gifu, 501-1193, Japan
| | - Hiroyuki Koyama
- Faculty of Applied Biological Sciences, Gifu University, Gifu, 501-1193, Japan
| |
Collapse
|
25
|
Amoanimaa-Dede H, Su C, Yeboah A, Zhou H, Zheng D, Zhu H. Growth regulators promote soybean productivity: a review. PeerJ 2022; 10:e12556. [PMID: 35265396 PMCID: PMC8900611 DOI: 10.7717/peerj.12556] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 11/05/2021] [Indexed: 01/06/2023] Open
Abstract
Soybean [Glycine max (L.) Merrill] is a predominant edible plant and a major supply of plant protein worldwide. Global demand for soybean keeps increasing as its seeds provide essential proteins, oil, and nutraceuticals. In a quest to meet heightened demands for soybean, it has become essential to introduce agro-technical methods that promote adaptability to complex environments, improve soybean resistance to abiotic stress , and increase productivity. Plant growth regulators are mainly exploited to achieve this due to their crucial roles in plant growth and development. Increasing research suggests the influence of plant growth regulators on soybean growth and development, yield, quality, and abiotic stress responses. In an attempt to expatiate on the topic, current knowledge, and possible applications of plant growth regulators that improve growth and yield have been reviewed and discussed. Notably, the application of plant growth regulators in their appropriate concentrations at suitable growth periods relieves abiotic stress thereby increasing the yield and yield components of soybean. Moreover, the regulation effects of different growth regulators on the morphology, physiology, and yield quality of soybean are discoursed in detail.
Collapse
Affiliation(s)
- Hanna Amoanimaa-Dede
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong Province, China
| | - Chuntao Su
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong Province, China
| | - Akwasi Yeboah
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong Province, China
| | - Hang Zhou
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong Province, China
| | - Dianfeng Zheng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong Province, China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong Province, China
| | - Hongbo Zhu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong Province, China
| |
Collapse
|
26
|
Albuquerque-Martins R, Díez AR, Szakonyi D, Duque P. Assessing Postgermination Development in Arabidopsis thaliana Under Abiotic Stress. Methods Mol Biol 2022; 2494:207-215. [PMID: 35467209 DOI: 10.1007/978-1-0716-2297-1_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The abscisic acid (ABA) phytohormone is well known to regulate responses to abiotic stress, particularly tolerance to osmotic stress. Screening for phenotypes at the early plant development stages is fundamental to identify new regulators of the ABA pathway, which in turn is extremely relevant for agriculture in a global climate change context. Typically, under experimental conditions, seeds are germinated in hormone-containing plates, and postgermination development is then assessed through scoring of the appearance of green or expanded cotyledons. However, postgermination phenotypes may be either masked or exacerbated by prior defects in seed germination. To circumvent this, we propose a transfer assay to screen specifically and quickly for postgermination phenotypes affected by exogenous ABA. The assay can be applied to different forms of abiotic stress, and we provide tips to score for postgermination phenotypes in genotypes exhibiting differential development.
Collapse
Affiliation(s)
| | | | | | - Paula Duque
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.
| |
Collapse
|
27
|
Yan Y, Gan J, Tao Y, Okita TW, Tian L. RNA-Binding Proteins: The Key Modulator in Stress Granule Formation and Abiotic Stress Response. FRONTIERS IN PLANT SCIENCE 2022; 13:882596. [PMID: 35783947 PMCID: PMC9240754 DOI: 10.3389/fpls.2022.882596] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/04/2022] [Indexed: 05/08/2023]
Abstract
To cope with abiotic environmental stress, plants rapidly change their gene expression transcriptionally and post-transcriptionally, the latter by translational suppression of selected proteins and the assembly of cytoplasmic stress granules (SGs) that sequester mRNA transcripts. RNA-binding proteins (RBPs) are the major players in these post-transcriptional processes, which control RNA processing in the nucleus, their export from the nucleus, and overall RNA metabolism in the cytoplasm. Because of their diverse modular domain structures, various RBP types dynamically co-assemble with their targeted RNAs and interacting proteins to form SGs, a process that finely regulates stress-responsive gene expression. This review summarizes recent findings on the involvement of RBPs in adapting plants to various abiotic stresses via modulation of specific gene expression events and SG formation. The relationship of these processes with the stress hormone abscisic acid (ABA) is discussed.
Collapse
Affiliation(s)
- Yanyan Yan
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable (Ministry of Agriculture and Rural Affairs), Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, China
| | - Jianghuang Gan
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable (Ministry of Agriculture and Rural Affairs), Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, China
| | - Yilin Tao
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable (Ministry of Agriculture and Rural Affairs), Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, China
| | - Thomas W. Okita
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
- *Correspondence: Thomas W. Okita,
| | - Li Tian
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable (Ministry of Agriculture and Rural Affairs), Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, China
- Li Tian,
| |
Collapse
|
28
|
Qin Y, Cui S, Cui P, Zhang B, Quan X. TaFLZ2D enhances salinity stress tolerance via superior ability for ionic stress tolerance and ROS detoxification. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 168:516-525. [PMID: 34794100 DOI: 10.1016/j.plaphy.2021.11.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/30/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
Salinity stress severely affects plant growth and crop productivity. FCS-like zinc finger family genes (FLZ) play important roles in plant growth and stress responses. But most information of this family obtained was involved in sucrose signaling, limited function has been known in response to salinity stress. In this study, a novel FLZ gene TaFLZ2D has been isolated and characterized in response to salinity stress in wheat. TaFLZ2D was induced by both salinity stress and exogenous abscisic acid (ABA). Its transcript level was substantially higher in the salt resistant wheat cultivar SR3 than in its closely related but salt sensitive cultivar JN177. Transient expression in Nicotiana benthamiana leaf epidermal cells demonstrated TaFLZ2D was localized both in the cytoplasm membrane and nucleus. Constitutive expression of TaFLZ2D in Arabidopsis thaliana improved salinity stress tolerance and ABA sensitivity. Phenotype analysis under KCl and mannitol treatment demonstrated TaFLZ2D increased salinity stress tolerance mainly due to the superior ability to cope with ionic stress. TaFLZ2D over-expressing lines increased abscisic acid synthesis, peroxidase activity and reduced rate of water loss. Transcriptomic analysis demonstrated over-expression of TaFLZ2D regulated ABA-dependent and independent signaling pathway related genes expression and activated antioxidant related genes expression under normal condition and Ca2+ signaling related genes expression under NaCl treatmemt. Taken together, TaFLZ2D is a positive regulator of salinity stress tolerance, which contributes to salinity stress mainly through superior ability for ionic stress tolerance and ROS detoxification.
Collapse
Affiliation(s)
- Yuxiang Qin
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, Shandong, China.
| | - Shoufu Cui
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, Shandong, China
| | - Ping Cui
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, Shandong, China
| | - Bao Zhang
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, Shandong, China
| | - Xiaoyan Quan
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, Shandong, China
| |
Collapse
|
29
|
Tahir MS, Tian L. HD2-type histone deacetylases: unique regulators of plant development and stress responses. PLANT CELL REPORTS 2021; 40:1603-1615. [PMID: 34041586 DOI: 10.1007/s00299-021-02688-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
Plants have developed sophisticated and complex epigenetic regulation-based mechanisms to maintain stable growth and development under diverse environmental conditions. Histone deacetylases (HDACs) are important epigenetic regulators in eukaryotes that are involved in the deacetylation of lysine residues of histone H3 and H4 proteins. Plants have developed a unique HDAC family, HD2, in addition to the RPD3 and Sir2 families, which are also present in other eukaryotes. HD2s are well conserved plant-specific HDACs, which were first identified as nucleolar phosphoproteins in maize. The HD2 family plays important roles not only in fundamental developmental processes, including seed germination, root and leaf development, floral transition, and seed development but also in regulating plant responses to biotic and abiotic stresses. Some of the HD2 members coordinate with each other to function. The HD2 family proteins also show functional association with RPD3-type HDACs and other transcription factors as a part of repression complexes in gene regulatory networks involved in environmental stress responses. This review aims to analyse and summarise recent research progress in the HD2 family, and to describe their role in plant growth and development and in response to different environmental stresses.
Collapse
Affiliation(s)
- Muhammad Sufyan Tahir
- Department of Biology, University of Western Ontario, London, ON, Canada.
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada.
| | - Lining Tian
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| |
Collapse
|
30
|
Hezema YS, Shukla MR, Goel A, Ayyanath MM, Sherif SM, Saxena PK. Rootstocks Overexpressing StNPR1 and StDREB1 Improve Osmotic Stress Tolerance of Wild-Type Scion in Transgrafted Tobacco Plants. Int J Mol Sci 2021; 22:8398. [PMID: 34445105 PMCID: PMC8395105 DOI: 10.3390/ijms22168398] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 12/24/2022] Open
Abstract
In grafted plants, the movement of long-distance signals from rootstocks can modulate the development and function of the scion. To understand the mechanisms by which tolerant rootstocks improve scion responses to osmotic stress (OS) conditions, mRNA transport of osmotic responsive genes (ORGs) was evaluated in a tomato/potato heterograft system. In this system, Solanum tuberosum was used as a rootstock and Solanum lycopersicum as a scion. We detected changes in the gene expression levels of 13 out of the 21 ORGs tested in the osmotically stressed plants; of these, only NPR1 transcripts were transported across the graft union under both normal and OS conditions. Importantly, OS increased the abundance of StNPR1 transcripts in the tomato scion. To examine mRNA mobility in transgrafted plants, StNPR1 and StDREB1 genes representing the mobile and non-mobile transcripts, respectively, were overexpressed in tobacco (Nicotiana tabacum). The evaluation of transgenic tobacco plants indicated that overexpression of these genes enhanced the growth and improved the physiological status of transgenic plants growing under OS conditions induced by NaCl, mannitol and polyethylene glycol (PEG). We also found that transgenic tobacco rootstocks increased the OS tolerance of the WT-scion. Indeed, WT scions on transgenic rootstocks had higher ORGs transcript levels than their counterparts on non-transgenic rootstocks. However, neither StNPR1 nor StDREB1 transcripts were transported from the transgenic rootstock to the wild-type (WT) tobacco scion, suggesting that other long-distance signals downstream these transgenes could have moved across the graft union leading to OS tolerance. Overall, our results signify the importance of StNPR1 and StDREB1 as two anticipated candidates for the development of stress-resilient crops through transgrafting technology.
Collapse
Affiliation(s)
- Yasmine S. Hezema
- Gosling Research Institute for Plant Preservation, Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (Y.S.H.); (M.R.S.); (A.G.); (M.M.A.)
- Department of Horticulture, Damanhour University, Damanhour 22713, El-Beheira, Egypt
| | - Mukund R. Shukla
- Gosling Research Institute for Plant Preservation, Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (Y.S.H.); (M.R.S.); (A.G.); (M.M.A.)
| | - Alok Goel
- Gosling Research Institute for Plant Preservation, Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (Y.S.H.); (M.R.S.); (A.G.); (M.M.A.)
| | - Murali M. Ayyanath
- Gosling Research Institute for Plant Preservation, Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (Y.S.H.); (M.R.S.); (A.G.); (M.M.A.)
| | - Sherif M. Sherif
- Alson H. Smith Jr. Agricultural Research and Extension Center, School of Plant and Environmental Sciences, Virginia Tech, Winchester, VA 22602, USA
| | - Praveen K. Saxena
- Gosling Research Institute for Plant Preservation, Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (Y.S.H.); (M.R.S.); (A.G.); (M.M.A.)
| |
Collapse
|
31
|
Lim CW, Baek W, Lim J, Hong E, Lee SC. Pepper ubiquitin-specific protease, CaUBP12, positively modulates dehydration resistance by enhancing CaSnRK2.6 stability. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:1148-1165. [PMID: 34145668 DOI: 10.1111/tpj.15374] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 05/31/2021] [Accepted: 06/14/2021] [Indexed: 05/27/2023]
Abstract
Abscisic acid (ABA) is a plant hormone that activates adaptive mechanisms to environmental stress conditions. Plant adaptive mechanisms are complex and highly modulated processes induced by stress-responsive proteins; however, the precise mechanisms by which these processes function under adverse conditions remain unclear. Here, we isolated CaUBP12 (Capsicum annuum ubiquitin-specific protease 12) from pepper (C. annuum) leaves. We show that CaUBP12 expression is significantly induced after exposure to abiotic stress treatments. We conducted loss-of-function and gain-of-function genetic studies to elucidate the biological functions of CaUBP12 in response to ABA and dehydration stress. CaUBP12-silenced pepper plants and CaUBP12-overexpressing Arabidopsis plants displayed dehydration-sensitive and dehydration-tolerant phenotypes, respectively; these phenotypes were characterized by regulation of transpirational water loss and stomatal aperture. Under dehydration stress conditions, CaUBP12-silenced pepper plants and CaUBP12-overexpressing Arabidopsis plants exhibited lower and higher expression levels of stress-related genes, respectively, than the control plants. We isolated a CaUBP12 interaction protein, CaSnRK2.6, which is a homolog of Arabidopsis OST1; degradation of this protein was partially inhibited by CaUBP12. Similar to CaUBP12-silenced pepper plants and CaUBP12-overexpressing Arabidopsis plants, CaSnRK2.6-silenced pepper plants and CaSnRK2.6-overexpressing Arabidopsis displayed dehydration-sensitive and dehydration-tolerant phenotypes, respectively. Our findings suggest that CaUBP12 positively modulates the dehydration stress response by suppressing CaSnRK2.6 protein degradation.
Collapse
Affiliation(s)
- Chae Woo Lim
- Department of Life Science (BK21 program), Chung-Ang University, Dongjak-Gu, Republic of Korea
| | - Woonhee Baek
- Department of Life Science (BK21 program), Chung-Ang University, Dongjak-Gu, Republic of Korea
| | - Junsub Lim
- Department of Life Science (BK21 program), Chung-Ang University, Dongjak-Gu, Republic of Korea
| | - Eunji Hong
- Department of Life Science (BK21 program), Chung-Ang University, Dongjak-Gu, Republic of Korea
| | - Sung Chul Lee
- Department of Life Science (BK21 program), Chung-Ang University, Dongjak-Gu, Republic of Korea
| |
Collapse
|
32
|
Zhang X, He Q, Zhang W, Shu F, Wang W, He Z, Xiong H, Peng J, Deng H. Genetic relationships and identification of core germplasm among rice photoperiod- and thermo-sensitive genic male sterile lines. BMC PLANT BIOLOGY 2021; 21:313. [PMID: 34215178 PMCID: PMC8252326 DOI: 10.1186/s12870-021-03062-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/20/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Harnessing heterosis is one of the major approaches to increase rice yield and has made a great contribution to food security. The identification and selection of outstanding parental genotypes especially among male sterile lines is a key step for exploiting heterosis. Two-line hybrid system is based on the discovery and application of photoperiod- and thermo-sensitive genic sensitive male sterile (PTGMS) materials. The development of wide-range of male sterile lines from a common gene pool leads to a narrower genetic diversity, which is vulnerable to biotic and abiotic stress. Hence, it is valuable to ascertain the genetic background of PTGMS lines and to understand their relationships in order to select and design a future breeding strategy. RESULTS A collection of 118 male sterile rice lines and 13 conventional breeding lines from the major rice growing regions of China was evaluated and screened against the photosensitive (pms3) and temperature sensitive male sterility (tms5) genes. The total gene pool was divided into four major populations as P1 possessing the pms3, P2 possessing tms5, P3 possessing both pms3 and tms5 genes, and P4 containing conventional breeding lines without any male sterility allele. The high genetic purity was revealed by homozygous alleles in all populations. The population admixture, principle components and the phylogenetic analysis revealed the close relations of P2 and P3 with P4. The population differentiation analysis showed that P1 has the highest differentiation coefficient. The lines from P1 were observed as the ancestors of other three populations in a phylogenetic tree, while the lines in P2 and P3 showed a close genetic relation with conventional lines. A core collection of top 10% lines with maximum within and among populations genetic diversity was constructed for future research and breeding efforts. CONCLUSION The low genetic diversity and close genetic relationship among PTGMS lines in P2, P3 and P4 populations suggest a selection sweep and they might result from a backcrossing with common ancestors including the pure lines of P1. The core collection from PTGMS panel updated with new diverse germplasm will serve best for further two-line hybrid breeding.
Collapse
Affiliation(s)
- Xianwen Zhang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
- Huazhi Biotech Co. Ltd, Changsha, 410125, China
| | - Qiang He
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Wuhan Zhang
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Fu Shu
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Weiping Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Zhizhou He
- Huazhi Biotech Co. Ltd, Changsha, 410125, China
| | - Hairong Xiong
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, China
| | - Junhua Peng
- Huazhi Biotech Co. Ltd, Changsha, 410125, China
| | - Huafeng Deng
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha, 410125, China.
| |
Collapse
|
33
|
Baek W, Lim CW, Lee SC. Pepper E3 ligase CaAIRE1 promotes ABA sensitivity and drought tolerance by degradation of protein phosphatase CaAITP1. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4520-4534. [PMID: 33837765 DOI: 10.1093/jxb/erab138] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 04/08/2021] [Indexed: 06/19/2023]
Abstract
Plants have developed defense mechanisms to survive in extreme environmental conditions. Abscisic acid (ABA) is a key phytohormone associated with plant adaptation to environmental stress. In this study, we isolated and functionally characterized the pepper RING-type E3 ligase CaAIRE1 (Capsicum annuum ABA Induced RING-type E3 ligase 1) containing the C3HC4-type RING domain. CaAIRE1 was induced by ABA and drought, and CaAIRE1 had E3 ligase activity. CaAIRE1-silenced pepper and CaAIRE1-overexpressing Arabidopsis presented drought-sensitive and drought-tolerant phenotypes, respectively, which were accompanied by altered transpiration water loss and ABA sensitivity. Moreover, we found that CaAIRE1 interacts with and ubiquitinates the pepper type 2C protein phosphatase, CaAITP1 (Capsicum annuum CaAIRE1 Interacting Target Phosphatase 1). A cell-free degradation assay with CaAIRE1-silenced peppers and CaAIRE1-overexpressing Arabidopsis plants revealed that the CaAITP1 protein level was negatively modulated by the expression level of CaAIRE1. In contrast to CaAIRE1, CaAITP1-silenced pepper showed ABA-sensitivity phenotypes. CaAITP1-overexpressing Arabidopsis plants were the most insensitive phenotypes to ABA compared with the wild type and other pepper PP2C-overexpressing plants. Taken together, our data indicate that CaAITP1 plays a major role as a negative modulator in ABA signaling, and CaAIRE1 regulates the ABA signaling and drought response through modulation of CaAITP1 stability.
Collapse
Affiliation(s)
- Woonhee Baek
- Department of Life Science (BK21 program), Chung-Ang University, Seoul, Korea
| | - Chae Woo Lim
- Department of Life Science (BK21 program), Chung-Ang University, Seoul, Korea
| | - Sung Chul Lee
- Department of Life Science (BK21 program), Chung-Ang University, Seoul, Korea
| |
Collapse
|
34
|
Chen Z, Yu L, Liu W, Zhang J, Wang N, Chen X. Research progress of fruit color development in apple (Malus domestica Borkh.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 162:267-279. [PMID: 33711720 DOI: 10.1016/j.plaphy.2021.02.033] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
Apple (Malus domestica Borkh.) is one of the most widely produced and economically important fruits in temperate regions. Fruit color development in apple is a major focus for both breeders and researchers as consumers associate brightly colored red apples with ripeness and a good flavor. In recent years, great progress has been made in the research of apple fruit color development, but its development mechanism has not been systematic dissected from the aspects of genetics, transcription or environmental factors. Here, we summarize research on the coloration of apple fruit, including the development of important genomic databases to identify important genomic regions and genes, genetic and transcriptional factors that regulate pigment accumulation, environmental factors that affect anthocyanin synthesis, and the current breeding progress of red-skinned and red-fleshed apples. We describe key transcription factors, such as MYB, bHLH, and WD40, which are involved in the regulation of anthocyanin synthesis and fruit color development in apple. We also discuss the regulation of apple color by external environmental factors such as light, temperature, and water. The aim of this review is to provide insights into the molecular mechanisms underlying anthocyanin biosynthesis in apple. This information will provide significant guidance for the breeding of high-quality red-skinned and red-fleshed apple varieties.
Collapse
Affiliation(s)
- Zijing Chen
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China; Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Tai'an, Shandong, 271000, China
| | - Lei Yu
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China; Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Tai'an, Shandong, 271000, China
| | - Wenjun Liu
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China; Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Tai'an, Shandong, 271000, China
| | - Jing Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China; Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Tai'an, Shandong, 271000, China
| | - Nan Wang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China; Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Tai'an, Shandong, 271000, China.
| | - Xuesen Chen
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China; Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Tai'an, Shandong, 271000, China.
| |
Collapse
|
35
|
Cao L, Lu X, Wang G, Zhang Q, Zhang X, Fan Z, Cao Y, Wei L, Wang T, Wang Z. Maize ZmbZIP33 Is Involved in Drought Resistance and Recovery Ability Through an Abscisic Acid-Dependent Signaling Pathway. FRONTIERS IN PLANT SCIENCE 2021; 12:629903. [PMID: 33868332 PMCID: PMC8048716 DOI: 10.3389/fpls.2021.629903] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/26/2021] [Indexed: 05/11/2023]
Abstract
Analyzing the transcriptome of maize leaves under drought stress and rewatering conditions revealed that transcription factors were involved in this process, among which ZmbZIP33 of the ABSCISIC ACID-INSENSITIVE 5-like protein 5 family was induced to significantly up-regulated. The functional mechanism of ZmbZIP33 in Abscisic acd (ABA) signaling pathway and its response to drought stress and rewatering has not been studied yet. The present study found that ZmbZIP33 contains a DNA-binding and dimerization domain, has transcriptional activation activity, and is highly homologous to SbABI1,SitbZIP68 and OsABA1. The expression of ZmbZIP33 is strongly up-regulated by drought, high salt, high temperature, and ABA treatments. Overexpression of ZmbZIP33 remarkably increased chlorophyll content and root length after drought stress and rewatering, and, moreover, cause an accumulation of ABA content, thereby improving drought resistance and recovery ability in Arabidopsis. However, silencing the expression of ZmbZIP33 (BMV-ZmbZIP33) remarkably decreased chlorophyll content, ABA content, superoxide dismutase and peroxidase activities, and increased stomatal opening and water loss rate compared with BMV (control). It showed that silencing ZmbZIP33 lead to reduced drought resistance and recovery ability of maize. ABA sensitivity analysis found that 0.5 and 1 μmol/L treatments severely inhibited the root development of overexpression ZmbZIP33 transgenic Arabidopsis. However, the root growth of BMV was greatly inhibited for 1 and 5μmol/L ABA treatments, but not for BMV-ZmbZIP33. Subcellular localization, yeast two-hybrid and BIFC further confirmed that the core components of ABA signaling pathways ZmPYL10 and ZmPP2C7 interacted in nucleus, ZmPP2C7 and ZmSRK2E as well as ZmSRK2E and ZmbZIP33 interacted in the plasma membrane. We also found that expression levels of ZmPYL10 and ZmSRK2E in the BMV-ZmbZIP33 mutant were lower than those of BMV, while ZmPP2C7 was the opposite under drought stress and rewatering. However, expression of ZmPYL10 and ZmSRK2E in normal maize leaves were significantly up-regulated by 3-4 folds after drought and ABA treatments for 24 h, while ZmPP2C7 was down-regulated. The NCED and ZEP encoding key enzymes in ABA biosynthesis are up-regulated in overexpression ZmbZIP33 transgenic line under drought stress and rewatering conditions, but down-regulated in BMV-ZmbZIP33 mutants. Together, these findings demonstrate that ZmbZIP33 played roles in ABA biosynthesis and regulation of drought response and rewatering in Arabidopsis and maize thought an ABA-dependent signaling pathway.
Collapse
Affiliation(s)
- Liru Cao
- Grain Crops Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, China
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Xiaomin Lu
- Grain Crops Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Guorui Wang
- Grain Crops Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Qianjin Zhang
- Grain Crops Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Xin Zhang
- Grain Crops Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Zaifeng Fan
- State Kay Laboratory of Agro-biotechnology and Key Laboratory of Pest Monitoring and Green Management-MOA, China Agricultural University, Beijing, China
| | - Yanyong Cao
- Grain Crops Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Li Wei
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Tongchao Wang
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Zhenhua Wang
- Grain Crops Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, China
| |
Collapse
|
36
|
Foes or Friends: ABA and Ethylene Interaction under Abiotic Stress. PLANTS 2021; 10:plants10030448. [PMID: 33673518 PMCID: PMC7997433 DOI: 10.3390/plants10030448] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 12/11/2022]
Abstract
Due to their sessile nature, plants constantly adapt to their environment by modulating various internal plant hormone signals and distributions, as plants perceive environmental changes. Plant hormones include abscisic acid (ABA), auxins, brassinosteroids, cytokinins, ethylene, gibberellins, jasmonates, salicylic acid, and strigolactones, which collectively regulate plant growth, development, metabolism, and defense. Moreover, plant hormone crosstalk coordinates a sophisticated plant hormone network to achieve specific physiological functions, on both a spatial and temporal level. Thus, the study of hormone–hormone interactions is a competitive field of research for deciphering the underlying regulatory mechanisms. Among plant hormones, ABA and ethylene present a fascinating case of interaction. They are commonly recognized to act antagonistically in the control of plant growth, and development, as well as under stress conditions. However, several studies on ABA and ethylene suggest that they can operate in parallel or even interact positively. Here, an overview is provided of the current knowledge on ABA and ethylene interaction, focusing on abiotic stress conditions and a simplified hypothetical model describing stomatal closure / opening, regulated by ABA and ethylene.
Collapse
|
37
|
Comprehensive Analysis and Expression Profiling of PIN, AUX/LAX, and ABCB Auxin Transporter Gene Families in Solanum tuberosum under Phytohormone Stimuli and Abiotic Stresses. BIOLOGY 2021; 10:biology10020127. [PMID: 33562678 PMCID: PMC7915614 DOI: 10.3390/biology10020127] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary In this study, we provide comprehensive information on auxin transporter gene families in potato, including basic parameters, chromosomal distribution, phylogeny, co-expression network analysis, gene structure, tissue-specific expression patterns, subcellular localization, transcription analysis under exogenous hormone stimuli and abiotic stresses, and cis-regulatory element prediction. The responsiveness of auxin transporter family genes to auxin and polar auxin transport inhibitors implied their possible roles in auxin homoeostasis and redistribution. Additionally, the differential expression levels of auxin transporter family genes in response to abscisic acid and abiotic stresses suggested their specific adaptive mechanisms on tolerance to various environmental stimuli. Promoter cis-regulatory element description analyses indicated that a number of cis-regulatory elements within the promoters of auxin transporter genes in potato were targeted by relevant transcription factors to respond to diverse stresses. We are confident that our results provide a foundation for a better understanding of auxin transporters in potato, as we have demonstrated the biological significance of this family of genes in hormone signaling and adaption to environmental stresses. Abstract Auxin is the only plant hormone that exhibits transport polarity mediated by three families: auxin resistant (AUX) 1/like AUX1 (LAX) influx carriers, pin-formed (PIN) efflux carriers, and ATP-binding cassette B (ABCB) influx/efflux carriers. Extensive studies about the biological functions of auxin transporter genes have been reported in model plants. Information regarding these genes in potato remains scarce. Here, we conducted a comprehensive analysis of auxin transporter gene families in potato to examine genomic distributions, phylogeny, co-expression analysis, gene structure and subcellular localization, and expression profiling using bioinformatics tools and qRT-PCR analysis. From these analyses, 5 StLAXs, 10 StPINs, and 22 StABCBs were identified in the potato genome and distributed in 10 of 18 gene modules correlating to the development of various tissues. Transient expression experiments indicated that three representative auxin transporters showed plasma membrane localizations. The responsiveness to auxin and auxin transport inhibitors implied their possible roles in mediating intercellular auxin homoeostasis and redistribution. The differential expression under abscisic acid and abiotic stresses indicated their specific adaptive mechanisms regulating tolerance to environmental stimuli. A large number of auxin-responsive and stress-related cis-elements within their promoters could account for their responsiveness to diverse stresses. Our study aimed to understand the biological significance of potato auxin transporters in hormone signaling and tolerance to environmental stresses.
Collapse
|
38
|
Zhang Y, Lai X, Yang S, Ren H, Yuan J, Jin H, Shi C, Lai Z, Xia G. Functional analysis of tomato CHIP ubiquitin E3 ligase in heat tolerance. Sci Rep 2021; 11:1713. [PMID: 33462308 PMCID: PMC7814054 DOI: 10.1038/s41598-021-81372-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 01/04/2021] [Indexed: 01/25/2023] Open
Abstract
Plants have evolved genetic and physiological mechanisms to mitigate the adverse effects of high temperature. CARBOXYL TERMINUS OF THE HSC70-INTERACTING PROTEINS (CHIP) is a conserved chaperone-dependent ubiquitin E3 ligase that targets misfolded proteins. Here, we report functional analysis of the SlCHIP gene from tomato (Solanum lycopersicum) in heat tolerance. SlCHIP encodes a CHIP protein with three tandem tetracopeptide repeat (TPR) motifs and a C-terminal U box domain. Phylogenetic analysis of CHIP homologs from animals, spore-bearing and seed plants revealed a tree topology similar to the evolutionary tree of the organisms. Expression of SlCHIP was induced under high temperature and was also responsive to plant stress hormones. Silencing of SlCHIP in tomato reduced heat tolerance based on increased heat stress symptoms, reduced photosynthetic activity, elevated electrolyte leakage and accumulation of insoluble protein aggregates. The accumulated protein aggregates in SlCHIP-silenced plants were still highly ubiquitinated, suggesting involvement of other E3 ligases in ubiquitination. SlCHIP restored the heat tolerance of Arabidopsis chip mutant to the wild type levels. These results indicate that tomato SlCHIP plays a critical role in heat stress responses most likely by targeting degradation of misfolded proteins that are generated during heat stress.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Landscape and Horticulture, Ecology College, Lishui University, Lishui, 323000, Zhejiang, China.
| | - Xiaodong Lai
- Department of Landscape and Horticulture, Ecology College, Lishui University, Lishui, 323000, Zhejiang, China
| | - Siqing Yang
- Department of Landscape and Horticulture, Ecology College, Lishui University, Lishui, 323000, Zhejiang, China
| | - Huan Ren
- Department of Landscape and Horticulture, Ecology College, Lishui University, Lishui, 323000, Zhejiang, China
| | - Jingya Yuan
- Department of Landscape and Horticulture, Ecology College, Lishui University, Lishui, 323000, Zhejiang, China
| | - Huanchun Jin
- Department of Landscape and Horticulture, Ecology College, Lishui University, Lishui, 323000, Zhejiang, China
| | - Chengchen Shi
- Department of Landscape and Horticulture, Ecology College, Lishui University, Lishui, 323000, Zhejiang, China
| | - Zhibing Lai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Gengshou Xia
- Department of Landscape and Horticulture, Ecology College, Lishui University, Lishui, 323000, Zhejiang, China
| |
Collapse
|
39
|
Bhadouriya SL, Mehrotra S, Basantani MK, Loake GJ, Mehrotra R. Role of Chromatin Architecture in Plant Stress Responses: An Update. FRONTIERS IN PLANT SCIENCE 2021; 11:603380. [PMID: 33510748 PMCID: PMC7835326 DOI: 10.3389/fpls.2020.603380] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/07/2020] [Indexed: 05/08/2023]
Abstract
Sessile plants possess an assembly of signaling pathways that perceive and transmit environmental signals, ultimately resulting in transcriptional reprogramming. Histone is a key feature of chromatin structure. Numerous histone-modifying proteins act under different environmental stress conditions to help modulate gene expression. DNA methylation and histone modification are crucial for genome reprogramming for tissue-specific gene expression and global gene silencing. Different classes of chromatin remodelers including SWI/SNF, ISWI, INO80, and CHD are reported to act upon chromatin in different organisms, under diverse stresses, to convert chromatin from a transcriptionally inactive to a transcriptionally active state. The architecture of chromatin at a given promoter is crucial for determining the transcriptional readout. Further, the connection between somatic memory and chromatin modifications may suggest a mechanistic basis for a stress memory. Studies have suggested that there is a functional connection between changes in nuclear organization and stress conditions. In this review, we discuss the role of chromatin architecture in different stress responses and the current evidence on somatic, intergenerational, and transgenerational stress memory.
Collapse
Affiliation(s)
- Sneha Lata Bhadouriya
- Department of Biological Sciences, Birla Institute of Technology and Sciences, Sancoale, India
| | - Sandhya Mehrotra
- Department of Biological Sciences, Birla Institute of Technology and Sciences, Sancoale, India
| | - Mahesh K. Basantani
- Institute of Bioscience and Technology, Shri Ramswaroop Memorial University, Lucknow, India
| | - Gary J. Loake
- School of Biological Sciences, Institute of Molecular Plant Sciences, University of Edinburg, Edinburg, United Kingdom
| | - Rajesh Mehrotra
- Department of Biological Sciences, Birla Institute of Technology and Sciences, Sancoale, India
| |
Collapse
|
40
|
Wu H, Zheng L, Qanmber G, Guo M, Wang Z, Yang Z. Response of phytohormone mediated plant homeodomain (PHD) family to abiotic stress in upland cotton (Gossypium hirsutum spp.). BMC PLANT BIOLOGY 2021; 21:13. [PMID: 33407131 PMCID: PMC7788912 DOI: 10.1186/s12870-020-02787-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 12/08/2020] [Indexed: 05/07/2023]
Abstract
BACKGROUND The sequencing and annotations of cotton genomes provide powerful theoretical support to unravel more physiological and functional information. Plant homeodomain (PHD) protein family has been reported to be involved in regulating various biological processes in plants. However, their functional studies have not yet been carried out in cotton. RESULTS In this study, 108, 55, and 52 PHD genes were identified in G. hirsutum, G. raimondii, and G. arboreum, respectively. A total of 297 PHD genes from three cotton species, Arabidopsis, and rice were divided into five groups. We performed chromosomal location, phylogenetic relationship, gene structure, and conserved domain analysis for GhPHD genes. GhPHD genes were unevenly distributed on each chromosome. However, more GhPHD genes were distributed on At_05, Dt_05, and At_07 chromosomes. GhPHD proteins depicted conserved domains, and GhPHD genes exhibiting similar gene structure were clustered together. Further, whole genome duplication (WGD) analysis indicated that purification selection greatly contributed to the functional maintenance of GhPHD gene family. Expression pattern analysis based on RNA-seq data showed that most GhPHD genes showed clear tissue-specific spatiotemporal expression patterns elucidating the multiple functions of GhPHDs in plant growth and development. Moreover, analysis of cis-acting elements revealed that GhPHDs may respond to a variety of abiotic and phytohormonal stresses. In this regard, some GhPHD genes showed good response against abiotic and phytohormonal stresses. Additionally, co-expression network analysis indicated that GhPHDs are essential for plant growth and development, while GhPHD genes response against abiotic and phytohormonal stresses may help to improve plant tolerance in adverse environmental conditions. CONCLUSION This study will provide useful information to facilitate further research related to the vital roles of GhPHD gene family in plant growth and development.
Collapse
Affiliation(s)
- Huanhuan Wu
- State Key Laboratory of Cotton Biology, Cotton Research Institute of Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Lei Zheng
- State Key Laboratory of Cotton Biology, Cotton Research Institute of Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan China
| | - Ghulam Qanmber
- State Key Laboratory of Cotton Biology, Cotton Research Institute of Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan China
| | - Mengzhen Guo
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001 Henan China
| | - Zhi Wang
- State Key Laboratory of Cotton Biology, Cotton Research Institute of Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan China
| | - Zuoren Yang
- State Key Laboratory of Cotton Biology, Cotton Research Institute of Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan China
| |
Collapse
|
41
|
Xiao C, Huang M, Gao J, Wang Z, Zhang D, Zhang Y, Yan L, Yu X, Li B, Shen Y. Comparative proteomics of three Chinese potato cultivars to improve understanding of potato molecular response to late blight disease. BMC Genomics 2020; 21:880. [PMID: 33297944 PMCID: PMC7727141 DOI: 10.1186/s12864-020-07286-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/26/2020] [Indexed: 11/29/2022] Open
Abstract
Background Late blight disease (LBD) caused by the pathogen Phytophthora infestans (PI), is the most devastating disease limiting potato (Solanum tuberosum) production globally. Currently, this disease pathogen is re-emerging and appearing in new areas at a very high intensity. A better understanding of the natural defense mechanisms against PI in different potato cultivars especially at the protein level is still lacking. Therefore, to elucidate potato proteome response to PI, we investigated changes in the proteome and leaf morphology of three potato cultivars, namely; Favorita (FA), Mira (MA), and E-malingshu N0.14 (E14) infected with PI by using the iTRAQ-based quantitative proteomics analysis. Results A total of 3306 proteins were found in the three potato genotypes, and 2044 proteins were quantified. Cluster analysis revealed MA and E14 clustered together separately from FA. The protein profile and related functions revealed that the cultivars shared a typical hypersensitive response to PI, including induction of elicitors, oxidative burst, and suppression of photosynthesis in the potato leaves. Meanwhile, MA and E14 deployed additional specific response mechanism different from FA, involving high induction of protease inhibitors, serine/threonine kinases, terpenoid, hormone signaling, and transport, which contributed to MA tolerance of LBD. Furthermore, inductions of pathogenesis-related proteins, LRR receptor-like kinases, mitogen-activated protein kinase, WRKY transcription factors, jasmonic acid, and phenolic compounds mediate E14 resistance against LBD. These proteins were confirmed at the transcription level by a quantitative polymerase chain reaction and at the translation level by western-blot. Conclusions We found several proteins that were differentially abundant among the cultivars, that includes common and cultivar specific proteins which highlighted similarities and significant differences between FA, MA, and E14 in terms of their defense response to PI. Here the specific accumulation of mitogen-activated protein kinase, Serine/threonine kinases, WRKY transcription played a positive role in E14 immunity against PI. The candidate proteins identified reported in this study will form the basis of future studies and may improve our understanding of the molecular mechanisms of late blight disease resistance in potato. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-020-07286-3.
Collapse
Affiliation(s)
- Chunfang Xiao
- State Key Laboratory of Agricultural Microbiology and Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Southern Potato Research Center of China, Enshi, 445000, Hubei, China.,Enshi Tujia and Miao Autonomous Prefecture Academy of Agricultural Sciences, Enshi, 445000, Hubei, China
| | - Mengling Huang
- State Key Laboratory of Agricultural Microbiology and Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Jianhua Gao
- Southern Potato Research Center of China, Enshi, 445000, Hubei, China.,Enshi Tujia and Miao Autonomous Prefecture Academy of Agricultural Sciences, Enshi, 445000, Hubei, China
| | - Zhen Wang
- Southern Potato Research Center of China, Enshi, 445000, Hubei, China.,Enshi Tujia and Miao Autonomous Prefecture Academy of Agricultural Sciences, Enshi, 445000, Hubei, China
| | - Denghong Zhang
- Southern Potato Research Center of China, Enshi, 445000, Hubei, China.,Enshi Tujia and Miao Autonomous Prefecture Academy of Agricultural Sciences, Enshi, 445000, Hubei, China
| | - Yuanxue Zhang
- Southern Potato Research Center of China, Enshi, 445000, Hubei, China.,Enshi Tujia and Miao Autonomous Prefecture Academy of Agricultural Sciences, Enshi, 445000, Hubei, China
| | - Lei Yan
- Southern Potato Research Center of China, Enshi, 445000, Hubei, China.,Enshi Tujia and Miao Autonomous Prefecture Academy of Agricultural Sciences, Enshi, 445000, Hubei, China
| | - Xiao Yu
- State Key Laboratory of Agricultural Microbiology and Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Bo Li
- State Key Laboratory of Agricultural Microbiology and Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| | - Yanfen Shen
- Southern Potato Research Center of China, Enshi, 445000, Hubei, China. .,Enshi Tujia and Miao Autonomous Prefecture Academy of Agricultural Sciences, Enshi, 445000, Hubei, China.
| |
Collapse
|
42
|
Qiu JR, Huang Z, Xiang XY, Xu WX, Wang JT, Chen J, Song L, Xiao Y, Li X, Ma J, Cai SZ, Sun LX, Jiang CZ. MfbHLH38, a Myrothamnus flabellifolia bHLH transcription factor, confers tolerance to drought and salinity stresses in Arabidopsis. BMC PLANT BIOLOGY 2020; 20:542. [PMID: 33267774 PMCID: PMC7709435 DOI: 10.1186/s12870-020-02732-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 11/09/2020] [Indexed: 05/08/2023]
Abstract
BACKGROUND The basic helix-loop-helix (bHLH) proteins, a large transcription factors family, are involved in plant growth and development, and defensive response to various environmental stresses. The resurrection plant Myrothamnus flabellifolia is known for its extremely strong drought tolerance, but few bHLHs taking part in abiotic stress response have been unveiled in M. flabellifolia. RESULTS In the present research, we cloned and characterized a dehydration-inducible gene, MfbHLH38, from M. flabellifolia. The MfbHLH38 protein is localized in the nucleus, where it may act as a transcription factor. Heterologous expression of MfbHLH38 in Arabidopsis improved the tolerance to drought and salinity stresses, as determined by the studies on physiological indexes, such as contents of chlorophyll, malondialdehyde (MDA), proline (Pro), soluble protein, and soluble sugar, water loss rate of detached leaves, reactive oxygen species (ROS) accumulation, as well as antioxidant enzyme activities. Besides, MfbHLH38 overexpression increased the sensitivity of stomatal closure to mannitol and abscisic acid (ABA), improved ABA level under drought stress, and elevated the expression of genes associated with ABA biosynthesis and ABA responding, sucha as NCED3, P5CS, and RD29A. CONCLUSIONS Our results presented evidence that MfbHLH38 enhanced tolerance to drought and salinity stresses in Arabidopsis through increasing water retention ability, regulating osmotic balance, decreasing stress-induced oxidation damage, and possibly participated in ABA-dependent stress-responding pathway.
Collapse
Affiliation(s)
- Jia-Rui Qiu
- College of Landscape Architecture, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Zhuo Huang
- College of Landscape Architecture, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China.
| | - Xiang-Ying Xiang
- College of Landscape Architecture, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Wen-Xin Xu
- College of Landscape Architecture, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Jia-Tong Wang
- College of Landscape Architecture, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Jia Chen
- College of Landscape Architecture, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Li Song
- College of Landscape Architecture, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Yao Xiao
- College of Landscape Architecture, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Xi Li
- College of Landscape Architecture, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Jun Ma
- College of Landscape Architecture, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Shi-Zhen Cai
- College of Landscape Architecture, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Ling-Xia Sun
- College of Landscape Architecture, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Cai-Zhong Jiang
- Department of Plant Sciences, University of California Davis, Davis, CA, 95616, USA
- Crops Pathology and Genetics Research Unit, United States Department of Agriculture, Agricultural Research Service, Davis, CA, 95616, USA
| |
Collapse
|
43
|
Broad and Complex Roles of NBR1-Mediated Selective Autophagy in Plant Stress Responses. Cells 2020; 9:cells9122562. [PMID: 33266087 PMCID: PMC7760648 DOI: 10.3390/cells9122562] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 11/27/2020] [Accepted: 11/27/2020] [Indexed: 02/07/2023] Open
Abstract
Selective autophagy is a highly regulated degradation pathway for the removal of specific damaged or unwanted cellular components and organelles such as protein aggregates. Cargo selectivity in selective autophagy relies on the action of cargo receptors and adaptors. In mammalian cells, two structurally related proteins p62 and NBR1 act as cargo receptors for selective autophagy of ubiquitinated proteins including aggregation-prone proteins in aggrephagy. Plant NBR1 is the structural and functional homolog of mammalian p62 and NBR1. Since its first reports almost ten years ago, plant NBR1 has been well established to function as a cargo receptor for selective autophagy of stress-induced protein aggregates and play an important role in plant responses to a broad spectrum of stress conditions including heat, salt and drought. Over the past several years, important progress has been made in the discovery of specific cargo proteins of plant NBR1 and their roles in the regulation of plant heat stress memory, plant-viral interaction and special protein secretion. There is also new evidence for a possible role of NBR1 in stress-induced pexophagy, sulfur nutrient responses and abscisic acid signaling. In this review, we summarize these progresses and discuss the potential significance of NBR1-mediated selective autophagy in broad plant responses to both biotic and abiotic stresses.
Collapse
|
44
|
Liu Y, Peng L, Gao X, Liu Y, Liu Z, Li X, Yang Y, Wang J. AtPPRT3, a novel E3 ubiquitin ligase, plays a positive role in ABA signaling. PLANT CELL REPORTS 2020; 39:1467-1478. [PMID: 32757028 DOI: 10.1007/s00299-020-02575-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/23/2020] [Indexed: 06/11/2023]
Abstract
KEY MESSAGE The RING-type E3 ligase AtPPRT3 participates in the plant ABA responding as a positive regulator. E3 ubiquitin ligase, alike of classic plant stress resistance proteins, plays a vital role in regulating the degradation of stress-related proteins. In this study, we investigated the function of the RING-type E3 ubiquitin ligase AtPPRT3 in the ABA signaling pathway. AtPPRT3, located in the endoplasmic reticulum membrane, is involved in ABA signaling. The transcriptional expression of AtPPRT3 was induced by ABA, and the promoter region upstream of AtPPRT3 contains the ABA-responsive element (ABRE). Additionally, the β-glucuronidase (GUS) gene driven by the AtPPRT3 promoter was up-regulated in transgenic plants after ABA treated. We obtained AtPPRT3 function-deficient mutants atpprt3-1, atpprt3-2, and AtPPRT3 over-expressing lines (OE4 and OE5). In this study, atpprt3-1 and atpprt3-2 were less sensitive to exogenous ABA compared to Col-0, whereas OE4 and OE5 were more sensitive. Moreover, AtPPRT3 promotes ABA-mediated stomatal closure and inhibits water loss in Arabidopsis thaliana. After exogenous ABA treated, the transcriptional expression levels of AtDREB2A, AtKIN1, AtRD29A, AtERD10 and AtRD29B were up-regulated to greater extents in OEs and lower extents in atpprt3-1 and atpprt3-2 compared to Col-0. These results suggest that AtPPRT3 positively regulates ABA signaling in A. thaliana.
Collapse
Affiliation(s)
- Yu Liu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Lu Peng
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Xuemeng Gao
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Yingying Liu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Zhibin Liu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Xufeng Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Yi Yang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Jianmei Wang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
45
|
Abstract
Plants are subjected to extreme environmental conditions and must adapt rapidly. The phytohormone abscisic acid (ABA) accumulates during abiotic stress, signaling transcriptional changes that trigger physiological responses. Epigenetic modifications often facilitate transcription, particularly at genes exhibiting temporal, tissue-specific and environmentally-induced expression. In maize (Zea mays), MEDIATOR OF PARAMUTATION 1 (MOP1) is required for progression of an RNA-dependent epigenetic pathway that regulates transcriptional silencing of loci genomewide. MOP1 function has been previously correlated with genomic regions adjoining particular types of transposable elements and genic regions, suggesting that this regulatory pathway functions to maintain distinct transcriptional activities within genomic spaces, and that loss of MOP1 may modify the responsiveness of some loci to other regulatory pathways. As critical regulators of gene expression, MOP1 and ABA pathways each regulate specific genes. To determine whether loss of MOP1 impacts ABA-responsive gene expression in maize, mop1-1 and Mop1 homozygous seedlings were subjected to exogenous ABA and RNA-sequencing. A total of 3,242 differentially expressed genes (DEGs) were identified in four pairwise comparisons. Overall, ABA-induced changes in gene expression were enhanced in mop1-1 homozygous plants. The highest number of DEGs were identified in ABA-induced mop1-1 mutants, including many transcription factors; this suggests combinatorial regulatory scenarios including direct and indirect transcriptional responses to genetic disruption (mop1-1) and/or stimulus-induction of a hierarchical, cascading network of responsive genes. Additionally, a modest increase in CHH methylation at putative MOP1-RdDM loci in response to ABA was observed in some genotypes, suggesting that epigenetic variation might influence environmentally-induced transcriptional responses in maize.
Collapse
|
46
|
Pereira WJ, Melo ATDO, Coelho ASG, Rodrigues FA, Mamidi S, Alencar SAD, Lanna AC, Valdisser PAMR, Brondani C, Nascimento-Júnior IRD, Borba TCDO, Vianello RP. Genome-wide analysis of the transcriptional response to drought stress in root and leaf of common bean. Genet Mol Biol 2020; 43:e20180259. [PMID: 31429863 PMCID: PMC7307723 DOI: 10.1590/1678-4685-gmb-2018-0259] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 02/22/2019] [Indexed: 12/30/2022] Open
Abstract
Genes related to the response to drought stress in leaf and root tissue of
drought-susceptible (DS) and tolerant (DT) genotypes were characterized by
RNA-Seq. In total, 54,750 transcripts, representative of 28,590 genes, were
identified; of these, 1,648 were of high-fidelity (merge of 12 libraries) and
described for the first time in the Andean germplasm. From the 1,239
differentially expressed genes (DEGs), 458 were identified in DT, with a
predominance of genes in categories of oxidative stress, response to stimulus
and kinase activity. Most genes related to oxidation-reduction terms in roots
were early triggered in DT (T75) compared to DS (T150) suggestive of a mechanism
of tolerance by reducing the damage from ROS. Among the KEGG enriched by DEGs
up-regulated in DT leaves, two related to the formation of Sulfur-containing
compounds, which are known for their involvement in tolerance to abiotic
stresses, were common to all treatments. Through qPCR, 88.64% of the DEGs were
validated. A total of 151,283 variants were identified and functional effects
estimated for 85,780. The raw data files were submitted to the NCBI database. A
transcriptome map revealed new genes and isoforms under drought. These results
supports a better understanding of the drought tolerance mechanisms in
beans.
Collapse
Affiliation(s)
- Wendell Jacinto Pereira
- Universidade Federal de Goiás, Instituto de Ciências Biológicas, Goiânia, GO, Brazil.,Universidade de Brasília, Departamento de Biologia Celular, Brasília, DF, Brazil
| | | | | | | | - Sujan Mamidi
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Sérgio Amorim de Alencar
- Universidade Católica de Brasília, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Brasília, DF, Brazil
| | - Anna Cristina Lanna
- EMBRAPA Arroz e Feijão, Rod. GO - 462, Km 12, Santo Antônio de Goiás, GO, Brazil
| | | | - Claudio Brondani
- EMBRAPA Arroz e Feijão, Rod. GO - 462, Km 12, Santo Antônio de Goiás, GO, Brazil
| | | | | | | |
Collapse
|
47
|
AbdElgawad H, Zinta G, Hamed BA, Selim S, Beemster G, Hozzein WN, Wadaan MAM, Asard H, Abuelsoud W. Maize roots and shoots show distinct profiles of oxidative stress and antioxidant defense under heavy metal toxicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 258:113705. [PMID: 31864075 DOI: 10.1016/j.envpol.2019.113705] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 11/24/2019] [Accepted: 11/29/2019] [Indexed: 05/04/2023]
Abstract
Heavy metal accumulation in agricultural land causes crop production losses worldwide. Metal homeostasis within cells is tightly regulated. However, homeostasis breakdown leads to accumulation of reactive oxygen species (ROS). Overall plant fitness under stressful environment is determined by coordination between roots and shoots. But little is known about organ specific responses to heavy metals, whether it depends on the metal category (redox or non-redox reactive) and if these responses are associated with heavy metal accumulation in each organ or there are driven by other signals. Maize seedlings were subjected to sub-lethal concentrations of four metals (Zn, Ni, Cd and Cu) individually, and were quantified for growth, ABA level, and redox alterations in roots, mature leaves (L1,2) and young leaves (L3,4) at 14 and 21 days after sowing (DAS). The treatments caused significant increase in endogenous metal levels in all organs but to different degrees, where roots showed the highest levels. Biomass was significantly reduced under heavy metal stress. Although old leaves accumulated less heavy metal content than root, the reduction in their biomass (FW) was more pronounced. Metal exposure triggered ABA accumulation and stomatal closure mainly in older leaves, which consequently reduced photosynthesis. Heavy metals induced oxidative stress in the maize organs, but to different degrees. Tocopherols, polyphenols and flavonoids increased specifically in the shoot under Zn, Ni and Cu, while under Cd treatment they played a minor role. Under Cu and Cd stress, superoxide dismutase (SOD) and dehydroascorbate reductase (DHAR) activities were induced in the roots, however ascorbate peroxidase (APX) activity was only increased in the older leaves. Overall, it can be concluded that root and shoot organs specific responses to heavy metal toxicity are not only associated with heavy metal accumulation and they are specialized at the level of antioxidants to cope with.
Collapse
Affiliation(s)
- Hamada AbdElgawad
- Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, Belgium; Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Gaurav Zinta
- Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, Belgium; Center of Excellence Plants and Ecosystems (PLECO), Department of Biology, University of Antwerp, Belgium; Shanghai Center for Plant Stress Biology, Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Badreldin A Hamed
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Samy Selim
- Microbiology and Botany Department, Faculty of Science, Suez Canal University, Ismailia, P.O. 41522, Egypt
| | - Gerrit Beemster
- Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, Belgium
| | - Wael N Hozzein
- Bioproducts Research Chair, Zoology Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia; Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Mohammed A M Wadaan
- Bioproducts Research Chair, Zoology Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Han Asard
- Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, Belgium
| | - Walid Abuelsoud
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, P.O. 12613, Egypt.
| |
Collapse
|
48
|
Vítek P, Veselá B, Klem K. Spatial and Temporal Variability of Plant Leaf Responses Cascade after PSII Inhibition: Raman, Chlorophyll Fluorescence and Infrared Thermal Imaging. SENSORS (BASEL, SWITZERLAND) 2020; 20:E1015. [PMID: 32069965 PMCID: PMC7070318 DOI: 10.3390/s20041015] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/05/2020] [Accepted: 02/11/2020] [Indexed: 01/14/2023]
Abstract
The use of photosystem II (PSII) inhibitors allows simulating cascade of defense and damage responses, including the oxidative stress. In our study, PSII inhibiting herbicide metribuzin was applied to the leaf of the model plant species Chenopodium album. The temporally and spatially resolved cascade of defense responses was studied noninvasively at the leaf level by combining three imaging approaches: Raman spectroscopy as a principal method, corroborated by chlorophyll a fluorescence (ChlF) and infrared thermal imaging. ChlF imaging show time-dependent transport in acropetal direction through veins and increase of area affected by metribuzin and demonstrated the ability to distinguish between fast processes at the level of electron transport (1 - Vj) from slow processes at the level of non-photochemical energy dissipation (NPQ) or maximum efficiency of PSII photochemistry (Fv/Fm). The high-resolution resonance Raman images show zones of local increase of carotenoid signal 72 h after the herbicide application, surrounding the damaged tissue, which points to the activation of defense mechanisms. The shift in the carotenoid band indicates structural changes in carotenoids. Finally, the increase of leaf temperature in the region surrounding the spot of herbicide application and expanding in the direction to the leaf tip proves the metribuzin effect on slow stomata closure.
Collapse
Affiliation(s)
- Petr Vítek
- Global Change Research Institute of the Czech Academy of Sciences, Bělidla 986/4a, 603 00 Brno, Czech Republic; (B.V.); (K.K.)
| | | | | |
Collapse
|
49
|
Gu J, Ma S, Zhang Y, Wang D, Cao S, Wang ZY. Genome-Wide Identification of Cassava Serine/Arginine-Rich Proteins: Insights into Alternative Splicing of Pre-mRNAs and Response to Abiotic Stress. PLANT & CELL PHYSIOLOGY 2020; 61:178-191. [PMID: 31596482 DOI: 10.1093/pcp/pcz190] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 09/26/2019] [Indexed: 05/08/2023]
Abstract
Serine/arginine-rich (SR) proteins have an essential role in the splicing of pre-messenger RNA (pre-mRNA) in eukaryote. Pre-mRNA with introns can be alternatively spliced to generate multiple transcripts, thereby increasing adaptation to the external stress conditions in planta. However, pre-mRNA of SR proteins can also be alternatively spliced in different plant tissues and in response to diverse stress treatments, indicating that SR proteins might be involved in regulating plant development and adaptation to environmental changes. We identified and named 18 SR proteins in cassava and systematically studied their splicing and transcriptional changes under tissue-specific and abiotic stress conditions. Fifteen out of 18 SR genes showed alternative splicing in the tissues. 45 transcripts were found from 18 SR genes under normal conditions, whereas 55 transcripts were identified, and 21 transcripts were alternate spliced in some SR genes under salt stress, suggesting that SR proteins might participate in the plant adaptation to salt stress. We then found that overexpression of MeSR34 in Arabidopsis enhanced the tolerance to salt stress through maintaining reactive oxygen species homeostasis and increasing the expression of calcineurin B-like proteins (CBL)-CBL-interacting protein kinases and osmotic stress-related genes. Therefore, our findings highlight the critical role of cassava SR proteins as regulators of RNA splicing and salt tolerance in planta.
Collapse
Affiliation(s)
- Jinbao Gu
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
- Guangdong Provincial Bioengineering Institute (Guangzhou Sugarcane Industry Research Institute), Guangzhou, Guangdong 510316, China
| | - Siya Ma
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570228, China
| | - Yuna Zhang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570228, China
| | - Dong Wang
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi Province, College of Life Science, Nanchang University, Jiangxi 330031, China
| | - Shuqing Cao
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Zhen-Yu Wang
- Guangdong Provincial Bioengineering Institute (Guangzhou Sugarcane Industry Research Institute), Guangzhou, Guangdong 510316, China
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570228, China
| |
Collapse
|
50
|
Li Q, Wu Q, Wang A, Lv B, Dong Q, Yao Y, Wu Q, Zhao H, Li C, Chen H, Wang X. Tartary buckwheat transcription factor FtbZIP83 improves the drought/salt tolerance of Arabidopsis via an ABA-mediated pathway. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 144:312-323. [PMID: 31606716 DOI: 10.1016/j.plaphy.2019.10.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/26/2019] [Accepted: 10/01/2019] [Indexed: 05/07/2023]
Abstract
Plants are subjected to a variety of abiotic stresses during their lifetime, and drought and salt stress are some of the main causes of reduced crop yields. Previous studies have shown that AREB/ABFs within bZIP transcription factors are involved in plant drought and salt stress responses in an ABA-dependent manner. However, the properties and functions of AREB/ABFs in Fagopyrum tataricum, a cereal with good resistance to abiotic stresses, are poorly understood. In this study, a gene encoding an AREB/ABF, designated FtbZIP83, was first isolated from Tartary buckwheat. Expression analysis in Tartary buckwheat indicated that FtbZIP83 was significantly induced by abscisic acid (ABA), NaCl and polyethylene glycol (PEG). The overexpression of FtbZIP83 in Arabidopsis resulted in increased drought/salt tolerance, which was attributed not only to higher proline (Pro) contents and antioxidant enzyme activity in transgenic lines compared with controls but also to the lower reactive oxygen species (ROS) accumulation and malondialdehyde (MDA) content. In addition, we found that FtbZIP83 was able to respond to drought and salt stress by upregulating the transcript abundance of downstream ABA-inducible gene. Furthermore, promoter sequence analysis showed that ABREs were present, and the activity of the FtbZIP83 promoter in transgenic Arabidopsis after drought stress was significantly higher than that under normal conditions. Based on the potential signalling pathways involved in AREB/ABFs, we also screened for the interaction protein FtSnRK2.6/2.3, which may phosphorylate FtbZIP83. Collectively, these results provide evidence that FtbZIP83, as a positive regulator, responds to drought/salt stress via an ABA-dependent signalling pathway composed of SnRK2-AREB/ABF.
Collapse
Affiliation(s)
- Qi Li
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, Sichuan Province, China
| | - Qi Wu
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, Sichuan Province, China
| | - Anhu Wang
- Xichang College, 615013, Xichang, Sichuan, China
| | - Bingbing Lv
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, Sichuan Province, China
| | - Qixin Dong
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, Sichuan Province, China
| | - Yingjun Yao
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, Sichuan Province, China
| | - Qiong Wu
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, Sichuan Province, China
| | - Haixia Zhao
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, Sichuan Province, China
| | - Chenglei Li
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, Sichuan Province, China
| | - Hui Chen
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, Sichuan Province, China
| | - XiaoLi Wang
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, Sichuan Province, China.
| |
Collapse
|