1
|
Kaneko T, Gould N, Campbell D, Clearwater MJ. Isohydric stomatal behaviour alters fruit vascular flows and minimizes fruit size reductions in drought-stressed 'Hass' avocado (Persea americana Mill.). ANNALS OF BOTANY 2024; 133:969-982. [PMID: 38366557 PMCID: PMC11089262 DOI: 10.1093/aob/mcae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 02/12/2024] [Indexed: 02/18/2024]
Abstract
BACKGROUND AND AIMS Plant water status is important for fruit development, because many fleshy fruits contain large amounts of water. However, there is no information on vascular flows of Persea americana 'Hass' avocado. The aims of this research were to explore the impact of drought stress on the water relationships of the 'Hass' avocado plant and its fruit growth. METHODS Well-watered and water-stressed 'Hass' avocado plants were compared. Over 4 weeks, water flows through the shoot and fruit pedicel were monitored using external sap flow gauges. Fruit diameter was monitored using linear transducers, and stomatal conductance (gs), photosynthesis (A) and leaf and stem water potentials (Ѱleaf and Ѱstem) were measured to assess the response of the plants to water supply. KEY RESULTS In well-watered conditions, the average water inflow to the shoot was 72 g day-1. Fruit water inflow was 2.72 g day-1, but there was water loss of 0.37 g day-1 caused by the outflow (loss back into the tree) through the vascular tissues and 1.06 g day-1 from the fruit skin. Overall, fruit volume increased by 1.4 cm3 day-1. In contrast, water flow into fruit of water-stressed plants decreased to 1.88 g day-1, with the outflow increasing to 0.61 g day-1. As a result, increases in fruit volume were reduced to 0.4 cm3 day-1. The values of A, gs and sap flow to shoots were also reduced during drought conditions. Changes in the hourly time-courses of pedicel sap flow, fruit volume and stem water potential during drought suggest that the stomatal response prevented larger increases in outflow from the fruit. Following re-watering, a substantial recovery in growth rate was observed. CONCLUSIONS In summary, a reduction in growth of avocado fruit was observed with induced water deficit, but the isohydric stomatal behaviour of the leaves helped to minimize negative changes in water balance. Also, there was substantial recovery after re-watering, hence the short-term water stress did not decrease avocado fruit size. Negative impacts might appear if the drought treatment were prolonged.
Collapse
Affiliation(s)
- Teruko Kaneko
- The New Zealand Institute for Plant and Food Research Ltd, Hawke’s Bay Research Centre, Havelock North, New Zealand
- School of Science, University of Waikato, Hamilton, New Zealand
| | - Nick Gould
- The New Zealand Institute for Plant and Food Research Ltd, Te Puke Research Centre, Te Puke, New Zealand
| | - David Campbell
- School of Science, University of Waikato, Hamilton, New Zealand
| | | |
Collapse
|
2
|
Hernandez-Santana V, Perez-Arcoiza A, Gomez-Jimenez MC, Diaz-Espejo A. Disentangling the link between leaf photosynthesis and turgor in fruit growth. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:1788-1801. [PMID: 34250661 DOI: 10.1111/tpj.15418] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/25/2021] [Accepted: 07/08/2021] [Indexed: 05/24/2023]
Abstract
Despite the importance of understanding plant growth, the mechanisms underlying how plant and fruit growth declines during drought remain poorly understood. Specifically, it remains unresolved whether carbon or water factors are responsible for limiting growth as drought progresses. We examine questions regarding the relative importance of water and carbon to fruit growth depending on the water deficit level and the fruit growth stage by measuring fruit diameter, leaf photosynthesis, and a proxy of cell turgor in olive (Olea europaea). Flow cytometry was also applied to determine the fruit cell division stage. We found that photosynthesis and turgor were related to fruit growth; specifically, the relative importance of photosynthesis was higher during periods of more intense cell division, while turgor had higher relative importance in periods where cell division comes close to ceasing and fruit growth is dependent mainly on cell expansion. This pattern was found regardless of the water deficit level, although turgor and growth ceased at more similar values of leaf water potential than photosynthesis. Cell division occurred even when fruit growth seemed to stop under water deficit conditions, which likely helped fruits to grow disproportionately when trees were hydrated again, compensating for periods with low turgor. As a result, the final fruit size was not severely penalized. We conclude that carbon and water processes are able to explain fruit growth, with importance placed on the combination of cell division and expansion. However, the major limitation to growth is turgor, which adds evidence to the sink limitation hypothesis.
Collapse
Affiliation(s)
- Virginia Hernandez-Santana
- Irrigation and Ecophysiology Group, Instituto de Recursos Naturales y Agrobiología (IRNAS), Consejo Superior de Investigaciones Científicas (CSIC), Avda. Reina Mercedes, 41012, Seville, Spain
- Laboratory of Plant Molecular Ecophysiology, Instituto de Recursos Naturales y Agrobiología (IRNAS), Consejo Superior de Investigaciones Científicas (CSIC), Avda. Reina Mercedes, 41012, Seville, Spain
| | - Adrián Perez-Arcoiza
- Irrigation and Ecophysiology Group, Instituto de Recursos Naturales y Agrobiología (IRNAS), Consejo Superior de Investigaciones Científicas (CSIC), Avda. Reina Mercedes, 41012, Seville, Spain
| | - Maria C Gomez-Jimenez
- Plant Physiology, Faculty of Science, University of Extremadura, Avda de Elvas s/n, 06006, Badajoz, Spain
| | - Antonio Diaz-Espejo
- Irrigation and Ecophysiology Group, Instituto de Recursos Naturales y Agrobiología (IRNAS), Consejo Superior de Investigaciones Científicas (CSIC), Avda. Reina Mercedes, 41012, Seville, Spain
- Laboratory of Plant Molecular Ecophysiology, Instituto de Recursos Naturales y Agrobiología (IRNAS), Consejo Superior de Investigaciones Científicas (CSIC), Avda. Reina Mercedes, 41012, Seville, Spain
| |
Collapse
|
3
|
Hou X, Li H, Zhang W, Yao Z, Wang Y, Du T. Water transport in fleshy fruits: Research advances, methodologies, and future directions. PHYSIOLOGIA PLANTARUM 2021; 172:2203-2216. [PMID: 34050530 DOI: 10.1111/ppl.13468] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 04/24/2021] [Accepted: 05/20/2021] [Indexed: 06/12/2023]
Abstract
Fruits are reproductive organs in flowering plants and the harvested products of many agricultural crops. They play an increasingly important role in the human diet due to their nutritional values. Water is the most abundant component of most fleshy fruits, and it is essential for fruit growth and quality formation. Water is transported to the fruit via the vascular system (xylem and phloem) and lost to the air through the fruit surface due to transpiration. This minireview presents a framework for understanding water transport in fleshy fruits along with brief introductions of key methodologies used in this research field. We summarize the advances in the research on the patterns of water flow into and out of the fruit over development and under different environmental conditions and cultural practices. We review the key findings on fruit transpiration, xylem transport, phloem transport, and the coordination of water flows in maintaining fruit water balance. We also summarize research on post-vascular water transport mediated by aquaporins in fruits. More efforts are needed to elucidate the mechanisms by which different environmental conditions impact fruit water transport at the micro-level and to better understand the physiological implications of the coordination of water flows. Incorporating fruit water transport into the research area of plant hydraulics will provide new insights into water transport in the soil-plant-atmosphere continuum.
Collapse
Affiliation(s)
- Xuemin Hou
- Center for Agricultural Water Research in China, China Agricultural University, Beijing, China
| | - Hao Li
- Center for Agricultural Water Research in China, China Agricultural University, Beijing, China
| | - Wendong Zhang
- Center for Agricultural Water Research in China, China Agricultural University, Beijing, China
| | - Zhenzhu Yao
- Center for Agricultural Water Research in China, China Agricultural University, Beijing, China
| | - Yaosheng Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Taisheng Du
- Center for Agricultural Water Research in China, China Agricultural University, Beijing, China
| |
Collapse
|
4
|
Winkler A, Knoche M. Xylem, phloem and transpiration flows in developing European plums. PLoS One 2021; 16:e0252085. [PMID: 34015019 PMCID: PMC8136697 DOI: 10.1371/journal.pone.0252085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/09/2021] [Indexed: 11/18/2022] Open
Abstract
Neck shrivel is a quality disorder of European plum (Prunus × domestica L.). It has been suggested that backflow in the xylem (from fruit to tree) could contribute to the incidence of neck shrivel in plum. The objective was to quantify rates of xylem, phloem and of transpiration flow in developing plum fruit. Using linear variable displacement transducers, changes in fruit volume were recorded 1) in un-treated control fruit, 2) in fruit that had their pedicels steam-girdled (phloem interrupted, xylem still functional) and 3) in detached fruit, left in the canopy (xylem and phloem interrupted). Xylem flow rates were occasionally negative in the early hours after sunrise, indicating xylem sap backflow from fruit to tree. Later in the day, xylem flows were positive and generally higher in daytime and lower at night. Significant phloem flow occurred in daytime, but ceased after sunset. During stage II (but not during stage III), the rates of xylem flow and transpiration were variable and closely related to atmospheric vapor pressure deficit. The relative contribution of xylem inflow to total sap inflow averaged 79% during stage II, decreasing to 25% during stage III. In contrast, phloem sap inflow averaged 21% of total sap inflow during stage II, increasing to 75% in stage III. Our results indicate that xylem backflow occurs early in the day. However, xylem backflow rates are considered too low to significantly contribute to the incidence of neck shrivel.
Collapse
Affiliation(s)
- Andreas Winkler
- Institute for Horticultural Production Systems, Leibniz-University Hannover, Hannover, Germany
| | - Moritz Knoche
- Institute for Horticultural Production Systems, Leibniz-University Hannover, Hannover, Germany
- * E-mail:
| |
Collapse
|
5
|
Marino G, Scalisi A, Guzmán-Delgado P, Caruso T, Marra FP, Lo Bianco R. Detecting Mild Water Stress in Olive with Multiple Plant-Based Continuous Sensors. PLANTS (BASEL, SWITZERLAND) 2021; 10:131. [PMID: 33440632 PMCID: PMC7827840 DOI: 10.3390/plants10010131] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/31/2020] [Accepted: 01/08/2021] [Indexed: 02/07/2023]
Abstract
A comprehensive characterization of water stress is needed for the development of automated irrigation protocols aiming to increase olive orchard environmental and economical sustainability. The main aim of this study is to determine whether a combination of continuous leaf turgor, fruit growth, and sap flow responses improves the detection of mild water stress in two olive cultivars characterized by different responses to water stress. The sensitivity of the tested indicators to mild stress depended on the main mechanisms that each cultivar uses to cope with water deficit. One cultivar showed pronounced day to day changes in leaf turgor and fruit relative growth rate in response to water withholding. The other cultivar reduced daily sap flows and showed a pronounced tendency to reach very low values of leaf turgor. Based on these responses, the sensitivity of the selected indicators is discussed in relation to drought response mechanisms, such as stomatal closure, osmotic adjustment, and tissue elasticity. The analysis of the daily dynamics of the monitored parameters highlights the limitation of using non-continuous measurements in drought stress studies, suggesting that the time of the day when data is collected has a great influence on the results and consequent interpretations, particularly when different genotypes are compared. Overall, the results highlight the need to tailor plant-based water management protocols on genotype-specific physiological responses to water deficit and encourage the use of combinations of plant-based continuously monitoring sensors to establish a solid base for irrigation management.
Collapse
Affiliation(s)
- Giulia Marino
- Department of Plant Sciences, University of California, Davis, CA 95616, USA;
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, 90133 Palermo, Italy; (A.S.); (T.C.); (F.P.M.)
| | - Alessio Scalisi
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, 90133 Palermo, Italy; (A.S.); (T.C.); (F.P.M.)
- Agriculture Victoria, Department of Jobs, Precincts and Regions, Tatura, VIC 3616, Australia
| | | | - Tiziano Caruso
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, 90133 Palermo, Italy; (A.S.); (T.C.); (F.P.M.)
| | - Francesco Paolo Marra
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, 90133 Palermo, Italy; (A.S.); (T.C.); (F.P.M.)
| | - Riccardo Lo Bianco
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, 90133 Palermo, Italy; (A.S.); (T.C.); (F.P.M.)
| |
Collapse
|
6
|
Corelli Grappadelli L, Morandi B, Manfrini L, O'Connell M. Apoplasmic and simplasmic phloem unloading mechanisms: Do they co-exist in Angeleno plums under demanding environmental conditions? JOURNAL OF PLANT PHYSIOLOGY 2019; 237:104-110. [PMID: 31055228 DOI: 10.1016/j.jplph.2019.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 04/05/2019] [Accepted: 04/08/2019] [Indexed: 05/13/2023]
Abstract
Biophysical fruit growth depends on a balance among the vascular and transpiration flows entering/exiting the fruit via phloem, xylem and through the epidermis. There is no information on vascular flows of Japanese plums, a species characterized by high-sugar content of its fruit at harvest. Vascular flows of Angeleno plums were monitored by fruit gauges during late fruit development, under the dry environment of the Goulburn Valley, Victoria, Australia. Phloem, xylem flows and skin transpiratory losses were determined, as well as diurnal leaf, stem and fruit pressure potentials. Fruit seasonal development, skin conductance and dry matter accumulation were also monitored. Fruit grew following a double-sigmoid pattern, but fruit size increased only 3.1 g over the last 3 weeks of development. Fruit grew very little in the morning, primarily due to phloem inflows (0.05 g fruit-1hr-1), while water left the fruit via the xylem. Negligible skin transpiration was recorded for vapour pressure deficit (VPD) values below 3 kPa. This growth pattern, in the absence of skin transpiration, suggests apoplastic phloem unloading. However, at VPD values over 3 kPa (e.g. from early afternoon to a peak around 18:00 h), transpiratory losses through the skin (up to 0.25 g fruit-1hr-1) caused fruit to shrink, leading to enhanced phloem and xylem inflows (ca. 0.15 g fruit-1hr-1), a scenario that would correspond to symplastic phloem unloading. Over 24 h the fruit showed a slightly negative total growth, consistent with fruit growth measured in situ during the season at weekly intervals. A few fruit species are known to alter their phloem unloading mechanism, switching from symplastic to apoplastic during the season. Our data support the coexistence in Japanese plum of different phloem unloading strategies within the same day.
Collapse
Affiliation(s)
| | - Brunella Morandi
- Dept. of Agricultural and Food Sciences, University of Bologna, V.le Fanin 46, 40127, Bologna, Italy.
| | - Luigi Manfrini
- Dept. of Agricultural and Food Sciences, University of Bologna, V.le Fanin 46, 40127, Bologna, Italy.
| | - Mark O'Connell
- Department of Jobs, Precincts and Regions, 255 Ferguson Rd, Tatura, Victoria, 3616, Australia. Mark.O'
| |
Collapse
|
7
|
Salmon Y, Dietrich L, Sevanto S, Hölttä T, Dannoura M, Epron D. Drought impacts on tree phloem: from cell-level responses to ecological significance. TREE PHYSIOLOGY 2019; 39:173-191. [PMID: 30726983 DOI: 10.1093/treephys/tpy153] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 12/03/2018] [Accepted: 01/25/2019] [Indexed: 06/09/2023]
Abstract
On-going climate change is increasing the risk of drought stress across large areas worldwide. Such drought events decrease ecosystem productivity and have been increasingly linked to tree mortality. Understanding how trees respond to water shortage is key to predicting the future of ecosystem functions. Phloem is at the core of the tree functions, moving resources such as non-structural carbohydrates, nutrients, and defence and information molecules across the whole plant. Phloem function and ability to transport resources is tightly controlled by the balance of carbon and water fluxes within the tree. As such, drought is expected to impact phloem function by decreasing the amount of available water and new photoassimilates. Yet, the effect of drought on the phloem has received surprisingly little attention in the last decades. Here we review existing knowledge on drought impacts on phloem transport from loading and unloading processes at cellular level to possible effects on long-distance transport and consequences to ecosystems via ecophysiological feedbacks. We also point to new research frontiers that need to be explored to improve our understanding of phloem function under drought. In particular, we show how phloem transport is affected differently by increasing drought intensity, from no response to a slowdown, and explore how severe drought might actually disrupt the phloem transport enough to threaten tree survival. Because transport of resources affects other organisms interacting with the tree, we also review the ecological consequences of phloem response to drought and especially predatory, mutualistic and competitive relations. Finally, as phloem is the main path for carbon from sources to sink, we show how drought can affect biogeochemical cycles through changes in phloem transport. Overall, existing knowledge is consistent with the hypotheses that phloem response to drought matters for understanding tree and ecosystem function. However, future research on a large range of species and ecosystems is urgently needed to gain a comprehensive understanding of the question.
Collapse
Affiliation(s)
- Yann Salmon
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, Gustaf Hällströmin katu 2b, University of Helsinki, Helsinki, Finland
- Institute for Atmospheric and Earth System Research/Forest Sciences, Faculty of Agriculture and Forestry, Latokartanonkaari 7, University of Helsinki, Helsinki, Finland
| | - Lars Dietrich
- Department of Environmental Sciences, University of Basel, Schönbeinstrasse 6, Basel, Switzerland
| | - Sanna Sevanto
- Earth and Environmental Sciences Division, Los Alamos National Laboratory, PO Box 1663 MA 495, Los Alamos, NM, USA
| | - Teemu Hölttä
- Institute for Atmospheric and Earth System Research/Forest Sciences, Faculty of Agriculture and Forestry, Latokartanonkaari 7, University of Helsinki, Helsinki, Finland
| | - Masako Dannoura
- Kyoto University, Laboratory of Ecosystem Production and Dynamics, Graduate School of Global Environmental Studies, Kyoto, Japan
- Kyoto University, Laboratory of Forest Utilization, Graduate School of Agriculture, Kyoto, Japan
| | - Daniel Epron
- Université de Lorraine, AgroParisTech, INRA, UMR Silva, Faculté des Sciences et Technologies, Nancy, France
| |
Collapse
|
8
|
Tozzi F, van Hooijdonk BM, Tustin DS, Corelli Grappadelli L, Morandi B, Losciale P, Manfrini L. Photosynthetic Performance and Vegetative Growth in a New Red Leaf Pear: Comparison of Scion Genotypes Using a Complex, Grafted-Plant System. FRONTIERS IN PLANT SCIENCE 2018; 9:404. [PMID: 29675027 PMCID: PMC5895778 DOI: 10.3389/fpls.2018.00404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 03/14/2018] [Indexed: 06/08/2023]
Abstract
Leaf photosynthetic performance of a new red-skinned inter-specific hybrid pear variety called 'PremP009' (PIQA®BOO®) is presently unknown and therefore was compared to the Asian pear variety 'Hosui'. The seasonal growth patterns and the final dry matter accumulation of all tree components were also investigated for both genotypes in their first year of growth after grafting. Leaf gas exchange and tree growth comparisons were assessed using an innovative grafted plant system, which involved a bi-axis tree with the presence of combinations of identical or mixed (one of each genotype) 'PremP009' and 'Hosui' scion genotypes grafted onto a single clonal rootstock ('Buerre Hardy' BA29). This experimental grafted plant system allowed a technique for comparing leaf photosynthesis of two scion genotypes on the same root system, thereby avoiding between-plant differences in plant water relations. 'PremP009' had higher leaf photosynthesis and higher leaf mass compared with 'Hosui.' However, by the end of the first year of growth, primary shoots of 'PremP009' were shorter with fewer nodes, corresponding to less dry weight gain in primary shoot leaves and stems. This vegetative behavior of 'PremP009' is likely a response to the smaller individual leaf area in the early season affecting light capture that greatly limits dry matter accumulation of young trees. HIGHLIGHTS - The bi-axis grafting technique never showed before in a scientific paper presents a strategic system for a comparative study of red/green leaf photosynthetic performance and related dry matter partitioning.
Collapse
Affiliation(s)
- Francesca Tozzi
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, University of Bologna, Bologna, Italy
| | - Ben M. van Hooijdonk
- The New Zealand Institute for Plant and Food Research Ltd., Hawkes's Bay, New Zealand
| | - Donald S. Tustin
- The New Zealand Institute for Plant and Food Research Ltd., Hawkes's Bay, New Zealand
| | | | - Brunella Morandi
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, University of Bologna, Bologna, Italy
| | - Pasquale Losciale
- Consiglio per la Ricerca e l'Analisi dell'Economia Agraria, Centro di Ricerca Agricoltura e Ambiente, Bari, Italy
| | - Luigi Manfrini
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, University of Bologna, Bologna, Italy
| |
Collapse
|
9
|
Van de Wal BAE, Windt CW, Leroux O, Steppe K. Heat girdling does not affect xylem integrity: an in vivo magnetic resonance imaging study in the tomato peduncle. THE NEW PHYTOLOGIST 2017; 215:558-568. [PMID: 28543545 DOI: 10.1111/nph.14610] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 04/07/2017] [Indexed: 05/13/2023]
Abstract
Heat girdling is a method to estimate the relative contribution of phloem vs xylem water flow to fruit growth. The heat girdling process is assumed to destroy all living tissues, including the phloem, without affecting xylem conductivity. However, to date, the assumption that xylem is not affected by heat girdling remains unproven. In this study, we used in vivo magnetic resonance imaging (MRI) velocimetry to test if heat girdling can cause xylem vessels to embolize or affect xylem water flow characteristics in the peduncle of tomato (Solanum lycopersicum cv Dirk). Anatomical and MRI data indicated that, at the site of girdling, all living tissues were disrupted, but that the functionality of the xylem remained unchanged. MRI velocimetry showed that the volume flow through the secondary xylem was not impeded by heat girdling in either the short or the long term (up to 91 h after girdling). This study provides support for the hypothesis that in the tomato peduncle the integrity and functionality of the xylem remain unaffected by heat girdling. It therefore confirms the validity of the heat girdling technique as a means to estimate relative contributions of xylem and phloem water flow to fruit growth.
Collapse
Affiliation(s)
- Bart A E Van de Wal
- Laboratory of Plant Ecology, Department of Applied Ecology and Environmental Biology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Carel W Windt
- IBG-2: Plant Sciences, Institute of Bio- and Geosciences, Forschungszentrum Jülich, Wilhelm-Johnen-Straβe, D-52428, Jülich, Germany
| | - Olivier Leroux
- Department of Biology, Faculty of Sciences, Ghent University, K L Ledeganckstraat 35, B-9000, Ghent, Belgium
| | - Kathy Steppe
- Laboratory of Plant Ecology, Department of Applied Ecology and Environmental Biology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| |
Collapse
|
10
|
Pringle EG. Integrating plant carbon dynamics with mutualism ecology. THE NEW PHYTOLOGIST 2016; 210:71-75. [PMID: 26414800 DOI: 10.1111/nph.13679] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 07/28/2015] [Indexed: 06/05/2023]
Abstract
Plants reward microbial and animal mutualists with carbohydrates to obtain nutrients, defense, pollination, and dispersal. Under a fixed carbon budget, plants must allocate carbon to their mutualists at the expense of allocation to growth, reproduction, or storage. Such carbon trade-offs are indirectly expressed when a plant exhibits reduced growth or fecundity in the presence of its mutualist. Because carbon regulates the costs of all plant mutualisms, carbon dynamics are a common platform for integrating these costs in the face of ecological complexity and context dependence. The ecophysiology of whole-plant carbon allocation could thus elucidate the ecology and evolution of plant mutualisms. If mutualisms are costly to plants, then they must be important but frequently underestimated sinks in the terrestrial carbon cycle.
Collapse
Affiliation(s)
- Elizabeth G Pringle
- Michigan Society of Fellows, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109, USA
- Present address: Max Planck Institute for Chemical Ecology, Beutenberg Campus, Hans-Knoell-Strasse 8, Jena, 07745, Germany
| |
Collapse
|
11
|
Losciale P, Manfrini L, Morandi B, Pierpaoli E, Zibordi M, Stellacci AM, Salvati L, Corelli Grappadelli L. A multivariate approach for assessing leaf photo-assimilation performance using the IPL index. PHYSIOLOGIA PLANTARUM 2015; 154:609-20. [PMID: 25625618 DOI: 10.1111/ppl.12328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 01/16/2015] [Accepted: 01/20/2015] [Indexed: 05/18/2023]
Abstract
The detection of leaf functionality is of pivotal importance for plant scientists from both theoretical and practical point of view. Leaves are the sources of dry matter and food, and they sequester CO2 as well. Under the perspective of climate change and primary resource scarcity (i.e. water, fertilizers and soil), assessing leaf photo-assimilation in a rapid but comprehensive way can be helpful for understanding plant behavior under different environmental conditions and for managing the agricultural practices properly. Several approaches have been proposed for this goal, however, some of them resulted very efficient but little reliable. On the other hand, the high reliability and exhaustive information of some models used for estimating net photosynthesis are at the expense of time and ease of measurement. The present study employs a multivariate statistical approach to assess a model aiming at estimating leaf photo-assimilation performance, using few and easy-to-measure variables. The model, parameterized for apple and pear and subjected to internal and external cross validation, involves chlorophyll fluorescence, carboxylative activity of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCo), air and leaf temperature. Results prove that this is a fair-predictive model allowing reliable variable assessment. The dependent variable, called IPL index, was found strongly and linearly correlated to net photosynthesis. IPL and the model behind it seem to be (1) reliable, (2) easy and fast to measure and (3) usable in vivo and in the field for such cases where high amount of data is required (e.g. precision agriculture and phenotyping studies).
Collapse
Affiliation(s)
- Pasquale Losciale
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CRA), Research Unit for Cropping Systems in Dry Environments, Bari, Italy
| | - Luigi Manfrini
- Department of Agricultural Science, University of Bologna, Bologna, Italy
| | - Brunella Morandi
- Department of Agricultural Science, University of Bologna, Bologna, Italy
| | - Emanuele Pierpaoli
- Department of Agricultural Science, University of Bologna, Bologna, Italy
| | - Marco Zibordi
- Department of Agricultural Science, University of Bologna, Bologna, Italy
| | - Anna Maria Stellacci
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CRA), Research Unit for Cropping Systems in Dry Environments, Bari, Italy
| | - Luca Salvati
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CRA), Research Centre for Soil-Plant System studies, Rome, Italy
| | | |
Collapse
|