1
|
Qiao M, Lv S, Qiao Y, Lin W, Gao Z, Tang X, Yang Z, Chen J. Exogenous Streptomyces spp. enhance the drought resistance of naked oat ( Avena nuda) seedlings by augmenting both the osmoregulation mechanisms and antioxidant capacities. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23312. [PMID: 38588711 DOI: 10.1071/fp23312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/22/2024] [Indexed: 04/10/2024]
Abstract
Drought is a major obstacle to the development of naked oat industry. This work investigated mechanisms by which exogenous Streptomyces albidoflavus T4 and Streptomyces rochei D74 improved drought tolerance in naked oat (Avena nuda ) seedlings. Results showed that in the seed germination experiment, germination rate, radicle and hypocotyl length of naked oat seeds treated with the fermentation filtrate of T4 or D74 under PEG induced drought stress increased significantly. In the hydroponic experiment, the shoot and root dry weights of oat seedlings increased significantly when treated with the T4 or D74 fermentation filtrate under the 15% PEG induced drought stress (S15). Simultaneously, the T4 treatment also significantly increased the surface area, volume, the number of tips and the root activity of oat seedlings. Both T4 and D74 treatments elicited significant increases in proline and soluble sugar contents, as well as the catalase and peroxidase activities in oat seedlings. The results of comprehensive drought resistance capacity (CDRC) calculation of oat plants showed that the drought resistance of oat seedlings under the T4 treatment was better than that under the D74 treatment, and the effect was better under higher drought stress (S15). Findings of this study may provide a novel and effective approach for enhancing plant defenses against drought stress.
Collapse
Affiliation(s)
- Meixia Qiao
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Siyuan Lv
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Yuejing Qiao
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi 030801, China; and Ministerial and Provincial Co-Innovation Centre for Endemic Crops Production with High-quality and Efficiency in Loess Plateau, Taigu, Shanxi 030801, China
| | - Wen Lin
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi 030801, China; and Ministerial and Provincial Co-Innovation Centre for Endemic Crops Production with High-quality and Efficiency in Loess Plateau, Taigu, Shanxi 030801, China
| | - Zhiqiang Gao
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi 030801, China; and Ministerial and Provincial Co-Innovation Centre for Endemic Crops Production with High-quality and Efficiency in Loess Plateau, Taigu, Shanxi 030801, China
| | - Xiwang Tang
- Hebei Key Laboratory of Agroecological Safety, Hebei University of Environmental Engineering, Qinhuangdao, Hebei 066102, China
| | - Zhenping Yang
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi 030801, China; and Ministerial and Provincial Co-Innovation Centre for Endemic Crops Production with High-quality and Efficiency in Loess Plateau, Taigu, Shanxi 030801, China
| | - Jie Chen
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi 030801, China; and Ministerial and Provincial Co-Innovation Centre for Endemic Crops Production with High-quality and Efficiency in Loess Plateau, Taigu, Shanxi 030801, China
| |
Collapse
|
2
|
Ortiz J, Dias N, Alvarado R, Soto J, Sanhueza T, Rabert C, Jorquera M, Arriagada C. N- acyl homoserine lactones (AHLs) type signal molecules produced by rhizobacteria associated with plants that growing in a metal(oids) contaminated soil: A catalyst for plant growth. Microbiol Res 2024; 281:127606. [PMID: 38277718 DOI: 10.1016/j.micres.2024.127606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/23/2023] [Accepted: 01/08/2024] [Indexed: 01/28/2024]
Abstract
The present study explores the potential of rhizobacteria isolated from Baccharis linearis and Solidago chilensis in metal(loid)-contaminated soil for producing N-acyl-homoserine lactones (AHLs)-type signal molecules and promoting plant growth. A total of 42 strains were isolated, four demonstrating the production of AHL-type signal molecules. Based on 16S rRNA gene sequencing analyses and MALDI-TOF analyses, these four isolates were identified as belonging to the Pseudomonas genus, specifically P. brassicacearum, P. frederickberguensis, P. koreensis, and P. orientalis. The four AHL-producing strains were evaluated for metal(loid)s tolerance, their plant growth promotion traits, AHL quantification, and their impact on in vitro Lactuca sativa plant growth. The study found that four strains exhibited high tolerance to metal(loid)s, particularly As, Cu, and Zn. Additionally, plant growth-promoting traits were detected in AHL-producing bacteria, such as siderophore production, ammonia production, ACC deaminase activity, and P solubilization. Notably, AHL production varied among strains isolated from B. linearis, where C7-HSL and C9-HSL signal molecules were detected, and S. chilensis, where only C7-HSL signal molecules were observed. In the presence of copper, the production of C7-HSL and C9-HSL significantly decreased in B. linearis isolates, while in S. chilensis isolates, C7-HSL production was inhibited. Further, when these strains were inoculated on lettuce seeds and in vitro plants, a significant increase in germination and plant growth was observed. Mainly, the inoculation of P. brassicacearum and P. frederickberguensis led to extensive root hair development, significantly increasing length and root dry weight. Our results demonstrate that rhizospheric strains produce AHL molecules and stimulate plant growth, primarily through root development. However, the presence of copper reduces the production of these molecules, potentially affecting the root development of non-metalloid tolerant plants such as S. chilensis, which would explain its low population in this hostile environment.
Collapse
Affiliation(s)
- Javier Ortiz
- Laboratorio de Biorremediación, Facultad de Ciencias Agropecuarias y Mediambiente, Universidad de La Frontera, Temuco, Chile
| | - Nathalia Dias
- Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile
| | - Roxana Alvarado
- Laboratorio de Biorremediación, Facultad de Ciencias Agropecuarias y Mediambiente, Universidad de La Frontera, Temuco, Chile
| | - Javiera Soto
- Laboratorio de Biorremediación, Facultad de Ciencias Agropecuarias y Mediambiente, Universidad de La Frontera, Temuco, Chile
| | - Tedy Sanhueza
- Laboratorio de Biorremediación, Facultad de Ciencias Agropecuarias y Mediambiente, Universidad de La Frontera, Temuco, Chile
| | - Claudia Rabert
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Temuco, Chile
| | - Milko Jorquera
- Laboratorio de Ecología Microbiana Aplicada (EMALAB), Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco, Chile
| | - César Arriagada
- Laboratorio de Biorremediación, Facultad de Ciencias Agropecuarias y Mediambiente, Universidad de La Frontera, Temuco, Chile.
| |
Collapse
|
3
|
Jalal A, Oliveira CEDS, Rosa PAL, Galindo FS, Teixeira Filho MCM. Beneficial Microorganisms Improve Agricultural Sustainability under Climatic Extremes. Life (Basel) 2023; 13:life13051102. [PMID: 37240747 DOI: 10.3390/life13051102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/08/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
The challenging alterations in climate in the last decades have had direct and indirect influences on biotic and abiotic stresses that have led to devastating implications on agricultural crop production and food security. Extreme environmental conditions, such as abiotic stresses, offer great opportunities to study the influence of different microorganisms in plant development and agricultural productivity. The focus of this review is to highlight the mechanisms of plant growth-promoting microorganisms (especially bacteria and fungi) adapted to environmental induced stresses such as drought, salinity, heavy metals, flooding, extreme temperatures, and intense light. The present state of knowledge focuses on the potential, prospective, and biotechnological approaches of plant growth-promoting bacteria and fungi to improve plant nutrition, physio-biochemical attributes, and the fitness of plants under environmental stresses. The current review focuses on the importance of the microbial community in improving sustainable crop production under changing climatic scenarios.
Collapse
Affiliation(s)
- Arshad Jalal
- Department of Plant Health, Rural Engineering and Soils, Faculty of Engineering, São Paulo State University (UNESP), Av. Brasil 56-Centro, Ilha Solteira 15385-000, SP, Brazil
| | - Carlos Eduardo da Silva Oliveira
- Department of Plant Health, Rural Engineering and Soils, Faculty of Engineering, São Paulo State University (UNESP), Av. Brasil 56-Centro, Ilha Solteira 15385-000, SP, Brazil
| | - Poliana Aparecida Leonel Rosa
- Department of Plant Health, Rural Engineering and Soils, Faculty of Engineering, São Paulo State University (UNESP), Av. Brasil 56-Centro, Ilha Solteira 15385-000, SP, Brazil
| | - Fernando Shintate Galindo
- Faculty of Agricultural Sciences and Technology, São Paulo State University (UNESP), Campus of Dracena, Sao Paulo 17900-000, SP, Brazil
| | - Marcelo Carvalho Minhoto Teixeira Filho
- Department of Plant Health, Rural Engineering and Soils, Faculty of Engineering, São Paulo State University (UNESP), Av. Brasil 56-Centro, Ilha Solteira 15385-000, SP, Brazil
| |
Collapse
|
4
|
Pereira JF, Oliveira ALM, Sartori D, Yamashita F, Mali S. Perspectives on the Use of Biopolymeric Matrices as Carriers for Plant-Growth Promoting Bacteria in Agricultural Systems. Microorganisms 2023; 11:microorganisms11020467. [PMID: 36838432 PMCID: PMC9963413 DOI: 10.3390/microorganisms11020467] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
The subject of this review is to discuss some aspects related to the use of biopolymeric matrices as carriers for plant-growth promoting bacteria (PGPB) in agricultural systems as a possible technological solution for the establishment of agricultural production practices that result in fewer adverse impacts on the environment, reporting some promising and interesting results on the topic. Results from the encapsulation of different PGPB on alginate, starch, chitosan, and gelatin matrices are discussed, systematizing some advances made in this area of knowledge in recent years. Encapsulation of these bacteria has been shown to be an effective method for protecting them from unsuitable environments, and these new products that can act as biofertilizers and biopesticides play an important role in the establishment of a sustainable and modern agriculture. These new products are technological solutions for replacing deleterious chemical fertilizers and pesticides, maintaining soil fertility and stability, and improving crop productivity and food security. Finally, in the near future, scale-up studies will have to provide new information about the large-scale production of these materials as well as their application in the field under different biotic and abiotic stress conditions.
Collapse
Affiliation(s)
- Jéssica F. Pereira
- Department of Biochemistry and Biotechnology, State University of Londrina—UEL, Londrina 86057-970, PR, Brazil
| | - André Luiz M. Oliveira
- Department of Biochemistry and Biotechnology, State University of Londrina—UEL, Londrina 86057-970, PR, Brazil
| | - Daniele Sartori
- Department of Biochemistry and Biotechnology, State University of Londrina—UEL, Londrina 86057-970, PR, Brazil
| | - Fabio Yamashita
- Department of Food Science and Technology, State University of Londrina—UEL, Londrina 86057-970, PR, Brazil
| | - Suzana Mali
- Department of Biochemistry and Biotechnology, State University of Londrina—UEL, Londrina 86057-970, PR, Brazil
- Correspondence: ; Tel.: +55-43-3371-4270; Fax: +55-43-3371-5470
| |
Collapse
|
5
|
Bhat MA, Mishra AK, Jan S, Bhat MA, Kamal MA, Rahman S, Shah AA, Jan AT. Plant Growth Promoting Rhizobacteria in Plant Health: A Perspective Study of the Underground Interaction. PLANTS (BASEL, SWITZERLAND) 2023; 12:629. [PMID: 36771713 PMCID: PMC9919780 DOI: 10.3390/plants12030629] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 01/22/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Plants are affected by various environmental stresses such as high or low temperatures, drought, and high salt levels, which can disrupt their normal cellular functioning and impact their growth and productivity. These stressors offer a major constraint to the morphological, physiological, and biochemical parameters; thereby attributing serious complications in the growth of crops such as rice, wheat, and corn. Considering the strategic and intricate association of soil microbiota, known as plant growth-promoting rhizobacteria (PGPR), with the plant roots, PGPR helps plants to adapt and survive under changing environmental conditions and become more resilient to stress. They aid in nutrient acquisition and regulation of water content in the soil and also play a role in regulating osmotic balance and ion homeostasis. Boosting key physiological processes, they contribute significantly to the alleviation of stress and promoting the growth and development of plants. This review examines the use of PGPR in increasing plant tolerance to different stresses, focusing on their impact on water uptake, nutrient acquisition, ion homeostasis, and osmotic balance, as well as their effects on crop yield and food security.
Collapse
Affiliation(s)
- Mudasir Ahmad Bhat
- Department of Biotechnology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, India
| | - Awdhesh Kumar Mishra
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Saima Jan
- Gene Expression Lab., School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, India
| | - Mujtaba Aamir Bhat
- Gene Expression Lab., School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, India
| | - Mohammad Azhar Kamal
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Safikur Rahman
- Department of Botany, Munshi Singh College, BR Ambedkar Bihar University, Muzaffarpur 845401, India
| | - Ali Asghar Shah
- Department of Biotechnology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, India
| | - Arif Tasleem Jan
- Gene Expression Lab., School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, India
| |
Collapse
|
6
|
Hernández-Huerta J, Tamez-Guerra P, Gomez-Flores R, Delgado-Gardea MCE, Robles-Hernández L, Gonzalez-Franco AC, Infante-Ramirez R. Pepper growth promotion and biocontrol against Xanthomonas euvesicatoria by Bacillus cereus and Bacillus thuringiensis formulations. PeerJ 2023; 11:e14633. [PMID: 36710864 PMCID: PMC9881471 DOI: 10.7717/peerj.14633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 12/04/2022] [Indexed: 01/25/2023] Open
Abstract
Background Bacillus genus has been used in horticultural crops as a biocontrol agent against insect pests, microbial phytopathogens, and plant growth-promoting bacteria (PGPB), representing an alternative to agrochemicals. In particular, B. cereus (Bc) and B. thuringiensis (Bt) have been studied for their fungicidal and insecticidal activities. However, their use as biofertilizer formulations and biocontrol agents against phytopathogenic bacteria is limited. Objective To evaluate Bc and Bt formulations as PGPB and biocontrol agents against the bacterial spot agent Xanthomonas euvesicatoria (Xe) in greenhouse-grown chili peppers. Methods Bc and Bt isolates obtained from soil samples were identified and characterized using conventional biochemical and multiplex PCR identification methods. Bioassays to determine Bc and Bt isolates potential as PGPB were evaluated on chili pepper seedlings in seedbeds. In addition, formulations based on Bc (F-BC26 and F-BC08) and Bt (F-BT24) strains were assessed as biofertilizers on pepper, under controlled conditions. Furthermore, in vitro antagonism assays were performed by confronting Bc and Bt isolate formulations against Xe isolates in direct (foliage) and indirect (resistance induction) phytopathogen biocontrol assays on pepper plants, which were grown under controlled conditions for 15 d after formulations treatment. Results Isolates were identified as Bc and Bt. Formulations significantly improved pepper growth in seedbeds and pots, whereas in vitro bioassays demonstrated the bactericidal effect of Bc and Bt strains against Xe isolates. Furthermore, assays showed significant plant protection by F-BC26, F-BC08, and F-BT24 formulated strains against Xe. Conclusion Results indicated that F-BT24 and F-BC26 isolates formulations promoted pepper growth and protected it against Xanthomonas euvesicatoria.
Collapse
Affiliation(s)
- Jared Hernández-Huerta
- Facultad de Ciencias Agrotecnológicas, Universidad Autónoma de Chihuahua, Chihuahua, México
| | - Patricia Tamez-Guerra
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México
| | - Ricardo Gomez-Flores
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México
| | | | | | | | | |
Collapse
|
7
|
Chamekh A, Kharbech O, Fersi C, Driss Limam R, Brandt KK, Djebali W, Chouari R. Insights on strain 115 plant growth-promoting bacteria traits and its contribution in lead stress alleviation in pea (Pisum sativum L.) plants. Arch Microbiol 2022; 205:1. [PMID: 36436136 DOI: 10.1007/s00203-022-03341-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/20/2022] [Accepted: 11/16/2022] [Indexed: 11/28/2022]
Abstract
The present study aims to characterize the plant growth-promoting bacterial traits of Bacillus simplex (strain 115). This bacterium was inoculated in hydroponically conditions to improve pea (Pisum sativum L.) growth submitted to lead (Pb) toxicity. Root nodulation system was developed enough in 23-day-old plants attesting the interaction between the two organisms. In addition to its phosphate solubilization and siderophore production traits that reached 303.8 μg P mL-1 and 49.6 psu respectively, the Bacillus strain 115 exhibited Pb bio-sorption ability. Inoculation of Pb-stressed pea with strain 115 showed roots and shoots biomass recovery (+ 70% and + 61%, respectively). Similarly, water and protein contents were increased in Pb-treated plants after bacterial inoculation. In the presence of strain 115, Pb relative toxicity level decreased (- 39.3% compared to Pb stress only). Moreover, catalase and superoxide dismutase activities were upregulated in Pb-exposed plants (+ 56% and + 51%, respectively). After inoculation with strain 115, catalase and superoxide dismutase activities were restored by - 38% and - 44% respectively. Simultaneously, oxidant stress indicator (H2O2 and 4-hydroxynonenal) and osmo-regulators (proline and glycine-betaine) contents as well as lipoxygenase activity decreased significantly in Pb-treated plants after Bacillus strain's inoculation. Taken together, the results give some evidences for the plant growth-promoting capacity of strain 115 in helping alleviation of Pb stress.
Collapse
Affiliation(s)
- Anissa Chamekh
- Faculty of Sciences of Bizerte, Laboratory of Plant Toxicology and Environmental Microbiology (LR 18ES38), University of Carthage, 7021, Bizerte, Zarzouna, Tunisia
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark
| | - Oussama Kharbech
- Faculty of Sciences of Bizerte, Laboratory of Plant Toxicology and Environmental Microbiology (LR 18ES38), University of Carthage, 7021, Bizerte, Zarzouna, Tunisia
| | - Cheima Fersi
- National Institute for Research and Physico-Chemical Analyses, 2020, Sidi Thabet, Tunisia
| | - Rim Driss Limam
- National Center for Nuclear Sciences and Technologies, 2020, Sidi Thabet, Tunisia
| | - Kristian Koefed Brandt
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark
| | - Wahbi Djebali
- Faculty of Sciences of Bizerte, Laboratory of Plant Toxicology and Environmental Microbiology (LR 18ES38), University of Carthage, 7021, Bizerte, Zarzouna, Tunisia
| | - Rakia Chouari
- Faculty of Sciences of Bizerte, Laboratory of Plant Toxicology and Environmental Microbiology (LR 18ES38), University of Carthage, 7021, Bizerte, Zarzouna, Tunisia.
| |
Collapse
|
8
|
Antoszewski M, Mierek-Adamska A, Dąbrowska GB. The Importance of Microorganisms for Sustainable Agriculture-A Review. Metabolites 2022; 12:1100. [PMID: 36422239 PMCID: PMC9694901 DOI: 10.3390/metabo12111100] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 08/27/2023] Open
Abstract
In the face of climate change, progressive degradation of the environment, including agricultural land negatively affecting plant growth and development, endangers plant productivity. Seeking efficient and sustainable agricultural techniques to replace agricultural chemicals is one of the most important challenges nowadays. The use of plant growth-promoting microorganisms is among the most promising approaches; however, molecular mechanisms underneath plant-microbe interactions are still poorly understood. In this review, we summarized the knowledge on plant-microbe interactions, highlighting the role of microbial and plant proteins and metabolites in the formation of symbiotic relationships. This review covers rhizosphere and phyllosphere microbiomes, the role of root exudates in plant-microorganism interactions, the functioning of the plant's immune system during the plant-microorganism interactions. We also emphasized the possible role of the stringent response and the evolutionarily conserved mechanism during the established interaction between plants and microorganisms. As a case study, we discussed fungi belonging to the genus Trichoderma. Our review aims to summarize the existing knowledge about plant-microorganism interactions and to highlight molecular pathways that need further investigation.
Collapse
Affiliation(s)
| | - Agnieszka Mierek-Adamska
- Department of Genetics, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland
| | | |
Collapse
|
9
|
The key role of indole-3-acetic acid biosynthesis by Bacillus thuringiensis RZ2MS9 in promoting maize growth revealed by the ipdC gene knockout mediated by the CRISPR-Cas9 system. Microbiol Res 2022; 266:127218. [DOI: 10.1016/j.micres.2022.127218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 09/16/2022] [Accepted: 09/28/2022] [Indexed: 11/21/2022]
|
10
|
Fadiji AE, Santoyo G, Yadav AN, Babalola OO. Efforts towards overcoming drought stress in crops: Revisiting the mechanisms employed by plant growth-promoting bacteria. Front Microbiol 2022; 13:962427. [PMID: 35966701 PMCID: PMC9372271 DOI: 10.3389/fmicb.2022.962427] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Globally, agriculture is under a lot of pressure due to rising population and corresponding increases in food demand. However, several variables, including improper mechanization, limited arable land, and the presence of several biotic and abiotic pressures, continually impact agricultural productivity. Drought is a notable destructive abiotic stress and may be the most serious challenge confronting sustainable agriculture, resulting in a significant crop output deficiency. Numerous morphological and physiological changes occur in plants as a result of drought stress. Hence, there is a need to create mitigation techniques since these changes might permanently harm the plant. Current methods used to reduce the effects of drought stress include the use of film farming, super-absorbent hydrogels, nanoparticles, biochar, and drought-resistant plant cultivars. However, most of these activities are money and labor-intensive, which offer limited plant improvement. The use of plant-growth-promoting bacteria (PGPB) has proven to be a preferred method that offers several indirect and direct advantages in drought mitigation. PGPB are critical biological elements which have favorable impacts on plants’ biochemical and physiological features, leading to improved sugar production, relative water content, leaf number, ascorbic acid levels, and photosynthetic pigment quantities. This present review revisited the impacts of PGPB in ameliorating the detrimental effects of drought stress on plants, explored the mechanism of action employed, as well as the major challenges encountered in their application for plant growth and development.
Collapse
Affiliation(s)
- Ayomide Emmanuel Fadiji
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Gustavo Santoyo
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Ajar Nath Yadav
- Microbial Biotechnology Laboratory, Department of Biotechnology, Eternal University, Baru Sahib, India
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
- *Correspondence: Olubukola Oluranti Babalola,
| |
Collapse
|
11
|
Liang Z, Ali Q, Wang Y, Mu G, Kan X, Ren Y, Manghwar H, Gu Q, Wu H, Gao X. Toxicity of Bacillus thuringiensis Strains Derived from the Novel Crystal Protein Cry31Aa with High Nematicidal Activity against Rice Parasitic Nematode Aphelenchoides besseyi. Int J Mol Sci 2022; 23:ijms23158189. [PMID: 35897765 PMCID: PMC9331774 DOI: 10.3390/ijms23158189] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/11/2022] [Accepted: 07/19/2022] [Indexed: 11/16/2022] Open
Abstract
The plant parasitic nematode, Aphelenchoides besseyi, is a serious pest causing severe damage to various crop plants and vegetables. The Bacillus thuringiensis (Bt) strains, GBAC46 and NMTD81, and the biological strain, FZB42, showed higher nematicidal activity against A. besseyi, by up to 88.80, 82.65, and 75.87%, respectively, in a 96-well plate experiment. We screened the whole genomes of the selected strains by protein-nucleic acid alignment. It was found that the Bt strain GBAC46 showed three novel crystal proteins, namely, Cry31Aa, Cry73Aa, and Cry40ORF, which likely provide for the safe control of nematodes. The Cry31Aa protein was composed of 802 amino acids with a molecular weight of 90.257 kDa and contained a conserved delta-endotoxin insecticidal domain. The Cry31Aa exhibited significant nematicidal activity against A. besseyi with a lethal concentration (LC50) value of 131.80 μg/mL. Furthermore, the results of in vitro experiments (i.e., rhodamine and propidium iodide (PI) experiments) revealed that the Cry31Aa protein was taken up by A. besseyi, which caused damage to the nematode's intestinal cell membrane, indicating that the Cry31Aa produced a pore-formation toxin. In pot experiments, the selected strains GBAC46, NMTD81, and FZB42 significantly reduced the lesions on leaves by up to 33.56%, 45.66, and 30.34% and also enhanced physiological growth parameters such as root length (65.10, 50.65, and 55.60%), shoot length (68.10, 55.60, and 59.45%), and plant fresh weight (60.71, 56.45, and 55.65%), respectively. The number of nematodes obtained from the plants treated with the selected strains (i.e., GBAC46, NMTD81, and FZB42) and A. besseyi was significantly reduced, with 0.56, 0.83., 1.11, and 5.04 seedling mL-1 nematodes were achieved, respectively. Moreover, the qRT-PCR analysis showed that the defense-related genes were upregulated, and the activity of hydrogen peroxide (H2O2) increased while malondialdehyde (MDA) decreased in rice leaves compared to the control. Therefore, it was concluded that the Bt strains GBAC46 and NMTD81 can promote rice growth, induce high expression of rice defense-related genes, and activate systemic resistance in rice. More importantly, the application of the novel Cry31Aa protein has high potential for the efficient and safe prevention and green control of plant parasitic nematodes.
Collapse
Affiliation(s)
- Zhao Liang
- The Sanya Institute of Nanjing Agricultural University, Sanya 572024, China; (Z.L.); (Q.A.); (Y.W.); (Y.R.); (Q.G.); (H.W.)
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Qurban Ali
- The Sanya Institute of Nanjing Agricultural University, Sanya 572024, China; (Z.L.); (Q.A.); (Y.W.); (Y.R.); (Q.G.); (H.W.)
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Yujie Wang
- The Sanya Institute of Nanjing Agricultural University, Sanya 572024, China; (Z.L.); (Q.A.); (Y.W.); (Y.R.); (Q.G.); (H.W.)
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Guangyuan Mu
- Shenzhen Batian Ecotypic Engineering Co., Ltd., Shenzhen 518057, China; (G.M.); (X.K.)
| | - Xuefei Kan
- Shenzhen Batian Ecotypic Engineering Co., Ltd., Shenzhen 518057, China; (G.M.); (X.K.)
| | - Yajun Ren
- The Sanya Institute of Nanjing Agricultural University, Sanya 572024, China; (Z.L.); (Q.A.); (Y.W.); (Y.R.); (Q.G.); (H.W.)
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Hakim Manghwar
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332000, China;
| | - Qin Gu
- The Sanya Institute of Nanjing Agricultural University, Sanya 572024, China; (Z.L.); (Q.A.); (Y.W.); (Y.R.); (Q.G.); (H.W.)
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Huijun Wu
- The Sanya Institute of Nanjing Agricultural University, Sanya 572024, China; (Z.L.); (Q.A.); (Y.W.); (Y.R.); (Q.G.); (H.W.)
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuewen Gao
- The Sanya Institute of Nanjing Agricultural University, Sanya 572024, China; (Z.L.); (Q.A.); (Y.W.); (Y.R.); (Q.G.); (H.W.)
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: ; Tel.: +86-025-8439-5268
| |
Collapse
|
12
|
Guardiola-Márquez CE, Pacheco A, Mora-Godínez S, Schüßler A, Gradilla-Hernández MS, Senés-Guerrero C. Septoglomus species dominate the arbuscular mycorrhiza of five crop plants in an arid region of northern Mexico. Symbiosis 2022. [DOI: 10.1007/s13199-022-00851-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Differentiation of Bacillus cereus and Bacillus thuringiensis Using Genome-Guided MALDI-TOF MS Based on Variations in Ribosomal Proteins. Microorganisms 2022; 10:microorganisms10050918. [PMID: 35630362 PMCID: PMC9146703 DOI: 10.3390/microorganisms10050918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 12/10/2022] Open
Abstract
Bacillus cereus and B. thuringiensis are closely related species that are relevant to foodborne diseases and biopesticides, respectively. Unambiguous differentiation of these two species is crucial for bacterial taxonomy. As genome analysis offers an objective but time-consuming classification of B. cereus and B. thuringiensis, in the present study, matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) was used to accelerate this process. By combining in silico genome analysis and MALDI-TOF MS measurements, four species-specific peaks of B. cereus and B. thuringiensis were screened and identified. The species-specific peaks of B. cereus were m/z 3211, 6427, 9188, and 9214, and the species-specific peaks of B. thuringiensis were m/z 3218, 6441, 9160, and 9229. All the above peaks represent ribosomal proteins, which are conserved and consistent with the phylogenetic relationship between B. cereus and B. thuringiensis. The specificity of the peaks was robustly verified using common foodborne pathogens. Thus, we concluded that genome-guided MALDI-TOF MS allows high-throughput differentiation of B. cereus and B. thuringiensis and provides a framework for differentiating other closely related species.
Collapse
|
14
|
Singh D, Thapa S, Mahawar H, Kumar D, Geat N, Singh SK. Prospecting potential of endophytes for modulation of biosynthesis of therapeutic bioactive secondary metabolites and plant growth promotion of medicinal and aromatic plants. Antonie van Leeuwenhoek 2022; 115:699-730. [PMID: 35460457 DOI: 10.1007/s10482-022-01736-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 03/26/2022] [Indexed: 01/13/2023]
Abstract
Medicinal and aromatic plants possess pharmacological properties (antidiabetes, anticancer, antihypertension, anticardiovascular, antileprosy, etc.) because of their potential to synthesize a wide range of therapeutic bioactive secondary metabolites. The concentration of bioactive secondry metabolites depends on plant species, local environment, soil type and internal microbiome. The internal microbiome of medicinal plants plays the crucial role in the production of bioactive secondary metabolites, namely alkaloids, steroids, terpenoids, peptides, polyketones, flavonoids, quinols and phenols. In this review, the host specific secondry metabolites produced by endophytes, their therapeutic properties and host-endophytes interaction in relation to production of bioactive secondry metaboloites and the role of endophytes in enhancing the production of bioactive secondry metabolites is discussed. How biological nitrogen fixation, phosphorus solubilization, micronutrient uptake, phytohormone production, disease suppression, etc. can play a vital role in enhacing the plant growth and development.The role of endophytes in enhancing the plant growth and content of bioactive secondary metabolites in medicinal and aromatic plants in a sustainable mode is highlighted.
Collapse
Affiliation(s)
- Devendra Singh
- ICAR-Central Arid Zone Research Institute, Jodhpur, Rajasthan, 342003, India.
| | - Shobit Thapa
- ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Mau Nath Bhanjan, Uttar Pradesh, 275103, India
| | - Himanshu Mahawar
- ICAR-Directorate of Weed Research (DWR), Maharajpur, Jabalpur, Madhya Pradesh, 482004, India
| | - Dharmendra Kumar
- ICAR- Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
| | - Neelam Geat
- Agricultural Research Station, Agriculture University, Jodhpur, Rajasthan, 342304, India
| | - S K Singh
- ICAR-Central Arid Zone Research Institute, Jodhpur, Rajasthan, 342003, India
| |
Collapse
|
15
|
Belaouni HA, Compant S, Antonielli L, Nikolic B, Zitouni A, Sessitsch A. In-depth genome analysis of Bacillus sp. BH32, a salt stress-tolerant endophyte obtained from a halophyte in a semiarid region. Appl Microbiol Biotechnol 2022; 106:3113-3137. [PMID: 35435457 DOI: 10.1007/s00253-022-11907-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 03/16/2022] [Accepted: 03/26/2022] [Indexed: 11/02/2022]
Abstract
Endophytic strains belonging to the Bacillus cereus group were isolated from the halophytes Atriplex halimus L. (Amaranthaceae) and Tamarix aphylla L. (Tamaricaceae) from costal and continental regions in Algeria. Based on their salt tolerance (up to 5%), the strains were tested for their ability to alleviate salt stress in tomato and wheat. Bacillus sp. strain BH32 showed the highest potential to reduce salinity stress (up to + 50% and + 58% of dry weight improvement, in tomato and wheat, respectively, compared to the control). To determine putative mechanisms involved in salt tolerance and plant growth promotion, the whole genome of Bacillus sp. BH32 was sequenced, annotated, and used for comparative genomics against the genomes of closely related strains. The pangenome of Bacillus sp. BH32 and its closest relative was further analyzed. The phylogenomic analyses confirmed its taxonomic position, a member of the Bacillus cereus group, with intergenomic distances (GBDP analysis) pinpointing to a new taxon (digital DNA-DNA hybridization, dDDH < 70%). Genome mining unveiled several genes involved in stress tolerance, production of anti-oxidants and genes involved in plant growth promotion as well as in the production of secondary metabolites. KEY POINTS : • Bacillus sp. BH32 and other bacterial endophytes were isolated from halophytes, to be tested on tomato and wheat and to limit salt stress adverse effects. • The strain with the highest potential was then studied at the genomic level to highlight numerous genes linked to plant growth promotion and stress tolerance. • Pangenome approaches suggest that the strain belongs to a new taxon within the Bacillus cereus group.
Collapse
Affiliation(s)
- Hadj Ahmed Belaouni
- Laboratoire de Biologie Des Systèmes Microbiens (LBSM), Ecole Normale Supérieure de Kouba, Algiers, Algeria
| | - Stéphane Compant
- AIT Austrian Institute of Technology GmbH, Center for Health and Bioresources, Bioresources Unit, 3430, Tulln, Austria.
| | - Livio Antonielli
- AIT Austrian Institute of Technology GmbH, Center for Health and Bioresources, Bioresources Unit, 3430, Tulln, Austria
| | - Branislav Nikolic
- AIT Austrian Institute of Technology GmbH, Center for Health and Bioresources, Bioresources Unit, 3430, Tulln, Austria
| | - Abdelghani Zitouni
- Laboratoire de Biologie Des Systèmes Microbiens (LBSM), Ecole Normale Supérieure de Kouba, Algiers, Algeria
| | - Angela Sessitsch
- AIT Austrian Institute of Technology GmbH, Center for Health and Bioresources, Bioresources Unit, 3430, Tulln, Austria
| |
Collapse
|
16
|
Wang YH, Hou LL, Wu XQ, Zhu ML, Dai Y, Zhao YJ. Mycorrhiza helper bacterium Bacillus pumilus HR10 improves growth and nutritional status of Pinus thunbergii by promoting mycorrhizal proliferation. TREE PHYSIOLOGY 2022; 42:907-918. [PMID: 34730183 DOI: 10.1093/treephys/tpab139] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
Mycorrhizal helper bacteria (MHB) play an important role in mediating mycorrhizal symbiosis, which improves the growth and nutrient uptake of plants. This study examined the growth-promoting effects and mechanisms of pine growth after inoculation with the MHB Bacillus pumilus HR10 and/or Hymenochaete sp. Rl. The effect of B. pumilus HR10 on Hymenochaete sp. Rl growth, enzyme activity and gene expression related to mycorrhiza formation were determined. The growth, root activity, nitrogen, phosphorus, and potassium content and chlorophyll fluorescence activity of Pinus thunbergii and the mycorrhizal colonization intensity of Hymenochaete sp. Rl-inoculated pine seedlings after inoculation with B. pumilus HR10 were also evaluated. The results showed that B. pumilus HR10 promoted growth, regulated the expression of mycorrhizal-related genes and affected the β-1,3-glucanase activity of Hymenochaete sp. Rl. The mycorrhizal colonization intensity of pine seedlings co-inoculated with B. pumilus HR10 and Hymenochaete sp. Rl was 1.58-fold higher than seedlings inoculated with only Hymenochaete sp. Rl. Inoculation with B. pumilus HR10 and/or Hymenochaete sp. Rl increased lateral root number and root activity of pine seedlings and chlorophyll fluorescence activity of pine needles compared with the control. Bacillus pumilus HR10 facilitated nutrient uptake by enhancing the mycorrhizal proliferation of pine and induced greater photosynthesis and root activity of pine seedlings, which confirms its role as an outstanding plant-growth-promoting rhizobacterium. These findings improve our understanding of the mechanism of B. pumilus HR10 promotion of mycorrhizal symbiosis.
Collapse
Affiliation(s)
- Ya-Hui Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Liang-Liang Hou
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Xiao-Qin Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Mei-Ling Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yun Dai
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yin-Juan Zhao
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| |
Collapse
|
17
|
Gupta A, Mishra R, Rai S, Bano A, Pathak N, Fujita M, Kumar M, Hasanuzzaman M. Mechanistic Insights of Plant Growth Promoting Bacteria Mediated Drought and Salt Stress Tolerance in Plants for Sustainable Agriculture. Int J Mol Sci 2022; 23:3741. [PMID: 35409104 PMCID: PMC8998651 DOI: 10.3390/ijms23073741] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 12/17/2022] Open
Abstract
Climate change has devastating effects on plant growth and yield. During ontogenesis, plants are subjected to a variety of abiotic stresses, including drought and salinity, affecting the crop loss (20-50%) and making them vulnerable in terms of survival. These stresses lead to the excessive production of reactive oxygen species (ROS) that damage nucleic acid, proteins, and lipids. Plant growth-promoting bacteria (PGPB) have remarkable capabilities in combating drought and salinity stress and improving plant growth, which enhances the crop productivity and contributes to food security. PGPB inoculation under abiotic stresses promotes plant growth through several modes of actions, such as the production of phytohormones, 1-aminocyclopropane-1-carboxylic acid deaminase, exopolysaccharide, siderophore, hydrogen cyanide, extracellular polymeric substances, volatile organic compounds, modulate antioxidants defense machinery, and abscisic acid, thereby preventing oxidative stress. These bacteria also provide osmotic balance; maintain ion homeostasis; and induce drought and salt-responsive genes, metabolic reprogramming, provide transcriptional changes in ion transporter genes, etc. Therefore, in this review, we summarize the effects of PGPB on drought and salinity stress to mitigate its detrimental effects. Furthermore, we also discuss the mechanistic insights of PGPB towards drought and salinity stress tolerance for sustainable agriculture.
Collapse
Affiliation(s)
- Anmol Gupta
- IIRC-3, Plant–Microbe Interaction and Molecular Immunology Laboratory, Department of Biosciences, Faculty of Science, Integral University, Lucknow 226026, Uttar Pradesh, India; (A.G.); (S.R.); (A.B.)
| | - Richa Mishra
- Department of Biochemistry, Dr. Rammanohar Lohia Avadh University, Ayodhya 224123, Uttar Pradesh, India; (R.M.); (N.P.)
| | - Smita Rai
- IIRC-3, Plant–Microbe Interaction and Molecular Immunology Laboratory, Department of Biosciences, Faculty of Science, Integral University, Lucknow 226026, Uttar Pradesh, India; (A.G.); (S.R.); (A.B.)
| | - Ambreen Bano
- IIRC-3, Plant–Microbe Interaction and Molecular Immunology Laboratory, Department of Biosciences, Faculty of Science, Integral University, Lucknow 226026, Uttar Pradesh, India; (A.G.); (S.R.); (A.B.)
| | - Neelam Pathak
- Department of Biochemistry, Dr. Rammanohar Lohia Avadh University, Ayodhya 224123, Uttar Pradesh, India; (R.M.); (N.P.)
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Kagawa 761-0795, Japan
| | - Manoj Kumar
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| |
Collapse
|
18
|
Wang YH, Kong WL, Zhu ML, Dai Y, Wu XQ. Colonization by the Mycorrhizal Helper Bacillus pumilus HR10 Is Enhanced During the Establishment of Ectomycorrhizal Symbiosis Between Hymenochaete sp. Rl and Pinus thunbergii. Front Microbiol 2022; 13:818912. [PMID: 35330763 PMCID: PMC8940532 DOI: 10.3389/fmicb.2022.818912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 02/09/2022] [Indexed: 12/02/2022] Open
Abstract
There are complex interactions between mycorrhizal helper bacteria (MHBs) and ectomycorrhizal (ECM) fungi, with MHBs promoting mycorrhizal synthesis and ECM fungi regulating plant rhizobacterial colonization, diversity, and function. In this study, to investigate whether the ECM fungus Hymenochaete sp. Rl affects the survival and colonization of the MHB strain Bacillus pumilus HR10 in the rhizosphere, the biomass of B. pumilus HR10 was measured in the rhizosphere and mycorrhizosphere. In addition, extracts of Hymenochaete sp. Rl and Pinus thunbergii were evaluated for their effect on B. pumilus HR10 colonization (growth, sporulation, biofilm formation, extracellular polysaccharide and extracellular protein contents, flagellar motility, and expression of colonization-related genes). The results showed that inoculation of Hymenochaete sp. Rl significantly increased the biomass of B. pumilus HR10 in the rhizosphere; however, while extracts of Hymenochaete sp. Rl and P. thunbergii did not affect the biomass or spore formation of HR10, they did affect its biofilm formation, extracellular polysaccharide and extracellular protein production, and flagellar motility. Furthermore, the addition of symbiont extracts affected the expression of chemotaxis-related genes in HR10. When the extracts were added separately, the expression of srf genes in HR10 increased; when the extracts were added simultaneously, the expression of the flagellin gene fliG in HR10 increased, but there was no significant effect on the expression of srf genes, consistent with the results on biofilm production. Thus, Hymenochaete sp. Rl and P. thunbergii roots had a positive effect on colonization by B. pumilus HR10 at the rhizosphere level through their secretions.
Collapse
Affiliation(s)
- Ya-Hui Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China.,Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, China
| | - Wei-Liang Kong
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China.,Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, China
| | - Mei-Ling Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China.,Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, China
| | - Yun Dai
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China.,Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, China
| | - Xiao-Qin Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China.,Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
19
|
Zhou H, Zhang J, Shao Y, Wang J, Xu W, Liu Y, Yu S, Ye Q, Pang R, Wu S, Gu Q, Xue L, Zhang J, Li H, Wu Q, Ding Y. Development of a high resolution melting method based on a novel molecular target for discrimination between Bacillus cereus and Bacillus thuringiensis. Food Res Int 2022; 151:110845. [PMID: 34980383 DOI: 10.1016/j.foodres.2021.110845] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 11/03/2021] [Accepted: 11/27/2021] [Indexed: 11/04/2022]
Abstract
Delimitation within the Bacillus cereus group is confusing due to the highly similar genetic background of its constituent bacteria. This study aimed to develop a rapid and efficient method for the identification of Bacillus cereus and Bacillus thuringiensis, two closely related species within the B. cereus group. Using average nucleotide identity analysis (ANI) and ribosomal multilocus sequence typing (rMLST), the authenticity of the genomes of B. cereus and B. thuringiensis was determined. Emetic B. cereus and Bacillus bombysepticus were also included to provide novel genomic insights into the boundaries within the B. cereus group. Using pan-genome analysis, ispD, a novel core and single-copy molecular target, was identified for the differentiation between B. cereus and B. thuringiensis. Based on the single nucleotide polymorphism within ispD, a high resolution melting (HRM) method for the determination of B. cereus and B. thuringiensis was developed. This method can not only distinguish B. cereus and B. thuringiensis, but can also separate B. cereus from other foodborne pathogenic bacteria. The detection limit of this method could reach 1 pg of pure genomic DNA and 3.7 × 102 cfu/mL of pure culture. Moreover, this new method could effectively differentiate B. cereus and B. thuringiensis in spiked, mixed, and real food samples. Collectively, the established HRM method can provide a new reference paradigm for the sensitive and specific nucleic acid detection of pathogens with identical genomes.
Collapse
Affiliation(s)
- Huan Zhou
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Junhui Zhang
- Department of Food Science & Technology, Institute of Food Safety & Nutrition, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yanna Shao
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Department of Food Science & Technology, Institute of Food Safety & Nutrition, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou 510432, China
| | - Wenxing Xu
- Department of Food Science & Technology, Institute of Food Safety & Nutrition, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yang Liu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Shubo Yu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Qinghua Ye
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Rui Pang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Shi Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Qihui Gu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Liang Xue
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Hongye Li
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yu Ding
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Department of Food Science & Technology, Institute of Food Safety & Nutrition, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| |
Collapse
|
20
|
Ebrahimi F, Salehi A, Movahedi Dehnavi M, Mirshekari A, Hamidian M, Hazrati S. Biochemical response and nutrient uptake of two arbuscular mycorrhiza-inoculated chamomile varieties under different osmotic stresses. BOTANICAL STUDIES 2021; 62:22. [PMID: 34897567 PMCID: PMC8665967 DOI: 10.1186/s40529-021-00328-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/22/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Water-deficit stress is known as one of the most severe environmental stresses affecting the growth of plants through marked reduction of water uptake, which leads to osmotic stress by lowering water potential. Adopting appropriate varieties using soil microorganisms, such as arbuscular mycorrhiza (AM) fungi, can significantly reduce the adverse effects of water deficiency. This study aimed to evaluate the role of Funneliformis mosseae on nutrient uptake and certain physiological traits of two chamomile varieties, namely Bodgold (Bod) and Soroksári (Sor) under osmotic stress. For pot culture, a factorial experiment was performed in a completely randomized design with three factors: osmotic stress (PEG 6000) was applied along with Hoagland solution at three levels (0, -0.4 and -0.8 MPa), two German chamomile varieties (Bodgold (Bod) and Soroksari (Sor)), and AM inoculation (Funneliformis mosseae species (fungal and non-fungal)) at four replications in perlite substrate. RESULTS Osmotic stress significantly reduced the uptake of macro-nutrients (N and P) and micro-nutrients (Fe, Cu, Mn, and Zn) in the shoots and roots. Moreover, the level of osmolytes (total soluble sugars and proline) and the activity of antioxidant enzymes in the shoots of both varieties increased under osmotic stress. Regarding the Sor variety, the level of these compounds was more satisfactory. AM improved plant nutrition uptake and osmolyte contents while enhancing antioxidant enzymes and reducing the adverse effects of osmotic stress. Under osmotic stress, the growth and total dry weight were improved upon AM inoculation. CONCLUSIONS In general, inoculation of chamomile with AM balanced the uptake of nutrients and increased the level of osmolytes and antioxidant enzymes; hence, it improved plant characteristics under osmotic stress in both varieties. However, it was found to be more effective in reducing stress damages in the Sor variety.
Collapse
Affiliation(s)
- Fatemeh Ebrahimi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Yasouj University, Yasouj, Iran
| | - Amin Salehi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Yasouj University, Yasouj, Iran
| | - Mohsen Movahedi Dehnavi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Yasouj University, Yasouj, Iran
| | - Amin Mirshekari
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Yasouj University, Yasouj, Iran
| | - Mohammad Hamidian
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Yasouj University, Yasouj, Iran
| | - Saeid Hazrati
- Department of Agronomy, Faculty of Agriculture, Azarbaijan Shahid Madani University, Tabriz, Iran
| |
Collapse
|
21
|
de Almeida JR, Bonatelli ML, Batista BD, Teixeira-Silva NS, Mondin M, Dos Santos RC, Bento JMS, de Almeida Hayashibara CA, Azevedo JL, Quecine MC. Bacillus thuringiensis RZ2MS9, a tropical plant growth-promoting rhizobacterium, colonizes maize endophytically and alters the plant's production of volatile organic compounds during co-inoculation with Azospirillum brasilense Ab-V5. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:812-821. [PMID: 34433236 DOI: 10.1111/1758-2229.13004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
The beneficial features of Bacillus thuringiensis (Bt) are not limited to its role as an insecticide; it is also able to promote plant growth interacting with plants and other plant growth-promoting rhizobacterium (PGPR). The PGPR Bt strain RZ2MS9 is a multi-trait maize growth promoter. We obtained a stable mutant of RZ2MS9 labelled with green fluorescent protein (RZ2MS9-GFP). We demonstrated that the Bt RZ2MS9-GFP successfully colonizes maize's roots and leaves endophytically. We evaluated whether RZ2MS9 has an additive effect on plant growth promotion when co-inoculated with Azospirillum brasilense Ab-V5. The two strains combined enhanced maize's roots and shoots dry weight around 50% and 80%, respectively, when compared to the non-inoculated control. However, non-differences were observed comparing RZ2MS9 alone and when co-inoculated with Ab-V5, In addition, we used co-inoculation experiments in glass chambers to analyse the plant's volatile organic compounds (VOCs) production during the maize-RZ2MS9 and maize-RZ2MS9-Ab-V5 interaction. We found that the single and co-inoculation altered maize's VOCs emission profile, with an increase in the production of indoles in the co-inoculation. Collectively, these results increase our knowledge about the interaction between the Bt and maize, and provide a new possibility of combined application with the commercial inoculant A. brasilense Ab-V5.
Collapse
Affiliation(s)
- Jaqueline Raquel de Almeida
- Department of Genetics, "Luiz de Queiroz" College of Agriculture, ESALQ, University of São Paulo, Piracicaba, SP, Brazil
| | - Maria Letícia Bonatelli
- Department of Genetics, "Luiz de Queiroz" College of Agriculture, ESALQ, University of São Paulo, Piracicaba, SP, Brazil
| | - Bruna Durante Batista
- Department of Genetics, "Luiz de Queiroz" College of Agriculture, ESALQ, University of São Paulo, Piracicaba, SP, Brazil
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
| | - Natalia Sousa Teixeira-Silva
- Department of Genetics, "Luiz de Queiroz" College of Agriculture, ESALQ, University of São Paulo, Piracicaba, SP, Brazil
| | - Mateus Mondin
- Department of Genetics, "Luiz de Queiroz" College of Agriculture, ESALQ, University of São Paulo, Piracicaba, SP, Brazil
| | - Rafaela Cristina Dos Santos
- Department of Entomology, "Luiz de Queiroz" College of Agriculture, ESALQ, University of São Paulo, Piracicaba, SP, Brazil
| | - José Maurício Simões Bento
- Department of Entomology, "Luiz de Queiroz" College of Agriculture, ESALQ, University of São Paulo, Piracicaba, SP, Brazil
| | | | - João Lúcio Azevedo
- Department of Genetics, "Luiz de Queiroz" College of Agriculture, ESALQ, University of São Paulo, Piracicaba, SP, Brazil
| | - Maria Carolina Quecine
- Department of Genetics, "Luiz de Queiroz" College of Agriculture, ESALQ, University of São Paulo, Piracicaba, SP, Brazil
| |
Collapse
|
22
|
Poudel M, Mendes R, Costa LAS, Bueno CG, Meng Y, Folimonova SY, Garrett KA, Martins SJ. The Role of Plant-Associated Bacteria, Fungi, and Viruses in Drought Stress Mitigation. Front Microbiol 2021; 12:743512. [PMID: 34759901 PMCID: PMC8573356 DOI: 10.3389/fmicb.2021.743512] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 09/20/2021] [Indexed: 11/29/2022] Open
Abstract
Drought stress is an alarming constraint to plant growth, development, and productivity worldwide. However, plant-associated bacteria, fungi, and viruses can enhance stress resistance and cope with the negative impacts of drought through the induction of various mechanisms, which involve plant biochemical and physiological changes. These mechanisms include osmotic adjustment, antioxidant enzyme enhancement, modification in phytohormonal levels, biofilm production, increased water and nutrient uptake as well as increased gas exchange and water use efficiency. Production of microbial volatile organic compounds (mVOCs) and induction of stress-responsive genes by microbes also play a crucial role in the acquisition of drought tolerance. This review offers a unique exploration of the role of plant-associated microorganisms-plant growth promoting rhizobacteria and mycorrhizae, viruses, and their interactions-in the plant microbiome (or phytobiome) as a whole and their modes of action that mitigate plant drought stress.
Collapse
Affiliation(s)
- Mousami Poudel
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
| | - Rodrigo Mendes
- Laboratory of Environmental Microbiology, Embrapa Environment, Brazilian Agricultural Research Corporation, Brasília, Brazil
| | - Lilian A. S. Costa
- Laboratory of Environmental Microbiology, Embrapa Environment, Brazilian Agricultural Research Corporation, Brasília, Brazil
| | - C. Guillermo Bueno
- Institute of Ecology and Earth Sciences, Faculty of Science and Technology, University of Tartu, Tartu, Estonia
| | - Yiming Meng
- Institute of Ecology and Earth Sciences, Faculty of Science and Technology, University of Tartu, Tartu, Estonia
| | | | - Karen A. Garrett
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
- Food Systems Institute, University of Florida, Gainesville, FL, United States
| | - Samuel J. Martins
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
| |
Collapse
|
23
|
Seed Priming Boost Adaptation in Pea Plants under Drought Stress. PLANTS 2021; 10:plants10102201. [PMID: 34686010 PMCID: PMC8541019 DOI: 10.3390/plants10102201] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/07/2021] [Accepted: 10/14/2021] [Indexed: 11/17/2022]
Abstract
In the present investigation, we study the effect of Bacillus thuringiensis MH161336 (106–8 CFU/cm3), silicon (25 mL L−1), and carrot extract (75 mL L−1) as seed primers, individually or in combination, on morphological, physio-biochemical and yield components of drought-stressed pea plants (Master B) during 2019/2020 and 2020/2021 seasons. Our results indicated that drought causes a remarkable reduction in plant height, leaf area, number of leaves per plant, and number of flowers per plant in stressed pea plants during two seasons. Likewise, number of pods, pod length, seeds weight of 10 dried plants, and dry weight of 100 seeds were decreased significantly in drought-stressed pea plants. Nevertheless, seed priming with the individual treatments or in combination boosted the morphological, physio-biochemical, and yield characters of pea plants. The best results were obtained with the Bacillus thuringiensis + carrot extract treatment, which led to a remarkable increase in the number of leaves per plant, leaf area, plant height, and number of flowers per plant in stressed pea plants in both seasons. Moreover, pod length, number of seeds per pod, seeds weight of 10 dried plants, and dry weight of 100 seeds were significantly increased as well. Bacillus thuringiensis + carrot extract treatment led to improved biochemical and physiological characters, such as relative water content, chlorophyll a, chlorophyll b, regulated the up-regulation of antioxidant enzymes, increased seed yield, and decreased lipid peroxidation and reactive oxygen species, mainly superoxide and hydrogen peroxide, in drought-stressed pea plants.
Collapse
|
24
|
Fiodor A, Singh S, Pranaw K. The Contrivance of Plant Growth Promoting Microbes to Mitigate Climate Change Impact in Agriculture. Microorganisms 2021; 9:1841. [PMID: 34576736 PMCID: PMC8472176 DOI: 10.3390/microorganisms9091841] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/14/2021] [Accepted: 08/27/2021] [Indexed: 01/07/2023] Open
Abstract
Combating the consequences of climate change is extremely important and critical in the context of feeding the world's population. Crop simulation models have been extensively studied recently to investigate the impact of climate change on agricultural productivity and food security. Drought and salinity are major environmental stresses that cause changes in the physiological, biochemical, and molecular processes in plants, resulting in significant crop productivity losses. Excessive use of chemicals has become a severe threat to human health and the environment. The use of beneficial microorganisms is an environmentally friendly method of increasing crop yield under environmental stress conditions. These microbes enhance plant growth through various mechanisms such as production of hormones, ACC deaminase, VOCs and EPS, and modulate hormone synthesis and other metabolites in plants. This review aims to decipher the effect of plant growth promoting bacteria (PGPB) on plant health under abiotic soil stresses associated with global climate change (viz., drought and salinity). The application of stress-resistant PGPB may not only help in the combating the effects of abiotic stressors, but also lead to mitigation of climate change. More thorough molecular level studies are needed in the future to assess their cumulative influence on plant development.
Collapse
Affiliation(s)
- Angelika Fiodor
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland;
| | - Surender Singh
- Department of Microbiology, Central University of Haryana, Mahendergarh 123031, Haryana, India;
| | - Kumar Pranaw
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland;
| |
Collapse
|
25
|
Silva JB, Mori R, Marques LH, Santos AC, Nowatzki T, Dahmer ML, Bing J, Gratão PL, Rossi GD. Water Deprivation Induces Biochemical Changes Without Reduction in the Insecticidal Activity of Maize and Soybean Transgenic Plants. JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:1817-1822. [PMID: 34104964 PMCID: PMC8340033 DOI: 10.1093/jee/toab109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Indexed: 06/12/2023]
Abstract
Like conventional crops, transgenic plants expressing insecticidal toxins from Bacillus thuringiensis (Bt) are subjected to water deprivation. However, the effects of water deprivation over the insecticidal activity of Bt plants are not well understood. We submitted Bt maize and Bt soybean to water deprivation and evaluated biochemical stress markers and the insecticidal activity of plants against target insects. Bt maize (DAS-Ø15Ø7-1 × MON-89Ø34-3 × MON-ØØ6Ø3-6 × SYN-IR162-4) containing the PowerCore Ultra traits, Bt soybean (DAS-444Ø6-6 × DAS-81419-2) with the Conkesta E3 traits, and commercial non-Bt cultivars were cultivated and exposed to water deprivation in the greenhouse. Leaves were harvested for quantification of hydrogen peroxide, malondialdeyde (MDA), and total phenolics and insecticidal activity. Maize or soybean leaf disks were used to evaluate the insecticidal activity against, respectively, Spodoptera frugiperda (J.E Smith) and Chrysodeixis includens (Walker) neonates. Except for Bt soybean, water deprivation increased hydrogen peroxide and MDA contents in Bt and non-Bt plants. Both biochemical markers of water deficit were observed in lower concentrations in Bt plants than in non-Bt commercial cultivars. Water deprivation did not result in changes of phenolic contents in Bt and non-Bt maize. For Bt or non-Bt soybean, phenolic contents were similar despite plants being exposed or not to water deprivation. Water deprivation did not alter substantially insect survival in non-Bt maize or non-Bt soybean. Despite water deprivation-induced biochemical changes in plants, both Bt plants maintained their insecticidal activity (100% mortality) against the target species.
Collapse
Affiliation(s)
- Juliana Barroso Silva
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, Brazil
| | - Raphael Mori
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, Brazil
| | | | - Antonio Cesar Santos
- Corteva Agriscience, Alameda Itapecuru, 506, Alphaville, Barueri - SP, 06454-080, Brazil
| | | | | | - James Bing
- Corteva Agriscience, 7000NW 62nd Ave, Johnston, IA 50131, USA
| | - Priscila Lupino Gratão
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, Brazil
| | - Guilherme Duarte Rossi
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, Brazil
| |
Collapse
|
26
|
Abdelaal K, AlKahtani M, Attia K, Hafez Y, Király L, Künstler A. The Role of Plant Growth-Promoting Bacteria in Alleviating the Adverse Effects of Drought on Plants. BIOLOGY 2021; 10:520. [PMID: 34207963 PMCID: PMC8230635 DOI: 10.3390/biology10060520] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 11/29/2022]
Abstract
Plant growth-promoting bacteria play an essential role in enhancing the physical, chemical and biological characters of soils by facilitating nutrient uptake and water flow, especially under abiotic stress conditions, which are major constrains to agricultural development and production. Drought is one of the most harmful abiotic stress and perhaps the most severe problem facing agricultural sustainability, leading to a severe shortage in crop productivity. Drought affects plant growth by causing hormonal and membrane stability perturbations, nutrient imbalance and physiological disorders. Furthermore, drought causes a remarkable decrease in leaf numbers, relative water content, sugar yield, root yield, chlorophyll a and b and ascorbic acid concentrations. However, the concentrations of total phenolic compounds, electrolyte leakage, lipid peroxidation, amounts of proline, and reactive oxygen species are considerably increased because of drought stress. This negative impact of drought can be eliminated by using plant growth-promoting bacteria (PGPB). Under drought conditions, application of PGPB can improve plant growth by adjusting hormonal balance, maintaining nutrient status and producing plant growth regulators. This role of PGPB positively affects physiological and biochemical characteristics, resulting in increased leaf numbers, sugar yield, relative water content, amounts of photosynthetic pigments and ascorbic acid. Conversely, lipid peroxidation, electrolyte leakage and amounts of proline, total phenolic compounds and reactive oxygen species are decreased under drought in the presence of PGPB. The current review gives an overview on the impact of drought on plants and the pivotal role of PGPB in mitigating the negative effects of drought by enhancing antioxidant defense systems and increasing plant growth and yield to improve sustainable agriculture.
Collapse
Affiliation(s)
- Khaled Abdelaal
- Excellence Center (EPCRS), Plant Pathology and Biotechnology Laboratory, Faculty of Agriculture, Kafrelsheikh University, Kafr Elsheikh 33516, Egypt;
| | - Muneera AlKahtani
- Biology Department, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11564, Saudi Arabia;
| | - Kotb Attia
- Center of Excellence in Biotechnology Research, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Yaser Hafez
- Excellence Center (EPCRS), Plant Pathology and Biotechnology Laboratory, Faculty of Agriculture, Kafrelsheikh University, Kafr Elsheikh 33516, Egypt;
| | - Lóránt Király
- Centre for Agricultural Research, Plant Protection Institute, ELKH, 15 Herman Ottó Str., H-1022 Budapest, Hungary; (L.K.); (A.K.)
| | - András Künstler
- Centre for Agricultural Research, Plant Protection Institute, ELKH, 15 Herman Ottó Str., H-1022 Budapest, Hungary; (L.K.); (A.K.)
| |
Collapse
|
27
|
The Foliar Application of Rice Phyllosphere Bacteria induces Drought-Stress Tolerance in Oryza sativa (L.). PLANTS 2021; 10:plants10020387. [PMID: 33670503 PMCID: PMC7923115 DOI: 10.3390/plants10020387] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/12/2021] [Accepted: 02/14/2021] [Indexed: 01/24/2023]
Abstract
This study assessed the potential of Bacillus endophyticus PB3, Bacillus altitudinis PB46, and Bacillus megaterium PB50 to induce drought tolerance in a susceptible rice cultivar. The leaves of the potted rice plants subjected to physical drought stress for 10 days during the flowering stage were inoculated with single-strain suspensions. Control pots of irrigated and drought-stressed plants were included in the experiment for comparison. In all treatments, the plant stress-related physiochemical and biochemical changes were examined and the expression of six stress-responsive genes in rice leaves was evaluated. The colonization potential on the surface of the rice leaves and stomata of the most successful strain in terms of induced tolerance was confirmed in the gnotobiotic experiment. The plants sprayed with B. megaterium PB50 showed an elevated stress tolerance based on their higher relative water content and increased contents of total sugars, proteins, proline, phenolics, potassium, calcium, abscisic acid, and indole acetic acid, as well as a high expression of stress-related genes (LEA, RAB16B, HSP70, SNAC1, and bZIP23). Moreover, this strain improved yield parameters compared to other treatments and also confirmed its leaf surface colonization. Overall, this study indicates that the foliar application of B. megaterium PB50 can induce tolerance to drought stress in rice.
Collapse
|
28
|
Bonatelli ML, Lacerda-Júnior GV, dos Reis Junior FB, Fernandes-Júnior PI, Melo IS, Quecine MC. Beneficial Plant-Associated Microorganisms From Semiarid Regions and Seasonally Dry Environments: A Review. Front Microbiol 2021; 11:553223. [PMID: 33519722 PMCID: PMC7845453 DOI: 10.3389/fmicb.2020.553223] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 12/03/2020] [Indexed: 11/13/2022] Open
Abstract
Semiarid regions are apparently low biodiversity environments; however, these environments may host a phylogenetically diverse microbial community associated with plants. Their microbial inhabitants are often recruited to withstand stressful settings and improve plant growth under harsh conditions. Thus, plant-associated microorganisms isolated from semiarid and seasonally dry environments will be detailed in the present review, focusing on plant growth promotion potential and the microbial ability to alleviate plant abiotic stress. Initially, we explored the role of microbes from dry environments around the world, and then, we focused on seasonally dry Brazilian biomes, the Caatinga and the Cerrado. Cultivable bacteria from semiarid and seasonally dry environments have demonstrated great plant growth promotion traits such as plant hormone production, mobilization of insoluble nutrients, and mechanisms related to plant abiotic stress alleviation. Several of these isolates were able to improve plant growth under stressful conditions commonly present in typical semiarid regions, such as high salinity and drought. Additionally, we highlight the potential of plants highly adapted to seasonal climates from the Caatinga and Cerrado biomes as a suitable pool of microbial inoculants to maintain plant growth under abiotic stress conditions. In general, we point out the potential for the exploitation of new microbial inoculants from plants growing in dry environments to ensure a sustainable increase in agricultural productivity in a future climate change scenario.
Collapse
Affiliation(s)
- Maria Leticia Bonatelli
- Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | | | | | | | - Itamar Soares Melo
- Brazilian Agricultural Research Corporation, Embrapa Meio Ambiente, Jaguariúna, Brazil
| | - Maria Carolina Quecine
- Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| |
Collapse
|
29
|
Li Y, Gao J, Xu X, Wu Y, Zhuang J, Zhang X, Zhang H, Lei B, Zheng M, Liu Y, Hu C. Carbon Dots as a Protective Agent Alleviating Abiotic Stress on Rice ( Oryza sativa L.) through Promoting Nutrition Assimilation and the Defense System. ACS APPLIED MATERIALS & INTERFACES 2020; 12:33575-33585. [PMID: 32614165 DOI: 10.1021/acsami.0c11724] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Abiotic stress severely threatens agriculture. Herein, we studied the effect of heteroatom-free carbon dots (CDs) on the alleviation of abiotic stresses in rice for the first time. During in vitro coincubation, suspended rice cells were exposed to 2,4-dichlorophenoxyacetate sodium (2,4-D-Na, 30 μg mL-1), 2,4-dichlorophenoxyacetic acid (2,4-D, 5 μg mL-1), NaCl (0.15 mol·L-1), and high light (2000 Lux), both with and without CDs (100 μg mL-1). After a week, CDs significantly reduced the inhibition rate of 2,4-D-Na on the rice cell biomass from 48.16 to 27.44% and increased the biomass of rice cells exposed to 2,4-D, NaCl, and high light, by 4.12, 1.10, and 4.01 times that of the control (pure nutrient medium), respectively. Furthermore, the growth of CD-germinated rice seedlings was not obviously affected by 2,4-D-Na, 2,4-D, and NaCl. Further results showed that the CDs demonstrated an intrinsic free-radical scavenging property and could increase the peroxidase activity and the contents of phenolics and flavonoids in rice by 125.81, 39.60, and 47.63%, respectively. Furthermore, CDs improved the nutrient assimilation of rice cells under 2,4-D stress by 14.69%. With higher antioxidant capacity and sufficient nutrients, the CD-treated rice showed excellent resistance to abiotic stresses. This study suggested the great potential of CDs in protecting crops against abiotic stress.
Collapse
Affiliation(s)
- Yadong Li
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Junmei Gao
- Vocational Teachers College, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xiaokai Xu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Ying Wu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Jianle Zhuang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Xuejie Zhang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Haoran Zhang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Bingfu Lei
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Mingtao Zheng
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yingliang Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Chaofan Hu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
30
|
Dry-Caribbean Bacillus spp. Strains Ameliorate Drought Stress in Maize by a Strain-Specific Antioxidant Response Modulation. Microorganisms 2020; 8:microorganisms8060823. [PMID: 32486159 PMCID: PMC7355921 DOI: 10.3390/microorganisms8060823] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 12/31/2022] Open
Abstract
Drought is a global problem for crop productivity. Therefore, the objective of this research was to evaluate five dry-Caribbean Bacillus spp. strains in drought stress amelioration in maize plants. Maize seeds were single-strain inoculated and sown in pots under greenhouse conditions. After 12 days, plants were subjected to 33 days of drought conditions, i.e., 30% of soil field capacity, and then collected to measure leaf and root dry biomass, plant height, antioxidant enzymes, proline accumulation, and P+, Ca2+, and K+ uptake. Results correlated drought stress amelioration with the inoculation of Bacillus spp. strains XT13, XT38 and XT110. Inoculated plants showed increases in dry biomass, plant height, and K+ and P+ uptake. The overall maize antioxidant response to bacterial inoculation under drought stress showed dependence on proline accumulation and decreases in ascorbate peroxidase and glutathione reductase activities. Moreover, results suggest that this stress amelioration is driven by a specific plant-strain correlation observed in antioxidant response changes in inoculated plants under stress. Also, there is a complex integration of several mechanisms, including plant growth-promotion traits and nutrient uptake. Hence, the use of dry-Caribbean plant growth-promoting Bacillus strains represents an important biotechnological approach to enhance crop productivity in arid and semi-arid environments.
Collapse
|
31
|
Application of Plant Growth Promoting Bacillus thuringiensis as Biofertilizer on Abelmoschus esculentus Plants under Field Condition. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2020. [DOI: 10.22207/jpam.14.2.24] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
32
|
Nanjundappa A, Bagyaraj DJ, Saxena AK, Kumar M, Chakdar H. Interaction between arbuscular mycorrhizal fungi and Bacillus spp. in soil enhancing growth of crop plants. Fungal Biol Biotechnol 2019; 6:23. [PMID: 31798924 PMCID: PMC6882151 DOI: 10.1186/s40694-019-0086-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/12/2019] [Indexed: 01/07/2023] Open
Abstract
Soil microorganisms play an important role in enhancing soil fertility and plant health. Arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria form a key component of the soil microbial population. Arbuscular mycorrhizal fungi form symbiotic association with most of the cultivated crop plants and they help plants in phosphorus nutrition and protecting them against biotic and abiotic stresses. Many species of Bacillus occurring in soil are also known to promote plant growth through phosphate solubilization, phytohormone production and protection against biotic and abiotic stresses. Synergistic interaction between AMF and Bacillus spp. in promoting plant growth compared to single inoculation with either of them has been reported. This is because of enhanced nutrient uptake, protection against plant pathogens and alleviation of abiotic stresses (water, salinity and heavy metal) through dual inoculation compared to inoculation with either AMF or Bacillus alone.
Collapse
Affiliation(s)
- Anuroopa Nanjundappa
- Centre for Natural Biological Resources and Community Development, 41 RBI Colony, Anand Nagar, Bangalore, 560024 India.,Government Science College, Nrupathunga Road, Bangalore, 560001 India
| | - Davis Joseph Bagyaraj
- Centre for Natural Biological Resources and Community Development, 41 RBI Colony, Anand Nagar, Bangalore, 560024 India
| | - Anil Kumar Saxena
- 2ICAR-National Bureau of Agriculturally Important Microorganisms, Mau, Uttar Pradesh 275103 India
| | - Murugan Kumar
- 2ICAR-National Bureau of Agriculturally Important Microorganisms, Mau, Uttar Pradesh 275103 India
| | - Hillol Chakdar
- 2ICAR-National Bureau of Agriculturally Important Microorganisms, Mau, Uttar Pradesh 275103 India
| |
Collapse
|
33
|
Garcia-Lemos AM, Großkinsky DK, Stokholm MS, Lund OS, Nicolaisen MH, Roitsch TG, Veierskov B, Nybroe O. Root-Associated Microbial Communities of Abies nordmanniana: Insights Into Interactions of Microbial Communities With Antioxidative Enzymes and Plant Growth. Front Microbiol 2019; 10:1937. [PMID: 31507556 PMCID: PMC6714061 DOI: 10.3389/fmicb.2019.01937] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/06/2019] [Indexed: 12/26/2022] Open
Abstract
Abies nordmanniana is a major Christmas tree species in Europe, but their uneven and prolonged growth slows down their production. By a 16S and 18S rRNA gene amplicon sequencing approach, we performed a characterization of root-associated bacterial and fungal communities for three-year-old A. nordmanniana plants collected from two nurseries in Denmark and Germany and displaying different growth patterns (small versus tall plants). Proteobacteria had the highest relative abundance at both sampling sites and plant sizes, and Ascomycota was the most abundant fungal phylum. At the order level, Acidobacteriales, Actinomycetales, Burkholderiales, Rhizobiales, and Xanthomonadales represented the bacterial core microbiome of A. nordmanniana, independently of the sampling site or plant size, while the fungal core microbiome included members of the Agaricales, Hypocreales, and Pezizales. Principal Coordinate Analysis indicated that both bacterial and fungal communities clustered according to the sampling site pointing to the significance of soil characteristics and climatic conditions for the composition of root-associated microbial communities. Major differences between communities from tall and small plants were a dominance of the potential pathogen Fusarium (Hypocreales) in the small plants from Germany, while Agaricales, that includes reported beneficial ectomycorrhizal fungi, dominated in the tall plants. An evaluation of plant root antioxidative enzyme profiles showed higher levels of the antioxidative enzymes ascorbate peroxidase, peroxidase, and superoxide dismutase in small plants compared to tall plants. We suggest that the higher antioxidative enzyme activities combined with the growth arrest phenotype indicate higher oxidative stress levels in the small plants. Additionally, the correlations between the relative abundances of specific taxa of the microbiome with the plant antioxidative enzyme profiles were established. The main result was that many more bacterial taxa correlated positively than negatively with one or more antioxidative enzyme activity. This may suggest that the ability of bacteria to increase plant antioxidative enzyme defenses is widespread.
Collapse
Affiliation(s)
- Adriana M. Garcia-Lemos
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Dominik K. Großkinsky
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
- Copenhagen Plant Science Centre, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Michaela S. Stokholm
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Ole S. Lund
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Mette Haubjerg Nicolaisen
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Thomas G. Roitsch
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
- Copenhagen Plant Science Centre, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Bjarke Veierskov
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Ole Nybroe
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
34
|
Azizoglu U. Bacillus thuringiensis as a Biofertilizer and Biostimulator: a Mini-Review of the Little-Known Plant Growth-Promoting Properties of Bt. Curr Microbiol 2019; 76:1379-1385. [PMID: 31101973 DOI: 10.1007/s00284-019-01705-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 05/08/2019] [Indexed: 01/24/2023]
Abstract
Bacillus thuringiensis (Bt) is a gram-positive spore-forming soil microorganism. Because the insecticidal activities of Bt are well known, it has been used as a tool for insect pest control worldwide. The beneficial features of Bt are not limited to its role as an insecticide; it is also used to control phytopathogenic fungi via chitinolytic activity. Bt-related studies are mostly focused on its biocontrol properties. However, studies focusing on the biostimulation and biofertilizer features of Bt, including its interactions with plants, are limited. Bt is a successful endophyte in many plants and can directly promote their development or indirectly induce plant growth by suppressing diseases. Although there are various commercial biopesticide Bt-based products, there are no commercial Bt-based plant growth-promoting rhizobacteria products on the biofertilizer market. As novel Bt strain exploration increases, there will likely be new Bt-based products with powerful biofertilizer activities in the future. The objective of this paper is to review, discuss, and evaluate the exceptional features of Bt as a plant growth promoter.
Collapse
Affiliation(s)
- Ugur Azizoglu
- Department of Crop and Animal Production, Safiye Cikrikcioglu Vocational School, Kayseri University, Kayseri, Turkey.
| |
Collapse
|
35
|
Ek-Ramos MJ, Gomez-Flores R, Orozco-Flores AA, Rodríguez-Padilla C, González-Ochoa G, Tamez-Guerra P. Bioactive Products From Plant-Endophytic Gram-Positive Bacteria. Front Microbiol 2019; 10:463. [PMID: 30984118 PMCID: PMC6449470 DOI: 10.3389/fmicb.2019.00463] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 02/21/2019] [Indexed: 11/13/2022] Open
Abstract
Endophytes constitute plant-colonizing microorganisms in a mutualistic symbiosis relationship. They are found in most ecosystems reducing plant crops' biotic and abiotic stressors by stimulating immune responses, excluding plant pathogens by niche competition, and participating in antioxidant activities and phenylpropanoid metabolism, whose activation produces plant defense, structural support, and survival molecules. In fact, metabolomic studies have demonstrated that endophyte genes associated to specific metabolites are involved in plant growth promotion (PGP) by stimulating plant hormones production such as auxins and gibberellins or as plant protective agents against microbial pathogens, cancer, and insect pests, but eco-friendly and eco-safe. A number of metabolites of Gram-positive endophytes isolated from agriculture, forest, mangrove, and medicinal plants, mainly related to the Firmicutes phyla, possess distinctive biocontrol and plant growth-promoting activities. In general, Actinobacteria and Bacillus endophytes produce aromatic compounds, lipopeptides, plant hormones, polysaccharides, and several enzymes linked to phenylpropanoid metabolism, thus representing high potential for PGP and crop management strategies. Furthermore, Actinobacteria have been shown to produce metabolites with antimicrobial and antitumor activities, useful in agriculture, medicine, and veterinary areas. The great endophytes diversity, their metabolites production, and their adaptation to stress conditions make them a suitable and unlimited source of novel metabolites, whose application could reduce agrochemicals usage in food and drugs production.
Collapse
Affiliation(s)
- María J. Ek-Ramos
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Ricardo Gomez-Flores
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Alonso A. Orozco-Flores
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Cristina Rodríguez-Padilla
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Guadalupe González-Ochoa
- Departamento de Ciencias Químico Biológicas, División de Ciencias e Ingeniería, Universidad de Sonora, Navojoa, Mexico
| | - Patricia Tamez-Guerra
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| |
Collapse
|
36
|
Majeed A, Muhammad Z, Ahmad H. Plant growth promoting bacteria: role in soil improvement, abiotic and biotic stress management of crops. PLANT CELL REPORTS 2018; 37:1599-1609. [PMID: 30178214 DOI: 10.1007/s00299-018-2341-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 08/29/2018] [Indexed: 06/08/2023]
Abstract
Agricultural production-a major contributing factor towards global food supply-is highly reliant on field crops which are under severe threats ranging from poor soil quality, biotic, abiotic stresses and changing climatic conditions. To overcome these challenges, larger exertions are required to boost production of agricultural crops in a defensible mode. Since the evolution of fertilizers and pesticides, global crop productivity has experienced an unprecedented elevation, but at the cost of environmental and ecological unsustainability. To enhance the agricultural outputs in a sustainable way, the novel and eco-friendly strategies must be employed in agriculture, which would lead to reduced use of hazardous chemicals. Thus, the utilization of our knowledge about natural growth stimulators can lead to decrease reliance on fertilizers and pesticide which are widely used for increasing crop productivity. Among beneficial microbes, plant growth promoting bacteria offers excellent opportunities for their wide utilization in agriculture to manage soil quality and other factors which correspond to limited growth and yield output of major field crops. The aim of this review is to examine the potential role of plant growth stimulating bacteria in soil fertility and enabling crops to cope with biotic and abiotic challenges.
Collapse
Affiliation(s)
- Abdul Majeed
- Department of Botany, Government Degree College Naguman Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan.
| | - Zahir Muhammad
- Department of Botany, University of Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Habib Ahmad
- Islamia College University Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
37
|
The influence of plant growth-promoting rhizobacteria in plant tolerance to abiotic stress: a survival strategy. Appl Microbiol Biotechnol 2018; 102:7821-7835. [PMID: 30030564 PMCID: PMC6132541 DOI: 10.1007/s00253-018-9214-z] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/29/2018] [Accepted: 07/06/2018] [Indexed: 11/26/2022]
Abstract
Action is needed to face the global threat arising from inconsistent rainfall, rise in temperature, and salinization of farm lands which may be the product of climate change. As crops are adversely affected, man and animals may face famine. Plants are severely affected by abiotic stress (drought, salinity, alkalinity, and temperature), which impairs yield and results in loss to farmers and to the nation at large. However, microbes have been shown to be of great help in the fight against abiotic stress, via their biological activities at the rhizosphere of plants. The external application of chemical substances such as glycine betaine, proline, and nutrients has helped in sustaining plant growth and productive ability. In this review, we tried to understand the part played by bioinoculants in aiding plants to resist the negative consequences arising from abiotic stress and to suggest better practices that will be of help in today’s farming systems. The fact that absolute protection and sustainability of plant yield under stress challenges has not been achieved by microbes, nutrients, nor the addition of chemicals (osmo-protectants) alone suggests that studies should focus on the integration of these units (microbes, nutrients, chemical stimulants, and osmo-protectants) into a strategy for achieving a complete tolerance to abiotic stress. Also, other species of microbes capable of shielding plant from stress, boosting yield and growth, providing nutrients, and protecting the plants from harmful invading pathogens should be sought.
Collapse
|
38
|
Armada E, Leite MFA, Medina A, Azcón R, Kuramae EE. Native bacteria promote plant growth under drought stress condition without impacting the rhizomicrobiome. FEMS Microbiol Ecol 2018; 94:4996783. [DOI: 10.1093/femsec/fiy092] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 05/13/2018] [Indexed: 12/20/2022] Open
Affiliation(s)
- Elisabeth Armada
- Estación Experimental del Zaidín, CSIC, Departamento de Microbiología del Suelo y Sistemas Simbióticos, Prof. Albareda 1, 18008, Granada, Spain
| | - Márcio F A Leite
- Netherlands Institute of Ecology (NIOO-KNAW), Department of Microbial Ecology, Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands
- Leiden University, Department of Biology, Leiden, 2311 EZ, The Netherlands
- Maranhão State University (UEMA), department of Agroecology, São Luís, Brazil
| | - Almudena Medina
- Netherlands Institute of Ecology (NIOO-KNAW), Department of Microbial Ecology, Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands
| | - Rosario Azcón
- Estación Experimental del Zaidín, CSIC, Departamento de Microbiología del Suelo y Sistemas Simbióticos, Prof. Albareda 1, 18008, Granada, Spain
| | - Eiko E Kuramae
- Netherlands Institute of Ecology (NIOO-KNAW), Department of Microbial Ecology, Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands
| |
Collapse
|
39
|
Chagas FO, Pessotti RDC, Caraballo-Rodríguez AM, Pupo MT. Chemical signaling involved in plant-microbe interactions. Chem Soc Rev 2018; 47:1652-1704. [PMID: 29218336 DOI: 10.1039/c7cs00343a] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Microorganisms are found everywhere, and they are closely associated with plants. Because the establishment of any plant-microbe association involves chemical communication, understanding crosstalk processes is fundamental to defining the type of relationship. Although several metabolites from plants and microbes have been fully characterized, their roles in the chemical interplay between these partners are not well understood in most cases, and they require further investigation. In this review, we describe different plant-microbe associations from colonization to microbial establishment processes in plants along with future prospects, including agricultural benefits.
Collapse
Affiliation(s)
- Fernanda Oliveira Chagas
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (FCFRP-USP), Avenida do Café, s/n, 14040-903, Ribeirão Preto-SP, Brazil.
| | | | | | | |
Collapse
|
40
|
Ceapă CD, Vázquez-Hernández M, Rodríguez-Luna SD, Cruz Vázquez AP, Jiménez Suárez V, Rodríguez-Sanoja R, Alvarez-Buylla ER, Sánchez S. Genome mining of Streptomyces scabrisporus NF3 reveals symbiotic features including genes related to plant interactions. PLoS One 2018; 13:e0192618. [PMID: 29447216 PMCID: PMC5813959 DOI: 10.1371/journal.pone.0192618] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/27/2018] [Indexed: 12/17/2022] Open
Abstract
Endophytic bacteria are wide-spread and associated with plant physiological benefits, yet their genomes and secondary metabolites remain largely unidentified. In this study, we explored the genome of the endophyte Streptomyces scabrisporus NF3 for discovery of potential novel molecules as well as genes and metabolites involved in host interactions. The complete genomes of seven Streptomyces and three other more distantly related bacteria were used to define the functional landscape of this unique microbe. The S. scabrisporus NF3 genome is larger than the average Streptomyces genome and not structured for an obligate endosymbiotic lifestyle; this and the fact that can grow in R2YE media implies that it could include a soil-living stage. The genome displays an enrichment of genes associated with amino acid production, protein secretion, secondary metabolite and antioxidants production and xenobiotic degradation, indicating that S. scabrisporus NF3 could contribute to the metabolic enrichment of soil microbial communities and of its hosts. Importantly, besides its metabolic advantages, the genome showed evidence for differential functional specificity and diversification of plant interaction molecules, including genes for the production of plant hormones, stress resistance molecules, chitinases, antibiotics and siderophores. Given the diversity of S. scabrisporus mechanisms for host upkeep, we propose that these strategies were necessary for its adaptation to plant hosts and to face changes in environmental conditions.
Collapse
Affiliation(s)
- Corina Diana Ceapă
- Departmento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - Melissa Vázquez-Hernández
- Departmento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - Stefany Daniela Rodríguez-Luna
- Departmento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - Angélica Patricia Cruz Vázquez
- Departmento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
- Instituto Tecnológico de Tuxtla Gutiérrez,Tuxtla, Gutiérrez, Chiapas, México
| | - Verónica Jiménez Suárez
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - Romina Rodríguez-Sanoja
- Departmento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - Elena R. Alvarez-Buylla
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - Sergio Sánchez
- Departmento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| |
Collapse
|
41
|
Qu C, Ma M, Chen W, Cai P, Yu XY, Feng X, Huang Q. Modeling of Cd adsorption to goethite-bacteria composites. CHEMOSPHERE 2018; 185:75-85. [PMID: 29874770 DOI: 10.1016/j.chemosphere.2017.06.135] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 06/19/2017] [Accepted: 06/30/2017] [Indexed: 05/18/2023]
Abstract
The accurate modeling of heavy metal adsorption in complex systems is fundamental for risk assessments in soils and associated environments. Bacteria-iron (hydr)oxide associations in soils and sediments play a critical role in heavy metal immobilization. The reduced adsorption of heavy metals on these composites have been widely reported using the component additivity (CA) method. However, there is a lack of a mechanism model to account for these deviations. In this study, we established models for Cd adsorption on goethite-Pseudomonas putida composites at 1:1 and 5:1 mass ratios. Cadmium adsorption on the 5:1 composite was consistent with the additivity method. However, the CA method over predicted Cd adsorption by approximately 8% on the 1:1 composite at high Cd concentration. The deviation was corrected by adding the site blockage reactions between P. putida and goethite. Both CA and "CA-site masking" models for Cd adsorption onto the composites were in line with the ITC data. These results indicate that CA method in simulating Cd adsorption on bacteria-iron oxides composites is limited to low bacterial and Cd concentrations. Therefore the interfacial complexation reactions that occur between iron (hydr)oxides and bacteria should be taken into account when high concentrations of bacteria and heavy metals are present.
Collapse
Affiliation(s)
- Chenchen Qu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Mingkai Ma
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenli Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Peng Cai
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiao-Ying Yu
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Xionghan Feng
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
42
|
Angulo-Castro A, Ferrera-Cerrato R, Alarcón A, Almaraz-Suárez JJ, Delgadillo-Martínez J, Jiménez-Fernández M, García-Barradas O. [Growth and photochemical efficiency of photosystem ii in seedlings of two varieties of Capsicum annuum L. inoculated with rhizobacteria and arbuscular mycorrhizal fungi]. Rev Argent Microbiol 2017; 50:178-188. [PMID: 29054549 DOI: 10.1016/j.ram.2017.03.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 01/17/2017] [Accepted: 03/02/2017] [Indexed: 10/18/2022] Open
Abstract
Plant growth promoting rhizobacteria (PGPR) and arbuscular mycorrhizal fungi (AMF) are a biological alternative for the sustainable management of Capsicum annuum L. This research work evaluated the effects of both PGPR and AMF on bell pepper and jalapeno pepper plants. Five bacterial strains isolated from several locations in Estado de Mexico were used: [P61 (Pseudomonas tolaasii), A46 (P. tolaasii), R44 (Bacillus pumilus), BSP1.1 (Paenibacillus sp.), and OLs-Sf5 (Pseudomonas sp.)], and three treatments with AMF [H1 (consortium isolated from pepper crops in the State of Puebla), H2 (Rhizophagus intraradices), and H3 (consortium isolated from the rhizosphere of lemon trees, State of Tabasco)]. In addition, a fertilized treatment (Steiner nutrient solution at 25%) and an unfertilized control were included. Seedlings of "Caloro" jalapeno pepper and "California Wonder" bell pepper were inoculated with AMF at seed sowing, and PGPR were inoculated after 15 days of seedling emergence; seedlings were grown under plant growth chamber conditions. P61 bacterium and H1 AMF consortia were the most effective microorganisms for jalapeno pepper whereas R44 bacterium and AMF H3 and H1 were the most effective for bell peppers, when compared to the unfertilized control. Furthermore, P61 and R44 bacteria showed beneficial effects on PSII efficiency.
Collapse
Affiliation(s)
- Azareel Angulo-Castro
- Microbiología, Edafología, Campus Montecillo, Colegio de Posgraduados, Texcoco, Estado de México, México
| | - Ronald Ferrera-Cerrato
- Microbiología, Edafología, Campus Montecillo, Colegio de Posgraduados, Texcoco, Estado de México, México.
| | - Alejandro Alarcón
- Microbiología, Edafología, Campus Montecillo, Colegio de Posgraduados, Texcoco, Estado de México, México
| | - Juan José Almaraz-Suárez
- Microbiología, Edafología, Campus Montecillo, Colegio de Posgraduados, Texcoco, Estado de México, México
| | - Julián Delgadillo-Martínez
- Microbiología, Edafología, Campus Montecillo, Colegio de Posgraduados, Texcoco, Estado de México, México
| | | | - Oscar García-Barradas
- Unidad de Servicios de Apoyo en Resolución Analítica (SARA), Universidad Veracruzana, Xalapa, Veracruz, México
| |
Collapse
|
43
|
Dubey G, Kollah B, Ahirwar U, Mandal A, Thakur JK, Patra AK, Mohanty SR. Phylloplane bacteria of Jatropha curcas: diversity, metabolic characteristics, and growth-promoting attributes towards vigor of maize seedling. Can J Microbiol 2017; 63:822-833. [DOI: 10.1139/cjm-2017-0189] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The complex role of phylloplane microorganisms is less understood than that of rhizospheric microorganisms in lieu of their pivotal role in plant’s sustainability. This experiment aims to study the diversity of the culturable phylloplane bacteria of Jatropha curcas and evaluate their growth-promoting activities towards maize seedling vigor. Heterotrophic bacteria were isolated from the phylloplane of J. curcas and their 16S rRNA genes were sequenced. Sequences of the 16S rRNA gene were very similar to those of species belonging to the classes Bacillales (50%), Gammaproteobacteria (21.8%), Betaproteobacteria (15.6%), and Alphaproteobacteria (12.5%). The phylloplane bacteria preferred to utilize alcohol rather than monosaccharides and polysaccharides as a carbon source. Isolates exhibited ACC (1-aminocyclopropane-1-carboxylic acid) deaminase, phosphatase, potassium solubilization, and indole acetic acid (IAA) production activities. The phosphate-solubilizing capacity (mg of PO4 solubilized by 108 cells) varied from 0.04 to 0.21. The IAA production potential (μg IAA produced by 108 cells in 48 h) of the isolates varied from 0.41 to 9.29. Inoculation of the isolates to maize seed significantly increased shoot and root lengths of maize seedlings. A linear regression model of the plant-growth-promoting activities significantly correlated (p < 0.01) with the growth parameters. Similarly, a correspondence analysis categorized ACC deaminase and IAA production as the major factors contributing 41% and 13.8% variation, respectively, to the growth of maize seedlings.
Collapse
Affiliation(s)
- Garima Dubey
- Indian Institute of Soil Science, Nabibagh, Bhopal 462038, India
- Indian Institute of Soil Science, Nabibagh, Bhopal 462038, India
| | - Bharati Kollah
- Indian Institute of Soil Science, Nabibagh, Bhopal 462038, India
- Indian Institute of Soil Science, Nabibagh, Bhopal 462038, India
| | - Usha Ahirwar
- Indian Institute of Soil Science, Nabibagh, Bhopal 462038, India
- Indian Institute of Soil Science, Nabibagh, Bhopal 462038, India
| | - Asit Mandal
- Indian Institute of Soil Science, Nabibagh, Bhopal 462038, India
- Indian Institute of Soil Science, Nabibagh, Bhopal 462038, India
| | - Jyoti Kumar Thakur
- Indian Institute of Soil Science, Nabibagh, Bhopal 462038, India
- Indian Institute of Soil Science, Nabibagh, Bhopal 462038, India
| | - Ashok Kumar Patra
- Indian Institute of Soil Science, Nabibagh, Bhopal 462038, India
- Indian Institute of Soil Science, Nabibagh, Bhopal 462038, India
| | - Santosh Ranjan Mohanty
- Indian Institute of Soil Science, Nabibagh, Bhopal 462038, India
- Indian Institute of Soil Science, Nabibagh, Bhopal 462038, India
| |
Collapse
|
44
|
Bacillus thuringiensis: a successful insecticide with new environmental features and tidings. Appl Microbiol Biotechnol 2017; 101:2691-2711. [PMID: 28235989 DOI: 10.1007/s00253-017-8175-y] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 01/31/2017] [Accepted: 02/02/2017] [Indexed: 12/15/2022]
Abstract
Bacillus thuringiensis (Bt) is known as the most successful microbial insecticide against different orders of insect pests in agriculture and medicine. Moreover, Bt toxin genes also have been efficiently used to enhance resistance to insect pests in genetically modified crops. In light of the scientific advantages of new molecular biology technologies, recently, some other new potentials of Bt have been explored. These new environmental features include the toxicity against nematodes, mites, and ticks, antagonistic effects against plant and animal pathogenic bacteria and fungi, plant growth-promoting activities (PGPR), bioremediation of different heavy metals and other pollutants, biosynthesis of metal nanoparticles, production of polyhydroxyalkanoate biopolymer, and anticancer activities (due to parasporins). This review comprehensively describes recent advances in the Bt whole-genome studies, the last updated known Bt toxins and their functions, and application of cry genes in plant genetic engineering. Moreover, the review thoroughly describes the new features of Bt which make it a suitable cell factory that might be used for production of different novel valuable bioproducts.
Collapse
|
45
|
Ma Y, Rajkumar M, Zhang C, Freitas H. Inoculation of Brassica oxyrrhina with plant growth promoting bacteria for the improvement of heavy metal phytoremediation under drought conditions. JOURNAL OF HAZARDOUS MATERIALS 2016; 320:36-44. [PMID: 27508309 DOI: 10.1016/j.jhazmat.2016.08.009] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 08/02/2016] [Accepted: 08/03/2016] [Indexed: 05/27/2023]
Abstract
The aim of this study was to investigate the effects of drought resistant serpentine rhizobacteria on plant growth and metal uptake by Brassica oxyrrhina under drought stress (DS) condition. Two drought resistant serpentine rhizobacterial strains namely Pseudomonas libanensis TR1 and Pseudomonas reactans Ph3R3 were selected based on their ability to stimulate seedling growth in roll towel assay. Further assessment on plant growth promoting (PGP) parameters revealed their ability to produce indole-3-acetic acid, siderophore and 1-aminocyclopropane-1-carboxylate deaminase. Moreover, both strains exhibited high resistance to various heavy metals, antibiotics, salinity and extreme temperature. Inoculation of TR1 and Ph3R3 significantly increased plant growth, leaf relative water and pigment content of B. oxyrrhina, whereas decreased concentrations of proline and malondialdehyde in leaves under metal stress in the absence and presence of DS. Regardless of soil water conditions, TR1 and Ph3R3 greatly improved organ metal concentrations, translocation and bioconcentration factors of Cu and Zn. The successful colonization and metabolic activities of P. libanensis TR1 and P. reactans Ph3R3 represented positive effects on plant development and metal phytoremediation under DS. These results indicate that these strains could be used as bio-inoculants for the improvement of phytoremediation of metal polluted soils under semiarid conditions.
Collapse
Affiliation(s)
- Ying Ma
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal.
| | - Mani Rajkumar
- Department of Life Sciences, Central University of Tamil Nadu, Tiruvarur 610101, India
| | | | - Helena Freitas
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| |
Collapse
|
46
|
Kunert KJ, Vorster BJ, Fenta BA, Kibido T, Dionisio G, Foyer CH. Drought Stress Responses in Soybean Roots and Nodules. FRONTIERS IN PLANT SCIENCE 2016; 7:1015. [PMID: 27462339 PMCID: PMC4941547 DOI: 10.3389/fpls.2016.01015] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 06/27/2016] [Indexed: 05/18/2023]
Abstract
Drought is considered to be a major threat to soybean production worldwide and yet our current understanding of the effects of drought on soybean productively is largely based on studies on above-ground traits. Although the roots and root nodules are important sensors of drought, the responses of these crucial organs and their drought tolerance features remain poorly characterized. The symbiotic interaction between soybean and rhizobia facilitates atmospheric nitrogen fixation, a process that provides essential nitrogen to support plant growth and development. Symbiotic nitrogen fixation is important for sustainable agriculture, as it sustains plant growth on nitrogen-poor soils and limits fertilizer use for crop nitrogen nutrition. Recent developments have been made in our understanding of the drought impact on soybean root architecture and nodule traits, as well as underpinning transcriptome, proteome and also emerging metabolome information, with a view to improve the selection of more drought-tolerant soybean cultivars and rhizobia in the future. We conclude that the direct screening of root and nodule traits in the field as well as identification of genes, proteins and also metabolites involved in such traits will be essential in order to gain a better understanding of the regulation of root architecture, bacteroid development and lifespan in relation to drought tolerance in soybean.
Collapse
Affiliation(s)
- Karl J. Kunert
- Department Plant Production and Soil Science, Forestry and Agricultural Biotechnology Institute, University of PretoriaPretoria, South Africa
| | - Barend J. Vorster
- Department Plant Production and Soil Science, Forestry and Agricultural Biotechnology Institute, University of PretoriaPretoria, South Africa
| | - Berhanu A. Fenta
- Melkassa Agricultural Research Centre, Ethiopian Institute of Agricultural ResearchAdama, Ethiopia
| | - Tsholofelo Kibido
- Department Plant Production and Soil Science, Forestry and Agricultural Biotechnology Institute, University of PretoriaPretoria, South Africa
| | - Giuseppe Dionisio
- Faculty of Science and Technology, Research Centre Flakkebjerg, Department of Molecular Biology and Genetics, Aarhus UniversityAarhus, Denmark
| | - Christine H. Foyer
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of LeedsLeeds, UK
| |
Collapse
|