1
|
Liu M, Wang C, Ji H, Sun M, Liu T, Wang J, Cao H, Zhu Q. Ethylene biosynthesis and signal transduction during ripening and softening in non-climacteric fruits: an overview. FRONTIERS IN PLANT SCIENCE 2024; 15:1368692. [PMID: 38736445 PMCID: PMC11082881 DOI: 10.3389/fpls.2024.1368692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/08/2024] [Indexed: 05/14/2024]
Abstract
In recent years, the ethylene-mediated ripening and softening of non-climacteric fruits have been widely mentioned. In this paper, recent research into the ethylene-mediated ripening and softening of non-climacteric fruits is summarized, including the involvement of ethylene biosynthesis and signal transduction. In addition, detailed studies on how ethylene interacts with other hormones to regulate the ripening and softening of non-climacteric fruits are also reviewed. These findings reveal that many regulators of ethylene biosynthesis and signal transduction are linked with the ripening and softening of non-climacteric fruits. Meanwhile, the perspectives of future research on the regulation of ethylene in non-climacteric fruit are also proposed. The overview of the progress of ethylene on the ripening and softening of non-climacteric fruit will aid in the identification and characterization of key genes associated with ethylene perception and signal transduction during non-climacteric fruit ripening and softening.
Collapse
Affiliation(s)
- Meiying Liu
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong, School of Advanced Agricultural Sciences, Weifang University, Weifang, China
- College of Enology, Northwest A&F University, Yangling, Shaanxi, China
| | - Chaoran Wang
- College of Agriculture & Forestry Technology, Weifang Vocational College, Weifang, China
| | - Hongliang Ji
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong, School of Advanced Agricultural Sciences, Weifang University, Weifang, China
| | - Maoxiang Sun
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong, School of Advanced Agricultural Sciences, Weifang University, Weifang, China
| | - Tongyu Liu
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong, School of Advanced Agricultural Sciences, Weifang University, Weifang, China
| | - Jiahao Wang
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong, School of Advanced Agricultural Sciences, Weifang University, Weifang, China
| | - Hui Cao
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong, School of Advanced Agricultural Sciences, Weifang University, Weifang, China
| | - Qinggang Zhu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
2
|
Wei B, Wang Y, Ruan Q, Zhu X, Wang X, Wang T, Zhao Y, Wei X. Mechanism of action of microRNA166 on nitric oxide in alfalfa (Medicago sativa L.) under drought stress. BMC Genomics 2024; 25:316. [PMID: 38549050 PMCID: PMC10976769 DOI: 10.1186/s12864-024-10095-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 02/07/2024] [Indexed: 04/01/2024] Open
Abstract
BACKGROUND Alfalfa is a perennial forage crop of high importance, but its cultivation is often affected by drought stress. Currently, the investigation of drought-related small RNAs is a popular research topic to uncover plant drought resistance mechanisms. Among these small RNAs, microRNA166 (miR166) is associated with drought in numerous plant species. Initial small RNA sequencing studies have shown that miR166 is highly responsive to exogenous nitric oxide (NO) and drought. Therefore, analyzing the expression of Msa-miR166 under nitric oxide and drought treatment is significant. RESULT Bioinformatics analysis revealed that the miR166 family is widely distributed among plants, ranging from mosses to eudicots, with significant distribution differences between species. The evolutionary degree of Msa-miR166s is highly similar to that of Barrel medic (Medicago truncatula) and Soybean (Glycine max), but significantly different from the model plant Arabidopsis (Arabidopsis thaliana). It is suggested that there are no significant differences in miR166s within the species, and members of Msa-miR166s can form a typical stem-loop. The lowest level of exogenous nitric oxide was observed in Msa-miR166s under drought stress, followed by individual drought, and the highest level was observed after removing endogenous nitric oxide. CONCLUSION In response to short-term drought, Msa-miR166s down-regulate expression in alfalfa (Medicago sativa L.). Exogenous nitric oxide can reduce the expression of Msa-miR166s in response to short-term drought. These findings suggest that Msa-miR166e-5p is responsive to environmental changes. The expression levels of target genes showed an opposite trend to Msa-miR166s, verifying the accuracy of Degradome sequencing in the early stage. This suggests that alfalfa experiences drought stress when regulated by exogenous nitric oxide, targeting HD ZIP-III, FRI, and CoA ligase genes. Additionally, the expression of Msa-miR166s in response to drought stress varies between leaves and roots, indicating spatiotemporal specificity.
Collapse
Affiliation(s)
- Bochuang Wei
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yizhen Wang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Qian Ruan
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Xiaolin Zhu
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Xian Wang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Tianjie Wang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Ying Zhao
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Xiaohong Wei
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China.
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
3
|
Dorta T, Gil-Muñoz F, Carrasco F, Zuriaga E, Ríos G, Blasco M. Physiological Changes and Transcriptomic Analysis throughout On-Tree Fruit Ripening Process in Persimmon ( Diospyros kaki L.). PLANTS (BASEL, SWITZERLAND) 2023; 12:2895. [PMID: 37631107 PMCID: PMC10457761 DOI: 10.3390/plants12162895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/28/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023]
Abstract
The involvement of effectors and transcriptional regulators in persimmon fruit maturation has been mostly approached by the literature under postharvest conditions. In order to elucidate the participation of these genes in the on-tree fruit maturation development, we have collected samples from seven persimmon germplasm accessions at different developmental stages until physiological maturation. This study has focused on the expression analysis of 13 genes involved in ethylene biosynthesis and response pathways, as well as the evolution of important agronomical traits such as skin colour, weight, and firmness. Results revealed different gene expression patterns, with genes up- and down-regulated during fruit development progression. A principal component analysis was performed to correlate gene expression with agronomical traits. The decreasing expression of the ethylene biosynthetic genes DkACO1, DkACO2, and DkACS2, in concordance with other sensing (DkERS1) and transduction genes (DkERF18), provides a molecular mechanism for the previously described high production of ethylene in immature detached fruits. On the other side, DkERF8 and DkERF16 are postulated to induce fruit softening and skin colour change during natural persimmon fruit ripening via DkXTH9 and DkPSY activation, respectively. This study provides valuable information for a better understanding of the ethylene signalling pathway and its regulation during on-tree fruit ripening in persimmon.
Collapse
Affiliation(s)
- Tania Dorta
- Valencian Institute for Agricultural Research (IVIA), Road CV-315 Km 10.7, 46113 Valencia, Spain (G.R.)
| | - Francisco Gil-Muñoz
- Valencian Institute for Agricultural Research (IVIA), Road CV-315 Km 10.7, 46113 Valencia, Spain (G.R.)
| | - Fany Carrasco
- Valencian Institute for Agricultural Research (IVIA), Road CV-315 Km 10.7, 46113 Valencia, Spain (G.R.)
| | - Elena Zuriaga
- Valencian Institute for Agricultural Research (IVIA), Road CV-315 Km 10.7, 46113 Valencia, Spain (G.R.)
| | - Gabino Ríos
- Valencian Institute for Agricultural Research (IVIA), Road CV-315 Km 10.7, 46113 Valencia, Spain (G.R.)
| | - Manuel Blasco
- CANSO, Avenue Cooperativa Agrícola Verge de Oreto, 1, 46250 L’Alcudia, Spain
| |
Collapse
|
4
|
Shen B, Zhang Z, Shi Q, Du J, Xue Q, Li X. Active compound analysis of Ziziphus jujuba cv. Jinsixiaozao in different developmental stages using metabolomic and transcriptomic approaches. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 189:14-23. [PMID: 36030619 DOI: 10.1016/j.plaphy.2022.08.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/22/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Jujube (Ziziphus jujuba Mill.) is a popular fruit with health benefits ascribed to its various metabolites. These metabolites determine the flavors and bioactivities of the fruit, as well as their desirability. However, the dynamics of the metabolite composition and the underlying gene expression that modulate the overall flavor and accumulation of active ingredients during fruit development remain largely unknown. Therefore, we conducted an integrated metabolomic and transcriptomic investigation covering various developmental stages in the jujube cultivar Z. jujuba cv. Jinsixiaozao, which is famous for its nutritional and bioactive properties. A total of 407 metabolites were detected by non-targeted metabolomics. Metabolite accumulation during different jujube developmental stages was examined. Most nucleotides and amino acids and their derivatives accumulated during development, with cAMP increasing notably during ripening. Triterpenes gradually accumulated and were maintained at high concentrations during ripening. Many flavonoids were maintained at relatively high levels in early development, but then rapidly decreased later. Transcriptomic and metabolomic analyses revealed that chalcone synthase (CHS), chalcone isomerase (CHI), flavonol synthase (FLS), and dihydroflavonol 4-reductase (DFR) were mainly responsible for regulating the accumulation of flavonoids. Therefore, the extensive downregulation of these genes was probably responsible for the decreases in flavonoid content during fruit ripening. This study provide an overview of changes of active components in 'Jinsixiaozao' during development and ripening. These findings enhance our understanding of flavor formation and will facilitate jujube breeding for improving both nutrition and function.
Collapse
Affiliation(s)
- Bingqi Shen
- College of Forestry, Northwest A&F University, Yangling, 712100, China; Research Center for Jujube Engineering and Technology National Forestry and Grassland Administration, Yangling, 712100, China; Key Comprehensive Laboratory of Forestry of Shaanxi Province, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhong Zhang
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518116, Guangdong, China
| | - Qianqian Shi
- College of Forestry, Northwest A&F University, Yangling, 712100, China; Research Center for Jujube Engineering and Technology National Forestry and Grassland Administration, Yangling, 712100, China; Key Comprehensive Laboratory of Forestry of Shaanxi Province, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jiangtao Du
- College of Forestry, Northwest A&F University, Yangling, 712100, China; Research Center for Jujube Engineering and Technology National Forestry and Grassland Administration, Yangling, 712100, China; Key Comprehensive Laboratory of Forestry of Shaanxi Province, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qingtun Xue
- Forestry WorkStation of Weinan City, Weinan, 714000, Shaanxi, China
| | - Xingang Li
- College of Forestry, Northwest A&F University, Yangling, 712100, China; Research Center for Jujube Engineering and Technology National Forestry and Grassland Administration, Yangling, 712100, China; Key Comprehensive Laboratory of Forestry of Shaanxi Province, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
5
|
Huang S, Zhang L, Cai T, Zhao Y, Liu J, Wu P, Ma X, Shuai P. Transcriptome Level Analysis of Genes of Exogenous Ethylene Applied under Phosphorus Stress in Chinese Fir. PLANTS (BASEL, SWITZERLAND) 2022; 11:2036. [PMID: 35956517 PMCID: PMC9370400 DOI: 10.3390/plants11152036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/23/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Chinese fir (Cunninghamia lanceolata (Lamb.) Hook) is a widely grown gymnosperm in China. Phosphorus (P) is an indispensable nutrient for the growth of Chinese fir. Inorganic phosphate (Pi) deficiency exists in soils of many Chinese fir planting area regions, and the trees themselves have limited efficiency in utilizing P from the soil. Ethylene is important in regulation responses to nutrient deficiencies. However, little is known about how ethylene signals participate in Pi stress in Chinese fir. A total of six different treatments were performed to reveal the transcript levels of Chinese fir under Pi, ethephon (an ethylene-releasing compound), and CoCl2 (cobalt chloride, an ethylene biosynthesis inhibitor) treatments. We assembled a full-length reference transcriptome containing 22,243 unigenes as a reference for UMI RNA-seq (Digital RNA-seq). There were 586 Differentially Expressed Genes (DEGs) in the Pi starvation (NP) group, while DEGs from additional ethephon or CoCl2 in NP were 708 and 292, respectively. Among the DEGs in each treatment, there were 83 TFs in these treatment groups. MYB (v-myb avian myeloblastosis viral oncogene homolog) family was the most abundant transcription factors (TFs). Three ERF (Ethylene response factor) family genes were identified when only ethylene content was imposed as a variable. Enrichment analysis indicated that the ascorbate and aldarate metabolism pathway plays a key role in resistance to Pi deficiency. This study provides insights for further elucidating the regulatory mechanism of Pi deficiency in Chinese fir.
Collapse
Affiliation(s)
- Shuotian Huang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lixia Zhang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Tingting Cai
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuxuan Zhao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiao Liu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Pengfei Wu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Chinese Fir Engineering Technology Research Center of the State Forestry and Grassland Administration, Fuzhou 350002, China
| | - Xiangqing Ma
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Chinese Fir Engineering Technology Research Center of the State Forestry and Grassland Administration, Fuzhou 350002, China
| | - Peng Shuai
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Chinese Fir Engineering Technology Research Center of the State Forestry and Grassland Administration, Fuzhou 350002, China
| |
Collapse
|
6
|
Li B, Li H, Xu Z, Guo X, Zhou T, Shi J. Transcriptome Profiling and Identification of the Candidate Genes Involved in Early Ripening in Ziziphus Jujuba. Front Genet 2022; 13:863746. [PMID: 35774502 PMCID: PMC9237510 DOI: 10.3389/fgene.2022.863746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
The early ripening jujube is an immensely popular fresh fruit due to its high commercial value as well as rich nutrition. However, little is known about the mechanism of jujube fruit’s ripening. In this study, the transcriptome profiles were comprehensively analyzed between the ‘Lingwu Changzao’ jujube and its early-ripening mutant during the fruit development and maturity. A total of 5,376 and 762 differentially expressed genes (DEGs) were presented at 80 and 90 days after the flowering of the jujube fruit, respectively. Furthermore, 521 common DEGs were identified as candidate genes that might be associated with the fruit’s early ripening. Our findings demonstrated that in a non-climacteric jujube fruit, abscisic acid (ABA) was more greatly involved in fruit ripening than ethylene. Meanwhile, the fruit ripening of the early-ripening mutant was regulated by eight promotors of DEGs related to glucose and fructose, seven repressors of DEGs related to brassinosteroid signal transduction, and a series of transcription factor genes (MYB, Bhlh, and ERF). Additionally, the expression of 20 candidate DEGs was further validated by real-time PCR during the late fruit maturation stage. Collectively, the present study sheds light on the metabolic mechanism of the fruit’s early ripening and provides valuable candidate genes for the early-ripening mutant’s breeding.
Collapse
Affiliation(s)
- Baiyun Li
- Horticulture Institute, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, China
| | - Hui Li
- Horticulture Institute, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, China
| | - Zehua Xu
- Horticulture Institute, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, China
| | - Xinnian Guo
- Institute of Agricultural Resources and Environment, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, China
| | - Tao Zhou
- Institute of Agricultural Resources and Environment, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, China
| | - Jiangli Shi
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
- *Correspondence: Jiangli Shi,
| |
Collapse
|
7
|
Sang Y, Sun P, Wang Y, Guo J, Tang Y, Shen P, Guo M, Chen G. Postharvest treatment with 1‐methylcyclopropene and chitosan enhances the antioxidant capacity and maintains the quality of Hui jujube (
Ziziphus jujuba
Mill. cv. Huizao) during cold storage. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yueying Sang
- School of Food Science and Technology Shihezi University Shihezi 832000 China
| | - Pengcheng Sun
- School of Food Science and Technology Shihezi University Shihezi 832000 China
| | - Yue Wang
- School of Food Science and Technology Shihezi University Shihezi 832000 China
| | - Jingyu Guo
- School of Food Science and Technology Shihezi University Shihezi 832000 China
| | - Yisong Tang
- School of Food Science and Technology Shihezi University Shihezi 832000 China
| | - Peng Shen
- School of Food Science and Technology Shihezi University Shihezi 832000 China
| | - Minrui Guo
- School of Food Science and Technology Shihezi University Shihezi 832000 China
| | - Guogang Chen
- School of Food Science and Technology Shihezi University Shihezi 832000 China
| |
Collapse
|
8
|
Sang Y, Yang W, Liu Y, Zhang W, Guo T, Shen P, Tang Y, Guo M, Chen G. Influences of low temperature on the postharvest quality and antioxidant capacity of winter jujube (Zizyphus jujuba Mill. cv. Dongzao). Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
9
|
Zhang J, Ma Y, Dong C, Terry LA, Watkins CB, Yu Z, Cheng ZMM. Meta-analysis of the effects of 1-methylcyclopropene (1-MCP) treatment on climacteric fruit ripening. HORTICULTURE RESEARCH 2020; 7:208. [PMID: 33328458 PMCID: PMC7713375 DOI: 10.1038/s41438-020-00405-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/19/2020] [Accepted: 08/23/2020] [Indexed: 05/28/2023]
Abstract
1-Methylcyclopropene (1-MCP) is an inhibitor of ethylene perception that is widely used to maintain the quality of several climacteric fruits during storage. A large body of literature now exists on the effects of 1-MCP on climacteric fruit ripening for different species and environmental conditions, presenting an opportunity to use meta-analysis to systematically dissect these effects. We classified 44 ripening indicators of climacteric fruits into five categories: physiology and biochemistry, quality, enzyme activity, color, and volatiles. Meta-analysis showed that 1-MCP treatment reduced 20 of the 44 indicators by a minimum of 22% and increased 6 indicators by at least 20%. These effects were associated with positive effects on delaying ripening and maintaining quality. Of the seven moderating variables, species, 1-MCP concentration, storage temperature and time had substantial impacts on the responses of fruit to 1-MCP treatment. Fruits from different species varied in their responses to 1-MCP, with the most pronounced responses observed in rosaceous fruits, especially apple, European pear fruits, and tropical fruits. The effect of gaseous 1-MCP was optimal at 1 μl/l, with a treatment time of 12-24 h, when the storage temperature was 0 °C for temperate fruits or 20 °C for tropical fruits, and when the shelf temperature was 20 °C, reflecting the majority of experimental approaches. These findings will help improve the efficacy of 1-MCP application during the storage of climacteric fruits, reduce fruit quality losses and increase commercial value.
Collapse
Affiliation(s)
- Jing Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yuanchun Ma
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Chao Dong
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
- Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Leon A Terry
- Plant Science Laboratory, Cranfield University, Bedfordshire, UK
| | - Christopher B Watkins
- School of Integrative of Plant Science, College of Agriculture and Plant Sciences, Cornell University, Ithaca, NY, USA.
| | - Zhifang Yu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China.
| | - Zong-Ming Max Cheng
- College of Horticulture, Nanjing Agricultural University, Nanjing, China.
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
10
|
Liu M, Wang J, Wang L, Liu P, Zhao J, Zhao Z, Yao S, Stănică F, Liu Z, Wang L, Ao C, Dai L, Li X, Zhao X, Jia C. The historical and current research progress on jujube-a superfruit for the future. HORTICULTURE RESEARCH 2020; 7:119. [PMID: 32821402 PMCID: PMC7395136 DOI: 10.1038/s41438-020-00346-5] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/12/2020] [Accepted: 05/22/2020] [Indexed: 05/02/2023]
Abstract
Jujube (Ziziphus jujuba Mill.), or Chinese date, is the most important species of Rhamnaceae, a large cosmopolitan family, and is one of the oldest cultivated fruit trees in the world. It originates from the middle and lower reaches of the Yellow River, the 'mother river' of the Chinese people. It is distributed in at least 48 countries on all continents except Antarctica and is becoming increasingly important, especially in arid and semiarid marginal lands. Based on a systematic analysis of the unique characteristics of jujube, we suggest that it deserves to be recognized as a superfruit. We summarized historical research achievements from the past 3000 years and reviewed recent research advances since 1949 in seven fields, including genome sequencing and application, germplasm resources and systematic taxonomy, breeding and genetics, cultivation theory and techniques, pest control, postharvest physiology and techniques, and nutrition and processing. Based on the challenges facing the jujube industry, we discuss eight research aspects to be focused on in the future.
Collapse
Affiliation(s)
- Mengjun Liu
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, 071001 Hebei China
- College of Horticulture, Hebei Agricultural University, Baoding, 071001 Hebei China
- Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry and Fruit Trees, Beijing, 100000 China
| | - Jiurui Wang
- College of Forestry, Hebei Agricultural University, Baoding, 071001 Hebei China
| | - Lili Wang
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, 071001 Hebei China
| | - Ping Liu
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, 071001 Hebei China
| | - Jin Zhao
- College of Life Science, Hebei Agricultural University, Baoding, 071001 Hebei China
| | - Zhihui Zhao
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, 071001 Hebei China
| | - Shengrui Yao
- Department of Plant and Environmental Sciences, Sustainable Agriculture Science Center at Alcalde, New Mexico State University, 371 County Road 40, Alcalde, NM 87511 USA
| | - Florin Stănică
- Faculty of Horticulture, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 011464 Bucharest, Romania
| | - Zhiguo Liu
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, 071001 Hebei China
| | - Lixin Wang
- College of Horticulture, Hebei Agricultural University, Baoding, 071001 Hebei China
| | - Changwei Ao
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001 Hebei China
| | - Li Dai
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, 071001 Hebei China
| | - Xiansong Li
- National Engineering Research Center for Agriculture in Northern Mountainous Areas, Hebei Agricultural University, Baoding, 071001 Hebei China
| | - Xuan Zhao
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, 071001 Hebei China
| | - Chunxiang Jia
- Propaganda Department, Hebei Agricultural University, Baoding, 071001 Hebei China
| |
Collapse
|
11
|
Wang C, Fang H, Gong T, Zhang J, Niu L, Huang D, Huo J, Liao W. Hydrogen gas alleviates postharvest senescence of cut rose 'Movie star' by antagonizing ethylene. PLANT MOLECULAR BIOLOGY 2020; 102:271-285. [PMID: 31838617 DOI: 10.1007/s11103-019-00946-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 12/05/2019] [Indexed: 05/21/2023]
Abstract
H2 prolonged the vase life and improved the vase quality of cut roses through repressing endogenous ethylene production and alleviating ethylene signal transduction during the entire senescing period. Recently, the application of hydrogen gas (H2) was shown to improve postharvest quality and longevity in perishable horticultural products, but the specific regulation mechanism remains obscure. Here, endogenous ethylene production and the expression of genes in ethylene biosynthesis and signalling pathway were investigated to explore the crosstalk between H2 and ethylene during the senescence of cut roses. Our results revealed that addition of exogenous ethylene by ethephon accelerated the senescence of cut roses, in which 100 mg L-1 ethephon displayed the most obvious senescent phenotype. While the applied different concentrations (1%, 10%, 50% and 100%) of hydrogen-rich water (HRW) conducted different affects in alleviating the senescence of cut roses, and 1% HRW displayed the best ornamental quality and the longest vase life by reducing ethylene production, supported by the decrease of 1-aminocyclopropene-1-carboxylate (ACC) accumulation, ACC synthase (ACS) and ACC oxidase (ACO) activities, and Rh-ACS3 and Rh-ACO1 expressions in ethylene biosynthesis. In addition, HRW increased the transcripts of ethylene receptor genes Rh-ETR1 at blooming period from day 4 to day 6 and suppressed Rh-ETR3 at senescence phase at day 8 after harvest. Furthermore, the relevant affection of HRW on Rh-ETR1 and Rh-ETR3 expressions still existed when the ethylene production was compromised by adequate addition of exogenous ethylene in HRW-treated cut rose petals, and HRW directly repressed the protein level of Rh-ETR3 in a transient expression assay. Overall, the results suggested that H2 is involved in neutralizing ethylene-mediated postharvest in cut flowers.
Collapse
Affiliation(s)
- Chunlei Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Hua Fang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Tingyu Gong
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Jing Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Lijuan Niu
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Dengjing Huang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Jianqiang Huo
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China.
| |
Collapse
|
12
|
Guo Y, Li X, Huang F, Pang X, Li Y. Megasporogenesis, microsporogenesis, and female and male gametophyte development in Ziziphus jujuba Mill. PROTOPLASMA 2019; 256:1519-1530. [PMID: 31183549 DOI: 10.1007/s00709-019-01395-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 05/21/2019] [Indexed: 06/09/2023]
Abstract
Jujube (Ziziphus jujuba Mill.) is an important fruit tree species in China. In this study, we studied the megasporogenesis, microsporogenesis, and female and male gametophyte development of two major jujube cultivars, "Dongzao" and "Mayazao," using the squash technique, improved paraffin section technology, and optical microscopy. Our investigation revealed that both "Dongzao" and "Mayazao" have bilocular ovaries, basal placenta, and anatropous, bitegmic, crassinucellate ovules. The tetrads formed by meiosis of megaspore mother cells are arranged in a straight line or a tetrahedron. Embryo sac development is of the Polygonum type. The flower buds contain five anthers, each having four pollen sacs. The anther wall, which is of the fundamental form, is composed of epidermis, endothecium, one or two middle layers, and glandular tapetum. Mature pollen grains are two-celled and three-colporate. Both "Dongzao" and "Mayazao" can form normal mature pollen grains. Our study, which has revealed the basic phenomena and progression of megasporogenesis, microsporogenesis, and female and male gametophyte development in jujube, has generated important data for further research on jujube cytology and reproductive biology. Finally, our explorations of the cytological mechanism of male sterility in "Dongzao" also have provided a cytological basis for crossbreeding.
Collapse
Affiliation(s)
- Ye Guo
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Xiang Li
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Feiyi Huang
- Chongqing Academy of Forestry Science, Chongqing, 404100, China
| | - Xiaoming Pang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yingyue Li
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
13
|
Zhang Z, Kang C, Zhang S, Li X. Transcript analyses reveal a comprehensive role of abscisic acid in modulating fruit ripening in Chinese jujube. BMC PLANT BIOLOGY 2019; 19:189. [PMID: 31068143 PMCID: PMC6505321 DOI: 10.1186/s12870-019-1802-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 04/26/2019] [Indexed: 05/18/2023]
Abstract
BACKGROUND Chinese jujube (Ziziphus jujuba Mill.) is a non-climacteric fruit; however, the underlying mechanism of ripening and the role of abscisic acid involved in this process are not yet understood for this species. RESULTS In the present study, a positive correlation between dynamic changes in endogenous ABA and the onset of jujube ripening was determined. Transcript analyses suggested that the expression balance among genes encoding nine-cis-epoxycarotenoid dioxygenase (ZjNCED3), ABA-8'-hydroxylase (ZjCYP707A2), and beta-glucosidase (ZjBG4, ZjBG5, ZjBG8, and ZjBG9) has an important role in maintaining ABA accumulation, while the expression of a receptor (ZjPYL8), protein phosphatase 2C (ZjPP2C4-8), and sucrose nonfermenting 1-related protein kinase 2 (ZjSnRK2-2 and ZjSnRK2-5) is important in regulating fruit sensitivity to ABA applications. In addition, white mature 'Dongzao' fruit were harvested and treated with 50 mg L- 1 ABA or 50 mg L- 1 nordihydroguaiaretic acid (NDGA) to explore the role of ABA in jujube fruit ripening. By comparative transcriptome analyses, 1103 and 505 genes were differentially expressed in response to ABA and NDGA applications on the 1st day after treatment, respectively. These DEGs were associated with photosynthesis, secondary, lipid, cell wall, and starch and sugar metabolic processes, suggesting the involvement of ABA in modulating jujube fruit ripening. Moreover, ABA also exhibited crosstalk with other phytohormones and transcription factors, indicating a regulatory network for jujube fruit ripening. CONCLUSIONS Our study further elucidated ABA-associated metabolic and regulatory processes. These findings are helpful for improving strategies for jujube fruit storage and for gaining insights into understand complex non-climacteric fruit ripening processes.
Collapse
Affiliation(s)
- Zhong Zhang
- College of Forestry, Northwest A&F University, Yangling, 712100 Shaanxi China
- Key Comprehensive Laboratory of Forestry of Shaanxi Province, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Chenxuan Kang
- College of Forestry, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Shuyi Zhang
- College of Forestry, Northwest A&F University, Yangling, 712100 Shaanxi China
- Forestry Administration of Linwei District, Weinan, 714000 Shaanxi China
| | - Xingang Li
- College of Forestry, Northwest A&F University, Yangling, 712100 Shaanxi China
- Key Comprehensive Laboratory of Forestry of Shaanxi Province, Northwest A&F University, Yangling, 712100 Shaanxi China
- Research Centre for Jujube Engineering and Technology of State Forestry and Grassland Administration, Northwest A&F University, Yangling, 712100 Shaanxi China
| |
Collapse
|
14
|
Yuan S, Yan J, Wang M, Ding X, Zhang Y, Li W, Cao J, Jiang W. Transcriptomic and Metabolic Profiling Reveals 'Green Ring' and 'Red Ring' on Jujube Fruit upon Postharvest Alternaria alternata Infection. PLANT & CELL PHYSIOLOGY 2019; 60:844-861. [PMID: 30605542 DOI: 10.1093/pcp/pcy252] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 12/24/2018] [Indexed: 06/09/2023]
Abstract
Alternaria alternata is the major threat to postharvest storage of jujube (Ziziphus jujuba Mill.) fruit. We found that natural A. alternata infection can cause very typical phenotype of 'green ring' and 'red ring' surrounding the disease spot on the jujube fruit. The phenotype was successfully modeled and constructed on jujubes by artificial inoculation with the pathogen. Furthermore, the pathogenic infection is evidenced essential to the onset of the phenotype. The 'red ring' circle is proved to be pre-fixed to block the 'green ring' area as a battlefield combating the pathogen's attack. We monitored the global transcriptomic profiling of 'green ring' and 'red ring' tissues from jujubes infected with A. alternata, in comparison with the mock-inoculated fruit and the control intact fruit. Large amount of differentially expressed genes were obtained in 'green ring', followed by 'red ring'. Transcriptional alterations associated with the core and peripheral phenylpropanoid and lignin pathways, plant hormonal metabolisms were greatly influenced in the 'green ring' and 'red ring' by the A. alternata infection. The integrated analysis of transcriptomic profiling and metabolic changes revealed the differentially but delicately coordinated activation of these biological processes in the 'green ring' and 'red ring' on jujubes in defensing the fungal infection.
Collapse
Affiliation(s)
- Shuzhi Yuan
- College of Food Science and Nutritional Engineering, China Agricultural University, 17 Qinghuadonglu Road, Beijing, P. R. China
| | - Jiaqi Yan
- College of Food Science and Nutritional Engineering, China Agricultural University, 17 Qinghuadonglu Road, Beijing, P. R. China
| | - Meng Wang
- Beijing Research Center for Agricultural Standards and Testing, No. 9 Middle Road of Shuguanghuayuan, Beijing, P. R. China
| | - Xinyuan Ding
- College of Food Science and Nutritional Engineering, China Agricultural University, 17 Qinghuadonglu Road, Beijing, P. R. China
| | - Yinan Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, 17 Qinghuadonglu Road, Beijing, P. R. China
| | - Wusun Li
- College of Food Science and Nutritional Engineering, China Agricultural University, 17 Qinghuadonglu Road, Beijing, P. R. China
| | - Jiankang Cao
- College of Food Science and Nutritional Engineering, China Agricultural University, 17 Qinghuadonglu Road, Beijing, P. R. China
| | - Weibo Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, 17 Qinghuadonglu Road, Beijing, P. R. China
| |
Collapse
|
15
|
Zhang Z, Li X. Genome-wide identification of AP2/ERF superfamily genes and their expression during fruit ripening of Chinese jujube. Sci Rep 2018; 8:15612. [PMID: 30353116 PMCID: PMC6199273 DOI: 10.1038/s41598-018-33744-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 10/07/2018] [Indexed: 02/06/2023] Open
Abstract
The Ethylene response factor (ERF) belongs to the APETALA2/ethylene response factor (AP2/ERF) superfamily, located at the end of the ethylene signalling pathway, and has important roles in regulating the ethylene-related response genes. Thus, identifying and charactering this transcription factor would be helpful to elucidate ethylene related fruit ripening regulation in Chinese jujube (Ziziphus jujuba Mill.). In the present study, 119 AP2/ERF genes, including 5 Related to ABI3/VPs (RAV), 17 AP2s, 57 ERFs, 39 dehydration-responsive element-binding (DREB) factors and 1 soloist gene, were identified from the jujube genome sequences. Genome localization, gene duplication, phylogenetic relationships and conserved motifs were simultaneously analysed. Using available transcriptomic data, 85 genes with differential transcripts in the flower, leaf and fruit were detected, suggesting a broad regulation of AP2/ERF genes in the growth and development of jujube. Among them, 44 genes were expressed in the fruit. As assessed by quantitative PCR, 15 up- and 23 downregulated genes corresponding to fruit full maturity were found, while in response to 100 μl l-1 ethylene, 6 up- and 16 downregulated genes were generated. By comparing the output, ZjERF54 and DREB39 were found to be the best candidate genes that positively participated in jujube fruit ripening, while ZjERF25 and ZjERF36, which had an ERF-associated amphiphilic repression (EAR) motif, were ripening repressors. These findings help to gain insights into AP2/ERF gene evolution and provide a useful resource to further understand the ethylene regulatory mechanisms underlying Chinese jujube fruit ripening.
Collapse
Affiliation(s)
- Zhong Zhang
- College of Forestry, Northwest A&F University, Yangling, 712100, Shaanxi, China.,Research Centre for Jujube Engineering and Technology of State Forestry Administration, Northwest A&F University, Yangling, 712100, Shaanxi, China.,Key Comprehensive Laboratory of Forestry of Shaanxi Province, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xingang Li
- College of Forestry, Northwest A&F University, Yangling, 712100, Shaanxi, China. .,Research Centre for Jujube Engineering and Technology of State Forestry Administration, Northwest A&F University, Yangling, 712100, Shaanxi, China. .,Key Comprehensive Laboratory of Forestry of Shaanxi Province, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|