1
|
Li Y, Zhang W, Yang Y, Liang X, Lu S, Ma C, Dai C. BnaPLDα1-BnaMPK6 Involved in NaCl-Mediated Overcoming of Self-Incompatibility in Brassica napus L. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 345:112116. [PMID: 38750797 DOI: 10.1016/j.plantsci.2024.112116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 06/11/2024]
Abstract
Self-incompatibility (SI) is an important genetic mechanism exploited by numerous angiosperm species to prevent inbreeding. This mechanism has been widely used in the breeding of SI trilinear hybrids of Brassica napus. The SI responses in these hybrids can be overcome by using a salt (NaCl) solution, which is used for seed propagation in SI lines. However, the mechanism underlying the NaCl-induced breakdown of the SI response in B. napus remains unclear. Here, we investigated the role of two key proteins, BnaPLDα1 and BnaMPK6, in the breakdown of SI induced by NaCl. Pollen grain germination and seed set were reduced in BnaPLDα1 triple mutants following incompatible pollination with NaCl treatment. Conversely, SI responses were partially abolished by overexpression of BnaC05.PLDα1 without salt treatment. Furthermore, we observed that phosphatidic acid (PA) produced by BnaPLDα1 bound to B. napus BnaMPK6. The suppression and enhancement of the NaCl-induced breakdown of the SI response in B. napus were observed in BnaMPK6 quadruple mutants and BnaA05.MPK6 overexpression lines, respectively. Moreover, salt-induced stigmatic reactive oxygen species (ROS) accumulation had a minimal effect on the NaCl-induced breakdown of the SI response. In conclusion, our results demonstrate the essential role of the BnaPLDα1-PA-BnaMPK6 pathway in overcoming the SI response to salt treatment in SI B. napus. Additionally, our study provides new insights into the relationship between SI signaling and salt stress response. SIGNIFICANCE STATEMENT: A new molecular mechanism underlying the breakdown of the NaCl-induced self-incompatibility (SI) response in B. napus has been discovered. It involves the induction of BnaPLDα1 expression by NaCl, followed by the activation of BnaMPK6 through the production of phosphatidic acid (PA) by BnaPLDα1. Ultimately, this pathway leads to the breakdown of SI. The involvement of the BnaPLDα1-PA-BnaMPK6 pathway in overcoming the SI response following NaCl treatment provides new insights into the relationship between SI signalling and the response to salt stress.
Collapse
Affiliation(s)
- Yuanyuan Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - WenXuan Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Yong Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaomei Liang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Shaoping Lu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Cheng Dai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
2
|
Zhang L, Xing L, Dai J, Li Z, Zhang A, Wang T, Liu W, Li X, Han D. Overexpression of a Grape WRKY Transcription Factor VhWRKY44 Improves the Resistance to Cold and Salt of Arabidopsis thaliana. Int J Mol Sci 2024; 25:7437. [PMID: 39000546 PMCID: PMC11242199 DOI: 10.3390/ijms25137437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/25/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024] Open
Abstract
Plants are often exposed to biotic or abiotic stress, which can seriously impede their growth and development. In recent years, researchers have focused especially on the study of plant responses to biotic and abiotic stress. As one of the most widely planted grapevine rootstocks, 'Beta' has been extensively proven to be highly resistant to stress. However, further research is needed to understand the mechanisms of abiotic stress in 'Beta' rootstocks. In this study, we isolated and cloned a novel WRKY transcription factor, VhWRKY44, from the 'Beta' rootstock. Subcellular localization analysis revealed that VhWRKY44 was a nuclear-localized protein. Tissue-specific expression analysis indicated that VhWRKY44 had higher expression levels in grape roots and mature leaves. Further research demonstrated that the expression level of VhWRKY44 in grape roots and mature leaves was highly induced by salt and cold treatment. Compared with the control, Arabidopsis plants overexpressing VhWRKY44 showed stronger resistance to salt and cold stress. The activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) were significantly increased, and the contents of proline, malondialdehyde (MDA) and chlorophyll were changed considerably. In addition, significantly higher levels of stress-related genes were detected in the transgenic lines. The results indicated that VhWRKY44 was an important transcription factor in 'Beta' with excellent salt and cold tolerance, providing a new foundation for abiotic stress research.
Collapse
Affiliation(s)
- Lihua Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Afairs/National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (L.Z.); (L.X.); (J.D.); (Z.L.); (A.Z.)
| | - Liwei Xing
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Afairs/National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (L.Z.); (L.X.); (J.D.); (Z.L.); (A.Z.)
| | - Jing Dai
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Afairs/National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (L.Z.); (L.X.); (J.D.); (Z.L.); (A.Z.)
| | - Zhenghao Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Afairs/National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (L.Z.); (L.X.); (J.D.); (Z.L.); (A.Z.)
| | - Aoning Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Afairs/National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (L.Z.); (L.X.); (J.D.); (Z.L.); (A.Z.)
| | - Tianhe Wang
- Horticulture Branch of Heilongjiang Academy of Agricultural Sciences, Harbin 150040, China; (T.W.); (W.L.)
| | - Wanda Liu
- Horticulture Branch of Heilongjiang Academy of Agricultural Sciences, Harbin 150040, China; (T.W.); (W.L.)
| | - Xingguo Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Afairs/National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (L.Z.); (L.X.); (J.D.); (Z.L.); (A.Z.)
| | - Deguo Han
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Afairs/National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (L.Z.); (L.X.); (J.D.); (Z.L.); (A.Z.)
| |
Collapse
|
3
|
Li W, Li H, Wei Y, Han J, Wang Y, Li X, Zhang L, Han D. Overexpression of a Fragaria vesca NAM, ATAF, and CUC (NAC) Transcription Factor Gene ( FvNAC29) Increases Salt and Cold Tolerance in Arabidopsis thaliana. Int J Mol Sci 2024; 25:4088. [PMID: 38612898 PMCID: PMC11012600 DOI: 10.3390/ijms25074088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/04/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
The NAC (NAM, ATAF1/2, CUC2) family of transcription factors (TFs) is a vital transcription factor family of plants. It controls multiple parts of plant development, tissue formation, and abiotic stress response. We cloned the FvNAC29 gene from Fragaria vesca (a diploid strawberry) for this research. There is a conserved NAM structural domain in the FvNAC29 protein. The highest homology between FvNAC29 and PaNAC1 was found by phylogenetic tree analysis. Subcellular localization revealed that FvNAC29 is localized onto the nucleus. Compared to other tissues, the expression level of FvNAC29 was higher in young leaves and roots. In addition, Arabidopsis plants overexpressing FvNAC29 had higher cold and high-salinity tolerance than the wild type (WT) and unloaded line with empty vector (UL). The proline and chlorophyll contents of transgenic Arabidopsis plants, along with the activities of the antioxidant enzymes like catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD) under 200 mM NaCl treatment or -8 °C treatment, were higher than those activities of the control. Meanwhile, malondialdehyde (MDA) and the reactive oxygen species (ROS) content were higher in the WT and UL lines. FvNAC29 improves transgenic plant resistance to cold and salt stress by regulating the expression levels of AtRD29a, AtCCA1, AtP5CS1, and AtSnRK2.4. It also improves the potential to tolerate cold stress by positively regulating the expression levels of AtCBF1, AtCBF4, AtCOR15a, and AtCOR47. These findings suggest that FvNAC29 may be related to the processes and the molecular mechanisms of F. vesca response to high-salinity stress and LT stress, providing a comprehensive understanding of the NAC TFs.
Collapse
Affiliation(s)
- Wenhui Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (W.L.); (X.L.)
| | - Huiwen Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (W.L.); (X.L.)
| | - Yangfan Wei
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (W.L.); (X.L.)
| | - Jiaxin Han
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (W.L.); (X.L.)
| | - Yu Wang
- Horticulture Branch of Heilongjiang Academy of Agricultural Sciences, Harbin 150040, China;
| | - Xingguo Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (W.L.); (X.L.)
| | - Lihua Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (W.L.); (X.L.)
| | - Deguo Han
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (W.L.); (X.L.)
| |
Collapse
|
4
|
Zhang L, Wang Z, Ji S, Zhu G, Dong Y, Li J, Jing Y, Jin S. Ferric reduction oxidase in Lilium pumilum affects plant saline-alkaline tolerance by regulating ROS homeostasis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108305. [PMID: 38241829 DOI: 10.1016/j.plaphy.2023.108305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/05/2023] [Accepted: 12/22/2023] [Indexed: 01/21/2024]
Abstract
Ferric reduction oxidase (FRO) plays important roles in biotic and abiotic stress. However, the function of ferric reduction oxidase from Lilium pumilum in response to NaHCO3 is unknown. Here we report the functional characterization of ferric reduction oxidase 7 in Lilium pumilum (LpFRO7) in stresses. Under NaHCO3 stress, the LpFRO7 overexpression lines exhibited lower accumulation of reactive oxygen species (ROS), higher activities in antioxidant enzyme (CAT, SOD and POD) and ferrite reductase, resulting in improved tolerance compared to the wild type (WT). In order to determine the functional network of LpFRO7, it was confirmed by EMSA assays, Yeast one-hybrid assays and Dual luciferase reporter assays that LpbHLH115 transcription factor can bind to the promoter of LpFRO7. Yeast two-hybrid assays, BiFC, and LCI assays were performed to prove that LpFRO7 can interact with LpTrx. Combining these findings, we concluded that LpFRO7 affects plant saline-alkaline tolerance by regulating ROS homeostasis.
Collapse
Affiliation(s)
- Ling Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China.
| | - Zongying Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China.
| | - Shangwei Ji
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China.
| | - Guoqing Zhu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China.
| | - Yi Dong
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China; Aulin College, Northeast Forestry University, Harbin, Heilongjiang, China.
| | - Ji Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China.
| | - Yibo Jing
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China; Aulin College, Northeast Forestry University, Harbin, Heilongjiang, China.
| | - Shumei Jin
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China.
| |
Collapse
|
5
|
Chen Y, Huang Q, Hua X, Zhang Q, Pan W, Liu G, Yu C, Zhong F, Lian B, Zhang J. A homolog of AtCBFs, SmDREB A1-4, positively regulates salt stress tolerance in Arabidopsis thaliana and Salix matsudana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107963. [PMID: 37595402 DOI: 10.1016/j.plaphy.2023.107963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/22/2023] [Accepted: 08/10/2023] [Indexed: 08/20/2023]
Abstract
CBFs (C-repeat binding factors) have multiple functions in abiotic stress adaption; functional research of these genes will provide precious gene resources for plant genetic improvement. In this study, a homolog of AtCBFs, SmDREB A1-4 was cloned and its role in salt tolerance was explored. SmDREB A1-4 is a member of DREB A1 subgroup with 10 members. SmDREB A1-4 localized in nuclei and cytoplasm and expressed ubiquitously in different tissue and organs. The expression level of SmDREB A1-4 could be induced by NaCl treatment and the TC-rich repeat and DREB motif on the SmDREB A1-4 gene promoter may mediate the NaCl-induced expression pattern. Overexpression of the SmDREB A1-4 gene in Arabidopsis enhanced the salt tolerance of transgenic Arabidopsis lines, while down-regulated the expression level in Salix plantlets by Virus induce gene silencing decreased the salt tolerance capacity in VIGS Salix plantlets. Experiments data from both sides confirmed that SmDREB A1-4 is a positive regulatory factor in salt stress tolerance. qRT-PCR and luciferase reporter assays revealed that SOS1 and DREB2A are downstream genes of SmDREB A1-4. Through upregulating the expression of SOS1 and DREB2A, SmDREB A1-4 enhanced plant tolerance to salinity by regulating ion homeostasis, reduction of Na+/K+ ratio, and improvement of proline biosynthesis. This research offers a potentially valuable gene resource for the stress-resistant varieties breeding of Salix matsudana in the future.
Collapse
Affiliation(s)
- Yanhong Chen
- School of Life Sciences, Nantong University, Nantong, China; Key Laboratory of Landscape Plant Genetics and Breeding, Nantong, China.
| | - Qianhui Huang
- School of Life Sciences, Nantong University, Nantong, China.
| | - Xuan Hua
- School of Life Sciences, Nantong University, Nantong, China.
| | - Qi Zhang
- School of Life Sciences, Nantong University, Nantong, China.
| | - Wenjia Pan
- School of Life Sciences, Nantong University, Nantong, China.
| | - Guoyuan Liu
- School of Life Sciences, Nantong University, Nantong, China; Key Laboratory of Landscape Plant Genetics and Breeding, Nantong, China.
| | - Chunmei Yu
- School of Life Sciences, Nantong University, Nantong, China; Key Laboratory of Landscape Plant Genetics and Breeding, Nantong, China.
| | - Fei Zhong
- School of Life Sciences, Nantong University, Nantong, China; Key Laboratory of Landscape Plant Genetics and Breeding, Nantong, China.
| | - Bolin Lian
- School of Life Sciences, Nantong University, Nantong, China; Key Laboratory of Landscape Plant Genetics and Breeding, Nantong, China.
| | - Jian Zhang
- School of Life Sciences, Nantong University, Nantong, China; Key Laboratory of Landscape Plant Genetics and Breeding, Nantong, China.
| |
Collapse
|
6
|
Liu W, Wang T, Wang Y, Liang X, Han J, Hou R, Han D. The Transcription Factor MbWRKY46 in Malus baccata (L.) Borkh Mediate Cold and Drought Stress Responses. Int J Mol Sci 2023; 24:12468. [PMID: 37569844 PMCID: PMC10420220 DOI: 10.3390/ijms241512468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
The living environment of plants is not static; as such, they will inevitably be threatened by various external factors for their growth and development. In order to ensure the healthy growth of plants, in addition to artificial interference, the most important and effective method is to rely on the role of transcription factors in the regulatory network of plant responses to abiotic stress. This study conducted bioinformatics analysis on the MbWRKY46 gene, which was obtained through gene cloning technology from Malus baccata (L.) Borkh, and found that the MbWRKY46 gene had a total length of 1068 bp and encodes 355 amino acids. The theoretical molecular weight (MW) of the MbWRKY46 protein was 39.76 kDa, the theoretical isoelectric point (pI) was 5.55, and the average hydrophilicity coefficient was -0.824. The subcellular localization results showed that it was located in the nucleus. After conducting stress resistance studies on it, it was found that the expression of MbWRKY46 was tissue specific, with the highest expression level in roots and old leaves. Low temperature and drought had a stronger induction effect on the expression of this gene. Under low temperature and drought treatment, the expression levels of several downstream genes related to low temperature and drought stress (AtKIN1, AtRD29A, AtCOR47A, AtDREB2A, AtERD10, AtRD29B) increased more significantly in transgenic Arabidopsis. This indicated that MbWRKY46 gene can be induced to upregulate expression in Arabidopsis under cold and water deficient environments. The results of this study have a certain reference value for the application of M. baccata MbWRKY46 in low-temperature and drought response, and provide a theoretical basis for further research on its function in the future.
Collapse
Affiliation(s)
- Wanda Liu
- Horticulture Branch, Heilongjiang Academy of Agricultural Sciences, Harbin 150040, China; (T.W.); (Y.W.); (J.H.); (R.H.)
| | - Tianhe Wang
- Horticulture Branch, Heilongjiang Academy of Agricultural Sciences, Harbin 150040, China; (T.W.); (Y.W.); (J.H.); (R.H.)
| | - Yu Wang
- Horticulture Branch, Heilongjiang Academy of Agricultural Sciences, Harbin 150040, China; (T.W.); (Y.W.); (J.H.); (R.H.)
| | - Xiaoqi Liang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China;
| | - Jilong Han
- Horticulture Branch, Heilongjiang Academy of Agricultural Sciences, Harbin 150040, China; (T.W.); (Y.W.); (J.H.); (R.H.)
| | - Ruining Hou
- Horticulture Branch, Heilongjiang Academy of Agricultural Sciences, Harbin 150040, China; (T.W.); (Y.W.); (J.H.); (R.H.)
| | - Deguo Han
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China;
| |
Collapse
|
7
|
Ren C, Li Z, Song P, Wang Y, Liu W, Zhang L, Li X, Li W, Han D. Overexpression of a Grape MYB Transcription Factor Gene VhMYB2 Increases Salinity and Drought Tolerance in Arabidopsis thaliana. Int J Mol Sci 2023; 24:10743. [PMID: 37445921 DOI: 10.3390/ijms241310743] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
In viticulture, the highly resistant rootstock 'Beta' is widely used in Chinese grape production to avoid the effects of soil salinization and drought on grape growth. However, the mechanism of high resistance to abiotic stress in the 'Beta' rootstock is not clear. In this study, we demonstrated that VhMYB2 as a transcription factor made a significant contribution to salinity and drought stress, which was isolated from the 'Beta' rootstock. The coding sequence of the VhMYB2 gene was 858 bp, encoding 285 amino acids. The subcellular localization of VhMYB2 was located in the nucleus of tobacco epidermal cells. Moreover, RT-qPCR found that VhMYB2 was predominantly expressed in the mature leaf and root of the grape. Under salinity and drought stress, overexpressing VhMYB2 showed a higher resistant phenotype and survival rates in A. thaliana while the transgenic lines had a survival advantage by measuring the contents of proline, chlorophyll, and MDA, and activities of POD, SOD, and CAT, and expression levels of related stress response genes. The results reveal that VhMYB2 may be an important transcription factor regulating 'Beta' resistance in response to abiotic stress.
Collapse
Affiliation(s)
- Chuankun Ren
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Zhenghao Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Penghui Song
- Institute of Rural Revitalization Science and Technology, Heilongjiang Academy of Agricultural Sciences, Harbin 150028, China
| | - Yu Wang
- Horticulture Branch of Heilongjiang Academy of Agricultural Sciences, Harbin 150040, China
| | - Wanda Liu
- Horticulture Branch of Heilongjiang Academy of Agricultural Sciences, Harbin 150040, China
| | - Lihua Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Xingguo Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Wenhui Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Deguo Han
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|