1
|
Aslam N, Li Q, Bashir S, Yuan L, Qiao L, Li W. Integrated Review of Transcriptomic and Proteomic Studies to Understand Molecular Mechanisms of Rice's Response to Environmental Stresses. BIOLOGY 2024; 13:659. [PMID: 39336087 PMCID: PMC11428526 DOI: 10.3390/biology13090659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 08/13/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024]
Abstract
Rice (Oryza sativa L.) is grown nearly worldwide and is a staple food for more than half of the world's population. With the rise in extreme weather and climate events, there is an urgent need to decode the complex mechanisms of rice's response to environmental stress and to breed high-yield, high-quality and stress-resistant varieties. Over the past few decades, significant advancements in molecular biology have led to the widespread use of several omics methodologies to study all aspects of plant growth, development and environmental adaptation. Transcriptomics and proteomics have become the most popular techniques used to investigate plants' stress-responsive mechanisms despite the complexity of the underlying molecular landscapes. This review offers a comprehensive and current summary of how transcriptomics and proteomics together reveal the molecular details of rice's response to environmental stresses. It also provides a catalog of the current applications of omics in comprehending this imperative crop in relation to stress tolerance improvement and breeding. The evaluation of recent advances in CRISPR/Cas-based genome editing and the application of synthetic biology technologies highlights the possibility of expediting the development of rice cultivars that are resistant to stress and suited to various agroecological environments.
Collapse
Affiliation(s)
| | | | | | | | | | - Wenqiang Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, Yangling 712100, China; (N.A.); (Q.L.); (S.B.); (L.Y.); (L.Q.)
| |
Collapse
|
2
|
Roy A, Mandal M, Das S, Popek R, Rakwal R, Agrawal GK, Awasthi A, Sarkar A. The cellular consequences of particulate matter pollutants in plants: Safeguarding the harmonious integration of structure and function. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169763. [PMID: 38181950 DOI: 10.1016/j.scitotenv.2023.169763] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/19/2023] [Accepted: 12/28/2023] [Indexed: 01/07/2024]
Abstract
Particulate matter (PM) pollution is one of the pressing environmental concerns confronting human civilization in the face of the Anthropocene era. Plants are continuously exposed to an accelerating PM, threatening their growth and productivity. Although plants and plant-based infrastructures can potentially reduce ambient air pollutants, PM still affects them morphologically, anatomically, and physiologically. This review comprehensively summarizes an up-to-date review of plant-PM interaction among different functional plant groups, PM deposition and penetration through aboveground and belowground plant parts, and plants' cellular strategies. Upon exposure, PM represses lipid desaturases, eventually leading to modification of cell wall and membrane and altering cell fluidity; consequently, plants can sense the pollutants and, thus, adapt different cellular strategies. The PM also causes a reduction in the photosynthetically active radiation. The study demonstrated that plants reduce stomatal density to avoid PM uptake and increase stomatal index to compensate for decreased gaseous exchange efficiency and transpiration rates. Furthermore, genes and gene sets associated with photosynthesis, glycolysis, gluconeogenesis, and the TCA cycle were dramatically lowered by PM stress. Several transcription factors, including MYB, C2H2, C3H, G2-like, and WRKY were induced, and metabolites such as proline and soluble sugar were accumulated to increase resistance against stressors. In addition, enzymatic and non-enzymatic antioxidants were also accumulated to scavenge the PM-induced reactive oxygen species (ROS). Taken together, this review provides an insight into plants' underlying cellular mechanisms and gene regulatory networks in response to the PM to determine strategies to preserve their structural and functional blend in the face of particulate pollution. The study concludes by recommending that future research should precisely focus on plants' response to short- and long-term PM exposure.
Collapse
Affiliation(s)
- Anamika Roy
- Laboratory of Applied Stress Biology, Department of Botany, University of Gour Banga, Malda 732 103, West Bengal, India
| | - Mamun Mandal
- Laboratory of Applied Stress Biology, Department of Botany, University of Gour Banga, Malda 732 103, West Bengal, India
| | - Sujit Das
- Laboratory of Applied Stress Biology, Department of Botany, University of Gour Banga, Malda 732 103, West Bengal, India
| | - Robert Popek
- Section of Basic Research in Horticulture, Department of Plant Protection, Institute of Horticultural Sciences, Warsaw University of Life Sciences - SGGW (WULS-SGGW), Nowoursynowska 159, Warsaw, Poland
| | - Randeep Rakwal
- Institute of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8574, Japan; GRADE Academy (Pvt.) Ltd., Birgunj, Nepal
| | | | - Amit Awasthi
- Department of Applied Sciences, University of Petroleum and Energy Studies, Dehradun, India
| | - Abhijit Sarkar
- Laboratory of Applied Stress Biology, Department of Botany, University of Gour Banga, Malda 732 103, West Bengal, India.
| |
Collapse
|
3
|
Rodríguez-Vázquez R, Mesa-Marín J. Plant responses to plant growth promoting bacteria: Insights from proteomics. JOURNAL OF PLANT PHYSIOLOGY 2023; 287:154031. [PMID: 37321049 DOI: 10.1016/j.jplph.2023.154031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/17/2023]
Affiliation(s)
| | - Jennifer Mesa-Marín
- Department of Plant Biology and Ecology, Faculty of Biology, University of Seville, Seville, Spain.
| |
Collapse
|
4
|
Maldonado-Alconada AM, Castillejo MÁ, Rey MD, Labella-Ortega M, Tienda-Parrilla M, Hernández-Lao T, Honrubia-Gómez I, Ramírez-García J, Guerrero-Sanchez VM, López-Hidalgo C, Valledor L, Navarro-Cerrillo RM, Jorrin-Novo JV. Multiomics Molecular Research into the Recalcitrant and Orphan Quercus ilex Tree Species: Why, What for, and How. Int J Mol Sci 2022; 23:9980. [PMID: 36077370 PMCID: PMC9456323 DOI: 10.3390/ijms23179980] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
The holm oak (Quercus ilex L.) is the dominant tree species of the Mediterranean forest and the Spanish agrosilvopastoral ecosystem, "dehesa." It has been, since the prehistoric period, an important part of the Iberian population from a social, cultural, and religious point of view, providing an ample variety of goods and services, and forming the basis of the economy in rural areas. Currently, there is renewed interest in its use for dietary diversification and sustainable food production. It is part of cultural richness, both economically (tangible) and environmentally (intangible), and must be preserved for future generations. However, a worrisome degradation of the species and associated ecosystems is occurring, observed in an increase in tree decline and mortality, which requires urgent action. Breeding programs based on the selection of elite genotypes by molecular markers is the only plausible biotechnological approach. To this end, the authors' group started, in 2004, a research line aimed at characterizing the molecular biology of Q. ilex. It has been a challenging task due to its biological characteristics (long life cycle, allogamous, high phenotypic variability) and recalcitrant nature. The biology of this species has been characterized following the central dogma of molecular biology using the omics cascade. Molecular responses to biotic and abiotic stresses, as well as seed maturation and germination, are the two main objectives of our research. The contributions of the group to the knowledge of the species at the level of DNA-based markers, genomics, epigenomics, transcriptomics, proteomics, and metabolomics are discussed here. Moreover, data are compared with those reported for Quercus spp. All omics data generated, and the genome of Q. ilex available, will be integrated with morphological and physiological data in the systems biology direction. Thus, we will propose possible molecular markers related to resilient and productive genotypes to be used in reforestation programs. In addition, possible markers related to the nutritional value of acorn and derivate products, as well as bioactive compounds (peptides and phenolics) and allergens, will be suggested. Subsequently, the selected molecular markers will be validated by both genome-wide association and functional genomic analyses.
Collapse
Affiliation(s)
- Ana María Maldonado-Alconada
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain
| | - María Ángeles Castillejo
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain
| | - María-Dolores Rey
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain
| | - Mónica Labella-Ortega
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain
| | - Marta Tienda-Parrilla
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain
| | - Tamara Hernández-Lao
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain
| | - Irene Honrubia-Gómez
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain
| | - Javier Ramírez-García
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain
| | - Víctor M. Guerrero-Sanchez
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Cristina López-Hidalgo
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain
- Plant Physiology, Department of Organisms and Systems Biology, University Institute of Biotechnology of Asturias (IUBA), University of Oviedo, 33006 Asturias, Spain
| | - Luis Valledor
- Plant Physiology, Department of Organisms and Systems Biology, University Institute of Biotechnology of Asturias (IUBA), University of Oviedo, 33006 Asturias, Spain
| | - Rafael M. Navarro-Cerrillo
- Evaluation and Restoration of Agronomic and Forest Systems ERSAF, Department of Forest Engineering, University of Córdoba, 14014 Cordoba, Spain
| | - Jesús V. Jorrin-Novo
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain
| |
Collapse
|
5
|
Mustafa G, Komatsu S. Plant proteomic research for improvement of food crops under stresses: a review. Mol Omics 2021; 17:860-880. [PMID: 34870299 DOI: 10.1039/d1mo00151e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Crop improvement approaches have been changed due to technological advancements in traditional plant-breeding methods. Abiotic and biotic stresses limit plant growth and development, which ultimately lead to reduced crop yield. Proteins encoded by genomes have a considerable role in the endurance and adaptation of plants to different environmental conditions. Biotechnological applications in plant breeding depend upon the information generated from proteomic studies. Proteomics has a specific advantage to contemplate post-translational modifications, which indicate the functional effects of protein modifications on crop production. Subcellular proteomics helps in exploring the precise cellular responses and investigating the networking among subcellular compartments during plant development and biotic/abiotic stress responses. Large-scale mass spectrometry-based plant proteomic studies with a more comprehensive overview are now possible due to dramatic improvements in mass spectrometry, sample preparation procedures, analytical software, and strengthened availability of genomes for numerous plant species. Development of stress-tolerant or resilient crops is essential to improve crop productivity and growth. Use of high throughput techniques with advanced instrumentation giving efficient results made this possible. In this review, the role of proteomic studies in identifying the stress-response processes in different crops is summarized. Advanced techniques and their possible utilization on plants are discussed in detail. Proteomic studies accelerate marker-assisted genetic augmentation studies on crops for developing high yielding stress-tolerant lines or varieties under stresses.
Collapse
Affiliation(s)
- Ghazala Mustafa
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Setsuko Komatsu
- Faculty of Environment and Information Sciences, Fukui University of Technology, Fukui 910-8505, Japan.
| |
Collapse
|
6
|
Current Proteomic and Metabolomic Knowledge of Zygotic and Somatic Embryogenesis in Plants. Int J Mol Sci 2021; 22:ijms222111807. [PMID: 34769239 PMCID: PMC8583726 DOI: 10.3390/ijms222111807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/13/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022] Open
Abstract
Embryogenesis is the primary developmental program in plants. The mechanisms that underlie the regulation of embryogenesis are an essential research subject given its potential contribution to mass in vitro propagation of profitable plant species. Somatic embryogenesis (SE) refers to the use of in vitro techniques to mimic the sexual reproduction program known as zygotic embryogenesis (ZE). In this review, we synthesize the current state of research on proteomic and metabolomic studies of SE and ZE in angiosperms (monocots and dicots) and gymnosperms. The most striking finding was the small number of studies addressing ZE. Meanwhile, the research effort focused on SE has been substantial but disjointed. Together, these research gaps may explain why the embryogenic induction stage and the maturation of the somatic embryo continue to be bottlenecks for efficient and large-scale regeneration of plants. Comprehensive and integrative studies of both SE and ZE are needed to provide the molecular foundation of plant embryogenesis, information which is needed to rationally guide experimental strategies to solve SE drawbacks in each species.
Collapse
|
7
|
Dhar S, Bhattacharjee M, Baishya D, Acharjee S. Characterization of Seed Proteome Profile of Wild and Cultivated Chickpeas of India. Protein Pept Lett 2021; 28:323-332. [PMID: 32914710 DOI: 10.2174/0929866527666200910164118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 07/14/2020] [Accepted: 09/21/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Chickpea is a widely grown legume in India, Australia, Canada, and Mediterranean regions. Seeds of chickpea are good source of protein for both human and animals. Wild relatives of chickpea (Cicer arietinum) are the potential gene pool for crop improvement; however, very little information is available on the seed proteome of these wild chickpeas. OBJECTIVE We aimed to analyze the seed proteome profiles of three wild relatives of chickpea, Cicer bijugum, Cicer judaicum and Cicer microphyllum along with two cultivated varieties JG11 and DCP 92/3. METHODS Total seed proteins were extracted using various extraction buffers for 2-D gel electrophoresis. Protein separated in a 2-D gels were subjected to image analyses, differentially expressed proteins were extracted from the gels and identified by the MALDI TOF/TOF. Seed protease inhibitors were analysed biochemically. RESULTS We have standardized the 2-D gel electrophoresis method and separated seed proteins using the modified method. We identified a large number (400) of protein proteins which were differentially expressed in cultivated and wild type species of chickpea. A comparative analysis between C. bijugum and JG 11 revealed the presence of 9 over-expressed and 22 under-expressed proteins, while the comparison between C. bijugum with DCP 92/3 showed 8 over-expressed and 18 under-- expressed proteins. Similarly, comparative analysis between C. microphyllum with DCP 92/3 showed 8 over-expressed proteins along with 22 under-expressed proteins, while the comparative study of C. microphyllum with JG11 displayed 9 over-expressed and 24 under-expressed proteins. We also compared C. judaicum with DCP 92/3 which revealed 15 overexpressed and 11 under-expressed proteins. On the other hand, the comparative analysis of C. judaicum with JG11 showed 10 over-expressed proteins, while the numbers of under-expressed proteins were 14. Among the differentially expressed protein proteins, 19 proteins were analyzed by the MS/MS, and peptides were identified using the MASCOT search engine. In the wild relatives the differentially expressed proteins are phosphatidylinositol 4-phosphate 5- kinase, β-1-6 galactosyltransferase, RNA helicase, phenyl alanine ammonia lyase 2, flavone 3'-0-methyl transferase, Argonaute 2, Myb related protein, Tubulin beta-2 chain and others. The most important one was legumin having α- amylase inhibition activity which was up regulated in C. bijugum. We also studied the activity of protease inhibitor (trypsin and α- amylase inhibitors) in these seed lines which showed differential activity of protease inhibitors. The highest trypsin and α- amylase inhibition was observed in C. judaicum and C. bijugum, respectively. CONCLUSION The differentially expressed proteins of wild relatives of chickpea appeared to be involved in various metabolic pathways. The study provides us information about the differences in the seed proteome of these wild species and cultivated varieties for the first time.
Collapse
Affiliation(s)
- Santanu Dhar
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat 785013, India
| | - Mamta Bhattacharjee
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat 785013, India
| | - Debabrat Baishya
- Department of Bioengineering and Technology, Gauhati University, Guwahati 781014, India
| | - Sumita Acharjee
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat 785013, India
| |
Collapse
|
8
|
Jorrin Novo JV. Proteomics and plant biology: contributions to date and a look towards the next decade. Expert Rev Proteomics 2021; 18:93-103. [PMID: 33770454 DOI: 10.1080/14789450.2021.1910028] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
INTRODUCTION This review presents the view of the author, that is opinionable and even speculative, on the field of proteomics, its application to plant biology knowledge, and translation to biotechnology. Written in a more academic than scientific style, it is based on past original and review articles by the author´s group, and those published by leading scientists in the last two years. AREAS COVERED Starting with a general definition and references to historical milestones, it covers sections devoted to the different platforms employed, the plant biology discourse in the protein language, challenges and future prospects, ending with the author opinion. EXPERT OPINION In 25 years, five proteomics platform generations have appeared. We are now moving from proteomics to Systems Biology. While feasible with model organisms, proteomics of orphan species remains challenging. Proteomics, even in its simplest approach, sheds light on plant biological processes, central dogma, and molecular bases of phenotypes of interest, and it can be translated to areas such as food traceability and allergen detection. Proteomics should be validated and optimized to each experimental system, objectives, and hypothesis. It has limitations, artifacts, and biases. We should not blindly accept proteomics data and just create a list of proteins, networks, and avoid speculative biological interpretations. From the hundred to thousand proteins identified and quantified, it is important to obtain a focus and validate some of them, otherwise it is merely. We are starting to have the protein pieces, so let, from now, build the proteomics and biological puzzle.
Collapse
Affiliation(s)
- J V Jorrin Novo
- Dpt. Biochemistry and Molecular Biology, Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, ETSIAM, University of Cordoba, Cordoba , Spain
| |
Collapse
|
9
|
Ranjan J, Mandal T, Mandal DD. Mechanistic insight for DBP induced growth inhibition in Vigna radiata via oxidative stress and DNA damage. CHEMOSPHERE 2021; 263:128062. [PMID: 33297068 DOI: 10.1016/j.chemosphere.2020.128062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 06/12/2023]
Abstract
Chlorination is important to the safeness of recouped water; though it shows concern about disinfection by-products (DBPs) formation and its toxic effects. DBPs generation mostly specified by category of disinfectant utilized and naturally occurring organic matter present in the water pre and post disinfection. Plants are exposed to diverse stresses of environment across their lifespan. Reactive oxygen species (ROS) perform significant roles in preserving ordinary plant growth and enhancing their tolerance towards stress. This study is focused on the generation and elimination of ROS in apical meristematic growth and responses in Vigna radiata towards DBPs exposure. Phytotoxic and genotoxic effect of selected DBPs, TCAA (trichloroacetic acid), TCM (trichloromethane), TBM (tribromomethane) revealed concentration-dependent root length inhibition, germination index, vigour index, tolerance index, root/shoot ratio with higher EC50 value for TCM (6000 mg/L, 50.26 mM) over TCAA and TBM (1850 mg/L, 11.32 mM; 4000 mg/L, 15.83 mM). DNA laddering assay demonstrated DBP induced DNA damage to be concentration-dependent too. The concentration-dependent increase in the lipid peroxidation, H2O2 generation for each DBPs examined with highest oxidative stress for TCAA over TBM and TCM at fixed concentration illustrates that possible mechanism behind observed toxicity may be via ROS. Its regulation by antioxidative defense enzymes activities can be attributed to observed decline in these enzymes (catalase, ascorbate peroxidase, guaiacol peroxidase) activities with increasing concentration again where TCAA found more significantly affected than TBM and TCM over control. Results thus provide a useful understanding of the mechanism of DBP induced phytotoxicity and genotoxicity in V.radiata.
Collapse
Affiliation(s)
- Jyoti Ranjan
- Department of Biotechnology, National Institute of Technology, Mahatma Gandhi Avenue, 713209, West Bengal, India
| | - Tamal Mandal
- Department of Chemical Engineering, National Institute of Technology, Mahatma Gandhi Avenue, 713209, West Bengal, India
| | - Dalia Dasgupta Mandal
- Department of Biotechnology, National Institute of Technology, Mahatma Gandhi Avenue, 713209, West Bengal, India.
| |
Collapse
|
10
|
Moosavi SS, Abdi F, Abdollahi MR, Tahmasebi-Enferadi S, Maleki M. Phenological, morpho-physiological and proteomic responses of Triticum boeoticum to drought stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 156:95-104. [PMID: 32920225 DOI: 10.1016/j.plaphy.2020.08.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 07/27/2020] [Accepted: 08/05/2020] [Indexed: 06/11/2023]
Abstract
Drought is the most important abiotic stress limiting wheat production worldwide. Triticum boeoticum, as wild wheat, is a rich gene pool for breeding for drought stress tolerance. In this study, to identify the most drought-tolerant and susceptible genotypes, ten T. boeoticum accessions were evaluated under non-stress and drought-stress conditions for two years. Among the studied traits, water-use efficiency (WUE) was suggested as the most important trait to identify drought-tolerant genotypes. According to the desirable and undesirable areas of the bi-plot, Tb5 and Tb6 genotypes were less and more affected by drought stress, respectively. Therefore, their flag-leaves proteins were used for two-dimensional gel electrophoresis. While, Tb5 contained a high amount of yield, yield components, and WUE, Tb6 had higher levels of water use, phenological related traits, and root related characters. Of the 235 spots found in the studied accessions, 14 spots (11 and 3 spots of Tb5 and Tb6, respectively) were selected for sequencing. Of these 14 spots, 9 and 5 spots were upregulated and downregulated, respectively. The identified proteins were grouped into six functional protein clusters, which were mainly involved in photosynthesis (36%), carbohydrate metabolism (29%), chaperone (7%), oxidation and reduction (7%), lipid metabolism and biological properties of the membrane (7%) and unknown function (14%). We report for the first time that MICP, in the group of lipid metabolism proteins, was significantly changed into wild wheat in response to drought stress. Maybe, the present-identified proteins could play an important role to understand the molecular pathways of wheat drought tolerance. We believe comparing and evaluating the similarity-identified proteins of T. boeoticum with the previously identified proteins of Aegilops tauschii, can provide a new direction to improve wheat tolerance to drought stress.
Collapse
Affiliation(s)
- Sayyed Saeed Moosavi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran.
| | - Fatemeh Abdi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran
| | - Mohammad Reza Abdollahi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran
| | - Sattar Tahmasebi-Enferadi
- Department of Molecular Plant Biotechnology, Faculty of Agricultural Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Mahmood Maleki
- Department of Biotechnology, Institute of Science and High Technology and Environmental Science, Graduate University of Advanced Technology, Kerman, Iran
| |
Collapse
|
11
|
Tan YY, Du H, Wu X, Liu YH, Jiang M, Song SY, Wu L, Shu QY. Gene editing: an instrument for practical application of gene biology to plant breeding. J Zhejiang Univ Sci B 2020; 21:460-473. [PMID: 32478492 PMCID: PMC7306633 DOI: 10.1631/jzus.b1900633] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/18/2019] [Accepted: 12/18/2019] [Indexed: 12/20/2022]
Abstract
Plant breeding is well recognized as one of the most important means to meet food security challenges caused by the ever-increasing world population. During the past three decades, plant breeding has been empowered by both new knowledge on trait development and regulation (e.g., functional genomics) and new technologies (e.g., biotechnologies and phenomics). Gene editing, particularly by clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) and its variants, has become a powerful technology in plant research and may become a game-changer in plant breeding. Traits are conferred by coding and non-coding genes. From this perspective, we propose different editing strategies for these two types of genes. The activity of an encoded enzyme and its quantity are regulated at transcriptional and post-transcriptional, as well as translational and post-translational, levels. Different strategies are proposed to intervene to generate gene functional variations and consequently phenotype changes. For non-coding genes, trait modification could be achieved by regulating transcription of their own or target genes via gene editing. Also included is a scheme of protoplast editing to make gene editing more applicable in plant breeding. In summary, this review provides breeders with a host of options to translate gene biology into practical breeding strategies, i.e., to use gene editing as a mechanism to commercialize gene biology in plant breeding.
Collapse
Affiliation(s)
- Yuan-yuan Tan
- National Key Laboratory of Rice Biology, Institute of Crop Sciences, Zhejiang University, Hangzhou 310058, China
- The Rural Development Academy, Zhejiang University, Hangzhou 310058, China
| | - Hao Du
- National Key Laboratory of Rice Biology, Institute of Crop Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xia Wu
- National Key Laboratory of Rice Biology, Institute of Crop Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yan-hua Liu
- National Key Laboratory of Rice Biology, Institute of Crop Sciences, Zhejiang University, Hangzhou 310058, China
| | - Meng Jiang
- National Key Laboratory of Rice Biology, Institute of Crop Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shi-yong Song
- National Key Laboratory of Rice Biology, Institute of Crop Sciences, Zhejiang University, Hangzhou 310058, China
| | - Liang Wu
- National Key Laboratory of Rice Biology, Institute of Crop Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qing-yao Shu
- National Key Laboratory of Rice Biology, Institute of Crop Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
12
|
Boschetti E, Righetti PG. Detection of Plant Low-Abundance Proteins by Means of Combinatorial Peptide Ligand Library Methods. Methods Mol Biol 2020; 2139:381-404. [PMID: 32462601 DOI: 10.1007/978-1-0716-0528-8_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The detection and identification of low-abundance proteins from plant tissues is still a major challenge. Among the reasons are the low protein content, the presence of few very high-abundance proteins, and the presence of massive amounts of other biochemical compounds. In the last decade numerous technologies have been devised to resolve the situation, in particular with methods based on solid-phase combinatorial peptide ligand libraries. This methodology, allowing for an enhancement of low-abundance proteins, has been extensively applied with the advantage of deciphering the proteome composition of various plant organs. This general methodology is here described extensively along with a number of possible variations. Specific guidelines are suggested to cover peculiar situations or to comply with other associated analytical methods.
Collapse
|
13
|
Quantitative proteomics analysis reveals resistance differences of banana cultivar 'Brazilian' to Fusarium oxysporum f. sp. cubense races 1 and 4. J Proteomics 2019; 203:103376. [PMID: 31078632 DOI: 10.1016/j.jprot.2019.05.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/24/2019] [Accepted: 05/02/2019] [Indexed: 12/29/2022]
Abstract
Banana Fusarium wilt, caused by Fusarium oxysporum f. sp. cubense (Foc), is one of the most devastating diseases in banana production. Foc is classified into three physiological races. However, the resistance mechanisms of banana against different Foc races are poorly understood. In this study, we performed a comparative proteomics analysis to investigate the resistance mechanisms of 'Brazilian' against Foc1 and Foc4. The proteomes of 'Brazilian' roots inoculated with Foc1 and Foc4 and mock inoculated control at 48 h were analyzed using TMT based quantitative analysis technique. A total of 7325 unique protein species were identified, of which 689, 744, and 1222 protein species were differentially accumulated in Foc1 vs. CK, Foc4 vs. CK, and Foc1 vs. Foc4, respectively. The differential accumulations of candidate protein species were further confirmed by RT-qPCR, PRM, and physiological and biochemical assays. Bioinformatics analysis revealed that the differentially abundance protein species (DAPS) related to pattern recognition receptors, plant cell wall modification, redox homeostasis, and defense responses were differentially accumulated after Foc1 and Foc4 infection, suggesting that 'Brazilian' differed in resistance to the two Foc races. Our study lay the foundation for an in-depth understanding of the interaction between bananas and Foc at the proteome level. SIGNIFICANCE: The banana fusarium wilt disease is one of the most destructive disease of banana and is caused by Fusarium oxysporum f. sp. cubense (Foc). Foc is classified into three physiological races, namely, Foc1, Foc2, and Foc4. Among these races, Foc1 and Foc4 are widely distributed in south China and significantly lose yield. Although both physiological races (Foc1 and Foc4) can invade the Cavendish banana cultivar 'Brazilian', they have significant pathogenicity differences. Unfortunately, how the resistance differences are produced between two races is still largely unclear to date. In this study, we addressed this issue by performing TMT-based comparative quantitative proteomics analysis of 'Brazilian' roots after inoculation with Foc1 and Foc4 as well as sterile water as the control. We revealed that the series of protein species associated with pattern recognition receptors, plant cell wall modification, redox homeostasis, pathogenesis, phytohormones and signal transduction, plant secondary metabolites and programmed cell death etc. were involved in the response to Foc infection. Notably, the potential role of lipid signaling in banana defense against Foc are not reported previously but rather unveiled for the first time in this study. The current study represents the most extensive analysis of the protein profile of 'Brazilian' in response to Foc inoculation and includes for the first time the results from comparison quantitative proteomics analysis between plants inoculated with a pathogenic strain Foc4 and a nonpathogenic strain Foc1 of 'Brazilian', which will lay the foundation for an in-depth understanding of the interaction between bananas and Foc at the proteome level.
Collapse
|
14
|
Gel electrophoresis-based plant proteomics: Past, present, and future. Happy 10th anniversary Journal of Proteomics! J Proteomics 2019; 198:1-10. [DOI: 10.1016/j.jprot.2018.08.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/21/2018] [Accepted: 08/26/2018] [Indexed: 02/03/2023]
|
15
|
Rey MD, Castillejo MÁ, Sánchez-Lucas R, Guerrero-Sanchez VM, López-Hidalgo C, Romero-Rodríguez C, Valero-Galván J, Sghaier-Hammami B, Simova-Stoilova L, Echevarría-Zomeño S, Jorge I, Gómez-Gálvez I, Papa ME, Carvalho K, Rodríguez de Francisco LE, Maldonado-Alconada AM, Valledor L, Jorrín-Novo JV. Proteomics, Holm Oak ( Quercus ilex L.) and Other Recalcitrant and Orphan Forest Tree Species: How do They See Each Other? Int J Mol Sci 2019; 20:ijms20030692. [PMID: 30736277 PMCID: PMC6386906 DOI: 10.3390/ijms20030692] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 01/28/2019] [Accepted: 01/30/2019] [Indexed: 02/07/2023] Open
Abstract
Proteomics has had a big impact on plant biology, considered as a valuable tool for several forest species, such as Quercus, Pines, Poplars, and Eucalyptus. This review assesses the potential and limitations of the proteomics approaches and is focused on Quercus ilex as a model species and other forest tree species. Proteomics has been used with Q. ilex since 2003 with the main aim of examining natural variability, developmental processes, and responses to biotic and abiotic stresses as in other species of the genus Quercus or Pinus. As with the progress in techniques in proteomics in other plant species, the research in Q. ilex moved from 2-DE based strategy to the latest gel-free shotgun workflows. Experimental design, protein extraction, mass spectrometric analysis, confidence levels of qualitative and quantitative proteomics data, and their interpretation are a true challenge with relation to forest tree species due to their extreme orphan and recalcitrant (non-orthodox) nature. Implementing a systems biology approach, it is time to validate proteomics data using complementary techniques and integrate it with the -omics and classical approaches. The full potential of the protein field in plant research is quite far from being entirely exploited. However, despite the methodological limitations present in proteomics, there is no doubt that this discipline has contributed to deeper knowledge of plant biology and, currently, is increasingly employed for translational purposes.
Collapse
Affiliation(s)
- María-Dolores Rey
- Department of Biochemistry and Molecular Biology, Agrifood Campus of International Excellence, University of Cordoba, Carretera Nacional IV, km 396, 14014 Córdoba, Spain.
| | - María Ángeles Castillejo
- Department of Biochemistry and Molecular Biology, Agrifood Campus of International Excellence, University of Cordoba, Carretera Nacional IV, km 396, 14014 Córdoba, Spain.
| | - Rosa Sánchez-Lucas
- Department of Biochemistry and Molecular Biology, Agrifood Campus of International Excellence, University of Cordoba, Carretera Nacional IV, km 396, 14014 Córdoba, Spain.
| | - Victor M Guerrero-Sanchez
- Department of Biochemistry and Molecular Biology, Agrifood Campus of International Excellence, University of Cordoba, Carretera Nacional IV, km 396, 14014 Córdoba, Spain.
| | - Cristina López-Hidalgo
- Department of Biochemistry and Molecular Biology, Agrifood Campus of International Excellence, University of Cordoba, Carretera Nacional IV, km 396, 14014 Córdoba, Spain.
| | - Cristina Romero-Rodríguez
- Departamento de Fitoquímica, Dirección de Investigación de la Facultad de Ciencias Químicas de la Universidad Nacional de Asunción, Asunción 1001-1925, Paraguay.
| | - José Valero-Galván
- Department of Chemical and Biological Science, Biomedicine Science Institute, Autonomous University of Ciudad Juárez, Anillo Envolvente del Pronaf y Estocolmo s/n, Ciudad Juarez 32310, Mexico.
| | - Besma Sghaier-Hammami
- Department of Biochemistry and Molecular Biology, Agrifood Campus of International Excellence, University of Cordoba, Carretera Nacional IV, km 396, 14014 Córdoba, Spain.
| | - Lyudmila Simova-Stoilova
- Plant Molecular Biology Department, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl 21, 1113 Sofia, Bulgaria.
| | - Sira Echevarría-Zomeño
- Department of Biochemistry and Molecular Biology, Agrifood Campus of International Excellence, University of Cordoba, Carretera Nacional IV, km 396, 14014 Córdoba, Spain.
| | - Inmaculada Jorge
- Department of Vascular Biology and Inflammation (BVI), Spanish National Centre for Cardiovascular Research, Melchor Fernández Almagro 3, 28029 Madrid, Spain.
| | - Isabel Gómez-Gálvez
- Department of Biochemistry and Molecular Biology, Agrifood Campus of International Excellence, University of Cordoba, Carretera Nacional IV, km 396, 14014 Córdoba, Spain.
| | - María Eugenia Papa
- Department of Biochemistry and Molecular Biology, Agrifood Campus of International Excellence, University of Cordoba, Carretera Nacional IV, km 396, 14014 Córdoba, Spain.
| | - Kamilla Carvalho
- Department of Biochemistry and Molecular Biology, Agrifood Campus of International Excellence, University of Cordoba, Carretera Nacional IV, km 396, 14014 Córdoba, Spain.
| | | | - Ana María Maldonado-Alconada
- Department of Biochemistry and Molecular Biology, Agrifood Campus of International Excellence, University of Cordoba, Carretera Nacional IV, km 396, 14014 Córdoba, Spain.
| | - Luis Valledor
- Department of Organisms and Systems Biology and University Institute of Biotechnology (IUBA), University of Oviedo, Santiago Gascón Building, 2nd Floor (Office 2.9), 33006 Oviedo, Spain.
| | - Jesús V Jorrín-Novo
- Department of Biochemistry and Molecular Biology, Agrifood Campus of International Excellence, University of Cordoba, Carretera Nacional IV, km 396, 14014 Córdoba, Spain.
| |
Collapse
|
16
|
Ion Torrent and lllumina, two complementary RNA-seq platforms for constructing the holm oak (Quercus ilex) transcriptome. PLoS One 2019; 14:e0210356. [PMID: 30650136 PMCID: PMC6334949 DOI: 10.1371/journal.pone.0210356] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 12/20/2018] [Indexed: 12/02/2022] Open
Abstract
Transcriptome analysis is widely used in plant biology research to explore gene expression across a large variety of biological contexts such as those related to environmental stress and plant-pathogen interaction. Currently, next generation sequencing platforms are used to obtain a high amount of raw data to build the transcriptome of any plant. Here, we compare Illumina and Ion Torrent sequencing platforms for the construction and analysis of the holm oak (Quercus ilex) transcriptome. Genomic analysis of this forest tree species is a major challenge considering its recalcitrant character and the absence of previous molecular studies. In this study, Quercus ilex raw sequencing reads were obtained from Illumina and Ion Torrent and assembled by three different algorithms, MIRA, RAY and TRINITY. A hybrid transcriptome combining both sequencing technologies was also obtained in this study. The RAY-hybrid assembly generated the most complete transcriptome (1,116 complete sequences of which 1,085 were single copy) with a E90N50 of 1,122 bp. The MIRA-Illumina and TRINITY-Ion Torrent assemblies annotated the highest number of total transcripts (62,628 and 74,058 respectively). MIRA-Ion Torrent showed the highest number of shared sequences (84.8%) with the oak transcriptome. All the assembled transcripts from the hybrid transcriptome were annotated with gene ontology grouping them in terms of biological processes, molecular functions and cellular components. In addition, an in silico proteomic analysis was carried out using the translated assemblies as databases. Those from Ion Torrent showed more proteins compared to the Illumina and hybrid assemblies. This new generated transcriptome represents a valuable tool to conduct differential gene expression studies in response to biotic and abiotic stresses and to assist and validate the ongoing Q. ilex whole genome sequencing.
Collapse
|
17
|
Recent Advances in MS-Based Plant Proteomics: Proteomics Data Validation Through Integration with Other Classic and -Omics Approaches. PROGRESS IN BOTANY 2019. [DOI: 10.1007/124_2019_32] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
18
|
Li Y, Liu K, Chen F, Cheng Y. Comparative proteomics analysis reveals the effect of germination and selenium enrichment on the quality of brown rice during storage. Food Chem 2018; 269:220-227. [DOI: 10.1016/j.foodchem.2018.07.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/21/2018] [Accepted: 07/02/2018] [Indexed: 01/07/2023]
|
19
|
Barrera NF, Melgarejo LM, Cruz-Gallego M, Cortés LJ, Guzmán F, Calvo JC. Conformationally Restricted Peptides from Rice Proteins Elicit Antibodies That Recognize the Corresponding Native Protein in ELISA Assays. Molecules 2018; 23:molecules23092262. [PMID: 30189617 PMCID: PMC6225240 DOI: 10.3390/molecules23092262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 08/29/2018] [Accepted: 09/01/2018] [Indexed: 01/13/2023] Open
Abstract
The rice hoja blanca virus (RHBV), transmitted by the planthopper insect Tagosodes orizicolus, is a disease that attacks rice and generates significant production losses in Colombia. Fedearroz 2000 and Colombia I commercial rice varieties, which have different resistance levels to the disease, were selected in this study. To identify proteins associated to the insect and virus signaling, a comparative proteomics study was performed. By comparing proteomic profiles, between virus-infected and control group plants in two-dimensional electrophoresis, proteins exhibiting significant changes in abundance were found. In another test, peptide dendrimers containing sequences conformationally restricted to α-helix from four of those rice proteins were synthesized. In the experiment, sera from mice inoculated with peptide dendrimers could recognize the corresponding native protein in ELISA assays. Reported comparative proteomic results provide new insights into the molecular mechanisms of plant response to the RHBV and comprehensive tools for the analysis of new crop varieties. Besides, results from conformational peptide dendrimer approach are promising and show that it is feasible to detect proteins as markers, and may have biological applications by decreasing the susceptibility to proteolytic degradation.
Collapse
Affiliation(s)
- Nubia F Barrera
- Doctorado en Biotecnología, Universidad Nacional de Colombia, Carrera 30 No. 45-03, Edificio 224, Bogotá 110111, Colombia.
- Grupo Proteoma UD, Facultad de Ciencias y Educación, Universidad Distrital Francisco José de Caldas, Carrera 4 No. 26B-54, Bogotá 110111, Colombia.
| | - Luz M Melgarejo
- Laboratorio de Fisiología y Bioquímica Vegetal, Departamento de Biología, Universidad Nacional de Colombia, Carrera 30 No. 45-03, Edificio 421, Bogotá 110111, Colombia.
| | - Maribel Cruz-Gallego
- Centro Internacional de Agricultura Tropical, CIAT, Fondo Latinoamericano para Arroz de Riego, FLAR, Palmira, Valle 763537, Colombia.
| | - Lina Jimena Cortés
- Núcleo de Biotecnología de Curauma, Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile.
| | - Fanny Guzmán
- Núcleo de Biotecnología de Curauma, Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile.
| | - Julio C Calvo
- Grupo Proteoma UD, Facultad de Ciencias y Educación, Universidad Distrital Francisco José de Caldas, Carrera 4 No. 26B-54, Bogotá 110111, Colombia.
| |
Collapse
|
20
|
Lade SB, Román C, Cueto-Ginzo AI, Serrano L, Sin E, Achón MA, Medina V. Host-specific proteomic and growth analysis of maize and tomato seedlings inoculated with Azospirillum brasilense Sp7. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 129:381-393. [PMID: 29945074 DOI: 10.1016/j.plaphy.2018.06.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/16/2018] [Accepted: 06/16/2018] [Indexed: 05/26/2023]
Abstract
Azospirillum brasilense Sp7 (Sp7) is a diazotrophic, free-living plant growth-promoting rhizobacterium (PGPR) that is increasingly used for its ability to reduce stress and improve nutrient uptake by plants. To test the hypothesis that Sp7 interacts differently with the primary metabolism in C3 and C4 plants, differential proteomics were employed to study weekly protein expression in Sp7-treated maize (Zea mays cv. B73) and tomato (Solanum lycopersicum cv. Boludo) seedlings. Plant and root growth parameters were also monitored. Protein changes were most striking at the four-leaf stage (T1) for both species. Proteins related to metabolism and redox homeostasis were most abundant in tomato at T1, but later, plants experienced inhibited Calvin-Benson (CB) cycle and chloroplast development, indicating that photosynthetic proteins were damaged by reactive oxygen species (ROS). In maize, Sp7 first increased ROS-scavenging enzymes and decreased those related to metabolism, which ultimately reduced photoinhibition at later sampling times. Overall, the early interaction with maize is more complex and beneficial because the photosynthetic aparatus is protected by the C4 mechanism, thereby improving the interaction of the PGPR with maize. Better seedling emergence and vigor were observed in inoculated maize compared to tomato. This study provides an integrated perspective on the Sp7 strain-specific interactions with young C3 and C4 plants to modulate primary metabolism and photosynthesis.
Collapse
Affiliation(s)
- Sarah Boyd Lade
- Department of Plant Production and Forestry Science, University of Lleida - Agrotecnio Center, Lleida, Spain.
| | - Carla Román
- Department of Plant Production and Forestry Science, University of Lleida - Agrotecnio Center, Lleida, Spain
| | - Ana Isabel Cueto-Ginzo
- Department of Plant Production and Forestry Science, University of Lleida - Agrotecnio Center, Lleida, Spain
| | - Luis Serrano
- Department of Plant Production and Forestry Science, University of Lleida - Agrotecnio Center, Lleida, Spain
| | - Ester Sin
- Department of Plant Production and Forestry Science, University of Lleida - Agrotecnio Center, Lleida, Spain
| | - Maria Angels Achón
- Department of Plant Production and Forestry Science, University of Lleida - Agrotecnio Center, Lleida, Spain
| | - Vicente Medina
- Department of Plant Production and Forestry Science, University of Lleida - Agrotecnio Center, Lleida, Spain
| |
Collapse
|
21
|
Tiwari JK, Plett D, Garnett T, Chakrabarti SK, Singh RK. Integrated genomics, physiology and breeding approaches for improving nitrogen use efficiency in potato: translating knowledge from other crops. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:587-605. [PMID: 32290962 DOI: 10.1071/fp17303] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 12/06/2017] [Indexed: 05/22/2023]
Abstract
Potato plays a key role in global food and nutritional security. Potato is an N fertiliser-responsive crop, producing high tuber yields. However, excessive use of N can result in environmental damage and high production costs, hence improving nitrogen use efficiency (NUE) of potato plants is one of the sustainable options to address these issues and increase yield. Advanced efforts have been undertaken to improve NUE in other plants like Arabidopsis, rice, wheat and maize through molecular and physiological approaches. Conversely, in potato, NUE studies have predominantly focussed on agronomy or soil management, except for a few researchers who have measured gene expression and proteins relevant to N uptake or metabolism. The focus of this review is to adapt knowledge gained from other plants to inform investigation of N metabolism and associated traits in potato with the aim of improving potato NUE using integrated genomics, physiology and breeding methods.
Collapse
Affiliation(s)
- Jagesh K Tiwari
- ICAR-Central Potato Research Institute, Shimla - 171001, Himachal Pradesh, India
| | - Darren Plett
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Adelaide, SA 5064, Australia
| | - Trevor Garnett
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Adelaide, SA 5064, Australia
| | - Swarup K Chakrabarti
- ICAR-Central Potato Research Institute, Shimla - 171001, Himachal Pradesh, India
| | - Rajesh K Singh
- ICAR-Central Potato Research Institute, Shimla - 171001, Himachal Pradesh, India
| |
Collapse
|
22
|
Datta R, Kumar D, Chattopadhyay S. Membrane proteome profiling of Mentha arvensis leaves in response to Alternaria alternata infection identifies crucial candidates for defense response. PLANT SIGNALING & BEHAVIOR 2018; 13:e1178423. [PMID: 27177294 PMCID: PMC5933920 DOI: 10.1080/15592324.2016.1178423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 04/07/2016] [Accepted: 04/08/2016] [Indexed: 06/05/2023]
Abstract
The leaf spot disease of Mentha arvensis, caused by Alternaria alternata, is a devastating foliar disease worldwide and leads to considerable economic losses. In this investigation, 2-dimensional gel electrophoresis (2-DE) was used to identify the membrane proteins potentially involved in M. arvensis - A. alternata interaction. Membrane proteins, isolated from leaves of control and infected plants, were analyzed by 2-DE and identified using mass spectrometry (MALDI TOF-TOF MS/MS). Our analysis identified 21 differentially expressed membrane proteins including several interesting receptors and channel proteins. Of these identified proteins, 34% were found to be involved in plant defense responses. Leucine-rich repeat family protein/ protein kinase family protein which plays critical role in stress response and nucleotide-binding site-leucine-rich repeat (NBS-LRR) which is involved in detecting the advent of pathogen on plant surface were identified to be up-regulated in our study. Interestingly, AKT1-like potassium channel protein which is known to play a crucial role in maintaining ion homeostasis within the cell was also upregulated in the infected sample. In addition, ADP ribolysation factor (ARF)-GTPase activating domain containing protein, a membrane trafficking protein, was also up-regulated in the current study. Protein-protein interaction network analysis followed by functional enrichment revealed that transmembrane ion transport-related proteins represented a major class in this network followed by nucleic acid binding proteins and proteins with kinase activities respectively. Together, our investigation identified several key defense-related proteins which are crucial sensors for detecting pathogen invasion and can serve as a potential resource to understand disease resistance mechanism in mint.
Collapse
Affiliation(s)
- Riddhi Datta
- Plant Biology Laboratory, CSIR- Indian Institute of Chemical Biology, Kolkata, India
| | - Deepak Kumar
- Plant Biology Laboratory, CSIR- Indian Institute of Chemical Biology, Kolkata, India
| | | |
Collapse
|
23
|
Kaszycki P, Dubicka-Lisowska A, Augustynowicz J, Piwowarczyk B, Wesołowski W. Callitriche cophocarpa (water starwort) proteome under chromate stress: evidence for induction of a quinone reductase. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:8928-8942. [PMID: 29332274 PMCID: PMC5854755 DOI: 10.1007/s11356-017-1067-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 12/18/2017] [Indexed: 05/19/2023]
Abstract
Chromate-induced physiological stress in a water-submerged macrophyte Callitriche cophocarpa Sendtn. (water starwort) was tested at the proteomic level. The oxidative stress status of the plant treated with 1 mM Cr(VI) for 3 days revealed stimulation of peroxidases whereas catalase and superoxide dismutase activities were similar to the control levels. Employing two-dimensional electrophoresis, comparative proteomics enabled to detect five differentiating proteins subjected to identification with mass spectrometry followed by an NCBI database search. Cr(VI) incubation led to induction of light harvesting chlorophyll a/b binding protein with a concomitant decrease of accumulation of ribulose bisphosphate carboxylase (RuBisCO). The main finding was, however, the identification of an NAD(P)H-dependent dehydrogenase FQR1, detectable only in Cr(VI)-treated plants. The FQR1 flavoenzyme is known to be responsive to oxidative stress and to act as a detoxification protein by protecting the cells against oxidative damage. It exhibits the in vitro quinone reductase activity and is capable of catalyzing two-electron transfer from NAD(P)H to several substrates, presumably including Cr(VI). The enhanced accumulation of FQR1 was chromate-specific since other stressful conditions, such as salt, temperature, and oxidative stresses, all failed to induce the protein. Zymographic analysis of chromate-treated Callitriche shoots showed a novel enzymatic protein band whose activity was attributed to the newly identified enzyme. We suggest that Cr(VI) phytoremediation with C. cophocarpa can be promoted by chromate reductase activity produced by the induced quinone oxidoreductase which might take part in Cr(VI) → Cr(III) bioreduction process and thus enable the plant to cope with the chromate-generated oxidative stress.
Collapse
Affiliation(s)
- Paweł Kaszycki
- Unit of Biochemistry, Institute of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, al. 29 Listopada 54, 31-425, Kraków, Poland.
| | - Aleksandra Dubicka-Lisowska
- Unit of Biochemistry, Institute of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, al. 29 Listopada 54, 31-425, Kraków, Poland
| | - Joanna Augustynowicz
- Unit of Botany and Plant Physiology, Institute of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, al. 29 Listopada 54, 31-425, Kraków, Poland
| | - Barbara Piwowarczyk
- Unit of Botany and Plant Physiology, Institute of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, al. 29 Listopada 54, 31-425, Kraków, Poland
| | - Wojciech Wesołowski
- Unit of Genetics, Plant Breeding and Seed Science, Institute of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, al. 29 Listopada 54, 31-425, Kraków, Poland
| |
Collapse
|
24
|
Lu X, Li Y, Thunders M, Matthew C, Wang X, Ai X, Zhou X, Qiu J. Effect of enrofloxacin on the proteome of earthworms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 616-617:531-542. [PMID: 29128840 DOI: 10.1016/j.scitotenv.2017.10.275] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 10/22/2017] [Accepted: 10/26/2017] [Indexed: 06/07/2023]
Abstract
The environmental and human health risks of veterinary drugs are becoming public health issues. Enrofloxacin (EF) is an extensively used animal-specific antibacterial agent that leaves drug residues in the environment. This study investigated the proteomic response of the earthworm Eisenia fetida to EF exposure. Earthworms were exposed to EF in soil at 1-500mg·kg-1, and samples were collected at intervals during a 28 day period. The extracted proteins were separated by two dimensional electrophoresis to detect differentially expressed proteins (DEPs) in EF-exposed earthworms. In total, 35 unique DEPs were found. These proteins were subjected to MALDI-TOF/TOF-MS analysis and identified through comparison of their mass spectra with those in protein databases. The DEPs were grouped on the basis of their function, into metabolism, stress-related, transport, transcription, and predicted/hypothetical protein categories. Knowledge of proteins that are induced or repressed by EF in earthworms could provide insight into mechanisms of sub-clinical physiological effects of xenobiotic residues in the environment, and may also help understand synergy between pollutants. As several DEPs in E. fetida showed similarity to human protein sequences, E. fetida has potential as an indicator species to assess the environmental and biological risks of drug residues.
Collapse
Affiliation(s)
- Xiaoxu Lu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yinsheng Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Michelle Thunders
- College of Health, Massey University, PO Box 756, Wellington 6140, New Zealand
| | - Cory Matthew
- Institute of Agriculture & Environment, Massey University, Private Bag 11-222, Palmerston North, New Zealand
| | - Xiuhong Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaojie Ai
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinchu Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiangping Qiu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
25
|
Kosová K, Vítámvás P, Urban MO, Prášil IT, Renaut J. Plant Abiotic Stress Proteomics: The Major Factors Determining Alterations in Cellular Proteome. FRONTIERS IN PLANT SCIENCE 2018; 9:122. [PMID: 29472941 PMCID: PMC5810178 DOI: 10.3389/fpls.2018.00122] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/23/2018] [Indexed: 05/19/2023]
Abstract
HIGHLIGHTS: Major environmental and genetic factors determining stress-related protein abundance are discussed.Major aspects of protein biological function including protein isoforms and PTMs, cellular localization and protein interactions are discussed.Functional diversity of protein isoforms and PTMs is discussed. Abiotic stresses reveal profound impacts on plant proteomes including alterations in protein relative abundance, cellular localization, post-transcriptional and post-translational modifications (PTMs), protein interactions with other protein partners, and, finally, protein biological functions. The main aim of the present review is to discuss the major factors determining stress-related protein accumulation and their final biological functions. A dynamics of stress response including stress acclimation to altered ambient conditions and recovery after the stress treatment is discussed. The results of proteomic studies aimed at a comparison of stress response in plant genotypes differing in stress adaptability reveal constitutively enhanced levels of several stress-related proteins (protective proteins, chaperones, ROS scavenging- and detoxification-related enzymes) in the tolerant genotypes with respect to the susceptible ones. Tolerant genotypes can efficiently adjust energy metabolism to enhanced needs during stress acclimation. Stress tolerance vs. stress susceptibility are relative terms which can reflect different stress-coping strategies depending on the given stress treatment. The role of differential protein isoforms and PTMs with respect to their biological functions in different physiological constraints (cellular compartments and interacting partners) is discussed. The importance of protein functional studies following high-throughput proteome analyses is presented in a broader context of plant biology. In summary, the manuscript tries to provide an overview of the major factors which have to be considered when interpreting data from proteomic studies on stress-treated plants.
Collapse
Affiliation(s)
- Klára Kosová
- Division of Crop Genetics and Breeding, Laboratory of Plant Stress Biology and Biotechnology, Crop Research Institute, Prague, Czechia
- Department of Experimental Plant Biology, Faculty of Science, Charles University in Prague, Prague, Czechia
| | - Pavel Vítámvás
- Division of Crop Genetics and Breeding, Laboratory of Plant Stress Biology and Biotechnology, Crop Research Institute, Prague, Czechia
- Department of Experimental Plant Biology, Faculty of Science, Charles University in Prague, Prague, Czechia
| | - Milan O. Urban
- Division of Crop Genetics and Breeding, Laboratory of Plant Stress Biology and Biotechnology, Crop Research Institute, Prague, Czechia
- Department of Experimental Plant Biology, Faculty of Science, Charles University in Prague, Prague, Czechia
| | - Ilja T. Prášil
- Division of Crop Genetics and Breeding, Laboratory of Plant Stress Biology and Biotechnology, Crop Research Institute, Prague, Czechia
| | - Jenny Renaut
- Environmental Research and Technology Platform, Environmental Research and Innovation, Luxembourg Institute of Science and Technology (LIST), Esch-sur-Alzette, Luxembourg
| |
Collapse
|
26
|
|
27
|
Guerrero-Sanchez VM, Maldonado-Alconada AM, Amil-Ruiz F, Jorrin-Novo JV. Holm Oak ( Quercus ilex) Transcriptome. De novo Sequencing and Assembly Analysis. Front Mol Biosci 2017; 4:70. [PMID: 29057226 PMCID: PMC5635045 DOI: 10.3389/fmolb.2017.00070] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 09/22/2017] [Indexed: 11/13/2022] Open
Affiliation(s)
- Victor M Guerrero-Sanchez
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department Biochemistry and Molecular Biology, Universidad de Córdoba, Cordoba, Spain
| | - Ana M Maldonado-Alconada
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department Biochemistry and Molecular Biology, Universidad de Córdoba, Cordoba, Spain
| | - Francisco Amil-Ruiz
- Servicio Central de Apoyo a la Investigación, Universidad de Córdoba, Cordoba, Spain
| | - Jesús V Jorrin-Novo
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department Biochemistry and Molecular Biology, Universidad de Córdoba, Cordoba, Spain
| |
Collapse
|
28
|
Singh RP, Runthala A, Khan S, Jha PN. Quantitative proteomics analysis reveals the tolerance of wheat to salt stress in response to Enterobacter cloacae SBP-8. PLoS One 2017; 12:e0183513. [PMID: 28877183 PMCID: PMC5587313 DOI: 10.1371/journal.pone.0183513] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 08/04/2017] [Indexed: 11/18/2022] Open
Abstract
Salinity stress adversely affects the plant growth and is a major constraint to agriculture. In the present study, we studied the role of plant growth promoting rhizobacterium (PGPR) Enterobacter cloacae SBP-8 possessing ACC deaminase activity on proteome profile of wheat (Triticum aestivum L.) under high salinity (200 mM NaCl) stress. The aim of study was to investigate the differential expressed protein in selected three (T-1, T-2, T-3) treatments and absolute quantification (MS/MS analysis) was used to detect statistically significant expressed proteins. In this study, we investigated the adaptation mechanisms of wheat seedlings exposed to high concentration of NaCl treatment (200 mM) for 15 days in response to bacterial inoculation based on proteomic data. The identified proteins were distributed in different cellular, biological and molecular functions. Under salt stress, proteins related to ion-transport, metabolic pathway, protein synthesis and defense responsive were increased to a certain extent. A broader comparison of the proteome of wheat plant under different treatments revealed that changes in some of the metabolic pathway may be involved in stress adaption in response to PGPR inoculation. Hierarchical cluster analysis identified the various up-regulated/down-regulated proteins into tested three treatments. Our results suggest that bacterial inoculation enhanced the ability of wheat plant to combat salt stress via regulation of transcription factors, promoting antioxidative activity, induction of defense enzymes, lignin biosynthesis, and acceleration of protein synthesis.
Collapse
Affiliation(s)
- Rajnish Prakash Singh
- Department of Biological Science, Birla Institute of Technology and Science (BITS), Pilani, Rajasthan, India
| | | | - Shahid Khan
- Department of Biological Science, Birla Institute of Technology and Science (BITS), Pilani, Rajasthan, India
| | - Prabhat Nath Jha
- Department of Biological Science, Birla Institute of Technology and Science (BITS), Pilani, Rajasthan, India
| |
Collapse
|
29
|
Electrophoresis-Based Proteomics to Study Development and Germination of Date Palm Zygotic Embryos. Methods Mol Biol 2017. [PMID: 28755235 DOI: 10.1007/978-1-4939-7159-6_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Proteomics has become an important and powerful tool in plant biology research. To establish a proteomic reference map of date palm zygotic embryos (ZE), we separated and identified proteins from zygotic embryos during different developmental and germination phases using one, two-dimensional polyacrylamide gel electrophoresis and mass spectrometry. Proteins are extracted with trichloroacetic acid (TCA)/acetone-phenol and resolved by gel electrophoresis. Gel images are captured and analyzed by appropriate software and statistical packages. Quantitative or qualitative variable bands or spots are subjected to MS analysis in order to identify them and correlate differences in the protein profiles with the different stages of date palm zygotic embryo development, maturation, and germination.
Collapse
|
30
|
Tan BC, Lim YS, Lau SE. Proteomics in commercial crops: An overview. J Proteomics 2017; 169:176-188. [PMID: 28546092 DOI: 10.1016/j.jprot.2017.05.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 04/21/2017] [Accepted: 05/19/2017] [Indexed: 02/06/2023]
Abstract
Proteomics is a rapidly growing area of biological research that is positively affecting plant science. Recent advances in proteomic technology, such as mass spectrometry, can now identify a broad range of proteins and monitor their modulation during plant growth and development, as well as during responses to abiotic and biotic stresses. In this review, we highlight recent proteomic studies of commercial crops and discuss the advances in understanding of the proteomes of these crops. We anticipate that proteomic-based research will continue to expand and contribute to crop improvement. SIGNIFICANCE Plant proteomics study is a rapidly growing area of biological research that is positively impacting plant science. With the recent advances in new technologies, proteomics not only allows us to comprehensively analyses crop proteins, but also help us to understand the functions of the genes. In this review, we highlighted recent proteomic studies in commercial crops and updated the advances in our understanding of the proteomes of these crops. We believe that proteomic-based research will continue to grow and contribute to the improvement of crops.
Collapse
Affiliation(s)
- Boon Chin Tan
- Centre for Research in Biotechnology for Agriculture, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur, Malaysia.
| | - Yin Sze Lim
- School of Biosciences, Faculty of Science, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor, Malaysia
| | - Su-Ee Lau
- Centre for Research in Biotechnology for Agriculture, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
31
|
iTRAQ-based quantitative proteome revealed metabolic changes of Flammulina velutipes mycelia in response to cold stress. J Proteomics 2017; 156:75-84. [PMID: 28099886 DOI: 10.1016/j.jprot.2017.01.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 01/03/2017] [Accepted: 01/12/2017] [Indexed: 12/26/2022]
Abstract
Temperature is one of the pivotal factors influencing mycelium growth and fruit-body formation of Flammulina velutipes. To gain insights into hyphae growth and fruit-body formation events and facilitate the identification of potential stage-specific biomarker candidates, we investigated the proteome response of F. velutipes mycelia to cold stresses using iTRAQ-coupled two-dimensional liquid chromatography tandem mass spectrometry (2D LC-MS/MS) technique. Among 1198 proteins identified with high confidence, a total of 63 displayed altered expression level after cold stress treatments. In-depth data analysis reveals that differentially expressed proteins were involved in a variety of cellular processes, particularly metabolic processes. Among the 31 up-regulated proteins, 24 (77.42%) were associated with 22 specific KEGG pathways. These up-regulated proteins could possibly serve as potential biomarkers to study the molecular mechanisms of F. velutipes mycelia response to cold stresses. These data of the proteins might provide valuable evidences to better understand the molecular mechanisms of mycelium resistance to cold stress and fruit-body formation in fungi. BIOLOGICAL SIGNIFICANCE Low-temperature is one of the pivotal factors in some Flammulina velutipes industrial processes influencing mycelium growth, inducing primordia and controlling fruit-body development. Preliminary study has indicated that effectively regulating cultivation could augment the yield by controlling optimal cold stress level on mycelia. However, we are still far from understanding the molecular and physiological mechanisms of adaptation of these fungi at cold stress. In the present study, the experiments reported above were undertaken to investigate chronological changes of protein expression during F. velutipes mycelia in response to cold stress by using iTRAQ-coupled 2D LC-MS/MS technique. This result would provide new insights to the underlying mycelium growth and fruit-body formation mechanisms of basidiomycetes under cold stress.
Collapse
|
32
|
Quantitative Proteomics Reveals the Defense Response of Wheat against Puccinia striiformis f. sp. tritici. Sci Rep 2016; 6:34261. [PMID: 27678307 PMCID: PMC5039691 DOI: 10.1038/srep34261] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 09/12/2016] [Indexed: 01/09/2023] Open
Abstract
Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is considered one of the most aggressive diseases to wheat production. In this study, we used an iTRAQ-based approach for the quantitative proteomic comparison of the incompatible Pst race CYR23 in infected and non-infected leaves of the wheat cultivar Suwon11. A total of 3,475 unique proteins were identified from three key stages of interaction (12, 24, and 48 h post-inoculation) and control groups. Quantitative analysis showed that 530 proteins were differentially accumulated by Pst infection (fold changes >1.5, p < 0.05). Among these proteins, 10.54% was classified as involved in the immune system process and stimulus response. Intriguingly, bioinformatics analysis revealed that a set of reactive oxygen species metabolism-related proteins, peptidyl–prolyl cis–trans isomerases (PPIases), RNA-binding proteins (RBPs), and chaperonins was involved in the response to Pst infection. Our results were the first to show that PPIases, RBPs, and chaperonins participated in the regulation of the immune response in wheat and even in plants. This study aimed to provide novel routes to reveal wheat gene functionality and better understand the early events in wheat–Pst incompatible interactions.
Collapse
|
33
|
Rodríguez de Francisco L, Romero-Rodríguez MC, Navarro-Cerrillo RM, Miniño V, Perdomo O, Jorrín-Novo JV. Characterization of the orthodox Pinus occidentalis seed and pollen proteomes by using complementary gel-based and gel-free approaches. J Proteomics 2016; 143:382-389. [PMID: 27084684 DOI: 10.1016/j.jprot.2016.03.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/19/2016] [Accepted: 03/28/2016] [Indexed: 01/31/2023]
Abstract
UNLABELLED This work presents an analysis of Pinus occidentalis pollen and seed proteomes, in which both gel-based and gel-free approaches have been used. Proteins were extracted from P. occidentalis seeds and pollen by using the TCA/acetone/phenol precipitation protocol, and protein extracts were subjected to 1- and 2-DE coupled to MALDI-TOF-TOF as well as to shotgun (nLC-LTQ-Orbitrap) analysis. All bands (1-DE) and the most abundant spots (2-DE) were excised, trypsin digested and the resulting peptides analyzed by MALDI TOF/TOF. In order to increase the proteome coverage, a gel free approach was used. Proteins were identified from mass spectra by using three different databases, including UniProtKB, NCBI and a Pinus spp. custom database [2]. The gel-based approach resulted in 42 (seeds) and 94 (pollen) protein identifications, while the shotgun approach permitted the identification of 187 (seed) and 960 (pollen) proteins. Proteins were classified based on their corresponding functional categories. In seeds, storage proteins were the most abundant ones, and some allergens and proteases were also identified. In pollen proteins related to general metabolism were the most predominant. Data are compared and discussed from a methodological and biological point of view, taking into account the particularities of the seed and pollen organs. BIOLOGICAL SIGNIFICANCE In this work we characterized P. occidentalis proteome with seeds and pollen samples implementing two complementary approaches for the analysis. We found a high content of storage protein, stress response and metabolism related proteins in the seed proteome. Similarly, in the pollen proteome we found predominant groups of proteins related to metabolism and stress response.
Collapse
Affiliation(s)
- Luis Rodríguez de Francisco
- Laboratorio de Biología, Instituto Tecnológico de Santo Domingo, República Dominicana; Agricultural and Plant Biochemistry and Proteomics Research Group, Dept. of Biochemistry and Molecular Biology, University of Córdoba, Agrifood Campus of International Excellence (ceiA3), 14071 Córdoba, Spain.
| | - Ma Cristina Romero-Rodríguez
- Departamento de Fitoquímica, Dirección de Investigación de la Facultad de Ciencias Químicas de la Universidad Nacional de Asunción, Paraguay.
| | - Rafael M Navarro-Cerrillo
- Department of Forestry Engineering, ETSIAM, University of Córdoba, Agrifood Campus of International Excellence (ceiA3), 14071 Córdoba, Spain
| | - Virgilio Miniño
- Laboratorio de Biología, Instituto Tecnológico de Santo Domingo, República Dominicana
| | - Omar Perdomo
- Laboratorio de Biología, Instituto Tecnológico de Santo Domingo, República Dominicana
| | - Jesús V Jorrín-Novo
- Agricultural and Plant Biochemistry and Proteomics Research Group, Dept. of Biochemistry and Molecular Biology, University of Córdoba, Agrifood Campus of International Excellence (ceiA3), 14071 Córdoba, Spain
| |
Collapse
|
34
|
Characterization of Seed Storage Proteins from Chickpea Using 2D Electrophoresis Coupled with Mass Spectrometry. Biochem Res Int 2016; 2016:1049462. [PMID: 27144024 PMCID: PMC4842031 DOI: 10.1155/2016/1049462] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 02/27/2016] [Accepted: 03/20/2016] [Indexed: 11/17/2022] Open
Abstract
Proteomic analysis was employed to map the seed storage protein network in landrace and cultivated chickpea accessions. Protein extracts were separated by two-dimensional gel electrophoresis (2D-GE) across a broad range 3.0–10.0 immobilized pH gradient (IPG) strips. Comparative elucidation of differentially expressed proteins between two diverse geographically originated chickpea accessions was carried out using 2D-GE coupled with mass spectrometry. A total of 600 protein spots were detected in these accessions. In-gel protein expression patterns revealed three protein spots as upregulated and three other as downregulated. Using trypsin in-gel digestion, these differentially expressed proteins were identified by matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS) which showed 45% amino acid homology of chickpea seed storage proteins with Arabidopsis thaliana.
Collapse
|
35
|
Rodríguez-Celma J, Lattanzio G, Villarroya D, Gutierrez-Carbonell E, Ceballos-Laita L, Rencoret J, Gutiérrez A, Del Río JC, Grusak MA, Abadía A, Abadía J, López-Millán AF. Effects of Fe deficiency on the protein profiles and lignin composition of stem tissues from Medicago truncatula in absence or presence of calcium carbonate. J Proteomics 2016; 140:1-12. [PMID: 27045941 DOI: 10.1016/j.jprot.2016.03.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 03/07/2016] [Accepted: 03/10/2016] [Indexed: 12/26/2022]
Abstract
UNLABELLED Iron deficiency is a yield-limiting factor with major implications for crop production, especially in soils with high CaCO3. Because stems are essential for the delivery of nutrients to the shoots, the aim of this work was to study the effects of Fe deficiency on the stem proteome of Medicago truncatula. Two-dimensional electrophoresis separation of stem protein extracts resolved 276 consistent spots in the whole experiment. Iron deficiency in absence or presence of CaCO3 caused significant changes in relative abundance in 10 and 31 spots, respectively, and 80% of them were identified by mass spectrometry. Overall results indicate that Fe deficiency by itself has a mild effect on the stem proteome, whereas Fe deficiency in the presence of CaCO3 has a stronger impact and causes changes in a larger number of proteins, including increases in stress and protein metabolism related proteins not observed in the absence of CaCO3. Both treatments resulted in increases in cell wall related proteins, which were more intense in the presence of CaCO3. The increases induced by Fe-deficiency in the lignin per protein ratio and changes in the lignin monomer composition, assessed by pyrolysis-gas chromatography-mass spectrometry and microscopy, respectively, further support the existence of cell wall alterations. BIOLOGICAL SIGNIFICANCE In spite of being essential for the delivery of nutrients to the shoots, our knowledge of stem responses to nutrient deficiencies is very limited. The present work applies 2-DE techniques to unravel the response of this understudied tissue to Fe deficiency. Proteomics data, complemented with mineral, lignin and microscopy analyses, indicate that stems respond to Fe deficiency by increasing stress and defense related proteins, probably in response of mineral and osmotic unbalances, and eliciting significant changes in cell wall composition. The changes observed are likely to ultimately affect solute transport and distribution to the leaves.
Collapse
Affiliation(s)
- Jorge Rodríguez-Celma
- Plant Nutrition Department, Aula Dei Experimental Station (CSIC), P.O. Box 13034, E-50080, Zaragoza, Spain
| | - Giuseppe Lattanzio
- Plant Nutrition Department, Aula Dei Experimental Station (CSIC), P.O. Box 13034, E-50080, Zaragoza, Spain
| | - Dido Villarroya
- Plant Nutrition Department, Aula Dei Experimental Station (CSIC), P.O. Box 13034, E-50080, Zaragoza, Spain
| | - Elain Gutierrez-Carbonell
- Plant Nutrition Department, Aula Dei Experimental Station (CSIC), P.O. Box 13034, E-50080, Zaragoza, Spain
| | - Laura Ceballos-Laita
- Plant Nutrition Department, Aula Dei Experimental Station (CSIC), P.O. Box 13034, E-50080, Zaragoza, Spain
| | - Jorge Rencoret
- Instituto de Recursos Naturales y Agrobiología de Sevilla (CSIC), Reina Mercedes 10, E-41012 Sevilla, Spain
| | - Ana Gutiérrez
- Instituto de Recursos Naturales y Agrobiología de Sevilla (CSIC), Reina Mercedes 10, E-41012 Sevilla, Spain
| | - José C Del Río
- Instituto de Recursos Naturales y Agrobiología de Sevilla (CSIC), Reina Mercedes 10, E-41012 Sevilla, Spain
| | - Michael A Grusak
- USDA-ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, 1100 Bates Street, Houston, TX 77030, USA
| | - Anunciación Abadía
- Plant Nutrition Department, Aula Dei Experimental Station (CSIC), P.O. Box 13034, E-50080, Zaragoza, Spain
| | - Javier Abadía
- Plant Nutrition Department, Aula Dei Experimental Station (CSIC), P.O. Box 13034, E-50080, Zaragoza, Spain
| | - Ana-Flor López-Millán
- USDA-ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, 1100 Bates Street, Houston, TX 77030, USA.
| |
Collapse
|
36
|
Zhang W, Zhang H, Ning L, Li B, Bao M. Quantitative Proteomic Analysis Provides Novel Insights into Cold Stress Responses in Petunia Seedlings. FRONTIERS IN PLANT SCIENCE 2016; 7:136. [PMID: 26941746 PMCID: PMC4766708 DOI: 10.3389/fpls.2016.00136] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 01/26/2016] [Indexed: 05/17/2023]
Abstract
Low temperature is a major adverse environmental factor that impairs petunia growth and development. To better understand the molecular mechanisms of cold stress adaptation of petunia plants, a quantitative proteomic analysis using iTRAQ technology was performed to detect the effects of cold stress on protein expression profiles in petunia seedlings which had been subjected to 2°C for 5 days. Of the 2430 proteins whose levels were quantitated, a total of 117 proteins were discovered to be differentially expressed under low temperature stress in comparison to unstressed controls. As an initial study, 44 proteins including well known and novel cold-responsive proteins were successfully annotated. By integrating the results of two independent Gene Ontology (GO) enrichment analyses, seven common GO terms were found of which "oxidation-reduction process" was the most notable for the cold-responsive proteins. By using the subcellular localization tool Plant-mPLoc predictor, as much as 40.2% of the cold-responsive protein group was found to be located within chloroplasts, suggesting that the chloroplast proteome is particularly affected by cold stress. Gene expression analyses of 11 cold-responsive proteins by real time PCR demonstrated that the mRNA levels were not strongly correlated with the respective protein levels. Further activity assay of anti-oxidative enzymes showed different alterations in cold treated petunia seedlings. Our investigation has highlighted the role of antioxidation mechanisms and also epigenetic factors in the regulation of cold stress responses. Our work has provided novel insights into the plant response to cold stress and should facilitate further studies regarding the molecular mechanisms which determine how plant cells cope with environmental perturbation. The data have been deposited to the ProteomeXchange with identifier PXD002189.
Collapse
Affiliation(s)
- Wei Zhang
- College of Life Science and Technology, Huazhong Agricultural UniversityWuhan, China
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural UniversityWuhan, China
| | - Huilin Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural UniversityWuhan, China
| | - Luyun Ning
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural UniversityWuhan, China
| | - Bei Li
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural UniversityWuhan, China
| | - Manzhu Bao
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural UniversityWuhan, China
| |
Collapse
|
37
|
Sghaier-Hammami B, Redondo-López I, Valero-Galvàn J, Jorrín-Novo JV. Protein profile of cotyledon, tegument, and embryonic axis of mature acorns from a non-orthodox plant species: Quercus ilex. PLANTA 2016; 243:369-96. [PMID: 26424229 DOI: 10.1007/s00425-015-2404-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 09/03/2015] [Indexed: 05/24/2023]
Abstract
Contrary to the orthodox seeds, recalcitrant Holm oak seeds possess the enzymatic machinery to start germination during the maturation phase. The protein profile of the different parts, mature seeds, of the Holm oak, a non-orthodox plant species, has been characterized using one- and two-dimensional gel electrophoresis coupled to matrix-assisted laser desorption ionization-time of flight mass spectrometry. Protein content and profiles of the three seed tissues (cotyledon, embryonic axis and tegument) were quite different. The embryonic axis showed 4-fold and 20-fold higher protein content than the cotyledon and the tegument, respectively. Two hundred and twenty-six variable proteins among the three seed parts were identified, being classified according to their function into eight main groups. The cotyledon presented the highest number of metabolic and storage proteins (89% of them are legumin) compared to the embryonic axis and tegument. The embryonic axis had the highest number of the species within the protein fate group. The tegument presented the largest number of the defense-/stress-related and cytoskeleton proteins. This distribution is in good agreement with the biological role of the tissues. The study of the seed tissue proteome demonstrated a compartmentalization of pathways and a division of metabolic tasks between embryonic axis, cotyledon and tegument. This compartmentalization uncovered in our study should provide a starting point for understanding, at the molecular level, the particularities of the recalcitrant seeds.
Collapse
Affiliation(s)
- Besma Sghaier-Hammami
- Laboratory of Extremophile Plants, Biotechnology Centre of Borj Cedria, P. O. Box 901, 2050, Hammam-Lif, Tunisia.
- Agroforestry and Plant Biochemistry and Proteomics Research Group, Department of Biochemistry and Molecular Biology, University of Cordoba-CeiA3, Cordoba, Spain.
| | - Inmaculada Redondo-López
- Agroforestry and Plant Biochemistry and Proteomics Research Group, Department of Biochemistry and Molecular Biology, University of Cordoba-CeiA3, Cordoba, Spain
| | - José Valero-Galvàn
- Agroforestry and Plant Biochemistry and Proteomics Research Group, Department of Biochemistry and Molecular Biology, University of Cordoba-CeiA3, Cordoba, Spain
- Department of Chemistry-Biology, Biomedical Sciences Institute, Autonomous University of Ciudad Juárez, Ciudad Juárez, Chihuahua, Mexico
| | - Jesús V Jorrín-Novo
- Agroforestry and Plant Biochemistry and Proteomics Research Group, Department of Biochemistry and Molecular Biology, University of Cordoba-CeiA3, Cordoba, Spain
| |
Collapse
|
38
|
Latef AAHA, Jan S, Abd‐Allah EF, Rashid B, John R, Ahmad P. Soybean under abiotic stress. PLANT‐ENVIRONMENT INTERACTION 2016:28-42. [DOI: 10.1002/9781119081005.ch2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
39
|
The evolution of analytical chemistry methods in foodomics. J Chromatogr A 2016; 1428:3-15. [DOI: 10.1016/j.chroma.2015.09.007] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/26/2015] [Accepted: 09/02/2015] [Indexed: 12/18/2022]
|
40
|
Abstract
Proteomic approaches have been used to understand several regulatory aspects of plant development. Somatic embryogenesis is one of those developmental pathways that have beneficiated from the integration of proteomics data to the understanding of the molecular mechanisms that control embryogenic competence acquisition, somatic embryo development and conversion into viable plants. Nevertheless, most of the results obtained are based on the traditional model systems, very often not easily compared with the somatic embryogenesis systems of economical relevant woody species. The aim of this work is to summarize some of the applications of proteomics in the understanding of particular aspects of the somatic embryogenesis process in broad-leaf woody plants (model and non-model systems).
Collapse
|
41
|
Martínez-Esteso MJ, Martínez-Márquez A, Sellés-Marchart S, Morante-Carriel JA, Bru-Martínez R. The role of proteomics in progressing insights into plant secondary metabolism. FRONTIERS IN PLANT SCIENCE 2015; 6:504. [PMID: 26217358 PMCID: PMC4493368 DOI: 10.3389/fpls.2015.00504] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 06/23/2015] [Indexed: 05/29/2023]
Abstract
The development of omics has enabled the genome-wide exploration of all kinds of biological processes at the molecular level. Almost every field of plant biology has been analyzed at the genomic, transcriptomic and proteomic level. Here we focus on the particular contribution that proteomic technologies have made in progressing knowledge and characterising plant secondary metabolism (SM) pathways since early expectations were created 15 years ago. We analyzed how three major issues in the proteomic analysis of plant SM have been implemented in various research studies. These issues are: (i) the selection of a suitable plant material rich in secondary metabolites of interest, such as specialized tissues and organs, and in vitro cell cultures; (ii) the proteomic strategy to access target proteins, either a comprehensive or a differential analysis; (iii) the proteomic approach, represented by the hypothesis-free discovery proteomics and the hypothesis-driven targeted proteomics. We also examine to what extent the most-advanced technologies have been incorporated into proteomic research in plant SM and highlight some cutting edge techniques that would strongly benefit the progress made in this field.
Collapse
Affiliation(s)
- María J. Martínez-Esteso
- Plant Proteomics and Functional Genomics Group, Department of Agrochemistry and Biochemistry, Multidisciplinary Institute for Environmental Studies “Ramon Margalef”, University of Alicante, Alicante, Spain
| | - Ascensión Martínez-Márquez
- Plant Proteomics and Functional Genomics Group, Department of Agrochemistry and Biochemistry, Multidisciplinary Institute for Environmental Studies “Ramon Margalef”, University of Alicante, Alicante, Spain
| | - Susana Sellés-Marchart
- Plant Proteomics and Functional Genomics Group, Department of Agrochemistry and Biochemistry, Multidisciplinary Institute for Environmental Studies “Ramon Margalef”, University of Alicante, Alicante, Spain
- Biotechnology and Molecular Biology Group, Quevedo State Technical University, Quevedo, Ecuador
| | - Jaime A. Morante-Carriel
- Proteomics and Genomics Division, Research Technical Facility, University of Alicante, Alicante, Spain
| | - Roque Bru-Martínez
- Plant Proteomics and Functional Genomics Group, Department of Agrochemistry and Biochemistry, Multidisciplinary Institute for Environmental Studies “Ramon Margalef”, University of Alicante, Alicante, Spain
| |
Collapse
|
42
|
Jorrín Novo JV. Scientific standards and MIAPEs in plant proteomics research and publications. FRONTIERS IN PLANT SCIENCE 2015; 6:473. [PMID: 26175741 PMCID: PMC4485075 DOI: 10.3389/fpls.2015.00473] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 06/15/2015] [Indexed: 06/04/2023]
Affiliation(s)
- Jesús V. Jorrín Novo
- Agroforestry and Plant Biochemistry and Proteomics Research Group, Department of Biochemistry and Molecular Biology- ETSIAM, University of Cordoba-CeiA3Córdoba, Spain
| |
Collapse
|
43
|
Gupta AK, Seneviratne JM, Bala R, Jaiswal JP, Kumar A. Alteration of Genetic Make-up in Karnal Bunt Pathogen (Tilletia indica) of Wheat in Presence of Host Determinants. THE PLANT PATHOLOGY JOURNAL 2015; 31:97-107. [PMID: 26060428 PMCID: PMC4454003 DOI: 10.5423/ppj.oa.10.2014.0106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 02/26/2015] [Accepted: 03/02/2015] [Indexed: 05/12/2023]
Abstract
Alteration of genetic make-up of the isolates and monosporidial strains of Tilletia indica causing Karnal bunt (KB) disease in wheat was analyzed using DNA markers and SDS-PAGE. The generation of new variation with different growth characteristics is not a generalized feature and is not only dependant on the original genetic make up of the base isolate/monosporidial strains but also on interaction with host. Host determinant(s) plays a significant role in the generation of variability and the effect is much pronounced in monosporidial strains with narrow genetic base as compared to broad genetic base. The most plausible explanation of genetic variation in presence of host determinant(s) are the recombination of genetic material from two different mycelial/sporidia through sexual mating as well as through para-sexual means. The morphological and development dependent variability further suggests that the variation in T. indica strains predominantly derived through the genetic rearrangements.
Collapse
Affiliation(s)
- Atul K. Gupta
- Department of Molecular Biology and Genetic Engineering, CBSH, G.B. Pant University of Agriculture and Technology, Pantnagar
| | - J. M. Seneviratne
- Department of Molecular Biology and Genetic Engineering, CBSH, G.B. Pant University of Agriculture and Technology, Pantnagar
| | - Ritu Bala
- Department of Plant Breeding and Genetics, Punjab Agriculture University, Ludhiana
| | - J. P. Jaiswal
- Department of Genetics and Plant Breeding, College of Agriculture, G.B. Pant University of Agriculture and Technology, Pantnagar
| | - Anil Kumar
- Department of Molecular Biology and Genetic Engineering, CBSH, G.B. Pant University of Agriculture and Technology, Pantnagar
- Corresponding author. Phone) +91-5944-233898, FAX) +91-5944-233473, E-mail)
| |
Collapse
|
44
|
Datta R, Chattopadhyay S. Changes in the proteome of pad2-1, a glutathione depleted Arabidopsis mutant, during Pseudomonas syringae infection. J Proteomics 2015; 126:82-93. [PMID: 26032221 DOI: 10.1016/j.jprot.2015.04.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 04/20/2015] [Accepted: 04/28/2015] [Indexed: 01/19/2023]
Abstract
The involvement of glutathione (GSH) in plant defense against pathogen invasion is an established fact. However, the molecular mechanism conferring this tolerance remains to be explored. Here, proteomic analysis of pad2-1, an Arabidopsis thaliana GSH-depleted mutant, in response to Pseudomonas syringae infection has been performed to explore the intricate position of GSH in defense against biotrophic pathogens. The pad2-1 mutant displayed severe susceptibility to P. syringae infection compared to the wild-type (Col-0) thus re-establishing a fundamental role of GSH in defense. Apart from general up-accumulation of energy metabolism-related protein-species in both infected Col-0 and pad2-1, several crucial defense-related protein-species were identified to be differentially accumulated. Leucine-rich repeat-receptor kinase (LRR-RK) and nucleotide-binding site-leucine-rich repeat resistance protein (NBS-LRR), known to play a pioneering role against pathogen attack, were only weakly up-accumulated in pad2-1 after infection. Transcriptional and post-transcriptional regulators like MYB-P1 and glycine-rich repeat RNA-binding protein (GRP) and several other stress-related protein-species like heat shock protein 17 (HSP17) and glutathione-S-transferase (GST) were also identified to be differentially regulated in pad2-1 and Col-0 in response to infection. Together, the present investigation reveals that the optimum GSH-level is essential for the efficient activation of plant defense signaling cascades thus conferring resistance to pathogen invasion.
Collapse
Affiliation(s)
- Riddhi Datta
- Plant Biology Laboratory, Drug Development/Diagnostics & Biotechnology Division, CSIR - Indian Institute of Chemical Biology, 4, Raja S.C.Mullick Road, Kolkata 700 032, India
| | - Sharmila Chattopadhyay
- Plant Biology Laboratory, Drug Development/Diagnostics & Biotechnology Division, CSIR - Indian Institute of Chemical Biology, 4, Raja S.C.Mullick Road, Kolkata 700 032, India.
| |
Collapse
|
45
|
Ceballos-Laita L, Gutierrez-Carbonell E, Lattanzio G, Vázquez S, Contreras-Moreira B, Abadía A, Abadía J, López-Millán AF. Protein profile of Beta vulgaris leaf apoplastic fluid and changes induced by Fe deficiency and Fe resupply. FRONTIERS IN PLANT SCIENCE 2015; 6:145. [PMID: 25852707 PMCID: PMC4364163 DOI: 10.3389/fpls.2015.00145] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 02/23/2015] [Indexed: 05/23/2023]
Abstract
The fluid collected by direct leaf centrifugation has been used to study the proteome of the sugar beet apoplastic fluid as well as the changes induced by Fe deficiency and Fe resupply to Fe-deficient plants in the protein profile. Plants were grown in Fe-sufficient and Fe-deficient conditions, and Fe resupply was carried out with 45 μM Fe(III)-EDTA for 24 h. Protein extracts of leaf apoplastic fluid were analyzed by two-dimensional isoelectric focusing-SDS-PAGE electrophoresis. Gel image analysis revealed 203 consistent spots, and proteins in 81% of them (164) were identified by nLC-MS/MS using a custom made reference repository of beet protein sequences. When redundant UniProt entries were deleted, a non-redundant leaf apoplastic proteome consisting of 109 proteins was obtained. TargetP and SecretomeP algorithms predicted that 63% of them were secretory proteins. Functional classification of the non-redundant proteins indicated that stress and defense, protein metabolism, cell wall and C metabolism accounted for approximately 75% of the identified proteome. The effects of Fe-deficiency on the leaf apoplast proteome were limited, with only five spots (2.5%) changing in relative abundance, thus suggesting that protein homeostasis in the leaf apoplast fluid is well-maintained upon Fe shortage. The identification of three chitinase isoforms among proteins increasing in relative abundance with Fe-deficiency suggests that one of the few effects of Fe deficiency in the leaf apoplast proteome includes cell wall modifications. Iron resupply to Fe deficient plants changed the relative abundance of 16 spots when compared to either Fe-sufficient or Fe-deficient samples. Proteins identified in these spots can be broadly classified as those responding to Fe-resupply, which included defense and cell wall related proteins, and non-responsive, which are mainly protein metabolism related proteins and whose changes in relative abundance followed the same trend as with Fe-deficiency.
Collapse
Affiliation(s)
- Laura Ceballos-Laita
- Plant Stress Physiology Group, Department of Plant Nutrition, Aula Dei Experimental Station, Consejo Superior de Investigaciones CientíficasZaragoza, Spain
| | - Elain Gutierrez-Carbonell
- Plant Stress Physiology Group, Department of Plant Nutrition, Aula Dei Experimental Station, Consejo Superior de Investigaciones CientíficasZaragoza, Spain
| | - Giuseppe Lattanzio
- Plant Stress Physiology Group, Department of Plant Nutrition, Aula Dei Experimental Station, Consejo Superior de Investigaciones CientíficasZaragoza, Spain
| | - Saul Vázquez
- Plant Stress Physiology Group, Department of Plant Nutrition, Aula Dei Experimental Station, Consejo Superior de Investigaciones CientíficasZaragoza, Spain
| | - Bruno Contreras-Moreira
- Laboratory of Computational and Structural Biology, Aula Dei Experimental Station, Consejo Superior de Investigaciones CientíficasZaragoza, Spain
- Fundación ARAIDZaragoza, Spain
| | - Anunciación Abadía
- Plant Stress Physiology Group, Department of Plant Nutrition, Aula Dei Experimental Station, Consejo Superior de Investigaciones CientíficasZaragoza, Spain
| | - Javier Abadía
- Plant Stress Physiology Group, Department of Plant Nutrition, Aula Dei Experimental Station, Consejo Superior de Investigaciones CientíficasZaragoza, Spain
| | - Ana-Flor López-Millán
- Plant Stress Physiology Group, Department of Plant Nutrition, Aula Dei Experimental Station, Consejo Superior de Investigaciones CientíficasZaragoza, Spain
| |
Collapse
|
46
|
Jorrín-Novo JV, Pascual J, Sánchez-Lucas R, Romero-Rodríguez MC, Rodríguez-Ortega MJ, Lenz C, Valledor L. Fourteen years of plant proteomics reflected in Proteomics: moving from model species and 2DE-based approaches to orphan species and gel-free platforms. Proteomics 2015; 15:1089-112. [PMID: 25487722 DOI: 10.1002/pmic.201400349] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 10/23/2014] [Accepted: 12/04/2014] [Indexed: 12/21/2022]
Abstract
In this article, the topic of plant proteomics is reviewed based on related papers published in the journal Proteomics since publication of the first issue in 2001. In total, around 300 original papers and 41 reviews published in Proteomics between 2000 and 2014 have been surveyed. Our main objective for this review is to help bridge the gap between plant biologists and proteomics technologists, two often very separate groups. Over the past years a number of reviews on plant proteomics have been published . To avoid repetition we have focused on more recent literature published after 2010, and have chosen to rather make continuous reference to older publications. The use of the latest proteomics techniques and their integration with other approaches in the "systems biology" direction are discussed more in detail. Finally we comment on the recent history, state of the art, and future directions of plant proteomics, using publications in Proteomics to illustrate the progress in the field. The review is organized into two major blocks, the first devoted to provide an overview of experimental systems (plants, plant organs, biological processes) and the second one to the methodology.
Collapse
Affiliation(s)
- Jesus V Jorrín-Novo
- Agroforestry and Plant Biochemistry and Proteomics Research Group, Department of Biochemistry and Molecular Biology, University of Cordoba-CeiA3, Cordoba, Spain
| | | | | | | | | | | | | |
Collapse
|
47
|
Fraige K, González-Fernández R, Carrilho E, Jorrín-Novo JV. Metabolite and proteome changes during the ripening of Syrah and Cabernet Sauvignon grape varieties cultured in a nontraditional wine region in Brazil. J Proteomics 2015; 113:206-25. [DOI: 10.1016/j.jprot.2014.09.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 09/22/2014] [Accepted: 09/26/2014] [Indexed: 01/19/2023]
|
48
|
Kosová K, Vítámvás P, Prášil IT. Proteomics of stress responses in wheat and barley-search for potential protein markers of stress tolerance. FRONTIERS IN PLANT SCIENCE 2014; 5:711. [PMID: 25566285 PMCID: PMC4263075 DOI: 10.3389/fpls.2014.00711] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 11/26/2014] [Indexed: 05/18/2023]
Abstract
Wheat (Triticum aestivum; T. durum) and barley (Hordeum vulgare) agricultural production is severely limited by various abiotic and biotic stress factors. Proteins are directly involved in plant stress response so it is important to study proteome changes under various stress conditions. Generally, both abiotic and biotic stress factors induce profound alterations in protein network covering signaling, energy metabolism (glycolysis, Krebs cycle, ATP biosynthesis, photosynthesis), storage proteins, protein metabolism, several other biosynthetic pathways (e.g., S-adenosylmethionine metabolism, lignin metabolism), transport proteins, proteins involved in protein folding and chaperone activities, other protective proteins (LEA, PR proteins), ROS scavenging enzymes as well as proteins affecting regulation of plant growth and development. Proteins which have been reported to reveal significant differences in their relative abundance or posttranslational modifications between wheat, barley or related species genotypes under stress conditions are listed and their potential role in underlying the differential stress response is discussed. In conclusion, potential future roles of the results of proteomic studies in practical applications such as breeding for an enhanced stress tolerance and the possibilities to test and use protein markers in the breeding are suggested.
Collapse
Affiliation(s)
- Klára Kosová
- Laboratory of Plant Stress Biology and Biotechnology, Division of Crop Genetics and Breeding, Department of Plant Genetics, Breeding and Product Quality, Crop Research InstitutePrague, Czech Republic
| | | | | |
Collapse
|
49
|
Ngara R, Ndimba BK. Understanding the complex nature of salinity and drought-stress response in cereals using proteomics technologies. Proteomics 2014; 14:611-21. [PMID: 24339029 DOI: 10.1002/pmic.201300351] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 11/30/2013] [Accepted: 12/01/2013] [Indexed: 11/11/2022]
Abstract
Worldwide, crop productivity is drastically reduced by drought and salinity stresses. In order to develop food crops with increased productivity in marginal areas, it is important to first understand the nature of plant stress response mechanisms. In the past decade, proteomics tools have been extensively used in the study of plants' proteome responses under experimental conditions mimicking drought and salinity stresses. A lot of proteomic data have been generated using different experimental designs. However, the precise roles of these proteins in stress tolerance are yet to be elucidated. This review summarises the applications of proteomics in understanding the complex nature of drought and salinity stress effects on plants, particularly cereals and also highlights the usefulness of sorghum as the next logical model crop for use in understanding drought and salinity tolerance in cereals. With the vast amount of proteomic data that have been generated to date, a call for integrated efforts across the agricultural, biotechnology, and molecular biology sectors is also highlighted in an effort to translate proteomics data into increased food productivity for the world's growing population.
Collapse
Affiliation(s)
- Rudo Ngara
- Department of Plant Sciences, University of the Free State, Qwaqwa Campus, Phuthaditjhaba, South Africa
| | | |
Collapse
|
50
|
Guarino C, Conte B, Spada V, Arena S, Sciarrillo R, Scaloni A. Proteomic analysis of eucalyptus leaves unveils putative mechanisms involved in the plant response to a real condition of soil contamination by multiple heavy metals in the presence or absence of mycorrhizal/rhizobacterial additives. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:11487-11496. [PMID: 25203592 DOI: 10.1021/es502070m] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Here we report on the growth, accumulation performances of, and leaf proteomic changes in Eucalyptus camaldulensis plants harvested for different periods of time in an industrial, heavy metals (HMs)-contaminated site in the presence or absence of soil microorganism (AMs/PGPRs) additives. Data were compared to those of control counterparts grown in a neighboring nonpolluted district. Plants harvested in the contaminated areas grew well and accumulated HMs in their leaves. The addition of AMs/PGPRs to the polluted soil determined plant growth and metal accumulation performances that surpassed those observed in the control. Comparative proteomics suggested molecular mechanisms underlying plant adaptation to the HMs challenge. Similarly to what was observed in laboratory-scale investigations on other metal hyperaccumulators but not on HMs-sensitive plants, eucalyptus grown in the contaminated areas showed an over-representation of enzymes involved in photosynthesis and the Calvin cycle. AMs/PGPRs addition to the soil increased the activation of these energetic pathways, suggesting the existence of signaling mechanisms that address the energy/reductive power requirement associated with augmented growth performances. HMs-exposed plants presented an over-representation of antioxidant enzymes, chaperones, and proteins involved in glutathione metabolism. While some antioxidant enzymes/chaperones returned to almost normal expression values in the presence of AMs/PGPRs or in plants exposed to HMs for prolonged periods, proteins guaranteeing elevated glutathione levels were constantly over-represented. These data suggest that glutathione (and related phytochelatins) could act as key molecules for ensuring the effective formation of HMs-chelating complexes that are possibly responsible for the observed plant tolerance to metal stresses. Overall, these results suggest potential genetic traits for further selection of phytoremediating plants based on dedicated cloning or breeding programs.
Collapse
Affiliation(s)
- Carmine Guarino
- Department of Sciences and Technologies, University of Sannio , 82100 Benevento, Italy
| | | | | | | | | | | |
Collapse
|