1
|
Herpich C, Walter S, Ott C, Haß U, Grune T, Müller-Werdan U, Norman K. Pro-inflammatory diet affects markers of iron metabolism in healthy older adults. J Trace Elem Med Biol 2025; 87:127583. [PMID: 39708661 DOI: 10.1016/j.jtemb.2024.127583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/02/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND Inflammation and inadequate nutrition are common in older age and known to affect iron homeostasis. However, it is not known whether a pro-inflammatory diet affects iron status in older adults. We investigated the diet quality of healthy older adults considering markers of iron homeostasis and inflammation compared to a younger control. METHODS Serum markers of iron metabolism (iron, transferrin, ferritin, hepcidin, soluble transferrin receptor [sTfR]) and inflammation (interleukin-6 [IL-6], IL-10 high-sensitive C- reactive protein [hsCRP]) were quantified using immunosorbent assays. Insulin resistance was determined by calculating the homeostasis model assessment index (HOMA-IR). The Dietary Inflammatory Index® (DII) was computed based on dietary intake and inflammatory (ID) or less inflammatory diet (LID) groups were created by using median DII score specific to age group and sex. RESULTS DII did not differ by age (p = 0.668, n = 80, F: 75 %, >65 years, n = 60, F: 72 %, ≤35 years). Iron and inflammation status were different between age groups in terms of higher transferrin saturation, sTfR, ferritin and IL-6 concentrations in the old (all p ≤ 0.001). Only in older adults, BMI, HOMA-IR, hsCRP, ferritin and hepcidin concentrations were significantly higher in ID compared to LID (all p < 0.01). In addition, a risk-factor adjusted regression analysis showed that ID was independently associated with higher ferritin and hepcidin concentrations in older adults. CONCLUSION In older age, a pro-inflammatory diet is associated with systemic inflammation and disturbed iron homeostasis.
Collapse
Affiliation(s)
- Catrin Herpich
- Department of Nutrition and Gerontology, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany; Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany; Department of Geriatrics and Medical Gerontology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| | - Sophia Walter
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany; TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena-Wuppertal, Germany
| | - Christiane Ott
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany; TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena-Wuppertal, Germany
| | - Ulrike Haß
- Department of Rehabilitation Medicine, Faculty of Health Sciences, University of Potsdam, Potsdam, Germany
| | - Tilman Grune
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany; Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany; TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena-Wuppertal, Germany
| | - Ursula Müller-Werdan
- Department of Geriatrics and Medical Gerontology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Evangelisches Geriatriezentrum Berlin gGmbH, Berlin, Germany
| | - Kristina Norman
- Department of Nutrition and Gerontology, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany; Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany; Department of Geriatrics and Medical Gerontology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany; TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena-Wuppertal, Germany
| |
Collapse
|
2
|
Castagnola L, Gallino L, Schafir A, Vota D, Grasso E, Gori S, Waschek J, Parborell F, Leirós CP, Hauk V, Ramhorst R. Ovarian premature aging: VIP as key regulator of fibro-inflammation and foamy macrophages generation. Mol Cell Endocrinol 2025:112486. [PMID: 39894337 DOI: 10.1016/j.mce.2025.112486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/21/2025] [Accepted: 01/30/2025] [Indexed: 02/04/2025]
Abstract
Ovarian aging is associated with fibro-inflammation, contributing to the decline in oocyte count and quality. Given the immunomodulatory properties of the vasoactive intestinal peptide (VIP) in the reproductive tract, we investigated its role in maintaining ovarian immune homeostasis and preventing premature aging. We evaluated young VIP knockout (KO) mice, comparing them to young wild type (WT) females, for signs of premature aging. Histological staining revealed aberrant ovarian morphology in VIP KO mice, characterized by increased atretic follicles and decreased ovarian reserve compared to WT controls. Moreover, VIP KO ovaries showed reduced vascularization, increased collagen deposition and elevated ROS and IL-1β levels. Foamy macrophages were significantly predominant, indicating premature aging in young VIP KO ovaries. To determine potential mechanisms behind these pathogenic changes, we conditioned peritoneal macrophages from young WT or VIP KO mice in vitro with ovarian-conditioned media from young WT or VIP KO mice to mimic the respective ovarian microenvironment. When WT or VIP KO peritoneal macrophages were conditioned with ovarian media from their respective genotypes, lipid droplet accumulation increased compared to control medium. In cross-genotype experiments, WT macrophages conditioned with media from VIP KO ovaries selectively accumulated higher levels of lipid droplets, whereas no differences were observed in VIP KO macrophages conditioned with WT ovarian media. This suggests that VIP KO macrophages are uniquely sensitized to the inflammatory environment of VIP KO ovaries, implicating both ovarian factors and macrophage status. These findings highlight the role of VIP in preventing fibro-inflammation, thereby preserving ovarian health and preventing premature aging.
Collapse
Affiliation(s)
- Lara Castagnola
- Universidad de Buenos Aires - CONICET. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN). Buenos Aires, Argentina
| | - Lucila Gallino
- Universidad de Buenos Aires - CONICET. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN). Buenos Aires, Argentina
| | - Ana Schafir
- Universidad de Buenos Aires - CONICET. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN). Buenos Aires, Argentina
| | - Daiana Vota
- Universidad de Buenos Aires - CONICET. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN). Buenos Aires, Argentina
| | - Esteban Grasso
- Universidad de Buenos Aires - CONICET. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN). Buenos Aires, Argentina
| | - Soledad Gori
- Universidad de Buenos Aires - CONICET. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN). Buenos Aires, Argentina
| | - James Waschek
- The David Geffen School of Medicine, University of California, Los Angeles, USA
| | | | - Claudia Pérez Leirós
- Universidad de Buenos Aires - CONICET. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN). Buenos Aires, Argentina
| | - Vanesa Hauk
- Universidad de Buenos Aires - CONICET. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN). Buenos Aires, Argentina.
| | - Rosanna Ramhorst
- Universidad de Buenos Aires - CONICET. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN). Buenos Aires, Argentina.
| |
Collapse
|
3
|
Zhang J, Xia B, Wakefield JS, Elias PM, Wang X. The Role and Implications of Epidermal Dysfunction in the Pathogenesis of Inflammaging. J Invest Dermatol 2025:S0022-202X(24)03034-3. [PMID: 39808093 DOI: 10.1016/j.jid.2024.09.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/01/2024] [Accepted: 09/12/2024] [Indexed: 01/16/2025]
Abstract
Inflammaging has long been linked to the pathogenesis of various aging-associated disorders, including cardiovascular disease, obesity, type 2 diabetes, and dementia. Yet, the origins of inflammaging remain unclear. Although inflammatory dermatoses such as psoriasis and atopic dermatitis predispose to the development of certain aging-associated disorders, suggesting a pathogenic role of cutaneous inflammation in these disorders, the great majority of aged humans do not have inflammatory dermatoses. Nonetheless, recent studies point to epidermal dysfunction as contributing to inflammaging, even in otherwise normal aged humans. Chronologically aged skin exhibits reduced stratum corneum hydration levels, delayed permeability barrier recovery, and an elevated stratum corneum pH, all of which can provoke and exacerbate cutaneous inflammation. Owing to the prolonged release of proinflammatory cytokines (including TNFα, IL-1β, and IL-6) from the epidermis into the circulation in response to these functional abnormalities, cutaneous inflammation can lead to extracutaneous inflammation, resulting in the downstream development of inflammaging and its accompanying disorders. In support of this concept, topical therapies that improve epidermal function can mitigate some aging-associated disorders, such as mild cognitive impairment. In this perspective, we discuss the link between epidermal dysfunction and inflammaging and highlight the potential management of inflammaging-associated sequelae by enhancing epidermal functions.
Collapse
Affiliation(s)
- Jiechen Zhang
- Department of Dermatology, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Bijun Xia
- Dermatology Hospital of Southern Medical University, Guangzhou, China
| | - Joan S Wakefield
- Dermatology Service (190), Veterans Affairs Medical Center, San Francisco, California, USA; Department of Dermatology, University of California San Francisco, San Francisco, California, USA
| | - Peter M Elias
- Dermatology Service (190), Veterans Affairs Medical Center, San Francisco, California, USA; Department of Dermatology, University of California San Francisco, San Francisco, California, USA
| | - Xiaohua Wang
- Dermatology Hospital of Southern Medical University, Guangzhou, China.
| |
Collapse
|
4
|
Shahbaz SK, Mokhlesi A, Sadegh RK, Rahimi K, Jamialahmadi T, Butler AE, Kesharwani P, Sahebkar A. TLR/NLRP3 inflammasome signaling pathways as a main target in frailty, cachexia and sarcopenia. Tissue Cell 2025; 93:102723. [PMID: 39823704 DOI: 10.1016/j.tice.2025.102723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/28/2024] [Accepted: 01/03/2025] [Indexed: 01/20/2025]
Abstract
Mobility disability is a common condition affecting older adults, making walking and the performance of activities of daily living difficult. Frailty, cachexia and sarcopenia are related conditions that occur with advancing age and are characterized by a decline in muscle mass, strength, and functionality that negatively impacts health. Chronic low-grade inflammation is a significant factor in the onset and progression of these conditions. The toll-like receptors (TLRs) and the NLRP3 inflammasome are the pathways of signaling that regulate inflammation. These pathways can potentially be targeted therapeutically for frailty, cachexia and sarcopenia as research has shown that dysregulation of the TLR/NLRP3 inflammasome signaling pathways is linked to these conditions. Activation of TLRs with pathogen-associated molecular patterns (PAMPs or DAMPs) results in chronic inflammation and tissue damage by releasing pro-inflammatory cytokines. Additionally, NLRP3 inflammasome activation enhances the inflammatory response by promoting the production and release of interleukins (ILs), thus exacerbating the underlying inflammatory mechanisms. These pathways are activated in the advancement of disease in frail and sarcopenic individuals. Targeting these pathways may offer therapeutic options to reduce frailty, improve musculoskeletal resilience and prevent or reverse cachexia-associated muscle wasting. Modulating TLR/NLRP3 inflammasome pathways may also hold promise in slowing down the progression of sarcopenia, preserving muscle mass and enhancing overall functional ability in elderly people. The aim of this review is to investigate the signaling pathways of the TLR/NLRP3 inflammasome as a main target in frailty, cachexia and sarcopenia.
Collapse
Affiliation(s)
- Sanaz Keshavarz Shahbaz
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran; USERN Office, Qazvin University of Medical Sciences, Qazvin, Iran.
| | - Aida Mokhlesi
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran; Social Determinants of Health Research Center, Research Institute for Prevention of Non-communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran; USERN Office, Qazvin University of Medical Sciences, Qazvin, Iran; Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Roghaye Keshavarz Sadegh
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran; USERN Office, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Kimia Rahimi
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran; USERN Office, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Tannaz Jamialahmadi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Amirhossein Sahebkar
- Center for Global health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Fang S, Jiang M, Jiao J, Zhao H, Liu D, Gao D, Wang T, Yang Z, Yuan H. Unraveling the ROS-Inflammation-Immune Balance: A New Perspective on Aging and Disease. Aging Dis 2025:AD.2024.1253. [PMID: 39812539 DOI: 10.14336/ad.2024.1253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/03/2025] [Indexed: 01/16/2025] Open
Abstract
Increased entropy is a common cause of disease and aging. Lifespan entropy is the overall increase in disorder caused by a person over their lifetime. Aging leads to the excessive production of reactive oxygen species (ROS), which damage the antioxidant system and disrupt redox balance. Organ aging causes chronic inflammation, disrupting the balance of proinflammatory and anti-inflammatory factors. Inflammaging, which is a chronic low-grade inflammatory state, is activated by oxidative stress and can lead to immune system senescence. During this process, entropy increases significantly as the body transitions from a state of low order to high disorder. However, the connection among inflammation, aging, and immune system activity is still not fully understood. This review introduces the idea of the ROS-inflammation-immune balance for the first time and suggests that this balance may be connected to aging and the development of age-related diseases. We also explored how the balance of these three factors controls and affects age-related diseases. Moreover, imbalance in the relationship described above disrupts the regular structures of cells and alters their functions, leading to cellular damage and the emergence of a disorganized state marked by increased entropy. Maintaining a low entropy state is crucial for preventing and reversing aging processes. Consequently, we examined the current preclinical evidence for antiaging medications that target this balance. Ultimately, comprehending the intricate relationships between these three factors and the risk of age-related diseases in organisms will aid in the development of clinical interventions that promote long-term health.
Collapse
Affiliation(s)
- Sihang Fang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Mingjun Jiang
- Respiratory Department, Beijing Children's Hospital, Capital Medical University, China National Clinical Research Center of Respiratory Diseases, National Center for Children's Health, Beijing, China
| | - Juan Jiao
- Department of Clinical Laboratory, the Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Hongye Zhao
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education of China, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Dizhi Liu
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Danni Gao
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Tenger Wang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Ze Yang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Huiping Yuan
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| |
Collapse
|
6
|
Yuan C, Ren H, Hu K, Chen L, Yue K, He K, Yu Q, Wang N, Zhang G. Effect of proanthocyanidins on cognitive improvement in thyroxin-induced aging mice. Food Funct 2025; 16:207-218. [PMID: 39651563 DOI: 10.1039/d4fo03987d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
As the population ages, functional dietary supplements are increasingly used to reduce age-related diseases, especially in the field of cognitive impairment. In this study, a thyroxine (Th)-induced aging model was established, and the effect of proanthocyanidins (Pc) on cognitive impairment of aging mice was evaluated based on cognitive ability, neuroinflammation and immune level. The results showed that Pc significantly reduced AchE activity compared to the Model group, improving learning deficits and spatial memory in aged mice (P < 0.01). Further study showed that Pc could maintain the organism's redox balance, markedly increasing T-AOC, GSH, and SOD levels (P < 0.01) while reducing MPO and MDA levels (P < 0.01). Pc also improved systemic inflammation, raising the levels of the anti-inflammatory cytokine PF4 and significantly lowering pro-inflammatory factors in the blood (P < 0.01). In the DG region of the hippocampus, Pc effectively repaired nerve damage, inhibited the over-activation of microglia and astrocytes, down-regulated GFAP and IBA-1 proteins (P < 0.01), and then reduced neuroinflammation. Additionally, Pc supplementation also significantly increased the levels of WBC, Lymph, Mid, and Gran in aged mice (P < 0.01), aiding in the recovery of leukocyte counts. At the same time, the CD3+ level and CD4+/CD8+ ratio were significantly increased (P < 0.01) to maintain the dynamic balance of lymphocyte subsets in aging mice and enhance the immune capacity of aging mice. The study revealed that Pc, as a dietary supplement, can effectively alleviate cognitive impairment in the elderly population. This provides a new dietary nutrition supplement strategy for the health of the aging population.
Collapse
Affiliation(s)
- Chong Yuan
- Zhengzhou Key Laboratory of Nutrition and Health Food, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China.
- Longhu Laboratory, Zhengzhou 450046, China
| | - Hongtao Ren
- Zhengzhou Key Laboratory of Nutrition and Health Food, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China.
- Longhu Laboratory, Zhengzhou 450046, China
| | - Kexin Hu
- Zhengzhou Key Laboratory of Nutrition and Health Food, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China.
- Longhu Laboratory, Zhengzhou 450046, China
| | - Linlin Chen
- Zhengzhou Key Laboratory of Nutrition and Health Food, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China.
- International Joint Research Center of National Animal lmmunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China.
- Longhu Laboratory, Zhengzhou 450046, China
| | - Ke Yue
- International Joint Research Center of National Animal lmmunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China.
- Longhu Laboratory, Zhengzhou 450046, China
| | - Kunmiao He
- International Joint Research Center of National Animal lmmunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China.
- Longhu Laboratory, Zhengzhou 450046, China
| | - Qiuying Yu
- Zhengzhou Key Laboratory of Nutrition and Health Food, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China.
- International Joint Research Center of National Animal lmmunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China.
- Longhu Laboratory, Zhengzhou 450046, China
| | - Na Wang
- Zhengzhou Key Laboratory of Nutrition and Health Food, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China.
- International Joint Research Center of National Animal lmmunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China.
- Longhu Laboratory, Zhengzhou 450046, China
| | - Gaiping Zhang
- International Joint Research Center of National Animal lmmunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China.
- Longhu Laboratory, Zhengzhou 450046, China
| |
Collapse
|
7
|
Francavilla F, Intranuovo F, La Spada G, Lacivita E, Catto M, Graps EA, Altomare CD. Inflammaging and Immunosenescence in the Post-COVID Era: Small Molecules, Big Challenges. ChemMedChem 2024:e202400672. [PMID: 39651728 DOI: 10.1002/cmdc.202400672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 12/11/2024]
Abstract
Aging naturally involves a decline in biological functions, often triggering a disequilibrium of physiological processes. A common outcome is the altered response exerted by the immune system to counteract infections, known as immunosenescence, which has been recognized as a primary cause, among others, of the so-called long-COVID syndrome. Moreover, the uncontrolled immunoreaction leads to a state of subacute, chronic inflammatory state known as inflammaging, responsible in turn for the chronicization of concomitant pathologies in a self-sustaining process. Anti-inflammatory and immunosuppressant drugs are the current choice for the therapy of inflammaging in post-COVID complications, with contrasting results. The increasing knowledge of the biochemical pathways of inflammaging led to disclose new small molecules-based therapies directed toward different biological targets involved in inflammation, immunological response, and oxidative stress. Herein, paying particular attention to recent clinical data and preclinical literature, we focus on the role of endocannabinoid system in inflammaging, and the promising therapeutic option represented by the CB2R agonists, the role of novel ligands of the formyl peptide receptor 2 and ultimately the potential of newly discovered monoamine oxidase (MAO) inhibitors with neuroprotective activity in the treatment of immunosenescence.
Collapse
Affiliation(s)
- Fabio Francavilla
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Francesca Intranuovo
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Gabriella La Spada
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Enza Lacivita
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Marco Catto
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Elisabetta Anna Graps
- ARESS Puglia - Agenzia Regionale strategica per la Salute ed il Sociale, Lungomare Nazario Sauro 33, 70121, Bari, Italy
| | - Cosimo Damiano Altomare
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| |
Collapse
|
8
|
Ajoolabady A, Pratico D, Tang D, Zhou S, Franceschi C, Ren J. Immunosenescence and inflammaging: Mechanisms and role in diseases. Ageing Res Rev 2024; 101:102540. [PMID: 39395575 DOI: 10.1016/j.arr.2024.102540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/14/2024]
Abstract
Age-related changes initiate a cascade of cellular and molecular alterations that lead to immune system dysfunction or abnormal activation, predisposing individuals to age-related diseases. This phenomenon, commonly referred to as immunosenescence, highlighting aging-associated progressive decline of the immune system. Moreover, mounting evidence suggests that immunosenescence contributes to a related pathological phenomenon known as inflammaging. Inflammaging refers to chronic, low-grade, and systemic inflammation associated with aging, occurring despite the absence of overt stimuli. In the body, inflammation is typically activated in response to overt stimuli such as bacterial/microbial invasion or a pathological state, however, inflammaging occurrence and its underpinning mechanisms seem to be independent and in the absence of such stimuli. Despite recent advancements in molecular characterization and the scrutiny of disease relevance, these two interconnected concepts have remained largely unexplored and unrecognized. In this comprehensive review, we aim to shed light on the mechanistic and cellular aspects of immunosenescence and inflammaging, as well as their pivotal roles in the pathogenesis of aging-related diseases, including cancer, infections, dementia, and neurodegenerative disorders.
Collapse
Affiliation(s)
- Amir Ajoolabady
- Department of Biomedical Engineering, University of Alabama at Birmingham, AL 35294, USA
| | - Domenico Pratico
- Alzheimer's Center at Temple, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shuqin Zhou
- Department of Emergency, Shanghai Tenth People's Hospital, School of Medicine Tongji University, Shanghai 200072, China
| | - Claudio Franceschi
- IRCCS Institute of Neurological Sciences of Bologna, Bologna, Italy; Department of Applied Mathematics and Laboratory of Systems Biology of Aging, Lobachevsky University, Nizhny Novgorod, Russia.
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China.
| |
Collapse
|
9
|
Reisz JA, Earley EJ, Nemkov T, Key A, Stephenson D, Keele GR, Dzieciatkowska M, Spitalnik SL, Hod EA, Kleinman S, Roubinian NH, Gladwin MT, Hansen KC, Norris PJ, Busch MP, Zimring JC, Churchill GA, Page GP, D'Alessandro A. Arginine metabolism is a biomarker of red blood cell and human aging. Aging Cell 2024:e14388. [PMID: 39478346 DOI: 10.1111/acel.14388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/06/2024] [Accepted: 10/04/2024] [Indexed: 11/05/2024] Open
Abstract
Increasing global life expectancy motivates investigations of molecular mechanisms of aging and age-related diseases. This study examines age-associated changes in red blood cells (RBCs), the most numerous host cell in humans. Four cohorts, including healthy individuals and patients with sickle cell disease, were analyzed to define age-dependent changes in RBC metabolism. Over 15,700 specimens from 13,757 humans were examined, a major expansion over previous studies of RBCs in aging. Multi-omics approaches identified chronological age-related alterations in the arginine pathway with increased arginine utilization in RBCs from older individuals. These changes were consistent across healthy and sickle cell disease cohorts and were influenced by genetic variation, sex, and body mass index. Integrating multi-omics data and metabolite quantitative trait loci (mQTL) in humans and 525 diversity outbred mice functionally linked metabolism of arginine during RBC storage to increased vesiculation-a hallmark of RBC aging-and lower post-transfusion hemoglobin increments. Thus, arginine metabolism is a biomarker of RBC and organismal aging, suggesting potential new targets for addressing sequelae of aging.
Collapse
Affiliation(s)
- Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | | | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Omix Technologies Inc, Aurora, Colorado, USA
| | - Alicia Key
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Daniel Stephenson
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | | | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Steven L Spitalnik
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York City, New York, USA
| | - Eldad A Hod
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York City, New York, USA
| | - Steven Kleinman
- University of British Columbia, Victoria, British Columbia, Canada
| | - Nareg H Roubinian
- Vitalant Research Institute, San Francisco, California, USA
- Kaiser Permanente Northern California Division of Research, Pleasanton, California, USA
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, USA
| | - Mark T Gladwin
- Department of Medicine, University of Maryland School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Omix Technologies Inc, Aurora, Colorado, USA
| | - Philip J Norris
- Vitalant Research Institute, San Francisco, California, USA
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, USA
| | - Michael P Busch
- Vitalant Research Institute, San Francisco, California, USA
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, USA
| | - James C Zimring
- Department of Pathology, University of Virginia, Charlottesville, Virginia, USA
| | | | | | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Omix Technologies Inc, Aurora, Colorado, USA
| |
Collapse
|
10
|
Iwińska K, Boratyński JS, Książek A, Błońska J, Borowski Z, Konarzewski M. Reproduction results in parallel changes of oxidative stress and immunocompetence in a wild long-living mammal-edible dormouse Glis glis. Biol Lett 2024; 20:20240257. [PMID: 39471836 PMCID: PMC11521591 DOI: 10.1098/rsbl.2024.0257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/25/2024] [Accepted: 09/10/2024] [Indexed: 11/01/2024] Open
Abstract
Oxidative stress (OS) and impaired immune function (IF) have been proposed as key physiological costs of reproduction. The relationship between OS and IF remains unresolved, particularly in long-living iteroparous species. We studied physiological markers of maintenance (OS, IF markers) in lactating, post-lactating and non-lactating females of edible dormice-a long-living rodent. We predicted the OS balance and IF to be compromised by lactation, especially in older females expected to face stronger trade-offs between life functions. We found that the age predictor (body size) correlated negatively with white blood cell level (WBC), positively with neutrophils to lymphocytes ratio and had no effect on OS markers. Oxidative damage markers (reactive oxygen metabolites (ROMs); but not antioxidant capacity) and body size-adjusted WBC were the lowest in lactating, higher in post-lactating and the highest in non-lactating females. Body size/age did not affect this correlation suggesting a similar age-independent allocation strategy during reproduction in this species. The path analysis testing the causal relationship between ROMs and WBC revealed that IF is more likely to affect OS than vice versa. Our study indicates the trade-off between crucial life functions during reproduction and suggests that immunosuppression reduces the risk of OS; therefore, mitigating oxidative costs of reproduction.
Collapse
Affiliation(s)
| | - Jan S. Boratyński
- Mammal Research Institute, Polish Academy of Sciences, Białowieża, Poland
| | - Aneta Książek
- Faculty of Biology, University of Białystok, Białystok, Poland
| | - Joanna Błońska
- Doctoral School of University of Białystok, Białystok, Poland
| | | | | |
Collapse
|
11
|
Liu K, Liu J, Xu A, Ding J. The role of polydatin in inhibiting oxidative stress through SIRT1 activation: A comprehensive review of molecular targets. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118322. [PMID: 38729537 DOI: 10.1016/j.jep.2024.118322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 04/26/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Reynoutria japonica Houtt is a medicinal plant renowned for its diverse pharmacological properties, including heat-clearing, toxin-removing, blood circulation promotion, blood stasis removal, diuretic action, and pain relief. The plant is commonly utilized in Traditional Chinese Medicine (TCM), and its major bioactive constituents consist of polydatin (PD) and resveratrol (RES). AIM OF THE STUDY To summarize the relevant targets of PD in various oxidative stress-related diseases through the activation of Silence information regulator1 (SIRT1). Furthermore, elucidating the pharmacological effects and signaling mechanisms to establish the basis for PD's secure clinical implementation and expanded range of application. MATERIALS AND METHODS Literature published before November 2023 on the structural analysis and pharmacological activities of PD was collected using online databases such as Google Scholar, PubMed, and Web of Science. The keywords were "polydatin", "SIRT1" and "oxidative stress". The inclusion criteria were research articles published in English, including in vivo and in vitro experiments and clinical studies. Non-research articles such as reviews, meta-analyses, and letters were excluded. RESULTS PD has been found to have significantly protective and curative effects on diseases associated with oxidative stress by regulating SIRT1-related targets including peroxisome proliferator-activated receptor γ coactivator 1-alpha (PGC-1α), nuclear factor erythroid2-related factor 2 (Nrf2), high mobility group box 1 protein (HMGB1), NOD-like receptor thermal protein domain associated protein 3 (NLRP3), p38/p53, as well as endothelial nitric oxide synthase (eNOs), among others. Strong evidence suggests that PD is an effective natural product for treating diseases related to oxidative stress. CONCLUSION PD holds promise as an effective treatment for a wide range of diseases, with SIRT1-mediated oxidative stress as its potential pathway.
Collapse
Affiliation(s)
- Ke Liu
- Beijing Institute of Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Jiaxi Liu
- Beijing University of Chinese Medicine, Beijing, China
| | - Anjian Xu
- Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| | - Junying Ding
- Beijing Institute of Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.
| |
Collapse
|
12
|
Di Carlo E, Sorrentino C. Oxidative Stress and Age-Related Tumors. Antioxidants (Basel) 2024; 13:1109. [PMID: 39334768 PMCID: PMC11428699 DOI: 10.3390/antiox13091109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Oxidative stress is the result of the imbalance between reactive oxygen and nitrogen species (RONS), which are produced by several endogenous and exogenous processes, and antioxidant defenses consisting of exogenous and endogenous molecules that protect biological systems from free radical toxicity. Oxidative stress is a major factor in the aging process, contributing to the accumulation of cellular damage over time. Oxidative damage to cellular biomolecules, leads to DNA alterations, lipid peroxidation, protein oxidation, and mitochondrial dysfunction resulting in cellular senescence, immune system and tissue dysfunctions, and increased susceptibility to age-related pathologies, such as inflammatory disorders, cardiovascular and neurodegenerative diseases, diabetes, and cancer. Oxidative stress-driven DNA damage and mutations, or methylation and histone modification, which alter gene expression, are key determinants of tumor initiation, angiogenesis, metastasis, and therapy resistance. Accumulation of genetic and epigenetic damage, to which oxidative stress contributes, eventually leads to unrestrained cell proliferation, the inhibition of cell differentiation, and the evasion of cell death, providing favorable conditions for tumorigenesis. Colorectal, breast, lung, prostate, and skin cancers are the most frequent aging-associated malignancies, and oxidative stress is implicated in their pathogenesis and biological behavior. Our aim is to shed light on the molecular and cellular mechanisms that link oxidative stress, aging, and cancers, highlighting the impact of both RONS and antioxidants, provided by diet and exercise, on cellular senescence, immunity, and development of an antitumor response. The dual role of ROS as physiological regulators of cell signaling responsible for cell damage and diseases, as well as its use for anti-tumor therapeutic purposes, will also be discussed. Managing oxidative stress is crucial for promoting healthy aging and reducing the risk of age-related tumors.
Collapse
Affiliation(s)
- Emma Di Carlo
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Carlo Sorrentino
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
13
|
Cocco R, Sechi S, Rizzo M, Arrigo F, Giannetto C, Piccione G, Arfuso F. Assessing the Peripheral Levels of the Neurotransmitters Noradrenaline, Dopamine and Serotonin and the Oxidant/Antioxidant Equilibrium in Circus Horses. Animals (Basel) 2024; 14:2354. [PMID: 39199887 PMCID: PMC11350772 DOI: 10.3390/ani14162354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024] Open
Abstract
Due to the paucity of information on circus management effects on the welfare of horses, this study investigated the plasma concentrations of noradrenaline, dopamine and serotonin, known to be indices of mental status, as well as the reactive oxygen metabolites (d-Roms) and the biological antioxidant potential (BAP), likely to denote the oxidant/antioxidant equilibrium of organisms, in horses managed in different Italian circuses. For the study, 56 circus horses of different breeds and ages were enrolled and divided into six groups according to the horses' management (circus management, groups G1-G5; classic riding management representing the control group, CG). From each horse, blood samples were collected in order to assess the concentration of selected parameters. One-way ANOVA showed no differences (p > 0.05) in serotonin, dopamine, noradrenaline, d-Roms and BAP values between circus and control horses. No differences related to the breed of the horses enrolled in the study were found in the values of all investigated parameters (p > 0.05). Furthermore, neurotransmitters showed overlapping levels between the different age classes of investigated horses (p > 0.05); contrariwise, the age of the horse displayed a significant effect on BAP values, with the oldest horses (16-21 age class) exhibiting lower BAP values compared to 4-5, 6-10 and 11-15 age classes (p < 0.05), whereas the d-Roms showed similar values in horses of different age classes (p > 0.05). The results gathered in the present study suggest that the mental status of horses under circus management was not compromised; however, better attention and care in the management of older horses is advocated, as they showed a lower biological antioxidant potential than younger horses; thus, they could be more susceptible to oxidative stress.
Collapse
Affiliation(s)
- Raffaella Cocco
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (R.C.); (S.S.)
| | - Sara Sechi
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (R.C.); (S.S.)
| | - Maria Rizzo
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (F.A.); (C.G.); (G.P.); (F.A.)
| | - Federica Arrigo
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (F.A.); (C.G.); (G.P.); (F.A.)
| | - Claudia Giannetto
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (F.A.); (C.G.); (G.P.); (F.A.)
| | - Giuseppe Piccione
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (F.A.); (C.G.); (G.P.); (F.A.)
| | - Francesca Arfuso
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (F.A.); (C.G.); (G.P.); (F.A.)
| |
Collapse
|
14
|
Yamamoto C, Kobashi Y, Kawamura T, Nishikawa Y, Saito H, Oguro F, Zhao T, Takita M, Sawano T, Ozaki A, Abe T, Ito N, Kaneko Y, Nakayama A, Wakui M, Kodama T, Tsubokura M. Group of longitudinal adverse event patterns after the fourth dose of COVID-19 vaccination with a latent class analysis. Front Public Health 2024; 12:1406315. [PMID: 39139673 PMCID: PMC11320210 DOI: 10.3389/fpubh.2024.1406315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/16/2024] [Indexed: 08/15/2024] Open
Abstract
Introduction Vaccination has been implemented as a useful measure to combat the COVID-19 pandemic. However, there is a tendency for individuals to avoid vaccination due to the possibility of adverse events, making it important to investigate the relationship between COVID-19 vaccines and their adverse events. This study explored longitudinal adverse event patterns and factors that influence adverse events following the second to fourth doses of the COVID-19 vaccine through a latent class analysis. Methods Participants were recruited from the Fukushima Prefecture and included individuals who had completed four doses of the COVID-19 mRNA vaccine. This study utilized data from questionnaire surveys and blood collection conducted between September 2021 and November 2022. In the questionnaire, factors such as sex, age, medical history, medication, type of vaccine administered, and adverse events following vaccination were recorded. Additionally, in the blood data, serological tests [IgG(S)] and cellular immune responses (T-spot) were measured. Descriptive statistics, latent class analysis, multivariable logistic regression, and multiple regression analyses were performed to identify the longitudinal adverse event patterns and influencing factors. By analyzing adverse events over time, we identified two distinct groups: those less prone to experiencing adverse events (Group 1) and those more susceptible (Group 2) to latent class analysis. Results A total of 1,175 participants were included after excluding those without any adverse events. The median age of the participants in Group 1 was 70 years, and in Group 2 it was 51 years. The proportion of female participants was 298 in Group 1 and 353 in Group 2. Patients in Group 2 were significantly younger (p < 0.001) and more likely to be female (p < 0.001) than those in Group 1. Furthermore, the median IgG(S) value after the fourth vaccination was 3,233 AU/mL in Group 1 and 4,059.39 AU/mL in Group 2. The median T-spot value was 15.4 in Group 1 and 28.5 in Group 2. Group 2 showed significantly higher IgG(S) and T-spot values after the fourth vaccination (p < 0.001). Discussion Our findings suggest that factors other than age, particularly sex and a history of allergies, significantly influence the likelihood of experiencing adverse events. Groups categorized by latent class analysis for longitudinal adverse events are expected to be valuable for optimizing vaccination strategies and formulating public health measures.
Collapse
Affiliation(s)
- Chika Yamamoto
- Department of Radiation Health Management, Fukushima Medical University School of Medicine, Fukushima City, Fukushima, Japan
| | - Yurie Kobashi
- Department of Radiation Health Management, Fukushima Medical University School of Medicine, Fukushima City, Fukushima, Japan
- Department of General Internal Medicine, Hirata Central Hospital, Hirata, Fukushima, Japan
| | - Takeshi Kawamura
- Proteomics Laboratory, Isotope Science Center, The University of Tokyo, Tokyo, Japan
- Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Yoshitaka Nishikawa
- Department of General Internal Medicine, Hirata Central Hospital, Hirata, Fukushima, Japan
| | - Hiroaki Saito
- Department of Radiation Health Management, Fukushima Medical University School of Medicine, Fukushima City, Fukushima, Japan
- Department of Internal Medicine, Soma Central Hospital, Soma, Fukushima, Japan
| | - Fumiya Oguro
- Department of General Internal Medicine, Hirata Central Hospital, Hirata, Fukushima, Japan
| | - Tianchen Zhao
- Department of Radiation Health Management, Fukushima Medical University School of Medicine, Fukushima City, Fukushima, Japan
| | - Morihito Takita
- Department of Radiation Health Management, Fukushima Medical University School of Medicine, Fukushima City, Fukushima, Japan
| | - Toyoaki Sawano
- Department of Surgery, Jyoban Hospital, Iwaki, Fukushima, Japan
| | - Akihiko Ozaki
- Department of Breast and Thyroid Surgery, Jyoban Hospital, Iwaki, Fukushima, Japan
| | - Toshiki Abe
- Department of Radiation Health Management, Fukushima Medical University School of Medicine, Fukushima City, Fukushima, Japan
| | - Naomi Ito
- Department of Radiation Health Management, Fukushima Medical University School of Medicine, Fukushima City, Fukushima, Japan
| | - Yudai Kaneko
- Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
- Medical & Biological Laboratories Co., Ltd, Minato-ku, Tokyo, Japan
| | - Aya Nakayama
- Proteomics Laboratory, Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | - Masatoshi Wakui
- Department of Laboratory Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Tatsuhiko Kodama
- Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Masaharu Tsubokura
- Department of Radiation Health Management, Fukushima Medical University School of Medicine, Fukushima City, Fukushima, Japan
- Department of General Internal Medicine, Hirata Central Hospital, Hirata, Fukushima, Japan
- Minamisoma Municipal General Hospital, Minamisoma, Fukushima, Japan
| |
Collapse
|
15
|
Ruparell A, Alexander JE, Eyre R, Carvell-Miller L, Leung YB, Evans SJM, Holcombe LJ, Heer M, Watson P. Glycine supplementation can partially restore oxidative stress-associated glutathione deficiency in ageing cats. Br J Nutr 2024; 131:1947-1961. [PMID: 38418414 PMCID: PMC11361917 DOI: 10.1017/s0007114524000370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/15/2023] [Accepted: 01/25/2024] [Indexed: 03/01/2024]
Abstract
Intracellular levels of glutathione, the major mammalian antioxidant, are reported to decline with age in several species. To understand whether ageing affects circulating glutathione levels in cats, blood was sampled from two age groups, < 3 years and > 9 years. Further, to determine whether dietary supplementation with glutathione precursor glycine (GLY) affects glutathione concentrations in senior cats (> 8 years), a series of free GLY inclusion level dry diets were fed. Subsequently, a 16-week GLY feeding study was conducted in senior cats (> 7 years), measuring glutathione, and markers of oxidative stress. Whole blood and erythrocyte total, oxidised and reduced glutathione levels were significantly decreased in senior cats, compared with their younger counterparts (P ≤ 0·02). The inclusion level study identified 1·5 % free GLY for the subsequent dry diet feeding study. Significant increases in erythrocyte total and reduced glutathione were observed between senior cats fed supplemented and control diets at 4 weeks (P ≤ 0·03; maximum difference of 1·23 µM). Oxidative stress markers were also significantly different between groups at 8 (P = 0·004; difference of 0·68 nG/ml in 8-hydroxy-2'-deoxyguanosine) and 12 weeks (P ≤ 0·049; maximum difference of 0·62 nG/mG Cr in F2-isoprostane PGF2α). Senior cats have lower circulating glutathione levels compared with younger cats. Feeding senior cats a complete and balanced dry diet supplemented with 1·5 % free GLY for 12 weeks elevated initial erythrocyte glutathione and altered markers of oxidative stress. Dietary supplementation with free GLY provides a potential opportunity to restore age-associated reduction in glutathione in cats.
Collapse
Affiliation(s)
- Avika Ruparell
- Waltham Petcare Science Institute, Melton Mowbray, Leicestershire, UK
| | | | - Ryan Eyre
- Royal Canin Pet Health and Nutrition Centre, 6574 State Route 503N, Lewisburg, OH, USA
| | | | - Y. Becca Leung
- Royal Canin Research & Development Center, Aimargues, France
| | | | - Lucy J. Holcombe
- Waltham Petcare Science Institute, Melton Mowbray, Leicestershire, UK
| | - Martina Heer
- Waltham Petcare Science Institute, Melton Mowbray, Leicestershire, UK
| | - Phillip Watson
- Waltham Petcare Science Institute, Melton Mowbray, Leicestershire, UK
| |
Collapse
|
16
|
Sanabria-Castro A, Alape-Girón A, Flores-Díaz M, Echeverri-McCandless A, Parajeles-Vindas A. Oxidative stress involvement in the molecular pathogenesis and progression of multiple sclerosis: a literature review. Rev Neurosci 2024; 35:355-371. [PMID: 38163257 DOI: 10.1515/revneuro-2023-0091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/26/2023] [Indexed: 01/03/2024]
Abstract
Multiple sclerosis (MS) is an autoimmune debilitating disease of the central nervous system caused by a mosaic of interactions between genetic predisposition and environmental factors. The pathological hallmarks of MS are chronic inflammation, demyelination, and neurodegeneration. Oxidative stress, a state of imbalance between the production of reactive species and antioxidant defense mechanisms, is considered one of the key contributors in the pathophysiology of MS. This review is a comprehensive overview of the cellular and molecular mechanisms by which oxidant species contribute to the initiation and progression of MS including mitochondrial dysfunction, disruption of various signaling pathways, and autoimmune response activation. The detrimental effects of oxidative stress on neurons, oligodendrocytes, and astrocytes, as well as the role of oxidants in promoting and perpetuating inflammation, demyelination, and axonal damage, are discussed. Finally, this review also points out the therapeutic potential of various synthetic antioxidants that must be evaluated in clinical trials in patients with MS.
Collapse
Affiliation(s)
- Alfredo Sanabria-Castro
- Unidad de Investigación, Hospital San Juan de Dios, Caja Costarricense de Seguro Social, San José, 10103, Costa Rica
- Departamento de Farmacología, Toxicología y Farmacodependencia, Facultad de Farmacia, Universidad de Costa Rica, San Pedro de Montes de Oca, 11501, Costa Rica
| | - Alberto Alape-Girón
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, Dulce Nombre Vázquez de Coronado, 11103, Costa Rica
| | - Marietta Flores-Díaz
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, Dulce Nombre Vázquez de Coronado, 11103, Costa Rica
| | - Ann Echeverri-McCandless
- Unidad de Investigación, Hospital San Juan de Dios, Caja Costarricense de Seguro Social, San José, 10103, Costa Rica
| | - Alexander Parajeles-Vindas
- Servicio de Neurología, Hospital San Juan de Dios, Caja Costarricense de Seguro Social, San José, 10103, Costa Rica
- Servicio de Neurología, Hospital Clínica Bíblica, San José, 10104, Costa Rica
| |
Collapse
|
17
|
Ramos-González EJ, Bitzer-Quintero OK, Ortiz G, Hernández-Cruz JJ, Ramírez-Jirano LJ. Relationship between inflammation and oxidative stress and its effect on multiple sclerosis. Neurologia 2024; 39:292-301. [PMID: 38553104 DOI: 10.1016/j.nrleng.2021.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/28/2021] [Indexed: 04/02/2024] Open
Abstract
INTRODUCTION This paper highlights the relationship of inflammation and oxidative stress as damage mechanisms of Multiple Sclerosis (MS), considered an inflammatory and autoimmune disease. DEVELOPMENT The oxidative stress concept has been defined by an imbalance between oxidants and antioxidants in favor of the oxidants. There is necessary to do physiological functions, like the respiration chain, but in certain conditions, the production of reactive species overpassed the antioxidant systems, which could cause tissue damage. On the other hand, it is well established that inflammation is a complex reaction in the vascularized connective tissue in response to diverse stimuli. However, an unregulated prolonged inflammatory process also can induce tissue damage. CONCLUSION Both inflammation and oxidative stress are interrelated since one could promote the other, leading to a toxic feedback system, which contributes to the inflammatory and demyelination process in MS.
Collapse
Affiliation(s)
- E J Ramos-González
- Unidad de Investigacion Biomedica de Zacatecas, Instituto Mexicano del Seguro Social, Zacatecas, Zacatecas, Mexico
| | - O K Bitzer-Quintero
- División de Neurociencias, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, Mexico
| | - G Ortiz
- Departamento de Diciplinas Metodológicas y Filosóficas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - J J Hernández-Cruz
- Departamento de Diciplinas Metodológicas y Filosóficas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - L J Ramírez-Jirano
- División de Neurociencias, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, Mexico.
| |
Collapse
|
18
|
Shi R, Ye J, Fan H, Hu X, Wu X, Wang D, Zhao B, Dai X, Liu X. Lactobacillus plantarum LLY-606 Supplementation Ameliorates the Cognitive Impairment of Natural Aging in Mice: The Potential Role of Gut Microbiota Homeostasis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4049-4062. [PMID: 38373323 DOI: 10.1021/acs.jafc.3c07041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
This work explored the effects of Lactobacillus plantarum LLY-606 (LLY-606) on cognitive function in aging mice. Our findings demonstrated that LLY-606 effectively prolonged the lifespan of mice and improved age-related cognitive impairments. Additionally, our study revealed that supplementation with LLY-606 resulted in the downregulation of inflammatory cytokine levels and the upregulation of antioxidant capacity. Furthermore, probiotic supplementation effectively mitigated the deterioration of the intestinal barrier function in aging mice. Amplicon analysis indicated the successful colonization of probiotics, facilitating the regulation of age-induced gut microbiota dysbiosis. Notably, the functional abundance prediction of microbiota indicated that tryptophan metabolism pathways, glutamatergic synapse pathways, propanoate metabolism pathways, and arginine and proline metabolism pathways were enriched after the LLY-606 intervention. In summary, LLY-606 emerged as a potential functional probiotic capable of influencing cognitive function in aging mice. This effect was achieved through the modulation of gut microbiota, the regulation of synaptic plasticity, and the enhancement of neurotrophic factor levels.
Collapse
Affiliation(s)
- Renjie Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Jin Ye
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Hua Fan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Xinyun Hu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Xiaoning Wu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Danna Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Beita Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Xiaoshuang Dai
- BGI Institute of Applied Agriculture, BGI-Shenzhen, Shenzhen 518120, China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
19
|
Ding Z, Wang X, Zou T, Hao X, Zhang Q, Sun B, Du W. Climate warming has divergent physiological impacts on sympatric lizards. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168992. [PMID: 38052387 DOI: 10.1016/j.scitotenv.2023.168992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/08/2023] [Accepted: 11/27/2023] [Indexed: 12/07/2023]
Abstract
Climate warming is expected to affect the vulnerability of sympatric species differentially due to their divergent traits, but the underlying physiological mechanisms of those impacts are poorly understood. We conducted field warming experiments (present climate vs. warm climate) using open-top chambers to determine the effects of climate warming on active body temperature, oxidative damage, immune competence, growth and survival in two sympatric desert-dwelling lizards, Eremias multiocellata and Eremias argus from May 2019 to September 2020. Our climate warming treatment did not affect survival of the two species, but it did increase active body temperatures and growth rate in E. multiocellata compared to E. argus. Climate warming also induced greater oxidative damage (higher malondialdehyde content and catalase activity) in E. multiocellata, but not in E. argus. Further, climate warming increased immune competence in E. multiocellata, but decreased immune competence in E. argus, with regards to white blood cell counts, bacteria killing ability and relative expression of immunoglobulin M. Our results suggest that climate warming enhances body temperature, and thereby oxidative stress, immune competence and growth in E. multiocellata, but decreases immune competence of E. argus, perhaps as a cost of thermoregulation to maintain body temperatures under climate warming. The divergent physiological effects of climate warming on sympatric species may have profound ecological consequences if it eventually leads to changes in reproductive activities, population dynamics and community structure. Our study highlights the importance of considering interspecific differences in physiological traits when we evaluate the impact of climate warming on organisms, even for those closely-related species coexisting within the same geographical area.
Collapse
Affiliation(s)
- Zihan Ding
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Xifeng Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Tingting Zou
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Xin Hao
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Qiong Zhang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Baojun Sun
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Weiguo Du
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
20
|
Husejko J, Gackowski M, Wojtasik J, Strzała D, Pesta M, Mądra-Gackowska K, Nuszkiewicz J, Woźniak A, Kozakiewicz M, Kędziora-Kornatowska K. Preliminary Report on the Influence of Acute Inflammation on Adiponectin Levels in Older Inpatients with Different Nutritional Status. Int J Mol Sci 2024; 25:2016. [PMID: 38396693 PMCID: PMC10889142 DOI: 10.3390/ijms25042016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/04/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Inflammation can be triggered by a variety of factors, including pathogens, damaged cells, and toxic compounds. It is a biological response of the immune system, which can be successfully assessed in clinical practice using some molecular substances. Because adiponectin, a hormone released by adipose tissue, influences the development of inflammation, its evaluation as a potential measure of inflammation in clinical practice is justified. In the present contribution, statistical comparison of adiponectin concentration and selected molecular substances recognized in clinical practice as measures of inflammation were utilized to demonstrate whether adipose tissue hormones, as exemplified by adiponectin, have the potential to act as a measure of rapidly changing inflammation when monitoring older hospitalized patients in the course of bacterial infection. The study showed no statistically significant differences in adiponectin levels depending on the rapidly changing inflammatory response in its early stage. Interestingly, the concentration of adiponectin is statistically significantly higher in malnourished patients than in people with normal nutritional levels, assessed based on the MNA. According to the results obtained, adiponectin is not an effective measure of acute inflammation in clinical practice. However, it may serve as a biomarker of malnutrition in senile individuals.
Collapse
Affiliation(s)
- Jakub Husejko
- Department of Geriatrics, Faculty of Health Science, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Skłodowska-Curie 9 Street, 85-094 Bydgoszcz, Poland; (J.H.); (D.S.); (M.P.); (K.M.-G.); (M.K.); (K.K.-K.)
| | - Marcin Gackowski
- Department of Toxicology and Bromatology, Faculty of Pharmacy, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, A. Jurasza 2 Street, 85-089 Bydgoszcz, Poland;
| | - Jakub Wojtasik
- Centre for Statistical Analysis, Nicolaus Copernicus University in Toruń, Chopina 12/18 Street, 87-100 Toruń, Poland;
| | - Dominika Strzała
- Department of Geriatrics, Faculty of Health Science, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Skłodowska-Curie 9 Street, 85-094 Bydgoszcz, Poland; (J.H.); (D.S.); (M.P.); (K.M.-G.); (M.K.); (K.K.-K.)
| | - Maciej Pesta
- Department of Geriatrics, Faculty of Health Science, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Skłodowska-Curie 9 Street, 85-094 Bydgoszcz, Poland; (J.H.); (D.S.); (M.P.); (K.M.-G.); (M.K.); (K.K.-K.)
| | - Katarzyna Mądra-Gackowska
- Department of Geriatrics, Faculty of Health Science, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Skłodowska-Curie 9 Street, 85-094 Bydgoszcz, Poland; (J.H.); (D.S.); (M.P.); (K.M.-G.); (M.K.); (K.K.-K.)
| | - Jarosław Nuszkiewicz
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karłowicza 24 Street, 85-092 Bydgoszcz, Poland;
| | - Alina Woźniak
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karłowicza 24 Street, 85-092 Bydgoszcz, Poland;
| | - Mariusz Kozakiewicz
- Department of Geriatrics, Faculty of Health Science, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Skłodowska-Curie 9 Street, 85-094 Bydgoszcz, Poland; (J.H.); (D.S.); (M.P.); (K.M.-G.); (M.K.); (K.K.-K.)
| | - Kornelia Kędziora-Kornatowska
- Department of Geriatrics, Faculty of Health Science, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Skłodowska-Curie 9 Street, 85-094 Bydgoszcz, Poland; (J.H.); (D.S.); (M.P.); (K.M.-G.); (M.K.); (K.K.-K.)
| |
Collapse
|
21
|
Islam MR, Rauf A, Akash S, Trisha SI, Nasim AH, Akter M, Dhar PS, Ogaly HA, Hemeg HA, Wilairatana P, Thiruvengadam M. Targeted therapies of curcumin focus on its therapeutic benefits in cancers and human health: Molecular signaling pathway-based approaches and future perspectives. Biomed Pharmacother 2024; 170:116034. [PMID: 38141282 DOI: 10.1016/j.biopha.2023.116034] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/08/2023] [Accepted: 12/14/2023] [Indexed: 12/25/2023] Open
Abstract
The curry powder spices turmeric (Curcuma longa L.), which contains curcumin (diferuloylmethane), an orange-yellow chemical. Polyphenols are the most commonly used sources of curcumin. It combats oxidative stress and inflammation in diseases, such as hyperlipidemia, metabolic syndrome, arthritis, and depression. Most of these benefits are due to their anti-inflammatory and antioxidant properties. Curcumin consumption leads to decreased bioavailability, resulting in limited absorption, quick metabolism, and quick excretion, which hinders health improvement. Numerous factors can increase its bioavailability. Piperine enhances bioavailability when combined with curcumin in a complex. When combined with other enhancing agents, curcumin has a wide spectrum of health benefits. This review evaluates the therapeutic potential of curcumin with a specific emphasis on its approach based on molecular signaling pathways. This study investigated its influence on the progression of cancer, inflammation, and many health-related mechanisms, such as cell proliferation, apoptosis, and metastasis. Curcumin has a significant potential for the prevention and treatment of various diseases. Curcumin modulates several biochemical pathways and targets involved in cancer growth. Despite its limited tissue accumulation and bioavailability when administered orally, curcumin has proven useful. This review provides an in-depth analysis of curcumin's therapeutic applications, its molecular signaling pathway-based approach, and its potential for precision medicine in cancer and human health.
Collapse
Affiliation(s)
- Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar 23561, Khyber Pakhtunkhwa, Pakistan.
| | - Shopnil Akash
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Sadiya Islam Trisha
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Akram Hossain Nasim
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Muniya Akter
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Puja Sutro Dhar
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Hanan A Ogaly
- Chemistry Department, College of Science, King Khalid University, Abha 61421, Saudi Arabia
| | - Hassan A Hemeg
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Taibah University, Al-Medinah Al-Monawara, Saudi Arabia
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand.
| | - Muthu Thiruvengadam
- Department of Applied Bioscience, College of Life and Environmental Science, Konkuk University, Seoul 05029, Republic of Korea; Department of Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, India.
| |
Collapse
|
22
|
Wang X, Sarker SK, Cheng L, Dang K, Hu J, Pan S, Zhang J, Xu X, Li Y. Association of dietary inflammatory potential, dietary oxidative balance score and biological aging. Clin Nutr 2024; 43:1-10. [PMID: 37992632 DOI: 10.1016/j.clnu.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/07/2023] [Accepted: 11/12/2023] [Indexed: 11/24/2023]
Abstract
BACKGROUND & AIMS The interaction between diet, inflammation, and oxidative stress significantly influences aging, but the available evidence has been limited. We evaluated potential associations of dietary inflammatory index (DII), dietary oxidative balance score (DOBS), and measures of biological aging. METHODS This cross-sectional study was performed among 8839 individuals from NHANES 2003-2014. DII and DOBS were determined by aggregating data from 26 to 17 a priori selected dietary components. Biological aging metrics included homeostatic dysregulation (HD), Klemera-Doubal method (KDM), phenotypic age (PA), and allostatic load (AL). Binomial logistic regression models and multivariate linear regression models were conducted. RESULTS The associations of dietary inflammation and oxidative stress potential and biological aging metrics were significant among American adults nationwide. Consuming foods with higher DII was significantly associated with accelerated HD 1.26 (1.10, 1.44), KDM 1.24 (1.06, 1.45), and PA 1.54 (1.33, 1.78). Compared with the lowest DOBS, the hazard ratios of accelerated HD, KDM, PA, and AL were 0.74 (0.64, 0.86), 0.80 (0.70, 0.92), 0.61 (0.52, 0.72) and 0.78 (0.63, 0.97), respectively. The adverse effects of pro-inflammatory and pro-oxidative diets on accelerated HD, KDM, and PA were 1.39 (1.18, 1.62), 1.28 (1.08, 1.51), and 1.76 (1.47, 2.10). Serum AST/ALT ratio and globulin were implicated in and mediate the aging effects. CONCLUSIONS Higher DII and/or lower DOBS are associated with higher markers of biological aging. Our research elucidates that diets may mitigate biological aging resulting from inflammation and/or oxidative stress.
Collapse
Affiliation(s)
- Xuanyang Wang
- Department of Nutrition and Food Hygiene, The National Key Discipline, School of Public Health, Harbin Medical University, Harbin, PR China
| | - Shuvan Kumar Sarker
- Department of Nutrition and Food Hygiene, The National Key Discipline, School of Public Health, Harbin Medical University, Harbin, PR China
| | - Licheng Cheng
- Department of Nutrition and Food Hygiene, The National Key Discipline, School of Public Health, Harbin Medical University, Harbin, PR China
| | - Keke Dang
- Department of Nutrition and Food Hygiene, The National Key Discipline, School of Public Health, Harbin Medical University, Harbin, PR China
| | - Jinxia Hu
- Department of Nutrition and Food Hygiene, The National Key Discipline, School of Public Health, Harbin Medical University, Harbin, PR China
| | - Sijia Pan
- Department of Nutrition and Food Hygiene, The National Key Discipline, School of Public Health, Harbin Medical University, Harbin, PR China
| | - Jia Zhang
- Department of Nutrition and Food Hygiene, The National Key Discipline, School of Public Health, Harbin Medical University, Harbin, PR China
| | - Xiaoqing Xu
- Department of Nutrition and Food Hygiene, The National Key Discipline, School of Public Health, Harbin Medical University, Harbin, PR China
| | - Ying Li
- Department of Nutrition and Food Hygiene, The National Key Discipline, School of Public Health, Harbin Medical University, Harbin, PR China.
| |
Collapse
|
23
|
Stern LJ, Clement C, Galluzzi L, Santambrogio L. Non-mutational neoantigens in disease. Nat Immunol 2024; 25:29-40. [PMID: 38168954 PMCID: PMC11075006 DOI: 10.1038/s41590-023-01664-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/29/2023] [Indexed: 01/05/2024]
Abstract
The ability of mammals to mount adaptive immune responses culminating with the establishment of immunological memory is predicated on the ability of the mature T cell repertoire to recognize antigenic peptides presented by syngeneic MHC class I and II molecules. Although it is widely believed that mature T cells are highly skewed towards the recognition of antigenic peptides originating from genetically diverse (for example, foreign or mutated) protein-coding regions, preclinical and clinical data rather demonstrate that novel antigenic determinants efficiently recognized by mature T cells can emerge from a variety of non-mutational mechanisms. In this Review, we describe various mechanisms that underlie the formation of bona fide non-mutational neoantigens, such as epitope mimicry, upregulation of cryptic epitopes, usage of non-canonical initiation codons, alternative RNA splicing, and defective ribosomal RNA processing, as well as both enzymatic and non-enzymatic post-translational protein modifications. Moreover, we discuss the implications of the immune recognition of non-mutational neoantigens for human disease.
Collapse
Affiliation(s)
- Lawrence J Stern
- Department of Pathology, UMass Chan Medical School, Worcester, MA, USA
- Immunology and Microbiology Program, UMass Chan Medical School, Worcester, MA, USA
| | - Cristina Clement
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, New York, NY, USA.
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.
| | - Laura Santambrogio
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, New York, NY, USA.
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.
| |
Collapse
|
24
|
Zhang Q, Han XZ, Burraco P, Wang XF, Teng LW, Liu ZS, Du WG. Oxidative stress mediates the impact of heatwaves on survival, growth and immune status in a lizard. Proc Biol Sci 2023; 290:20231768. [PMID: 37876201 PMCID: PMC10598448 DOI: 10.1098/rspb.2023.1768] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/29/2023] [Indexed: 10/26/2023] Open
Abstract
Climate change often includes increases in the occurrence of extreme environmental events. Among these, heatwaves affect the pace of life and performance of wildlife, particularly ectothermic animals, owing to their low thermoregulatory abilities. However, the underlying mechanisms by which this occurs remain unclear. Evidence shows that heatwaves alter the redox balance of ectotherms, and oxidative stress is a major mediator of life-history trade-offs. Therefore, oxidative stress may mediate the effect of extreme thermal conditions on the life histories of ectotherms. To test this hypothesis, a 2 × 2 experiment was conducted to manipulate the redox balance (through a mitochondrial uncoupler that alleviates oxidative stress) of the desert toad-headed agama (Phrynocephalus przewalskii) exposed to heatwave conditions. We recorded lizard growth and survival rates and quantified their redox and immune statuses. In control lizards (unmanipulated redox balance), heatwave conditions decreased growth and survival and induced oxidative damage and immune responses. By contrast, lizards with alleviated oxidative stress showed close-to-normal growth, survival, and immune status when challenged with heatwaves. These results provide mechanistic insight into the role of oxidative stress in mediating the effects of extreme temperatures on ectothermic vertebrates, which may have major eco-evolutionary implications.
Collapse
Affiliation(s)
- Qiong Zhang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Xing-Zhi Han
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
- College of Wildlife Resources, Northeast Forestry University, Harbin 150040, People's Republic of China
| | - Pablo Burraco
- Doñana Biological Station (CSIC), Calle Americo Vespucio 29, 41092 Seville, Spain
| | - Xi-Feng Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Li-Wei Teng
- College of Wildlife Resources, Northeast Forestry University, Harbin 150040, People's Republic of China
| | - Zhen-Sheng Liu
- College of Wildlife Resources, Northeast Forestry University, Harbin 150040, People's Republic of China
| | - Wei-Guo Du
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| |
Collapse
|
25
|
Pelucchi S, Macchi C, D'Andrea L, Rossi PD, Speciani MC, Stringhi R, Ruscica M, Arosio B, Di Luca M, Cesari M, Edefonti V, Marcello E. An association study of cyclase-associated protein 2 and frailty. Aging Cell 2023; 22:e13918. [PMID: 37537790 PMCID: PMC10497846 DOI: 10.1111/acel.13918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/06/2023] [Accepted: 06/17/2023] [Indexed: 08/05/2023] Open
Abstract
Frailty is a geriatric syndrome that results from multisystem impairment caused by age-associated accumulation of deficits. The frailty index is used to define the level of frailty. Several studies have searched for molecular biomarkers associated with frailty, to meet the needs for personalized care. Cyclase-associated protein 2 (CAP2) is a multifunctional actin-binding protein involved in various physiological and pathological processes, that might reflect frailty's intrinsic complexity. This study aimed to investigate the association between frailty index and circulating CAP2 concentration in 467 community-dwelling older adults (median age: 79; range: 65-92 years) from Milan, Italy. The selected robust regression model showed that circulating CAP2 concentration was not associated with chronological age, as well as sex and education. However, circulating CAP2 concentration was significantly and inversely associated with the frailty index: a 0.1-unit increase in frailty index leads to ~0.5-point mean decrease in CAP2 concentration. Furthermore, mean CAP2 concentration was significantly lower in frail participants (i.e., frailty index ≥0.25) than in non-frail participants. This study shows the association between serum CAP2 concentration and frailty status for the first time, highlighting the potential of CAP2 as a biomarker for age-associated accumulation of deficits.
Collapse
Affiliation(s)
- Silvia Pelucchi
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti"Università degli Studi di MilanoMilanItaly
| | - Chiara Macchi
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti"Università degli Studi di MilanoMilanItaly
| | - Laura D'Andrea
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti"Università degli Studi di MilanoMilanItaly
| | - Paolo Dionigi Rossi
- Geriatric UnitFondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilanItaly
- General MedicineHospital San Leopoldo MandicMerateItaly
| | - Michela Carola Speciani
- Department of Clinical Sciences and Community Health, Branch of Medical Statistics, Biometry and Epidemiology "G.A. Maccacaro"Università degli Studi di MilanoMilanItaly
| | - Ramona Stringhi
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti"Università degli Studi di MilanoMilanItaly
| | - Massimiliano Ruscica
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti"Università degli Studi di MilanoMilanItaly
- Department of Cardio‐Thoracic‐Vascular DiseasesFondazione IRCCS Cà Granda Ospedale Maggiore PoliclinicoMilanItaly
| | - Beatrice Arosio
- Department of Clinical Sciences and Community HealthUniversità degli Studi di MilanoMilanItaly
| | - Monica Di Luca
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti"Università degli Studi di MilanoMilanItaly
| | - Matteo Cesari
- Department of Clinical Sciences and Community HealthUniversità degli Studi di MilanoMilanItaly
| | - Valeria Edefonti
- Department of Clinical Sciences and Community Health, Branch of Medical Statistics, Biometry and Epidemiology "G.A. Maccacaro"Università degli Studi di MilanoMilanItaly
- Fondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilanItaly
| | - Elena Marcello
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti"Università degli Studi di MilanoMilanItaly
| |
Collapse
|
26
|
Vallet H, Guidet B, Boumendil A, De Lange DW, Leaver S, Szczeklik W, Jung C, Sviri S, Beil M, Flaatten H. The impact of age-related syndromes on ICU process and outcomes in very old patients. Ann Intensive Care 2023; 13:68. [PMID: 37542186 PMCID: PMC10403479 DOI: 10.1186/s13613-023-01160-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/28/2023] [Indexed: 08/06/2023] Open
Abstract
In this narrative review, we describe the most important age-related "syndromes" found in the old ICU patients. The syndromes are frailty, comorbidity, cognitive decline, malnutrition, sarcopenia, loss of functional autonomy, immunosenescence and inflam-ageing. The underlying geriatric condition, together with the admission diagnosis and the acute severity contribute to the short-term, but also to the long-term prognosis. Besides mortality, functional status and quality of life are major outcome variables. The geriatric assessment is a key tool for long-term qualitative outcome, while immediate severity accounts for acute mortality. A poor functional baseline reduces the chances of a successful outcome following ICU. This review emphasises the importance of using a geriatric assessment and considering the older patient as a whole, rather than the acute illness in isolation, when making decisions regarding intensive care treatment.
Collapse
Affiliation(s)
- Hélène Vallet
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS 1135, Centre d'immunologie et de Maladies Infectieuses (CIMI), Department of Geriatrics, Saint Antoine, Assistance Publique Hôpitaux de Paris (AP-HP), Sorbonne Université, F75012, Paris, France
| | - Bertrand Guidet
- Institut Pierre Louis d'Epidémiologie et de Santé Publique, Hôpital Saint-Antoine, service de réanimation, Sorbonne Université, INSERM, AP-HP, 75012, Paris, France.
| | - Ariane Boumendil
- service de réanimation, AP-HP, Hôpital Saint-Antoine, F75012, Paris, France
| | - Dylan W De Lange
- Department of Intensive Care Medicine, University Medical Center, University Utrecht, Utrecht, The Netherlands
| | - Susannah Leaver
- Department of Critical Care Medicine, St George's Hospital London, London, England
| | - Wojciech Szczeklik
- Intensive Care and Perioperative Medicine Division, Jagiellonian University Medical College, Kraków, Poland
| | - Christian Jung
- Division of Cardiology, Pulmonology and Vascular Medicine, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Sigal Sviri
- Department of Medical Intensive Care, Faculty of Medicine, Hebrew University and Hadassah University Medical Center, Jerusalem, Israel
| | - Michael Beil
- Department of Medical Intensive Care, Faculty of Medicine, Hebrew University and Hadassah University Medical Center, Jerusalem, Israel
| | - Hans Flaatten
- Department of Clinical Medicine, Department of Research and Developement, Haukeland University Hospital, University of Bergen, Bergen, Norway
| |
Collapse
|
27
|
Zheng Z, Wang X, Ouyang L, Chen W, Zhang L, Cao Y. Antioxidants Improve the Proliferation and Efficacy of hUC-MSCs against H 2O 2-Induced Senescence. Antioxidants (Basel) 2023; 12:1334. [PMID: 37507874 PMCID: PMC10376626 DOI: 10.3390/antiox12071334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Human umbilical cord mesenchymal stem cells (hUC-MSCs) are broadly applied in clinical treatment due to convenient accessibility, low immunogenicity, and the absence of any ethical issues involved. However, the microenvironment of inflammatory tissues may cause oxidative stress and induce senescence in transplanted hUC-MSCs, which will further reduce the proliferation, migration ability, and the final therapeutic effects of hUC-MSCs. Beta-nicotinamide mononucleotide (NMN) and coenzyme Q10 (CoQ10) are famous antioxidants and longevity medicines that could reduce intracellular reactive oxygen species levels by different mechanisms. In this study, hUC-MSCs were treated in vitro with NMN and CoQ10 to determine if they could reduce oxidative stress caused by hydrogen peroxide (H2O2) and recover cell functions. The effects of NMN and CoQ10 on the cell proliferation, the mRNA levels of the inflammatory cytokine TNFα and the anti-inflammatory cytokine IL10, and the differentiation and cell migration ability of hUC-MSCs before and after H2O2 treatment were investigated. The findings revealed that NMN and CoQ10 reduced H2O2-induced senescence and increased hUC-MSCs' proliferation in the late phase as passage 12 and later. The TNFα mRNA level of hUC-MSCs induced by H2O2 was significantly decreased after antioxidant treatment. NMN and CoQ10 all reduced the adipogenic differentiation ability of hUC-MSCs. CoQ10 improved the chondrogenic differentiation ability of hUC-MSCs. Furthermore, NMN was found to significantly enhance the migration ability of hUC-MSCs. Transcriptomic analysis revealed that NMN and CoQ10 both increased DNA repair ability and cyclin expression and downregulated TNF and IL-17 inflammatory signaling pathways, thereby contributing to the proliferative promotion of senecent stem cells and resistance to oxidative stress. These findings suggest that antioxidants can improve the survival and efficacy of hUC-MSCs in stem cell therapy for inflammation-related diseases.
Collapse
Affiliation(s)
- Zhaojuan Zheng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xia Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Liming Ouyang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wenxia Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yulin Cao
- Beijing Tang Yi Hui Kang Biomedical Technology Co., Ltd., Beijing 100032, China
| |
Collapse
|
28
|
Santambrogio L. Autoimmunity to the modified self. Science 2023; 379:1092-1093. [PMID: 36927028 DOI: 10.1126/science.adg3925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Protein posttranslational modifications can break tolerance to the self-proteome.
Collapse
Affiliation(s)
- Laura Santambrogio
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
29
|
Skin-to-Skin Contact: Crucial for Improving Behavior, Immunity, and Redox State after Short Cohabitation of Chronologically Old Mice and Prematurely Aging Mice with Adult Mice. Int J Mol Sci 2023; 24:ijms24054680. [PMID: 36902114 PMCID: PMC10003034 DOI: 10.3390/ijms24054680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/16/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
(1) Background: Aging is characterized by a deterioration of the homeostatic systems, namely the nervous and immune systems. The rate of aging can be modified by lifestyle factors such as social interactions. Recently, improvements in behavior, immune function, and oxidative state were observed in adult prematurely aging mice (PAM) and chronologically old mice after cohabitation with exceptional non-PAM (E-NPAM) and adult mice, respectively, for 2 months. However, the cause of this positive effect is not known. The objective of the present work was to study whether skin-to-skin contact promotes these improvements both in chronologically old mice and in adult PAM. (2) Methods: Old and adult CD1 female mice were used as well as adult PAM and E-NPAM. After cohabitation for 15 min/day for 2 months (two old mice or PAM with five adult mice or E-NPAM, respectively, with both non- and skin-to-skin contact), several behavioral tests were performed and functions and oxidative stress parameters in peritoneal leukocytes were analyzed. (3) Results: This social interaction improved behavioral responses, immune functions, redox state, and longevity, but only if the animals had skin-to-skin contact. (4) Conclusions: Physical contact seems to be crucial to experiencing the positive effects of social interaction.
Collapse
|
30
|
Pi H, Xia L, Ralph DD, Rayner SG, Shojaie A, Leary PJ, Gharib SA. Metabolomic Signatures Associated With Pulmonary Arterial Hypertension Outcomes. Circ Res 2023; 132:254-266. [PMID: 36597887 PMCID: PMC9904878 DOI: 10.1161/circresaha.122.321923] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/20/2022] [Indexed: 01/05/2023]
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is a complex disease characterized by progressive right ventricular (RV) failure leading to significant morbidity and mortality. Investigating metabolic features and pathways associated with RV dilation, mortality, and measures of disease severity can provide insight into molecular mechanisms, identify subphenotypes, and suggest potential therapeutic targets. METHODS We collected data from a prospective cohort of PAH participants and performed untargeted metabolomic profiling on 1045 metabolites from circulating blood. Analyses were intended to identify metabolomic differences across a range of common metrics in PAH (eg, dilated versus nondilated RV). Partial least squares discriminant analysis was first applied to assess the distinguishability of relevant outcomes. Significantly altered metabolites were then identified using linear regression, and Cox regression models (as appropriate for the specific outcome) with adjustments for age, sex, body mass index, and PAH cause. Models exploring RV maladaptation were further adjusted for pulmonary vascular resistance. Pathway enrichment analysis was performed to identify significantly dysregulated processes. RESULTS A total of 117 participants with PAH were included. Partial least squares discriminant analysis showed cluster differentiation between participants with dilated versus nondilated RVs, survivors versus nonsurvivors, and across a range of NT-proBNP (N-terminal pro-B-type natriuretic peptide) levels, REVEAL 2.0 composite scores, and 6-minute-walk distances. Polyamine and histidine pathways were associated with differences in RV dilation, mortality, NT-proBNP, REVEAL score, and 6-minute walk distance. Acylcarnitine pathways were associated with NT-proBNP, REVEAL score, and 6-minute walk distance. Sphingomyelin pathways were associated with RV dilation and NT-proBNP after adjustment for pulmonary vascular resistance. CONCLUSIONS Distinct plasma metabolomic profiles are associated with RV dilation, mortality, and measures of disease severity in PAH. Polyamine, histidine, and sphingomyelin metabolic pathways represent promising candidates for identifying patients at high risk for poor outcomes and investigation into their roles as markers or mediators of disease progression and RV adaptation.
Collapse
Affiliation(s)
- Hongyang Pi
- University of Washington, Department of Medicine
| | - Lu Xia
- University of Washington, Department of Biostatistics
| | | | | | - Ali Shojaie
- University of Washington, Department of Biostatistics
| | - Peter J. Leary
- University of Washington, Department of Medicine
- University of Washington, Department of Epidemiology
| | | |
Collapse
|
31
|
Planococcus maritimu ML1206 Strain Enhances Stress Resistance and Extends the Lifespan in Caenorhabditis elegans via FOXO/DAF-16. Mar Drugs 2022; 21:md21010001. [PMID: 36662174 PMCID: PMC9866299 DOI: 10.3390/md21010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/30/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
The antioxidant effect of probiotics has been widely recognized across the world, which is of great significance in food, medicine, and aquaculture. There are abundant marine microbial resources in the ocean, which provide a new space for humans to explore new probiotics. Previously, we reported on the anti-infective effects of Planococcus maritimu ML1206, a potential marine probiotic. The antioxidant activity of ML1206 in C. elegans was studied in this paper. The study showed that ML1206 could improve the ability of nematodes to resist oxidative stress and effectively prolong their lifespan. The results confirmed that ML1206 could significantly increase the activities of CAT and GSH-PX, and reduce the accumulation of reactive oxygen species (ROS) in nematodes under oxidative stress conditions. In addition, ML1206 promoted DAF-16 transfer to the nucleus and upregulated the expression of sod-3, hsp-16.2, and ctl-2, which are downstream antioxidant-related genes of DAF-16. Furthermore, the expression of the SOD-3::GFP and HSP-16.2::GFP was significantly higher in the transgenic strains fed with ML1206 than that in the control group fed with OP50, with or without stress. In summary, these findings suggest that ML1206 is a novel marine probiotic with an antioxidant function that stimulates nematodes to improve their defense abilities against oxidative stress and prolong the lifespan by regulating the translocation of FOXO/DAF-16. Therefore, ML1206 may be explored as a potential dietary supplement in aquaculture and for anti-aging and antioxidant purposes.
Collapse
|
32
|
Reece AS, Hulse GK. Epigenomic and Other Evidence for Cannabis-Induced Aging Contextualized in a Synthetic Epidemiologic Overview of Cannabinoid-Related Teratogenesis and Cannabinoid-Related Carcinogenesis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16721. [PMID: 36554603 PMCID: PMC9778714 DOI: 10.3390/ijerph192416721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/30/2022] [Accepted: 12/07/2022] [Indexed: 05/16/2023]
Abstract
BACKGROUND Twelve separate streams of empirical data make a strong case for cannabis-induced accelerated aging including hormonal, mitochondriopathic, cardiovascular, hepatotoxic, immunological, genotoxic, epigenotoxic, disruption of chromosomal physiology, congenital anomalies, cancers including inheritable tumorigenesis, telomerase inhibition and elevated mortality. METHODS Results from a recently published longitudinal epigenomic screen were analyzed with regard to the results of recent large epidemiological studies of the causal impacts of cannabis. We also integrate theoretical syntheses with prior studies into these combined epigenomic and epidemiological results. RESULTS Cannabis dependence not only recapitulates many of the key features of aging, but is characterized by both age-defining and age-generating illnesses including immunomodulation, hepatic inflammation, many psychiatric syndromes with a neuroinflammatory basis, genotoxicity and epigenotoxicity. DNA breaks, chromosomal breakage-fusion-bridge morphologies and likely cycles, and altered intergenerational DNA methylation and disruption of both the histone and tubulin codes in the context of increased clinical congenital anomalies, cancers and heritable tumors imply widespread disruption of the genome and epigenome. Modern epigenomic clocks indicate that, in cannabis-dependent patients, cannabis advances cellular DNA methylation age by 25-30% at age 30 years. Data have implications not only for somatic but also stem cell and germ line tissues including post-fertilization zygotes. This effect is likely increases with the square of chronological age. CONCLUSION Recent epigenomic studies of cannabis exposure provide many explanations for the broad spectrum of cannabis-related teratogenicity and carcinogenicity and appear to account for many epidemiologically observed findings. Further research is indicated on the role of cannabinoids in the aging process both developmentally and longitudinally, from stem cell to germ cell to blastocystoids to embryoid bodies and beyond.
Collapse
Affiliation(s)
- Albert Stuart Reece
- Division of Psychiatry, University of Western Australia, Crawley, WA 6009, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Gary Kenneth Hulse
- Division of Psychiatry, University of Western Australia, Crawley, WA 6009, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| |
Collapse
|
33
|
The Relationship between Reactive Oxygen Species and the cGAS/STING Signaling Pathway in the Inflammaging Process. Int J Mol Sci 2022; 23:ijms232315182. [PMID: 36499506 PMCID: PMC9735967 DOI: 10.3390/ijms232315182] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/08/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
During Inflammaging, a dysregulation of the immune cell functions is generated, and these cells acquire a senescent phenotype with an increase in pro-inflammatory cytokines and ROS. This increase in pro-inflammatory molecules contributes to the chronic inflammation and oxidative damage of biomolecules, classically observed in the Inflammaging process. One of the most critical oxidative damages is generated to the host DNA. Damaged DNA is located out of the natural compartments, such as the nucleus and mitochondria, and is present in the cell's cytoplasm. This DNA localization activates some DNA sensors, such as the cGAS/STING signaling pathway, that induce transcriptional factors involved in increasing inflammatory molecules. Some of the targets of this signaling pathway are the SASPs. SASPs are secreted pro-inflammatory molecules characteristic of the senescent cells and inducers of ROS production. It has been suggested that oxidative damage to nuclear and mitochondrial DNA generates activation of the cGAS/STING pathway, increasing ROS levels induced by SASPs. These additional ROS increase oxidative DNA damage, causing a loop during the Inflammaging. However, the relationship between the cGAS/STING pathway and the increase in ROS during Inflammaging has not been clarified. This review attempt to describe the potential connection between the cGAS/STING pathway and ROS during the Inflammaging process, based on the current literature, as a contribution to the knowledge of the molecular mechanisms that occur and contribute to the development of the considered adaptative Inflammaging process during aging.
Collapse
|
34
|
Inflammaging and body composition: New insights in diabetic and hypertensive elderly men. Exp Gerontol 2022; 170:112005. [PMID: 36341786 DOI: 10.1016/j.exger.2022.112005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 12/29/2022]
Abstract
Age-related changes in the body's physiological responses play a critical role in systemic arterial hypertension (SAH) and type 2 Diabetes mellitus (T2DM). SAH and T2DM have clinically silent low-grade inflammation as a common risk factor. This inflammation has a relevant element, the excess of fatty tissue. In this scenario, little is known about how inflammatory markers interact with each other. Therefore, this work evaluated the interplay among anthropometric, biochemical, and inflammatory markers in the elderly with SAH and T2DM. Men aged 60-80 years old with SAH and T2DM were classified by body mass index (BMI) as eutrophic elderly (EE, 24 individuals) or overweight elderly (OE, 25 individuals). Body composition analysis was performed using bioimpedance. Blood samples were collected to perform inflammatory and biochemical evaluations. The cytokines IL-17A, IL-1β, IFN-y, TNF-α, and IL-10, were evaluated by ELISA. Triglycerides, total and fractions of cholesterol, and glucose were measured by spectrophotometry. Overweight elderly men had a higher glycemic index and an increase in most anthropometric markers, as well as higher means for all pro-inflammatory cytokines analyzed (IL-17A, IL-1β, IFN-y, and TNF-α) in comparison to their eutrophic elderly counterparts. However, there was a decrease in IL-10 anti-inflammatory cytokine and IL-10/IL-17A ratio compared to their eutrophic elderly counterparts. Although overweight elderly men have worsening inflammatory parameters, the magnitude of their correlations with anthropometric and biochemical parameters becomes less evident. The Bayesian networks highlight that in the eutrophic elderly, IL-17A and TNF-α are the cytokines most associated with interactions, and most of these interactions occur with biochemical parameters. It is worth highlighting the role of IFN-y in overweight elderly men. This cytokine influences IL-10 and TNF-α production, contributing to the inflammatory profile exacerbated in this group.
Collapse
|
35
|
Tabibzadeh S. Resolving Geroplasticity to the Balance of Rejuvenins and Geriatrins. Aging Dis 2022; 13:1664-1714. [PMID: 36465174 PMCID: PMC9662275 DOI: 10.14336/ad.2022.0414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/14/2022] [Indexed: 09/29/2024] Open
Abstract
According to the cell centric hypotheses, the deficits that drive aging occur within cells by age dependent progressive damage to organelles, telomeres, biologic signaling pathways, bioinformational molecules, and by exhaustion of stem cells. Here, we amend these hypotheses and propose an eco-centric model for geroplasticity (aging plasticity including aging reversal). According to this model, youth and aging are plastic and require constant maintenance, and, respectively, engage a host of endogenous rejuvenating (rejuvenins) and gero-inducing [geriatrin] factors. Aging in this model is akin to atrophy that occurs as a result of damage or withdrawal of trophic factors. Rejuvenins maintain and geriatrins adversely impact cellular homeostasis, cell fitness, and proliferation, stem cell pools, damage response and repair. Rejuvenins reduce and geriatrins increase the age-related disorders, inflammatory signaling, and senescence and adjust the epigenetic clock. When viewed through this perspective, aging can be successfully reversed by supplementation with rejuvenins and by reducing the levels of geriatrins.
Collapse
Affiliation(s)
- Siamak Tabibzadeh
- Frontiers in Bioscience Research Institute in Aging and Cancer, Irvine, CA 92618, USA
| |
Collapse
|
36
|
Immunosenescence in Aging-Related Vascular Dysfunction. Int J Mol Sci 2022; 23:ijms232113269. [PMID: 36362055 PMCID: PMC9654630 DOI: 10.3390/ijms232113269] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
The immunosenescence-related disproportion in T lymphocytes may have important consequences for endothelial dysfunction, which is a key event in vascular aging. The study was designed to assess the prognostic values of the inflammatory-immune profile to better predict and prevent vascular diseases associated with old age. Eighty individuals aged 70.9 ± 5.3 years were allocated to a low- (LGI) or high-grade inflammation (HGI) group based on CRP (<3 or ≥3 mg/L) as a conventional risk marker of cardiovascular diseases. Significant changes in inflammatory and endothelium-specific variables IL-1β, IL-6, TNFα, oxLDL, H2O2, NO, 3-nitrotyrosine, and endothelial progenitor cells (OR 7.61, 95% CI 2.56−29.05, p < 0.0001), confirmed their interplay in vascular inflammation. The flow-cytometry analysis demonstrated a high disproportion in T lymphocytes CD4+ and CD8+ between LGI and HGI groups. CRP was <3 mg/mL for the CD4/CD8 ratio within the reference values ≥ 1 or ≤2.5, unlike for the CD4/CD8 ratio < 1 and >2.5. The odds ratios for the distribution of CD4+ (OR 5.98, 95% CI 0.001−0.008, p < 0.001), CD8+ (OR 0.23, 95% CI 0.08−0.59, p < 0.01), and CD8CD45RO+ T naïve cells (OR 0.27, 95% CI 0.097−0.695, p < 0.01) and CD4/CD8 (OR 5.69, 95% CI 2.07−17.32, p < 0.001) indicated a potential diagnostic value of T lymphocytes for clinical prognosis in aging-related vascular dysfunction.
Collapse
|
37
|
Liu L, Luo P, Yang M, Wang J, Hou W, Xu P. The role of oxidative stress in the development of knee osteoarthritis: A comprehensive research review. Front Mol Biosci 2022; 9:1001212. [PMID: 36203877 PMCID: PMC9532006 DOI: 10.3389/fmolb.2022.1001212] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Knee osteoarthritis (KOA) is one of the most common degenerative diseases, and its core feature is the degeneration and damage of articular cartilage. The cartilage degeneration of KOA is due to the destruction of dynamic balance caused by the activation of chondrocytes by various factors, with oxidative stress playing an important role in the pathogenesis of KOA. The overproduction of reactive oxygen species (ROS) is a result of oxidative stress, which is caused by a redox process that goes awry in the inherent antioxidant defence system of the human body. Superoxide dismutase (SOD) inside and outside chondrocytes plays a key role in regulating ROS in cartilage. Additionally, synovitis is a key factor in the development of KOA. In an inflammatory environment, hypoxia in synovial cells leads to mitochondrial damage, which leads to an increase in ROS levels, which further aggravates synovitis. In addition, oxidative stress significantly accelerates the telomere shortening and ageing of chondrocytes, while ageing promotes the development of KOA, damages the regulation of redox of mitochondria in cartilage, and stimulates ROS production to further aggravate KOA. At present, there are many drugs to regulate the level of ROS, but these drugs still need to be developed and verified in animal models of KOA. We discuss mainly how oxidative stress plays a part in the development of KOA. Although the current research has achieved some results, more research is needed.
Collapse
|
38
|
Hypertension in Cancer Survivors. Curr Hypertens Rep 2022; 24:435-443. [PMID: 35852781 DOI: 10.1007/s11906-022-01208-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2022] [Indexed: 11/25/2022]
|
39
|
Association between osteosarcopenia and coronary artery calcification in asymptomatic individuals. Sci Rep 2022; 12:2231. [PMID: 35379833 PMCID: PMC8979953 DOI: 10.1038/s41598-021-02640-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 11/15/2021] [Indexed: 12/25/2022] Open
Abstract
Osteoporosis and sarcopenia are substantially interrelated with shared cardiovascular risk factors. However, the relationship between osteosarcopenia and coronary artery disease is largely unexplored. We aimed to investigate the association between osteosarcopenia and coronary artery calcification (CAC) scores in asymptomatic adults. A total of 5969 asymptomatic adults without cardiovascular disease who underwent a health examination including estimation of CAC scores by cardiac tomography were analyzed. Osteoporosis was defined as low bone mineral density T-score ≤ − 2.5 standard deviation, and sarcopenia as appendicular skeletal muscle mass < 5.7 kg/m2 for women and < 7.0 kg/m2 for men, and osteosarcopenia as the copresence of both osteoporosis and sarcopenia. Participants were divided into four groups according to the presence of osteoporosis and/or sarcopenia as control, sarcopenia alone, osteoporosis alone, and osteosarcopenia. Prevalence of CAC was 22.0% in control, 23.6% in sarcopenia alone, 38.5% in osteoporosis alone, and 48.3% in osteosarcopenia group, with the osteosarcopenia group showing the highest (p < 0.0001). After adjustments for possible confounders, mean of log (CAC score + 1) in osteosarcopenia group was higher than other three groups (Bonferroni p < 0.0001). Using multivariate-adjusted analysis, subjects with osteosarcopenia had the highest risk for having CAC > 0 (odds ratio [OR] 2.868; 95% confidence interval [CI] 1.717–4.790). Furthermore, subjects with osteosarcopenia had a significant risk of moderate-to-extensive CAC (CAC score ≥ 100) (OR 2.709; 95% CI 1.128–6.505). We demonstrated that osteosarcopenia was independently associated with a higher prevalence of subclinical coronary atherosclerosis. Our results suggest osteosarcopenia as a predisposing factor for coronary heart disease.
Collapse
|
40
|
Wallis ZK, Williams KC. Monocytes in HIV and SIV Infection and Aging: Implications for Inflamm-Aging and Accelerated Aging. Viruses 2022; 14:409. [PMID: 35216002 PMCID: PMC8880456 DOI: 10.3390/v14020409] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/04/2022] [Accepted: 02/15/2022] [Indexed: 12/11/2022] Open
Abstract
Before the antiretroviral therapy (ART) era, people living with HIV (PLWH) experienced complications due to AIDS more so than aging. With ART and the extended lifespan of PLWH, HIV comorbidities also include aging-most likely due to accelerated aging-as well as a cardiovascular, neurocognitive disorders, lung and kidney disease, and malignancies. The broad evidence suggests that HIV with ART is associated with accentuated aging, and that the age-related comorbidities occur earlier, due in part to chronic immune activation, co-infections, and possibly the effects of ART alone. Normally the immune system undergoes alterations of lymphocyte and monocyte populations with aging, that include diminished naïve T- and B-lymphocyte numbers, a reliance on memory lymphocytes, and a skewed production of myeloid cells leading to age-related inflammation, termed "inflamm-aging". Specifically, absolute numbers and relative proportions of monocytes and monocyte subpopulations are skewed with age along with myeloid mitochondrial dysfunction, resulting in increased accumulation of reactive oxygen species (ROS). Additionally, an increase in biomarkers of myeloid activation (IL-6, sCD14, and sCD163) occurs with chronic HIV infection and with age, and may contribute to immunosenescence. Chronic HIV infection accelerates aging; meanwhile, ART treatment may slow age-related acceleration, but is not sufficient to stop aging or age-related comorbidities. Overall, a better understanding of the mechanisms behind accentuated aging with HIV and the effects of myeloid activation and turnover is needed for future therapies.
Collapse
|
41
|
Aguilar-Iglesias L, Merino-Merino A, Sanchez-Corral E, Garcia-Sanchez MJ, Santos-Sanchez I, Saez-Maleta R, Perez-Rivera JA. Differences According to Age in the Diagnostic Performance of Cardiac Biomarkers to Predict Frailty in Patients with Acute Heart Failure. Biomolecules 2022; 12:biom12020245. [PMID: 35204746 PMCID: PMC8961634 DOI: 10.3390/biom12020245] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 02/06/2023] Open
Abstract
Frailty has traditionally been studied in the elderly population but scarcely in younger individuals. The objective of the present study is to analyze differences according to age in the diagnostic performance of cardiac biomarkers to predict frailty in patients admitted to the hospital for acute heart failure (AHF). A frailty assessment was performed with the SPPB and FRAIL scales (score > 3). We included 201 patients who were divided according to age: those older and younger than 75 years. In the younger group, no biomarker was related to the presence of frailty. This was mainly determined by age and comorbidities. In the elderly group, NT-proBNP was significantly related to the presence of frailty, but none of the baseline characteristics were. The best cut-off point in the elderly group for NT-proBNP was 4000 pg/mL. The area under the curve (AUC) for proBNP for frailty detection was 0.62 in the elderly. Another similar frailty scale, the SPPB, also showed a similar AUC in this group; however, adding the NT-proBNP (one point if NT-proBNP < 4000 pg/mL), it showed a slightly higher yield (AUC 0.65). The addition of biomarkers could improve frailty detection in members of the elderly population who are admitted to the hospital for AHF.
Collapse
Affiliation(s)
- Lara Aguilar-Iglesias
- Department of Cardiology, University Hospital of Burgos, 09006 Burgos, Spain; (L.A.-I.); (A.M.-M.); (E.S.-C.); (M.-J.G.-S.); (I.S.-S.)
| | - Ana Merino-Merino
- Department of Cardiology, University Hospital of Burgos, 09006 Burgos, Spain; (L.A.-I.); (A.M.-M.); (E.S.-C.); (M.-J.G.-S.); (I.S.-S.)
| | - Ester Sanchez-Corral
- Department of Cardiology, University Hospital of Burgos, 09006 Burgos, Spain; (L.A.-I.); (A.M.-M.); (E.S.-C.); (M.-J.G.-S.); (I.S.-S.)
| | - Maria-Jesus Garcia-Sanchez
- Department of Cardiology, University Hospital of Burgos, 09006 Burgos, Spain; (L.A.-I.); (A.M.-M.); (E.S.-C.); (M.-J.G.-S.); (I.S.-S.)
| | - Isabel Santos-Sanchez
- Department of Cardiology, University Hospital of Burgos, 09006 Burgos, Spain; (L.A.-I.); (A.M.-M.); (E.S.-C.); (M.-J.G.-S.); (I.S.-S.)
| | - Ruth Saez-Maleta
- Department Clinical Analysis, University Hospital of Burgos, 09006 Burgos, Spain;
| | - Jose-Angel Perez-Rivera
- Department of Cardiology, University Hospital of Burgos, 09006 Burgos, Spain; (L.A.-I.); (A.M.-M.); (E.S.-C.); (M.-J.G.-S.); (I.S.-S.)
- Facultad de Ciencias de la Salud, Universidad Isabel I, 09003 Burgos, Spain
- Correspondence:
| |
Collapse
|
42
|
Baarz BR, Rink L. Rebalancing the unbalanced aged immune system - A special focus on zinc. Ageing Res Rev 2022; 74:101541. [PMID: 34915196 DOI: 10.1016/j.arr.2021.101541] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/18/2021] [Accepted: 12/09/2021] [Indexed: 02/08/2023]
Abstract
Nowadays, aging is understood as a dynamic and multifaceted dysregulation process that spares almost no human organ or cell. The immune system being among the most affected, it has been shown predominantly that its integrity determines the tightrope walk between the difference of escaping or suffering from age-related diseases. Next to drug-based anti-aging strategies, micronutrient intervention may represent an emerging but less radical way to slow immune aging. While a sufficient supply of a variety of micronutrients is undeniably important, adequate intake of the trace element zinc appears to tower over others in terms of reaching old age. Inconveniently, zinc deficiency prevalence among the elderly is high, which in turn contributes to increased susceptibility to infection, decreased anti-tumor immunity as well as attenuated response to vaccination. Driven by this research, this review aims to provide a comprehensive and up-to-date overview of the various rebalancing capabilities of zinc in the unbalanced immune system of the elderly. This includes an in-depth and cell type-centered discussion on the role of zinc in immunosenescence and inflammaging. We further address upcoming translational aspects e.g. how zinc deficiency promotes the flourishing of certain pathogenic taxa of the gut microbiome and how zinc supply counteracts such alterations in a manner that may contribute to longevity. In the light of the ongoing COVID-19 pandemic, we also briefly review current knowledge on the interdependency between age, zinc status, and respiratory infections. Based on two concrete examples and considering the latest findings in the field we conclude our remarks by outlining tremendous parallels between suboptimal zinc status and accelerated aging on the one hand and an optimized zinc status and successful aging on the other hand.
Collapse
|
43
|
Mechanisms of immune aging in HIV. Clin Sci (Lond) 2022; 136:61-80. [PMID: 34985109 DOI: 10.1042/cs20210344] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/11/2022]
Abstract
Massive CD4+ T-cell depletion as well as sustained immune activation and inflammation are hallmarks of Human Immunodeficiency Virus (HIV)-1 infection. In recent years, an emerging concept draws an intriguing parallel between HIV-1 infection and aging. Indeed, many of the alterations that affect innate and adaptive immune subsets in HIV-infected individuals are reminiscent of the process of immune aging, characteristic of old age. These changes, of which the presumed cause is the systemic immune activation established in patients, likely participate in the immuno-incompetence described with HIV progression. With the success of antiretroviral therapy (ART), HIV-seropositive patients can now live for many years despite chronic viral infection. However, acquired immunodeficiency syndrome (AIDS)-related opportunistic infections have given way to chronic diseases as the leading cause of death since HIV infection. Therefore, the comparison between HIV-1 infected patients and uninfected elderly individuals goes beyond the sole onset of immunosenescence and extends to the deterioration of several physiological functions related to inflammation and systemic aging. In light of this observation, it is interesting to understand the precise link between immune activation and aging in HIV-1 infection to figure out how to best care for people living with HIV (PLWH).
Collapse
|
44
|
Li L, Zhang H, Chen B, Xia B, Zhu R, Liu Y, Dai X, Ye Z, Zhao D, Mo F, Gao S, Orekhov AN, Prentki M, Wang L, Guo S, Zhang D. BaZiBuShen alleviates cognitive deficits and regulates Sirt6/NRF2/HO-1 and Sirt6/P53-PGC-1α-TERT signaling pathways in aging mice. JOURNAL OF ETHNOPHARMACOLOGY 2022; 282:114653. [PMID: 34547420 DOI: 10.1016/j.jep.2021.114653] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/29/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE BaZiBuShen formula (BZBS) is clinically used to counteract mental fatigue and to retard the aging process. Brain aging echoes in major risks of human sufferings and has become one of the main challenges to our societies and the health-care systems. AIM OF THE STUDY To investigate the effect and mode of action of BZBS on aging-associated cognitive impairments. MATERIALS AND METHODS BZBS was orally administered to D-galactose and NaNO2-induced aging mice. Premature senescence was assessed using the Morris water maze, step-down type passive avoidance, and pole-climbing tests. Telomere length was examined by qPCR analysis. Telomerase activity was assessed using PCR ELISA assay. Mitochondrial complex IV activity was examined by biochemical test. The levels of redox and immune status were determined by ELISA or biochemical assay. The expressions of sirtuin 6 (Sirt6), peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), P53, telomerase reverse transcriptase (TERT), heme oxygenase-1 (HO-1), phospho(p)-nuclear factor erythroid-2 related factor 2 (NRF2), caspase-3, Bcl-2 associated x (Bax), and B-cell lymphoma-2 (Bcl-2) in the cerebral cortex were examined by Western blot and/or immunohistochemical staining. RESULTS BZBS intervention ameliorated reduced brain performances in aging mice, including memory, cognitive, and motor functions. In addition, BZBS administration to aging mice preserved redox homeostasis, attenuated immunosenescence, and maintained telomerase activity and telomere length. Moreover, BZBS treatment were associated with a declines in P53, caspase-3, Bax expressions and an increase in Sirt6, p-HO-1, p-NRF2, PGC-1α, and Bcl-2 expressions in the brains of this rapid aging mouse. CONCLUSIONS BZBS attenuates premature senescence possibly via the preservation of redox homeostasis and telomere integrity, and inhibition of apoptosis in rapid aging mouse. The mechanism governing the alterations may be associated with through the activation of Sirt6/NRF2/HO-1 and Sirt6/P53-PGC-1α-TERT signaling pathways. The results suggest that BZBS may provide a novel strategy for confronting aging and age-associated diseases.
Collapse
Affiliation(s)
- Lin Li
- Diabetes Research Centre, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Hao Zhang
- Diabetes Research Centre, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Beibei Chen
- Diabetes Research Centre, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Bingke Xia
- Diabetes Research Centre, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Ruyuan Zhu
- Diabetes Research Centre, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Yage Liu
- Diabetes Research Centre, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Xuan Dai
- Diabetes Research Centre, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Zimengwei Ye
- Diabetes Research Centre, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Dandan Zhao
- Diabetes Research Centre, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Fangfang Mo
- Diabetes Research Centre, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Sihua Gao
- Diabetes Research Centre, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Alexander N Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow, 125315, Russia.
| | - Marc Prentki
- Departments of Nutrition and Biochemistry and Montreal Diabetes Research Center, CRCHUM and Université de Montréal, Montréal, H2X 0A9, QC, Canada.
| | - Lili Wang
- Department of TCM Pharmacology, Chinese Material Medica School, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Shuzhen Guo
- Department of Scientific Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Dongwei Zhang
- Diabetes Research Centre, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
45
|
Leposavić G, Stojić-Vukanić Z. Biomarkers of aging-associated chronic inflammation as a prognostic factor for human longevity. ARHIV ZA FARMACIJU 2022. [DOI: 10.5937/arhfarm72-36135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
It has been well-established that age-associated low-grade chronic inflammation contributes to the development of a spectrum of chronic diseases, including diabetes mellitus, ischemic heart disease, stroke, cancer, chronic kidney disease, non-alcoholic fatty liver disease and neurodegenerative diseases, which affect the quality of life of the elderly and influence their life span. This phenomenon is suggested to arise due to the weakening of the regulatory mechanisms of the immune response, and the persistence of exogenous and endogenous (reflecting oxidative cell injury) antigenic challenges, so it is referred to as oxi-inflamm-aging. Considering that the development of age-associated chronic inflammation is "silent", i.e., without clinical signs until the aforementioned complications become apparent, it is important to identify the biomarker(s) or pattern/cluster of biomarkers for this inflammation. It is also important to define new strategies to combat the "silent" damage induced by chronic inflammation. Given that at present there are no reliable biomarkers for chronic inflammation, this review points out the problems in defining biomarker(s) or patterns/clusters of biomarkers for chronic inflammation in order to stimulate further research and points to some possible routes of investigation.
Collapse
|
46
|
Moreira LS, Chagas AC, Ames-Sibin AP, Pateis VO, Gonçalves OH, Silva-Comar FMS, Hernandes L, Sá-Nakanishi AB, Bracht L, Bersani-Amado CA, Bracht A, Comar JF. Alpha-tocopherol-loaded polycaprolactone nanoparticles improve the inflammation and systemic oxidative stress of arthritic rats. J Tradit Complement Med 2021; 12:414-425. [PMID: 35747358 PMCID: PMC9209870 DOI: 10.1016/j.jtcme.2021.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 02/07/2023] Open
Abstract
Background and aim The present study investigated the effects of orally administered α-tocopherol-loaded polycaprolactone nanoparticles on the articular inflammation and systemic oxidative status of middle-aged Holtzman rats with Freund's adjuvant-induced polyarthritis, a model for rheumatoid arthritis. Intraperitoneally administered free α-tocopherol provided the reference for comparison. Experimental procedure Two protocols of treatment were followed: intraperitoneal administration of free α-tocopherol (100 mg/kg i.p.) or oral administration of free and nanoencapsulated α-tocopherol (100 mg/kg p.o.). Animals were treated during 18 days after arthritis induction. Results Free (i.p.) and encapsulated α-tocopherol decreased the hind paws edema, the leukocytes infiltration into femorotibial joints and the mRNA expression of pro-inflammatory cytokines in the tibial anterior muscle of arthritic rats, but the encapsulated compound was more effective. Free (i.p.) and encapsulated α-tocopherol decreased the high levels of reactive oxygen species in the brain and liver, but only the encapsulated compound decreased the levels of protein carbonyl groups in these organs. Both free (i.p.) and encapsulated α-tocopherol increased the α-tocopherol levels and the ratio of reduced to oxidized glutathione in these organs. Conclusion Both intraperitoneally administered free α-tocopherol and orally administered encapsulated α-tocopherol effectively improved inflammation and systemic oxidative stress in middle-aged arthritic rats. However, the encapsulated form should be preferred because the oral administration route does not be linked to the evident discomfort that is caused in general by injectable medicaments. Consequently, α-tocopherol-loaded polycaprolactone nanoparticles may be a promising adjuvant to the most current approaches aiming at rheumatoid arthritis therapy. Oxidative stress is systemically increased in rats with adjuvant-induced arthritis. Arthritic rats were orally treated with α-tocopherol-loaded polycaprolactone nanoparticles. Treatment decreased the paw edema and articular inflammation of arthritic rats. Treatment improved the oxidative stress in the liver and brain arthritic rats. The content of α-tocopherol was increased in the brain and liver of treated rats.
Collapse
|
47
|
Relationship between inflammation and oxidative stress and its effect on multiple sclerosis. Neurologia 2021. [DOI: 10.1016/j.nrl.2021.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
48
|
Koppula S, Akther M, Haque ME, Kopalli SR. Potential Nutrients from Natural and Synthetic Sources Targeting Inflammaging-A Review of Literature, Clinical Data and Patents. Nutrients 2021; 13:nu13114058. [PMID: 34836313 PMCID: PMC8617641 DOI: 10.3390/nu13114058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/06/2021] [Accepted: 11/11/2021] [Indexed: 12/16/2022] Open
Abstract
Inflammaging, the steady development of the inflammatory state over age is an attributable characteristic of aging that potentiates the initiation of pathogenesis in many age-related disorders (ARDs) including neurodegenerative diseases, arthritis, cancer, atherosclerosis, type 2 diabetes, and osteoporosis. Inflammaging is characterized by subclinical chronic, low grade, steady inflammatory states and is considered a crucial underlying cause behind the high mortality and morbidity rate associated with ARDs. Although a coherent set of studies detailed the underlying pathomechanisms of inflammaging, the potential benefits from non-toxic nutrients from natural and synthetic sources in modulating or delaying inflammaging processes was not discussed. In this review, the available literature and recent updates of natural and synthetic nutrients that help in controlling inflammaging process was explored. Also, we discussed the clinical trial reports and patent claims on potential nutrients demonstrating therapeutic benefits in controlling inflammaging and inflammation-associated ARDs.
Collapse
Affiliation(s)
- Sushruta Koppula
- Department of Integrated Biosciences, College of Biomedical & Health Science, Konkuk University, Chungju 27381, Korea; (S.K.); (M.A.)
| | - Mahbuba Akther
- Department of Integrated Biosciences, College of Biomedical & Health Science, Konkuk University, Chungju 27381, Korea; (S.K.); (M.A.)
| | - Md Ezazul Haque
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27381, Korea;
| | - Spandana Rajendra Kopalli
- Department of Bioscience and Biotechnology, Sejong University, Gwangjin-gu, Seoul 05006, Korea
- Correspondence: ; Tel.: +82-2-6935-2619
| |
Collapse
|
49
|
Martínez de Toda I, Ceprián N, Díaz-Del Cerro E, De la Fuente M. The Role of Immune Cells in Oxi-Inflamm-Aging. Cells 2021; 10:2974. [PMID: 34831197 PMCID: PMC8616159 DOI: 10.3390/cells10112974] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/20/2021] [Accepted: 10/30/2021] [Indexed: 02/07/2023] Open
Abstract
Aging is the result of the deterioration of the homeostatic systems (nervous, endocrine, and immune systems), which preserve the organism's health. We propose that the age-related impairment of these systems is due to the establishment of a chronic oxidative stress situation that leads to low-grade chronic inflammation throughout the immune system's activity. It is known that the immune system weakens with age, which increases morbidity and mortality. In this context, we describe how the function of immune cells can be used as an indicator of the rate of aging of an individual. In addition to this passive role as a marker, we describe how the immune system can work as a driver of aging by amplifying the oxidative-inflammatory stress associated with aging (oxi-inflamm-aging) and inducing senescence in far tissue cells. Further supporting our theory, we discuss how certain lifestyle conditions (such as social environment, nutrition, or exercise) can have an impact on longevity by affecting the oxidative and inflammatory state of immune cells, regulating immunosenescence and its contribution to oxi-inflamm-aging.
Collapse
Affiliation(s)
- Irene Martínez de Toda
- Department of Genetics, Physiology, and Microbiology (Unit of Animal Physiology), Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain; (N.C.); (E.D.-D.C.); (M.D.l.F.)
- Institute of Investigation 12 de Octubre (i+12), 28041 Madrid, Spain
| | - Noemi Ceprián
- Department of Genetics, Physiology, and Microbiology (Unit of Animal Physiology), Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain; (N.C.); (E.D.-D.C.); (M.D.l.F.)
- Institute of Investigation 12 de Octubre (i+12), 28041 Madrid, Spain
| | - Estefanía Díaz-Del Cerro
- Department of Genetics, Physiology, and Microbiology (Unit of Animal Physiology), Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain; (N.C.); (E.D.-D.C.); (M.D.l.F.)
- Institute of Investigation 12 de Octubre (i+12), 28041 Madrid, Spain
| | - Mónica De la Fuente
- Department of Genetics, Physiology, and Microbiology (Unit of Animal Physiology), Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain; (N.C.); (E.D.-D.C.); (M.D.l.F.)
- Institute of Investigation 12 de Octubre (i+12), 28041 Madrid, Spain
| |
Collapse
|
50
|
Polevshchikov AV, Nazarov PG. Immunity, Aging, and the Works of V.M. Dilman. ADVANCES IN GERONTOLOGY 2021. [DOI: 10.1134/s2079057021030103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|