1
|
Fló M, Pellizza L, Durán R, Alvarez B, Fernández C. The monodomain Kunitz protein EgKU-7 from the dog tapeworm Echinococcus granulosus is a high-affinity trypsin inhibitor with two interaction sites. Biochem J 2024; 481:717-739. [PMID: 38752933 DOI: 10.1042/bcj20230514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/10/2024] [Accepted: 05/16/2024] [Indexed: 06/01/2024]
Abstract
Typical Kunitz proteins (I2 family of the MEROPS database, Kunitz-A family) are metazoan competitive inhibitors of serine peptidases that form tight complexes of 1:1 stoichiometry, mimicking substrates. The cestode Echinococcus granulosus, the dog tapeworm causing cystic echinococcosis in humans and livestock, encodes an expanded family of monodomain Kunitz proteins, some of which are secreted to the dog host interface. The Kunitz protein EgKU-7 contains, in addition to the Kunitz domain with the anti-peptidase loop comprising a critical arginine, a C-terminal extension of ∼20 amino acids. Kinetic, electrophoretic, and mass spectrometry studies using EgKU-7, a C-terminally truncated variant, and a mutant in which the critical arginine was substituted by alanine, show that EgKU-7 is a tight inhibitor of bovine and canine trypsins with the unusual property of possessing two instead of one site of interaction with the peptidases. One site resides in the anti-peptidase loop and is partially hydrolyzed by bovine but not canine trypsins, suggesting specificity for the target enzymes. The other site is located in the C-terminal extension. This extension can be hydrolyzed in a particular arginine by cationic bovine and canine trypsins but not by anionic canine trypsin. This is the first time to our knowledge that a monodomain Kunitz-A protein is reported to have two interaction sites with its target. Considering that putative orthologs of EgKU-7 are present in other cestodes, our finding unveils a novel piece in the repertoire of peptidase-inhibitor interactions and adds new notes to the evolutionary host-parasite concerto.
Collapse
Affiliation(s)
- Martín Fló
- Departamento de Biociencias, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Leonardo Pellizza
- Departamento de Biociencias, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Rosario Durán
- Unidad de Bioquímica y Proteómica Analíticas, Institut Pasteur de Montevideo and Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Beatriz Alvarez
- Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Cecilia Fernández
- Departamento de Biociencias, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
2
|
Yang XT, Wang J, Jiang YH, Zhang L, Du L, Li J, Liu F. Insight into the mechanism of gallstone disease by proteomic and metaproteomic characterization of human bile. Front Microbiol 2023; 14:1276951. [PMID: 38111640 PMCID: PMC10726133 DOI: 10.3389/fmicb.2023.1276951] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 11/16/2023] [Indexed: 12/20/2023] Open
Abstract
Introduction Cholesterol gallstone disease is a prevalent condition that has a significant economic impact. However, the role of the bile microbiome in its development and the host's responses to it remain poorly understood. Methods In this study, we conducted a comprehensive analysis of microbial and human bile proteins in 40 individuals with either gallstone disease or gallbladder polyps. We employed a combined proteomic and metaproteomic approach, as well as meta-taxonomic analysis, functional pathway enrichment, and Western blot analyses. Results Our metaproteomic analysis, utilizing the lowest common ancestor algorithm, identified 158 microbial taxa in the bile samples. We discovered microbial taxa that may contribute to gallstone formation, including β-glucuronidase-producing bacteria such as Streptococcus, Staphylococcus, and Clostridium, as well as those involved in biofilm formation like Helicobacter, Cyanobacteria, Pseudomonas, Escherichia coli, and Clostridium. Furthermore, we identified 2,749 human proteins and 87 microbial proteins with a protein false discovery rate (FDR) of 1% and at least 2 distinct peptides. Among these proteins, we found microbial proteins crucial to biofilm formation, such as QDR3, ompA, ndk, pstS, nanA, pfIB, and dnaK. Notably, QDR3 showed a gradual upregulation from chronic to acute cholesterol gallstone disease when compared to polyp samples. Additionally, we discovered other microbial proteins that enhance bacterial virulence and gallstone formation by counteracting host oxidative stress, including sodB, katG, rbr, htrA, and ahpC. We also identified microbial proteins like lepA, rtxA, pckA, tuf, and tpiA that are linked to bacterial virulence and potential gallstone formation, with lepA being upregulated in gallstone bile compared to polyp bile. Furthermore, our analysis of the host proteome in gallstone bile revealed enhanced inflammatory molecular profiles, including innate immune molecules against microbial infections. Gallstone bile exhibited overrepresented pathways related to blood coagulation, folate metabolism, and the IL-17 pathway. However, we observed suppressed metabolic activities, particularly catabolic metabolism and transport activities, in gallstone bile compared to polyp bile. Notably, acute cholelithiasis bile demonstrated significantly impaired metabolic activities compared to chronic cholelithiasis bile. Conclusion Our study provides a comprehensive metaproteomic analysis of bile samples related to gallstone disease, offering new insights into the microbiome-host interaction and gallstone formation mechanism.
Collapse
Affiliation(s)
- Xue-Ting Yang
- Minhang Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical of Sciences, Fudan University, Shanghai, China
| | - Jie Wang
- Minhang Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical of Sciences, Fudan University, Shanghai, China
| | - Ying-Hua Jiang
- Minhang Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical of Sciences, Fudan University, Shanghai, China
| | - Lei Zhang
- Minhang Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical of Sciences, Fudan University, Shanghai, China
| | - Ling Du
- Key Laboratory of Digestive Cancer Full Cycle Monitoring and Precise Intervention of Shanghai Municipal Health Commission, Minhang Hospital, Fudan University, Shanghai, China
| | - Jun Li
- Department of Surgery, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Feng Liu
- Minhang Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical of Sciences, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Shao G, Hua R, Song H, Chen Y, Zhu X, Hou W, Li S, Yang A, Yang G. Protective efficacy of six recombinant proteins as vaccine candidates against Echinococcus granulosus in dogs. PLoS Negl Trop Dis 2023; 17:e0011709. [PMID: 37871121 PMCID: PMC10621941 DOI: 10.1371/journal.pntd.0011709] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/02/2023] [Accepted: 10/09/2023] [Indexed: 10/25/2023] Open
Abstract
BACKGROUND Cystic echinococcosis (CE) is caused by the infection of Echinococcus granulosus sensu lato (E. granulosus s.l.), one of the most harmful zoonotic helminths worldwide. Infected dogs are the major source of CE transmission. While praziquantel-based deworming is a main measure employed to control dog infections, its efficacy is at times compromised by the persistent high rate of dog re-infection and the copious discharge of E. granulosus eggs into the environment. Therefore, the dog vaccine is a welcome development, as it offers a substantial reduction in the biomass of E. granulosus. This study aimed to use previous insights into E. granulosus functional genes to further assess the protective efficacy of six recombinant proteins in dogs using a two-time injection vaccination strategy. METHODS We expressed and combined recombinant E. granulosus triosephosphate isomerase (rEgTIM) with annexin B3 (rEgANXB3), adenylate kinase 1 (rEgADK1) with Echinococcus protoscolex calcium binding protein 1 (rEgEPC1), and fatty acid-binding protein (rEgFABP) with paramyosin (rEgA31). Beagle dogs received two subcutaneous vaccinations mixed with Quil-A adjuvant, and subsequently orally challenged with protoscoleces two weeks after booster vaccination. All dogs were sacrificed for counting and measuring E. granulosus tapeworms at 28 days post-infection, and the level of serum IgG was detected by ELISA. RESULTS Dogs vaccinated with rEgTIM&rEgANXB3, rEgADK1&rEgEPC1, and rEgFABP-EgA31 protein groups exhibited significant protectiveness, with a worm reduction rate of 71%, 57%, and 67%, respectively, compared to the control group (P < 0.05). Additionally, the vaccinated groups exhibited an inhibition of worm growth, as evidenced by a reduction in body length and width (P < 0.05). Furthermore, the level of IgG in the vaccinated dogs was significantly higher than that of the control dogs (P < 0.05). CONCLUSION These verified candidates may be promising vaccines for the prevention of E. granulosus infection in dogs following two injections. The rEgTIM&rEgANXB3 co-administrated vaccine underscored the potential for the highest protective efficacy and superior protection stability for controlling E. granulosus infections in dogs.
Collapse
Affiliation(s)
- Guoqing Shao
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, P. R. China
| | - Ruiqi Hua
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, P. R. China
| | - Hongyu Song
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, P. R. China
| | - Yanxin Chen
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, P. R. China
| | - Xiaowei Zhu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, P. R. China
| | - Wei Hou
- Sichuan Center for Animal Disease Prevention and Control, Chengdu, Sichuan Province, P. R. China
| | - Shengqiong Li
- Sichuan Center for Animal Disease Prevention and Control, Chengdu, Sichuan Province, P. R. China
| | - Aiguo Yang
- Sichuan Center for Animal Disease Prevention and Control, Chengdu, Sichuan Province, P. R. China
| | - Guangyou Yang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, P. R. China
| |
Collapse
|
4
|
Wang X, Lin R, Fu C, Yang C, Dong D, Wu X, Chen X, Wang L, Hou J. Echinococcus granulosus cyst fluid inhibits inflammatory responses through inducing histone demethylase KDM5B in macrophages. Parasit Vectors 2023; 16:321. [PMID: 37689671 PMCID: PMC10492338 DOI: 10.1186/s13071-023-05948-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/26/2023] [Indexed: 09/11/2023] Open
Abstract
BACKGROUND Echinococcus granulosus cyst fluid (EgCF) weakens macrophage inflammatory responses, thereby enabling the parasite to evade the immune system. However, the role of histone modification in this process remains to be explored. METHODS The levels of IL-6, TNF-α, IL-10, H3K4me3, and KDM5B were detected using quantitative real-time PCR, ELISA, and Western blotting. The enrichment of H3K4me3 and KDM5B at the promoter of inflammatory factors was detected by chromatin immunoprecipitation. RESULTS Based on EgCF-stimulated macrophage models, we found that EgCF significantly inhibited mRNA expression and protein secretion of IL-6 and TNF-α and upregulated mRNA expression of IL-10 under the influence of TLR4. EgCF lowered the level of H3K4me3 and promoted the transcription and protein stability of histone demethylase KDM5B. Chromatin immunoprecipitation analysis revealed that EgCF suppressed the enrichment of H3K4me3 modification at the promoters of TNF-α and IL-6 and downregulated their expression in macrophages. Additionally, the inhibition of KDM5B activity by CPI-455 weakened the anti-inflammatory effect of EgCF. CONCLUSIONS Our findings demonstrate a novel mechanism through which EgCF promotes KDM5B expression and inhibits the enrichment of H3K4me3 at the promoters of inflammatory cytokines to suppress the inflammatory response.
Collapse
Affiliation(s)
- Xiaopeng Wang
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Ruolin Lin
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Chunxue Fu
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Chun Yang
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Dan Dong
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Xiangwei Wu
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Xueling Chen
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Lianghai Wang
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China.
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China.
| | - Jun Hou
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China.
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China.
| |
Collapse
|
5
|
Wang RJ, Li W, Liu SN, Wang SY, Jiang P, Wang ZQ, Zhang X. Integrated transcriptomic and proteomic analyses of plerocercoid and adult Spirometra mansoni reveal potential important pathways in the development of the medical tapeworm. Parasit Vectors 2023; 16:316. [PMID: 37670335 PMCID: PMC10481575 DOI: 10.1186/s13071-023-05941-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/22/2023] [Indexed: 09/07/2023] Open
Abstract
BACKGROUND Spirometra mansoni can parasitize animals and humans through food and water, causing parasitic zoonosis. Knowledge of the developmental process of S. mansoni is crucial for effective treatment; thus, it is important to characterize differential and specific proteins and pathways associated with parasite development. METHODS In this study, we performed a comparative proteomic analysis of the plerocercoid and adult stages using a tandem mass tag-based quantitative proteomic approach. Additionally, integrated transcriptomic and proteomic analyses were conducted to obtain the full protein expression profiles of different life cycle stages of the tapeworm. RESULTS Approximately 1166 differentially expressed proteins (DEPs) were identified in adults versus plerocercoids, of which 641 DEPs were upregulated and 525 were downregulated. Gene Ontology (GO), Clusters of Orthologous groups (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses indicated that most DEPs related to genetic information processing and metabolism of energy in adults seem to be more activated. In the plerocercoid stage, compared to metabolism, genetic information processing appears more dynamic. Protein-protein interaction (PPI) revealed six key proteins (phosphomannomutase, glutathione transferase, malate dehydrogenase, cytoplasmic, 40S ribosomal protein S15, ribosomal protein L15 and 60S acidic ribosomal protein P2) that may play active roles in the growth and development of S. mansoni. Finally, the combination of transcriptomic and proteomic data suggested that three pathways (ubiquitin-mediated proteolysis, phagosome and spliceosome) and five proteins closely related to these pathways might have a significant influence in S. mansoni. CONCLUSIONS These findings contribute to increasing the knowledge on the protein expression profiles of S. mansoni and provide new insights into functional studies on the molecular mechanisms of the neglected medical tapeworm.
Collapse
Affiliation(s)
- Rui Jie Wang
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Wen Li
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Shi Nan Liu
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Si Yao Wang
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Peng Jiang
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Zhong Quan Wang
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Xi Zhang
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
6
|
Nicolao MC, Rodrigues CR, Coccimiglio MB, Ledo C, Docena GH, Cumino AC. Characterization of protein cargo of Echinococcus granulosus extracellular vesicles in drug response and its influence on immune response. Parasit Vectors 2023; 16:255. [PMID: 37516852 PMCID: PMC10387209 DOI: 10.1186/s13071-023-05854-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/28/2023] [Indexed: 07/31/2023] Open
Abstract
BACKGROUND The Echinococcus granulosus sensu lato species complex causes cystic echinococcosis, a zoonotic disease of medical importance. Parasite-derived small extracellular vesicles (sEVs) are involved in the interaction with hosts intervening in signal transduction related to parasite proliferation and disease pathogenesis. Although the characteristics of sEVs from E. granulosus protoscoleces and their interaction with host dendritic cells (DCs) have been described, the effect of sEVs recovered during parasite pharmacological treatment on the immune response remains unexplored. METHODS Here, we isolated and characterized sEVs from control and drug-treated protoscoleces by ultracentrifugation, transmission electron microscopy, dynamic light scattering, and proteomic analysis. In addition, we evaluated the cytokine response profile induced in murine bone marrow-derived dendritic cells (BMDCs) by qPCR. RESULTS The isolated sEVs, with conventional size between 50 and 200 nm, regardless of drug treatment, showed more than 500 cargo proteins and, importantly, 20 known antigens and 70 potential antigenic proteins, and several integral-transmembrane and soluble proteins mainly associated with signal transduction, immunomodulation, scaffolding factors, extracellular matrix-anchoring, and lipid transport. The identity and abundance of proteins in the sEV-cargo from metformin- and albendazole sulfoxide (ABZSO)-treated parasites were determined by proteomic analysis, detecting 107 and eight exclusive proteins, respectively, which include proteins related to the mechanisms of drug action. We also determined that the interaction of murine BMDCs with sEVs derived from control parasites and those treated with ABZSO and metformin increased the expression of pro-inflammatory cytokines such as IL-12 compared to control cells. Additionally, protoscolex-derived vesicles from metformin treatments induced the production of IL-6, TNF-α, and IL-10. However, the expression of IL-23 and TGF-β was downregulated. CONCLUSIONS We demonstrated that sEV-cargo derived from drug-treated E. granulosus protoscoleces have immunomodulatory functions, as they enhance DC activation towards a type 1 pro-inflammatory profile against the parasite, and therefore support the proposal of a new approach for the prevention and treatment of secondary echinococcosis.
Collapse
Affiliation(s)
- María Celeste Nicolao
- Laboratorio de Zoonosis Parasitarias, IIPROSAM, Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Nivel Cero, 7600, Mar del Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Christian Rodriguez Rodrigues
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Nivel 2, 7600, Mar del Plata, Argentina
| | - Magalí B Coccimiglio
- Laboratorio de Zoonosis Parasitarias, IIPROSAM, Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Nivel Cero, 7600, Mar del Plata, Argentina
| | - Camila Ledo
- Laboratorio de Zoonosis Parasitarias, IIPROSAM, Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Nivel Cero, 7600, Mar del Plata, Argentina
| | - Guillermo H Docena
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), La Plata, Argentina
| | - Andrea C Cumino
- Laboratorio de Zoonosis Parasitarias, IIPROSAM, Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Nivel Cero, 7600, Mar del Plata, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Nivel 2, 7600, Mar del Plata, Argentina.
| |
Collapse
|
7
|
Zhang X, Wei C, Lv Y, Mi R, Guo B, Rahman SU, Zhang Y, Cheng L, Jia H, Huang Y, Han X, Gong H, Chen Z. EgSeverin and Eg14-3-3zeta from Echinococcus granulosus are potential antigens for serological diagnosis of echinococcosis in dogs and sheep. Microb Pathog 2023; 179:106110. [PMID: 37060967 DOI: 10.1016/j.micpath.2023.106110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 04/17/2023]
Abstract
Cystic echinococcosis (CE) is a zoonotic parasitic disease caused by the metacestode larva of Echinococcus granulosus. In this study, two-dimensional gel electrophoresis (2-DE) coupled with immunoblot analysis revealed that E. granulosus severin and 14-3-3zeta proteins (named EgSeverin and Eg14-3-3zeta, respectively) might be two potential biomarkers for serological diagnosis of echinococcosis. The recombinant EgSeverin (rEgSeverin, 45 kDa) and Eg14-3-3zeta (rEg14-3-3zeta, 35 kDa) were administered subcutaneously to BALB/c mice to obtain polyclonal antibodies for immunofluorescence analyses (IFAs). And IFAs showed that both proteins were located on the surface of protoscoleces (PSCs). Western blotting showed that both proteins could react with sera from E. granulosus-infected sheep, dog, and mice. Indirect ELISAs (rEgSeverin- and rEg14-3-3zeta-iELISA) were developed, respectively, with sensitivities and specificities ranging from 83.33% to 100% and a coefficient of variation (CV %) of less than 10%. The rEgSeverin-iELISA showed cross-reaction with both E. granulosus and E. multilocularis, while the rEg14-3-3zeta-iELISA showed no cross-reaction with other sera except for the E. granulosus-infected ones. The field sheep sera from Xinjiang and Qinghai were analyzed using rEgSeverin-iELISA, rEg14-3-3zeta-iELISA, and a commercial kit respectively, and no significant differences were found among the three methods (p > 0.05). However, the CE positive rates in sheep sera from Qinghai were significantly higher than those from Xinjiang (p < 0.01). Overall, the results suggest that EgSeverin and Eg14-3-3zeta could be promising diagnostic antigens for E. granulosus infection.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China
| | - Chenxi Wei
- Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China
| | - Yajie Lv
- Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China
| | - Rongsheng Mi
- Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China
| | - Baoping Guo
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, PR China
| | - Sajid Ur Rahman
- Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China; Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Yehua Zhang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China
| | - Long Cheng
- Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China
| | - Haiyan Jia
- Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China
| | - Yan Huang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China
| | - Xiangan Han
- Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China
| | - Haiyan Gong
- Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China.
| | - Zhaoguo Chen
- Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China.
| |
Collapse
|
8
|
Riera-Ferrer E, Piazzon MC, Del Pozo R, Palenzuela O, Estensoro I, Sitjà-Bobadilla A. A bloody interaction: plasma proteomics reveals gilthead sea bream (Sparus aurata) impairment caused by Sparicotyle chrysophrii. PARASITES & VECTORS 2022; 15:322. [PMID: 36088326 PMCID: PMC9463799 DOI: 10.1186/s13071-022-05441-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/12/2022] [Indexed: 11/20/2022]
Abstract
Background Sparicotylosis is an enzootic parasitic disease that is well established across the Mediterranean Sea. It is caused by the polyopisthocotylean monogenean Sparicotyle chrysophrii and affects the gills of gilthead sea bream (GSB; Sparus aurata). Current disease management, mitigation and treatment strategies are limited against sparicotylosis. To successfully develop more efficient therapeutic strategies against this disease, understanding which molecular mechanisms and metabolic pathways are altered in the host is critical. This study aims to elucidate how S. chrysophrii infection modulates the plasma proteome of GSB and to identify the main altered biological processes involved. Methods Experimental infections were conducted in a recirculating aquaculture system (RAS) in which naïve recipient GSB ([R]; 70 g; n = 50) were exposed to effluent water from S. chrysophrii-infected GSB (98 g; n = 50). An additional tank containing unexposed naïve fish (control [C]; 70 g; n = 50) was maintained in parallel, but with the open water flow disconnected from the RAS. Haematological and infection parameters from sampled C and R fish were recorded for 10 weeks. Plasma samples from R fish were categorised into three different groups according to their infection intensity, which was based on the number of worms fish−1: low (L: 1–50), medium (51–100) and high (H: > 100). Five plasma samples from each category and five C samples were selected and subjected to a SWATH-MS proteome analysis. Additional assays on haemoglobin, cholesterol and the lytic activity of the alternative complement pathway were performed to validate the proteome analysis findings. Results The discriminant analysis of plasma protein abundance revealed a clear separation into three groups (H, M/L and C). A pathway analysis was performed with the differentially quantified proteins, indicating that the parasitic infection mainly affected pathways related to haemostasis, the immune system and lipid metabolism and transport. Twenty-two proteins were significantly correlated with infection intensity, highlighting the importance of apolipoproteins, globins and complement component 3. Validation assays of blood and plasma (haemoglobin, cholesterol and lytic activity of alternative complement pathway) confirmed these correlations. Conclusions Sparicotylosis profoundly alters the haemostasis, the innate immune system and the lipid metabolism and transport in GSB. This study gives a crucial global overview of the pathogenesis of sparicotylosis and highlights new targets for further research. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05441-1.
Collapse
|
9
|
Evolutionary Adaptations of Parasitic Flatworms to Different Oxygen Tensions. Antioxidants (Basel) 2022; 11:antiox11061102. [PMID: 35739999 PMCID: PMC9220675 DOI: 10.3390/antiox11061102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/25/2022] [Accepted: 05/29/2022] [Indexed: 11/17/2022] Open
Abstract
During the evolution of the Earth, the increase in the atmospheric concentration of oxygen gave rise to the development of organisms with aerobic metabolism, which utilized this molecule as the ultimate electron acceptor, whereas other organisms maintained an anaerobic metabolism. Platyhelminthes exhibit both aerobic and anaerobic metabolism depending on the availability of oxygen in their environment and/or due to differential oxygen tensions during certain stages of their life cycle. As these organisms do not have a circulatory system, gas exchange occurs by the passive diffusion through their body wall. Consequently, the flatworms developed several adaptations related to the oxygen gradient that is established between the aerobic tegument and the cellular parenchyma that is mostly anaerobic. Because of the aerobic metabolism, hydrogen peroxide (H2O2) is produced in abundance. Catalase usually scavenges H2O2 in mammals; however, this enzyme is absent in parasitic platyhelminths. Thus, the architecture of the antioxidant systems is different, depending primarily on the superoxide dismutase, glutathione peroxidase, and peroxiredoxin enzymes represented mainly in the tegument. Here, we discuss the adaptations that parasitic flatworms have developed to be able to transit from the different metabolic conditions to those they are exposed to during their life cycle.
Collapse
|
10
|
Biosa G, Bonelli P, Pisanu S, Ghisaura S, Santucciu C, Peruzzu A, Garippa G, Uzzau S, Masala G, Pagnozzi D. Proteomic characterization of Echinococcus granulosus sensu stricto, Taenia hydatigena and Taenia multiceps metacestode cyst fluids. Acta Trop 2022; 226:106253. [PMID: 34822852 DOI: 10.1016/j.actatropica.2021.106253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/25/2021] [Accepted: 11/17/2021] [Indexed: 12/28/2022]
Abstract
Cystic echinococcosis (CE) diagnosis by means of serological assays is hampered by the presence of parasites closely related to Echinococcus granulosus sensu lato (s.l.), responsible of the zoonotic disease and with which share cross-reacting antigens. Thus, improvements on the characterization of Echinococcus specific antigens expressed in the larval stage are required, in order to provide useful information for the development of immunological assays for the serodiagnosis of CE in sheep. Here, the proteome of the hydatid cyst fluids (HFs) of Echinococcus granulosus (hydatid fluid, EgHF) and other ovine parasites cyst fluids (CFs), Taenia hydatigena (ThCF) and Taenia multiceps (TmCF) were analyzed by a shotgun proteomic approach. Parasite and host protein profiles in the three types of cyst fluids were characterized and compared. Among the identified proteins, differential parasitic markers with serodiagnostic potential, due to their well-known immunoreactivity in human, included Ag5, AgB proteins, 8-kDa glycoproteins, hydatid disease diagnostic antigen P29 and major egg antigen P40. In particular, seven proteoforms of AgB and 8-kDa glycoprotein resulted to be the most promising diagnostic biomarkers, as they might predict CE in ovine and discriminate between different types of parasites.
Collapse
|
11
|
García-Méndez N, Manterola C, Totomoch-Serra A, Riffo-Campos AL, Brito-Carreón CA. PROTEOMIC PROFILE OF ECHINOCOCCUS GRANULOSUS: A SYSTEMATIC REVIEW. J Parasitol 2022; 108:64-69. [PMID: 35119469 DOI: 10.1645/20-86] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Cystic echinococcosis is a zoonotic disease caused by the larval stage of Echinococcus granulosus. This affliction is an endemic worldwide condition that represents a neglected parasitic disease with important socioeconomic repercussions. Proteomic characterization of larval and adult stages of E. granulosus, as well as the association between expression profiles and host interactions, is relevant for a better understanding of parasite biology, and eventually for drug design and vaccine development. This study aimed to develop a synthesis of the evidence available related to proteomics of E. granulosus. A systematic review was carried out to collect data concerning the proteomics of E. granulosus, without language or host restriction, published between 1980 and 2019. A systematic search was carried out in the Trip Database, BIREME-BVS, SciELO, Web of Science, PubMed, EMBASE, SCOPUS, EBSCO host, and LILACS, using MeSH terms, free words, and Boolean connectors, and adapting strategies to each source of information. Additionally, a manual cross-reference search was performed. Variables studied were the year of publication, geographic origin of the study, number of samples, hosts, parasitic organs, proteomic techniques, and parasite proteins verified. Nine-hundred and thirty-six related articles were identified: 17 fulfilled selection criteria, including slightly more than 188 samples. Most articles were published between 2014 and 2019 (64.7%) and were from Brazil and China (35.3% each). In reference to confirmed hosts in the primary articles, cattle (41.2%) and humans (23.5%) were the most frequently reported. Concerning proteomic techniques applied in the primary articles, LC-MS/MS was the most used (41.1%), and 890 proteins were reported by the primary articles. As the results of our search suggest, the information related to E. granulosus proteomics is scarce, heterogeneous, and scattered throughout several articles that include a diversity of tissues, samples, intermediate hosts, and proteomic techniques. Consequently, the level of evidence generated by our search is type 4.
Collapse
Affiliation(s)
- Nayely García-Méndez
- Ph.D. Program in Medical Sciences, Universidad de La Frontera, 4811230, Temuco, Chile
| | - Carlos Manterola
- Ph.D. Program in Medical Sciences, Universidad de La Frontera, 4811230, Temuco, Chile.,Center of Excellence in Morphological and Surgical Studies (CEMyQ), Universidad de La Frontera, 4811230, Temuco, Chile
| | - Armando Totomoch-Serra
- Ph.D. Program in Medical Sciences, Universidad de La Frontera, 4811230, Temuco, Chile.,Department of Genetics and Molecular Biology, Center for Research and Advanced Studies, National Polytechnic Institute, 36824, México City, México
| | - Angela L Riffo-Campos
- Ph.D. Program in Medical Sciences, Universidad de La Frontera, 4811230, Temuco, Chile
| | - César A Brito-Carreón
- Department of Genetics and Molecular Biology, Center for Research and Advanced Studies, National Polytechnic Institute, 36824, México City, México
| |
Collapse
|
12
|
Amahong K, Yan M, Li J, Yang N, Liu H, Bi X, Vuitton DA, Lin R, Lü G. EgGLUT1 Is Crucial for the Viability of Echinococcus granulosus sensu stricto Metacestode: A New Therapeutic Target? Front Cell Infect Microbiol 2021; 11:747739. [PMID: 34858873 PMCID: PMC8632494 DOI: 10.3389/fcimb.2021.747739] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 10/14/2021] [Indexed: 12/14/2022] Open
Abstract
Cystic echinococcosis (CE) is a zoonotic parasitic disease caused by infection with the larvae of Echinococcus granulosus sensu lato (s.l.) cluster. It is urgent to identify novel drug targets and develop new drug candidates against CE. Glucose transporter 1 (GLUT1) is mainly responsible for the transmembrane transport of glucose to maintain its constant cellular availability and is a recent research hotspot as a drug target in various diseases. However, the role of GLUT1 in E. granulosus s.l. (EgGLUT1) was unknown. In this study, we cloned a conserved GLUT1 homology gene (named EgGLUT1-ss) from E. granulosus sensu stricto (s.s.) and found EgGLUT1-ss was crucial for glucose uptake and viability by the protoscoleces of E. granulosus s.s. WZB117, a GLUT1 inhibitor, inhibited glucose uptake by E. granulosus s.s. and the viability of the metacestode in vitro. In addition, WZB117 showed significant therapeutic activity in E. granulosus s.s.-infected mice: a 10 mg/kg dose of WZB117 significantly reduced the number and weight of parasite cysts (P < 0.05) as efficiently as the reference drug, albendazole. Our results demonstrate that EgGLUT1-ss is crucial for glucose uptake by the protoscoleces of E. granulosus s.s., and its inhibitor WZB117 has a therapeutic effect on CE.
Collapse
Affiliation(s)
- Kuerbannisha Amahong
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.,College of Pharmacy, Xinjiang Medical University, Urumqi, China
| | - Mingzhi Yan
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.,College of Pharmacy, Xinjiang Medical University, Urumqi, China
| | - Jintian Li
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.,College of Pharmacy, Xinjiang Medical University, Urumqi, China
| | - Ning Yang
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Hui Liu
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Xiaojuan Bi
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Dominique A Vuitton
- French National Reference Centre for Echinococcosis, University Bourgogne Franche-Comté, Besançon, France
| | - Renyong Lin
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.,WHO Collaborating Centre for Prevention and Care Management of Echinococcosis, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.,Basic Medical College, Xinjiang Medical University, Urumqi, China
| | - Guodong Lü
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.,College of Pharmacy, Xinjiang Medical University, Urumqi, China.,WHO Collaborating Centre for Prevention and Care Management of Echinococcosis, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
13
|
Borvinskaya E, Kochneva A, Bedulina D, Sukhovskaya I, Smirnov L, Babkina I. Comparative Analysis of Proteins of Functionally Different Body Parts of the Fish Parasites Triaenophorus nodulosus and Triaenophorus crassus. Acta Parasitol 2021; 66:1137-1150. [PMID: 33818717 DOI: 10.1007/s11686-021-00384-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/23/2021] [Indexed: 11/25/2022]
Abstract
PURPOSE Studies of proteins expressed in the morphological structures of the parasite are necessary for elucidating the biological functions of unknown proteins and understanding the molecular basis of parasitism. The research aim was to investigate the spatial distribution of major proteins in scolex, immature and gravid proglottids of Triaenophorus nodulosus and Triaenophorus crassus. METHODS Protein extracts of worm body parts were analyzed using two-dimensional difference gel electrophoresis (DIGE) and mass spectrometry. RESULTS Comparison of the protein repertoire of the adult worm and the encysted plerocercoid revealed differences between the worm body parts, life stages and parasite species. The content of proteins associated with the cytoskeleton and musculature (actin, myosin regulatory light chain, and tropomyosin 2) decreased with distance from the scolex. Mature proglottids were rich in transforming growth factor-beta-induced protein, propionyl-CoA carboxylase, glutamate dehydrogenase and beta-tubulin. Interspecific variation in T. nodulosus and T. crassus was found in the content of the myosin, paramyosin, the major vault protein and an uncharacterized secreted protein TRINITY_DN24645. Differential expression of TRINITY_DN24645, paramyosin and tropomyosin 2 was found between plerocercoids and adult worms. CONCLUSION The present study provides the first characteristics of the spatial distribution of the major proteins of T. crassus and T. nodulosus. Comparison of the protein composition of plerocercoids and adult parasites indicates a significant similarity in the proteomic organization of Triaenophorus sp. in the second intermediate and final hosts. The gradual change in the morphological organization of tapeworms in the longitudinal direction coincided with the expression of some structural and metabolic proteins.
Collapse
Affiliation(s)
- Ekaterina Borvinskaya
- Institute of Biology At Irkutsk State University, 3 Lenin St, 664025, Irkutsk, Russia.
| | - Albina Kochneva
- Institute of Biology of the Karelian Research Centre of the Russian Academy of Sciences, 11 Pushkinskaya St, 185910, Petrozavodsk, Russia
| | - Daria Bedulina
- Institute of Biology At Irkutsk State University, 3 Lenin St, 664025, Irkutsk, Russia
| | - Irina Sukhovskaya
- Institute of Biology of the Karelian Research Centre of the Russian Academy of Sciences, 11 Pushkinskaya St, 185910, Petrozavodsk, Russia
| | - Lev Smirnov
- Institute of Biology of the Karelian Research Centre of the Russian Academy of Sciences, 11 Pushkinskaya St, 185910, Petrozavodsk, Russia
| | - Irina Babkina
- Department of Invertebrate Zoology, St Petersburg State University, 7/9A Universitetskaya St, 199034, St Petersburg, Russia
| |
Collapse
|
14
|
Liu C, Bi X, Fan H, Ma L, Ge RL. Microcyst fluid promotes the migration and invasion of fibroblasts in the adventitial layer of alveolar echinococcosis. Acta Trop 2021; 223:106084. [PMID: 34389327 DOI: 10.1016/j.actatropica.2021.106084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 07/31/2021] [Accepted: 08/01/2021] [Indexed: 11/24/2022]
Abstract
Alveolar echinococcosis (AE) caused by Echinococcus multilocularis (E. multilocularis), characterized by lesions composed of an aggregate of microcysts embedded in a granulomatous host's reaction. The periphery of parasite granulomas often additionally displays fibrotic reactions of varying intensity, in which E. multilocularis microenvironment fibroblasts (EMFs) laid down collagen. However, the regulation of EMFs by the infiltration of E. multilocularis microcyst fluid (MF) into granulomas remains poorly defined. This study aimed to investigate the effect of MF on migration and invasion of primary isolated EMFs cells. A mouse model of secondary infection with AE was established, and the model construction was evaluated by HE staining. EMFs were cultured in primary by tissue block adherency method. The isolated cells were identified by qPCR, immunofluorescence and Western blot. Then CCK-8 assay, cell migration/invasion assay and flow cytometry were performed to detect the effects of MF on the proliferation, migration, invasion and cell cycle of EMFs, respectively. The expressions of MMP2 and MMP9 at mRNA and protein levels in EMFs were detected by RT-qPCR and Western blot. The effect of PI3K-Akt signal transduction pathway on regulating the expression of MMPs expression was assessed by Western blot. As indicated from the results, EMFs were successfully isolated from the E. multilocularis microenvironment and identified as myofibroblasts. MF significantly facilitated the proliferation and cell cycle progression of EMFs. In addition, MF significantly improved the migration and invasion of EMFs. MF was further confirmed to up-regulate mRNA and protein expressions of MMP2 and MMP9 in EMFs, which was related to the activation of the PI3K-Akt signaling pathway. The present study demonstrates that MF can promote the migration and invasion of EMFs cells significantly, which might be via activating PI3K-Akt signaling pathway.
Collapse
|
15
|
The RNA modification in Echinococcus granulosus cysts revealed by mass spectrometry. INFECTION GENETICS AND EVOLUTION 2021; 96:105124. [PMID: 34710588 DOI: 10.1016/j.meegid.2021.105124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/29/2021] [Accepted: 10/22/2021] [Indexed: 11/24/2022]
Abstract
RNA modifications, as one of epigenetic mechanisms, are important and conserved mechanisms for maintaining the homeostasis of organisms. Little is known about RNA modifications in Echinococcus granulosus, an obligate parasite that inhabits mammals and gives rise to a huge public health and economic impact. Here, we focused on the RNA modification characteristics of E. granulosus for the first time by using mass spectrometry (UPLC-MS/MS) to qualitatively and quantitatively analyze 47 types of RNA modifications in E. granulosus total RNA. Furthermore, the E. granulosus homologs of writer enzymes preforming RNA modifications were identified, and their gene expression pattern at different developmental stages were analyzed by bioinformatics analysis. Finally, 23 types of RNA modifications were found in E. granulosus cysts total RNA, of which m1A, Ψ and m5C are the most abundant. The homologs of writer enzymes involved in these modifications were identified in the E. granulosus genome, with the dynamic gene expression during the different parasitic developmental stages. This work confirms that E. granulosus retains the conserved RNA modification mechanism during evolution, suggesting the important role of RNA modification in regulating its development and parasitic process. Moreover, the differences of amino acid sequences of RNA modification writer enzymes between parasite and host make it possible to use these enzymes as the candidate drug targets in the follow-up in-depth researches.
Collapse
|
16
|
Ciftci TT, Yabanoglu-Ciftci S, Unal E, Akinci D, Baysal I, Yuce G, Dogrul AB, Orsten S, Akhan O, Nemutlu E. Metabolomic profiling of active and inactive liver cystic echinococcosis. Acta Trop 2021; 221:105985. [PMID: 34048790 DOI: 10.1016/j.actatropica.2021.105985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 04/26/2021] [Accepted: 05/19/2021] [Indexed: 01/10/2023]
Abstract
Cystic Echinococcosis (CE) is one of the life-threatening diseases worldwide. It is a parasitic zoonosis caused by tapeworms of the species Echinococcus granulosus sensu lato (s.l). The treatment options of CE vary from simple "watch and wait" approach to invasive treatment, based on the type and especially the nature of the cyst (active/inactive). Serological tests are inadequate to distinguish between active and inactive CE. A diagnostic reference that can determine whether the cyst is active or inactive can easily guide the treatment strategy. We aimed to test whether gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-quadropole time of flight mass spectrometry (LC-qTOF-MS) based metabolomics can establish a plasma metabolic fingerprint of CE patients and identify a diagnostic reference to discriminate active and inactive CE cysts. Metabolite concentrations were measured in plasma samples of 36 active CE patients, 17 inactive CE patients and 31 healthy controls. Multivariate statistical analysis on 232 identified metabolites obtained from two analytical platforms was performed by using principle component analysis (PCA) and partial least square-discriminant analysis (PLS-DA) methods. The PLS-DA scores plot of the combined data set demonstrated a good separation between the groups. Compared to the healthy control group, decreased levels of squalene and increased levels of glyceric acid, 3-phosphoglycerate, glutamic acid, palmitoleic acid and oleic acid were determined in the CE patients. However, decreased levels of 3-phosphoglycerate and increased levels of 4-hydroxyphenylacetylglutamine, docosahexanoic acid were determined in active CE patients compared to the inactive CE patients. Determination of differences in metabolites may provide detailed understandings of potential metabolic process associated with active and inactive CE patients, and altered specific metabolic changes may provide some clues to obtain diagnostic reference for CE. This study has certain limitations: a. various factors affecting results of metabolomic studies such as lifestyle and dietary habits of the patients could not be fully controlled b. other infectious or malignant diseases of the liver should also be included as a positive control to evaluate the specificity of the diagnostic references.
Collapse
Affiliation(s)
- Turkmen T Ciftci
- Hacettepe University, Faculty of Medicine, Department of Radiology, Ankara 06100, Turkey.
| | - Samiye Yabanoglu-Ciftci
- Hacettepe University, Faculty of Pharmacy, Department of Biochemistry, Ankara 06100, Turkey.
| | - Emre Unal
- Hacettepe University, Faculty of Medicine, Department of Radiology, Ankara 06100, Turkey.
| | - Devrim Akinci
- Hacettepe University, Faculty of Medicine, Department of Radiology, Ankara 06100, Turkey.
| | - Ipek Baysal
- Hacettepe University, Faculty of Pharmacy, Department of Biochemistry, Ankara 06100, Turkey.
| | - Gokhan Yuce
- Ministry of Health, Ankara City Hospital, Department of Radiology, Ankara, Turkey.
| | - Ahmet Bulent Dogrul
- Hacettepe University, Faculty of Medicine, Department of General Surgery, Ankara, Turkey
| | - Serra Orsten
- Hacettepe University, Vocational School of Health Services, Ankara, Turkey.
| | - Okan Akhan
- Hacettepe University, Faculty of Medicine, Department of Radiology, Ankara 06100, Turkey.
| | - Emirhan Nemutlu
- Hacettepe University, Faculty of Pharmacy, Department of Analytical Chemistry, Ankara 06100, Turkey; Hacettepe University, Faculty of Pharmacy, Bioanalytic and Omics Laboratory, Ankara 06100, Turkey.
| |
Collapse
|
17
|
Miles S, Magnone J, García-Luna J, Ancarola ME, Cucher M, Dematteis S, Frischknecht F, Cyrklaff M, Mourglia-Ettlin G. Ultrastructural characterization of the tegument in protoscoleces of Echinococcus ortleppi. Int J Parasitol 2021; 51:989-997. [PMID: 34216624 DOI: 10.1016/j.ijpara.2021.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 12/27/2022]
Abstract
Cystic echinococcosis is a globally distributed zoonosis caused by cestodes of the Echinococcus granulosus sensu lato (s.l.) complex, with Echinococcus ortleppi mainly involved in cattle infection. Protoscoleces show high developmental plasticity, being able to differentiate into either adult worms or metacestodes within definitive or intermediate hosts, respectively. Their outermost cellular layer is called the tegument, which is important in determining the infection outcome through its immunomodulating activities. Herein, we report an in-depth characterization of the tegument of E. ortleppi protoscoleces performed through a combination of scanning and transmission electron microscopy techniques. Using electron tomography, a three-dimensional reconstruction of the tegumental cellular territories was obtained, revealing a novel structure termed the 'tegumental vesicular body' (TVB). Vesicle-like structures, possibly involved in endocytic/exocytic routes, were found within the TVB as well as in the parasite glycocalyx, distal cytoplasm and close inner structures. Furthermore, parasite antigens (GST-1 and AgB) were unevenly localised within tegumental structures, with both being detected in vesicles found within the TBV. Finally, the presence of host (bovine) IgG was also assessed, suggesting a possible endocytic route in protoscoleces. Our data forms the basis for a better understanding of E. ortleppi and E. granulosus s.l. structural biology.
Collapse
Affiliation(s)
- Sebastián Miles
- Área Inmunología, DEPBIO/IQB, Facultad de Química/Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay; Integrative Parasitology, Center for Infectious Diseases, Heidelberg University, Heidelberg, Germany
| | - Javier Magnone
- Área Inmunología, DEPBIO/IQB, Facultad de Química/Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Joaquín García-Luna
- Área Inmunología, DEPBIO/IQB, Facultad de Química/Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - María Eugenia Ancarola
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina; Departamento de Microbiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marcela Cucher
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina; Departamento de Microbiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Sylvia Dematteis
- Área Inmunología, DEPBIO/IQB, Facultad de Química/Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Friedrich Frischknecht
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University, Heidelberg, Germany; German Center for Infection Research (DZIF), partner site Heidelberg, Heidelberg, Germany
| | - Marek Cyrklaff
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University, Heidelberg, Germany.
| | - Gustavo Mourglia-Ettlin
- Área Inmunología, DEPBIO/IQB, Facultad de Química/Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
18
|
Li Y, Zhu Y, Sha T, Chen Z, Yu M, Zhang F, Ding J. A Multi-Epitope Chitosan Nanoparticles Vaccine of Canine Against Echinococcus granulosus. J Biomed Nanotechnol 2021; 17:910-920. [PMID: 34082876 DOI: 10.1166/jbn.2021.3065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Cystic Echinococcosis (CE) is caused by Echinococcus granulosus (Eg), which endangers the health of the intermediate host. Therefore, effective canid vaccines against Eg infection are urgently needed to reduce the incidence of this disease. In the present work, the aim was to predict epitopes in four vaccine candidate antigens (VCAs) in Eg as a basis to design a multi-epitope canine-directed vaccine. This vaccine is based on chitosan nanoparticles (CS-NPs) and is directed against Eg infection in the definitive host. The canine-directed vaccine was designed based on Eg antigens EgM9, Eg_10196, EgA31 and EgG1Y162. Several tools in online servers were used to predict VCAs information, which was combined with B cell, CTL and Th epitopes. Considering that acquiring experimental information in canids is difficult, and that it may be possible to perform future experiments in mice, we predicted both canine and murine T cell epitopes. The multi-epitope vaccine was synthetically prepared by ionic crosslinking method, and CS-NPs was used as adjuvant. The mice were immunized by oral gavage and laser scanning confocal microscopy was used to localize the fluorescein- labeled multi-epitope peptide in the intestinal tract. The final multi-epitope vaccine was construct consist of Co1 targeting peptide, four B-cell epitopes, four canine-directed CTL epitopes and four murine-directed Th epitopes. It has been proven experimentally by this research that multi-epitope antigen concentration merged with microfold cells was high in the CS-NPs vaccine group. The present bioinformatics study is a first step towards the construction of a canine-specific multiepitope vaccine against Eg with twelve predicted epitopes. CS-NPs is a potential adjuvant with relatively safe penetration enhancement delivery and a potent immunostimulant.
Collapse
Affiliation(s)
- Yujiao Li
- School of Public Health, Xinjiang Medical University, Xinjiang 830011, PR China
| | - Yuejie Zhu
- Department of Blood Transfusion, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang 830011, PR China
| | - Tong Sha
- Department of Immunology, College of Basic Medicine, Xinjiang Medical University, Xinjiang 830011, PR China
| | - Zhiqiang Chen
- Department of Immunology, College of Basic Medicine, Xinjiang Medical University, Xinjiang 830011, PR China
| | - Mingkai Yu
- Department of Immunology, College of Basic Medicine, Xinjiang Medical University, Xinjiang 830011, PR China
| | - Fengbo Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang 830011, PR China
| | - Jianbing Ding
- Department of Immunology, College of Basic Medicine, Xinjiang Medical University, Xinjiang 830011, PR China
| |
Collapse
|
19
|
Li X, Jiang S, Wang X, Hui W, Jia B. iTRAQ-based comparative proteomic analysis in different developmental stages of Echinococcus granulosus. ACTA ACUST UNITED AC 2021; 28:15. [PMID: 33666550 PMCID: PMC7934609 DOI: 10.1051/parasite/2021012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 02/08/2021] [Indexed: 11/29/2022]
Abstract
Cystic echinococcosis, caused by infection with the larval stage of the cestode Echinococcus granulosus, is a chronic zoonosis. The lifecycle of the E. granulosus parasite includes three consecutive stages that require specific gene regulation or protein expression to survive environmental shifts between definitive hosts and intermediate hosts. The aim of the present study is to screen and analyze the stage differential antigens to be considered for vaccine development against E. granulosus. By using the iTRAQ (isobaric tags for relative and absolute quantification) method, the differentially expressed proteins were selected from the three consecutive developmental stages of E. granulosus: oncosphere, adult tapeworms, and protoscolex. Through a bioinformatics analysis including Clusters of Orthologous Groups (COG), Gene Ontology (GO), and pathway metabolic annotation, we identified some proteins of interest from each stage. The results showed that a large number of differentially expressed proteins (375: oncosphere vs. adult, 346: oncosphere vs. protoscolex, and 391: adult vs. protoscolex) were identified from the three main lifecycle stages. Analysis of the differential protein pathways showed that these differential proteins are mainly enriched in metabolic pathways, Huntington’s diseases, Alzheimer’s diseases, and ribosome metabolic pathways. Interestingly, among these differential proteins, expression levels of paramyosin, HSP60, HSP70, HSP90, cathepsin L1, cathepsin D, casein kinase, and calmodulin were significantly higher in the oncosphere than in the adult or protoscolex (p < 0.05). We hope our findings will help to identify potential targets for diagnosis or for therapeutic and prophylactic intervention.
Collapse
Affiliation(s)
- Xin Li
- College of Life Sciences, Shihezi University, Road Beisi, Shihezi 832003, Xinjiang, PR China - College of Animal Science and Technology, Shihezi University, Road Beisi, Shihezi 832003, Xinjiang, PR China
| | - Song Jiang
- College of Animal Science and Technology, Shihezi University, Road Beisi, Shihezi 832003, Xinjiang, PR China
| | - Xuhai Wang
- College of Animal Science and Technology, Shihezi University, Road Beisi, Shihezi 832003, Xinjiang, PR China
| | - Wenqiao Hui
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agriculture Sciences, Road Nongkenan, Hefei 230031, Anhui, PR China
| | - Bin Jia
- College of Animal Science and Technology, Shihezi University, Road Beisi, Shihezi 832003, Xinjiang, PR China
| |
Collapse
|
20
|
Xin Q, Yuan M, Lv W, Li H, Song X, Lu J, Jing T. Molecular characterization and serodiagnostic potential of Echinococcus granulosus hexokinase. Parasit Vectors 2021; 14:105. [PMID: 33557934 PMCID: PMC7869421 DOI: 10.1186/s13071-021-04606-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/23/2021] [Indexed: 11/12/2022] Open
Abstract
Background Cystic echinococcosis (CE), caused by the larval stage of Echinococcus granulosus (sensu stricto), is a life-threatening but neglected zoonosis. Glycolytic enzymes are crucial molecules for the survival and development of E. granulosus. The aim of this study was to investigate the molecular characterization, immunogenicity, tissue distribution and serodiagnostic potential of E. granulosus hexokinase (EgHK), the first key enzyme in the glycolytic pathway. Methods EgHK was cloned and expressed in Escherichia coli. Specific serum antibodies were evaluated in mice immunized with recombinant EgHK (rEgHK). The location of EgHK in the larval stage of E. granulosus was determined using fluorescence immunohistochemistry, and the potential of rEgHK as a diagnostic antigen was investigated in patients with CE using indirect enzyme-linked immunosorbent assay (ELISA). Results Recombinant EgHK could be identified in the sera of patients with CE and in mouse anti-rEgHK sera. High titers of specific immunoglobulin G were induced in mice after immunization with rEgHK. EgHK was mainly located in the tegument, suckers and hooklets of protoscoleces and in the germinal layer and laminated layer of the cyst wall. The sensitivity and specificity of the rEgHK-ELISA reached 91.3% (42/46) and 87.8% (43/49), respectively. Conclusions We have characterized the sequence, structure and location of EgHK and investigated the immunoreactivity, immunogenicity and serodiagnostic potential of rEgHK. Our results suggest that EgHK may be a promising candidate for the development of vaccines against E. granulosus and an effective antigen for the diagnosis of human CE.![]()
Collapse
Affiliation(s)
- Qi Xin
- Institute of Pathogenic Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Miaomiao Yuan
- Institute of Pathogenic Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China.,The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518000, Guangdong, People's Republic of China
| | - Wei Lv
- Institute of Pathogenic Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Huanping Li
- Institute of Pathogenic Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Xiaoxia Song
- Institute of Pathogenic Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Jun Lu
- Institute of Pathogenic Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Tao Jing
- Institute of Pathogenic Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China.
| |
Collapse
|
21
|
Porras-Silesky C, Mejías-Alpízar MJ, Mora J, Baneth G, Rojas A. Spirocerca lupi Proteomics and Its Role in Cancer Development: An Overview of Spirocercosis-Induced Sarcomas and Revision of Helminth-Induced Carcinomas. Pathogens 2021; 10:pathogens10020124. [PMID: 33530324 PMCID: PMC7911836 DOI: 10.3390/pathogens10020124] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 12/19/2022] Open
Abstract
Spirocerca lupi is a parasitic nematode of canids that induces a myriad of clinical manifestations in its host and, in 25% of infections, leads to the formation of sarcomas. The description of the protein composition of the excretory and secretory products (Sl-ESP) of S. lupi has shed light on its possible interactions with the host environment, including migration within the host and mechanisms of immunomodulation. Despite this, the process by which S. lupi induces cancer in the dog remains poorly understood, and some hypotheses have arisen regarding these possible mechanisms. In this review, we discuss the role of specific ESP from the carcinogenic helminths Clonorchis sinensis, Opisthorchis viverrini and Schistosoma haematobium in inducing chronic inflammation and cancer in their host’s tissues. The parasitic worms Taenia solium, Echinococcus granulosus, Heterakis gallinarum, Trichuris muris and Strongyloides stercoralis, which have less-characterized mechanisms of cancer induction, are also analyzed. Based on the pathological findings in spirocercosis and the mechanisms by which other parasitic helminths induce cancer, we propose that the sustained inflammatory response in the dog´s tissues produced in response to the release of Sl-ESP homologous to those of other carcinogenic worms may lead to the malignant process in infected dogs.
Collapse
Affiliation(s)
- Catalina Porras-Silesky
- Laboratory of Helminthology, Centro de Investigación en Enfermedades Tropicales, University of Costa Rica, 11501-2060 San José, Costa Rica; (C.P.-S.); (M.J.M.-A.); (J.M.)
| | - María José Mejías-Alpízar
- Laboratory of Helminthology, Centro de Investigación en Enfermedades Tropicales, University of Costa Rica, 11501-2060 San José, Costa Rica; (C.P.-S.); (M.J.M.-A.); (J.M.)
| | - Javier Mora
- Laboratory of Helminthology, Centro de Investigación en Enfermedades Tropicales, University of Costa Rica, 11501-2060 San José, Costa Rica; (C.P.-S.); (M.J.M.-A.); (J.M.)
| | - Gad Baneth
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot 7610001, Israel;
| | - Alicia Rojas
- Laboratory of Helminthology, Centro de Investigación en Enfermedades Tropicales, University of Costa Rica, 11501-2060 San José, Costa Rica; (C.P.-S.); (M.J.M.-A.); (J.M.)
- Correspondence: ; Tel.: +506-2511-8644
| |
Collapse
|
22
|
Different manifestation of Echinococcus granulosus immunogenic antigens in the liver and lungs of intermediate host. Comp Immunol Microbiol Infect Dis 2020; 74:101573. [PMID: 33189997 DOI: 10.1016/j.cimid.2020.101573] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/24/2020] [Accepted: 10/27/2020] [Indexed: 11/21/2022]
Abstract
Hydatidosis is one of the most important zoonotic diseases with a worldwide distribution and it seems that the survival of Echinococcus granulosus in nature for many years, is due to having different mechanisms to escape from the host immune systems. One of these efficient mechanisms is the production of various antigens and proteins by the larva of the parasite and the main purpose of this study is evaluation of manifestation of various antigens in different parts of intermediate host. The hepatic and pulmonary hydatid cysts were gathered from sheep and the antigens of different parts of the cysts (laminated layer, protoscolices and cyst fluid) were separated and analyzed by SDS-PAGE and then transferred to nitrocellulose paper and finally, Western blot analysis was evaluated the immunogenicity of proteins. The antigens of laminated layer, protoscolices and hydatid cyst fluid, in different tissues of the liver and lungs, manifest various proteins and also these antigens are immunogenically different. Also, it is found more immunogenic proteins in the laminated layer than the other parts of the cysts. The various proteins are generated by Echinococcus granulosus larva depending on the type of tissues attacked by the parasite. Increasing the chance of survival may be the main cause of manifestation various antigens in different parts of cysts and host tissues. These antigenic variations might have made diagnostic serologic test unreliable.
Collapse
|
23
|
Stryiński R, Łopieńska-Biernat E, Carrera M. Proteomic Insights into the Biology of the Most Important Foodborne Parasites in Europe. Foods 2020; 9:E1403. [PMID: 33022912 PMCID: PMC7601233 DOI: 10.3390/foods9101403] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/24/2020] [Accepted: 09/27/2020] [Indexed: 02/07/2023] Open
Abstract
Foodborne parasitoses compared with bacterial and viral-caused diseases seem to be neglected, and their unrecognition is a serious issue. Parasitic diseases transmitted by food are currently becoming more common. Constantly changing eating habits, new culinary trends, and easier access to food make foodborne parasites' transmission effortless, and the increase in the diagnosis of foodborne parasitic diseases in noted worldwide. This work presents the applications of numerous proteomic methods into the studies on foodborne parasites and their possible use in targeted diagnostics. Potential directions for the future are also provided.
Collapse
Affiliation(s)
- Robert Stryiński
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Elżbieta Łopieńska-Biernat
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Mónica Carrera
- Department of Food Technology, Marine Research Institute (IIM), Spanish National Research Council (CSIC), 36-208 Vigo, Spain
| |
Collapse
|
24
|
Camargo de Lima J, Floriani MA, Debarba JA, Paludo GP, Monteiro KM, Moura H, Barr JR, Zaha A, Ferreira HB. Dynamics of protein synthesis in the initial steps of strobilation in the model cestode parasite Mesocestoides corti (syn. vogae). J Proteomics 2020; 228:103939. [PMID: 32798775 PMCID: PMC10491476 DOI: 10.1016/j.jprot.2020.103939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 08/05/2020] [Accepted: 08/10/2020] [Indexed: 01/24/2023]
Abstract
Mesocestoides corti (syn. vogae) is a useful model for developmental studies of platyhelminth parasites of the Cestoda class, such as Taenia spp. or Echinococcus spp. It has been used in studies to characterize cestode strobilation, i.e. the development of larvae into adult worms. So far, little is known about the initial molecular events involved in cestode strobilation and, therefore, we carried out a study to characterize newly synthesized (NS) proteins upon strobilation induction. An approach based on bioorthogonal noncanonical amino acid tagging and mass spectrometry was used to label, isolate, identify, and quantify NS proteins in the initial steps of M. corti strobilation. Overall, 121 NS proteins were detected exclusively after induction of strobilation, including proteins related to development pathways, such as insulin and notch signaling. Metabolic changes that take place in the transition from the larval stage to adult worm were noted in special NS protein subsets related to developmental processes, such as focal adhesion, cell leading edge, and maintenance of location. The data shed light on mechanisms underlying early steps of cestode strobilation and enabled identification of possible developmental markers. We also consider the use of developmental responsive proteins as potential drug targets for developing novel anthelmintics. BIOLOGICAL SIGNIFICANCE: Larval cestodiases are life-threatening parasitic diseases that affect both man and domestic animals worldwide. Cestode parasites present complex life cycles, in which they undergo major morphological and physiological changes in the transition from one life-stage to the next. One of these transitions occurs during cestode strobilation, when the mostly undifferentiated and non-segmented larval or pre-adult form develops into a fully segmented and sexually differentiated (strobilated) adult worm. Although the proteomes of bona fide larvae and strobialted adults have been previously characterized for a few cestode species, little is still known about the dynamic of protein synthesis during the early steps of cestode strobilation. Now, the assessment of newly synthesized (NS) proteins within the first 48 h of strobilation the model cestode M. corti allowed to shed light on molecular mechanisms that are triggered by strobilation induction. The functional analyses of this repertoire of over a hundred NS proteins pointed out to changes in metabolism and activation of classical developmental signaling pathways in early strobilation. Many of the identified NS proteins may become valuable cestode developmental markers and their involvement in vital processes make them also good candidate targets for novel anthelmintic drugs.
Collapse
Affiliation(s)
- Jeferson Camargo de Lima
- Programa de Pós-Graduação em Biologia Molecular e Celular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Brazil; Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, UFRGS, Porto Alegre, RS, Brazil
| | - Maiara Anschau Floriani
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, UFRGS, Porto Alegre, RS, Brazil
| | - João Antônio Debarba
- Programa de Pós-Graduação em Biologia Molecular e Celular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Brazil; Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, UFRGS, Porto Alegre, RS, Brazil
| | - Gabriela Prado Paludo
- Programa de Pós-Graduação em Biologia Molecular e Celular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Brazil; Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, UFRGS, Porto Alegre, RS, Brazil
| | - Karina Mariante Monteiro
- Programa de Pós-Graduação em Biologia Molecular e Celular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Brazil; Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, UFRGS, Porto Alegre, RS, Brazil; Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, UFRGS, Porto Alegre, RS, Brazil
| | - Hercules Moura
- Biological Mass Spectrometry Laboratory, Clinical Chemistry Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - John R Barr
- Biological Mass Spectrometry Laboratory, Clinical Chemistry Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Arnaldo Zaha
- Programa de Pós-Graduação em Biologia Molecular e Celular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Brazil; Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, UFRGS, Porto Alegre, RS, Brazil
| | - Henrique Bunselmeyer Ferreira
- Programa de Pós-Graduação em Biologia Molecular e Celular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Brazil; Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, UFRGS, Porto Alegre, RS, Brazil; Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, UFRGS, Porto Alegre, RS, Brazil.
| |
Collapse
|
25
|
Debarba JA, Sehabiague MPC, Monteiro KM, Gerber AL, Vasconcelos ATR, Ferreira HB, Zaha A. Transcriptomic Analysis of the Early Strobilar Development of Echinococcus granulosus. Pathogens 2020; 9:E465. [PMID: 32545493 PMCID: PMC7350322 DOI: 10.3390/pathogens9060465] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/07/2020] [Accepted: 06/10/2020] [Indexed: 11/29/2022] Open
Abstract
Echinococcus granulosus has a complex life cycle involving two mammalian hosts. The transition from one host to another is accompanied by changes in gene expression, and the transcriptional events that underlie this transition have not yet been fully characterized. In this study, RNA-seq was used to compare the transcription profiles of samples from E. granulosus protoscoleces induced in vitro to strobilar development at three time points. We identified 818 differentially expressed genes, which were divided into eight expression clusters formed over the entire 24 h period. An enrichment of gene transcripts with molecular functions of signal transduction, enzymes, and protein modifications was observed upon induction and developmental progression. This transcriptomic study provides insights for understanding the complex life cycle of E. granulosus and contributes for searching for the key genes correlating with the strobilar development, which can be used to identify potential candidates for the development of anthelmintic drugs.
Collapse
Affiliation(s)
- João Antonio Debarba
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil; (J.A.D.); (M.P.C.S.); (K.M.M.); (H.B.F.)
- Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| | - Martín Pablo Cancela Sehabiague
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil; (J.A.D.); (M.P.C.S.); (K.M.M.); (H.B.F.)
- Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| | - Karina Mariante Monteiro
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil; (J.A.D.); (M.P.C.S.); (K.M.M.); (H.B.F.)
- Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| | - Alexandra Lehmkuhl Gerber
- Laboratório Nacional de Computação Científica, Petrópolis, Rio de Janeiro 25651-075, Brazil; (A.L.G.); (A.T.R.V.)
| | | | - Henrique Bunselmeyer Ferreira
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil; (J.A.D.); (M.P.C.S.); (K.M.M.); (H.B.F.)
- Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| | - Arnaldo Zaha
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil; (J.A.D.); (M.P.C.S.); (K.M.M.); (H.B.F.)
- Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| |
Collapse
|
26
|
Mousavi SM, Afgar A, Mohammadi MA, Mortezaei S, Faridi A, Sadeghi B, Fasihi Harandi M. Biological and morphological consequences of dsRNA-induced suppression of tetraspanin mRNA in developmental stages of Echinococcus granulosus. Parasit Vectors 2020; 13:190. [PMID: 32276648 PMCID: PMC7146954 DOI: 10.1186/s13071-020-04052-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/28/2020] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Cystic echinococcosis, caused by the cestode Echinococcus granulosus, is a neglected tropical disease with remarkable morbidity in humans and a problem of worldwide economic importance in livestock industry. Understanding the molecular basis of the parasite growth and development is essential for the disease diagnosis, management and control. The tetraspanin (TSP) family of proteins are transmembrane proteins with a role in many physiological processes of eukaryotic organisms. TSPs present in the tegumental surface of platyhelminths play pivotal roles in host-parasite interaction. However, little is known about the role of TSPs in growth and development in the Platyhelminthes. To understand the role of TSP1 in the growth and development of E. granulosus we investigated the effect of EgTSP1-specific long dsRNA in different in vitro stages of the parasite. METHODS Different stages of E. granulosus, protoscoleces and strobilated worms, were cultivated In vitro in di-phasic media. Using long dsRNA and two delivery methods, i.e. electroporation and electro-soaking, EgTSP1 silencing was performed with an EgTSP1-specific dsRNA. The TSP1 expression profile was assessed as well as the biological and ultrastructural properties of the parasites. RESULTS After three days of dsRNA treatment, EgTSP1 expression was significantly reduced in both stages of E. granulosus as compared to irrelevant/unrelated dsRNA and untreated controls. Silencing expression of EgTSP1 in different stages of E. granulosus resulted in reduced viability and body contractions, inhibition of protoscoleces evagination and distinctive tegumental changes. Ultrastructural morphology of the strobilated worms treated with EgTSP1-specific dsRNA was indicative of the microtriches impairments and vacuolated tegument compared to the control helminths. CONCLUSIONS Results of the present study suggest that EgTSP1 plays important structural roles in tegument configuration in E. granulosus. EgTSP1 is proved to be a potential target for the development of vaccines and RNAi-based drugs.
Collapse
Affiliation(s)
- Seyed Mohammad Mousavi
- Research Center for Hydatid Disease in Iran, School of Medicine, Kerman University of Medical Sciences, Kerman, 7616914115, Iran
| | - Ali Afgar
- Research Center for Hydatid Disease in Iran, School of Medicine, Kerman University of Medical Sciences, Kerman, 7616914115, Iran.
| | - Mohammad Ali Mohammadi
- Research Center for Hydatid Disease in Iran, School of Medicine, Kerman University of Medical Sciences, Kerman, 7616914115, Iran
| | - Seifollah Mortezaei
- Department of Parasitology, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Ashkan Faridi
- Research Center for Hydatid Disease in Iran, School of Medicine, Kerman University of Medical Sciences, Kerman, 7616914115, Iran
| | - Balal Sadeghi
- Department of Food Hygiene and Public Health, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Majid Fasihi Harandi
- Research Center for Hydatid Disease in Iran, School of Medicine, Kerman University of Medical Sciences, Kerman, 7616914115, Iran.
| |
Collapse
|
27
|
Bai Y, Zhang Z, Jin L, Zhu Y, Zhao L, Shi B, Li J, Guo G, Guo B, McManus DP, Wang S, Zhang W. Dynamic Changes in the Global Transcriptome and MicroRNAome Reveal Complex miRNA-mRNA Regulation in Early Stages of the Bi-Directional Development of Echinococcus granulosus Protoscoleces. Front Microbiol 2020; 11:654. [PMID: 32373094 PMCID: PMC7188192 DOI: 10.3389/fmicb.2020.00654] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 03/23/2020] [Indexed: 12/27/2022] Open
Abstract
Background Cystic echinococcosis is a life-threatening disease caused by the larval stages of the dog tapeworm Echinococcus granulosus. Protoscoleces (PSCs) of this worm have the ability of bi-directional development to either larval cysts or strobilar adult worms. However, the molecular mechanisms underlying this development process are unknown. Results RNA and small RNAs sequencing was employed to characterize the gene and miRNA expression at 0–24 h and 7–14 days in the bi-directional development of PSCs. A total of 963 genes and 31 miRNAs were differentially expressed in the early development of PSCs to adult worms whereas 972 genes and 27 miRNAs were differentially expressed in the early development of PSCs to cysts. Pairwise comparison between the two developmental patterns showed that 172 genes and 15 miRNAs were differentially expressed at three time-points. Most of these genes were temporally changed at 24 h or 7 days. GO enrichment analysis revealed that the differentially expressed genes in early adult worm development are associated with nervous system development and carbohydrate metabolic process; whereas, the differentially expressed genes in early cystic development are associated with transmembrane transporter activity and nucleoside triphosphatase activity. In addition, miR-71 and miR-219 regulated genes are likely involved in oxidation reduction in adult worm development. Conclusion The early stages of bi-directional development in E. granulosus PSCs are controlled by miRNAs and genes likely associated with nervous system development and carbohydrate metabolic process. ATP-dependent transporter genes are associated with cystic development. These results may be important for exploring the mechanisms underlying early development in E. granulosus providing novel information that can be used to discover new therapeutics for controlling cystic echinococcosis.
Collapse
Affiliation(s)
- Yun Bai
- Central Laboratory, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China.,Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China
| | - Zhuangzhi Zhang
- Veterinary Research Institute, Xinjiang Academy of Animal Sciences, Urumqi, China
| | - Lei Jin
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China
| | - Yongqiang Zhu
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China
| | - Li Zhao
- Veterinary Research Institute, Xinjiang Academy of Animal Sciences, Urumqi, China
| | - Baoxin Shi
- Veterinary Research Institute, Xinjiang Academy of Animal Sciences, Urumqi, China
| | - Jun Li
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Gang Guo
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Baoping Guo
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Donald P McManus
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Shengyue Wang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China.,National Research Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenbao Zhang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
28
|
Abo-Aziza FAM, Hendawy SHM, Oda SS, Aboelsoued D, El Shanawany EE. Cell-mediated and humoral immune profile to hydatidosis among naturally infected farm animals. Vet World 2020; 13:214-221. [PMID: 32158175 PMCID: PMC7020106 DOI: 10.14202/vetworld.2020.214-221] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/23/2019] [Indexed: 12/20/2022] Open
Abstract
Background and Aim Cystic echinococcosis (CE) is a widespread parasitic disease caused by Echinococcus granulosus tapeworm infect different intermediate hosts including sheep, cattle, and camels. The intermediate host's immune response to the hydatid cyst is still conflict and complex. The current study was designed to evaluate the immune response in sera of hydatid naturally infected sheep, cattle, and camels in the form of features of inflammatory cell infiltrations, levels of Th1 and Th2 cytokines, besides the humoral specific immunoglobulin G (IgG) responses. Materials and Methods Thirty-nine sheep, 74 cattle, and 79 camels' sera were collected and considered as CE naturally infected and ten samples from each species were graded as non-infected. Lung specimens were collected for histopathological examination. The quantitative concentrations of tumor necrosis factor-α, interleukin (IL)-6, IL-4, and IL-10 were determined. Different antigens were prepared from hydatid cyst; hydatid cyst fluid of lung origin hydatid cyst fluid of liver origin, hydatid cyst protoscoleces of lung origin (HCP-g), hydatid cyst protoscoleces of liver origin, hydatid cyst germinal layer of lung origin, and hydatid cyst germinal layer of liver origin; and characterized by gel electrophoresis and Western blotting analysis. The total specific IgG level against E. granulosus infection was measured using an indirect enzyme-linked immunosorbent assay. Results The results indicated that the cellular immune response in the infected tissues was characterized by inflammatory cell penetration. The pro-inflammatory Th1 cytokine profile was predominant in infected animals in comparison with non-infected ones. However, the humoral immune response was seen as a high level of IgG in infected animals. The presented data approved that the HCP-g antigen could be considered as a delegate antigen for all other prepared antigens with an immunoreactive band at molecular weights 32 kDa. Conclusion This study provides a fundamental insight into the events that manipulate cellular and humoral immune profiles in an intermediate host; sheep, cattle, and camel that naturally infected with CE. Hence, it was concluded that CE is a constant disease and confirm the reactivity Th1 in combating hydatid cyst. Besides, it could lead to the activation of the humoral immune response in the form of a high level of IgG.
Collapse
Affiliation(s)
- Faten A M Abo-Aziza
- Department of Parasitology and Animal Diseases, Veterinary Research Division, National Research Centre, Cairo, Egypt
| | - Seham H M Hendawy
- Department of Parasitology and Animal Diseases, Veterinary Research Division, National Research Centre, Cairo, Egypt
| | - Samah S Oda
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina, Egypt
| | - Dina Aboelsoued
- Department of Parasitology and Animal Diseases, Veterinary Research Division, National Research Centre, Cairo, Egypt
| | - Eman E El Shanawany
- Department of Parasitology and Animal Diseases, Veterinary Research Division, National Research Centre, Cairo, Egypt
| |
Collapse
|
29
|
Borvinskaya EV, Sukhovskaya IV, Smirnov LP, Kochneva AA, Parshukov AN, Krupnova MY, Buoy EA, Vysotskaya RU, Churova MV. The effect of Triaenophorus nodulosus (Cestoda: Bothriocephalidea) infection on some biochemical parameters of the liver of Perca fluviatilis. J Parasit Dis 2019; 43:566-574. [PMID: 31749526 PMCID: PMC6841884 DOI: 10.1007/s12639-019-01128-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 05/29/2019] [Indexed: 11/24/2022] Open
Abstract
Natural infection of 2 to 6-year-old perch with the cestode parasites Triaenophorus nodulosus was shown to have minor effects on the studied components of the antioxidant defense system, nucleic acids degradation, and carbohydrate metabolism enzymes in the liver of the fish. The level of infection of 1-4 parasite larvae per fish observed in wild population of perch was shown to be moderate in terms of its effect on the health of the host fish. The activity of hepatic enzymes β-galactosidase, β-glucosidase, cathepsin D, and glutathione S-transferase showed different responses in infected males and females, which indicates different potential resistance of fish to the stress exposure between genders.
Collapse
Affiliation(s)
- Ekaterina V. Borvinskaya
- Institute of Biology at Karelian Research Centre of Russian Academy of Sciences, 11 Pushkinskaya Street, Petrozavodsk, Russia 185910
| | - Irina V. Sukhovskaya
- Institute of Biology at Karelian Research Centre of Russian Academy of Sciences, 11 Pushkinskaya Street, Petrozavodsk, Russia 185910
| | - Lev P. Smirnov
- Institute of Biology at Karelian Research Centre of Russian Academy of Sciences, 11 Pushkinskaya Street, Petrozavodsk, Russia 185910
| | - Albina A. Kochneva
- Institute of Biology at Karelian Research Centre of Russian Academy of Sciences, 11 Pushkinskaya Street, Petrozavodsk, Russia 185910
| | - Aleksey N. Parshukov
- Institute of Biology at Karelian Research Centre of Russian Academy of Sciences, 11 Pushkinskaya Street, Petrozavodsk, Russia 185910
| | - Marina Yu. Krupnova
- Institute of Biology at Karelian Research Centre of Russian Academy of Sciences, 11 Pushkinskaya Street, Petrozavodsk, Russia 185910
| | - Elizaveta A. Buoy
- Institute of Biology at Karelian Research Centre of Russian Academy of Sciences, 11 Pushkinskaya Street, Petrozavodsk, Russia 185910
| | - Rimma U. Vysotskaya
- Institute of Biology at Karelian Research Centre of Russian Academy of Sciences, 11 Pushkinskaya Street, Petrozavodsk, Russia 185910
| | - Maria V. Churova
- Institute of Biology at Karelian Research Centre of Russian Academy of Sciences, 11 Pushkinskaya Street, Petrozavodsk, Russia 185910
| |
Collapse
|
30
|
Wang H, Zhang CS, Fang BB, Li ZD, Li L, Bi XJ, Li WD, Zhang N, Lin RY, Wen H. Thioredoxin peroxidase secreted by Echinococcus granulosus (sensu stricto) promotes the alternative activation of macrophages via PI3K/AKT/mTOR pathway. Parasit Vectors 2019; 12:542. [PMID: 31727141 PMCID: PMC6857240 DOI: 10.1186/s13071-019-3786-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 11/04/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Larvae of Echinococcus granulosus (sensu lato) dwell in host organs for a long time but elicit only a mild inflammatory response, which indicates that the resolution of host inflammation is necessary for parasite survival. The recruitment of alternatively activated macrophages (AAMs) has been observed in a variety of helminth infections, and emerging evidence indicates that AAMs are critical for the resolution of inflammation. However, whether AAMs can be induced by E. granulosus (s.l.) infection or thioredoxin peroxidase (TPx), one of the important molecules secreted by the parasite, remains unclear. METHODS The activation status of peritoneal macrophages (PMs) derived from mice infected with E. granulosus (sensu stricto) was analyzed by evaluating the expression of phenotypic markers. PMs were then treated in vivo and in vitro with recombinant EgTPx (rEgTPx) and its variant (rvEgTPx) in combination with parasite excretory-secretory (ES) products, and the resulting activation of the PMs was evaluated by flow cytometry and real-time PCR. The phosphorylation levels of various molecules in the PI3K/AKT/mTOR pathway after parasite infection and antigen stimulation were also detected. RESULTS The expression of AAM-related genes in PMs was preferentially induced after E. granulosus (s.s.) infection, and phenotypic differences in cell morphology were detected between PMs isolated from E. granulosus (s.s.)-infected mice and control mice. The administration of parasite ES products or rEgTPx induced the recruitment of AAMs to the peritoneum and a notable skewing of the ratio of PM subsets, and these effects are consistent with those obtained after E. granulosus (s.s.) infection. ES products or rEgTPx also induced PMs toward an AAM phenotype in vitro. Interestingly, this immunomodulatory property of rEgTPx was dependent on its antioxidant activity. In addition, the PI3K/AKT/mTOR pathway was activated after parasite infection and antigen stimulation, and the activation of this pathway was suppressed by pre-treatment with an AKT/mTOR inhibitor. CONCLUSIONS This study demonstrates that E. granulosus (s.s.) infection and ES products, including EgTPx, can induce PM recruitment and alternative activation, at least in part, via the PI3K/AKT/mTOR pathway. These results suggest that EgTPx-induced AAMs might play a key role in the resolution of inflammation and thereby favour the establishment of hydatid cysts in the host.
Collapse
Affiliation(s)
- Hui Wang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, 830054, Xinjiang, People's Republic of China.,Branch of The First Affiliated Hospital of Xinjiang Medical University, Changji, 831100, Xinjiang, People's Republic of China.,Basic Medical College, Xinjiang Medical University, Ürümqi, 830054, Xinjiang, China
| | - Chuan-Shan Zhang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, 830054, Xinjiang, People's Republic of China.,Xinjiang Key Laboratory of Echinococcosis, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, 830054, Xinjiang, China
| | - Bin-Bin Fang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, 830054, Xinjiang, People's Republic of China
| | - Zhi-De Li
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, 830054, Xinjiang, People's Republic of China
| | - Liang Li
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, 830054, Xinjiang, People's Republic of China
| | - Xiao-Juan Bi
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, 830054, Xinjiang, People's Republic of China
| | - Wen-Ding Li
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, 830054, Xinjiang, People's Republic of China
| | - Ning Zhang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, 830054, Xinjiang, People's Republic of China
| | - Ren-Yong Lin
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, 830054, Xinjiang, People's Republic of China. .,Xinjiang Key Laboratory of Echinococcosis, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, 830054, Xinjiang, China.
| | - Hao Wen
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, 830054, Xinjiang, People's Republic of China. .,Xinjiang Key Laboratory of Echinococcosis, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, 830054, Xinjiang, China.
| |
Collapse
|
31
|
Chen KY, Lu PJ, Cheng CJ, Jhan KY, Yeh SC, Wang LC. Proteomic analysis of excretory-secretory products from young adults of Angiostrongylus cantonensis. Mem Inst Oswaldo Cruz 2019; 114:e180556. [PMID: 31241649 PMCID: PMC6594673 DOI: 10.1590/0074-02760180556] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 05/28/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Angiostrongyliasis is caused by the nematode Angiostrongylus
cantonensis and can lead to eosinophilic meningitis and
meningoencephalitis in humans. The young adult worms play central pathogenic
roles in the central nervous system (CNS); however, the underlying mechanism
is unclear. Excretory-secretory products (ESPs) are good investigation
targets for studying the relationship between a host and its parasite. OBJECTIVES We aimed to profile, identify, and characterise the proteins in the ESPs of
A. cantonensis young adults. METHODS The ESPs of young adult worms were collected from culture medium after
incubation ranging from 24 to 96 h. Proteomic and bioinformatics analyses
were performed to characterise the ESPs. FINDINGS A total of 51 spots were identified, and the highly expressed proteins
included two protein disulphide isomerases, one calreticulin, and three
uncharacterised proteins. Subsequently, approximately 254 proteins were
identified in the ESPs of A. cantonensis young adults via
liquid chromatography-mass spectrometry (LC-MS/MS) analysis, and these were
further classified according to their characteristics and biological
functions. Finally, we identified the immunoreactive proteins from a
reference map of ESPs from A. cantonensis young adults.
Approximately eight proteins were identified, including a protein disulphide
isomerase, a putative aspartic protease, annexin, and five uncharacterised
proteins. The study established and identified protein reference maps for
the ESPs of A. cantonensis young adults. MAIN CONCLUSIONS The identified proteins may be potential targets for the development of
diagnostic or therapeutic agents for human angiostrongyliasis.
Collapse
Affiliation(s)
- Kuang-Yao Chen
- China Medical University, School of Medicine, Department of Parasitology, Taichung, Taiwan.,Chang Gung University, College of Medicine, Department of Parasitology, Taoyuan, Taiwan
| | - Pei-Jhen Lu
- Chang Gung University, College of Medicine, Department of Parasitology, Taoyuan, Taiwan
| | - Chien-Ju Cheng
- Chang Gung University, College of Medicine, Department of Parasitology, Taoyuan, Taiwan
| | - Kai-Yuan Jhan
- Chang Gung University, College of Medicine, Graduate Institute of Biomedical Sciences, Taoyuan, Taiwan
| | - Shih-Chien Yeh
- Chang Gung University, College of Medicine, Department of Parasitology, Taoyuan, Taiwan
| | - Lian-Chen Wang
- Chang Gung University, College of Medicine, Department of Parasitology, Taoyuan, Taiwan.,Chang Gung University, College of Medicine, Graduate Institute of Biomedical Sciences, Taoyuan, Taiwan.,Molecular Infectious Disease Research Centre, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| |
Collapse
|
32
|
Ebrahimipour M, Afgar A, Barati M, Mohammadi MA, Harandi MF. Evaluation of the antigenic epitopes of EgAgB/1 and EgAgB/4 subunit antigens in G1 and G6 genotypes of Echinococcus granulosus using bioinformatics. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
33
|
Miles S, Portela M, Cyrklaff M, Ancarola ME, Frischknecht F, Durán R, Dematteis S, Mourglia-Ettlin G. Combining proteomics and bioinformatics to explore novel tegumental antigens as vaccine candidates against Echinococcus granulosus infection. J Cell Biochem 2019; 120:15320-15336. [PMID: 31038784 DOI: 10.1002/jcb.28799] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/30/2019] [Accepted: 02/04/2019] [Indexed: 12/20/2022]
Abstract
Echinococcus granulosus is the parasite responsible for cystic echinococcosis (CE), an important worldwide-distributed zoonosis. New effective vaccines against CE could potentially have great economic and health benefits. Here, we describe an innovative vaccine design scheme starting from an antigenic fraction enriched in tegumental antigens from the protoscolex stage (termed PSEx) already known to induce protection against CE. We first used mass spectrometry to characterize the protein composition of PSEx followed by Gene Ontology analysis to study the potential Biological Processes, Molecular Functions, and Cellular Localizations of the identified proteins. Following, antigenicity predictions and determination of conservancy degree against other organisms were determined. Thus, nine novel proteins were identified as potential vaccine candidates. Furthermore, linear B cell epitopes free of posttranslational modifications were predicted in the whole PSEx proteome through colocalization of in silico predicted epitopes within peptide fragments identified by matrix-assisted laser desorption/ionization-TOF/TOF. Resulting peptides were termed "clean linear B cell epitopes," and through BLASTp scanning against all nonhelminth proteins, those with 100% identity against any other protein were discarded. Then, the secondary structure was predicted for peptides and their corresponding proteins. Peptides with highly similar secondary structure respect to their parental protein were selected, and those potentially toxic and/or allergenic were discarded. Finally, the selected clean linear B cell epitopes were mapped within their corresponding 3D-modeled protein to analyze their possible antibody accessibilities, resulting in 14 putative peptide vaccine candidates. We propose nine novel proteins and 14 peptides to be further tested as vaccine candidates against CE.
Collapse
Affiliation(s)
- Sebastián Miles
- Área Inmunología, DEPBIO/IQB, Facultad de Química/Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Madelón Portela
- Unidad de Bioquímica y Proteómica Analíticas, Institut Pasteur de Montevideo and IIBCE, Montevideo, Uruguay
| | - Marek Cyrklaff
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University, Heidelberg, Germany
| | - María Eugenia Ancarola
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Friedrich Frischknecht
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University, Heidelberg, Germany
| | - Rosario Durán
- Unidad de Bioquímica y Proteómica Analíticas, Institut Pasteur de Montevideo and IIBCE, Montevideo, Uruguay
| | - Sylvia Dematteis
- Área Inmunología, DEPBIO/IQB, Facultad de Química/Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Gustavo Mourglia-Ettlin
- Área Inmunología, DEPBIO/IQB, Facultad de Química/Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
34
|
Sadjjadi SM, Ebrahimipour M, Sadjjadi FS. Comparison between Echinococcus granulosus sensu stricto (G1) and E. canadensis (G6) mitochondrial genes (cox1 and nad1) and their related protein models using experimental and bioinformatics analysis. Comput Biol Chem 2019; 79:103-109. [PMID: 30769268 DOI: 10.1016/j.compbiolchem.2019.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 02/02/2019] [Accepted: 02/03/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Cystic echinococcosis (CE) as a zoonotic parasitic disease, remains a health challenge in many parts of the world. There are different species of Echinococcus granulosus sensu lato with different pathogenicity and host preferences.Different procedures have been applied for characterization of Echinococcus taxa in which two mitochondrial genes, cox1 and nad1 have been used more common. They have been able to differentiate E. granulosus sensu stricto and E. canadensis species in different hosts. The affinity of E. granulosus sensu stricto and E. canadensis species for localizing different organs seems to be different. To what such affinity and related pathogenicity could be related, is not known, so far. Bioinformatics analysis may be helpful to interpret such difference by investigating the genes and their related protein models between different species infecting human and animals. The current work was designed to study the differences between E. granulosus s.s. and E. canadensis species mitochondrial genes (cox1 and nad1) and related protein models of CE cysts by experimental and bioinformatics analysis. MATERIALS AND METHODS Different human and animal CE cysts were collected and their DNA was extracted and sequenced based on their cox1 and nad1 genes. In order to determine the E. granulosus s.s. and E. canadensis species of the samples, BLAST analysis was performed on sequenced genes. Three sequences were selected for analysis and were deposited in GenBank. Moreover, the sequence number of KT988116.1 which belonged to E. canadensis from our already deposited in GenBank was also selected. Alignment and phylogenetic analysis were performed on the sequences using BioEdit and MEGA7 software. The raw sequences of translated proteins belonged to the mentioned genes were obtained from Protein database in NCBI. The secondary structure was determined by PSIPRED Protein Sequence Analysis Workbench. The tertiary models of COX1 and NAD1 proteins in both genotypes were constructed using Modeler 9.12 software and their physicochemical features were computed using ProtParam tool in ExPASY server. RESULTS BLAST analysis on sequenced genes showed that the samples belonged to E. granulosus s.s. and E. canadensis species. These sequences were deposited in GenBank with accession numbers: JN579173.1, KF437811.1, and KY924632.1. The results showed that proteins of COX1 of E. granulosus s.s., COX1of E. canadensis, NAD1of E. granulosus s.s. and NAD1of E. canadensis species, consisted of 135, 122, 120 and 124 amino acids, respectively. The aligned sequences of translated proteins belonged to COX1 and NAD1 enzymes in E. granulosus s.s. and E. canadensis species were different; such that alignment COX1 sequence between E. granulosus s.s. and E. canadensis species showed that amino acids were different in 6 positions. This difference for NAD1 sequences were different in 19 positions. The secondary structure determined by PSIPRED showed differences in coil, strand and helix chains in COX1 and NAD1 proteins in E. granulosus s.s. and E. canadensis species. Comparison between three-dimensional structures (3D) of COX1 protein model in E. granulosus s.s. and E. canadensis species demonstrated an additional helix with two conserved iron binding sites in the COX1 protein of E. granulosus s.s. species. CONCLUSION E. granulosus s.s. and E. canadensis species differences are reflected in two important proteins: COX1 and NAD1. These differences are demonstrable in the 3D structure of proteins of both strains. So, the present study is adding to our understanding of the difference in molecular sequences between the E. granulosus s.s. (G1) and E. canadensis (G6) which may be used for interpreting the difference between the pathogenicity and localization affinity in these two important helminthic zoonosis.
Collapse
Affiliation(s)
- Seyed Mahmoud Sadjjadi
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mohammad Ebrahimipour
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Sadat Sadjjadi
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
35
|
Nicolao MC, Rodriguez Rodrigues C, Cumino AC. Extracellular vesicles from Echinococcus granulosus larval stage: Isolation, characterization and uptake by dendritic cells. PLoS Negl Trop Dis 2019; 13:e0007032. [PMID: 30615613 PMCID: PMC6344059 DOI: 10.1371/journal.pntd.0007032] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 01/23/2019] [Accepted: 11/28/2018] [Indexed: 12/20/2022] Open
Abstract
The secretion of extracellular vesicles (EVs) in helminth parasites is a constitutive mechanism that promotes survival by improving their colonization and adaptation in the host tissue. In the present study, we analyzed the production of EVs from supernatants of cultures of Echinococcus granulosus protoscoleces and metacestodes and their interaction with dendritic cells, which have the ability to efficiently uptake and process microbial antigens, activating T lymphocytes. To experimentally increase the release of EVs, we used loperamide, a calcium channel blocker that increases the cytosolic calcium level in protoscoleces and EV secretion. An exosome-like enriched EV fraction isolated from the parasite culture medium was characterized by dynamic light scattering, transmission electron microscopy, proteomic analysis and immunoblot. This allowed identifying many proteins including: small EV markers such as TSG101, SDCBP, ALIX, tetraspanins and 14-3-3 proteins; proteins involved in vesicle-related transport; orthologs of mammalian proteins involved in the immune response, such as basigin, Bp29 and maspardin; and parasite antigens such as antigen 5, P29 and endophilin-1, which are of special interest due to their role in the parasite-host relationship. Finally, studies on the EVs-host cell interaction demonstrated that E. granulosus exosome-like vesicles were internalized by murine dendritic cells, inducing their maturation with increase of CD86 and with a slight down-regulation in the expression of MHCII molecules. These data suggest that E. granulosus EVs could interfere with the antigen presentation pathway of murine dendritic cells inducing immunoregulation in the host. Further studies are needed to better understand the role of these vesicles in parasite survival and as diagnostic markers and new vaccines. Human cystic echinococcosis, caused by chronic infection with the larval stage of Echinococcus granulosus, affects over 1 million people worldwide. This helminth parasite secretes numerous excretory/secretory products that are in contact with host tissues where it establishes hydatid cysts. In this study, we comprehensively characterized extracellular vesicles (EVs) from E. granulosus protoscoleces and metacestodes, and demonstrated for the first time that the exosome-like vesicles from helminths can interact with host dendritic cells and carry several immunoregulatory proteins. This study provides valuable data on cestode-host immune communication. Nevertheless, further research on EVs is needed to fully understand their role in the parasite-host interface and obtain new data concerning their function as therapeutic markers and diagnostic tools.
Collapse
Affiliation(s)
- María Celeste Nicolao
- Laboratorio de Zoonosis Parasitarias, Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Funes, Nivel Cero, Mar del Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Christian Rodriguez Rodrigues
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Funes, Nivel 2, Mar del Plata, Argentina
| | - Andrea C. Cumino
- Laboratorio de Zoonosis Parasitarias, Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Funes, Nivel Cero, Mar del Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Funes, Nivel 2, Mar del Plata, Argentina
- * E-mail:
| |
Collapse
|
36
|
Mourglia-Ettlin G, Miles S, Velasco-De-Andrés M, Armiger-Borràs N, Cucher M, Dematteis S, Lozano F. The ectodomains of the lymphocyte scavenger receptors CD5 and CD6 interact with tegumental antigens from Echinococcus granulosus sensu lato and protect mice against secondary cystic echinococcosis. PLoS Negl Trop Dis 2018; 12:e0006891. [PMID: 30500820 PMCID: PMC6267981 DOI: 10.1371/journal.pntd.0006891] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/02/2018] [Indexed: 12/11/2022] Open
Abstract
Background Scavenger Receptors (SRs) from the host’s innate immune system are known to bind multiple ligands to promote the removal of non-self or altered-self targets. CD5 and CD6 are two highly homologous class I SRs mainly expressed on all T cells and the B1a cell subset, and involved in the fine tuning of activation and differentiation signals delivered by the antigen-specific receptors (TCR and BCR, respectively), to which they physically associate. Additionally, CD5 and CD6 have been shown to interact with and sense the presence of conserved pathogen-associated structures from bacteria, fungi and/or viruses. Methodology/Principal findings We report herein the interaction of CD5 and CD6 lymphocyte surface receptors with Echinococcus granulosus sensu lato (s.l.). Binding studies show that both soluble and membrane-bound forms of CD5 and CD6 bind to intact viable protoscoleces from E. granulosus s.l. through recognition of metaperiodate-resistant tegumental components. Proteomic analyses allowed identification of thioredoxin peroxidase for CD5, and peptidyl-prolyl cis-trans isomerase (cyclophilin) and endophilin B1 (antigen P-29) for CD6, as their potential interactors. Further in vitro assays demonstrate that membrane-bound or soluble CD5 and CD6 forms differentially modulate the pro- and anti-inflammatory cytokine release induced following peritoneal cells exposure to E. granulosus s.l. tegumental components. Importantly, prophylactic infusion of soluble CD5 or CD6 significantly ameliorated the infection outcome in the mouse model of secondary cystic echinococcosis. Conclusions/Significance Taken together, the results expand the pathogen binding properties of CD5 and CD6 and provide novel evidence for their therapeutic potential in human cystic echinococcosis. Scavenger Receptors (SRs) are constituents of host’s innate immune system able to sense and remove altered-self and/or pathogen components. Data on their interaction with helminth parasites is scarce. In this work, we describe that CD5 and CD6 -two lymphoid SRs previously reported to interact with conserved structures from bacteria, fungi and viruses- recognize tegumental components in the cestode parasite Echinococcus granulosus sensu lato (s.l.). Moreover, both receptors differentially modulate the cytokine release by host cells exposed to E. granulosus s.l. tegumental components. Importantly, the infusion of soluble forms of CD5 or CD6 improve infection outcomes in a murine model of secondary cystic echinococcosis. In summary, our results expand the pathogen binding properties of CD5 and CD6 and suggest their therapeutic potential against helminth infections.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, Differentiation, T-Lymphocyte/genetics
- Antigens, Differentiation, T-Lymphocyte/metabolism
- CD5 Antigens/genetics
- CD5 Antigens/metabolism
- Echinococcosis/genetics
- Echinococcosis/metabolism
- Echinococcosis/parasitology
- Echinococcus granulosus/genetics
- Echinococcus granulosus/metabolism
- Female
- Helminth Proteins/genetics
- Helminth Proteins/metabolism
- Humans
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Protein Binding
- Proteomics
- Receptors, Scavenger/genetics
- Receptors, Scavenger/metabolism
- T-Lymphocytes/metabolism
- T-Lymphocytes/parasitology
Collapse
Affiliation(s)
- Gustavo Mourglia-Ettlin
- Área Inmunología, Facultad de Química/Facultad de Ciencias, DEPBIO/IQB, Universidad de la República, Montevideo, Uruguay
- * E-mail: (GM-E); (FL)
| | - Sebastián Miles
- Área Inmunología, Facultad de Química/Facultad de Ciencias, DEPBIO/IQB, Universidad de la República, Montevideo, Uruguay
| | - María Velasco-De-Andrés
- Immunoreceptors del Sistema Innat i Adaptatiu, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Noelia Armiger-Borràs
- Immunoreceptors del Sistema Innat i Adaptatiu, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Marcela Cucher
- Instituto de Investigaciones en Microbiología y Parasitología Médica, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Sylvia Dematteis
- Área Inmunología, Facultad de Química/Facultad de Ciencias, DEPBIO/IQB, Universidad de la República, Montevideo, Uruguay
| | - Francisco Lozano
- Immunoreceptors del Sistema Innat i Adaptatiu, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Servei d’Immunologia, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, Barcelona, Spain
- Departament de Biomedicina, Universitat de Barcelona, Barcelona, Spain
- * E-mail: (GM-E); (FL)
| |
Collapse
|
37
|
Wang H, Li J, Zhang C, Guo B, Wei Q, Li L, Yang N, Peter McManus D, Gao X, Zhang W, Wen H. Echinococcus granulosus sensu stricto: silencing of thioredoxin peroxidase impairs the differentiation of protoscoleces into metacestodes. ACTA ACUST UNITED AC 2018; 25:57. [PMID: 30474598 PMCID: PMC6254101 DOI: 10.1051/parasite/2018055] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 10/29/2018] [Indexed: 01/14/2023]
Abstract
Cystic echinococcosis (CE) is a cosmopolitan parasitic disease caused by infection with the larval stage of Echinococcus granulosus sensu lato. Thioredoxin peroxidase (TPx) may play an essential role in the antioxidant defence system of E. granulosus s.l. as neither catalase nor glutathione peroxidase activities have been detected in the parasite. However, it is not known whether TPx affects the survival and growth of E. granulosus s.l. during development. In this study, three fragments of siRNA specific for EgTPx (siRNA-1/2/3) were designed and transfected into protoscoleces of E. granulosus sensu stricto by electroporation. Quantitative real-time PCR and Western blotting analysis showed that siRNA-3 significantly reduced the expression of EgTPx. Coincidentally, knockdown of EgTPx expression in protoscoleces with siRNA-3 significantly reduced the viability of the parasite under oxidative stress induced by 0.6 mM H2O2. In vitro culture studies showed that protoscoleces treated with siRNA-3 reduced pre-microcyst formation. In vivo experiments showed that injecting mice intraperitoneally with protoscoleces treated with siRNA-3 resulted in a significant reduction in the number, size and weight of CE cysts compared with those of control animals. Silencing of EgTPx led to the impairment of growth of E. granulosus s.s. both in vitro and in vivo, indicating that EgTPx is an important factor for protoscoleces survival and plays an important role in the antioxidant defence against the host during development.
Collapse
Affiliation(s)
- Hui Wang
- Branch of The First Affiliated Hospital of Xinjiang Medical University, Changji, Xinjiang 831100, PR China - State Key Laboratory of Pathogenesis, Prevention, Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, PR China
| | - Jun Li
- State Key Laboratory of Pathogenesis, Prevention, Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, PR China
| | - Chuanshan Zhang
- State Key Laboratory of Pathogenesis, Prevention, Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, PR China
| | - Baoping Guo
- State Key Laboratory of Pathogenesis, Prevention, Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, PR China
| | - Qin Wei
- State Key Laboratory of Pathogenesis, Prevention, Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, PR China
| | - Liang Li
- State Key Laboratory of Pathogenesis, Prevention, Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, PR China
| | - Ning Yang
- State Key Laboratory of Pathogenesis, Prevention, Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, PR China
| | - Donald Peter McManus
- Molecular Parasitology Laboratory, Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Xiaoli Gao
- Pharmacy College of Xinjiang Medical University, Urumqi 830011, PR China
| | - Wenbao Zhang
- State Key Laboratory of Pathogenesis, Prevention, Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, PR China
| | - Hao Wen
- State Key Laboratory of Pathogenesis, Prevention, Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, PR China - Branch of The First Affiliated Hospital of Xinjiang Medical University, Changji, Xinjiang 831100, PR China
| |
Collapse
|
38
|
Młocicki D, Sulima A, Bień J, Näreaho A, Zawistowska-Deniziak A, Basałaj K, Sałamatin R, Conn DB, Savijoki K. Immunoproteomics and Surfaceomics of the Adult Tapeworm Hymenolepis diminuta. Front Immunol 2018; 9:2487. [PMID: 30483248 PMCID: PMC6240649 DOI: 10.3389/fimmu.2018.02487] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 10/08/2018] [Indexed: 12/20/2022] Open
Abstract
In cestodiasis, mechanical and molecular contact between the parasite and the host activates the immune response of the host and may result in inflammatory processes, leading to ulceration and intestinal dysfunctions. The aim of the present study was to identify antigenic proteins of the adult cestode Hymenolepis diminuta by subjecting the total protein extracts from adult tapeworms to 2DE immunoblotting (two-dimensional electrophoresis combined with immunoblotting) using sera collected from experimentally infected rats. A total of 36 protein spots cross-reacting with the rat sera were identified using LC-MS/MS. As a result, 68 proteins, including certain structural muscle proteins (actin, myosin, and paramyosin) and moonlighters (heat shock proteins, kinases, phosphatases, and glycolytic enzymes) were identified; most of these were predicted to possess binding and/or catalytic activity required in various metabolic and cellular processes, and reported here as potential antigens of the adult cestode for the first time. As several of these antigens can also be found at the cell surface, the surface-associated proteins were extracted and subjected to in-solution digestion for LC-MS/MS identification (surfaceomics). As a result, a total of 76 proteins were identified, from which 31 proteins, based on 2DE immunoblotting, were predicted to be immunogenic. These included structural proteins actin, myosin and tubulin as well as certain moonlighting proteins (heat-shock chaperones) while enzymes with diverse catalytic activities were found as the most dominating group of proteins. In conclusion, the present study shed new light into the complexity of the enteric cestodiasis by showing that the H. diminuta somatic proteins exposed to the host possess immunomodulatory functions, and that the immune response of the host could be stimulated by diverse mechanisms, involving also those triggering protein export via yet unknown pathways.
Collapse
Affiliation(s)
- Daniel Młocicki
- Department of General Biology and ParasitologyMedical University of Warsaw, Warsaw, Poland
- Witold Stefański Institute of ParasitologyPolish Academy of Sciences, Warsaw, Poland
| | - Anna Sulima
- Department of General Biology and ParasitologyMedical University of Warsaw, Warsaw, Poland
| | - Justyna Bień
- Witold Stefański Institute of ParasitologyPolish Academy of Sciences, Warsaw, Poland
| | - Anu Näreaho
- Department of Veterinary BiosciencesUniversity of Helsinki, Helsinki, Finland
| | | | - Katarzyna Basałaj
- Witold Stefański Institute of ParasitologyPolish Academy of Sciences, Warsaw, Poland
| | - Rusłan Sałamatin
- Department of General Biology and ParasitologyMedical University of Warsaw, Warsaw, Poland
- Department of Parasitology and Vector-Borne DiseasesNational Institute of Public Health–National Institute of Hygiene, Warsaw, Poland
| | - David Bruce Conn
- Department of Invertebrate Zoology, Museum of Comparative Zoology, Harvard UniversityCambridge, MA, United States
- One Health Center, Berry CollegeMount Berry, GA, United States
| | - Kirsi Savijoki
- Division of Pharmaceutical BiosciencesUniversity of Helsinki, Helsinki, Finland
| |
Collapse
|
39
|
Wu M, Yan M, Xu J, Yin X, Dong X, Wang N, Gu X, Xie Y, Lai W, Jing B, Peng X, Yang G. Molecular characterization of triosephosphate isomerase from Echinococcus granulosus. Parasitol Res 2018; 117:3169-3176. [PMID: 30027383 DOI: 10.1007/s00436-018-6015-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 07/12/2018] [Indexed: 11/26/2022]
Abstract
Cystic echinococcosis (CE) is a zoonosis that can be caused by the larvae of Echinococcus granulosus; this disease occurs worldwide and is highly endemic in China. E. granulosus can produce energy by glycolysis as well as both aerobic and anaerobic respirations. Triosephosphate isomerase is a glycolytic enzyme present in a wide range of organisms and plays an important role in glycolysis. However, there has been little research on triosephosphate isomerase from E. granulosus (Eg-TIM). Here, we present a bioinformatic characterization and the experimentally determined tissue distribution characteristics of Eg-TIM. We also explored its potential value for diagnosing CE in sheep using indirect enzyme-linked immunosorbent assay (ELISA). Native Eg-TIM was located in the neck and hooks of protoscoleces (PSCs), as well as the tegument and parenchyma tissue of adult worms. The entire germinal layer was also Eg-TIM positive. Western blots showed that recombinant Eg-TIM (rEg-TIM) reacts with positive serum from sheep and had good immunogenicity. Indirect ELISA exhibited low specificity (53.6%) and low sensitivity (87.5%) and cross-reacted with both Taenia multiceps and Taenia hydatigena. Our results suggest that TIM may take part in the growth and development of E. granulosus. Furthermore, we determined that rEg-TIM is not a suitable serodiagnostic antigen for CE in sheep.
Collapse
Affiliation(s)
- Maodi Wu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Min Yan
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Jing Xu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaoxiao Yin
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaowei Dong
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ning Wang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaobin Gu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yue Xie
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Weimin Lai
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bo Jing
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xuerong Peng
- Department of Chemistry, College of Life and Basic Science, Sichuan Agricultural University, Ya'an, China
| | - Guangyou Yang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
40
|
Sulima A, Savijoki K, Bień J, Näreaho A, Sałamatin R, Conn DB, Młocicki D. Comparative Proteomic Analysis of Hymenolepis diminuta Cysticercoid and Adult Stages. Front Microbiol 2018; 8:2672. [PMID: 29379475 PMCID: PMC5775281 DOI: 10.3389/fmicb.2017.02672] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 12/21/2017] [Indexed: 12/24/2022] Open
Abstract
Cestodiases are common parasitic diseases of animals and humans. As cestodes have complex lifecycles, hexacanth larvae, metacestodes (including cysticercoids), and adults produce proteins allowing them to establish invasion and to survive in the hostile environment of the host. Hymenolepis diminuta is the most commonly used model cestode in experimental parasitology. The aims of the present study were to perform a comparative proteomic analysis of two consecutive developmental stages of H. diminuta (cysticercoid and adult) and to distinguish proteins which might be characteristic for each of the stages from those shared by both stages. Somatic proteins of H. diminuta were isolated from 6-week-old cysticercoids and adult tapeworms. Cysticercoids were obtained from experimentally infected beetles, Tenebrio molitor, whereas adult worms were collected from experimentally infected rats. Proteins were separated by GeLC-MS/MS (one dimensional gel electrophoresis coupled with liquid chromatography and tandem mass spectrometry). Additionally protein samples were digested in-liquid and identified by LC-MS/MS. The identified proteins were classified according to molecular function, cellular components and biological processes. Our study showed a number of differences and similarities in the protein profiles of cysticercoids and adults; 233 cysticercoid and 182 adult proteins were identified. From these proteins, 131 were present only in the cysticercoid and 80 only in the adult stage samples. Both developmental stages shared 102 proteins; among which six represented immunomodulators and one is a potential drug target. In-liquid digestion and LC-MS/MS complemented and confirmed some of the GeLC-MS/MS identifications. Possible roles and functions of proteins identified with both proteomic approaches are discussed.
Collapse
Affiliation(s)
- Anna Sulima
- Department of General Biology and Parasitology, Medical University of Warsaw, Warsaw, Poland
| | - Kirsi Savijoki
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Justyna Bień
- Witold Stefanski Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
| | - Anu Näreaho
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Rusłan Sałamatin
- Department of General Biology and Parasitology, Medical University of Warsaw, Warsaw, Poland.,Department of Parasitology and Vector-Borne Diseases, National Institute of Public Health-National Institute of Hygiene, Warsaw, Poland
| | - David Bruce Conn
- Department of Invertebrate Zoology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, United States.,One Health Center, Berry College, Mount Berry, GA, United States
| | - Daniel Młocicki
- Department of General Biology and Parasitology, Medical University of Warsaw, Warsaw, Poland.,Witold Stefanski Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
41
|
Sulima A, Bień J, Savijoki K, Näreaho A, Sałamatin R, Conn DB, Młocicki D. Identification of immunogenic proteins of the cysticercoid of Hymenolepis diminuta. Parasit Vectors 2017; 10:577. [PMID: 29157281 PMCID: PMC5697066 DOI: 10.1186/s13071-017-2519-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 11/01/2017] [Indexed: 01/03/2023] Open
Abstract
Background A wide range of molecules are used by tapeworm metacestodes to establish successful infection in the hostile environment of the host. Reports indicating the proteins in the cestode-host interactions are limited predominantly to taeniids, with no previous data available for non-taeniid species. A non-taeniid, Hymenolepis diminuta, represents one of the most important model species in cestode biology and exhibits an exceptional developmental plasticity in its life-cycle, which involves two phylogenetically distant hosts, arthropod and vertebrate. Results We identified H. diminuta cysticercoid proteins that were recognized by sera of H. diminuta-infected rats using two-dimensional gel electrophoresis (2DE), 2D-immunoblotting, and LC-MS/MS mass spectrometry. Proteomic analysis of 42 antigenic spots revealed 70 proteins. The largest number belonged to structural proteins and to the heat-shock protein (HSP) family. These results show a number of the antigenic proteins of the cysticercoid stage, which were present already in the insect host prior to contact with the mammal host. These are the first parasite antigens that the mammal host encounters after the infection, therefore they may represent some of the molecules important in host-parasite interactions at the early stage of infection. Conclusions These results could help in understanding how H. diminuta and other cestodes adapt to their diverse and complex parasitic life-cycles and show universal molecules used among diverse groups of cestodes to escape the host response to infection. Electronic supplementary material The online version of this article (10.1186/s13071-017-2519-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anna Sulima
- Department of General Biology and Parasitology, Medical University of Warsaw, Warsaw, Poland
| | - Justyna Bień
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
| | - Kirsi Savijoki
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Anu Näreaho
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Rusłan Sałamatin
- Department of General Biology and Parasitology, Medical University of Warsaw, Warsaw, Poland.,Department of Medical Parasitology, National Institute of Public Health - National Institute of Hygiene, Warsaw, Poland
| | - David Bruce Conn
- One Health Center, Berry College, Mount Berry, GA, USA.,Department of Invertebrate Zoology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | - Daniel Młocicki
- Department of General Biology and Parasitology, Medical University of Warsaw, Warsaw, Poland. .,Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
42
|
Navarrete-Perea J, Isasa M, Paulo JA, Corral-Corral R, Flores-Bautista J, Hernández-Téllez B, Bobes RJ, Fragoso G, Sciutto E, Soberón X, Gygi SP, Laclette JP. Quantitative multiplexed proteomics of Taenia solium cysts obtained from the skeletal muscle and central nervous system of pigs. PLoS Negl Trop Dis 2017; 11:e0005962. [PMID: 28945737 PMCID: PMC5634658 DOI: 10.1371/journal.pntd.0005962] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 10/10/2017] [Accepted: 09/13/2017] [Indexed: 01/01/2023] Open
Abstract
In human and porcine cysticercosis caused by the tapeworm Taenia solium, the larval stage (cysts) can infest several tissues including the central nervous system (CNS) and the skeletal muscles (SM). The cyst’s proteomics changes associated with the tissue localization in the host tissues have been poorly studied. Quantitative multiplexed proteomics has the power to evaluate global proteome changes in response to different conditions. Here, using a TMT-multiplexed strategy we identified and quantified over 4,200 proteins in cysts obtained from the SM and CNS of pigs, of which 891 were host proteins. To our knowledge, this is the most extensive intermixing of host and parasite proteins reported for tapeworm infections.Several antigens in cysticercosis, i.e., GP50, paramyosin and a calcium-binding protein were enriched in skeletal muscle cysts. Our results suggested the occurrence of tissue-enriched antigen that could be useful in the improvement of the immunodiagnosis for cysticercosis. Using several algorithms for epitope detection, we selected 42 highly antigenic proteins enriched for each tissue localization of the cysts. Taking into account the fold changes and the antigen/epitope contents, we selected 10 proteins and produced synthetic peptides from the best epitopes. Nine peptides were recognized by serum antibodies of cysticercotic pigs, suggesting that those peptides are antigens. Mixtures of peptides derived from SM and CNS cysts yielded better results than mixtures of peptides derived from a single tissue location, however the identification of the ‘optimal’ tissue-enriched antigens remains to be discovered. Through machine learning technologies, we determined that a reliable immunodiagnostic test for porcine cysticercosis required at least five different antigenic determinants. Human and porcine cysticercosis caused by Taenia solium is a parasite disease still endemic in developing countries. The cysts can be located in different host tissues, including different organs of the central nervous system and the skeletal muscles. The molecular mechanisms associated with the tissue localization of the cysts are not well understood. Here, we described the proteome changes of the cysts obtained from different host tissues from infected pigs using quantitative multiplex proteomics. We explored the diversity of host proteins identified in the cyst’s protein extracts and we also explored the immune-localization of several host-related proteins within the cysts, and propose their possible function. We identified several proteins and antigens enriched for a given tissue localization. Several synthetic peptides designed from these tissue-enriched antigens were tested trough ELISA. Using a combination of peptide mixtures and machine learning technologies we were able to distinguish non cysticercotic and cysticercotic pig’s sera. The tissue-enriched proteins/antigens could be useful for the development of improved immuno-diagnostic tests capable of discriminate the tissue-localization of the cysts.
Collapse
Affiliation(s)
- José Navarrete-Perea
- Dept. of Immunology, Institute for Biomedical Research, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Marta Isasa
- Dept. of Cell Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Joao A Paulo
- Dept. of Cell Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ricardo Corral-Corral
- Dept. of Biochemistry and Structural Biology, Institute of Cell Physiology, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Jeanette Flores-Bautista
- Dept. of Immunology, Institute for Biomedical Research, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Beatriz Hernández-Téllez
- Dept. of Tissue and Cell Biology, School of Medicine, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Raúl J Bobes
- Dept. of Immunology, Institute for Biomedical Research, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Gladis Fragoso
- Dept. of Immunology, Institute for Biomedical Research, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Edda Sciutto
- Dept. of Immunology, Institute for Biomedical Research, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Xavier Soberón
- Instituto Nacional de Medicina Genómica, Ciudad de México, México.,Dept. of Biocatalysis and Cellular Engineering, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Morelos, México
| | - Steven P Gygi
- Dept. of Cell Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Juan P Laclette
- Dept. of Immunology, Institute for Biomedical Research, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
43
|
Ahn CS, Kim JG, Han X, Kang I, Kong Y. Comparison of Echinococcus multilocularis and Echinococcus granulosus hydatid fluid proteome provides molecular strategies for specialized host-parasite interactions. Oncotarget 2017; 8:97009-97024. [PMID: 29228589 PMCID: PMC5722541 DOI: 10.18632/oncotarget.20761] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/09/2017] [Indexed: 12/16/2022] Open
Abstract
Alveolar and cystic echinococcoses, caused by the metacestodes of Echinococcus multilocularis and E. granulosus, are prevalent in several regions and invoke deleterious zoonotic helminthiases. Hydatid fluid (HF), which contains proteinaceous and non-proteinaceous secretions of the parasite- and host-derived components, critically affects the host-parasite interplay and disease progression. We conducted HF proteome profiling of fully mature E. multilocularis vesicle (nine months postinfection) and E. granulosus cyst (stage 2). We identified 120 and 153 proteins, respectively, in each fluid. Fifty-six and 84 proteins represented distinct species; 44 and 66 were parasites, and 12 and 18 were host-derived proteins. The five major parasite protein populations, which included antigen B isoforms, metabolic enzymes, proteases and inhibitors, extracellular matrix molecules (ECMs), and developmental proteins, were abundantly distributed in both fluids and also exclusively in one sample or the other. Carbohydrate-metabolizing enzymes were enriched in E. granulosus HF. In the E. multilocularis HF, proteins that constitute ECMs, which might facilitate adhesion and cytogenesis, were highly expressed. Those molecules had physical and functional relationships along with their biochemical properties through protein-protein interaction networks. Twelve host-derived proteins were largely segregated to serum components. The major proteins commonly and uniquely detected in these HFs and their symbiotic interactome relationships might reflect their biological roles in similar but distinct modes of maturation, invasion, and the longevity of the parasites in the hosts.
Collapse
Affiliation(s)
- Chun-Seob Ahn
- Department of Molecular Parasitology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Jeong-Geun Kim
- Department of Molecular Parasitology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Xiumin Han
- Qinghai Province Institute for Endemic Diseases Prevention and Control, Xining, China.,Clinical Research Institute for Hydatid Disease, Qinghai Provincial People's Hospital, Xining, China
| | - Insug Kang
- Department of Molecular Biology and Biochemistry, Kyung Hee University School of Medicine, Seoul, Korea
| | - Yoon Kong
- Department of Molecular Parasitology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, Korea
| |
Collapse
|
44
|
Bortezomib initiates endoplasmic reticulum stress, elicits autophagy and death in Echinococcus granulosus larval stage. PLoS One 2017; 12:e0181528. [PMID: 28817601 PMCID: PMC5560652 DOI: 10.1371/journal.pone.0181528] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 07/03/2017] [Indexed: 12/11/2022] Open
Abstract
Cystic echinococcosis (CE) is a worldwide distributed helminthic zoonosis caused by Echinococcus granulosus. Benzimidazole derivatives are currently the only drugs for chemotherapeutic treatment of CE. However, their low efficacy and the adverse effects encourage the search for new therapeutic targets. We evaluated the in vitro efficacy of Bortezomib (Bz), a proteasome inhibitor, in the larval stage of the parasite. After 96 h, Bz showed potent deleterious effects at a concentration of 5 μM and 0.5 μM in protoscoleces and metacestodes, respectively (P < 0.05). After 48 h of exposure to this drug, it was triggered a mRNA overexpression of chaperones (Eg-grp78 and Eg-calnexin) and of Eg-ire2/Eg-xbp1 (the conserved UPR pathway branch) in protoscoleces. No changes were detected in the transcriptional expression of chaperones in Bz-treated metacestodes, thus allowing ER stress to be evident and viability to highly decrease in comparison with protoscoleces. We also found that Bz treatment activated the autophagic process in both larval forms. These facts were evidenced by the increase in the amount of transcripts of the autophagy related genes (Eg-atg6, Eg-atg8, Eg-atg12, Eg-atg16) together with the increase in Eg-Atg8-II detected by western blot and by in toto immunofluorescence labeling. It was further confirmed by direct observation of autophagic structures by electronic microscopy. Finally, in order to determine the impact of autophagy induction on Echinococcus cell viability, we evaluated the efficacy of Bz in combination with rapamycin and a synergistic cytotoxic effect on protoscolex viability was observed when both drugs were used together. In conclusion, our findings demonstrated that Bz induced endoplasmic reticulum stress, autophagy and subsequent death allowing to identify unstudied parasite-host pathways that could provide a new insight for control of parasitic diseases.
Collapse
|
45
|
Zeghir-Bouteldja R, Polomé A, Bousbata S, Touil-Boukoffa C. Comparative proteome profiling of hydatid fluid from Algerian patients reveals cyst location-related variation in Echinococcus granulosus. Acta Trop 2017; 171:199-206. [PMID: 28412048 DOI: 10.1016/j.actatropica.2017.03.034] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Indexed: 12/22/2022]
Abstract
Human cystic echinococcosis, an endemic zoonosis in Algeria, is caused by larvae of the cestode Echinococcus granulosus. Parasitic modulation of the immune response allows E. granulosus to persist in intermediate hosts. Previous in vitro and in vivo immunological studies have shown differences in host immune responses according to the status and location of the hydatid cysts in the body. In this study, a proteomic analysis of human hydatid fluids was performed to identify the proteins in hydatid cyst fluids. Hydatid fluid was obtained after cystic surgical removal from three patients with these cysts. The study was conducted on fertile hydatid fluids from lungs, vertebra, and infertile paravertebral fluids. Comparisons of the protein compositions of these fluids revealed differences in their protein profiles. These differences are probably related to the cyst location and fertility status of the parasite. Notably, our analysis identified new proteins from the parasite and human host. The identification of host proteins in hydatid fluids indicates that the hydatid walls are permeable allowing a high protein exchange rate between the metacestode and the affected tissue. Interestingly, our study also revealed that parasite antigenic protein expression variations reflect the differences observed in host immunostimulation.
Collapse
Affiliation(s)
- Razika Zeghir-Bouteldja
- Laboratory of Cellular and Molecular Biology, Team 'Cytokines and NO Synthases' Faculty of Biological Science University of Sciences and Technology Houari Boumediene, USTHB, PB 32 El-Alia, Algiers 16111, Algeria; Department of Biological Science, Akli Mohand Oulhadj University, Bouira, Algeria.
| | - Andy Polomé
- Proteomic Platform, Microbiology Laboratory, Department of Molecular Biology, Université Libre de Bruxelles, Belgium.
| | - Sabrina Bousbata
- Proteomic Platform, Microbiology Laboratory, Department of Molecular Biology, Université Libre de Bruxelles, Belgium.
| | - Chafia Touil-Boukoffa
- Laboratory of Cellular and Molecular Biology, Team 'Cytokines and NO Synthases' Faculty of Biological Science University of Sciences and Technology Houari Boumediene, USTHB, PB 32 El-Alia, Algiers 16111, Algeria.
| |
Collapse
|
46
|
Laboratory Diagnosis of Echinococcus spp. in Human Patients and Infected Animals. ADVANCES IN PARASITOLOGY 2017; 96:159-257. [PMID: 28212789 DOI: 10.1016/bs.apar.2016.09.003] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Among the species composing the genus Echinococcus, four species are of human clinical interest. The most prevalent species are Echinococcus granulosus and Echinococcus multilocularis, followed by Echinococcus vogeli and Echinococcus oligarthrus. The first two species cause cystic echinococcosis (CE) and alveolar echinococcosis (AE) respectively. Both diseases have a complex clinical management, in which laboratory diagnosis could be an adjunctive to the imaging techniques. To date, several approaches have been described for the laboratory diagnosis and followup of CE and AE, including antibody, antigen and cytokine detection. All of these approaches are far from being optimal as adjunctive diagnosis particularly for CE, since they do not reach enough sensitivity and/or specificity. A combination of several methods (e.g., antibody and antigen detection) or of several (recombinant) antigens could improve the performance of the adjunctive laboratory methods, although the complexity of echinococcosis and heterogeneity of clinical cases make necessary a deep understanding of the host-parasite relationships and the parasite phenotype at different developmental stages to reach the best diagnostic tool and to make it accepted in clinical practice. Standardization approaches and a deep understanding of the performance of each of the available antigens in the diagnosis of echinococcosis for the different clinical pictures are also needed. The detection of the parasite in definitive hosts is also reviewed in this chapter. Finally, the different methods for the detection of parasite DNA in different analytes and matrices are also reviewed.
Collapse
|
47
|
Proteomic investigation of human cystic echinococcosis in the liver. Mol Biochem Parasitol 2017; 211:9-14. [DOI: 10.1016/j.molbiopara.2016.12.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 11/21/2016] [Accepted: 12/09/2016] [Indexed: 12/24/2022]
|
48
|
Ahn CS, Kim JG, Han X, Bae YA, Park WJ, Kang I, Wang H, Kong Y. Biochemical Characterization of Echinococcus multilocularis Antigen B3 Reveals Insight into Adaptation and Maintenance of Parasitic Homeostasis at the Host-Parasite Interface. J Proteome Res 2016; 16:806-823. [PMID: 27959569 DOI: 10.1021/acs.jproteome.6b00799] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Alveolar echinococcosis (AE) caused by Echinococcus multilocularis metacestode is frequently associated with deleterious zoonotic helminthiasis. The growth patterns and morphological features of AE, such as invasion of the liver parenchyme and multiplication into multivesiculated masses, are similar to those of malignant tumors. AE has been increasingly detected in several regions of Europe, North America, Central Asia, and northwestern China. An isoform of E. multilocularis antigen B3 (EmAgB3) shows a specific immunoreactivity against patient sera of active-stage AE, suggesting that EmAgB3 might play important roles during adaptation of the parasite to hosts. However, expression patterns and biochemical properties of EmAgB3 remained elusive. The protein profile and nature of component proteins of E. multilocularis hydatid fluid (EmHF) have never been addressed. In this study, we conducted proteome analysis of EmHF of AE cysts harvested from immunocompetent mice. We observed the molecular and biochemical properties of EmAgB3, including differential transcription patterns of paralogous genes, macromolecular protein status by self-assembly, distinct oligomeric states according to individual anatomical compartments of the worm, and hydrophobic ligand-binding protein activity. We also demonstrated tissue expression patterns of EmAgB3 transcript and protein. EmAgB3 might participate in immune response and recruitment of essential host lipids at the host-parasite interface. Our results might contribute to an in depth understanding of the biophysical and biological features of EmAgB3, thus providing insights into the design of novel targets to control AE.
Collapse
Affiliation(s)
- Chun-Seob Ahn
- Department of Molecular Parasitology, Sungkyunkwan University School of Medicine , Suwon 16419, Korea
| | - Jeong-Geun Kim
- Department of Molecular Parasitology, Sungkyunkwan University School of Medicine , Suwon 16419, Korea
| | - Xiumin Han
- Qinghai Province Institute for Endemic Diseases Prevention and Control , Xining 811602, China
| | - Young-An Bae
- Department of Microbiology, Gachon University Graduate School of Medicine , Incheon 21936, Korea
| | - Woo-Jae Park
- Department of Biochemistry, Gachon University Graduate School of Medicine , Incheon 21936, Korea
| | - Insug Kang
- Department of Molecular Biology and Biochemistry, School of Medicine, Kyung Hee University , Seoul 02447, Korea
| | - Hu Wang
- Qinghai Province Institute for Endemic Diseases Prevention and Control , Xining 811602, China
| | - Yoon Kong
- Department of Molecular Parasitology, Sungkyunkwan University School of Medicine , Suwon 16419, Korea
| |
Collapse
|
49
|
Affinity Purification of the Hepatitis C Virus Replicase Identifies Valosin-Containing Protein, a Member of the ATPases Associated with Diverse Cellular Activities Family, as an Active Virus Replication Modulator. J Virol 2016; 90:9953-9966. [PMID: 27558430 DOI: 10.1128/jvi.01140-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 08/19/2016] [Indexed: 12/11/2022] Open
Abstract
Like almost all of the positive-strand RNA viruses, hepatitis C virus (HCV) induces host intracellular membrane modification to form the membrane-bound viral replication complex (RC), within which viral replicases amplify the viral RNA genome. Despite accumulated information about how HCV co-opts host factors for viral replication, our knowledge of the molecular mechanisms by which viral proteins hijack host factors for replicase assembly has only begun to emerge. Purification of the viral replicase and identification of the replicase-associated host factors to dissect their roles in RC biogenesis will shed light on the molecular mechanisms of RC assembly. To purify the viral replicase in the context of genuine viral replication, we developed an HCV subgenomic replicon system in which two different affinity tags were simultaneously inserted in frame into HCV NS5A and NS5B. After solubilizing the replicon cells, we purified the viral replicase by two-step affinity purification and identified the associated host factors by mass spectrometry. We identified valosin-containing protein (VCP), a member of the ATPases associated with diverse cellular activities (AAA+ATPase) family, as an active viral replication modulator whose ATPase activity is required for viral replication. A transient replication assay indicated that VCP is involved mainly in viral genome amplification. VCP associated with viral replicase and colocalized with a viral RC marker. Further, in an HCV replicase formation surrogate system, abolishing VCP function resulted in aberrant distribution of HCV NS5A. We propose that HCV may co-opt a host AAA+ATPase for its replicase assembly. IMPORTANCE Almost all of the positive-strand RNA viruses share a replication strategy in which viral proteins modify host membranes to form the membrane-associated viral replicase. Viruses hijack host factors to facilitate this energy-unfavorable process. Understanding of this fundamental process is hampered by the challenges of purifying the replicase because of the technical difficulties involved. In this study, we developed an HCV subgenomic replicon system in which two different affinity tags were simultaneously inserted in frame into two replicase components. Using this dual-affinity-tagged replicon system, we purified the viral replicase and identified valosin-containing protein (VCP) AAA+ATPase as a pivotal viral replicase-associated host factor that is required for viral genome replication. Abolishing VCP function resulted in aberrant viral protein distribution. We propose that HCV hijacks a host AAA+ATPase for its replicase assembly. Understanding the molecular mechanism of VCP regulates viral replicase assembly may lead to novel antiviral strategies targeting the most conserved viral replication step.
Collapse
|
50
|
Wang F, Ye B. In silico cloning and B/T cell epitope prediction of triosephosphate isomerase from Echinococcus granulosus. Parasitol Res 2016; 115:3991-8. [DOI: 10.1007/s00436-016-5166-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 06/03/2016] [Indexed: 10/21/2022]
|