1
|
Li Q, Yu H, Li Q. Dual sgRNA-directed tyrosinases knockout using CRISPR/Cas9 technology in Pacific oyster (Crassostrea gigas) reveals their roles in early shell calcification. Gene 2024; 927:148748. [PMID: 38969245 DOI: 10.1016/j.gene.2024.148748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/11/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Biomineralization processes in bivalves, particularly the initial production of molecular components (such as matrix deposition and calcification) in the early stages of shell development are highly complex and well-organized. This study investigated the temporal dynamics of organic matrix and calcium carbonate (CaCO3) deposition in Pacific oysters (Crassostrea gigas) across various development stages. The shell-field initiated matrix secretion during the gastrula stage. Subsequent larval development triggered central shell-field calcification, accompanied by expansion of the calcium ring from its interior to the periphery. Notably, the expression patterns of CgTyrp-2 and CgTyr closely correlated with matrix deposition and calcification during early developmental stages, with peak expression occurring in oyster's gastrula and D-veliger stages. Subsequently, the CRISPR/Cas9 system was utilized to knock out CgTyrp-2 and CgTyr with more distinct phenotypic alterations observed when both genes were concurrently knocked out. The relative gene expression was analyzed post-knockout, indicating that the knockout of CgTyr or CgTyrp-2 led to reduced expression of CgChs1, along with increased expression of CgChit4. Furthermore, when dual-sgRNAs were employed to knockout CgTyrp-2, a large deletion (2 kb) within the CgTyrp-2 gene was identified. In summary, early shell formation in C. gigas is the result of a complex interplay of multiple molecular components with CgTyrp-2 and CgTyr playing key roles in regulating CaCO3 deposition.
Collapse
Affiliation(s)
- Qian Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Hong Yu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
2
|
Zhang Y, Geng S, Yu G, Hong Y, Hu B. Research progress on formation mechanism of pearl. Heliyon 2024; 10:e35015. [PMID: 39170518 PMCID: PMC11336291 DOI: 10.1016/j.heliyon.2024.e35015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/23/2024] Open
Abstract
Pearls are deeply cherished for their rich color and gorgeous luster, and their quality directly affects their value. Currently, the evaluation of pearl quality is mainly based on four aspects: color, shape, size and smoothness. The quality of pearls is influenced by a variety of factors, categorized into internal factors, such as the structural composition of the nacreous layer and genetic factors of the mussels, and external factors, including the aquaculture environment. Existing research results indicates that genetic factors are the dominant factor controlling the pearl quality. However, the macromolecules such as metal ions, organic pigments and various physical and chemical factors in the aquaculture water environment will also significantly impact pearl quality. Among these, matrix proteins are organic macromolecules found in the nacreous layer that play an important role in pearl quality. They participate in the deposition of calcium carbonate and the construction of the organic framework, affecting the pearls' size and shape. The color of pearls is influenced by the deposition of metal ions, the transport of organic pigments and the regulation of microstructure.
Collapse
Affiliation(s)
- Yingyu Zhang
- School of Life Science, Nanchang University, Nanchang, Jiangxi Province, China
| | - Shiyu Geng
- School of Life Science, Nanchang University, Nanchang, Jiangxi Province, China
| | - Guilan Yu
- School of Life Science, Nanchang University, Nanchang, Jiangxi Province, China
- Jiangxi Province Key Laboratory of Aquatic Animal Resources and Utilization, Nanchang University, Nanchang, Jiangxi Province, China
| | - Yijiang Hong
- School of Life Science, Nanchang University, Nanchang, Jiangxi Province, China
- Jiangxi Province Key Laboratory of Aquatic Animal Resources and Utilization, Nanchang University, Nanchang, Jiangxi Province, China
| | - Beijuan Hu
- School of Life Science, Nanchang University, Nanchang, Jiangxi Province, China
- Jiangxi Province Key Laboratory of Aquatic Animal Resources and Utilization, Nanchang University, Nanchang, Jiangxi Province, China
| |
Collapse
|
3
|
Shimizu K, Negishi L, Kurumizaka H, Suzuki M. Diversification of von Willebrand Factor A and Chitin-Binding Domains in Pif/BMSPs Among Mollusks. J Mol Evol 2024; 92:415-431. [PMID: 38864871 PMCID: PMC11291548 DOI: 10.1007/s00239-024-10180-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 05/23/2024] [Indexed: 06/13/2024]
Abstract
Pif is a shell matrix protein (SMP) identified in the nacreous layer of Pinctada fucata (Pfu) comprised two proteins, Pif97 and Pif 80. Pif97 contains a von Willebrand factor A (VWA) and chitin-binding domains, whereas Pif80 can bind calcium carbonate crystals. The VWA domain is conserved in the SMPs of various mollusk species; however, their phylogenetic relationship remains obscure. Furthermore, although the VWA domain participates in protein-protein interactions, its role in shell formation has not been established. Accordingly, in the current study, we investigate the phylogenetic relationship between PfuPif and other VWA domain-containing proteins in major mollusk species. The shell-related proteins containing VWA domains formed a large clade (the Pif/BMSP family) and were classified into eight subfamilies with unique sequential features, expression patterns, and taxa diversity. Furthermore, a pull-down assay using recombinant proteins containing the VWA domain of PfuPif 97 revealed that the VWA domain interacts with five nacreous layer-related SMPs of P. fucata, including Pif 80 and nacrein. Collectively, these results suggest that the VWA domain is important in the formation of organic complexes and participates in shell mineralisation.
Collapse
Affiliation(s)
- Keisuke Shimizu
- Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-Cho, Yokosuka, Kanagawa, 237-0061, Japan
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-8657, Japan
| | - Lumi Negishi
- Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-8657, Japan
| | - Hitoshi Kurumizaka
- Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-8657, Japan
| | - Michio Suzuki
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-8657, Japan.
| |
Collapse
|
4
|
Li Z, Yang M, Zhou C, Shi P, Hu P, Liang B, Jiang Q, Zhang L, Liu X, Lai C, Zhang T, Song H. Deciphering the molecular toolkit: regulatory elements governing shell biomineralization in marine molluscs. Integr Zool 2024. [PMID: 39030865 DOI: 10.1111/1749-4877.12876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2024]
Abstract
The intricate process of shell biomineralization in marine molluscs is governed by a complex interplay of regulatory elements, encompassing secretomes, transporters, and noncoding RNA. This review delves into recent advancements in understanding these regulatory mechanisms, emphasizing their significance in elucidating the functions and evolutionary dynamics of the molluscan shell biomineralization process. Central to this intricate orchestration are secretomes with diverse functional domains, selectively exported to the extrapallial space, which directly regulate crystal growth and morphology. Transporters are crucial for substrate transportation in the calcification and maintenance of cellular homeostasis. Beyond proteins and transporters, noncoding RNA molecules are integral components influencing shell biomineralization. This review underscores the nonnegligible roles played by these genetic elements at the molecular level. To comprehend the complexity of biomineralization in mollusc, we explore the origin and evolutionary history of regulatory elements, primarily secretomes. While some elements have recently evolved, others are ancient genes that have been co-opted into the biomineralization toolkit. These elements undergo structural and functional evolution through rapidly evolving repetitive low-complexity domains and domain gain/loss/rearrangements, ultimately shaping a distinctive set of secretomes characterized by both conserved features and evolutionary innovations. This comprehensive review enhances our understanding of molluscan biomineralization at the molecular and genetic levels.
Collapse
Affiliation(s)
- Zhuoqing Li
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Meijie Yang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Cong Zhou
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Pu Shi
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Pengpeng Hu
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bin Liang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qingtian Jiang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Lili Zhang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Xiaoyan Liu
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Qingdao Agricultural University, Qingdao, China
| | - Changping Lai
- Lianyungang Blue Carbon Marine Technology Co., Lianyungang, China
| | - Tao Zhang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hao Song
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Yu HP, Zhu YJ. Guidelines derived from biomineralized tissues for design and construction of high-performance biomimetic materials: from weak to strong. Chem Soc Rev 2024; 53:4490-4606. [PMID: 38502087 DOI: 10.1039/d2cs00513a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Living organisms in nature have undergone continuous evolution over billions of years, resulting in the formation of high-performance fracture-resistant biomineralized tissues such as bones and teeth to fulfill mechanical and biological functions, despite the fact that most inorganic biominerals that constitute biomineralized tissues are weak and brittle. During the long-period evolution process, nature has evolved a number of highly effective and smart strategies to design chemical compositions and structures of biomineralized tissues to enable superior properties and to adapt to surrounding environments. Most biomineralized tissues have hierarchically ordered structures consisting of very small building blocks on the nanometer scale (nanoparticles, nanofibers or nanoflakes) to reduce the inherent weaknesses and brittleness of corresponding inorganic biominerals, to prevent crack initiation and propagation, and to allow high defect tolerance. The bioinspired principles derived from biomineralized tissues are indispensable for designing and constructing high-performance biomimetic materials. In recent years, a large number of high-performance biomimetic materials have been prepared based on these bioinspired principles with a large volume of literature covering this topic. Therefore, a timely and comprehensive review on this hot topic is highly important and contributes to the future development of this rapidly evolving research field. This review article aims to be comprehensive, authoritative, and critical with wide general interest to the science community, summarizing recent advances in revealing the formation processes, composition, and structures of biomineralized tissues, providing in-depth insights into guidelines derived from biomineralized tissues for the design and construction of high-performance biomimetic materials, and discussing recent progress, current research trends, key problems, future main research directions and challenges, and future perspectives in this exciting and rapidly evolving research field.
Collapse
Affiliation(s)
- Han-Ping Yu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China.
| | - Ying-Jie Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
6
|
Ren L, Li S, Ye W, Lv Q, Sun Y, Zhou X, Lian S, Lv J, Wang S, Guo J, Tian Y, Zheng R, Lu Y. Tracking organic matrix in the seashell by elemental mapping under laser-induced breakdown spectroscopy. Talanta 2024; 271:125658. [PMID: 38219325 DOI: 10.1016/j.talanta.2024.125658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/16/2024]
Abstract
As a biogenic calcium carbonate, the seashell plays a crucial role in marine environmental studies. In these studies, it is essential to investigate the composition of the seashell. In this study, we used laser-induced breakdown spectroscopy (LIBS) to analyze the elemental composition of cultured scallop-shell (Patinopecten yessoensis), with a specific focus on examining the organic elements (C, N, O, H) to track the shell organic matrix (SOM). Our findings indicate that the seashell organic layer can be accurately identified by referencing the strong emission of nitrogen or the low signal of calcium. To further confirm the presence of this layer, we employed fluorescence spectroscopy, Raman spectroscopy and FTIR spectroscopy. Correlation analysis revealed a strong connection between LIBS emissions (H, O, CC) and seashell organics, as well as demonstrated the presence of organics in metallic emissions (Si, Ba). However, when we conducted elemental mapping on the shell cross-section, the distribution similarity was observed between the elements N, Ba, and Sr. Based on the correlation of organics and the distribution similarity, it is concluded that barium is an element associated with the SOM. These results highlight the potential of LIBS for organic analysis, which can complement traditional seashell analysis.
Collapse
Affiliation(s)
- Lihui Ren
- College of Physics and Optoelectronic Engineering, Ocean University of China, Qingdao, 266100, PR China; Single-Cell Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, PR China
| | - Shoujie Li
- College of Physics and Optoelectronic Engineering, Ocean University of China, Qingdao, 266100, PR China
| | - Wangquan Ye
- College of Physics and Optoelectronic Engineering, Ocean University of China, Qingdao, 266100, PR China
| | - Qi Lv
- Single-Cell Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, PR China
| | - Yuxin Sun
- College of Physics and Optoelectronic Engineering, Ocean University of China, Qingdao, 266100, PR China; Single-Cell Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, PR China
| | - Xuan Zhou
- Single-Cell Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, PR China
| | - Shanshan Lian
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, PR China
| | - Jia Lv
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, PR China
| | - Shi Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, PR China
| | - Jinjia Guo
- College of Physics and Optoelectronic Engineering, Ocean University of China, Qingdao, 266100, PR China
| | - Ye Tian
- College of Physics and Optoelectronic Engineering, Ocean University of China, Qingdao, 266100, PR China
| | - Ronger Zheng
- College of Physics and Optoelectronic Engineering, Ocean University of China, Qingdao, 266100, PR China
| | - Yuan Lu
- College of Physics and Optoelectronic Engineering, Ocean University of China, Qingdao, 266100, PR China.
| |
Collapse
|
7
|
Huang J, Lin F, Liu C, Luo M. Oxidation and cross-link of tyrosine-rich proteins are involved in the periostracum formation of the green mussel Perna viridis (Linnaeus). J Proteomics 2024; 296:105112. [PMID: 38331166 DOI: 10.1016/j.jprot.2024.105112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/01/2024] [Accepted: 02/03/2024] [Indexed: 02/10/2024]
Abstract
Ocean acidification causes severe shell dissolution and threats the survival of marine molluscs. The periostracum in molluscs consists of macromolecules such as proteins and polysaccharides, and protects the inner shell layers from dissolution and microbial erosion. Moreover, it serves as the primary template for shell deposition. However, the chemical composition and formation mechanism of the periostracum is largely unknown. In this study, we applied transcriptomic, proteomics, physical, and chemical analysis to unravel the mysteries of the periostracum formation in the green mussel Perna viridis Linnaeus. FTIR analysis showed that the periostracum layer was an organic membrane mainly composed of polysaccharides, lipids, and proteins, similar to that of the shell matrix. Interestingly, the proteomic study identified components enriched in tyrosine and some enzymes that evolved in tyrosine oxidation, indicating that tyrosine oxidation might play an essential role in the periostracum formation. Moreover, comparative transcriptomics suggested that tyrosine-rich proteins were intensively synthesized in the periostracum groove. After being secreted, the periostracum proteins were gradually tanned by oxidation in the seawater, and the level of crosslink increased significantly as revealed by the ATR-FTIR. Our present study sheds light on the chemical composition and putative tanning mechanism of the periostracum layer in bivalve molluscs. SIGNIFICANCE: The periostracum layer, plays an essential role in the initiation of shell biomineralization, the protection of minerals from dissolution for molluscs and especially ocean acidification conditions in the changing global climate. However, the molecular mechanism underlying the periostracum formation is not fully understood. In this study, we revealed that the oxidation and cross-link of tyrosine-rich proteins by tyrosinase are involved in periostracum formation in the green mussel Perna viridis. This study provides some insights into the first step of mussel shell formation and the robust adaptation of P. viridis to diverse habitats. These findings also help to reveal the potential acclimation of bivalves to the projected acidifying seawater.
Collapse
Affiliation(s)
- Jingliang Huang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China; Department of Biology, Hong Kong Baptist University, Hong Kong, China.
| | - Feng Lin
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Chuang Liu
- College of Oceanography, Hohai University, Xikang Road, Nanjing, Jiangsu 210098, China
| | - Maoguo Luo
- School of Life Science, Beijing Institute of Technology, No.5 Zhongguancun South Street, Beijing 100081, China.
| |
Collapse
|
8
|
Li Y, Liao Z, Fan X, Wang Y, Liu F, Zhang X, He J, Buttino I, Yan X, Tang C. The molecular response of Mytilus coruscus mantle to shell damage under acute acidified sea water revealed by iTRAQ based quantitative proteomic analysis. J Proteomics 2024; 294:105062. [PMID: 38158015 DOI: 10.1016/j.jprot.2023.105062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 01/03/2024]
Abstract
Mytilus coruscus is an economically important marine bivalve that lives in estuarine sea areas with seasonal coastal acidification and frequently suffers shell injury in the natural environment. However, the molecular responses and biochemical properties of Mytilus under these conditions are not fully understood. In the present study, we employed tandem mass spectrometry combined with isobaric tagging to identify differentially expressed proteins in the mantle tissue of M. coruscus under different short-term treatments, including shell-complete mussels raised in normal seawater (pH 8.1), shell-damaged mussels raised in normal seawater (pH 8.1), and acidified seawater (pH 7.4). A total of 2694 proteins were identified in the mantle, and analysis of their relative abundance from the three different treatments revealed alterations in the proteins involved in immune regulation, oxidation-reduction processes, protein folding and processing, energy provision, and cytoskeleton. The results obtained by quantitative proteomic analysis of the mantle allowed us to delineate the molecular strategies adopted by M. coruscus in the shell repair process in acidified environments, including an increase in proteins involved in oxidation-reduction processes, protein processing, and cell growth at the expense of proteins involved in immune capacity and energy metabolism. SIGNIFICANCE: The impact of global ocean acidification on calcifying organisms has become a major ecological and environmental problem in the world. Mytilus coruscus is an economically important marine bivalve living in estuary sea area with seasonal coastal acidification, and frequently suffering shell injury in natural environment. Molecular responses of M coruscus under the shell damage and acute acidification is still largely unknown. For this reason, iTRAQ based quantitative proteomic and histological analysis of the mantle from M. coruscus under shell damage and acute acidification were performed, for revealing the proteomic response and possible adaptation mechanism of Mytilus under combined shell damage and acidified sea water, and understanding how the mussel mantle implement a shell-repair process under acidified sea water. Our study provides important data for understanding the shell repair process and proteomic response of Mytilus under ocean acidification, and providing insights into potential adaptation of mussels to future global change.
Collapse
Affiliation(s)
- Yingao Li
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City 316022, Zhejiang, China
| | - Zhi Liao
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City 316022, Zhejiang, China.
| | - Xiaojun Fan
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City 316022, Zhejiang, China
| | - Ying Wang
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City 316022, Zhejiang, China
| | - Fei Liu
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City 316022, Zhejiang, China
| | - Xiaolin Zhang
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City 316022, Zhejiang, China
| | - Jianyu He
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City 316022, Zhejiang, China
| | - Isabella Buttino
- Italian Institute for Environmental Protection and Research (ISPRA), Via Vitaliano Brancati 48, 00144 Rome, Italy
| | - Xiaojun Yan
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City 316022, Zhejiang, China
| | - Changsheng Tang
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City 316022, Zhejiang, China.
| |
Collapse
|
9
|
Ge M, Liu B, Hu X, Zhang Q, Mou A, Li X, Wang Z, Zhang X, Xu Q. Biomineralization in a cold environment: Insights from shield compositions and transcriptomics of polar sternaspids (Sternaspidae, Polychaeta). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 49:101187. [PMID: 38183966 DOI: 10.1016/j.cbd.2023.101187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/24/2023] [Accepted: 12/26/2023] [Indexed: 01/08/2024]
Abstract
The survival and physiological functions of polar marine organisms are impacted by global climate changes. Investigation of the adaptation mechanisms underlying biomineralization in polar organisms at low temperatures is important for understanding mineralized organismal sensitivity to climate change. Here, we performed electron probe analysis on the shields of Antarctic polychaete Sternaspis sendalli and Arctic polychaete Sternaspis buzhinskajae (Sternaspidae), and sequenced the transcriptomes of the tissues surrounding shields to examine biomineral characteristics and adaptive mechanisms in persistently cold environments. Compared to the temperate relative species, the relative abundance of iron, phosphorus, calcium, magnesium, nitrogen, sulfur and silicon in two polar sternaspid shields was similar to Sternaspis chinensis. However, the diversity and expression levels of biomineralization-related shell matrix proteins differed between the polar and temperate species, suggesting distinct molecular mechanisms underlying shield formation in cold environments. Tubulin and cyclophilin were upregulated compared to the temperate species. Furthermore, 42 positively selected genes were identified in Antarctic S. sendalli, with functions in cytoskeletal structure, DNA repair, immunity, transcription, translation, protein synthesis, and lipid metabolism. Highly expressed genes in both polar species were associated with cytoskeleton, macromolecular complexes and cellular component biosynthesis. Overall, this study reveals conserved elemental composition yet distinct biomineralization processes in the shields of polar sternaspids. The unique expression of biomineralization related genes and other cold-adaptation related genes provide molecular insights into biomineralization in cold marine environments.
Collapse
Affiliation(s)
- Meiling Ge
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, MNR, Qingdao, China; Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, China
| | - Bing Liu
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, MNR, Qingdao, China; Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, China
| | - Xuying Hu
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, MNR, Qingdao, China; Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, China
| | - Qian Zhang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, MNR, Qingdao, China; Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, China
| | - Anning Mou
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, MNR, Qingdao, China; Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, China
| | - Xinlong Li
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, MNR, Qingdao, China; Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, China
| | - Zongling Wang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, MNR, Qingdao, China; Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, China
| | - Xuelei Zhang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, MNR, Qingdao, China; Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, China
| | - Qinzeng Xu
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, MNR, Qingdao, China; Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, China.
| |
Collapse
|
10
|
Jin C, Cheng K, Jiang R, Zhang Y, Luo W. A Novel Kunitz-Type Serine Protease Inhibitor (HcKuSPI) is Involved in Antibacterial Defense in Innate Immunity and Participates in Shell Formation of Hyriopsis cumingii. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:37-49. [PMID: 38117374 DOI: 10.1007/s10126-023-10275-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/07/2023] [Indexed: 12/21/2023]
Abstract
Serine protease inhibitors (SPIs) are abundantly reported for its inhibition against specific proteases involved in the immune responses, but SPI data related to calcareous shells are scarce. Previously, our research group has reported the proteome analysis of non-nucleated pearl powder, and a candidate matrix protein containing two Kunitz domains in the acid soluble fraction caught our attention. In the present study, the full-length cDNA sequence of HcKuSPI was obtained from Hyriopsis cumingii. HcKuSPI was specifically expressed in the mantle, with hybridization signals mainly concentrated to dorsal epithelial cells at the mantle edge and weak signals at the mantle pallium, suggesting HcKuSPI was involved in shell formation. HcKuSPI expression in the mantle was upregulated after Aeromonas hydrophila and Staphylococcus aureus challenge to extrapallial fluids (EPFs). A glutathione S transferase (GST)-HcKuSPI recombinant protein showed strong inhibitory activity against the proteases, trypsin and chymotrypsin. Moreover, HcKuSPI expression in an experimental group was significantly higher when compared with a control group during pellicle growth and crystal deposition in shell regeneration processes, while the organic shell framework of newborn prisms and nacre tablets was completely destroyed after HcKuSPI RNA interference (RNAi). Therefore, HcKuSPI secreted by the mantle may effectively neutralize excess proteases and bacterial proteases in the EPF during bacterial infection and could prevent matrix protein extracellular degradation by suppressing protease proteolytic activity, thereby ensuring a smooth shell biomineralization. In addition, GST-HcKuSPI was also crucial for crystal morphology regulation. These results have important implications for our understanding of the potential roles of SPIs during shell biomineralization.
Collapse
Affiliation(s)
- Can Jin
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, 312000, People's Republic of China
| | - Kang Cheng
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, 312000, People's Republic of China
| | - Rui Jiang
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, 312000, People's Republic of China
| | - Yihang Zhang
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, 312000, People's Republic of China
| | - Wen Luo
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, 312000, People's Republic of China.
| |
Collapse
|
11
|
Ma CY, Chen Y, Zhan X, Dong YW. Tracing the evolution of tissue inhibitor of metalloproteinases in Metazoa with the Pteria penguin genome. iScience 2024; 27:108579. [PMID: 38161420 PMCID: PMC10755359 DOI: 10.1016/j.isci.2023.108579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 09/13/2023] [Accepted: 11/23/2023] [Indexed: 01/03/2024] Open
Abstract
Tissue inhibitors of metalloproteinase (TIMPs) play a pivotal role in regulating extracellular matrix (ECM) dynamics and have been extensively studied in vertebrates. However, understanding their evolution across invertebrate phyla is limited. Utilizing the high-quality Pteria penguin genome, we conducted phylogenomic orthology analyses across metazoans, revealing the emergence and distribution of the TIMP gene family. Our findings show that TIMP repertoires originated during eumetazoan radiation, experiencing independent duplication events in different clades, resulting in varied family sizes. Particularly, Pteriomorphia bivalves within Mollusca exhibited the most significant expansion and displayed the most diverse TIMP repertoires among metazoans. These expansions were attributed to multiple gene duplication events, potentially driven by the demands for functional diversification related to multiple adaptive traits, contributing to the adaptation of Pteriomorphia bivalves as stationary filter feeders. In this context, Pteriomorphia bivalves offer a promising model for studying invertebrate TIMP evolution.
Collapse
Affiliation(s)
- Chao-Yi Ma
- Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao 266003, P.R. China
- Academy of the Future Ocean, Ocean University of China, Qingdao 266100, P.R. China
| | - Yi Chen
- State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou 570228, P.R. China
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, P.R. China
| | - Xin Zhan
- State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou 570228, P.R. China
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, P.R. China
| | - Yun-Wei Dong
- Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao 266003, P.R. China
- Academy of the Future Ocean, Ocean University of China, Qingdao 266100, P.R. China
| |
Collapse
|
12
|
Liao Z, Liu F, Wang Y, Fan X, Li Y, He J, Buttino I, Yan X, Zhang X, Shi G. Transcriptomic response of Mytilus coruscus mantle to acute sea water acidification and shell damage. Front Physiol 2023; 14:1289655. [PMID: 37954445 PMCID: PMC10639161 DOI: 10.3389/fphys.2023.1289655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023] Open
Abstract
Mytilus coruscus is an economically important marine calcifier living in the Yangtze River estuary sea area, where seasonal fluctuations in natural pH occur owing to freshwater input, resulting in a rapid reduction in seawater pH. In addition, Mytilus constantly suffers from shell fracture or injury in the natural environment, and the shell repair mechanisms in mussels have evolved to counteract shell injury. Therefore, we utilized shell-complete and shell-damaged Mytilus coruscus in this study and performed transcriptomic analysis of the mantle to investigate whether the expression of mantle-specific genes can be induced by acute seawater acidification and how the mantle responds to acute acidification during the shell repair process. We found that acute acidification induced more differentially expressed genes than shell damage in the mantle, and the biomineralization-related Gene Ontology terms and KEGG pathways were significantly enriched by these DEGs. Most DEGs were upregulated in enriched pathways, indicating the activation of biomineralization-related processes in the mussel mantle under acute acidification. The expression levels of some shell matrix proteins and antimicrobial peptides increased under acute acidification and/or shell damage, suggesting the molecular modulation of the mantle for the preparation and activation of the shell repairing and anti-infection under adverse environmental conditions. In addition, morphological and microstructural analyses were performed for the mantle edge and shell cross-section, and changes in the mantle secretory capacity and shell inner film system induced by the two stressors were observed. Our findings highlight the adaptation of M. coruscus in estuarine areas with dramatic fluctuations in pH and may prove instrumental in its ability to survive ocean acidification.
Collapse
Affiliation(s)
- Zhi Liao
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Fei Liu
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Ying Wang
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Xiaojun Fan
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Yingao Li
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Jianyu He
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Isabella Buttino
- Italian Institute for Environmental Protection and Research (ISPRA), Livorno, Italy
| | - Xiaojun Yan
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Xiaolin Zhang
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Ge Shi
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| |
Collapse
|
13
|
Min Y, Li Q, Yu H. Characterization of larval shell formation and CgPOU2F1, CgSox5, and CgPax6 gene expression during shell morphogenesis in Crassostrea gigas. Comp Biochem Physiol B Biochem Mol Biol 2023; 263:110783. [PMID: 35926704 DOI: 10.1016/j.cbpb.2022.110783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022]
Abstract
Shell formation is a dynamic process involving organic matrix secretion and calcification. In this study, we characterized shell morphogenesis during larval development in Crassostrea gigas. Using scanning electron microscopy (SEM) and fluorescence staining, we demonstrated that shell field, the first morphologically distinguishable shell-forming tissue, became visible soon after enlargement of the blastopore at the anterior end of the trochophore. Shell organic matrix namely protein polysaccharides and calcified structure appeared as a slit at the dorsal side of the embryo. The early shell field began to extend along the dorsal side of the trochophore larvae, and became a saddle shaped shell field that gave rise to the prodissoconch I embryonic shell in the early D-shaped larvae. Subsequently, prodissoconch II shell was formed in the late D-shaped larvae with a characteristic appearance of growth lines. To identify gene expression markers for studying shell formation, we isolated three potential larval shell formation genes CgPOU2F1, CgSox5, and CgPax6 and analyzed their expression during shell morphogenesis. The three potential shell formation genes possessed a similar pattern of expression. Their expression was detected in the shell gland and shell field regions in early D-shaped larvae, hereafter, their expression was detected at the larval mantle edge in the calcified shell stages. Together, these studies provide knowledge of shell morphogenesis in pacific oyster and molecular markers for studying the molecular regulation of biomineralization and shell formation.
Collapse
Affiliation(s)
- Yue Min
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Qi Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Hong Yu
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
14
|
Shimizu K, Negishi L, Ito T, Touma S, Matsumoto T, Awaji M, Kurumizaka H, Yoshitake K, Kinoshita S, Asakawa S, Suzuki M. Evolution of nacre- and prisms-related shell matrix proteins in the pen shell, Atrina pectinata. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 44:101025. [PMID: 36075178 DOI: 10.1016/j.cbd.2022.101025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 08/24/2022] [Accepted: 08/24/2022] [Indexed: 01/27/2023]
Abstract
The molluscan shell is a good model for understanding the mechanisms underlying biomineralization. It is composed of calcium carbonate crystals and many types of organic molecules, such as the matrix proteins, polysaccharides, and lipids. The pen shell Atrina pectinata (Pterioida, Pinnidae) has two shell microstructures: an outer prismatic layer and an inner nacreous layer. Similar microstructures are well known in pearl oysters (Pteriidae), such as Pinctada fucata, and many kinds of shell matrix proteins (SMPs) have been identified from their shells. However, the members of SMPs that consist of the nacreous and prismatic layers of Pinnidae bivalves remain unclear. In this study, we identified 114 SMPs in the nacreous and prismatic layers of A. pectinata, of which only seven were found in both microstructures. 54 of them were found to bind calcium carbonate. Comparative analysis of nine molluscan shell proteomes showed that 69 of 114 SMPs of A. pectinata were found to have sequential similarity with at least one or more SMPs of other molluscan species. For instance, nacrein, tyrosinase, Pif/BMSP-like, chitinase (CN), chitin-binding proteins, CD109, and Kunitz-type serine proteinase inhibitors are widely shared among bivalves and gastropods. Our results provide new insights for understanding the complex evolution of SMPs related to nacreous and prismatic layer formation in the pteriomorph bivalves.
Collapse
Affiliation(s)
- Keisuke Shimizu
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan
| | - Lumi Negishi
- Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan
| | - Takumi Ito
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan
| | - Shogo Touma
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan
| | - Toshie Matsumoto
- National Research Institute of Aquaculture, Japan Fisheries Research and Education Agency, 422-1 Nakatsuhama, Minami-Ise, Watarai, Mie 516-0193, Japan
| | - Masahiko Awaji
- National Research Institute of Aquaculture, Japan Fisheries Research and Education Agency, 422-1 Nakatsuhama, Minami-Ise, Watarai, Mie 516-0193, Japan
| | - Hitoshi Kurumizaka
- Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan
| | - Kazutoshi Yoshitake
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan
| | - Shigeharu Kinoshita
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan
| | - Shuichi Asakawa
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan
| | - Michio Suzuki
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan.
| |
Collapse
|
15
|
Hc-transgelin is a novel matrix protein gene involved in the shell biomineralization of triangle sail mussel (Hyriopsis cumingii). AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
16
|
Shimizu K, Takeuchi T, Negishi L, Kurumizaka H, Kuriyama I, Endo K, Suzuki M. Evolution of EGF-like and Zona pellucida domains containing shell matrix proteins in mollusks. Mol Biol Evol 2022; 39:6633355. [PMID: 35796746 PMCID: PMC9290575 DOI: 10.1093/molbev/msac148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Several types of shell matrix proteins (SMPs) have been identified in molluskan shells. Their diversity is the consequence of various molecular processes, including domain shuffling and gene duplication. However, the evolutionary origin of most SMPs remains unclear. In this study, we investigated the evolutionary process EGF-like and zona pellucida (ZP) domains containing SMPs. Two types of the proteins (EGF-like protein (EGFL) and EGF-like and ZP domains containing protein (EGFZP)) were found in the pearl oyster, Pinctada fucata. In contrast, only EGFZP was identified in the gastropods. Phylogenetic analysis and genomic arrangement studies showed that EGFL and EGFZP formed a clade in bivalves, and their encoding genes were localized in tandem repeats on the same scaffold. In P. fucata, EGFL genes were expressed in the outer part of mantle epithelial cells are related to the calcitic shell formation. However, in both P. fucata and the limpet Nipponacmea fuscoviridis, EGFZP genes were expressed in the inner part of the mantle epithelial cells are related to aragonitic shell formation. Furthermore, our analysis showed that in P. fucata, the ZP domain interacts with eight SMPs that have various functions in the nacreous shell mineralization. The data suggest that the ZP domain can interact with other SMPs, and EGFL evolution in pterimorph bivalves represents an example of neo-functionalization that involves the acquisition of a novel protein through gene duplication.
Collapse
Affiliation(s)
- Keisuke Shimizu
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-8657, Japan
| | - Takeshi Takeuchi
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Lumi Negishi
- Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-8657, Japan
| | - Hitoshi Kurumizaka
- Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-8657, Japan
| | - Isao Kuriyama
- Mie Prefecture Fisheries Research Institute, 3564-3 Hamajima, Hamajima-cho, Shima-city, Mie 517-0404, Japan
| | - Kazuyoshi Endo
- Department of Earth and Planetary Science, The University of Tokyo, 7-3-1 Hongo, Tokyo 113-0033, Japan
| | - Michio Suzuki
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-8657, Japan
| |
Collapse
|
17
|
Liu C, Liu H, Huang J, Ji X. Optimized Sensory Units Integrated in the Chiton Shell. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:380-392. [PMID: 35275288 DOI: 10.1007/s10126-022-10114-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
The first step for animals to interact with external environment is to sense. Unlike vertebrate animals with flexibility, it is challenging for ancient animals that are less flexible especially for mollusca with heavy shells. Chiton, as an example, has eight overlapping shells covering almost the whole body, is known to incorporate sensory units called aesthetes inside the shell. We used micro-computed tomography combined with quantitative image analysis to reveal the optimized shell geometry to resist force and the aesthetes' global distribution at the whole animal levels to facilitate sense from diverse directions both in the seawater and air. Additionally, shell proteomics combined with transcriptome reveals shell matrix proteins responsible for shell construction and potentially sensory function, highlighting unique cadherin-related proteins among mollusca. Together, this multi-level evidence of sensory units in the chiton shell may shed light on the formation of chiton shells and inspire the design of hard armor with sensory function.
Collapse
Affiliation(s)
- Chuang Liu
- College of Oceanography, Hohai University, Xikang Road, Nanjing, 210098, Jiangsu, China.
| | - Haipeng Liu
- College of Oceanography, Hohai University, Xikang Road, Nanjing, 210098, Jiangsu, China
| | - Jingliang Huang
- School of Chemical Engineering and Technology, Sun Yat-Sen University, Zhuhai, 519082, Guangdong, China
| | - Xin Ji
- College of Oceanography, Hohai University, Xikang Road, Nanjing, 210098, Jiangsu, China
| |
Collapse
|
18
|
Mussels Repair Shell Damage despite Limitations Imposed by Ocean Acidification. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10030359] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Bivalves frequently withstand shell damage that must be quickly repaired to ensure survival. While the processes that underlie larval shell development have been extensively studied within the context of ocean acidification (OA), it remains unclear whether shell repair is impacted by elevated pCO2. To better understand the stereotypical shell repair process, we monitored mussels (Mytilus edulis) with sublethal shell damage that breached the mantle cavity within both field and laboratory conditions to characterize the deposition rate, composition, and integrity of repaired shell. Results were then compared with a laboratory experiment wherein mussels (Mytilus trossulus) repaired shell damage in one of seven pCO2 treatments (400–2500 µatm). Shell repair proceeded through distinct stages; an organic membrane first covered the damaged area (days 1–15), followed by the deposition of calcite crystals (days 22–43) and aragonite tablets (days 51–69). OA did not impact the ability of mussels to close drill holes, nor the microstructure, composition, or integrity of end-point repaired shell after 10 weeks, as measured by µCT and SEM imaging, energy-dispersive X-ray (EDX) analysis, and mechanical testing. However, significant interactions between pCO2, the length of exposure to treatment conditions, the strength and inorganic content of shell, and the physiological condition of mussels within OA treatments were observed. These results suggest that while OA does not prevent adult mussels from repairing or mineralizing shell, both OA and shell damage may elicit stress responses that impose energetic constraints on mussel physiology.
Collapse
|
19
|
Song N, Li J, Li B, Pan E, Gao J, Ma Y. In vitro crystallization of calcium carbonate mediated by proteins extracted from P. placenta shells. CrystEngComm 2022. [DOI: 10.1039/d2ce00692h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ASM extracted from the shells of P. placenta can stabilize ACC and inhibit secondary nucleation for 10 hours, and an explosive secondary nucleation and quick crystal growth from 50 nm to 10 μm can be finished on the shell surface in one hour.
Collapse
Affiliation(s)
- Ningjing Song
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jiangfeng Li
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Baosheng Li
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Ercai Pan
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Juan Gao
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yurong Ma
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
20
|
Setiamarga DHE, Hirota K, Yoshida MA, Takeda Y, Kito K, Ishikawa M, Shimizu K, Isowa Y, Ikeo K, Sasaki T, Endo K. Hydrophilic Shell Matrix Proteins of Nautilus pompilius and the Identification of a Core Set of Conchiferan Domains. Genes (Basel) 2021; 12:genes12121925. [PMID: 34946873 PMCID: PMC8700984 DOI: 10.3390/genes12121925] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 02/05/2023] Open
Abstract
Despite being a member of the shelled mollusks (Conchiferans), most members of extant cephalopods have lost their external biomineralized shells, except for the basally diverging Nautilids. Here, we report the result of our study to identify major Shell Matrix Proteins and their domains in the Nautilid Nautilus pompilius, in order to gain a general insight into the evolution of Conchiferan Shell Matrix Proteins. In order to do so, we performed a multiomics study on the shell of N. pompilius, by conducting transcriptomics of its mantle tissue and proteomics of its shell matrix. Analyses of obtained data identified 61 distinct shell-specific sequences. Of the successfully annotated 27 sequences, protein domains were predicted in 19. Comparative analysis of Nautilus sequences with four Conchiferans for which Shell Matrix Protein data were available (the pacific oyster, the pearl oyster, the limpet and the Euhadra snail) revealed that three proteins and six protein domains were conserved in all Conchiferans. Interestingly, when the terrestrial Euhadra snail was excluded, another five proteins and six protein domains were found to be shared among the four marine Conchiferans. Phylogenetic analyses indicated that most of these proteins and domains were probably present in the ancestral Conchiferan, but employed in shell formation later and independently in most clades. Even though further studies utilizing deeper sequencing techniques to obtain genome and full-length sequences, and functional analyses, must be carried out in the future, our results here provide important pieces of information for the elucidation of the evolution of Conchiferan shells at the molecular level.
Collapse
Affiliation(s)
- Davin H. E. Setiamarga
- Department of Applied Chemistry and Biochemistry, National Institute of Technology (KOSEN), Wakayama College, Gobo 644-0023, Japan;
- Graduate School of Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan; (M.I.); (K.S.); (Y.I.); (K.E.)
- The University Museum, The University of Tokyo, Tokyo 113-0033, Japan; (Y.T.); (T.S.)
- Correspondence:
| | - Kazuki Hirota
- Department of Applied Chemistry and Biochemistry, National Institute of Technology (KOSEN), Wakayama College, Gobo 644-0023, Japan;
- Graduate School of Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan; (M.I.); (K.S.); (Y.I.); (K.E.)
| | - Masa-aki Yoshida
- Marine Biological Science Section, Education and Research Center for Biological Resources, Faculty of Life and Environmental Science, Shimane University, Unnan 685-0024, Japan;
| | - Yusuke Takeda
- The University Museum, The University of Tokyo, Tokyo 113-0033, Japan; (Y.T.); (T.S.)
- Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Keiji Kito
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki 214-8571, Japan;
| | - Makiko Ishikawa
- Graduate School of Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan; (M.I.); (K.S.); (Y.I.); (K.E.)
- Faculty of Animal Health Technology, Yamazaki University of Animal Health Technology, Hachiouji 192-0364, Japan
| | - Keisuke Shimizu
- Graduate School of Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan; (M.I.); (K.S.); (Y.I.); (K.E.)
- Graduate School of Agriculture and Life Sciences, The University of Tokyo, Yayoi, Tokyo 113-8657, Japan
| | - Yukinobu Isowa
- Graduate School of Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan; (M.I.); (K.S.); (Y.I.); (K.E.)
- Shimoda Marine Research Center, University of Tsukuba, Shimoda 415-0025, Japan
| | - Kazuho Ikeo
- Center for Information Biology, National Institute of Genetics, Mishima 411-8540, Japan;
| | - Takenori Sasaki
- The University Museum, The University of Tokyo, Tokyo 113-0033, Japan; (Y.T.); (T.S.)
| | - Kazuyoshi Endo
- Graduate School of Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan; (M.I.); (K.S.); (Y.I.); (K.E.)
| |
Collapse
|
21
|
Liu C, Ji X, Huang J, Wang Z, Liu Y, Hincke MT. Proteomics of Shell Matrix Proteins from the Cuttlefish Bone Reveals Unique Evolution for Cephalopod Biomineralization. ACS Biomater Sci Eng 2021; 9:1796-1807. [PMID: 34468131 DOI: 10.1021/acsbiomaterials.1c00693] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In contrast to the external shells in bivalves and gastropods, most cephalopods are missing this external protection. The cuttlefish, belonging to class cephalopod, has an internal biomineralized structure made of mainly calcium carbonate for controlling buoyancy. However, the macromolecules, especially proteins that control cuttlebone mineral formation, are not sufficiently understood, limiting our understanding of the evolution of this internal shell. In this study, we extracted proteins from the cuttlebone of pharaoh cuttlefish Sepia pharaonis and performed liquid chromatography-tandem mass spectrometry to identify the shell matrix proteins (SMPs). In total, 41 SMPs were identified. Among them, hemocyanin, an oxygen-carrying protein, was the most abundant SMP. By comparison with SMPs of other marine biominerals, hemocyanin, apolipophorin, soul domain proteins, transferrin, FL-rich, and enolase were found to be unique to the cuttlebone. In contrast, typical SMPs of external shells such as carbonic anhydrase complement control protein, fibronectin type III, and G/A-rich proteins were lacking from the cuttlebone. Furthermore, the cluster analysis of biomineral SMPs suggests that the SMP repertoire of the cuttlebone does not resemble that of other species with external shells. Taken together, this study implies a potential relationship of the cuttlefish internal shell with other internal biominerals, which highlights a unique shell evolutionary pathway in invertebrates.
Collapse
Affiliation(s)
- Chuang Liu
- College of Oceanography, Hohai University, Xikang Road, Nanjing, Jiangsu 210098, China
| | - Xin Ji
- College of Oceanography, Hohai University, Xikang Road, Nanjing, Jiangsu 210098, China
| | - Jingliang Huang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhu hai, Guangdong 519082, China
| | - Zilin Wang
- College of Oceanography, Hohai University, Xikang Road, Nanjing, Jiangsu 210098, China
| | - Yangjia Liu
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Maxwell T Hincke
- Department of Innovation in Medical Education, and Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa K1H8M5, Ontario, Canada
| |
Collapse
|
22
|
Rivera-Pérez C, Hernández-Saavedra NY. Review: Post-translational modifications of marine shell matrix proteins. Comp Biochem Physiol B Biochem Mol Biol 2021; 256:110641. [PMID: 34182126 DOI: 10.1016/j.cbpb.2021.110641] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/13/2021] [Accepted: 06/22/2021] [Indexed: 11/18/2022]
Abstract
Shell matrix proteins (SMPs) are key components for the Mollusk shell biomineralization. SMPs function has been hypothesized in several proteins by bioinformatics analysis, and through in vitro crystallization assays. However, studies of the post-translational modifications (PTMs) of SMPs, which contribute to their structure and the function, are limited. This review provides the current status of the SMPs with the most common PTMs described (glycosylation, phosphorylation, and disulfide bond formation) and their role in shell biomineralization. Also, recent studies based on recombinant production of SMPs are discussed. Finally, recommendations for the study of SMPs and their PTMs are provided. The review showed that PTMs are widely distributed in SMPs, and their presence on SMPs may contribute to the modulation of their activity in some SMPs, contributing to the crystal growth formation and differentiation through different mechanisms, however, in a few cases the lack of the PTMs do not alter their inherent function.
Collapse
Affiliation(s)
- Crisalejandra Rivera-Pérez
- CONACYT, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), La Paz, Baja California Sur, Mexico.
| | - Norma Y Hernández-Saavedra
- Molecular Genetics Laboratory, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), La Paz 23096, Baja California Sur, Mexico
| |
Collapse
|
23
|
Takeuchi T, Fujie M, Koyanagi R, Plasseraud L, Ziegler-Devin I, Brosse N, Broussard C, Satoh N, Marin F. The 'Shellome' of the Crocus Clam Tridacna crocea Emphasizes Essential Components of Mollusk Shell Biomineralization. Front Genet 2021; 12:674539. [PMID: 34168677 PMCID: PMC8217771 DOI: 10.3389/fgene.2021.674539] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/13/2021] [Indexed: 01/31/2023] Open
Abstract
Molluscan shells are among the most fascinating research objects because of their diverse morphologies and textures. The formation of these delicate biomineralized structures is a matrix-mediated process. A question that arises is what are the essential components required to build these exoskeletons. In order to understand the molecular mechanisms of molluscan shell formation, it is crucial to identify organic macromolecules in different shells from diverse taxa. In the case of bivalves, however, taxon sampling in previous shell proteomics studies are focused predominantly on representatives of the class Pteriomorphia such as pearl oysters, edible oysters and mussels. In this study, we have characterized the shell organic matrix from the crocus clam, Tridacna crocea, (Heterodonta) using various biochemical techniques, including SDS-PAGE, FT-IR, monosaccharide analysis, and enzyme-linked lectin assay (ELLA). Furthermore, we have identified a number of shell matrix proteins (SMPs) using a comprehensive proteomics approach combined to RNA-seq. The biochemical studies confirmed the presence of proteins, polysaccharides, and sulfates in the T. crocea shell organic matrix. Proteomics analysis revealed that the majority of the T. crocea SMPs are novel and dissimilar to known SMPs identified from the other bivalve species. Meanwhile, the SMP repertoire of the crocus clam also includes proteins with conserved functional domains such as chitin-binding domain, VWA domain, and protease inhibitor domain. We also identified BMSP (Blue Mussel Shell Protein, originally reported from Mytilus), which is widely distributed among molluscan shell matrix proteins. Tridacna SMPs also include low-complexity regions (LCRs) that are absent in the other molluscan genomes, indicating that these genes may have evolved in specific lineage. These results highlight the diversity of the organic molecules – in particular proteins – that are essential for molluscan shell formation.
Collapse
Affiliation(s)
- Takeshi Takeuchi
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Manabu Fujie
- DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Ryo Koyanagi
- DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Laurent Plasseraud
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR CNRS 6302, Faculté des Sciences Mirande, Université de Bourgogne - Franche-Comté (UBFC), Dijon, France
| | - Isabelle Ziegler-Devin
- LERMAB, Faculté des Sciences et Technologies - Campus Aiguillettes, Université de Lorraine, Vandoeuvre-Lès-Nancy, France
| | - Nicolas Brosse
- LERMAB, Faculté des Sciences et Technologies - Campus Aiguillettes, Université de Lorraine, Vandoeuvre-Lès-Nancy, France
| | - Cédric Broussard
- 3P5 Proteomic Platform, Cochin Institute, University of Paris, INSERM U1016, CNRS UMR 8104, Paris, France
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Frédéric Marin
- UMR CNRS 6282 Biogéosciences, Bâtiment des Sciences Gabriel, Université de Bourgogne - Franche-Comté (UBFC), Dijon, France
| |
Collapse
|
24
|
Li XL, Gao Q, Shen PJ, Zhang YF, Jiang WP, Huang ZY, Peng F, Gu ZM, Chen XF. Proteomic analysis of individual giant freshwater prawn, Macrobrachium rosenbergii, growth retardants. J Proteomics 2021; 241:104224. [PMID: 33845180 DOI: 10.1016/j.jprot.2021.104224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 03/21/2021] [Accepted: 04/03/2021] [Indexed: 10/21/2022]
Abstract
"Iron prawn" is a condition of severe growth retardation that fishers call. The giant river prawn (Macrobrachium rosenbergii) is a commercially important species contains high protein content and functional nutrients. However, no proteomic information is available for this species. We performed the shotgun 2DLC-MS/MS proteomic analysis of the total protein from "iron prawn". Total 19,758 peptides corresponding to 2613 high-confidence proteins were identified. These proteins range in size from 40 to 70 kDa. KEGG analysis revealed that the largest group consisting total 102 KEGG pathway proteins comparing the "iron prawn" with the normal prawn. Additionally, 7, 11, 1, 6, and 5 commercially important enzymes were found in the eyestalk, liver, muscle, ovary, and testis, respectively. The functions of these differently expressed enzymes include immune system action against pathogens, muscle contraction, digestive system metabolism, cell differentiation, migration, and apoptosis in the severe growth retardation of "iron prawn". Our work provides insight into the understanding of the formation mechanism of "iron prawn".
Collapse
Affiliation(s)
- Xi-Lian Li
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Freshwater Aquatic Animal Genetic and Breeding of Zhejiang province, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China
| | - Qiang Gao
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Freshwater Aquatic Animal Genetic and Breeding of Zhejiang province, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China
| | - Pei-Jing Shen
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Freshwater Aquatic Animal Genetic and Breeding of Zhejiang province, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China
| | - Yu-Fei Zhang
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Freshwater Aquatic Animal Genetic and Breeding of Zhejiang province, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China
| | - Wen-Ping Jiang
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Freshwater Aquatic Animal Genetic and Breeding of Zhejiang province, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China
| | - Zhen-Yuan Huang
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Freshwater Aquatic Animal Genetic and Breeding of Zhejiang province, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China
| | - Fei Peng
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Freshwater Aquatic Animal Genetic and Breeding of Zhejiang province, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China
| | - Zhi-Min Gu
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Freshwater Aquatic Animal Genetic and Breeding of Zhejiang province, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China.
| | - Xue-Feng Chen
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Freshwater Aquatic Animal Genetic and Breeding of Zhejiang province, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China.
| |
Collapse
|
25
|
Nam BH, Kim H, Seol D, Kim H, Noh ES, Kim EM, Noh JK, Kim YO, Park JY, Kwak W. Genotyping-by-Sequencing of the regional Pacific abalone (Haliotis discus) genomes reveals population structures and patterns of gene flow. PLoS One 2021; 16:e0247815. [PMID: 33826655 PMCID: PMC8026068 DOI: 10.1371/journal.pone.0247815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 02/12/2021] [Indexed: 01/05/2023] Open
Abstract
Continuous monitoring of the present genetic status is essential to preserve the genetic resource of wild populations. In this study, we sequenced regional Pacific abalone Haliotis discus samples from three different locations around the Korean peninsula to assess population structure, utilizing Genotyping-by-Sequencing (GBS) method. Using PstI enzyme for genome reduction, we demonstrated the resultant library represented the whole genome region with even spacing, and as a result 16,603 single nucleotide variants (SNVs) were produced. Genetic diversity and population structure were investigated using several methods, and a strong genetic heterogeneity was observed in the Korean abalone populations. Additionally, by comparison of the variant sets among population groups, we were able to discover 26 Korean abalone population-specific SNVs, potentially associated with phenotype differences. This is the first study demonstrating the feasibility of GBS for population genetic study on H. discus. Our results will provide valuable data for the genetic conservation and management of wild abalone populations in Korea and help future GBS studies on the marine mollusks.
Collapse
Affiliation(s)
- Bo-Hye Nam
- Biotechnology Research Division, National Institute of Fisheries Science, Busan, Republic of Korea
| | - Hyaekang Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Donghyeok Seol
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Genome, Inc, Seoul, Republic of Korea
| | - Heebal Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Genome, Inc, Seoul, Republic of Korea
| | - Eun Soo Noh
- Biotechnology Research Division, National Institute of Fisheries Science, Busan, Republic of Korea
| | - Eun Mi Kim
- Biotechnology Research Division, National Institute of Fisheries Science, Busan, Republic of Korea
| | - Jae Koo Noh
- Biotechnology Research Division, National Institute of Fisheries Science, Busan, Republic of Korea
| | - Young-Ok Kim
- Biotechnology Research Division, National Institute of Fisheries Science, Busan, Republic of Korea
| | - Jung Youn Park
- Biotechnology Research Division, National Institute of Fisheries Science, Busan, Republic of Korea
| | - Woori Kwak
- Genome, Inc, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
26
|
Liu C, Zhang R. Biomineral proteomics: A tool for multiple disciplinary studies. J Proteomics 2021; 238:104171. [PMID: 33652138 DOI: 10.1016/j.jprot.2021.104171] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/06/2021] [Accepted: 02/21/2021] [Indexed: 12/11/2022]
Abstract
The hard tissues of animals, such as skeletons and teeth, are constructed by a biologically controlled process called biomineralization. In invertebrate animals, biominerals are considered important for their evolutionary success. These biominerals are hieratical biocomposites with excellent mechanical properties, and their formation has intrigued researchers for decades. Although proteins account for ~5 wt% of biominerals, they are critical players in biomineralization. With the development of high-throughput analysis methods, such as proteomics, biomineral protein data are rapidly accumulating, thus necessitating a refined model for biomineralization. This review focuses on biomineral proteomics in invertebrate animals to highlight the diversity of biomineral proteins (generally 40-80 proteins), and the results indicate that biomineralization includes thermodynamic crystal growth as well as intense extracellular matrix activity and/or vesicle transport. Biominerals have multiple functions linked to biological immunity and antipathogen activity. A comparison of proteomes across species and biomineral types showed that von Willebrand factor type A and epidermal growth factor, which frequently couple with other extracellular domains, are the most common domains. Combined with species-specific repetitive low complexity domains, shell matrix proteins can be employed to predict biomineral types. Furthermore, this review discusses the applications of biomineral proteomics in diverse fields, such as tissue regeneration, developmental biology, archeology, environmental science, and material science.
Collapse
Affiliation(s)
- Chuang Liu
- College of Oceanography, Hohai University, Xikang Road, Nanjing, Jiangsu 210098, China.
| | - Rongqing Zhang
- Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China; Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, 705 Yatai Road, Jiaxing 314006, PR China; College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China.
| |
Collapse
|
27
|
McDougall C, Aguilera F, Shokoohmand A, Moase P, Degnan BM. Pearl Sac Gene Expression Profiles Associated With Pearl Attributes in the Silver-Lip Pearl Oyster, Pinctada maxima. Front Genet 2021; 11:597459. [PMID: 33488672 PMCID: PMC7820862 DOI: 10.3389/fgene.2020.597459] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/07/2020] [Indexed: 11/21/2022] Open
Abstract
Pearls are highly prized biomineralized gemstones produced by molluscs. The appearance and mineralogy of cultured pearls can vary markedly, greatly affecting their commercial value. To begin to understand the role of pearl sacs—organs that form in host oysters from explanted mantle tissues that surround and synthesize pearls—we undertook transcriptomic analyses to identify genes that are differentially expressed in sacs producing pearls with different surface and structural characteristics. Our results indicate that gene expression profiles correlate with different pearl defects, suggesting that gene regulation in the pearl sac contributes to pearl appearance and quality. For instance, pearl sacs that produced pearls with surface non-lustrous calcification significantly down-regulate genes associated with cilia and microtubule function compared to pearl sacs giving rise to lustrous pearls. These results suggest that gene expression profiling can advance our understanding of processes that control biomineralization, which may be of direct value to the pearl industry, particularly in relation to defects that result in low value pearls.
Collapse
Affiliation(s)
- Carmel McDougall
- Centre for Marine Science, School of Biological Sciences, The University of Queensland, St. Lucia, QLD, Australia.,Australian Rivers Institute, Griffith University, Nathan, QLD, Australia
| | - Felipe Aguilera
- Centre for Marine Science, School of Biological Sciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Ali Shokoohmand
- Australian Rivers Institute, Griffith University, Nathan, QLD, Australia
| | - Patrick Moase
- Clipper Pearls and Autore Pearling, Broome, WA, Australia
| | - Bernard M Degnan
- Centre for Marine Science, School of Biological Sciences, The University of Queensland, St. Lucia, QLD, Australia
| |
Collapse
|
28
|
Zhong M, Wu H, Li F, Shan X, Ji C. Proteomic analysis revealed gender-specific responses of mussels (Mytilus galloprovincialis) to trichloropropyl phosphate (TCPP) exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115537. [PMID: 32892020 DOI: 10.1016/j.envpol.2020.115537] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/11/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
Trichloropropyl phosphate (TCPP) is a halogenated organophosphate ester that is widely used as flame retardants and plasticizers. In this study, gender-specific accumulation and responses in mussel Mytilus galloprovincialis to TCPP exposure were focused and highlighted. After TCPP (100 nmol L-1) exposure for 42 days, male mussels showed similar average bioaccumulation (37.14 ± 6.09 nmol g-1 fat weight (fw)) of TCPP with that in female mussels (32.28 ± 4.49 nmol g-1 fw). Proteomic analysis identified 219 differentially expressed proteins (DEPs) between male and female mussels in control group. There were 52 and 54 DEPs induced by TCPP in male and female mussels, respectively. Interestingly, gender-specific DEPs included 37 and 41 DEPs induced by TCPP in male and female mussels, respectively. The proteomic differences between male and female mussels were related to protein synthesis and degradation, energy metabolism, and functions of cytoskeleton and motor proteins. TCPP influenced protein synthesis, energy metabolism, cytoskeleton functions, immunity, and reproduction in both male and female mussels. Protein-protein interaction (PPI) networks indicated that protein synthesis and energy metabolism were the main biological processes influenced by TCPP. However, DEPs involved in these processes and their interaction patterns were quite different between male and female mussels. Basically, twelve ribosome DEPs which directly or indirectly interacted were found in protein synthesis in TCPP-exposed male mussels, while only 3 ribosome DEPs (not interacted) in TCPP-exposed female mussels. In energy metabolism, only 4 DEPs (with the relatively simple interaction pattern) mainly resided in fatty acid metabolism, butanoate/propanoate metabolism and glucose metabolism were discovered in TCPP-exposed male mussels, and more DEPs (with multiple interactions) functioned in TCA cycle and pyruvate/glyoxylate/dicarboxylate metabolism were found in TCCP-exposed female mussels. Taken together, TCPP induced gender-specific toxicological effects in mussels, which may shed new lights on further understanding the toxicological mechanisms of TCPP in aquatic organisms.
Collapse
Affiliation(s)
- Mingyu Zhong
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China
| | - Huifeng Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, PR China.
| | - Fei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, PR China
| | - Xiujuan Shan
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China
| | - Chenglong Ji
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, PR China
| |
Collapse
|
29
|
Shimizu K, Kintsu H, Awaji M, Matumoto T, Suzuki M. Evolution of Biomineralization Genes in the Prismatic Layer of the Pen Shell Atrina pectinata. J Mol Evol 2020; 88:742-758. [PMID: 33236260 DOI: 10.1007/s00239-020-09977-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/18/2020] [Indexed: 11/29/2022]
Abstract
Molluscan shells are composed of calcium carbonates, with small amounts of extracellular matrices secreted from mantle epithelial cells. Many types of shell matrix proteins (SMPs) have been identified from molluscan shells or mantle cells. The pen shell Atrina pectinata (Pinnidae) has two different shell microstructures, the nacreous and prismatic layers. Nacreous and prismatic layer-specific matrix proteins have been reported in Pteriidae bivalves, but remain unclear in Pinnidae. We performed transcriptome analysis using the mantle cells of A. pectinata to screen the candidate transcripts involved in its prismatic layer formation. We found Asprich and nine highly conserved prismatic layer-specific SMPs encoding transcript in P. fucata, P. margaritifera, and P. maxima (Tyrosinase, Chitinase, EGF-like proteins, Fibronectin, valine-rich proteins, and prismatic uncharacterized shell protein 2 [PUSP2]) using molecular phylogenetic analysis or multiple alignment. We confirmed these genes were expressed in the epithelial cells of the mantle edge (outer surface of the outer fold) and the mantle pallium. Phylogenetic character mapping of these SMPs was used to infer a possible evolutionary scenario of them in Pteriomorphia. EGF-like proteins, Fibronectin, and valine-rich proteins encoding genes each evolved in the linage leading to four Pteriomorphia (Mytilidae, Pinnidae, Ostreidae, and Pteriidae), PUSP2 evolved in the linage leading to three Pteriomorphia families (Pinnidae, Ostreidae, and Pteriidae), and chitinase was independently evolved as SMPs in Mytilidae and in other Pteriomorphia (Pinnidae, Ostreidae, and Pteriidae). Our results provide a new dataset for A. pectinata SMP annotation, and a basis for understanding the evolution of prismatic layer formation in bivalves.
Collapse
Affiliation(s)
- Keisuke Shimizu
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-8657, Japan
| | - Hiroyuki Kintsu
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-8657, Japan.,Center for Health and Environmental Risk Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Masahiko Awaji
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 422-1 Nakatsuhama, Minami-Ise, Watarai, Mie, 516-0193, Japan
| | - Toshie Matumoto
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 422-1 Nakatsuhama, Minami-Ise, Watarai, Mie, 516-0193, Japan
| | - Michio Suzuki
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-8657, Japan.
| |
Collapse
|
30
|
Li S, Tang X, Lu Y, Xu J, Chen J, Chen H. An improved method for the separation of carotenoids and carotenoid isomers by liquid chromatography-mass spectrometry. J Sep Sci 2020; 44:539-548. [PMID: 33200871 DOI: 10.1002/jssc.202000902] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/12/2020] [Accepted: 11/12/2020] [Indexed: 11/10/2022]
Abstract
Carotenoids consist of a series of conjugated isoprene units that are characteristically highly conjugated through double bonds, leading to the formation of many isomers that are susceptible to oxidation and other chemical modifications. Extreme hydrophobicity and high complexity make carotenoids difficult to identify and quantify. We implemented the use of a common Syncronis C18 column with strong eluting solvent, here isopropanol, to successfully separate a mixture of 23 carotenoids standards with different structural properties. In addition, the method differentiated between three groups of isomeric carotenoids (lycopene/δ-carotene/γ-carotene/ε-carotene/α-carotene/β-carotene, α-cryptoxanthin/β-cryptoxanthin, and zeaxanthin/lutein) by optimizing the gradient profile and using liquid chrmatography-mass spectrometry. The LOD ranged from 0.05 to 5.51 ng/mL, and the recovery of carotenoids in Mytilus coruscus was from 63.54 to 93.25%, with standard deviations <10%. Twenty-five carotenoids were detected with a total content of 857 ± 55.1 mg/kg, and three isomeric carotenoids were identified: ε-carotene, α-carotene, and β-carotene. Our results show that this methodology is a significant improvement over other alternatives for analyzing carotenoids because of its compatibility with carotenoids of different categories, and most importantly, its ability to resolve isomeric carotenes, which is significant not only for assessing carotenoid species, but also for the tracing of metabolic pathways of carotenoids.
Collapse
Affiliation(s)
- Shuang Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, P. R. China.,Food Testing Laboratory, Ningbo Customs Technology Center, Ningbo, P. R. China
| | - Xinyi Tang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, P. R. China
| | - Yingying Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, P. R. China
| | - Jilin Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, P. R. China
| | - Juanjuan Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, P. R. China
| | - Haimin Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, P. R. China
| |
Collapse
|
31
|
Sun Q, Jiang Y, Yan X, Fan M, Zhang X, Xu H, Liao Z. Molecular Characterization of a Novel Shell Matrix Protein With PDZ Domain From Mytilus coruscus. Front Physiol 2020; 11:543758. [PMID: 33123020 PMCID: PMC7573561 DOI: 10.3389/fphys.2020.543758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 09/04/2020] [Indexed: 11/16/2022] Open
Abstract
Mollusk shells are products of biomineralization and possess excellent mechanical properties, and shell matrix proteins (SMPs) have important functions in shell formation. A novel SMP with a PDZ domain (PDZ-domain-containing-protein-1, PDCP-1) was identified from the shell matrices of Mytilus coruscus. In this study, the gene expression, function, and location of PDCP-1 were analyzed. PDCP-1 was characterized as an ∼70 kDa protein with a PDZ (postsynaptic density/discs large/zonula occludes) domain and a ZM (ZASP-like motif) domain. The PDCP-1 gene has a high expression level and specific location in the foot, mantle and adductor muscle. Recombinantly expressed PDCP-1 (rPDCP-1) altered the morphology of calcite crystals, the polymorph of calcite crystals, binding with both calcite and aragonite crystals, and inhibition of the crystallization rate of calcite crystals. In addition, anti-rPDCP-1 antibody was prepared, and immunohistochemistry and immunofluorescence analyses revealed the specific location of PDCP-1 in the mantle, the adductor muscle, and the aragonite (nacre and myostracum) layer of the shell, suggesting multiple functions of PDCP-1 in biomineralization, muscle-shell attachment, and muscle attraction. Furthermore, pull-down analysis revealed 19 protein partners of PDCP-1 from the shell matrices, which accordingly provided a possible interaction network of PDCP-1 in the shell. These results expand the understanding of the functions of PDZ-domain-containing proteins (PDCPs) in biomineralization and the supramolecular chemistry that contributes to shell formation.
Collapse
|
32
|
Jiang Y, Sun Q, Fan M, He J, Zhang X, Xu H, Liao Z. Recombinant transgelin-like protein 1 from Mytilus shell induces formation of CaCO 3 polymorphic crystals in vitro. FEBS Open Bio 2020; 10:2216-2234. [PMID: 32902197 PMCID: PMC7530383 DOI: 10.1002/2211-5463.12972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/31/2020] [Accepted: 09/03/2020] [Indexed: 11/23/2022] Open
Abstract
Transgelin is an actin cross-linking/gelling protein of the calponin family, which is associated with actin stress fibres, cell motility, adhesion and the maintenance of cell morphology. Transgelin-like proteins (TLPs) have also been identified as shell matrix proteins (SMPs) in several mollusc species; however, the functions of TLPs in biomineralization remain unknown. Transgelin-like protein 1 (TLP-1) was previously identified from the shell of Mytilus coruscus as a novel 19 kDa SMP with a calponin homology (CH) domain. To understand the role of TLP-1 in shell formation, the expression level and localization of the TLP-1 gene in biomineralization-related tissues were determined in this study. Furthermore, recombinant TLP-1 was expressed in a prokaryotic expression system with codon optimization, and an anti-rTLP-1 antibody was prepared based on the expressed recombinant TLP-1 (rTLP-1) protein. In vitro, rTLP-1 induced the formation of CaCO3 polymorphic crystals with distinct morphologies and inhibited crystallization rate and crystal interactions. Immunohistochemical, immunofluorescence, and pull-down analyses using the anti-rTLP-1 antibody revealed the specific locations of TLP-1 in biomineralization-related tissues and shell myostracum layer, and suggested the existence of a possible TLP-1 interaction network in the shell matrix. Our results are beneficial for understanding the functions of TLP-1, particularly through its CH domain, during shell mineralization.
Collapse
Affiliation(s)
- Yuting Jiang
- Laboratory of Marine Biology Protein EngineeringMarine Science and Technical CollegeZhejiang Ocean UniversityZhoushan CityChina
| | - Qi Sun
- Laboratory of Marine Biology Protein EngineeringMarine Science and Technical CollegeZhejiang Ocean UniversityZhoushan CityChina
| | - Meihua Fan
- Laboratory of Marine Biology Protein EngineeringMarine Science and Technical CollegeZhejiang Ocean UniversityZhoushan CityChina
| | - Jianyu He
- Department of BiologyUniversity of PisaCoNISMaItaly
| | - Xiaolin Zhang
- Laboratory of Marine Biology Protein EngineeringMarine Science and Technical CollegeZhejiang Ocean UniversityZhoushan CityChina
| | - Huanzhi Xu
- Laboratory of Marine Biology Protein EngineeringMarine Science and Technical CollegeZhejiang Ocean UniversityZhoushan CityChina
| | - Zhi Liao
- Laboratory of Marine Biology Protein EngineeringMarine Science and Technical CollegeZhejiang Ocean UniversityZhoushan CityChina
| |
Collapse
|
33
|
Iwamoto S, Shimizu K, Negishi L, Suzuki N, Nagata K, Suzuki M. Characterization of the chalky layer-derived EGF-like domain-containing protein (CgELC) in the pacific oyster, Crassostrea gigas. J Struct Biol 2020; 212:107594. [PMID: 32736075 DOI: 10.1016/j.jsb.2020.107594] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 12/16/2022]
Abstract
The shells of the Pacific oyster Crassostrea gigas contain calcite crystals with three types of microstructures: prismatic, chalky, and foliated layers. Many shell matrix proteins were annotated from the shells of C. gigas; however, it is unclear which SMPs play important roles in their shell mineralization. The matrix proteins have never been reported from the chalky layer. In this study, we identified a chalky layer-derived EGF-like domain-containing protein (CgELC) from the chalky layer of C. gigas shells. The gene sequence of the CgELC was encoded under CGI_ 10,017,544 of the C. gigas genome database. Only peptide fragments in the N-terminal region of CGI_ 10,017,544 were detected by LC-MS/MS analyses, suggesting that CGI_ 10,017,544 was digested at the predicted protease digestion dibasic site by post-translational modification to become a mature CgELC protein. We produced three types of CgELC recombinant proteins, namely, the full length CgELC, as well as the N-terminal and C-terminal parts of CgELC (CgELC-N or -C, respectively), for in vitro crystallization experiments. In the presence of these recombinant proteins, the aggregation of polycrystalline calcite was observed. Some fibrous organic components seemed to be incorporated into the calcite crystals in the presence of the r-CgELC protein. We also noted different features in the crystallization between CgELC-N and CgELC-C; some crystals were inhibited crystal plane formation and contained many columnar prisms inside the crystals (CgELC-N) and formed numerous holes on their surfaces (CgELC-C). These results suggest that CgELC is involved in crystal aggregation and incorporated into calcite crystals.
Collapse
Affiliation(s)
- Shihori Iwamoto
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan
| | - Keisuke Shimizu
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan
| | - Lumi Negishi
- Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan
| | - Nobuo Suzuki
- Institute of Nature and Environmental Technology, Kanazawa University, 4-1 Ogimu, Notocho, Hosu-gun, Ishikawa 927-0553, Japan
| | - Koji Nagata
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan
| | - Michio Suzuki
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan.
| |
Collapse
|
34
|
Natural arrangement of fiber-like aragonites and its impact on mechanical behavior of mollusk shells: A review. J Mech Behav Biomed Mater 2020; 110:103940. [PMID: 32957234 DOI: 10.1016/j.jmbbm.2020.103940] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 04/13/2020] [Accepted: 06/15/2020] [Indexed: 11/20/2022]
Abstract
During billions of years of evolution, creatures in nature have possessed nearly perfect structures and functions for survival. Multiscale structures in biological materials over several length scales play a pivotal role in achieving structural and functional integrity. Fiber, as a common principal structural element in nature, can be easily constructed in different ways, thus resulting in various natural structures. In this review, we summarized the decades of investigations on a typical biological structure constructed by fiber aragonites in mollusk shells. Crossed-lamellar structure, as one of the most widespread structures in mollusk shells, reconciles the strength-toughness trade-off dilemma successfully due to the presence of highly-hierarchical architectures. This distinctive structure includes several orders of sub-lamellae, and the different order lamellae present a cross-ply feature in one macro crossed-lamellar layer. When a mollusk shell has more than one macro-layer, the crossed-lamellar structure exhibits various forms of architectures including 0°/90°, 0°/90°/0° typical-sandwich, 15°/75°/0° quasi-sandwich, and 0°/90°/0°/90° arranged modes. The fracture resistance and the relevant toughening mechanisms are directly related to the highly-hierarchical crossed-lamellar structures on different length scales. This article is aimed to review the different arranged modes of crossed-lamellar structures existing in nature, with special attention to their impact on the mechanical behavior and salient toughening mechanisms over several length scales, for seeking the design guidelines for the fabrication of bio-inspired advanced engineering materials that are adaptive to different loading conditions.
Collapse
|
35
|
Marin F. Mollusc shellomes: Past, present and future. J Struct Biol 2020; 212:107583. [PMID: 32721585 DOI: 10.1016/j.jsb.2020.107583] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/19/2020] [Accepted: 07/21/2020] [Indexed: 01/31/2023]
Abstract
In molluscs, the shell fabrication requires a large array of secreted macromolecules including proteins and polysaccharides. Some of them are occluded in the shell during mineralization process and constitute the shell repertoire. The protein moieties, also called shell proteomes or, more simply, 'shellomes', are nowadays analyzed via high-throughput approaches. These latter, applied so far on about thirty genera, have evidenced the huge diversity of shellomes from model to model. They also pinpoint the recurrent presence of functional domains of diverse natures. Shell proteins are not only involved in guiding the mineral deposition, but also in enzymatic and immunity-related functions, in signaling or in coping with many extracellular molecules such as saccharides. Many shell proteins exhibit low complexity domains, the function of which remains unclear. Shellomes appear as self-organizing systems that must be approached from the point of view of complex systems biology: at supramolecular level, they generate emergent properties, i.e., microstructures that cannot be simply explained by the sum of their parts. A conceptual scheme is developed here that reconciles the plasticity of the shellome, its evolvability and the constrained frame of microstructures. Other perspectives arising from the study of shellomes are briefly discussed, including the macroevolution of shell repertoires, their maturation and their transformation through time.
Collapse
Affiliation(s)
- Frédéric Marin
- UMR CNRS 6282 Biogéosciences, Université de Bourgogne - Franche-Comté, 6 Boulevard Gabriel, 21000 Dijon, France
| |
Collapse
|
36
|
Ishikawa A, Shimizu K, Isowa Y, Takeuchi T, Zhao R, Kito K, Fujie M, Satoh N, Endo K. Functional shell matrix proteins tentatively identified by asymmetric snail shell morphology. Sci Rep 2020; 10:9768. [PMID: 32555253 PMCID: PMC7299971 DOI: 10.1038/s41598-020-66021-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 05/13/2020] [Indexed: 12/21/2022] Open
Abstract
Molluscan shell matrix proteins (SMPs) are essential in biomineralization. Here, we identify potentially important SMPs by exploiting the asymmetric shell growth in snail, Lymnaea stagnalis. Asymmetric shells require bilaterally asymmetric expression of SMP genes. We examined expression levels of 35,951 transcripts expressed in the left and right sides of mantle tissue of the pond snail, Lymnaea stagnalis. This transcriptome dataset was used to identify 207 SMPs by LC-MS/MS. 32 of the 207 SMP genes show asymmetric expression patterns, which were further verified for 4 of the 32 SMPs using quantitative PCR analysis. Among asymmetrically expressed SMPs in dextral snails, those that are more highly expressed on the left side than the right side are 3 times more abundant than those that are more highly expressed on the right than the left, suggesting potentially inhibitory roles of SMPs in shell formation. The 32 SMPs thus identified have distinctive features, such as conserved domains and low complexity regions, which may be essential in biomineralization.
Collapse
Affiliation(s)
- Akito Ishikawa
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-0033, Japan.
| | - Keisuke Shimizu
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-8657, Japan
| | - Yukinobu Isowa
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, 429-63 Sugashima, Toba, Mie, 517-0004, Japan
| | - Takeshi Takeuchi
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan
| | - Ran Zhao
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-0033, Japan
| | - Keiji Kito
- Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama, Kawasaki, Kanagawa, 214-8571, Japan
| | - Manabu Fujie
- DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan
| | - Kazuyoshi Endo
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-0033, Japan.
| |
Collapse
|
37
|
Klein AH, Ballard KR, Storey KB, Motti CA, Zhao M, Cummins SF. Multi-omics investigations within the Phylum Mollusca, Class Gastropoda: from ecological application to breakthrough phylogenomic studies. Brief Funct Genomics 2020; 18:377-394. [PMID: 31609407 DOI: 10.1093/bfgp/elz017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 07/06/2019] [Accepted: 07/15/2019] [Indexed: 12/22/2022] Open
Abstract
Gastropods are the largest and most diverse class of mollusc and include species that are well studied within the areas of taxonomy, aquaculture, biomineralization, ecology, microbiome and health. Gastropod research has been expanding since the mid-2000s, largely due to large-scale data integration from next-generation sequencing and mass spectrometry in which transcripts, proteins and metabolites can be readily explored systematically. Correspondingly, the huge data added a great deal of complexity for data organization, visualization and interpretation. Here, we reviewed the recent advances involving gastropod omics ('gastropodomics') research from hundreds of publications and online genomics databases. By summarizing the current publicly available data, we present an insight for the design of useful data integrating tools and strategies for comparative omics studies in the future. Additionally, we discuss the future of omics applications in aquaculture, natural pharmaceutical biodiscovery and pest management, as well as to monitor the impact of environmental stressors.
Collapse
Affiliation(s)
- Anne H Klein
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia
| | - Kaylene R Ballard
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia
| | - Kenneth B Storey
- Institute of Biochemistry & Department of Biology, Carleton University, Ottawa, ON, Canada K1S 5B6
| | - Cherie A Motti
- Australian Institute of Marine Science (AIMS), Cape Ferguson, Townsville Queensland 4810, Australia
| | - Min Zhao
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia
| | - Scott F Cummins
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia
| |
Collapse
|
38
|
Sun Q, Jiang Y, Fan M, Zhang X, Xu H, Liao Z. Characterization of a novel shell matrix protein with vWA domain from Mytilus coruscus. Biosci Biotechnol Biochem 2020; 84:1629-1644. [PMID: 32314940 DOI: 10.1080/09168451.2020.1756735] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Mollusk shell is a product of biomineralization with excellent mechanical properties, and the shell matrix proteins (SMPs) have important functions in shell formation. A vWA domain-containing protein (VDCP) was identified from the shell of Mytilus coruscus as a novel shell matrix protein. The VDCP gene is expressed at a high level in specific locations in the mantle and adductor muscle. Recombinant VDCP (rVDCP) showed abilities to alter the morphology of both calcite and aragonite, induce the polymorph change of calcite, bind calcite, and decrease the crystallization rate of calcite. In addition, immunohistochemistry analyses revealed the specific location of VDCP in the mantle, the adductor muscle, and the myostracum layer of the shell. Furthermore, a pull-down analysis revealed eight protein interaction partners of VDCP in shell matrices and provided a possible protein-protein interaction network of VDCP in the shell.
Collapse
Affiliation(s)
- Qi Sun
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University , Zhoushan City, Zhejiang, China
| | - Yuting Jiang
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University , Zhoushan City, Zhejiang, China
| | - Meihua Fan
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University , Zhoushan City, Zhejiang, China
| | - Xiaolin Zhang
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University , Zhoushan City, Zhejiang, China
| | - Huanzhi Xu
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University , Zhoushan City, Zhejiang, China
| | - Zhi Liao
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University , Zhoushan City, Zhejiang, China
| |
Collapse
|
39
|
Weng F, Zhang P, Koranteng E, Ma N, Wu Z, Wu Q. Effects of the special structure of bio‐based shell powder on the properties of shell‐polycaprolactone composite. J Appl Polym Sci 2020. [DOI: 10.1002/app.48768] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Fangqing Weng
- Green Polymer Laboratory and Key Laboratory of Pesticide & Chemical Biology of the Ministry of Education (Central China Normal University)College of Chemistry Wuhan 430079 China
| | - Peirui Zhang
- Green Polymer Laboratory and Key Laboratory of Pesticide & Chemical Biology of the Ministry of Education (Central China Normal University)College of Chemistry Wuhan 430079 China
| | - Ernest Koranteng
- Green Polymer Laboratory and Key Laboratory of Pesticide & Chemical Biology of the Ministry of Education (Central China Normal University)College of Chemistry Wuhan 430079 China
| | - Nian Ma
- Green Polymer Laboratory and Key Laboratory of Pesticide & Chemical Biology of the Ministry of Education (Central China Normal University)College of Chemistry Wuhan 430079 China
| | - Zhengshun Wu
- Green Polymer Laboratory and Key Laboratory of Pesticide & Chemical Biology of the Ministry of Education (Central China Normal University)College of Chemistry Wuhan 430079 China
| | - Qiangxian Wu
- Green Polymer Laboratory and Key Laboratory of Pesticide & Chemical Biology of the Ministry of Education (Central China Normal University)College of Chemistry Wuhan 430079 China
| |
Collapse
|
40
|
Molecular characterization of a whirlin-like protein with biomineralization-related functions from the shell of Mytilus coruscus. PLoS One 2020; 15:e0231414. [PMID: 32267882 PMCID: PMC7141649 DOI: 10.1371/journal.pone.0231414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/23/2020] [Indexed: 11/19/2022] Open
Abstract
Mollusc shells are produced from calcified skeletons and have excellent mechanical properties. Shell matrix proteins (SMPs) have important functions in shell formation. A 16.6 kDa whirlin-like protein (WLP) with a PDZ domain was identified in the shell of Mytilus coruscus as a novel SMP. In this study, the expression, function, and location of WLP were analysed. The WLP gene was highly expressed and specifically located in the adductor muscle and mantle. The expression of recombinant WLP (rWLP) was associated with morphological change, polymorphic change, binding ability, and crystallization rate inhibition of the calcium carbonate crystals in vitro. In addition, an anti-rWLP antibody was prepared, and the results from immunohistochemistry and immunofluorescence analyses revealed the specific location of the WLP in the mantle, adductor muscle, and myostracum layer of the shell, suggesting multiple functions for WLP in biomineralization, muscle-shell attachment, and muscle attraction. Furthermore, results from a pull-down analysis revealed 10 protein partners of WLP in the shell matrices and a possible network of interacting WLPs in the shell. In addition, in this study, one of the WLP partners, actin, was confirmed to have the ability to bind WLP. These results expand the understanding of the functions of PDZ-domain-containing proteins in biomineralization and provide clues for determining the mechanisms of myostracum formation and muscle-shell attachment.
Collapse
|
41
|
Zhao X, Han Y, Chen B, Xia B, Qu K, Liu G. CO 2-driven ocean acidification weakens mussel shell defense capacity and induces global molecular compensatory responses. CHEMOSPHERE 2020; 243:125415. [PMID: 31770697 DOI: 10.1016/j.chemosphere.2019.125415] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/06/2019] [Accepted: 11/18/2019] [Indexed: 06/10/2023]
Abstract
Oceanic uptake of atmospheric CO2 is reducing seawater pH and shifting carbonate chemistry within, a process termed as ocean acidification (OA). Marine mussels are a family of ecologically and economically significant bivalves that are widely distributed along coastal areas worldwide. Studies have demonstrated that OA greatly disrupts mussels' physiological functions. However, the underlying molecular responses (e.g., whether there were any molecular compensation mechanisms) and the extent to which OA affects mussel shell defense capacity remain largely unknown. In this study, the thick shell mussels Mytilus coruscus were exposed to the ambient pH (8.1) or one of two lowered pH levels (7.8 and 7.4) for 40 days. The results suggest that future OA will damage shell structure and weaken shell strength and shell closure strength, ultimately reducing mussel shell defense capacity. In addition, future OA will also disrupt haemolymph pH and Ca2+ homeostasis, leading to extracellular acidosis and Ca2+ deficiency. Mantle transcriptome analyses indicate that mussels will adopt a series of molecular compensatory responses to mitigate these adverse effects; nevertheless, weakened shell defense capacity will increase mussels' susceptibility to predators, parasites and pathogens, and thereby reduce their fitness. Overall, the findings of this study have significant ecological and economic implications, and will enhance our understanding of the future of the mussel aquaculture industry and coastal ecosystems.
Collapse
Affiliation(s)
- Xinguo Zhao
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, PR China; Laboratory for Marine Ecology and Environment Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China; College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Yu Han
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Bijuan Chen
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, PR China; Laboratory for Marine Ecology and Environment Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China
| | - Bin Xia
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, PR China; Laboratory for Marine Ecology and Environment Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China
| | - Keming Qu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, PR China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China.
| |
Collapse
|
42
|
Ren G, Chen C, Jin Y, Zhang G, Hu Y, Shen W. A Novel Tyrosinase Gene Plays a Potential Role in Modification the Shell Organic Matrix of the Triangle Mussel Hyriopsis cumingii. Front Physiol 2020; 11:100. [PMID: 32153421 PMCID: PMC7045039 DOI: 10.3389/fphys.2020.00100] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 01/27/2020] [Indexed: 12/17/2022] Open
Abstract
Although tyrosinases have been speculated to participate in the shell formation of mollusks, there is still a lack of experimental evidence to support this assumption. In this study, a novel tyrosinase designated HcTyr2 was isolated and characterized from the freshwater mussel Hyriopsis cumingii. The change in HcTyr2 mRNA expression during the process of embryonic development was detected by real-time quantitative PCR. The result showed that the expression of HcTyr2 mRNA was significantly upregulated at the stages of gastrulae and unmatured glochidia (P < 0.05), suggesting that this gene might fundamentally participate in the biogenesis and growth of the initial shell. Meanwhile, the upregulation of HcTyr2 mRNA at the stages of shell regeneration 24 h and 9 days after shell notching in the mantle edge (P < 0.05) implied that it might play an important role in shell periostracum and nacre formation by mediating the cross-linking of quinoproteins to promote the maturity of organic matrix. Additionally, the knockdown of HcTyr2 mRNA by RNA interference resulted in not only the suppression of periostracum growth but also structural disorder of nacre aragonite tablets, as detected by scanning electron microscopy. These results suggested that HcTyr2 might regulate the growth of shell by its oxidative ability to transform soluble matrix proteins into insoluble matrix proteins, then promoting the maturity of the shell organic framework in H. cumingii. In general, our results suggested the importance of HcTyr2 in the shell formation and regeneration of H. cumingii.
Collapse
Affiliation(s)
- Gang Ren
- School of Life Sciences, Shaoxing University, Shaoxing, China.,College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Chao Chen
- School of Life Sciences, Shaoxing University, Shaoxing, China
| | - Yefei Jin
- School of Life Sciences, Shaoxing University, Shaoxing, China
| | - Genfang Zhang
- College of Agriculture and Bioengineering, Jinhua Polytechnic, Jinhua, China
| | - Yiwei Hu
- School of Life Sciences, Shaoxing University, Shaoxing, China
| | - Wenying Shen
- School of Life Sciences, Shaoxing University, Shaoxing, China
| |
Collapse
|
43
|
PfmPif97-like regulated by Pfm-miR-9b-5p participates in shell formation in Pinctada fucata martensii. PLoS One 2019; 14:e0226367. [PMID: 31830109 PMCID: PMC6907788 DOI: 10.1371/journal.pone.0226367] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 11/25/2019] [Indexed: 01/07/2023] Open
Abstract
Mollusk shell matrix proteins are important for the formation of organic frameworks, crystal nucleation, and crystal growth in Pinctada fucata martensii (P. f. martensii). MicroRNAs (miRNAs) are endogenous small non-coding RNAs that play important roles in many biological processes, including shell formation. In this study, we obtained the full-length sequence of Pif97-like gene in P. f. martensii (PfmPif97-like). PfmPif97-like was mainly distributed in mantle pallial and mantle edge. Correlation analysis indicated that the average shell thickness and weight showed a positive correlation with PfmPif97-like expression (P < 0.05). The inner surface of the nacreous layer and prismatic layer showed atypical growth when we knocked down the expression of PfmPif97-like by RNA interference (RNAi). We used a luciferase reporter assay to identify that miR-9b-5p of P. f. martensii (Pfm-miR-9b-5p) downregulated the expression of PfmPif97-like by interacting with the 3′-untranslated region (UTR) while we obtained the same result by injecting the Pfm-miR-9b-5p mimics in vivo. After injecting the mimics, we also observed abnormal growth in nacre layer and prismatic layer which is consistent with the result of RNAi. We proposed that PfmPif97-like regulated by Pfm-miR-9b-5p participates in shell formation of P. f. martensii. These findings provide important clues about the molecular mechanisms that regulate biomineralization in P. f. martensii.
Collapse
|
44
|
Proteomic investigation of the blue mussel larval shell organic matrix. J Struct Biol 2019; 208:107385. [DOI: 10.1016/j.jsb.2019.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 09/04/2019] [Accepted: 09/06/2019] [Indexed: 11/22/2022]
|
45
|
Miglioli A, Dumollard R, Balbi T, Besnardeau L, Canesi L. Characterization of the main steps in first shell formation in Mytilus galloprovincialis: possible role of tyrosinase. Proc Biol Sci 2019; 286:20192043. [PMID: 31771478 DOI: 10.1098/rspb.2019.2043] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Bivalve biomineralization is a highly complex and organized process, involving several molecular components identified in adults and larval stages. However, information is still scarce on the ontogeny of the organic matrix before calcification occurs. In this work, first shell formation was investigated in the mussel Mytilus galloprovincialis. The time course of organic matrix and CaCO3 deposition were followed at close times post fertilization (24, 26, 29, 32, 48 h) by calcofluor and calcein staining, respectively. Both components showed an exponential trend in growth, with a delay between organic matrix and CaCO3 deposition. mRNA levels of genes involved in matrix deposition (chitin synthase; tyrosinase- TYR) and calcification (carbonic anhydrase; extrapallial protein) were quantified by qPCR at 24 and 48 hours post fertilization (hpf) with respect to eggs. All transcripts were upregulated across early development, with TYR showing highest mRNA levels from 24 hpf. TYR transcripts were closely associated with matrix deposition as shown by in situ hybridization. The involvement of tyrosinase activity was supported by data obtained with the enzyme inhibitor N-phenylthiourea. Our results underline the pivotal role of shell matrix in driving first CaCO3 deposition and the importance of tyrosinase in the formation of the first shell in M. galloprovincialis.
Collapse
Affiliation(s)
- A Miglioli
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, DISTAV, Università di Genova, Corso Europa 26, 16132 Genova, Italy.,Laboratoire de Biologie du Developpement de Villefranche-sur-mer, Institut de la mer, Sorbonne Université, CNRS, 181 Chemin du Lazaret, 06230 Villefranche-sur-mer, France
| | - R Dumollard
- Laboratoire de Biologie du Developpement de Villefranche-sur-mer, Institut de la mer, Sorbonne Université, CNRS, 181 Chemin du Lazaret, 06230 Villefranche-sur-mer, France
| | - T Balbi
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, DISTAV, Università di Genova, Corso Europa 26, 16132 Genova, Italy
| | - L Besnardeau
- Laboratoire de Biologie du Developpement de Villefranche-sur-mer, Institut de la mer, Sorbonne Université, CNRS, 181 Chemin du Lazaret, 06230 Villefranche-sur-mer, France
| | - L Canesi
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, DISTAV, Università di Genova, Corso Europa 26, 16132 Genova, Italy
| |
Collapse
|
46
|
Liao Z, Jiang YT, Sun Q, Fan MH, Wang JX, Liang HY. Microstructure and in-depth proteomic analysis of Perna viridis shell. PLoS One 2019; 14:e0219699. [PMID: 31323046 PMCID: PMC6641155 DOI: 10.1371/journal.pone.0219699] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 06/28/2019] [Indexed: 12/20/2022] Open
Abstract
For understanding the structural characteristics and the proteome of Perna shell, the microstructure, polymorph, and protein composition of the adult Perna viridis shell were investigated. The P. viridis shell have two distinct mineral layers, myostracum and nacre, with the same calcium carbonate polymorph of aragonite, determined by scanning electron microscope, Fourier transform infrared spectroscopy, and x-ray crystalline diffraction. Using Illumina sequencing, the mantle transcriptome of P. viridis was investigated and a total of 69,859 unigenes was generated. Using a combined proteomic/transcriptomic approach, a total of 378 shell proteins from P. viridis shell were identified, in which, 132 shell proteins identified with more than two matched unique peptides. Of the 132 shell proteins, 69 are exclusive to the nacre, 12 to the myostracum, and 51 are shared by both. The Myosin-tail domain containing proteins, Filament-like proteins, and Chitin-binding domain containing proteins represent the most abundant molecules. In addition, the shell matrix proteins (SMPs) containing biomineralization-related domains, such as Kunitz, A2M, WAP, EF-hand, PDZ, VWA, Collagen domain, and low complexity regions with abundant certain amino acids, were also identified from P. viridis shell. Collagenase and chitinase degradation can significantly change the morphology of the shell, indicating the important roles of collagen and chitin in the shell formation and the muscle-shell attachment. Our results present for the first time the proteome of P. viridis shell and increase the knowledge of SMPs in this genus.
Collapse
Affiliation(s)
- Zhi Liao
- Laboratory of Marine Biological Source and Molecular Engineering, College of Marine Science, Zhejiang Ocean University, Zhoushan, Zhejiang, P.R. China
| | - Yu-ting Jiang
- Laboratory of Marine Biological Source and Molecular Engineering, College of Marine Science, Zhejiang Ocean University, Zhoushan, Zhejiang, P.R. China
| | - Qi Sun
- Laboratory of Marine Biological Source and Molecular Engineering, College of Marine Science, Zhejiang Ocean University, Zhoushan, Zhejiang, P.R. China
| | - Mei-hua Fan
- Laboratory of Marine Biological Source and Molecular Engineering, College of Marine Science, Zhejiang Ocean University, Zhoushan, Zhejiang, P.R. China
| | - Jian-xin Wang
- Laboratory of Marine Biological Source and Molecular Engineering, College of Marine Science, Zhejiang Ocean University, Zhoushan, Zhejiang, P.R. China
| | - Hai-ying Liang
- Fisheries College, Guangdong Ocean University, Zhanjiang, Guangdong, P.R. China
- * E-mail:
| |
Collapse
|
47
|
Cardoso JCR, Ferreira V, Zhang X, Anjos L, Félix RC, Batista FM, Power DM. Evolution and diversity of alpha-carbonic anhydrases in the mantle of the Mediterranean mussel (Mytilus galloprovincialis). Sci Rep 2019; 9:10400. [PMID: 31320702 PMCID: PMC6639325 DOI: 10.1038/s41598-019-46913-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 07/05/2019] [Indexed: 01/17/2023] Open
Abstract
The α-carbonic anhydrases (α-CAs) are a large and ancient group of metazoan-specific enzymes. They generate bicarbonate from metabolic carbon dioxide and through calcium carbonate crystal formation play a key role in the regulation of mineralized structures. To better understand how α-CAs contribute to shell mineralization in the marine Mediterranean mussel (Mytilus galloprovincialis) we characterized them in the mantle. Phylogenetic analysis revealed that mollusc α-CA evolution was affected by lineage and species-specific events. Ten α-CAs were found in the Mediterranean mussel mantle and the most abundant form was named, MgNACR, as it grouped with oyster nacreins (NACR). Exposure of the Mediterranean mussel to reduced water salinity (18 vs 37 ppt), caused a significant reduction (p < 0.05) in mantle esterase activity and MgNACR transcript abundance (p < 0.05). Protonograms revealed multiple proteins in the mantle with α-CA hydratase activity and mapped to a protein with a similar size to that deduced for monomeric MgNACR. Our data indicate that MgNACR is a major α-CA enzyme in mantle and that by homology with oyster nacreins likely regulates mussel shell production. We propose that species-dependent α-CA evolution may contribute to explain the diversity of bivalve shell structures and their vulnerability to environmental changes.
Collapse
Affiliation(s)
- João C R Cardoso
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.
| | - Vinicius Ferreira
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Xushuai Zhang
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Liliana Anjos
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Rute C Félix
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Frederico M Batista
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.,Centre for Environment Fisheries and Aquaculture Science (CEFAS), Weymouth, Dorset, UK
| | - Deborah M Power
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal. .,International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China. .,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
48
|
Hilgers L, Hartmann S, Hofreiter M, von Rintelen T. Novel Genes, Ancient Genes, and Gene Co-Option Contributed to the Genetic Basis of the Radula, a Molluscan Innovation. Mol Biol Evol 2019; 35:1638-1652. [PMID: 29672732 PMCID: PMC5995198 DOI: 10.1093/molbev/msy052] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The radula is the central foraging organ and apomorphy of the Mollusca. However, in contrast to other innovations, including the mollusk shell, genetic underpinnings of radula formation remain virtually unknown. Here, we present the first radula formative tissue transcriptome using the viviparous freshwater snail Tylomelania sarasinorum and compare it to foot tissue and the shell-building mantle of the same species. We combine differential expression, functional enrichment, and phylostratigraphic analyses to identify both specific and shared genetic underpinnings of the three tissues as well as their dominant functions and evolutionary origins. Gene expression of radula formative tissue is very distinct, but nevertheless more similar to mantle than to foot. Generally, the genetic bases of both radula and shell formation were shaped by novel orchestration of preexisting genes and continuous evolution of novel genes. A significantly increased proportion of radula-specific genes originated since the origin of stem-mollusks, indicating that novel genes were especially important for radula evolution. Genes with radula-specific expression in our study are frequently also expressed during the formation of other lophotrochozoan hard structures, like chaetae (hes1, arx), spicules (gbx), and shells of mollusks (gbx, heph) and brachiopods (heph), suggesting gene co-option for hard structure formation. Finally, a Lophotrochozoa-specific chitin synthase with a myosin motor domain (CS-MD), which is expressed during mollusk and brachiopod shell formation, had radula-specific expression in our study. CS-MD potentially facilitated the construction of complex chitinous structures and points at the potential of molecular novelties to promote the evolution of different morphological innovations.
Collapse
Affiliation(s)
- Leon Hilgers
- Museum für Naturkunde Berlin, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
- Adaptive Evolutionary Genomics Department, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Corresponding author: E-mail:
| | - Stefanie Hartmann
- Adaptive Evolutionary Genomics Department, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Michael Hofreiter
- Adaptive Evolutionary Genomics Department, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Thomas von Rintelen
- Museum für Naturkunde Berlin, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| |
Collapse
|
49
|
Jin C, Liu XJ, Li JL. A Kunitz proteinase inhibitor (HcKuPI) participated in antimicrobial process during pearl sac formation and induced the overgrowth of calcium carbonate in Hyriopsis cumingii. FISH & SHELLFISH IMMUNOLOGY 2019; 89:437-447. [PMID: 30980916 DOI: 10.1016/j.fsi.2019.04.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/06/2019] [Accepted: 04/07/2019] [Indexed: 06/09/2023]
Abstract
Proteinase inhibitors with the ability to inhibit specific proteinases are usually closely connected with the immune system. Interestingly, proteinase inhibitors are also a common ingredient in the organic matrix of mollusk shells. However, the molecular mechanism that underlies the role of proteinase inhibitors in immune system and shell mineralization is poorly known. In this study, a Kunitz serine proteinase inhibitor (HcKuPI) was isolated from the mussel Hyriopsis cumingii. HcKuPI was specifically expressed in dorsal epithelial cells of the mantle pallium and HcKuPI dsRNA injection caused an irregular surface and disordered deposition on the aragonite tablets of the nacreous layer. These results indicated that HcKuPI plays a vital role in shell nacreous layer biomineralization. Moreover, the expression pattern of HcKuPI during LPS challenge and pearl formation indicated its involvement in the antimicrobial process during pearl sac formation and nacre tablets accumulation during pearl formation. In the in vitro calcium carbonate crystallization assay, the addition of GST-HcKuPI increased the precipitation rate of calcium carbonate and induced the crystal overgrowth of calcium carbonate. Taken together, these results indicate that HcKuPI is involved in antimicrobial process during pearl formation, and participates in calcium carbonate deposition acceleration and morphological regulation of the crystals during nacreous layer formation. These findings extend our knowledge of the role of proteinase inhibitors in immune system and shell biomineralization.
Collapse
Affiliation(s)
- Can Jin
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai, 201306, China
| | - Xiao-Jun Liu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China.
| | - Jia-Le Li
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai, 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai, 201306, China.
| |
Collapse
|
50
|
Ramesh K, Yarra T, Clark MS, John U, Melzner F. Expression of calcification-related ion transporters during blue mussel larval development. Ecol Evol 2019; 9:7157-7172. [PMID: 31380040 PMCID: PMC6662379 DOI: 10.1002/ece3.5287] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 05/06/2019] [Accepted: 05/08/2019] [Indexed: 01/03/2023] Open
Abstract
The physiological processes driving the rapid rates of calcification in larval bivalves are poorly understood. Here, we use a calcification substrate-limited approach (low dissolved inorganic carbon, C T) and mRNA sequencing to identify proteins involved in bicarbonate acquisition during shell formation. As a secondary approach, we examined expression of ion transport and shell matrix proteins (SMPs) over the course of larval development and shell formation. We reared four families of Mytilus edulis under ambient (ca. 1865 µmol/kg) and low C T (ca. 941 µmol/kg) conditions and compared expression patterns at six developmental time points. Larvae reared under low C T exhibited a developmental delay, and a small subset of contigs was differentially regulated between ambient and low C T conditions. Of particular note was the identification of one contig encoding an anion transporter (SLC26) which was strongly upregulated (2.3-2.9 fold) under low C T conditions. By analyzing gene expression profiles over the course of larval development, we are able to isolate sequences encoding ion transport and SMPs to enhance our understanding of cellular pathways underlying larval calcification processes. In particular, we observe the differential expression of contigs encoding SLC4 family members (sodium bicarbonate cotransporters, anion exchangers), calcium-transporting ATPases, sodium/calcium exchangers, and SMPs such as nacrein, tyrosinase, and transcripts related to chitin production. With a range of candidate genes, this work identifies ion transport pathways in bivalve larvae and by applying comparative genomics to investigate temporal expression patterns, provides a foundation for further studies to functionally characterize the proteins involved in larval calcification.
Collapse
Affiliation(s)
- Kirti Ramesh
- GEOMAR Helmholtz Centre for Ocean ResearchKielGermany
- Department of Biological and Environmental Sciences, Sven Lovén Centre for Marine Infrastructure‐KristinebergUniversity of GothenburgFiskebäckskilSweden
| | - Tejaswi Yarra
- British Antarctic SurveyNatural Environment Research CouncilCambridgeUK
- Ashworth Laboratories, Institute of Evolutionary BiologyUniversity of EdinburghEdinburghUK
| | - Melody S. Clark
- British Antarctic SurveyNatural Environment Research CouncilCambridgeUK
| | - Uwe John
- Ecological ChemistryAlfred‐Wegener‐Institut Helmholtz‐Zentrum für Polar‐und MeeresforschungBremerhavenGermany
- Helmholtz‐Institute for Functional Marine BiodiversityOldenburgGermany
| | - Frank Melzner
- GEOMAR Helmholtz Centre for Ocean ResearchKielGermany
| |
Collapse
|