1
|
Liu G, Shen X, Li Y. Proteomic analysis of toxic effects of short-term cadmium exposure on goat livers. Toxicol Res (Camb) 2024; 13:tfae162. [PMID: 39381600 PMCID: PMC11457375 DOI: 10.1093/toxres/tfae162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 09/02/2024] [Accepted: 09/08/2024] [Indexed: 10/10/2024] Open
Abstract
Food safety is closely related to environmental pollution. It is worth noting that the long-term accumulation of Cd, a toxic heavy metal, in animals may pose a threat to human health through food chain. Previous studies have found that Cd exposure may cause liver metabolic disorders of black goats, but the mechanism of its impact on liver proteome of goats has not been widely studied. Therefore, in this study, ten male goats (Nubian black goat × native black goat) were exposed to Cd via drinking water containing CdCl2 (20 mg Cd·kg - 1·BW) for 30 days (five male goats per group). Blood physiology and liver antioxidant indices in black goats were determined and differentially expressed proteins (DEPs) in the livers of Cd-exposed goats were profiled by using TMT-labelled proteomics. It was found that plasma Hb and RBC levels as well as PCV values were decreased, liver SOD, GSH-Px, T-AOC and CAT levels were decreased, and MDA level was increased in Cd-treated goats, and 630 DEPs (up 326, down 304) in the livers of Cd-treated goats. Proteomics analysis revealed that Cd exposure affected glutathione metabolism and drug metabolism-cytochrome P450. We identified GP×2, GSTM3, and TBXAS1 as potential protein markers of early Cd toxicity in goats. This study provided theoretical basis for early diagnosis of Cd poisoning in goats.
Collapse
Affiliation(s)
- Guangyang Liu
- School of Life Science and Engineering, Southwest University of Science and Technology, No. 59, Middle Section of Qinglong Avenue, Fucheng District, 621010, Mianyang, China
| | - Xiaoyun Shen
- School of Life Science and Engineering, Southwest University of Science and Technology, No. 59, Middle Section of Qinglong Avenue, Fucheng District, 621010, Mianyang, China
- School of Life Sciences, Liaocheng University, No. 1, Hunan Road, 252000, Liaocheng, China
| | - Yuanfeng Li
- School of Life Science and Engineering, Southwest University of Science and Technology, No. 59, Middle Section of Qinglong Avenue, Fucheng District, 621010, Mianyang, China
- School of Life Sciences, Liaocheng University, No. 1, Hunan Road, 252000, Liaocheng, China
| |
Collapse
|
2
|
Liu G, Shen X. Copper Sulfate Supplementation Alleviates Molybdenosis in the Tibetan Gazelles in the Qinghai Lake Basin. TOXICS 2024; 12:546. [PMID: 39195648 PMCID: PMC11360709 DOI: 10.3390/toxics12080546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/18/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024]
Abstract
Molybdenum (Mo), an essential mineral, plays a key role in the vital activity of the organism. However, excess Mo in the forage will cause loss of appetite, diarrhea, emaciation, bone injury, joint abnormalities, and anemia in animals. In order to study molybdenosis in the Procapra picticaudata in the animal rescue center, samples of soils, forages, blood, and liver were collected. The mineral contents of all samples were determined, and the blood parameters were also measured. The results showed that the Mo level in the soil and forage in the animal rescue center was significantly higher than that in healthy pastures (p < 0.01). The Mo concentrations in the blood and liver in the P. picticaudata from the animal rescue center were also noticeably higher than those in healthy animals (p < 0.01). The level of Cu in the blood and liver were noticeably lower than those in healthy P. picticaudata (p < 0.01). The superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), total antioxidant capacity (T-AOC), and catalase (CAT) were significantly lower than those in healthy animals. Supplementing copper sulfate (CuSO4) could significantly decrease the Mo content in the blood, and cure molybdenosis. In summary, the excessive Mo content in the soil and forage in the animal rescue center had greatly affected physiological parameters and antioxidant capacity. It is likely that the molybdenosis of the P. picticaudata is caused by the high Mo contents in soils and forages. CuSO4 may alleviate molybdenosis in P. picticaudata.
Collapse
Affiliation(s)
- Guangyang Liu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621000, China;
| | - Xiaoyun Shen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621000, China;
- School of Life Sciences, Liaocheng University, Liaocheng 252000, China
| |
Collapse
|
3
|
Ren H, Zhou P, Shen X. Abnormal Phenylalanine Metabolism of Procapra przewalskii in Chronic Selenosis in Selenium-Enriched Habitats. Metabolites 2023; 13:982. [PMID: 37755262 PMCID: PMC10537570 DOI: 10.3390/metabo13090982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/22/2023] [Accepted: 08/28/2023] [Indexed: 09/28/2023] Open
Abstract
Selenium (Se)-enriched habitats have led to chronic selenosis, seriously affecting the health and survival of Procapra przewalskii (P. przewalskii). Our targets were to explore the molecular mechanisms of chronic selenosis and to look for a new way to protect endangered species. The mineral contents of soils, grass, blood, and muscle were analyzed. The biochemical indices, antioxidant capability, and immune function were also investigated. The analyses of proteomics and metabolomics were also carried out. The results showed that the Se contents in the muscle and blood of P. przewalskii, and the soil and grass in the Se-enriched habitats were significantly higher than those in healthy pastures. The P. przewalskii in the Se-enriched habitats showed symptoms of anemia, decreased antioxidant capability, and low immune function. A total of 44 differential proteins and 36 differential metabolites were screened by analyzing their proteomics and metabolomics. These differential proteins and metabolites were involved in glycolysis pathway, amino acid biosynthesis, carbon metabolism, phenylalanine metabolism, and energy metabolism. In particular, phenylalanine metabolism was the common pathway of proteomics and metabolomics, which was an important finding in studying the mechanism of chronic selenosis in animals. This study will help us to further understand the mechanism of chronic selenosis in P. przewalskii, and it provides a scientific basis for the protection of endangered species in Se-enriched habitats.
Collapse
Affiliation(s)
- Hong Ren
- North Sichuan Medical College, Nanchong 637100, China;
| | - Ping Zhou
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832000, China;
| | - Xiaoyun Shen
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832000, China;
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
- World Bank Poverty Alleviation Project Office in Guizhou, Guiyang 550004, China
| |
Collapse
|
4
|
Li Y, Shen X. Cadmium Exposure Affects Serum Metabolites and Proteins in the Male Guizhou Black Goat. Animals (Basel) 2023; 13:2705. [PMID: 37684969 PMCID: PMC10487163 DOI: 10.3390/ani13172705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/14/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Food safety and environmental pollution are the hotspots of general concern globally. Notably, long-term accumulation of trace toxic heavy metals, such as cadmium (Cd), in animals may endanger human health via the food chain. The mechanism of Cd toxicity in the goat, a popular farmed animal, has not been extensively investigated to date. Therefore, in this study, ten male goats (Nubian black goat × native black goat) were exposed to Cd via drinking water containing CdCl2 (20 mg Cd·kg-1·BW) for 30 days (five male goats per group). In this study, we used an integrated approach combining proteomics and metabolomics to profile proteins and metabolites in the serum of Cd-exposed goats. It was found that Cd exposure impacted the levels of 30 serum metabolites and 108 proteins. The combined proteomic and metabolomic analysis revealed that Cd exposure affected arginine and proline metabolism, beta-alanine metabolism, and glutathione metabolism. Further, antioxidant capacity in the serum of goats exposed to Cd was reduced. We identified CKM and spermidine as potential protein and metabolic markers, respectively, of early Cd toxicity in the goat. This study details approaches for the early diagnosis and prevention of Cd-poisoned goats.
Collapse
Affiliation(s)
- Yuanfeng Li
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China;
| | - Xiaoyun Shen
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China;
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832000, China
| |
Collapse
|
5
|
Jiang X, Li Z, Chang X, Lian Z, Wang A, Lin P, Chen H, Zhou D, Tang K, Jin Y. A Comparative Proteomic Analysis to Explore the Influencing Factors on Endometritis Using LC-MS/MS. Int J Mol Sci 2023; 24:10018. [PMID: 37373165 PMCID: PMC10298677 DOI: 10.3390/ijms241210018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/04/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
The inflammatory system activated by uterine infection is associated with decreased fertility. Diseases can be detected in advance by identifying biomarkers of several uterine diseases. Escherichia coli is one of the most frequent bacteria that is involved in pathogenic processes in dairy goats. The purpose of this study was to investigate the effect of endotoxin on protein expression in goat endometrial epithelial cells. In this study, the LC-MS/MS approach was employed to investigate the proteome profile of goat endometrial epithelial cells. A total of 1180 proteins were identified in the goat Endometrial Epithelial Cells and LPS-treated goat Endometrial Epithelial Cell groups, of which, 313 differentially expressed proteins were accurately screened. The proteomic results were independently verified by WB, TEM and IF techniques, and the same conclusion was obtained. To conclude, this model is suitable for the further study of infertility caused by endometrial damage caused by endotoxin. These findings may provide useful information for the prevention and treatment of endometritis.
Collapse
Affiliation(s)
- Xingcan Jiang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China; (X.J.)
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Ziyuan Li
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China; (X.J.)
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Xiyv Chang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China; (X.J.)
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Zhengjie Lian
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China; (X.J.)
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Aihua Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China; (X.J.)
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Pengfei Lin
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China; (X.J.)
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Huatao Chen
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China; (X.J.)
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Dong Zhou
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China; (X.J.)
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Keqiong Tang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China; (X.J.)
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Yaping Jin
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China; (X.J.)
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China
| |
Collapse
|
6
|
Liu Y, Huo B, Chen Z, Wang K, Huang L, Che L, Feng B, Lin Y, Xu S, Zhuo Y, Wu C, Wu D, Fang Z. Effects of Organic Chromium Yeast on Performance, Meat Quality, and Serum Parameters of Grow-Finish Pigs. Biol Trace Elem Res 2023; 201:1188-1196. [PMID: 35524021 DOI: 10.1007/s12011-022-03237-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/04/2022] [Indexed: 02/07/2023]
Abstract
Trivalent chromium (Cr) is an essential trace element for humans and animals. This study was conducted to investigate the effects of chromium(III) yeast (CrYst) on growth performance, carcass characteristics, meat traits, antioxidant status, immune traits, and serum biochemical parameters of grow-finish pigs. A total of 72 commercial hybrid barrows (Duroc × Landrace × Large White) of approximately 50 kg body weight were allocated into two dietary treatments randomly, which received a corn-soybean meal basal diet or a basal diet supplemented with 100 mg CrYst/kg. The trial duration was 11 weeks divided into three periods from body weights of 50-75 kg, 75-100 kg, and 100-110 kg, respectively. The results revealed that supplemental CrYst did not affect growth performance. Organic CrYst supplementation significantly decreased the backfat depth and increased the meat tenderness score and juiciness score values in pigs (P < 0.05), while other carcass traits and meat traits indexes were unaffected. CrYst addition significantly decreased serum malondialdehyde (MDA) content of pigs in the whole growth phase; significantly increased the serum levels of immunoglobulin G (IgG), total antioxidant capacity (T-AOC), glutathione peroxidase (GSH-Px), and reduced glutathione (GSH) in growing pigs; and also increased the serum IgG, IgM, and GSH concentrations in pigs during the finishing phase (P < 0.05). Additionally, diets supplemented with CrYst significantly decreased the serum high-density lipoprotein cholesterol (HDL-C) content in growing pigs and significantly increased the serum LDL-C level at the fattening period (P < 0.05), whereas no significant differences were observed for the other serum biochemical indexes compared to the control pigs. In conclusion, CrYst supplementation could reduce lipid peroxidation and backfat thickness and improve the meat tenderness and juiciness, immune traits, and antioxidant status of pigs.
Collapse
Affiliation(s)
- Yunhan Liu
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Bin Huo
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Zhongping Chen
- China Angel Yeast Co., Ltd., Yichang, 443005, Hubei, China
| | - Kun Wang
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Lingjie Huang
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Lianqiang Che
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Bin Feng
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yan Lin
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Shengyu Xu
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yong Zhuo
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Caimei Wu
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - De Wu
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Zhengfeng Fang
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, China.
| |
Collapse
|
7
|
Yang J, Huo B, Wang K, Hu X, Zhang L, Li H, Huang L, Tang J, Li J, Lin Y, Xu S, Che L, Tian G, Feng B, Wu D, Fang Z. Effects of dietary lysine levels on growth performance, nutrient digestibility, serum metabolites, and carcase and meat quality of Yacha pigs. ITALIAN JOURNAL OF ANIMAL SCIENCE 2022. [DOI: 10.1080/1828051x.2022.2123284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Jiameng Yang
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Bin Huo
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Kun Wang
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Xuecai Hu
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Lijia Zhang
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Hua Li
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Lingjie Huang
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Jiayong Tang
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Jian Li
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Yan Lin
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Shengyu Xu
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Lianqiang Che
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Gang Tian
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Bin Feng
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - De Wu
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Zhengfeng Fang
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- College of Food Science, Sichuan Agricultural University, Ya’an, China
| |
Collapse
|
8
|
Shen X, Zhang Q, Yang Y, Ping Z, Wu J. Effect of Foliage Dressing in Nano-Potassium Molybdate on Daily Gain and Antioxidant Function in Grazing the Chinese Merino Sheep. Biol Trace Elem Res 2022; 200:5064-5072. [PMID: 35001342 DOI: 10.1007/s12011-021-03085-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 12/23/2021] [Indexed: 11/02/2022]
Abstract
The study was implemented for exploring influences of nano-K2MoO4 on the daily gain and antioxidant function of Chinese merino sheep in the native pasture, Xinjiang Uygur Autonomous Region, Northwest of China. Eighty of the sheep, weight of (45.56 ± 2.35) kg, were randomly distributed to the tested areas for 90 days, 20 sheep/group. The findings showed that the contents of Mo and N in the forage of applying nano-K2MoO4 were extremely higher than those in the control pastures (P <0.01). The daily gain in the fertilized groups were remarkably lower than that in the control group (P <0.01). The harvest of forage in the fertilized pastures were significantly higher than those in control (P <0.01). The contents of Mo in blood and liver in grazing the Chinese merino sheep were extremely higher than those from the control group (P <0.01). The contents of Cu in blood and liver in grazing the Chinese merino sheep were extremely lower than those in the unfertilized pastures (P <0.01). The levels of hemoglobin (Hb), blood platelet (PLT), and erythrocyte count (RBC) in animals from the fertilized pastures were extremely lower than those in the control pastures (P < 0.01). The activities of SOD, GSH-Px, and CAT in serum were significantly lower than those in group C. The serum MDA levels were significantly higher than those in the control group (P < 0.01). In conclusion, the application of nano-K2MoO4 in pastures can greatly improve the yield of forage, but strikingly decreased the daily gain and antioxidant function in grazing the Chinese merino sheep.
Collapse
Affiliation(s)
- Xiaoyun Shen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
- Guizhou Institute of Animal Husbandry and Veterinary Science, Guiyang, China
- World Bank Poverty Alleviation Project Office in Guizhou, Southwest China, Guiyang, Guizhou, China
| | - QiongLian Zhang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Yang Yang
- Guizhou Institute of Animal Husbandry and Veterinary Science, Guiyang, China
| | - Zhou Ping
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, Xinjiang, China
| | - Jiahai Wu
- Guizhou Institute of Animal Husbandry and Veterinary Science, Guiyang, China.
| |
Collapse
|
9
|
Shen X, Zhao K, Mo B. Effects of Molybdenosis on Antioxidant Capacity in Endangered Przewalski's Gazelles in the Qinghai Lake National Nature Reserve in the Northwestern China. Biol Trace Elem Res 2022:10.1007/s12011-022-03470-6. [PMID: 36348175 DOI: 10.1007/s12011-022-03470-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/02/2022] [Indexed: 11/11/2022]
Abstract
The purpose of this study is to investigate the effects of molybdenosis on antioxidant capacity in endangered Przewalski's gazelles (Procapra przewalskii) in the animal rescue center in the Qinghai Lake National Nature Reserve in Northwestern China. Ten P. przewalskii in molybdenosis were selected and treated orally with copper sulfate (CuSO4) at a dose of 20 g/animal/5 days for 20 days. Ten healthy P. przewalskii were also selected and allocated to healthy pastures for 20 days. Samples of soil, forage, and animal tissue were collected. The values of mineral and hematological parameters were measured. Results showed levels of molybdenum (Mo) in soil and forage were significantly higher than those in healthy ranches (P < 0.01). The Mo content of blood and hair in gazelles from the rescue center was also significantly higher than those in the healthy ranches animals (P < 0.01). The copper (Cu) contents in blood and hair from the rescue center were significantly lower than those from the healthy pasture (P < 0.01). Hemoglobin (Hb) and red cell volume (PCV) in the gazelles from the animal rescue center were significantly lower than those from animals in healthy ranches (P < 0.01). Aspartate aminotransferase (AST), lactate dehydrogenase (LDH), phosphocreatine kinase (CPK), and alkaline phosphatase (ALP) were significantly higher than those from gazelles in healthy ranches (P < 0.01). The antioxidant capacity in gazelles from the animal rescue center was significantly lower than that of gazelles in healthy ranches. Supplementing CuSO4 significantly decreased the Mo content of blood and cured molybdenosis in gazelles. In summary, the Mo content of soil and forage was very excessive for gazelles in the animal rescue center. The antioxidant capacity of P. przewalskii has been seriously affected by molybdenosis.
Collapse
Affiliation(s)
- Xiaoyun Shen
- School of Life Science, Liaocheng University, Liaocheng, Shandong, 252000, China
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, China
- The Project Center, Guizhou Rural Revitalization Bureau, Guiyang, Guizhou, 550004, China
| | - Kui Zhao
- School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang, Guizhou, 550025, China
| | - Bentian Mo
- Animal Husbandry and Veterinary Research Institute, Guizhou Province Academy of Agricultural Sciences, Guiyang, 550005, China.
| |
Collapse
|
10
|
Karmous I, Tlahig S, Loumerem M, Lachiheb B, Bouhamda T, Mabrouk M, Debouba M, Chaoui A. Assessment of the risks of copper- and zinc oxide-based nanoparticles used in Vigna radiata L. culture on food quality, human nutrition and health. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:4045-4061. [PMID: 34850307 DOI: 10.1007/s10653-021-01162-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
The present article aims to assess the phytotoxic effects of copper and zinc oxide nanoparticles (Cu NPs, ZnO NPs) on mung bean (Vigna radiata L.) and their possible risk on food quality and safety. We also study the molecular mechanisms underlying the toxicity of nanosized Cu and ZnO. Seeds of mung bean were germinated under increasing concentrations of Cu NPs and ZnO NPs (10, 100, 1000, 2000 mg/L). We analyzed levels of free amino acids, total soluble sugars, minerals, polyphenols and antioxidant capacity. Our results showed that depending on the concentrations used of Cu NPs and ZnO NPs, the physiology of seed germination and embryo growth were modified. Both free metal ions and nanoparticles themselves may impact plant cellular and physiological processes. At 10 mg/L, an improvement of the nutritive properties, in terms of content in free amino acids, total soluble sugars, essential minerals, antioxidant polyphenols and flavonoids, was shown. However, higher concentrations (100-2000 mg/L) caused an alteration in the nutritional balance, which was revealed by the decrease in contents and quality of phenolic compounds, macronutrients (Na, Mg, Ca) and micronutrients (Cu, Fe, Mn, Zn, K). The overall effects of Cu and ZnO nanoparticles seem to interfere with the bioavailability of mineral and organic nutrients and alter the beneficial properties of the antioxidant phytochemicals, mineral compounds, phenolic acids and flavonoids. This may result in a potential hazard to human food and health, at some critical doses of nanofertilizers. This study may contribute in the guidelines to the safe use of nanofertilizers or nanosafety, for more health benefit and less potential risks.
Collapse
Affiliation(s)
- Inès Karmous
- Plant Toxicology and Molecular Biology of Microorganisms, Faculty of Sciences of Bizerta, Zarzouna, Tunisia.
- Biology and Environmental Department, Insitute of Applied Biology of Medenine (ISBAM), University of Gabes, Medenine, Tunisia.
| | - Samir Tlahig
- Biology and Environmental Department, Insitute of Applied Biology of Medenine (ISBAM), University of Gabes, Medenine, Tunisia
- Dry Land and Oases Cropping Laboratory, Arid Land Institute of Medenine (IRA), Medenine, Tunisia
| | - Mohamed Loumerem
- Dry Land and Oases Cropping Laboratory, Arid Land Institute of Medenine (IRA), Medenine, Tunisia
| | - Belgacem Lachiheb
- Dry Land and Oases Cropping Laboratory, Arid Land Institute of Medenine (IRA), Medenine, Tunisia
| | - Talel Bouhamda
- Dry Land and Oases Cropping Laboratory, Arid Land Institute of Medenine (IRA), Medenine, Tunisia
| | - Mahmoud Mabrouk
- Dry Land and Oases Cropping Laboratory, Arid Land Institute of Medenine (IRA), Medenine, Tunisia
| | - Mohamed Debouba
- Biology and Environmental Department, Insitute of Applied Biology of Medenine (ISBAM), University of Gabes, Medenine, Tunisia
| | - Abdelilah Chaoui
- Plant Toxicology and Molecular Biology of Microorganisms, Faculty of Sciences of Bizerta, Zarzouna, Tunisia
| |
Collapse
|
11
|
Zhang Q, Han Y, Yang Y, Zhou P, Shen X. Effects of the Seleno-Chitosan on Daily Gain, Wool Yield, and Blood Parameter in the Chinese Merino Sheep. Biol Trace Elem Res 2022; 200:4704-4711. [PMID: 35031962 DOI: 10.1007/s12011-021-03049-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 11/22/2021] [Indexed: 11/02/2022]
Abstract
To study the effects of the seleno-chitosan on daily gain, wool yield, and blood parameters in the Chinese merino sheep in the selenium (Se)-deficient pastures. The samples of soils, forages, and tissues had been collected in the Southern Xinjiang of Northwest China. Our findings indicated that the Se contents in soils and forages from affected pastures were remarkably lower than those unaffected by the pastures (P < 0.01). The Se contents in the blood and the wool from affected Chinese merino sheep were extremely lower than those from healthy sheep. Meanwhile, the values of Hb, PCV, and PLT in affected sheep were significantly decreased (P < 0.01). The yield of wool and the growth rate in affected sheep were also remarkably reduced (P < 0.01). The affected Chinese merino sheep were orally treated by seleno-chitosan for 150 days; the Se contents in blood were remarkably increased and reached the healthy range on day 5. The blood parameters soon recovered to a healthy range on day 10. The growth rate of sheep in the treated group was remarkably higher than that in the control animals. The yield of the wool was also significantly increased in the treated group. Consequently, the Se-deprived environment caused a threat to daily gain, wool yield, and blood parameters in the Chinese merino sheep. The seleno-chitosan could not only markedly increase the Se contents blood contents, but also significantly increase the production performance (daily gain and wool yield), and release the symptoms of anemia in the Se-deprived animal.
Collapse
Affiliation(s)
- Qionglian Zhang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Yong Han
- Animal Husbandry and Veterinary Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang, 550025, China
| | - Yang Yang
- Animal Husbandry and Veterinary Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang, 550025, China
| | - Ping Zhou
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, Xinjiang, China
| | - Xiaoyun Shen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China.
- Animal Husbandry and Veterinary Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang, 550025, China.
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, Xinjiang, China.
- World Bank Poverty Alleviation Project Office in Guizhou, Southwest China, Guiyang, Guizhou, China.
| |
Collapse
|
12
|
Qiu J, Yang Y, Wu J, Shen X. Effect of Nano-potassium Molybdate on the Copper Metabolism in Grazing the Pishan Red Sheep. Biol Trace Elem Res 2022; 200:4332-4338. [PMID: 34802114 DOI: 10.1007/s12011-021-03030-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/11/2021] [Indexed: 10/19/2022]
Abstract
The aims of this study were to investigate the impact of different levels of nano-potassium molybdate (nano-K2MoO4) fertilization on the copper (Cu) metabolism in grazing the Pishan red sheep in the natural pasture. The fertilization and grazing experiments were conducted on the Pishan farm in Southern Xinjiang, China. The natural pastures of 16 hm2 were randomly divided into four groups (4 hm2/group), consisting of group C (no fertilized), group I, group II, and group III. The fertilizing amount of Mo from nano-K2MoO4 was 0, 7, 8, and 9 kg/hm2 for group C, group I, group II, and group III, respectively. The 40 Pishan red sheep were randomly distributed to the tested pastures for 90 days, and the 10 sheep/group. The results showed that the contents of Mo and N in forage from the fertilized pastures were extremely increased (P < 0.01). The yield and dry matter digestibility of forage in fertilized pastures were significantly higher than those in no fertilized pasture (P < 0.01). The values of crude protein (CP) and crude fat (EE) in forage from fertilized pastures were significantly increased (P < 0.01). The Mo contents in the blood and liver in the Pishan red sheep from fertilized pastures were greatly increased (P < 0.01). The Cu contents in the blood and liver in the Pishan red sheep from the fertilized pastures were greatly decreased (P < 0.01). The activities of serum superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), and total antioxidant capacity (T-AOC) in group I, group II, and group III were extremely lower than those in group C (P < 0.01), and the contents of serum malondialdehyde (MDA) in group I, group II, and group III were greatly higher than those from group C (P < 0.01). In summary, the application of nano-K2MoO4 improved the nutritive values and the yield of forage, but overuse will remarkably reduce the Cu contents of blood and greatly interfere with the Cu metabolism, leading to the Cu deficiency and low antioxidant capacity in grazing the ruminants.
Collapse
Affiliation(s)
- Jie Qiu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, People's Republic of China
| | - Yang Yang
- Guizhou Institute of Animal Husbandry and Veterinary Science, Guiyang, People's Republic of China
| | - Jiahai Wu
- Guizhou Institute of Animal Husbandry and Veterinary Science, Guiyang, People's Republic of China
| | - Xiaoyun Shen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, People's Republic of China.
- Guizhou Institute of Animal Husbandry and Veterinary Science, Guiyang, People's Republic of China.
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, Xinjiang, People's Republic of China.
- World Bank Poverty Alleviation Project Office in Guizhou, Southwest China, Guiyang, Guizhou, People's Republic of China.
| |
Collapse
|
13
|
Zhang Q, Zhao K, Shen X. Metabolomic Analysis Reveals the Adaptation in the P. przewalskii to Se-Deprived Environment. Biol Trace Elem Res 2022; 200:3608-3620. [PMID: 34669150 DOI: 10.1007/s12011-021-02971-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/13/2021] [Indexed: 01/15/2023]
Abstract
The Procapra przewalskii inhabits in a selenium (Se)-deprived environment in long-term, but they have no pathological manifestations due to the Se deprivation. This study aimed to reveal the underlying adaptation induced by Se deprivation. In the analysis, a total of 93 significantly changed metabolites were identified in positive and negative ion modes, including 46 upregulated and 47 downregulated compounds in the Se-deprived group. The differential metabolites were annotated as the major molecules in bile acid biosynthesis, biosynthesis of unsaturated fatty acids, and pyrimidine metabolism, respectively. This study systematically analyzed the serum metabolomics characteristics of P. przewalskii under Se-deprived conditions for the first time, providing a basis for further understanding of the metabolic mechanism of P. przewalskii in the Se-deprived environment.
Collapse
Affiliation(s)
- Qionglian Zhang
- School of Life Science and Engineering, Southwest University of Science and Technology, No. 59 Middle Section of Avenue, District, Mianyang, 621010, China
| | - Kui Zhao
- School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang, 550025, China
| | - Xiaoyun Shen
- School of Life Science and Engineering, Southwest University of Science and Technology, No. 59 Middle Section of Avenue, District, Mianyang, 621010, China.
- World Bank Poverty Alleviation Project Office in Guizhou, Southwest China, Guiyang, 550004, Guizhou, China.
| |
Collapse
|
14
|
Zhang Y, Zhou P, Shen X. Effects of Se-Enriched Malt on the Immune and Antioxidant Function in the Se-Deprived Reclamation Merino Sheep in Southern Xinjiang. Biol Trace Elem Res 2022; 200:3621-3629. [PMID: 34636021 DOI: 10.1007/s12011-021-02957-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/04/2021] [Indexed: 10/20/2022]
Abstract
We have found that the Reclamation merino sheep in Southern Xinjiang, China, showed emaciation, stiff limbs, instability, and sudden death, which is related to the impairment of immune function and antioxidant capacity caused by selenium (Se) deficiency. The experiments were to study the effects of Se-enriched malt on the immune and antioxidant function in Se-deprived Reclamation merino sheep in Southern Xinjiang, China. The samples of soil and forage had been collected from tested pastures, and animal tissues were also collected in tested animals. The mineral content of soil, forage, and animal tissues was measured in the collected samples. Hematological indexes and biochemical values were also examined. The findings showed that the Se contents were extremely lower in affected soil and forage than those from healthy soil and forage (P < 0.01). The Se contents in affected blood and wool were also extremely lower than those from healthy blood and wool (P < 0.01). The values in glutathione peroxidase and total antioxidant capacity in affected serum samples were also extremely lower than those from healthy serum samples, and levels of malondialdehyde, total nitric oxide synthase, and lipid peroxide were extremely higher in affected serum samples than those from healthy serum samples (P < 0.01). Meanwhile, the values of hemoglobin, packed cell volume, and platelet count from affected blood were extremely lower than those from healthy blood (P < 0.01). The levels of interleukin (IL)-1β, IL-2, tumor necrosis factor-alpha, immunoglobulin A, and immunoglobulin G in serum were extremely decreased in the affected Reclamation merino sheep (P < 0.01). The levels of IL-6 and immunoglobulin M in serum were extremely reduced in the affected Reclamation merino sheep compared to healthy animals (P < 0.01). The animals in affected pastures were orally treated with Se-enriched malt, and the Se contents in blood were extremely increased (P < 0.01). The immune function and antioxidant indicator returned to within the healthy range. Consequently, our findings were indicated that the disorder of the Reclamation merino sheep was mainly caused by the Se deficiency in soil and forage. The Se-enriched malt could not only markedly increase the Se content in blood but also much improve the immune function and the antioxidant capacity in the Se-deprived Reclamation merino sheep.
Collapse
Affiliation(s)
- Yunzhuo Zhang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
- World Bank Poverty Alleviation Project Office in Guizhou, Guiyang, 550004, Southwest China, China
| | - Ping Zhou
- World Bank Poverty Alleviation Project Office in Guizhou, Guiyang, 550004, Southwest China, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, 832000, Xinjiang, China
| | - Xiaoyun Shen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China.
- World Bank Poverty Alleviation Project Office in Guizhou, Guiyang, 550004, Southwest China, China.
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, 832000, Xinjiang, China.
| |
Collapse
|
15
|
Min X, Yang Q, Zhou P. Effects of Nano-copper Oxide on Antioxidant Function of Copper-Deficient Kazakh Sheep. Biol Trace Elem Res 2022; 200:3630-3637. [PMID: 34741244 DOI: 10.1007/s12011-021-02975-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/14/2021] [Indexed: 01/16/2023]
Abstract
Kazakh sheep are vital to the production system of the Barkol prairie. The purpose of this study was to determine the effect of nano-copper oxide (Nano-Cu2O) on the antioxidant system of Cu-deficient Kazakh sheep in the Barkol prairie in Xinjiang, China. We analyzed mineral contents in soil, forage, and animal tissues. Blood parameters were also measured at the same time. The results showed that compared with healthy grassland, the Cu content in the soil and forage in Cu-deficient pastures was significantly lower than that in healthy grassland (P < 0.01). The Cu content in the blood, wool, and liver of Cu-deficient Kazakh sheep was significantly lower than that of healthy animals (P < 0.01). After Kazakh sheep were supplemented with Nano-Cu2O or CuSO4, the blood Cu concentration increased significantly (P < 0.01). From the 5th day, the Cu content of the Nano-Cu2O group was significantly higher than that of the CuSO4 group. The levels of hemoglobin (Hb), erythrocyte count (RBC), and packed cell volume (PCV) in the two experimental groups were significantly higher than those in Cu-deficient Kazakh sheep (P < 0.01). Compared with Cu-deficient Kazakh sheep, the serum ceruloplasmin (Cp) level of the two experimental groups increased significantly (P < 0.01), while the serum lactate dehydrogenase (LDH), alkaline phosphatase (AKP), aspartate aminotransferase (AST), and alanine aminotransferase (ALT) decreased significantly (P < 0.01). Compared with Cu-deficient Kazakh sheep, the activities of serum superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT), and total antioxidant capacity (T-AOC) in Nano-Cu2O and CuSO4 groups increased significantly (P < 0.01), while the level of serum malondialdehyde (MDA) decreased significantly (P < 0.01). Therefore, Nano-Cu2O could not only significantly increase the Cu content in the blood of Cu-deficient Kazakh sheep, but also greatly improve the antioxidant capacity.
Collapse
Affiliation(s)
- Xiaoying Min
- School of Karst Science, Guizhou Normal University/State Engineering Technology Institute for Karst Desertification Control, Guiyang, 550001, China
| | - Qingxiong Yang
- School of Karst Science, Guizhou Normal University/State Engineering Technology Institute for Karst Desertification Control, Guiyang, 550001, China.
| | - Ping Zhou
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, 832000, Xinjiang, China.
| |
Collapse
|
16
|
Qiu J, Zhou P, Shen X. Effects of Se-Yeast on Immune and Antioxidant in the Se-Deprived Pishan Red Sheep. Biol Trace Elem Res 2022; 200:2741-2749. [PMID: 34432270 DOI: 10.1007/s12011-021-02896-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 08/17/2021] [Indexed: 01/15/2023]
Abstract
The experiments were to study the effects of Se-yeast on immune and antioxidant in Selenium(Se)-deprived Pishan red sheep in Southern Xinjiang, China. The samples of soil, forage, and animal tissues were collected, and used for measuring mineral content, physiological parameter, and biochemical values. These findings showed that the Se contents in affected soil and forage were markedly lower than those from unaffected soil and forage (P < 0.01). Se in affected blood and wool were also extremely lower than those from healthy Pishan red sheep (P < 0.01). The hemoglobin, packed cell volume, platelet count, Glutathione peroxidase, and total antioxidant capacity in the affected Pishan red sheep were markedly lower than those from healthy ones too (P < 0.01). The levels of malondialdehyde, total nitric oxide synthase, and lipid peroxide in Pishan red sheep from affected pastures were extremely higher than those from healthy ones (P < 0.01). The levels of interleukin (IL)-1β, Interleukin-2, tumor necrosis factor-α and interleukin-6 from serum were markedly decreased in affected Pishan red sheep(P < 0.01). The Pishan red sheep in Se-deprived pasture were treated by orally with Se-yeast, the amount of Se in the blood markedly increased in treated animals. Meanwhile, the immune and antioxidant indicator was returned to the healthy values. Consequently, our findings were indicated that Se-deprived forage caused oxidative damage, and a serious threat to the immune function in animals. The Se-yeast is more effective in the Se-deficient Pishan red sheep including blood Se content, immune function and the antioxidant capacity.
Collapse
Affiliation(s)
- Jie Qiu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Ping Zhou
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, 832000, Xinjiang, China
| | - Xiaoyun Shen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China.
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, 832000, Xinjiang, China.
- World Bank Poverty Alleviation Project Office in Guizhou, Southwest China, Guiyang, 550004, Guizhou, China.
| |
Collapse
|
17
|
Li Y, Shen X, Liu F, Luo L, Wang Y. Molybdenum Fertilization Improved Antioxidant Capacity of Grazing Nanjiang Brown Goat on Copper-Contaminated Pasture. Biol Trace Elem Res 2022; 200:1156-1163. [PMID: 33899168 DOI: 10.1007/s12011-021-02735-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/19/2021] [Indexed: 10/21/2022]
Abstract
Copper (Cu) is an essential trace element, but excessive Cu intake can induce poor performance and Cu poisoning and result in various health problems. Cu and molybdenum (Mo) antagonize each other in vivo. Therefore, Mo can reduce the absorption and utilization of Cu. The aims of this study were to investigate the impacts of Mo fertilization on antioxidant capacity of grazing Nanjiang brown goat on Cu-polluted meadow and explore the control methods of Cu pollution in natural pasture. Fertilization and grazing experiments were carried out in Liangshan Yi Nationality Prefecture of the Western Sichuan Plateau, Sichuan Province, Southwest China. Cu-polluted meadows of 12 hm2 were fenced, and randomly divided into two groups (3 replications/group, 2 hm2/replication), control group and treatment group, fed with basic diets supplemented with 0 and 3 kg Mo/hm2 [ammonium molybdate tetrahydrate, (NH4)6Mo7O24·4H2O], respectively. In the current study, 36 healthy Nanjiang brown goats (1 year old, 32.8 ± 1.1 kg) were randomly divided into two groups (3 replications/group, 6 goats/replication) and assigned to the experimental pastures. The grazing experiment lasted for 60 days. The results showed that the concentration of Mo in soil in treatment group was 96.28 mg/kg, far exceeding the normal levels. At days 30 and 60, the levels of Hb, RBC, and PCV in blood in treatment group and the activities of serum SOD, GSH-Px, T-AOC, CAT, and Cp were higher than those in control group (P < 0.01). The MDA content in treatment group was lower than that in control group (P < 0.01). The contents of Cu in blood and liver in treatment goats were lower than those in control animals (P < 0.01). The contents of Zn and Mo in blood and liver in treatment goats were higher than those in control animals (P < 0.01). The Mn content in liver in treatment group was higher than that in control animals (P < 0.01). These results indicated that fertilization of (NH4)6Mo7O24 not only markedly influenced the mineral contents in blood and liver, but also extremely improved antioxidant capacity of grazing Nanjiang brown goat from fertilized pastures and relieved the damage caused by Cu pollution.
Collapse
Affiliation(s)
- Yuanfeng Li
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
- Swine Research Institute, Tie Qi Li Shi Group Co., Mianyang, 621006, China
| | - Xiaoyun Shen
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
- State Engineering Technology Institute for Karst Desertification Control, Guizhou Normal University, Guiyang, 550025, China
- World Bank Poverty Alleviation Project Office in Guizhou, Southwest China, Guiyang, 550004, China
| | - Fuyuan Liu
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, 832000, China
| | - Lan Luo
- Nanjiang Product Quality Supervision and Inspection Institute, Bazhong, 636600, China
| | - Yachao Wang
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China.
| |
Collapse
|
18
|
Wu T, He J, Shen X. Study of metabolomics in selenium deprived Przewalski's Gazelle ( Procapra przewalskii). Br J Nutr 2021; 128:1-12. [PMID: 34511139 DOI: 10.1017/s000711452100355x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
To understand why Procapra przewalskii does not show the same white myopathy as sheep in Se-deficient regions and to provide reference for feeding nutrition level of artificial population and selection of wild reintroduction areas in the later period, a Se-deficient model was established. The mineral elements content, physiological and biochemical parameters in blood and serum metabonomics were determined. In the Se-deficient group compared with the control group, the Se content was highly significantly lower (P < 0·01), and the Cu content was significantly higher (P < 0·05). The activity of glutathione peroxidase was significantly lower (P < 0·05), but total superoxide dismutase was significantly higher (P < 0·05). By matching the mass spectrum data of compounds with the Kyoto Encyclopedia of Genes and Genomes (KEGG database), eighty-six types of differential metabolites in the serum were identified. The main metabolic pathways included secondary bile acid biosynthesis, biosynthesis of unsaturated fatty acids and pyrimidine metabolism. Further analysis showed that there were seven different metabolites in pyrimidine metabolism pathway between the two groups. And there was no significant difference in erythrocyte, Hb and total antioxidant capacity between the two groups (P > 0·05). The above results showed that the differential metabolism of substances exhibited complementary functions, thus alleviating some adverse effects and resulting normal activities of P. przewalskii can be carried out under the condition of dietary Se content lower than 0·05 mg/kg.
Collapse
Affiliation(s)
- Ting Wu
- College of Life Science, Southwest University of Science and Technology, Mianyang, Sichuan621010, People's Republic of China
- Feng Guang De Laboratory, Tie Qi Li Shi Group, Mianyang, Sichuan, People's Republic of China
| | - Jian He
- College of Life Science, Southwest University of Science and Technology, Mianyang, Sichuan621010, People's Republic of China
- Feng Guang De Laboratory, Tie Qi Li Shi Group, Mianyang, Sichuan, People's Republic of China
| | - Xiaoyun Shen
- College of Life Science, Southwest University of Science and Technology, Mianyang, Sichuan621010, People's Republic of China
- World Bank Poverty Alleviation Project Office in Guizhou, Southwest China, Guiyang, Guizhou, People's Republic of China
| |
Collapse
|
19
|
Zhao K, Huo B, Shen X. Studies on Antioxidant Capacity in Selenium-Deprived the Choko Yak in the Shouqu Prairie. Biol Trace Elem Res 2021; 199:3297-3302. [PMID: 33123866 DOI: 10.1007/s12011-020-02461-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 10/22/2020] [Indexed: 11/27/2022]
Abstract
The fencing device on pasture has seriously restricted the foraging range in grazing animals. As a result, the incidence of selenium (Se) deficiency is rising in grazing Choko yaks in the Shouqu prairie in Northwest China. To study the effect of Se deprivation on antioxidant capacity in the Choko yaks, the mineral contents in soil, forage, blood, and liver have been analyzed. The parameters of physiology and biochemistry in animal were also measured. The tested results showed that Se contents in soil and forage from tested pastures were very greatly lower than those in the control ranges (P < 0.01), and there were no extreme differences in other elements. Se contents in blood and the liver in tested animals were very extremely lower than those in the control yaks (P < 0.01). Levels of hemoglobin (Hb), erythrocyte (RBC), and hematocrit (HCT) were very extremely less than those in the control group (P < 0.01). Activities of glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), catalase (CAT), and total antioxidant capacity (T-AOC) in blood from the tested yaks were very much lower than those in the control animals (P < 0.01). Contents of malondialdehyde (MDA) in tested yaks were extremely higher than those in the control animals (P < 0.01). Therefore, it is suggested that Se-deficient forage in natural habitat not only influenced mineral contents in the blood and the liver but also causes serious harm to antioxidant function in the Choko yaks.
Collapse
Affiliation(s)
- Kui Zhao
- School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang, 550025, China
| | - Bin Huo
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Xiaoyun Shen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China.
- State Engineering Technology Institute for Karst Desertification Control, Guizhou Normal University, Guiyang, 550025, China.
- World Bank Poverty Alleviation Project Office in Guizhou, Southwest China, Guiyang, 550004, China.
| |
Collapse
|
20
|
Li Y, He J, Shen X. Effects of Nano-selenium Poisoning on Immune Function in the Wumeng Semi-fine Wool Sheep. Biol Trace Elem Res 2021; 199:2919-2924. [PMID: 32974846 DOI: 10.1007/s12011-020-02408-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 09/21/2020] [Indexed: 02/05/2023]
Abstract
The Wumeng semi-fine wool sheep is vital to the production system in Southwest China. To study the effects of nano-selenium (Nano-Se) poisoning in the Wumeng semi-fine wool sheep, poisoning model was established. A total of 20 animals with an average initial body weight (BW) of 35.57 ± 3.31 kg were used in this study. After 1-week-long acclimatization period, all animals were randomly divided into two groups: (1) control, with no any treatment; (2) Nano-Se group, orally administered 5 mg Nano-Se (BW/kg/day). There were 10 replications/group and one sheep/replication. The experiment lasted for 30 days. Compared with the control, hemoglobin, erythrocyte count, and packed cell volume in Nano-Se group markedly decreased (P < 0.01), and the activities of serum lactate dehydrogenase, glutamic oxaloacetic transaminase, cereal third transaminase, and alkaline phosphatase in Nano-Se group significantly increased (P < 0.01). T3 and FT3 in serum in Nano-Se group were greatly lower than those in the control (P < 0.01). Contents of T4, FT4, and TSH in serum in Nano-Se group were extremely higher than those in the control (P < 0.01). Levels of IgG, IgM, IgA, interleukin 2 (IL-2), and tumor necrosis factor-alpha (TNF-α) in Nano-Se group were much lower than those of the control (P < 0.01), but levels of interleukin 6 (IL-6) and interleukin-1β (IL-1β) were greatly higher than those in the control (P < 0.01). Compared with the control, serum superoxide dismutase, glutathione peroxide, total antioxidant capacity, and catalase from Nano-Se group extremely decreased (P < 0.01), and content of serum malondialdehyde in Nano-Se group markedly increased (P < 0.01). The current results indicated that the blood parameters in the Wumeng semi-fine wool sheep were affected by Nano-Se poisoning, and the immune function and antioxidant capacity were greatly reduced too.
Collapse
Affiliation(s)
- Yuanfeng Li
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Jian He
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Xiaoyun Shen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China.
- State Engineering Technology Institute for Karst Desertification Control, Guizhou Normal University, Guiyang, 550025, China.
- World Bank Poverty Alleviation Project Office in Guizhou, Southwest China, Guiyang, 550004, Guizhou, China.
| |
Collapse
|
21
|
Lamarche J, Ronga L, Szpunar J, Lobinski R. Characterization and Quantification of Selenoprotein P: Challenges to Mass Spectrometry. Int J Mol Sci 2021; 22:ijms22126283. [PMID: 34208081 PMCID: PMC8230778 DOI: 10.3390/ijms22126283] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 12/13/2022] Open
Abstract
Selenoprotein P (SELENOP) is an emerging marker of the nutritional status of selenium and of various diseases, however, its chemical characteristics still need to be investigated and methods for its accurate quantitation improved. SELENOP is unique among selenoproteins, as it contains multiple genetically encoded SeCys residues, whereas all the other characterized selenoproteins contain just one. SELENOP occurs in the form of multiple isoforms, truncated species and post-translationally modified variants which are relatively poorly characterized. The accurate quantification of SELENOP is contingent on the availability of specific primary standards and reference methods. Before recombinant SELENOP becomes available to be used as a primary standard, careful investigation of the characteristics of the SELENOP measured by electrospray MS and strict control of the recoveries at the various steps of the analytical procedures are strongly recommended. This review critically discusses the state-of-the-art of analytical approaches to the characterization and quantification of SELENOP. While immunoassays remain the standard for the determination of human and animal health status, because of their speed and simplicity, mass spectrometry techniques offer many attractive and complementary features that are highlighted and critically evaluated.
Collapse
Affiliation(s)
- Jérémy Lamarche
- IPREM UMR5254, E2S UPPA, Institut des Sciences Analytiques et de Physico-Chimie Pour l’Environnement et les Matériaux, CNRS, Université de Pau et des Pays de l’Adour, Hélioparc, 64053 Pau, France; (L.R.); (J.S.); (R.L.)
- Correspondence:
| | - Luisa Ronga
- IPREM UMR5254, E2S UPPA, Institut des Sciences Analytiques et de Physico-Chimie Pour l’Environnement et les Matériaux, CNRS, Université de Pau et des Pays de l’Adour, Hélioparc, 64053 Pau, France; (L.R.); (J.S.); (R.L.)
| | - Joanna Szpunar
- IPREM UMR5254, E2S UPPA, Institut des Sciences Analytiques et de Physico-Chimie Pour l’Environnement et les Matériaux, CNRS, Université de Pau et des Pays de l’Adour, Hélioparc, 64053 Pau, France; (L.R.); (J.S.); (R.L.)
| | - Ryszard Lobinski
- IPREM UMR5254, E2S UPPA, Institut des Sciences Analytiques et de Physico-Chimie Pour l’Environnement et les Matériaux, CNRS, Université de Pau et des Pays de l’Adour, Hélioparc, 64053 Pau, France; (L.R.); (J.S.); (R.L.)
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
- Chair of Analytical Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| |
Collapse
|
22
|
Shen X, Song C, Wu T. Effects of Nano-copper on Antioxidant Function in Copper-Deprived Guizhou Black Goats. Biol Trace Elem Res 2021; 199:2201-2207. [PMID: 32812170 DOI: 10.1007/s12011-020-02342-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 08/09/2020] [Indexed: 12/12/2022]
Abstract
Guizhou black goats are essential to the production system in the Wumeng prairie in the Western China. This study aimed to determine the influence of nano-copper on antioxidant system in copper-deprived Guizhou black goats. We analyzed mineral contents in soil, forage, and goats' tissues. Blood parameters were also determined. The results showed that copper concentrations in soil and forage were significantly lower, and the iron content was significantly higher in affected compared with healthy area (P < 0.01). Copper concentrations in animal tissues (blood, liver, and hair) were significantly lower and iron content was significantly higher in affected compared with healthy goats (P < 0.01). After supplementation of nano-copper or copper sulfate, copper concentration in blood was significantly increased and iron content was significantly lower (P < 0.01). Compared with nano-copper group, the effect of copper sulfate was slower. Hemoglobin levels, erythrocyte count, and packed cell volume from nano-copper and copper sulfate groups were significantly higher than those in copper-deprived goats (P < 0.01). Compared with the copper-deprived Guizhou black goats, serum ceruloplasmin levels in nano-copper and copper sulfate groups were significantly increased, while serum lactate dehydrogenase, aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, and creatinine were significantly decreased (P < 0.01). Compared with the copper-deprived animals, serum superoxide dismutase, glutathione peroxidase, catalase, and total antioxidant capacity in nano-copper and copper sulfate groups were significantly higher, while serum malondialdehyde content was significantly lower (P < 0.01). The effect of copper sulfate group was significantly lower than that in nano-copper group (P < 0.01). Consequently, nano-copper could not only markedly increase the copper content in blood in copper-deprived Guizhou black goats but also much improves the antioxidant capacity.
Collapse
Affiliation(s)
- Xiaoyun Shen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China.
- State Engineering Technology Institute for Karst Desertification Control, Guizhou Normal University, Guiyang, 550025, China.
- World Bank Poverty Alleviation Project Office in Guizhou, Southwest China, Guiyang, 550004, China.
| | - Chunjie Song
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Ting Wu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| |
Collapse
|
23
|
Singh HP, Jain RK, Tiwari D, Mehta MK, Mudgal V. Strategic Supplementation of Antioxidant Micronutrients in Peri-parturient Murrah Buffaloes Helps Augment the Udder Health and Milk Production. Biol Trace Elem Res 2021; 199:2182-2190. [PMID: 32767246 DOI: 10.1007/s12011-020-02319-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 07/29/2020] [Indexed: 10/23/2022]
Abstract
The experiment was conducted to study the effect of supplementation of designer dietary antioxidant micronutrients on udder health, milk yield, and its quality in buffaloes under field conditions. Sixteen healthy multiparous advanced pregnant graded Murrah buffaloes (around the last 3 months of gestation), identical in body weights, parity, and feeding conditions, were selected for the study. Feed offered and residues left of an individual animal were measured and recorded for 7 consecutive days with the sampling of feeds being offered to buffaloes and analyzed for dry matter and trace minerals Zn, Cu, and Se. Carotene and vitamin E content of offered feed samples were calculated based on reported values. The calculation was made to determine the deficiency of above micronutrients, and an antioxidant micronutrient supplement was designed to take care of the deficient micronutrients and supplemented in half of the buffaloes (n = 8) considered to be a treatment, while remaining half (n = 8) is considered to be control, fed as per the existing practice of farmer without additional supplementation. This supplementation study was continued for 2 months during advanced pregnancy and thereafter for 3 months post-calving. Dry matter intake recorded weekly during the pre- and postpartum period of study remained comparable (P > 0.05) between two groups. Udder health monitored fortnightly by modified California mastitis test, milk pH and somatic cell count indicated improvement (P < 0.05) of strategic antioxidant micronutrients supplementation. Milk yield started showing improvement (P < 0.05) as early as the first week after starting lactation with throughout enhanced (P < 0.05) values of milk protein, fat percentage, and fat-corrected milk yield. It may be concluded that strategic antioxidant micronutrient supplementation (Zn, Cu, and vitamins A and E) in the ration of peri-parturient buffaloes not only improved the udder health by reducing the occurrence of mastitis but also increased the milk yield as well as fat and protein percentage of milk.
Collapse
Affiliation(s)
- Himanshu Pratap Singh
- Department of Animal Nutrition, College of Veterinary Science and Animal Husbandry, Mhow, M. P., 453 446, India
| | - Ravindra Kumar Jain
- Department of Animal Nutrition, College of Veterinary Science and Animal Husbandry, Mhow, M. P., 453 446, India
| | - Divya Tiwari
- Department of Animal Nutrition, College of Veterinary Science and Animal Husbandry, Mhow, M. P., 453 446, India
| | - Mukesh Kumar Mehta
- Department of Animal Nutrition, College of Veterinary Science and Animal Husbandry, Mhow, M. P., 453 446, India
| | - Vishal Mudgal
- Division of Animal Nutrition and Feed Technology, ICAR - Central Institute for Research on Buffaloes, Hisar, Haryana, 125 001, India.
| |
Collapse
|
24
|
Shen X, Huo B, Li Y, Song C, Wu T, He J. Response of the critically endangered Przewalski's gazelle (Procapra przewalskii) to selenium deprived environment. J Proteomics 2021; 241:104218. [PMID: 33831599 DOI: 10.1016/j.jprot.2021.104218] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 02/06/2023]
Abstract
Selenium (Se) is an essential mineral nutrient for animals. Se deprivation can lead to many disorders and even death. This study investigated the response of Przewalski's gazelle (P. przewalskii) to Se-deprived environment. We found that Se deprivation in soil and forage not only influenced the mineral contents of the blood and hair in P. przewalskii, but also severely disrupted their blood parameters. We identified significant changes in the abundance of 146 proteins and 25 metabolites (P < 0.05) in serum, including the selenoproteins L8IG93 (glutathione peroxidase) and F4YD09 (Cu/Zn superoxide dismutase). Furthermore, the major known proteins and metabolites associated with the Se stress response in P. przewalskii were Cu/Zn superoxide dismutase, the vitamin K-dependent protein C, the C4b-binding protein alpha chain, complement component C7, lipase linoleic acid, peptidase D, thymidine, pseudo-uridine, L-phenylalanine, L-glutamine, PGA1, and 15-deoxy-delta-12,14-PGJ2. The main signaling pathways involved included complement and coagulation cascades, metabolic pathways, and stress granule formation. Our results indicate that the intake of Se-deficient forage elicited an oxidative stress response in P. przewalskii. These findings provide insights into the response mechanisms of this threatened gazelle to Se stress, and enable the development of conservation strategies to protect populations on the Qinghai-Tibetan Plateau. SIGNIFICANCE: This study is the first to point out the presence of oxidative stress in P. przewalskii in selenium-deficient areas through proteomics and metabolomics studies. These findings should prove helpful for conservation efforts aimed at P. przewalskii populations and maintenance of the integrity of their ecological environment.
Collapse
Affiliation(s)
- Xiaoyun Shen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China; State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832000, Xinjiang, China; World Bank Poverty Alleviation Project Office in Guizhou, Southwest China, Guiyang 550004, China.
| | - Bin Huo
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Yuanfeng Li
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Chunjie Song
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Ting Wu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Jian He
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| |
Collapse
|
25
|
Sun H, Ding W, Duan W, Zhou J, Guo L. Proteomic reveals the influences of smoke-water and karrikinolide on the biosynthesis of salvianolic acids and lignins in Salvia miltiorrhiza hairy roots. PLANTA 2021; 253:87. [PMID: 33811528 DOI: 10.1007/s00425-021-03619-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 03/26/2021] [Indexed: 06/12/2023]
Abstract
The proteins related to the biosynthesis of salvianolic acids and lignins were regulated by smoke-water and karrikinolide in Salvia miltiorrhiza hairy roots. The effects of smoke-water (SW) and karrikinolide (KAR1) on the biosynthesis of salvianolic acids and lignins in Salvia miltiorrhiza hairy roots have been studied using proteomic technology. The results showed that a total of 1290 and 1678 differentially expressed proteins were respectively obtained in SW and KAR1 comparing to the control. Bioinformatics analysis indicated the differentially expressed proteins responding to SW and KAR1 treatments mainly involved in macromolecule metabolic process, cell part, binding, etc., and most of the proteins were located at the cytoplasm and cell membrane, followed by nuclear. In addition, the proteins involved in salvianolic acids biosynthesis were up-regulated, including 4-coumarate-CoA ligase (EC 6.2.1.12) and shikimate O-hydroxycinnamoyl-transferase (EC 2.3.1.133). Enzymes involved in lignins biosynthesis were also identified, e.g. cinnamyl-alcohol dehydrogenase (EC 1.1.1.195) and peroxidase (EC 1.11.1.7). The results indicated that proteins related to the biosynthesis of salvianolic acids and lignins were regulated by SW and KAR1 in S. miltiorrhiza hairy roots. This study will enhance our understanding of the mechanism by which SW and KAR1 on the biosynthesis of salvianolic acids and lignins in S. miltiorrhiza hairy roots.
Collapse
Affiliation(s)
- Hui Sun
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Weina Ding
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Wanying Duan
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Jie Zhou
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China.
| | - Lanping Guo
- State Key Laboratory of Dao-Di Herbs, National Resource Center for Chinese Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| |
Collapse
|
26
|
Shen X, Huo B, Gan S. Effects of Nano-Selenium on Antioxidant Capacity in Se-Deprived Tibetan Gazelle (Procapra picticaudata) in the Qinghai-Tibet Plateau. Biol Trace Elem Res 2021; 199:981-988. [PMID: 32468222 DOI: 10.1007/s12011-020-02206-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 05/14/2020] [Indexed: 12/18/2022]
Abstract
Tibetan gazelle (Procapra picticaudata) is an endangered ungulate in the Qinghai-Tibet Plateau, China. This study aimed to determine the influence of nano-Se on antioxidant system in Se-deprived P. picticaudata. We analyzed contents of mineral elements in soil, forage, and animal tissue. Blood parameters and antioxidant indexes were also determined. The results showed that Se concentrations in the soil and forage from affected pasture were significantly lower than those in healthy area (P < 0.01). Se concentrations in blood and hair from affected P. picticaudata were also significantly lower than those in healthy animals (P < 0.01). Meanwhile, the levels of Hb, RBC, and PCV in affected gazelle were significantly lower than those in healthy animal (P < 0.01). The activities of AST, ALT, LDH, CK, and UA content in affected animal were significantly lower than those in healthy gazelles (P < 0.01). The levels of SOD, GSH-Px, CAT, and T-AOC in serum were significantly lower and the MDA content was significantly higher in affected compared with healthy gazelle (P < 0.01). Affected P. picticaudata were treated orally with nano-Se, Se concentration in blood significantly increased and serum antioxidant indexes greatly returned to within the healthy range. Consequently, nano-Se could not only markedly increase the Se content in blood in Se-deprived P. picticaudata but also much improves the antioxidant capacity.
Collapse
Affiliation(s)
- Xiaoyun Shen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
- College of Life Science, Hainan Normal University, Haikou, 571158, Hainan, China
- World Bank Poverty Alleviation Project Office in Guizhou, Southwest China, Guiyang, 550004, Guizhou, China
| | - Bin Huo
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, 832000, Xinjiang, China
| | - Shangquan Gan
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, 832000, Xinjiang, China.
| |
Collapse
|
27
|
Shen X, Song C. Responses of Chinese Merino Sheep (Junken Type) on Copper-Deprived Natural Pasture. Biol Trace Elem Res 2021; 199:989-995. [PMID: 32578136 DOI: 10.1007/s12011-020-02214-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 05/20/2020] [Indexed: 01/08/2023]
Abstract
To research responses of Chinese Merino Sheep (Junken type) to copper-deprived natural pasture, we analyzed mineral contents in soil, forage, and sheep tissues. Physiological and biochemical parameters were also determined. Results showed that copper concentrations in soil and forage from affected pastures were significantly lower than those in healthy ranges (P < 0.01). Copper contents in animal tissues (blood, liver, and wool) from affected Chinese Merino Sheep were also significantly lower than those in healthy sheep (P < 0.01). Hemoglobin levels, packed cell volume, mean corpuscular volume, and mean corpuscular hemoglobin from affected Chinese Merino Sheep were significantly lower than those in healthy animals (P < 0.01). Serum ceruloplasmin was significantly lower in affected Chinese Merino Sheep than that in healthy animals, while activities of lactate dehydrogenase, alkaline phosphatase, aspartate aminotransferase, and alanine aminotransferase in serum were significantly higher in affected compared with healthy animals (P < 0.01). The levels of superoxide dismutase, glutathione peroxidase, total antioxidant capacity, and catalase in serum were significantly lower, and the malondialdehyde content was significantly higher in affected compared with healthy sheep (P < 0.01). The levels of interleukin-2, interleukin 6, interleukin-1β, immunoglobulin A, immunoglobulin M, and immunoglobulin G in copper-deprived sheep were significantly lower than those in healthy animals (P < 0.01). Copper deprivation in forage not only influenced the mineral content in blood but also severely disrupted blood parameters (physiology, biochemistry, immunity, and antioxidant) in Chinese Merino Sheep.
Collapse
Affiliation(s)
- Xiaoyun Shen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China.
- World Bank Poverty Alleviation Project Office in Guizhou, Southwest China, Guiyang, 550004, China.
- State Engineering Technology Institute for Karst Desertification Control, Guizhou Normal University, Guiyang, 550025, China.
| | - Chunjie Song
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| |
Collapse
|
28
|
Song C, Jiang Q, Shen X. Responses of Przewalski's Gazelle (Procapra przewalskii) to Zinc Nutrition in Physical Habitat. Biol Trace Elem Res 2021; 199:142-147. [PMID: 32236846 DOI: 10.1007/s12011-020-02137-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 03/25/2020] [Indexed: 11/25/2022]
Abstract
To study responses of Procapra przewalskii to zinc (Zn) nutrition in physical habitat, we analyzed the content of mineral elements in soil, forage, and animal tissues. Physiological and biochemical indexes were also determined. The results showed that Zn contents in the soil and forage from affected pasture were significantly lower (P < 0.01) than those in unaffected areas. Zn concentrations in the blood, liver, and hair from affected P. przewalskii were also significantly lower (P < 0.01) than those in healthy animals. The levels of hemoglobin, erythrocyte count, and packed cell volume from affected P. przewalskii were significantly lower (P < 0.01) than those in healthy animals. Serum aspartate aminotransferase and alanine transaminase activities were significantly lower (P < 0.01) in affected P. przewalskii than in healthy animals, while serum lactate dehydrogenase and alkaline phosphatase levels were significantly higher (P < 0.01) in affected compared with healthy animals. The activities of superoxide dismutase, glutathione peroxidase, and catalase in serum were significantly lower and the malondialdehyde content was significantly higher (all P < 0.01) in affected compared with healthy animals. Affected P. przewalskii were treated orally with ZnSO4. The Zn content in the blood increased gradually and serum antioxidant indexes gradually returned to within the healthy range. Zn deprivation in forage thus not only influenced the blood mineral content but also severely disrupted blood parameters and antioxidant function in P. przewalskii.
Collapse
Affiliation(s)
- Chunjie Song
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Qing Jiang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Xiaoyun Shen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China.
- World Bank Poverty Alleviation Project Office in Guizhou, Southwest China, Guiyang, 550004, China.
| |
Collapse
|
29
|
Guo H, Chen T, Liang Z, Fan L, Shen Y, Zhou D. iTRAQ and PRM-based comparative proteomic profiling in gills of white shrimp Litopenaeus vannamei under copper stress. CHEMOSPHERE 2021; 263:128270. [PMID: 33297214 DOI: 10.1016/j.chemosphere.2020.128270] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 05/11/2023]
Abstract
Crustaceans are particularly sensitive to heavy metal pollution. Copper (Cu) is one of typical heavy metal pollutants in aquatic ecosystems. However, limited attention has been paid on the proteomic responses of shrimp under Cu stress. White shrimp Litopenaeus vannamei held in 5‰ seawater were exposed to 5 mg L-1 Cu for 3 h, and the regulatory mechanism in the gills was elucidated using iTRAQ-based quantitative proteomics. The results showed that a total of 5034 proteins were identified, 385 differentially expressed proteins (DEPs), including 147 differentially up-regulated proteins (DUPs) and 238 differentially down-regulated proteins (DDPs) were found. Bioinformatics analysis indicated the DEPs responding to Cu stress mainly involved in cytoskeleton, immune response, stress response, protein synthesis, detoxification, ion homeostasis and apoptosis. Furthermore, we still performed PRM analysis on sarcoplasmic calcium binding protein (SCP), serine proteinase inhibitor B3 (SPIB3), C-type lectin 4 (CTL4), cathepsin L (CATHL), JHE-like carboxylesterase 1 (CXE1) and paramyosin (PMY), and biochemical analysis on Cu/Zn-superoxide dismutase (Cu/Zn-SOD) to validate the iTRAQ results, respectively. The present proteome analysis revealed that Cu stress disrupted the ion homeostasis and protein synthesis, and L.vannamei mainly regulates a series of molecular pathways which contained many key proteins involved in the immune process to protect the organism from Cu stress. Our data provides more insight about the underlying mechanisms that related to the stress response of Cu exposure in crustacean.
Collapse
Affiliation(s)
- Hui Guo
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institute, Zhanjiang, China
| | - Tianci Chen
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institute, Zhanjiang, China
| | - Zhi Liang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institute, Zhanjiang, China
| | - Lanfen Fan
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yuchun Shen
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institute, Zhanjiang, China.
| | - Dayan Zhou
- Aquatic Species Introduction and Breeding Center of Guangxi Zhuang Autonomous Region, Nanning, 530031, China.
| |
Collapse
|
30
|
Song C, Gan S, Shen X. Effects of Nano-Copper Poisoning on Immune and Antioxidant Function in the Wumeng Semi-Fine Wool Sheep. Biol Trace Elem Res 2020; 198:515-520. [PMID: 32130623 DOI: 10.1007/s12011-020-02085-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 02/18/2020] [Indexed: 01/18/2023]
Abstract
The Wumeng semi-fine wool sheep is vital to the production system of the Wumeng mountainous area in Southwest China. To study the effect of nano-copper poisoning in the Wumeng semi-fine wool sheep, nano-copper poisoning model was established in sheep. We determined blood physiological and biochemical parameters, immune indexes, and antioxidant indicators. The results showed that Hb, RBC, and PCV levels in blood from the nano-copper group were markedly lower (P < 0.01) than those in the control group. Serum LDH, AST, ALT, CPK, and Cp from the nano-copper group were significantly higher (P < 0.01) than those in control animals. Serum SOD, GSH-Px, CAT, and T-AOC from the nano-copper group were significantly lower (P < 0.01) than those in control sheep, and MDA content in serum from the nano-copper group were markedly higher (P < 0.01) than those in control sheep. The levels of IL-2, IL-6, IL-1β, IgA, IgM, and IgG from the nano-copper group were significantly lower (P < 0.01) than those in the control group. It was concluded that nano-copper poisoning could not only affect the immune function of Wumeng semi-fine wool sheep but also reduce the antioxidant capacity.
Collapse
Affiliation(s)
- ChunJie Song
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Shangquan Gan
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, Xinjiang, 832000, China
| | - Xiaoyun Shen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China.
- World Bank Poverty Alleviation Project Office in Guizhou, Southwest China, Guiyang, 550004, China.
| |
Collapse
|
31
|
Shen X, Min X, Zhang S, Song C, Xiong K. Effect of Heavy Metal Contamination in the Environment on Antioxidant Function in Wumeng Semi-fine Wool Sheep in Southwest China. Biol Trace Elem Res 2020; 198:505-514. [PMID: 32076954 DOI: 10.1007/s12011-020-02081-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 02/11/2020] [Indexed: 12/13/2022]
Abstract
Many environmental accidents have led to worldwide heavy metal pollution, raising concern about heavy metal toxicity in Southwest China. To study the effects of Cd and Pb in the environment on antioxidant function in Wumeng semi-fine wool sheep, contents of Cu, Zn, Mn, Mo, Fe, Se, Cd, and Pb were measured in irrigation water, soil, herbage, and animal tissues. Hematological and biochemical parameters were also determined. The concentrations of Cu, Zn, Cd, and Pb in affected samples of irrigation water, soil, herbage, and tissues were significantly higher than those in the control (P < 0.01). There was no significant difference in other element contents between affected pastures and control areas. The occurrence of anemia affected Wumeng semi-fine wool sheep. The activities of SOD, CAT, and GSH-Px in affected animals were significantly decreased than those in the control (P < 0.01). Content of MDA in serum in affected animals was significantly increased than that in control (P < 0.01). Serum T-AOC in affected animal was significantly lower than that in control (P < 0.01). Consequently, it is suggested that heavy metal contamination in natural habitat caused serious harm to antioxidant function in Wumeng semi-fine wool sheep.
Collapse
Affiliation(s)
- Xiaoyun Shen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
- School of Karst Science, Guizhou Normal University/State Engineering Technology Institute for Karst Desertification Control, Guiyang, 550001, China
- World Bank Poverty Alleviation Project Office in Guizhou, Southwest China, Guiyang, 550004, China
| | - Xiaoying Min
- School of Karst Science, Guizhou Normal University/State Engineering Technology Institute for Karst Desertification Control, Guiyang, 550001, China
| | - Shihao Zhang
- School of Karst Science, Guizhou Normal University/State Engineering Technology Institute for Karst Desertification Control, Guiyang, 550001, China
| | - Chunjie Song
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Kangning Xiong
- School of Karst Science, Guizhou Normal University/State Engineering Technology Institute for Karst Desertification Control, Guiyang, 550001, China.
| |
Collapse
|
32
|
Huo B, He J, Shen X. Effects of Selenium-Deprived Habitat on the Immune Index and Antioxidant Capacity of Przewalski's Gazelle. Biol Trace Elem Res 2020; 198:149-156. [PMID: 32040847 DOI: 10.1007/s12011-020-02070-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 01/30/2020] [Indexed: 12/31/2022]
Abstract
Przewalski's gazelle (Procapra przewalskii) is an endangered ungulate in the Qinghai-Tibet Plateau of China. This study aimed to determine the influence of selenium (Se) deprivation in the natural habitat on the immune index and antioxidant capacity of P. przewalskii. Samples of soil and forage were collected from affected and healthy areas, and animal tissues were collected from affected and healthy P. przewalskii. The samples were used for measuring mineral content and for hematological and biochemical analyses. The results showed that Se concentrations were significantly lower in the soil and mixed forage samples from the affected area than in those from the healthy area. The Se concentrations were significantly lower in blood and hair samples from affected P. przewalskii than in those from healthy P. przewalskii. Meanwhile, hemoglobin, packed cell volume, and platelet count of affected P. przewalskii were significantly lower than those of healthy P. przewalskii. The serum level of glutathione peroxidase and total antioxidant capacity were significantly lower and the serum levels of malondialdehyde, total nitric oxide synthase, and lipid peroxide were significantly higher in affected P. przewalskii. The serum levels of interleukin (IL)-1β, IL-2, tumor necrosis factor-alpha, immunoglobulin A (IgA), and IgG significantly decreased and the serum levels of IL-6 and IgM significantly reduced in affected P. przewalskii compared with healthy P. przewalskii. Therefore, the findings indicated that Se deprivation in soil and forage caused oxidative stress damage and posed a serious threat to the immune function of P. przewalskii.
Collapse
Affiliation(s)
- Bin Huo
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Jian He
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Xiaoyun Shen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China.
- World Bank Poverty Alleviation Project Office in Guizhou, Southwest China, Guiyang, 550004, China.
| |
Collapse
|
33
|
Zhao K, Chi Y, Shen X. Studies on Edema Pathema in Hequ Horse in the Qinghai-Tibet Plateau. Biol Trace Elem Res 2020; 198:142-148. [PMID: 31965424 DOI: 10.1007/s12011-020-02043-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/07/2020] [Indexed: 04/17/2023]
Abstract
As a consequence of contracted and fenced grassland, the incidence of edema pathema in the Hequ horse is rising. The main pathological symptoms are edema, emaciation, anemia, heterophilia, inappetence, and dyskinesia. To study the cause of edema disease in Hequ horse, the Hequ horse farm with a high incidence was chosen as the experimental pasture, and the Azi husbandry experimental station without edema disorder was the control pasture. The research methods in this paper are included: (1) The mineral contents in soil, forage, blood, and liver were analyzed. (2) Routine parameters and biochemical values in blood were also measured. (3) Conduct a prevention trial and a treatment experiment. The results showed that Se contents in soil and forage was much significantly lower than that in the control group (P < 0.01), and there was no significant difference in other elements. Se contents in blood and liver in affected animals were very significantly lower than those of the control group (P < 0.01). Hb, HCT, MCV, and MCH were greatly significantly lower than those in the control group (P < 0.01). Activities of GSH-Px in blood were very significantly lower than those of the control group (P < 0.01). Before the onset season of the disorder in the affected area, Na2SeO3 was used to conduct a prevention trial on 1576 Hequ horses. A dose of 0.03 mg Na2SeO3 was given orally per kilogram of body weight, once every 15 days and twice continuously. There was no edema illness that year. In the treatment experiment, 235 horses were administered Na2SeO3 orally at 0.04 mg per kilogram of body weight, once every 3 days for 4 consecutive times, and 198 horses were cured, with a cure rate of 84.26%. Therefore, it is possible that Hequ horse edema pathema is caused by Se deficiency in soil and forage.
Collapse
Affiliation(s)
- Kui Zhao
- School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang, 550025, China
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Yongkuan Chi
- State Engineering Technology Institute for Karst Desertification Control, Guizhou Normal University, Guiyang, 550025, China
| | - Xiaoyun Shen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China.
- State Engineering Technology Institute for Karst Desertification Control, Guizhou Normal University, Guiyang, 550025, China.
- World Bank Poverty Alleviation Project Office in Guizhou, Guiyang, 550004, Southwest China, China.
| |
Collapse
|
34
|
Louvandini H, Ieda EH, Jimenez CR, Corrêa PS, Moretti DB, Lima PMT, McManus CM, Carvalho HWP, De N Fernandes EA. Effects of Maternal Dietary Cottonseed on the Profile of Minerals in the Testes of the Lamb. Biol Trace Elem Res 2020; 197:159-166. [PMID: 31734912 DOI: 10.1007/s12011-019-01971-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 10/30/2019] [Indexed: 10/25/2022]
Abstract
The use of cotton co-products in animal feed is restricted by the presence of gossypol, which is a toxic and highly reactive molecule of complex minerals. In mammals, part of the offspring phenotype is influenced by dam nutrition. The aim of this study was to investigate the effect of ewe diet, with and without cottonseed (gossypol), on the testicular development of lambs from birth to weaning through the assessment of lamb live weight (LW), macro and histological morphology of testes, and mass fraction of chemical elements by neutron activation analysis (NAA) and microprobe X-ray fluorescence spectroscopy, as well as the multielement distribution map in the testes. Eighteen lambs were used with an average LW at birth of 4 ± 1.0 kg. All lambs were offspring of Santa Inês ewes, fed on ration either with or without cottonseed during mating, gestation, and lactation, thus forming two treatments: control group (C) without cottonseed and treatment group with cottonseed (G). The animals were weighed from birth to 60 days of age, at fortnightly intervals. At 60 days of age, the lambs were orchidectomized to collect their testes for macroscopy, histological, neutron activation, and X-ray fluorescence analysis. Besides dry matter (DM), protein, ether extract (EE), calcium (Ca), and potassium (K) were higher in the ewe milk from the C group compared with the G group (P < 0.05). Lambs from the C group showed higher LW from 45 days onwards, as well as higher average daily gain when compared with the G group (P < 0.05). They also presented higher testicular weight, volume, length, width, as well as tubule and lumen diameters compared with lambs from the G treatment (P < 0.05). Multielementary NAA revealed higher mass fractions of rubidium (Rb), selenium (Se), and cesium (Cs) in the testes of lambs from the C group when compared with the G group, while G showed higher zinc (Zn) content (P < 0.05). No differences between treatments were found for element levels and distribution using X-ray fluorescence microanalysis (P > 0.05). In conclusion, the maternal cottonseed diet compromised performance and testes development of the lambs and reduce the content of Se in the testes.
Collapse
Affiliation(s)
- Helder Louvandini
- Center for Nuclear Energy in Agriculture, Laboratory of Animal Nutrition, University of São Paulo, Piracicaba, São Paulo, Brazil.
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA.
| | - Egon H Ieda
- Center for Nuclear Energy in Agriculture, Laboratory of Animal Nutrition, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Carolina R Jimenez
- Center for Nuclear Energy in Agriculture, Laboratory of Animal Nutrition, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Patricia Spoto Corrêa
- Center for Nuclear Energy in Agriculture, Laboratory of Animal Nutrition, University of São Paulo, Piracicaba, São Paulo, Brazil
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA
| | - Debora B Moretti
- Department of Animal Science, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Paulo M T Lima
- Center for Nuclear Energy in Agriculture, Laboratory of Animal Nutrition, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Concepta M McManus
- Institute of Biology, University of Brasília, Brasília, Federal District, Brazil
| | - Hudson W P Carvalho
- Center for Nuclear Energy in Agriculture, Laboratory of Nuclear Instrumentation, Piracicaba, University of São Paulo, São Paulo, Brazil
| | - Elisabete A De N Fernandes
- Center for Nuclear Energy in Agriculture, Radioisotopes Laboratory, Piracicaba, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
35
|
Zheng X, Ren B, Wang H, Huang R, Zhou J, Liu H, Tian J, Huang K. Hepatic proteomic analysis of selenoprotein F knockout mice by iTRAQ: An implication for the roles of selenoprotein F in metabolism and diseases. J Proteomics 2020; 215:103653. [DOI: 10.1016/j.jprot.2020.103653] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/31/2019] [Accepted: 01/16/2020] [Indexed: 01/02/2023]
|