1
|
Ding SM, Yap MKK. Deciphering toxico-proteomics of Asiatic medically significant venomous snake species: A systematic review and interactive data dashboard. Toxicon 2024; 250:108120. [PMID: 39393539 DOI: 10.1016/j.toxicon.2024.108120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/30/2024] [Accepted: 10/06/2024] [Indexed: 10/13/2024]
Abstract
Snakebite envenomation (SBE) is a neglected tropical disease (NTD) with an approximate 1.8 million cases annually. The tremendous figure is concerning, and the currently available treatment for snakebite envenomation is antivenom. However, the current antivenom has limited cross-neutralisation activity due to the variations in snake venom composition across species and geographical locations. The proteomics of medically important venomous species is essential as they study the venom compositions within and among different species. The advancement of sophisticated proteomic approaches allows intensive investigation of snake venoms. Nevertheless, there is a need to consolidate the venom proteomics profiles and distribution analysis to examine their variability patterns. This review systematically analysed the proteomics and toxicity profiles of medically important venomous species from Asia across different geographical locations. An interactive dashboard - Asiatic Proteomics Interactive Datasets was curated to consolidate the distribution patterns of the venom compositions, serve as a comprehensive directory for large-scale comparative meta-analyses. The population proteomics demonstrate higher diversities in the predominant venom toxins. Besides, inter-regional differences were also observed in Bungarus sp., Naja sp., Calliophis sp., and Ophiophagus hannah venoms. The elapid venoms are predominated with three-finger toxins (3FTXs) and phospholipase A2 (PLA2). Intra-regional variation is only significantly observed in Naja naja venoms. Proteomics diversity is more prominent in viper venoms, with widespread dominance observed in snake venom metalloproteinase (SVMP) and snake venom serine protease (SVSP). Correlations exist between the proteomics profiles and the toxicity (LD50) of the medically important venomous species. Additionally, the predominant toxins, alongside their pathophysiological effects, were highlighted and discussed as well. The insights of interactive toxico-proteomics datasets provide comprehensive frameworks of venom dynamics and contribute to developing antivenoms for snakebite envenomation. This could reduce misdiagnosis of SBE and accelerate the researchers' data mining process.
Collapse
Affiliation(s)
- Sher Min Ding
- School of Science, Monash University Malaysia, Bandar Sunway, Malaysia
| | | |
Collapse
|
2
|
Srinivasan K, Nampoothiri M, Khandibharad S, Singh S, Nayak AG, Hariharapura RC. Proteomic diversity of Russell's viper venom: exploring PLA2 isoforms, pharmacological effects, and inhibitory approaches. Arch Toxicol 2024; 98:3569-3584. [PMID: 39181947 PMCID: PMC11489194 DOI: 10.1007/s00204-024-03849-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
Snakebite envenomation is a serious health concern in tropical regions, resulting in high mortality. The World Health Organization (WHO) has declared it a neglected tropical disease and is working on strategies to reduce mortality. Russell's viper (Daboia russelii) is one of the most abundant venomous snakes found across Southeast Asia. Proteomic analysis of Russell's viper venom has demonstrated variation, with phospholipase A2 (PLA2) being the most abundant toxin across geographic boundaries. PLA2, a major constituent of the low-molecular-weight fraction of snake venom, hydrolyses phospholipids at the sn-2 position, releasing arachidonic acid and lysophospholipids. They are reported to cause various pharmacological effects, including hemolysis, anticoagulation, neurotoxicity, myotoxicity, and oedema. Though administration of antivenoms (ASV) is the primary treatment for envenomation, it has many drawbacks. Besides causing hypersensitivity reactions and life-threatening anaphylaxis, treatment with ASV is further complicated due to its inability to neutralize low-molecular-weight toxins. Thus, there is a greater need to produce next-generation antivenoms that can target specific toxins in the venom. In this review, we explored the classification of Russell's viper and the variation in its proteomic profile across Southeast Asia to date. In addition, we have also summarized the mechanism of action of PLA2 and discussed various isoforms of PLA2 found across different regions with their respective pharmacological effects. Finally, the drawbacks of commercially available antivenoms and the molecules investigated for inhibiting the low-molecular-weight toxin, PLA2 are discussed.
Collapse
Affiliation(s)
- Kishore Srinivasan
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Madhavan Nampoothiri
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Shweta Khandibharad
- National Centre for Cell Science, NCCS Complex, Savitribai Phule Pune University Campus, Ganeshkhind, Pune, Maharashtra, India
| | - Shailza Singh
- National Centre for Cell Science, NCCS Complex, Savitribai Phule Pune University Campus, Ganeshkhind, Pune, Maharashtra, India
| | - Akshatha Ganesh Nayak
- Division of Biochemistry, Department of Basic Medical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Raghu Chandrashekar Hariharapura
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| |
Collapse
|
3
|
Rajan K, Alangode A, Menon JC, Raveendran D, Nair SS, Reick M, Nair BG, Reick M, Vanuopadath M. Comparative functional characterization and in vitro immunological cross-reactivity studies on Daboia russelii and Craspedocephalus malabaricus venom. Trans R Soc Trop Med Hyg 2024; 118:682-696. [PMID: 38860309 DOI: 10.1093/trstmh/trae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/22/2024] [Accepted: 05/17/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Snake venom is a complex mixture of organic and inorganic constituents, including proteins and peptides. Several studies showed that antivenom efficacy differs due to intra- and inter-species venom variation. METHODS In the current study, comparative functional characterization of major enzymatic proteins present in Craspedocephalus malabaricus and Daboia russelii venom was investigated through various in vitro and immunological cross-reactivity assays. RESULTS The enzymatic assays revealed that hyaluronidase and phospholipase A2 activities were markedly higher in D. russelii. By contrast, fibrinogenolytic, fibrin clotting and L-amino acid oxidase activities were higher in C. malabaricus venom. ELISA results suggested that all the antivenoms had lower binding potential towards C. malabaricus venom. For D. russelii venom, the endpoint titration value was observed at 1:72 900 for all the antivenoms. In the case of C. malabaricus venom, the endpoint titration value was 1:2700, except for Biological E (1:8100). All these results, along with the avidity assays, indicate the strength of venom-antivenom interactions. Similarly, the western blot results suggest that all the antivenoms showed varied efficacies in binding and detecting the venom antigenic epitopes in both species. CONCLUSIONS The results highlight the need for species-specific antivenom to better manage snakebite victims.
Collapse
Affiliation(s)
- Karthika Rajan
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Clappana P.O , Kollam 690 525, Kerala, India
| | - Aswathy Alangode
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Clappana P.O , Kollam 690 525, Kerala, India
| | - Jaideep C Menon
- Preventive Cardiology & Population Health Sciences, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi 682 041 , Kerala, India
| | - Dileepkumar Raveendran
- Indriyam Biologics Pvt. Ltd, SCTIMST-TIMED, 5th Floor. M S Valiathan Building, BMT Wing - Poojappura, Thiruvananthapuram 695 012, Kerala, India
| | - Sudarslal Sadasivan Nair
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Clappana P.O , Kollam 690 525, Kerala, India
| | - Margaret Reick
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Clappana P.O , Kollam 690 525, Kerala, India
| | - Bipin Gopalakrishnan Nair
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Clappana P.O , Kollam 690 525, Kerala, India
| | - Martin Reick
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Clappana P.O , Kollam 690 525, Kerala, India
| | - Muralidharan Vanuopadath
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Clappana P.O , Kollam 690 525, Kerala, India
| |
Collapse
|
4
|
Hirst SR, Rautsaw RM, VanHorn CM, Beer MA, McDonald PJ, Rosales García RA, Rodriguez Lopez B, Rubio Rincón A, Franz Chávez H, Vásquez-Cruz V, Kelly Hernández A, Storfer A, Borja M, Castañeda-Gaytán G, Frandsen PB, Parkinson CL, Strickland JL, Margres MJ. Where the "ruber" Meets the Road: Using the Genome of the Red Diamond Rattlesnake to Unravel the Evolutionary Processes Driving Venom Evolution. Genome Biol Evol 2024; 16:evae198. [PMID: 39255072 PMCID: PMC11440179 DOI: 10.1093/gbe/evae198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/15/2024] [Accepted: 09/02/2024] [Indexed: 09/12/2024] Open
Abstract
Understanding the proximate and ultimate causes of phenotypic variation is fundamental in evolutionary research, as such variation provides the substrate for selection to act upon. Although trait variation can arise due to selection, the importance of neutral processes is sometimes understudied. We presented the first reference-quality genome of the Red Diamond Rattlesnake (Crotalus ruber) and used range-wide 'omic data to estimate the degree to which neutral and adaptive evolutionary processes shaped venom evolution. We characterized population structure and found substantial genetic differentiation across two populations, each with distinct demographic histories. We identified significant differentiation in venom expression across age classes with substantially reduced but discernible differentiation across populations. We then used conditional redundancy analysis to test whether venom expression variation was best predicted by neutral divergence patterns or geographically variable (a)biotic factors. Snake size was the most significant predictor of venom variation, with environment, prey availability, and neutral sequence variation also identified as significant factors, though to a lesser degree. By directly including neutrality in the model, our results confidently highlight the predominant, yet not singular, role of life history in shaping venom evolution.
Collapse
Affiliation(s)
- Samuel R Hirst
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA
| | - Rhett M Rautsaw
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Cameron M VanHorn
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA
| | - Marc A Beer
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Preston J McDonald
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA
| | | | - Bruno Rodriguez Lopez
- Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, Durango, Mexico
| | - Alexandra Rubio Rincón
- Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, Durango, Mexico
| | | | - Víctor Vásquez-Cruz
- Facultad de Ciencias Biológicas y Agropecuarias, Universidad Veracruzana, Veracruz, Mexico
- PIMVS Herpetario Palancoatl, Veracruz, Mexico
| | | | - Andrew Storfer
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Miguel Borja
- Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, Durango, Mexico
| | | | - Paul B Frandsen
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT, USA
| | | | | | - Mark J Margres
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA
| |
Collapse
|
5
|
Kazemi SM, Kelisani ZG, Avella I, Lüddecke T. The need for a refined scorpion antivenom for Iran. Toxicon 2024; 248:108033. [PMID: 39038663 DOI: 10.1016/j.toxicon.2024.108033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024]
Abstract
Scorpion sting is a medical burden globally but especially frequent hotspots of scorpion biodiversity. In Iran, one of those hotspot countries, many fatalities occur in the South as well as the Southwest and are thought to be caused by Hemiscorpius lepturus. Accordingly, those are used for antivenom production. However, recent surveys revealed that indeed a different species Hemiscorpius acanthocercus is responsible for most accidents in the South, while H. lepturus is primarily causing the fatalities in the Southwest and thus Iranian scorpion antivenom needs to be refined in that respect. Such a refined antivenom would need to cover both species of Hemiscorpius. In response, the Iranian Ministry of Health requested the adjustment of the production line from local antivenom suppliers but until today no action has been taken.
Collapse
Affiliation(s)
- Seyed Mahdi Kazemi
- Zagros Herpetological Institute, 37156-88415, P. O. No 12, Somayyeh 14 Avenue, Qom, Iran
| | - Zohreh Gholam Kelisani
- Department of Counseling Feizoleslam Non-Profit Institute of Higher Education, Institute Khomeini Shahr, Isfahan, Iran
| | - Ignazio Avella
- Animal Venomics Lab, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392, Gießen, Germany; Institute for Insect Biotechnology, Justus Liebig University of Gießen, Heinrich-Buff Ring 26-32, 35392, Gießen, Germany; LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325, Frankfurt, Germany
| | - Tim Lüddecke
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325, Frankfurt, Germany; Animal Venomics Lab, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392, Gießen, Germany.
| |
Collapse
|
6
|
Senji Laxme RR, Khochare S, Bhatia S, Martin G, Sunagar K. From birth to bite: the evolutionary ecology of India's medically most important snake venoms. BMC Biol 2024; 22:161. [PMID: 39075553 PMCID: PMC11287890 DOI: 10.1186/s12915-024-01960-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/15/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Snake venoms can exhibit remarkable inter- and intraspecific variation. While diverse ecological and environmental factors are theorised to explain this variation, only a handful of studies have attempted to unravel their precise roles. This knowledge gap not only impedes our understanding of venom evolution but may also have dire consequences on snakebite treatment. To address this shortcoming, we investigated the evolutionary ecology of venoms of Russell's viper (Daboia russelii) and spectacled cobra (Naja naja), India's two clinically most important snakes responsible for an alarming number of human deaths and disabilities. METHODOLOGY Several individuals (n = 226) of D. russelii and N. naja belonging to multiple clutches (n = 9) and their mothers were maintained in captivity to source ontogenetic stage-specific venoms. Using various in vitro and in vivo assays, we assessed the significance of prey, ontogeny and sex in driving venom composition, function, and potency. RESULTS Considerable ontogenetic shifts in venom profiles were observed in D. russelii, with the venoms of newborns being many times as potent as juveniles and adults against mammalian (2.3-2.5 ×) and reptilian (2-10 ×) prey. This is the first documentation of the ontogenetic shift in viperine snakes. In stark contrast, N. naja, which shares a biogeographic distribution similar to D. russelii, deployed identical biochemical cocktails across development. Furthermore, the binding kinetics of cobra venom toxins against synthetic target receptors from various prey and predators shed light on the evolutionary arms race. CONCLUSIONS Our findings, therefore, provide fascinating insights into the roles of ecology and life history traits in shaping snake venoms.
Collapse
Affiliation(s)
- R R Senji Laxme
- Evolutionary Venomics Lab, Centre for Ecological Sciences, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Suyog Khochare
- Evolutionary Venomics Lab, Centre for Ecological Sciences, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Siddharth Bhatia
- Evolutionary Venomics Lab, Centre for Ecological Sciences, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Gerard Martin
- The Liana Trust. Survey, #1418/1419 Rathnapuri, Hunsur, 571189, Karnataka, India
| | - Kartik Sunagar
- Evolutionary Venomics Lab, Centre for Ecological Sciences, Indian Institute of Science, Bangalore, 560012, Karnataka, India.
| |
Collapse
|
7
|
Mozhaeva VA, Starkov VG, Kudryavtsev DS, Prokhorov KA, Garnov SV, Utkin YN. Analysis of intra-specific variations in the venom of individual snakes based on Raman spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 314:124239. [PMID: 38579426 DOI: 10.1016/j.saa.2024.124239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/22/2024] [Accepted: 04/01/2024] [Indexed: 04/07/2024]
Abstract
The knowledge of variations in the composition of venoms from different snakes is important from both theoretical and practical points of view, in particular, at developing and selecting an antivenom. Many studies on this topic are conducted with pooled venoms, while the existence and significance of variations in the composition of venoms between individual snakes of the same species are emphasized by many authors. It is important to study both inter- and intra-specific, including intra-population, venom variations, because intra-specific variations in the venom composition may affect the effectiveness of antivenoms as strongly as inter-specific. In this work, based on venom Raman spectroscopy with principal component analysis, we assessed the variations in venoms of individual snakes of the Vipera nikolskii species from two populations and compared these intra-specific variations with inter-specific variations (with regard to the other related species). We demonstrated intra-specific (inter- and intra-population) differences in venom compositions which are smaller than inter-specific variations. We also assessed the compositions of V. nikolskii venoms from two populations to explain inter-population differences. The method used is rapid and requires virtually no preparation of samples, used in extremely small quantities, allowing the venoms of individual snakes to be analyzed. In addition, the method is informative and capable of detecting fairly subtle differences in the composition of venoms.
Collapse
Affiliation(s)
- Vera A Mozhaeva
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Russia.
| | - Vladislav G Starkov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Russia
| | - Denis S Kudryavtsev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Russia; Department of Biology and General Genetics, I.M. Sechenov First Moscow State Medical University, Russia
| | - Kirill A Prokhorov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Russia
| | - Sergey V Garnov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Russia
| | - Yuri N Utkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Russia
| |
Collapse
|
8
|
Alonso LL, van Thiel J, Slagboom J, Dunstan N, Modahl CM, Jackson TNW, Samanipour S, Kool J. Studying Venom Toxin Variation Using Accurate Masses from Liquid Chromatography-Mass Spectrometry Coupled with Bioinformatic Tools. Toxins (Basel) 2024; 16:181. [PMID: 38668606 PMCID: PMC11053424 DOI: 10.3390/toxins16040181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/25/2024] [Accepted: 04/02/2024] [Indexed: 04/29/2024] Open
Abstract
This study provides a new methodology for the rapid analysis of numerous venom samples in an automated fashion. Here, we use LC-MS (Liquid Chromatography-Mass Spectrometry) for venom separation and toxin analysis at the accurate mass level combined with new in-house written bioinformatic scripts to obtain high-throughput results. This analytical methodology was validated using 31 venoms from all members of a monophyletic clade of Australian elapids: brown snakes (Pseudonaja spp.) and taipans (Oxyuranus spp.). In a previous study, we revealed extensive venom variation within this clade, but the data was manually processed and MS peaks were integrated into a time-consuming and labour-intensive approach. By comparing the manual approach to our new automated approach, we now present a faster and more efficient pipeline for analysing venom variation. Pooled venom separations with post-column toxin fractionations were performed for subsequent high-throughput venomics to obtain toxin IDs correlating to accurate masses for all fractionated toxins. This workflow adds another dimension to the field of venom analysis by providing opportunities to rapidly perform in-depth studies on venom variation. Our pipeline opens new possibilities for studying animal venoms as evolutionary model systems and investigating venom variation to aid in the development of better antivenoms.
Collapse
Affiliation(s)
- Luis L. Alonso
- Division of Bioanalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (L.L.A.); (J.S.)
- Centre for Analytical Sciences Amsterdam (CASA), 1012 WX Amsterdam, The Netherlands
| | - Jory van Thiel
- Division of Bioanalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (L.L.A.); (J.S.)
- Institute of Biology Leiden, Leiden University, 2333 BE Leiden, The Netherlands
- Naturalis Biodiversity Center, 2333 CR Leiden, The Netherlands
| | - Julien Slagboom
- Division of Bioanalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (L.L.A.); (J.S.)
- Centre for Analytical Sciences Amsterdam (CASA), 1012 WX Amsterdam, The Netherlands
| | | | - Cassandra M. Modahl
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK;
| | - Timothy N. W. Jackson
- Australian Venom Research Unit, Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC 3010, Australia;
| | - Saer Samanipour
- Van‘t Hof Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands;
| | - Jeroen Kool
- Division of Bioanalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (L.L.A.); (J.S.)
- Centre for Analytical Sciences Amsterdam (CASA), 1012 WX Amsterdam, The Netherlands
| |
Collapse
|
9
|
Lim ASS, Tan KY, Tan CH. Immunoreactivity and neutralization efficacy of Pakistani Viper Antivenom (PVAV) against venoms of Saw-scaled Vipers (Echis carinatus subspp.) and Western Russell's Vipers (Daboia russelii) from the Indian subcontinent. Acta Trop 2024; 250:107099. [PMID: 38097152 DOI: 10.1016/j.actatropica.2023.107099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/04/2023] [Accepted: 12/11/2023] [Indexed: 12/31/2023]
Abstract
Snakebite envenoming (SBE) is a priority Neglected Tropical Disease listed by the World Health Organization. South Asia is heavily affected, and virtually all countries in the region import polyvalent antivenom products from India for clinical use. The imported antivenoms, however, have suboptimal effectiveness due to geographical venom variation. Recently, a domestic bivalent product, named Pakistani Viper Antivenom (PVAV) has been developed specifically for Pakistani vipers, Echis carinatus sochureki and Daboia russelii. As a bivalent viperid antivenom, it is unknown yet if PVAV exhibits higher immunological binding and neutralization activities against viper venoms from distant locales compared with polyvalent antivenoms manufactured in India. This study thus examined the preclinical efficacy of PVAV against venoms of Western Russell's Vipers and Saw-scaled Viper subspecies from selected locales in the Indian subcontinent. PVAV generally outperformed the commonly used VINS polyvalent antivenom (VPAV, manufactured in India) in binding toward venoms, and showed superior or comparable neutralization efficacy against the venom procoagulant and hemorrhagic effects of Saw-scaled Vipers as well as Russell's Vipers from Pakistan and Sri Lanka. Based on normalized potency values, PVAV is far more potent than VPAV in neutralizing the lethality of all viper venoms, except that of the Indian Russell's Viper. The study shows conserved antigenicity of toxins responsible for major toxicity across these viperid venoms, and suggests the feasible production of a viper-specific antivenom with higher potency and broader geographical utility for the region.
Collapse
Affiliation(s)
- Andy Shing Seng Lim
- Venom Research and Toxicology Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Kae Yi Tan
- Protein and Interactomics Laboratory, Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Choo Hock Tan
- Venom Research and Toxicology Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia.
| |
Collapse
|
10
|
Schulte L, Damm M, Avella I, Uhrig L, Erkoc P, Schiffmann S, Fürst R, Timm T, Lochnit G, Vilcinskas A, Lüddecke T. Venomics of the milos viper ( Macrovipera schweizeri) unveils patterns of venom composition and exochemistry across blunt-nosed viper venoms. Front Mol Biosci 2023; 10:1254058. [PMID: 37719269 PMCID: PMC10500195 DOI: 10.3389/fmolb.2023.1254058] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/21/2023] [Indexed: 09/19/2023] Open
Abstract
Introduction: Snakebite is a neglected tropical disease and a globally important driver of death and morbidity. Vipers of the genus Macrovipera (Viperidae: Viperinae) are among the snakes of higher medical importance in the Old World. Despite the medical relevance of Macrovipera venoms, the knowledge regarding them is heterogeneously distributed with virtually all works conducted so far focusing on subspecies of Macrovipera lebetinus, while other species within the genus are largely overlooked. Here we present the first proteomic evaluation of the venom from the Greek endemic Milos viper (Macrovipera schweizeri). In line with clinical symptoms typically elicited by Macrovipera envenomations, Milos viper venom primarily comprises coagulotoxic and cytotoxic protein families, such as metalloproteinases (svMP) and serine proteases (svSP). Methods: We conducted comparative bioactivity assays on venoms from M. schweizeri and the M. lebetinus subspecies M. lebetinus cernovi, M. lebetinus obtusa, and M. lebetinus turanica, and showed that they all exhibit similarities in levels of cytotoxicity proteolytic activity, and inhibition of prokaryotic growth. Lastly, we compared Macrovipera venom profiles by 1D-SDS-PAGE and RP-HPLC, as well as our proteomic data with previously published Macrovipera venom proteomes. Results and discussion: The analyzes performed to reveal that a general venom profile seems to be conserved across blunt-nosed vipers, and that, M. schweizeri envenomations, similarly to those caused by other blunt-nosed vipers, are able to cause significant tissue damage. The present work represents an important starting point for the development of comparative studies across the full taxonomic range of the genus Macrovipera and can potentially help optimize the treatment of envenomations caused by M. schweizeri.
Collapse
Affiliation(s)
- Lennart Schulte
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
- Institute for Insect Biotechnology, Justus Liebig University Giessen, Giessen, Germany
- LOEWE-Centre for Translational Biodiversity Genomics, Frankfurt, Germany
| | - Maik Damm
- LOEWE-Centre for Translational Biodiversity Genomics, Frankfurt, Germany
| | - Ignazio Avella
- CIBIO, Research Centre in Biodiversity and Genetic Resources, InBIO Associated Laboratory, University Port, Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- CIBIO, BIOPOLIS Program in Genomics, Biodiversity and Land Planning, Vairão, Portugal
| | - Lilien Uhrig
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
| | - Pelin Erkoc
- LOEWE-Centre for Translational Biodiversity Genomics, Frankfurt, Germany
- Institute of Pharmaceutical Biology, Faculty of Biochemistry, Chemistry and Pharmacy, Goethe University Frankfurt, Frankfurt, Germany
| | - Susanne Schiffmann
- LOEWE-Centre for Translational Biodiversity Genomics, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt, Germany
| | - Robert Fürst
- LOEWE-Centre for Translational Biodiversity Genomics, Frankfurt, Germany
- Institute of Pharmaceutical Biology, Faculty of Biochemistry, Chemistry and Pharmacy, Goethe University Frankfurt, Frankfurt, Germany
| | - Thomas Timm
- Institute of Biochemistry, Justus Liebig University Giessen, Giessen, Germany
| | - Günter Lochnit
- Institute of Biochemistry, Justus Liebig University Giessen, Giessen, Germany
| | - Andreas Vilcinskas
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
- Institute for Insect Biotechnology, Justus Liebig University Giessen, Giessen, Germany
- LOEWE-Centre for Translational Biodiversity Genomics, Frankfurt, Germany
| | - Tim Lüddecke
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
- LOEWE-Centre for Translational Biodiversity Genomics, Frankfurt, Germany
| |
Collapse
|
11
|
Vanuopadath M, Rajan K, Alangode A, Nair SS, Nair BG. The Need for Next-Generation Antivenom for Snakebite Envenomation in India. Toxins (Basel) 2023; 15:510. [PMID: 37624267 PMCID: PMC10467155 DOI: 10.3390/toxins15080510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/05/2023] [Accepted: 07/11/2023] [Indexed: 08/26/2023] Open
Abstract
The limitations posed by currently available antivenoms have emphasized the need for alternative treatments to counteract snakebite envenomation. Even though exact epidemiological data are lacking, reports have indicated that most global snakebite deaths are reported in India. Among the many problems associated with snakebite envenomation, issues related to the availability of safer and more efficient antivenoms are of primary concern. Since India has the highest number of global snakebite deaths, efforts should be made to reduce the burden associated with snakebite envenoming. Alternative methods, including aptamers, camel antivenoms, phage display techniques for generating high-affinity antibodies and antibody fragments, small-molecule inhibitors, and natural products, are currently being investigated for their effectiveness. These alternative methods have shown promise in vitro, but their in vivo effectiveness should also be evaluated. In this review, the issues associated with Indian polyvalent antivenoms in neutralizing venom components from geographically distant species are discussed in detail. In a nutshell, this review gives an overview of the current drawbacks of using animal-derived antivenoms and several alternative strategies that are currently being widely explored.
Collapse
Affiliation(s)
| | | | | | | | - Bipin Gopalakrishnan Nair
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690 525, Kerala, India; (M.V.); (K.R.); (A.A.); (S.S.N.)
| |
Collapse
|
12
|
Castro-Amorim J, Oliveira A, Mukherjee AK, Ramos MJ, Fernandes PA. Unraveling the Reaction Mechanism of Russell's Viper Venom Factor X Activator: A Paradigm for the Reactivity of Zinc Metalloproteinases? J Chem Inf Model 2023; 63:4056-4069. [PMID: 37092784 PMCID: PMC10336966 DOI: 10.1021/acs.jcim.2c01156] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Indexed: 04/25/2023]
Abstract
Snake venom metalloproteinases (SVMPs) are important drug targets against snakebite envenoming, the neglected tropical disease with the highest mortality worldwide. Here, we focus on Russell's viper (Daboia russelii), one of the "big four" snakes of the Indian subcontinent that, together, are responsible for ca. 50,000 fatalities annually. The "Russell's viper venom factor X activator" (RVV-X), a highly toxic metalloproteinase, activates the blood coagulation factor X (FX), leading to the prey's abnormal blood clotting and death. Given its tremendous public health impact, the WHO recognized an urgent need to develop efficient, heat-stable, and affordable-for-all small-molecule inhibitors, for which a deep understanding of the mechanisms of action of snake's principal toxins is fundamental. In this study, we determine the catalytic mechanism of RVV-X by using a density functional theory/molecular mechanics (DFT:MM) methodology to calculate its free energy profile. The results showed that the catalytic process takes place via two steps. The first step involves a nucleophilic attack by an in situ generated hydroxide ion on the substrate carbonyl, yielding an activation barrier of 17.7 kcal·mol-1, while the second step corresponds to protonation of the peptide nitrogen and peptide bond cleavage with an energy barrier of 23.1 kcal·mol-1. Our study shows a unique role played by Zn2+ in catalysis by lowering the pKa of the Zn2+-bound water molecule, enough to permit the swift formation of the hydroxide nucleophile through barrierless deprotonation by the formally much less basic Glu140. Without the Zn2+ cofactor, this step would be rate-limiting.
Collapse
Affiliation(s)
- Juliana Castro-Amorim
- LAQV,
REQUIMTE, Departamento de Química e Bioquímica, Faculdade
de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, Porto 4169-007, Portugal
| | - Ana Oliveira
- LAQV,
REQUIMTE, Departamento de Química e Bioquímica, Faculdade
de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, Porto 4169-007, Portugal
| | - Ashis K. Mukherjee
- Institute
of Advanced Study in Science and Technology, Vigyan Path Garchuk, Paschim Boragaon, Guwahati 781035, Assam, India
| | - Maria J. Ramos
- LAQV,
REQUIMTE, Departamento de Química e Bioquímica, Faculdade
de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, Porto 4169-007, Portugal
| | - Pedro A. Fernandes
- LAQV,
REQUIMTE, Departamento de Química e Bioquímica, Faculdade
de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, Porto 4169-007, Portugal
| |
Collapse
|
13
|
Tan CH, Tan KY, Ng TS, Tan NH, Chong HP. De Novo Venom Gland Transcriptome Assembly and Characterization for Calloselasma rhodostoma (Kuhl, 1824), the Malayan Pit Viper from Malaysia: Unravelling Toxin Gene Diversity in a Medically Important Basal Crotaline. Toxins (Basel) 2023; 15:toxins15050315. [PMID: 37235350 DOI: 10.3390/toxins15050315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
In Southeast Asia, the Malayan Pit Viper (Calloselasma rhodostoma) is a venomous snake species of medical importance and bioprospecting potential. To unveil the diversity of its toxin genes, this study de novo assembled and analyzed the venom gland transcriptome of C. rhodostoma from Malaysia. The expression of toxin genes dominates the gland transcriptome by 53.78% of total transcript abundance (based on overall FPKM, Fragments Per Kilobase Million), in which 92 non-redundant transcripts belonging to 16 toxin families were identified. Snake venom metalloproteinase (SVMP, PI > PII > PIII) is the most dominant family (37.84% of all toxin FPKM), followed by phospholipase A2 (29.02%), bradykinin/angiotensin-converting enzyme inhibitor-C-type natriuretic peptide (16.30%), C-type lectin (CTL, 10.01%), snake venom serine protease (SVSP, 2.81%), L-amino acid oxidase (2.25%), and others (1.78%). The expressions of SVMP, CTL, and SVSP correlate with hemorrhagic, anti-platelet, and coagulopathic effects in envenoming. The SVMP metalloproteinase domains encode hemorrhagins (kistomin and rhodostoxin), while disintegrin (rhodostomin from P-II) acts by inhibiting platelet aggregation. CTL gene homologues uncovered include rhodocytin (platelet aggregators) and rhodocetin (platelet inhibitors), which contribute to thrombocytopenia and platelet dysfunction. The major SVSP is a thrombin-like enzyme (an ancrod homolog) responsible for defibrination in consumptive coagulopathy. The findings provide insight into the venom complexity of C. rhodostoma and the pathophysiology of envenoming.
Collapse
Affiliation(s)
- Choo Hock Tan
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Kae Yi Tan
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Tzu Shan Ng
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Nget Hong Tan
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Ho Phin Chong
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
14
|
Yee KT, Macrander J, Vasieva O, Rojnuckarin P. Exploring Toxin Genes of Myanmar Russell's Viper, Daboia siamensis, through De Novo Venom Gland Transcriptomics. Toxins (Basel) 2023; 15:toxins15050309. [PMID: 37235344 DOI: 10.3390/toxins15050309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/03/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
The Russell's viper (Daboia siamensis) is a medically important venomous snake in Myanmar. Next-generation sequencing (NGS) shows potential to investigate the venom complexity, giving deeper insights into snakebite pathogenesis and possible drug discoveries. mRNA from venom gland tissue was extracted and sequenced on the Illumina HiSeq platform and de novo assembled by Trinity. The candidate toxin genes were identified via the Venomix pipeline. Protein sequences of identified toxin candidates were compared with the previously described venom proteins using Clustal Omega to assess the positional homology among candidates. Candidate venom transcripts were classified into 23 toxin gene families including 53 unique full-length transcripts. C-type lectins (CTLs) were the most highly expressed, followed by Kunitz-type serine protease inhibitors, disintegrins and Bradykinin potentiating peptide/C-type natriuretic peptide (BPP-CNP) precursors. Phospholipase A2, snake venom serine proteases, metalloproteinases, vascular endothelial growth factors, L-amino acid oxidases and cysteine-rich secretory proteins were under-represented within the transcriptomes. Several isoforms of transcripts which had not been previously reported in this species were discovered and described. Myanmar Russell's viper venom glands displayed unique sex-specific transcriptome profiles which were correlated with clinical manifestation of envenoming. Our results show that NGS is a useful tool to comprehensively examine understudied venomous snakes.
Collapse
Affiliation(s)
- Khin Than Yee
- Department of Medical Research, Ministry of Health, Yangon 11191, Myanmar
| | - Jason Macrander
- Department of Biology, Florida Southern College, Lakeland, FL 33801, USA
| | - Olga Vasieva
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
- BioSynthetic Machines, Inc., Chicago, IL 60062, USA
| | - Ponlapat Rojnuckarin
- Excellence Center in Translational Hematology, Division of Hematology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
15
|
Warrell DA, Williams DJ. Clinical aspects of snakebite envenoming and its treatment in low-resource settings. Lancet 2023; 401:1382-1398. [PMID: 36931290 DOI: 10.1016/s0140-6736(23)00002-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/26/2022] [Accepted: 12/18/2022] [Indexed: 03/16/2023]
Abstract
There is increasing recognition of the public health importance of snakebite envenoming. Worldwide annual incidence is likely to be 5 million bites, with mortality exceeding 150 000 deaths, and the resulting physical and psychological morbidity leads to substantial social and economic repercussions. Prevention through community education by trained health workers is the most effective and economically viable strategy for reducing risk of bites and envenoming. Clinical challenges to effective treatment are most substantial in rural areas of low-resource settings, where snakebites are most common. Classic skills of history taking, physical examination, and use of affordable point-of-care tests should be followed by monitoring of evolving local and systemic envenoming. Despite the profusion of new ideas for interventions, hyperimmune equine or ovine plasma-derived antivenoms remain the only specific treatment for snakebite envenoming. The enormous interspecies and intraspecies complexity and diversity of snake venoms, revealed by modern venomics, demands a radical redesign of many current antivenoms.
Collapse
Affiliation(s)
- David A Warrell
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK; Experimental Medicine Division, John Radcliffe Hospital, Headington, UK.
| | - David J Williams
- Regulation and Prequalification Department, World Health Organization, Geneva, Switzerland
| |
Collapse
|
16
|
Lim ASS, Tan KY, Quraishi NH, Farooque S, Khoso ZA, Ratanabanangkoon K, Tan CH. Proteomic Analysis, Immuno-Specificity and Neutralization Efficacy of Pakistani Viper Antivenom (PVAV), a Bivalent Anti-Viperid Antivenom Produced in Pakistan. Toxins (Basel) 2023; 15:toxins15040265. [PMID: 37104203 PMCID: PMC10145215 DOI: 10.3390/toxins15040265] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 03/24/2023] [Indexed: 04/05/2023] Open
Abstract
Snakebite envenoming is a neglected tropical disease prevalent in South Asia. In Pakistan, antivenoms are commonly imported from India despite the controversy over their effectiveness. To solve the problem, the locals have developed the Pakistani Viper Antivenom (PVAV), raised against Sochurek’s Saw-scaled Viper (Echis carinatus sochureki) and Russell’s Viper (Daboia russelii) of Pakistani origin. This study is set to evaluate the composition purity, immuno-specificity and neutralization efficacy of PVAV. Chromatographic and electrophoretic profiling coupled with proteomic mass spectrometry analysis showed PVAV containing high-purity immunoglobulin G with minimum impurities, notably the absence of serum albumin. PVAV is highly immuno-specific toward the venoms of the two vipers and Echis carinatus multisquamatus, which are indigenous to Pakistan. Its immunoreactivity, however, reduces toward the venoms of other Echis carinatus subspecies and D. russelii from South India as well as Sri Lanka. Meanwhile, its non-specific binding activities for the venoms of Hump-nosed Pit Vipers, Indian Cobras and kraits were extremely low. In the neutralization study, PVAV effectively mitigated the hemotoxic and lethal effects of the Pakistani viper venoms, tested in vitro and in vivo. Together, the findings suggest the potential utility of PVAV as a new domestic antivenom for the treatment of viperid envenoming in Pakistan.
Collapse
Affiliation(s)
- Andy Shing Seng Lim
- Venom Research and Toxicology Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Kae Yi Tan
- Protein and Interactomics Laboratory, Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Naeem H. Quraishi
- Snake Antivenom/Antirabies Serology Laboratory, Department of Community Medicine & Public Health Sciences, People’s University of Medical and Health Sciences for Women, Nawabshah 67450, Pakistan
| | - Saud Farooque
- Snake Antivenom/Antirabies Serology Laboratory, Department of Community Medicine & Public Health Sciences, People’s University of Medical and Health Sciences for Women, Nawabshah 67450, Pakistan
| | - Zahoor Ahmed Khoso
- Snake Antivenom/Antirabies Serology Laboratory, Department of Community Medicine & Public Health Sciences, People’s University of Medical and Health Sciences for Women, Nawabshah 67450, Pakistan
| | - Kavi Ratanabanangkoon
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 73170, Thailand
| | - Choo Hock Tan
- Venom Research and Toxicology Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
17
|
Senthilkumaran S, Patel K, Rajan E, Vijayakumar P, Miller SW, Rucavado A, Gilabadi S, Sonavane M, Richards NJ, Williams J, Williams HF, Trim SA, Thirumalaikolundusubramanian P, Gutiérrez JM, Vaiyapuri S. Peripheral Arterial Thrombosis following Russell's Viper Bites. TH OPEN 2023; 7:e168-e183. [PMID: 37333023 PMCID: PMC10276757 DOI: 10.1055/s-0043-1769625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/05/2023] [Indexed: 06/20/2023] Open
Abstract
Envenomings by Russell's viper ( Daboia russelii ), a species of high medical importance in India and other Asian countries, commonly result in hemorrhage, coagulopathies, necrosis, and acute kidney injury. Although bleeding complications are frequently reported following viper envenomings, thrombotic events occur rarely (reported only in coronary and carotid arteries) with serious consequences. For the first time, we report three serious cases of peripheral arterial thrombosis following Russell's viper bites and their diagnostic, clinical management, and mechanistic insights. These patients developed occlusive thrombi in their peripheral arteries and symptoms despite antivenom treatment. In addition to clinical features, computed tomography angiography was used to diagnose arterial thrombosis and ascertain its precise locations. They were treated using thrombectomy or amputation in one case that presented with gangrenous digits. Mechanistic insights into the pathology through investigations revealed the procoagulant actions of Russell's viper venom in standard clotting tests as well as in rotational thromboelastometry analysis. Notably, Russell's viper venom inhibited agonist-induced platelet activation. The procoagulant effects of Russell's viper venom were inhibited by a matrix metalloprotease inhibitor, marimastat, although a phospholipase A 2 inhibitor (varespladib) did not show any inhibitory effects. Russell's viper venom induced pulmonary thrombosis when injected intravenously in mice and thrombi in the microvasculature and affected skeletal muscle when administered locally. These data emphasize the significance of peripheral arterial thrombosis in snakebite victims and provide awareness, mechanisms, and robust strategies for clinicians to tackle this issue in patients.
Collapse
Affiliation(s)
| | - Ketan Patel
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | | | | | - Stephen W. Miller
- The Poison Control Center, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States
| | - Alexandra Rucavado
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Soheil Gilabadi
- School of Pharmacy, University of Reading, Reading, United Kingdom
| | - Medha Sonavane
- School of Pharmacy, University of Reading, Reading, United Kingdom
| | | | - Jarred Williams
- School of Pharmacy, University of Reading, Reading, United Kingdom
| | | | | | | | - José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | | |
Collapse
|
18
|
An Unnecessary Russell's Viper Bite on the Tongue Due to Live Snake Worship and Dangerous First Aid Emphasise the Urgent Need for Stringent Policies. Toxins (Basel) 2022; 14:toxins14120817. [PMID: 36548714 PMCID: PMC9787415 DOI: 10.3390/toxins14120817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/14/2022] [Accepted: 11/19/2022] [Indexed: 11/24/2022] Open
Abstract
India suffers the highest incidence of snakebite envenomation (SBE) in the world. Rural communities within India and other countries have long-held cultural beliefs surrounding snakes and SBE treatments, with snake statues present in numerous Hindu temples. While most cultural beliefs are well respected and do not affect anyone, some people worship live venomous snakes without any safety precautions. Moreover, they practice various inappropriate first aid and traditional treatments that exacerbate SBE-induced complications. We report an unusual case of SBE on the tongue of a patient who was bitten while worshipping Russell's viper following the advice of an astrologer based on the appearance of a snake in the patient's dream. Following the bite, the tongue was deeply incised by the priest as a first aid to mitigate SBE-induced complications. The patient suffered profuse bleeding and swelling of the tongue resulting in difficulties in intubating them. The patient regained consciousness after antivenom administration, intranasal ventilation, and blood removal from the mouth. The tongue underwent extensive surgery to restore movement and function. This report advises caution to those undertaking the extremely risky practice of worshipping live snakes and emphasises the urgent need to develop and enforce policies to mitigate such actions and educate rural communities.
Collapse
|
19
|
Senji Laxme RR, Khochare S, Attarde S, Kaur N, Jaikumar P, Shaikh NY, Aharoni R, Primor N, Hawlena D, Moran Y, Sunagar K. The Middle Eastern Cousin: Comparative Venomics of Daboia palaestinae and Daboia russelii. Toxins (Basel) 2022; 14:toxins14110725. [PMID: 36355975 PMCID: PMC9696752 DOI: 10.3390/toxins14110725] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Among the medically most important snakes in the world, the species belonging to the genus Daboia have been attributed to the highest number of human envenomings, deaths and disabilities. Given their significant clinical relevance, the venoms of Russell's vipers (D. russelii and D. siamensis) have been the primary focus of research. In contrast, the composition, activity, ecology and evolution of venom of its congener, the Palestine viper (D. palaestinae), have remained largely understudied. Therefore, to unravel the factors responsible for the enhanced medical relevance of D. russelii in comparison to D. palaestinae, we comparatively evaluated their venom proteomes, biochemical activities, and mortality and morbidity inflicting potentials. Furthermore, the synthesis and regulation of venom in snakes have also remained underinvestigated, and the relative contribution of each venom gland remains unclear. We address this knowledge gap by sequencing the tissue transcriptomes of both venom glands of D. palaestinae, and comparatively evaluating their contribution to the secreted venom concoction. Our findings highlight the disparity in the venom composition, function and toxicities of the two Daboia species. We also show that toxin production is not partitioned between the two venom glands of D. palaestinae.
Collapse
Affiliation(s)
- R. R. Senji Laxme
- Evolutionary Venomics Lab, Centre for Ecological Sciences, Indian Institute of Science, Bangalore 560012, India
| | - Suyog Khochare
- Evolutionary Venomics Lab, Centre for Ecological Sciences, Indian Institute of Science, Bangalore 560012, India
| | - Saurabh Attarde
- Evolutionary Venomics Lab, Centre for Ecological Sciences, Indian Institute of Science, Bangalore 560012, India
| | - Navneet Kaur
- Evolutionary Venomics Lab, Centre for Ecological Sciences, Indian Institute of Science, Bangalore 560012, India
| | - Priyanka Jaikumar
- Evolutionary Venomics Lab, Centre for Ecological Sciences, Indian Institute of Science, Bangalore 560012, India
| | - Naeem Yusuf Shaikh
- Evolutionary Venomics Lab, Centre for Ecological Sciences, Indian Institute of Science, Bangalore 560012, India
| | - Reuven Aharoni
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Naftali Primor
- Shulov Institute of Science, 10 Oppenheimer Street, Science Park, Rehovot 7670110, Israel
| | - Dror Hawlena
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Yehu Moran
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- Correspondence: (Y.M.); (K.S.)
| | - Kartik Sunagar
- Evolutionary Venomics Lab, Centre for Ecological Sciences, Indian Institute of Science, Bangalore 560012, India
- Correspondence: (Y.M.); (K.S.)
| |
Collapse
|
20
|
Wase N, Gutiérrez JM, Rucavado A, Fox JW. Longitudinal Metabolomics and Lipidomics Analyses Reveal Alterations Associated with Envenoming by Bothrops asper and Daboia russelii in an Experimental Murine Model. Toxins (Basel) 2022; 14:657. [PMID: 36287926 PMCID: PMC9610966 DOI: 10.3390/toxins14100657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 12/26/2023] Open
Abstract
Longitudinal metabolomics and lipidomics analyses were carried out on the blood plasma of mice injected intramuscularly with venoms of the viperid species Bothrops asper or Daboia russelii. Blood samples were collected 1, 3, 6, and 24 h after venom injection, and a control group of non-envenomed mice was included. Significant perturbations in metabolomics and lipidomics were observed at 1, 3, and 6 h, while values returned close to those of control mice by 24 h, hence reflecting a transient pattern of metabolic disturbance. Both venoms induced significant changes in amino acids, as well as in several purines and pyrimidines, and in some metabolites of the tricarboxylic acid cycle. KEGG analysis of metabolic pathways that showed those with the greatest change included aminoacyl tRNA synthesis and amino acid biosynthesis and metabolism pathways. With regard to lipid metabolism, there was an increase in triglycerides and some acyl carnitines and a concomitant drop in the levels of some phospholipids. In addition, envenomed mice had higher levels of cortisol, heme, and some oxidative stress markers. The overall pattern of metabolic changes in envenomed mice bears similarities with the patterns described in several traumatic injuries, thus underscoring a metabolic response/adaptation to the injurious action of the venoms.
Collapse
Affiliation(s)
- Nishikant Wase
- School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501, Costa Rica
| | - Alexandra Rucavado
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501, Costa Rica
| | - Jay W. Fox
- School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
21
|
Favourable climatic niche in low elevations outside the flood zone characterises the distribution pattern of venomous snakes in Bangladesh. JOURNAL OF TROPICAL ECOLOGY 2022. [DOI: 10.1017/s0266467422000359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Abstract
Snakes are sensitive to both environmental and climate gradients. To design conservation plans, a scientific understanding of snake habitats in light of environmental and climatic variables is an essential prerequisite. For venomous snakes, denoting favourable habitats should also be relevant for snakebite management. We have considered 18 spatial variables to portray the range of terrestrial venomous snake distribution in Bangladesh. Our results indicate that the distribution of 29 studied venomous snakes in this country is primarily driven by climatic and environmental variables. We found that especially low elevation and flood risk constrain the distribution of those terrestrial snakes, i.e. regular floods in central Bangladesh push venomous snakes towards the edges of the country. Moreover, none of these species occupies the whole of its anticipated climatically favourable area. Projections into the future indicated that 11 studied species, Amphiesma platyceps, Boiga siamensis, Chrysopelea ornata, Pseudoxenodon macrops, Rhabdophis himalayanus, Rhabdophis subminiatus, Bungarus lividus, Ophiophagus hannah, Daboia russelii, Ovophis monticola and Trimeresurus popeiorum will lose their entire climatically suitable area within the country. Therefore, we suggest establishing more protected areas in the hilly ecosystems in the eastern part and in the mangrove forests in the south-western corner of Bangladesh to mitigate future extinction risks, such as climate change, sea-level rise and increase in flood severity. Conserving village forests and croplands, which are subject to rapid change, will also need to be addressed equally, as these are inhabited by almost one-third of the studied species. The occurrence of the cobras and kraits in village forests and cropland dominant habitats demands more attention to minimise snakebite related mortality and morbidity.
Collapse
|
22
|
Tan KY, Shamsuddin NN, Tan CH. Sharp-nosed Pit Viper (Deinagkistrodon acutus) from Taiwan and China: A comparative study on venom toxicity and neutralization by two specific antivenoms across the Strait. Acta Trop 2022; 232:106495. [PMID: 35504314 DOI: 10.1016/j.actatropica.2022.106495] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/25/2022] [Accepted: 04/29/2022] [Indexed: 11/01/2022]
Abstract
In East Asia, the Sharp-nosed Pit Viper (Deinagkistrodon acutus) is a medically important venomous snake in Taiwan and China, two geographical areas long separated by the Taiwan Strait. Yet, snake venom variation is little known between specimens found across the Strait. This study thus investigated the intra-species variation of D. acutus venoms from Taiwan (Da-Taiwan) and China (Da-China) in their profiles of gel electrophoresis, toxicity, immunoreactivity and neutralization effect by antivenom. Da-China venom exhibited higher procoagulant, hemorrhagic and lethal activities than Da-Taiwan venom, presumably attributed to the higher abundance of moderate-to-high molecular weight toxins (procoagulants and hemorrhagins) in the venom. The mono-specific antivenoms produced in Taiwan (DaMAV-Taiwan) and China (DaMAV-China) were immunoreactive toward both venoms, and were able to neutralize the venom toxicity to different extents. DaMAV-Taiwan was more efficacious in neutralizing the venom procoagulant and lethal effects, while DaMAV-China was more potent against hemorrhagic effect. The discrepancy in efficacy between the two antivenoms could be due to varying proportions of neutralizing antibodies in the respective products, influenced by techniques of antibody raising and purification. Further study is warranted to elucidate variation in the proteome and antigenicity of D. acutus venom between snakes from Taiwan and China.
Collapse
|
23
|
Tan CH, Tan KY, Wong KY, Tan NH, Chong HP. Equatorial Spitting Cobra ( Naja sumatrana) from Malaysia (Negeri Sembilan and Penang), Southern Thailand, and Sumatra: Comparative Venom Proteomics, Immunoreactivity and Cross-Neutralization by Antivenom. Toxins (Basel) 2022; 14:toxins14080522. [PMID: 36006183 PMCID: PMC9414237 DOI: 10.3390/toxins14080522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 11/23/2022] Open
Abstract
The Equatorial Spitting Cobra (Naja sumatrana) is a medically important venomous snake species in Southeast Asia. Its wide geographical distribution implies potential intra-specific venom variation, while there is no species-specific antivenom available to treat its envenoming. Applying a protein-decomplexing proteomic approach, the study showed that three-finger toxins (3FTX), followed by phospholipases A2 (PLA2), were the major proteins well-conserved across N. sumatrana venoms of different locales. Variations were noted in the subtypes and relative abundances of venom proteins. Of note, alpha-neurotoxins (belonging to 3FTX) are the least in the Penang specimen (Ns-PG, 5.41% of total venom proteins), compared with geographical specimens from Negeri Sembilan (Ns-NS, 14.84%), southern Thailand (Ns-TH, 16.05%) and Sumatra (Ns-SU, 10.81%). The alpha-neurotoxin abundance, in general, correlates with the venom’s lethal potency. The Thai Naja kaouthia Monovalent Antivenom (NkMAV) was found to be immunoreactive toward the N. sumatrana venoms and is capable of cross-neutralizing N. sumatrana venom lethality to varying degrees (potency = 0.49–0.92 mg/mL, interpreted as the amount of venom completely neutralized per milliliter of antivenom). The potency was lowest against NS-SU venom, implying variable antigenicity of its lethal alpha-neurotoxins. Together, the findings suggest the para-specific and geographical utility of NkMAV as treatment for N. sumatrana envenoming in Southeast Asia.
Collapse
Affiliation(s)
- Choo Hock Tan
- Venom Research and Toxicology Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (K.Y.W.); (H.P.C.)
- Correspondence: or
| | - Kae Yi Tan
- Protein and Interactomics Laboratory, Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (K.Y.T.); (N.H.T.)
| | - Kin Ying Wong
- Venom Research and Toxicology Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (K.Y.W.); (H.P.C.)
| | - Nget Hong Tan
- Protein and Interactomics Laboratory, Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (K.Y.T.); (N.H.T.)
| | - Ho Phin Chong
- Venom Research and Toxicology Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (K.Y.W.); (H.P.C.)
| |
Collapse
|
24
|
Oliveira AL, Viegas MF, da Silva SL, Soares AM, Ramos MJ, Fernandes PA. The chemistry of snake venom and its medicinal potential. Nat Rev Chem 2022; 6:451-469. [PMID: 35702592 PMCID: PMC9185726 DOI: 10.1038/s41570-022-00393-7] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2022] [Indexed: 12/15/2022]
Abstract
The fascination and fear of snakes dates back to time immemorial, with the first scientific treatise on snakebite envenoming, the Brooklyn Medical Papyrus, dating from ancient Egypt. Owing to their lethality, snakes have often been associated with images of perfidy, treachery and death. However, snakes did not always have such negative connotations. The curative capacity of venom has been known since antiquity, also making the snake a symbol of pharmacy and medicine. Today, there is renewed interest in pursuing snake-venom-based therapies. This Review focuses on the chemistry of snake venom and the potential for venom to be exploited for medicinal purposes in the development of drugs. The mixture of toxins that constitute snake venom is examined, focusing on the molecular structure, chemical reactivity and target recognition of the most bioactive toxins, from which bioactive drugs might be developed. The design and working mechanisms of snake-venom-derived drugs are illustrated, and the strategies by which toxins are transformed into therapeutics are analysed. Finally, the challenges in realizing the immense curative potential of snake venom are discussed, and chemical strategies by which a plethora of new drugs could be derived from snake venom are proposed.
Collapse
Affiliation(s)
- Ana L. Oliveira
- Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
- LAQV/Requimte, University of Porto, Porto, Portugal
| | - Matilde F. Viegas
- Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
- LAQV/Requimte, University of Porto, Porto, Portugal
| | - Saulo L. da Silva
- Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
- LAQV/Requimte, University of Porto, Porto, Portugal
| | - Andreimar M. Soares
- Biotechnology Laboratory for Proteins and Bioactive Compounds from the Western Amazon, Oswaldo Cruz Foundation, National Institute of Epidemiology in the Western Amazon (INCT-EpiAmO), Porto Velho, Brazil
- Sao Lucas Universitary Center (UniSL), Porto Velho, Brazil
| | - Maria J. Ramos
- Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
- LAQV/Requimte, University of Porto, Porto, Portugal
| | - Pedro A. Fernandes
- Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
- LAQV/Requimte, University of Porto, Porto, Portugal
| |
Collapse
|
25
|
Bhargava S, Kumari K, Sarin RK, Singh R. Comparative Snake Venom Analysis for Facilitating Wildlife Forensics: A Pilot Study. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2022; 2022:8644993. [PMID: 35694612 PMCID: PMC9187493 DOI: 10.1155/2022/8644993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/03/2022] [Indexed: 06/15/2023]
Abstract
Confirm and authentic identification of species is required for the implementation of wildlife laws in cases of illegal trafficking of snake venoms. Illegally trafficked snake venom might be misidentified with other drugs of abuse, and sometimes, the species of venom-yielding snake cannot be verified. Snake venoms from medically important snake species, Naja naja and Daboia russelii, were procured from Irula Snake Catcher's Society, Tamil Nadu, India. Comparative analyses of both venoms were carried out using SDS-PAGE, LC-MS/MS, ICP-MS, and mtDNA analysis. The protein concentration of Naja naja and Daboia russelii venoms was 76.1% and 83.9%, respectively. SDS analysis showed a distinct banding pattern of both venoms. LC-MS/MS results showed proteins and toxins from 12 to 14 protein families in Naja naja and Daboia russelii venoms. Elemental analysis using ICP-MS showed a different profile of some elements in both venoms. mtDNA analysis of venoms using universal primers against Cyt b gene showed homology with sequence of Naja naja and Daboia russelii genes. The study proposed a template of various conventional and advanced molecular and instrumental techniques with their pros and cons. The template can be used by forensic science laboratories for detection, screening, and confirmatory analysis of suspected venoms of snakes. Clubbing of various techniques can be used to confirm the identification of species of snake from which the alleged venom was milked. The results can be helpful in framing charge-sheets against accused of illegal venom trafficking and can also be used to verify the purity and quality of commercially available snake venoms.
Collapse
Affiliation(s)
- Saurabh Bhargava
- Department of Forensic Science, Maharshi Dayanand University, Rohtak 124001, Haryana, India
- School of Advanced Sciences & Languages, VIT Bhopal University, Bhopal, Madhya Pradesh, India
| | - Kiran Kumari
- Department of Forensic Science, Maharshi Dayanand University, Rohtak 124001, Haryana, India
- Forensic Science Department, Lovely Professional University, Phagwara (144001), Punjab, India
| | | | - Rajvinder Singh
- Department of Forensic Science, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| |
Collapse
|
26
|
Interpopulational variation and ontogenetic shift in the venom composition of Lataste's viper (Vipera latastei, Boscá 1878) from northern Portugal. J Proteomics 2022; 263:104613. [PMID: 35589061 DOI: 10.1016/j.jprot.2022.104613] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 11/22/2022]
Abstract
Lataste's viper (Vipera latastei) is a venomous European viper endemic to the Iberian Peninsula, recognised as medically important by the World Health Organization. To date, no comprehensive characterisation of this species' venom has been reported. Here, we analysed the venoms of juvenile and adult specimens of V. latastei from two environmentally different populations from northern Portugal. Using bottom-up venomics, we produced six venom proteomes (three per population) from vipers belonging to both age classes (i.e., two juveniles and four adults), and RP-HPLC profiles of 54 venoms collected from wild specimens. Venoms from juveniles and adults differed in their chromatographic profiles and relative abundances of their toxins, suggesting the occurrence of ontogenetic changes in venom composition. Specifically, snake venom metalloproteinase (SVMP) was the most abundant toxin family in juvenile venoms, while snake venom serine proteinases (SVSPs), phospholipases A2 (PLA2s), and C-type lectin-like (CTLs) proteins were the main toxins comprising adult venoms. The RP-HPLC venom profiles were found to vary significantly between the two sampled localities, indicating geographic variability. Furthermore, the presence/absence of certain peaks in the venom chromatographic profiles appeared to be significantly correlated also to factors like body size and sex of the vipers. Our findings show that V. latastei venom is a variable phenotype. The intraspecific differences we detected in its composition likely mirror changes in the feeding ecology of this species, taking place during different life stages and under different environmental pressures. SIGNIFICANCE: Lataste's viper (Vipera latastei) is a medically important viper endemic to the Iberian Peninsula, inhabiting different habitats and undergoing a marked ontogenetic dietary shift. In the current study, we report the first proteomic analysis of V. latastei venom from two environmentally different localities in northern Portugal. Our bottom-up venomic analyses show that snake venom serine proteinases (SVSPs), phospholipases A2 (PLA2s), and C-type lectin-like (CTLs) proteins are the major components of adult V. latastei venom. The comparative analysis of young and adult venoms suggests the occurrence of ontogenetic shift in toxin abundances, with snake venom metalloproteinases (SVMPs) being the predominant toxins in juvenile venoms. Moreover, geographic venom variation between the two studied populations is also detected, with our statistical analyses suggesting that factors like body size and sex of the vipers are possibly at play in its determination. Our work represents the first assessment of the composition of V. latastei venom, and the first step towards a better understanding of the drivers behind its variability.
Collapse
|
27
|
Rao WQ, Kalogeropoulos K, Allentoft ME, Gopalakrishnan S, Zhao WN, Workman CT, Knudsen C, Jiménez-Mena B, Seneci L, Mousavi-Derazmahalleh M, Jenkins TP, Rivera-de-Torre E, Liu SQ, Laustsen AH. The rise of genomics in snake venom research: recent advances and future perspectives. Gigascience 2022; 11:giac024. [PMID: 35365832 PMCID: PMC8975721 DOI: 10.1093/gigascience/giac024] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/12/2022] [Accepted: 02/13/2022] [Indexed: 12/12/2022] Open
Abstract
Snake venoms represent a danger to human health, but also a gold mine of bioactive proteins that can be harnessed for drug discovery purposes. The evolution of snakes and their venom has been studied for decades, particularly via traditional morphological and basic genetic methods alongside venom proteomics. However, while the field of genomics has matured rapidly over the past 2 decades, owing to the development of next-generation sequencing technologies, snake genomics remains in its infancy. Here, we provide an overview of the state of the art in snake genomics and discuss its potential implications for studying venom evolution and toxinology. On the basis of current knowledge, gene duplication and positive selection are key mechanisms in the neofunctionalization of snake venom proteins. This makes snake venoms important evolutionary drivers that explain the remarkable venom diversification and adaptive variation observed in these reptiles. Gene duplication and neofunctionalization have also generated a large number of repeat sequences in snake genomes that pose a significant challenge to DNA sequencing, resulting in the need for substantial computational resources and longer sequencing read length for high-quality genome assembly. Fortunately, owing to constantly improving sequencing technologies and computational tools, we are now able to explore the molecular mechanisms of snake venom evolution in unprecedented detail. Such novel insights have the potential to affect the design and development of antivenoms and possibly other drugs, as well as provide new fundamental knowledge on snake biology and evolution.
Collapse
Affiliation(s)
- Wei-qiao Rao
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 224, 2800 Kongens Lyngby, Denmark
- Department of Mass Spectrometry, Beijing Genomics Institute-Research, 518083, Shenzhen, China
| | - Konstantinos Kalogeropoulos
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 224, 2800 Kongens Lyngby, Denmark
| | - Morten E Allentoft
- Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Kent Street, 6102, Bentley Perth, Australia
- Globe Institute, University of Copenhagen, Øster Voldgade 5, 1350, Copenhagen, Denmark
| | - Shyam Gopalakrishnan
- Globe Institute, University of Copenhagen, Øster Voldgade 5, 1350, Copenhagen, Denmark
| | - Wei-ning Zhao
- Department of Mass Spectrometry, Beijing Genomics Institute-Research, 518083, Shenzhen, China
| | - Christopher T Workman
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 224, 2800 Kongens Lyngby, Denmark
| | - Cecilie Knudsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 224, 2800 Kongens Lyngby, Denmark
| | - Belén Jiménez-Mena
- DTU Aqua, Technical University of Denmark, Vejlsøvej 39, 8600, Silkeborg, Denmark
| | - Lorenzo Seneci
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 224, 2800 Kongens Lyngby, Denmark
| | - Mahsa Mousavi-Derazmahalleh
- Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Kent Street, 6102, Bentley Perth, Australia
| | - Timothy P Jenkins
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 224, 2800 Kongens Lyngby, Denmark
| | - Esperanza Rivera-de-Torre
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 224, 2800 Kongens Lyngby, Denmark
| | - Si-qi Liu
- Department of Mass Spectrometry, Beijing Genomics Institute-Research, 518083, Shenzhen, China
| | - Andreas H Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 224, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
28
|
Snake Venomics: Fundamentals, Recent Updates, and a Look to the Next Decade. Toxins (Basel) 2022; 14:toxins14040247. [PMID: 35448856 PMCID: PMC9028316 DOI: 10.3390/toxins14040247] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 01/11/2023] Open
Abstract
Venomic research, powered by techniques adapted from proteomics, transcriptomics, and genomics, seeks to unravel the diversity and complexity of venom through which knowledge can be applied in the treatment of envenoming, biodiscovery, and conservation. Snake venom proteomics is most extensively studied, but the methods varied widely, creating a massive amount of information which complicates data comparison and interpretation. Advancement in mass spectrometry technology, accompanied by growing databases and sophisticated bioinformatic tools, has overcome earlier limitations of protein identification. The progress, however, remains challenged by limited accessibility to samples, non-standardized quantitative methods, and biased interpretation of -omic data. Next-generation sequencing (NGS) technologies enable high-throughput venom-gland transcriptomics and genomics, complementing venom proteomics by providing deeper insights into the structural diversity, differential expression, regulation and functional interaction of the toxin genes. Venomic tissue sampling is, however, difficult due to strict regulations on wildlife use and transfer of biological materials in some countries. Limited resources for techniques and funding are among other pertinent issues that impede the progress of venomics, particularly in less developed regions and for neglected species. Genuine collaboration between international researchers, due recognition of regional experts by global organizations (e.g., WHO), and improved distribution of research support, should be embraced.
Collapse
|
29
|
Silva A, Scorgie FE, Lincz LF, Maduwage K, Siribaddana S, Isbister GK. Indian Polyvalent Antivenom Accelerates Recovery From Venom-Induced Consumption Coagulopathy (VICC) in Sri Lankan Russell’s Viper (Daboia russelii) Envenoming. Front Med (Lausanne) 2022; 9:852651. [PMID: 35321467 PMCID: PMC8934852 DOI: 10.3389/fmed.2022.852651] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/15/2022] [Indexed: 11/13/2022] Open
Abstract
Background Venom-induced consumption coagulopathy (VICC) is an important clinical consequence of Russell’s viper (Daboia russelii) envenoming. There is limited evidence for antivenom effectiveness in resolving VICC. We aimed to compare the recovery of VICC in patients who received and did not receive antivenom following Russell’s viper envenoming. Patients and Methods This was a non-randomized observational study comparing patients with VICC from Russell’s viper envenoming given antivenom for systemic envenoming and those not given antivenom. Antivenom administration was decided by the treating physicians. We included 44 patients with confirmed Russell’s viper bites with one or more International Normalized Ratio (INR) value ≥ 1.5 (VICC). We compared five patients who did not receive antivenom with 39 patients who did receive antivenom. The primary outcome was the proportion of patients with an INR < 1.5 by 48 h post-bite. Results The antivenom group had higher peak serum venom concentrations [median (IQR) = 272 (96–1,076) ng/mL versus 21 (8–58) ng/mL] and more severe VICC compared to the no antivenom group. Twenty seven of 39 patients (69%) in the antivenom group had an INR < 1.5 at 48 h post-bite compared to none of the five patients (0%) in the no antivenom group (absolute difference: 69%; 95%CI: 13 to 83%; p = 0.006; Fisher’s exact test). The fibrinogen recovered in 32 of 39 patients (82%) in the antivenom group compared to one of five patients (20%) in the no antivenom group (absolute difference 62%; 95% CI: 28 to 95%; p = 0.001; Fisher’s exact test). Both INR and fibrinogen were significantly improved between 24 and 48 h post-bite in the antivenom group compared to the no antivenom group. Conclusion Antivenom accelerated the recovery of VICC in patients with Russell’s viper envenoming, compared to no recovery in a smaller group of patients with milder VICC not receiving antivenom. This supports the efficacy of antivenom in patients with VICC.
Collapse
Affiliation(s)
- Anjana Silva
- Department of Parasitology, Faculty of Medicine and Allied Sciences, Rajarata University of Sri Lanka, Saliyapura, Sri Lanka
- Monash Venom Group, Department of Pharmacology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
- South Asian Clinical Toxicology Research Collaboration (SACTRC), Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| | - Fiona E. Scorgie
- Hunter Haematology Research Group, Calvary Mater Newcastle, Newcastle, NSW, Australia
| | - Lisa F. Lincz
- Hunter Haematology Research Group, Calvary Mater Newcastle, Newcastle, NSW, Australia
| | - Kalana Maduwage
- Department of Biochemistry, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| | - Sisira Siribaddana
- Department of Medicine, Faculty of Medicine and Allied Sciences, Rajarata University of Sri Lanka, Saliyapura, Sri Lanka
| | - Geoffrey K. Isbister
- South Asian Clinical Toxicology Research Collaboration (SACTRC), Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
- Clinical Toxicology Research Group, The University of Newcastle, Newcastle, NSW, Australia
- *Correspondence: Geoffrey K. Isbister,
| |
Collapse
|
30
|
Zdenek CN, Chowdhury A, Haw GYH, Violette A, Fourmy R, Christ T, Vonk FJ, Fry BG. Taxon-selective venom variation in adult and neonate Daboia russelii (Russell's Viper), and antivenom efficacy. Toxicon 2022; 205:11-19. [PMID: 34752826 DOI: 10.1016/j.toxicon.2021.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/16/2021] [Accepted: 11/03/2021] [Indexed: 10/19/2022]
Abstract
Major variations in venom composition can occur between juvenile and adult venomous snakes. However, due to logistical constraints, antivenoms are produced using adult venoms in immunising mixtures, possibly resulting in limited neutralisation of juvenile snake venoms. Daboia russelii is one of the leading causes of snakebite death across South Asia. Its venom is potently procoagulant, causing stroke in prey animals but causing in humans consumptive coagulopathy-a net anticoagulant state-and sometimes death resulting from hemorrhage. In this in vitro study, we compared the venom activity of-and antivenom efficacy against-six 2-week-old D. russelii relative to that of their parents. Using a coagulation analyser, we quantified the relative coagulotoxicity of these venoms in human, avian, and amphibian plasma. The overall potency on human plasma was similar across all adult and neonate venoms, and SII (Serum Institute of India) antivenom was equipotent in neutralising these coagulotoxic effects. In addition, all venoms were also similar in their action upon avian plasma. In contrast, the neonate venoms were more potent on amphibian plasma, suggesting amphibians make up a larger proportion of neonate diet than adult diet. A similar venom potency in human and avian plasmas but varying selectivity for amphibian plasma suggests ontogenetic differences in toxin isoforms within the factor X or factor V activating classes, thereby providing a testable hypothesis for future transcriptomics work. By providing insights into the functional venom differences between adult and neonate D. russelii venoms, we hope to inform clinical treatment of patients envenomated by this deadly species and to shed new light on the natural history of these extremely medically important snakes.
Collapse
Affiliation(s)
- Christina N Zdenek
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, Qld, 4072, Australia
| | - Abhinandan Chowdhury
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, Qld, 4072, Australia
| | - Grace Y H Haw
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, Qld, 4072, Australia
| | - Aude Violette
- Alphabiotoxine Laboratory Sprl, Barberie 15, 7911, Montroeul-au-bois, Belgium
| | - Rudy Fourmy
- Alphabiotoxine Laboratory Sprl, Barberie 15, 7911, Montroeul-au-bois, Belgium
| | | | - Freek J Vonk
- Naturalis Biodiversity Center, Leiden, the Netherlands; Division of BioAnalytical Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081, HV, Amsterdam, the Netherlands.
| | - Bryan G Fry
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, Qld, 4072, Australia.
| |
Collapse
|
31
|
Chakkinga Thodi R, Ibrahim JM, Nair AS, Thacheril Sukumaran S. Exploring the potent inhibitor β-stigmasterol from Pittosporum dasycaulon Miq. leaves against snake venom phospholipase A2 protein through in vitro and molecular dynamics behavior approach. TOXIN REV 2022. [DOI: 10.1080/15569543.2021.2021946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | - Junaida M. Ibrahim
- Department of Computational Biology and Bioinformatics, University of Kerala, Kariavattom, India
| | - Achuthsankar S. Nair
- Department of Computational Biology and Bioinformatics, University of Kerala, Kariavattom, India
| | | |
Collapse
|
32
|
op den Brouw B, Coimbra FCP, Casewell NR, Ali SA, Vonk FJ, Fry BG. A Genus-Wide Bioactivity Analysis of Daboia (Viperinae: Viperidae) Viper Venoms Reveals Widespread Variation in Haemotoxic Properties. Int J Mol Sci 2021; 22:13486. [PMID: 34948283 PMCID: PMC8706385 DOI: 10.3390/ijms222413486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 01/03/2023] Open
Abstract
The snake genus Daboia (Viperidae: Viperinae; Oppel, 1811) contains five species: D. deserti, D. mauritanica, and D. palaestinae, found in Afro-Arabia, and the Russell's vipers D. russelii and D. siamensis, found in Asia. Russell's vipers are responsible for a major proportion of the medically important snakebites that occur in the regions they inhabit, and their venoms are notorious for their coagulopathic effects. While widely documented, the extent of venom variation within the Russell's vipers is poorly characterised, as is the venom activity of other species within the genus. In this study we investigated variation in the haemotoxic activity of Daboia using twelve venoms from all five species, including multiple variants of D. russelii, D. siamensis, and D. palaestinae. We tested the venoms on human plasma using thromboelastography, dose-response coagulometry analyses, and calibrated automated thrombography, and on human fibrinogen by thromboelastography and fibrinogen gels. We assessed activation of blood factors X and prothrombin by the venoms using fluorometry. Variation in venom activity was evident in all experiments. The Asian species D. russelii and D. siamensis and the African species D. mauritanica possessed procoagulant venom, while D. deserti and D. palaestinae were net-anticoagulant. Of the Russell's vipers, the venom of D. siamensis from Myanmar was most toxic and D. russelli of Sri Lanka the least. Activation of both factor X and prothrombin was evident by all venoms, though at differential levels. Fibrinogenolytic activity varied extensively throughout the genus and followed no phylogenetic trends. This venom variability underpins one of the many challenges facing treatment of Daboia snakebite envenoming. Comprehensive analyses of available antivenoms in neutralising these variable venom activities are therefore of utmost importance.
Collapse
Affiliation(s)
- Bianca op den Brouw
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, St. Lucia 4072, Australia;
| | - Francisco C. P. Coimbra
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, St. Lucia 4072, Australia;
| | - Nicholas R. Casewell
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK;
| | - Syed Abid Ali
- Third World Center for Science and Technology, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi 75270, Pakistan;
| | - Freek J. Vonk
- Naturalis Biodiversity Center, 2333 CR Leiden, The Netherlands;
- Division of BioAnalytical Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Bryan G. Fry
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, St. Lucia 4072, Australia;
| |
Collapse
|
33
|
Senthilkumaran S, Patel K, Salim A, Vijayakumar P, Williams HF, Vaiyapuri R, Savania R, Elangovan N, Thirumalaikolundusubramanian P, Baksh MF, Vaiyapuri S. Neutrophil Gelatinase-Associated Lipocalin Acts as a Robust Early Diagnostic Marker for Renal Replacement Therapy in Patients with Russell's Viper Bite-Induced Acute Kidney Injuries. Toxins (Basel) 2021; 13:797. [PMID: 34822581 PMCID: PMC8620021 DOI: 10.3390/toxins13110797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/07/2021] [Accepted: 11/10/2021] [Indexed: 12/14/2022] Open
Abstract
Snakebite-induced acute kidney injury (AKI) is frequently observed in patients following bites from vipers such as Russell's viper (Daboia russelii) in India. Currently, the levels of serum creatinine are mainly used as a marker to determine the necessity for renal replacement therapy (RRT) (haemodialysis) in severe cases of AKI. However, it takes up to 48 h to ascertain a distinct change in creatinine levels compared to its baseline level upon admission. The time lost between admission and the 48 h timepoint significantly affects the clinical management of snakebite victims. Moreover, early diagnosis of AKI and decision on the necessity for RRT in snakebite victims is critical in saving lives, reducing long-term complications, and minimising treatment costs arising from expensive haemodialysis. Neutrophil gelatinase-associated lipocalin (NGAL) has been recently studied as a robust early marker for AKI in non-snakebite patients. However, its suitability for clinical use in snakebite victims has not been rigorously established. Here, we demonstrate the clinical significance of plasma NGAL as a robust marker for RRT following AKI using a large cohort (309) of Russell's viper victims without any pre-existing health conditions. NGAL levels upon admission are positively correlated with creatinine levels at 48 h in different stages of AKI. Overall, NGAL acts as a robust early marker to ascertain the need for RRT following Russell's viper bites. The quantification of NGAL can be recommended as a routine test in hospitals that treat snakebites to decide on RRT at early time points instead of waiting for 48 h to confirm the increase in creatinine levels. The diagnostic use of NGAL in Russell's viper victims with pre-existing comorbidities and for other vipers should be evaluated in future studies.
Collapse
Affiliation(s)
- Subramanian Senthilkumaran
- Department of Biotechnology, School of Biosciences, Periyar University, Salem 636011, Tamil Nadu, India; (S.S.); (N.E.)
- Emergency Department, Manian Medical Centre, Erode 638001, Tamil Nadu, India
| | - Ketan Patel
- School of Biological Sciences, University of Reading, Reading RG6 6UB, UK;
| | - Anika Salim
- School of Pharmacy, University of Reading, Reading RG6 6UB, UK; (A.S.); (P.V.); (R.S.)
| | - Pradeep Vijayakumar
- School of Pharmacy, University of Reading, Reading RG6 6UB, UK; (A.S.); (P.V.); (R.S.)
| | - Harry F. Williams
- Research and Development Department, Toxiven Biotech Private Limited, Coimbatore 641042, Tamil Nadu, India; (H.F.W.); (R.V.)
| | - Rajendran Vaiyapuri
- Research and Development Department, Toxiven Biotech Private Limited, Coimbatore 641042, Tamil Nadu, India; (H.F.W.); (R.V.)
| | - Ravi Savania
- School of Pharmacy, University of Reading, Reading RG6 6UB, UK; (A.S.); (P.V.); (R.S.)
| | - Namasivayam Elangovan
- Department of Biotechnology, School of Biosciences, Periyar University, Salem 636011, Tamil Nadu, India; (S.S.); (N.E.)
| | | | - M. Fazil Baksh
- Department of Mathematics and Statistics, University of Reading, Reading RG6 6UR, UK;
| | - Sakthivel Vaiyapuri
- School of Pharmacy, University of Reading, Reading RG6 6UB, UK; (A.S.); (P.V.); (R.S.)
| |
Collapse
|
34
|
Calvete JJ, Pla D, Els J, Carranza S, Damm M, Hempel BF, John EBO, Petras D, Heiss P, Nalbantsoy A, Göçmen B, Süssmuth RD, Calderón-Celis F, Nosti AJ, Encinar JR. Combined Molecular and Elemental Mass Spectrometry Approaches for Absolute Quantification of Proteomes: Application to the Venomics Characterization of the Two Species of Desert Black Cobras, Walterinnesia aegyptia and Walterinnesia morgani. J Proteome Res 2021; 20:5064-5078. [PMID: 34606723 PMCID: PMC8576837 DOI: 10.1021/acs.jproteome.1c00608] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
![]()
We report a novel hybrid, molecular
and elemental mass spectrometry
(MS) setup for the absolute quantification of snake venom proteomes
shown here for two desert black cobra species within the genus Walterinnesia, Walterinnesia aegyptia and Walterinnesia morgani. The experimental
design includes the decomplexation of the venom samples by reverse-phase
chromatography independently coupled to four mass spectrometry systems:
the combined bottom-up and top-down molecular MS for protein identification
and a parallel reverse-phase microbore high-performance liquid chromatograph
(RP-μHPLC) on-line to inductively coupled plasma (ICP-MS/MS)
elemental mass spectrometry and electrospray ionization quadrupole
time-of-flight mass spectrometry (ESI-QToF MS). This allows to continuously
record the absolute sulfur concentration throughout the chromatogram
and assign it to the parent venom proteins separated in the RP-μHPLC-ESI-QToF
parallel run via mass profiling. The results provide a locus-resolved
and quantitative insight into the three desert black cobra venom proteome
samples. They also validate the units of measure of our snake venomics
strategy for the relative quantification of snake venom proteomes
as % of total venom peptide bonds as a proxy for the % by weight of
the venom toxins/toxin families. In a more general context, our work
may pave the way for broader applications of hybrid elemental/molecular
MS setups in diverse areas of proteomics.
Collapse
Affiliation(s)
- Juan J Calvete
- Laboratorio de Venómica Evolutiva y Traslational, Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (CSIC), Jaume Roig 11, 46010 Valencia, Spain
| | - Davinia Pla
- Laboratorio de Venómica Evolutiva y Traslational, Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (CSIC), Jaume Roig 11, 46010 Valencia, Spain
| | - Johannes Els
- Environment and Protected Areas Authority, 82828 Sharjah, United Arab Emirates
| | - Salvador Carranza
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Maik Damm
- Department of Chemistry, Technische Universität Berlin, 10623 Berlin, Germany
| | - Benjamin-Florian Hempel
- Department of Chemistry, Technische Universität Berlin, 10623 Berlin, Germany.,BIH Center for Regenerative Therapies BCRT, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Elisa B O John
- Center of Biotechnology, Universidade Federal do Rio Grande do Sul, CEP 91501-970 Porto Alegre, RS, Brazil
| | - Daniel Petras
- CMFI Cluster of Excellence, Interfaculty Institute of Microbiology and Medicine, University of Túbingen, 72076 Tübingen, Germany
| | - Paul Heiss
- Department of Chemistry, Technische Universität Berlin, 10623 Berlin, Germany
| | - Ayse Nalbantsoy
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 Bornova, Izmir, Turkey
| | - Bayram Göçmen
- Zoology Section, Department of Biology, Faculty of Science, Ege University, 35100 Bornova, Izmir, Turkey
| | - Roderich D Süssmuth
- Department of Chemistry, Technische Universität Berlin, 10623 Berlin, Germany
| | | | - Alicia Jiménez Nosti
- Department of Physical and Analytical Chemistry, University of Oviedo, 33006 Oviedo, Spain
| | - Jorge Ruiz Encinar
- Department of Physical and Analytical Chemistry, University of Oviedo, 33006 Oviedo, Spain
| |
Collapse
|
35
|
Potet J, Beran D, Ray N, Alcoba G, Habib AG, Iliyasu G, Waldmann B, Ralph R, Faiz MA, Monteiro WM, de Almeida Gonçalves Sachett J, di Fabio JL, Cortés MDLÁ, Brown NI, Williams DJ. Access to antivenoms in the developing world: A multidisciplinary analysis. Toxicon X 2021; 12:100086. [PMID: 34786555 PMCID: PMC8578041 DOI: 10.1016/j.toxcx.2021.100086] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 11/21/2022] Open
Abstract
Access to safe, effective, quality-assured antivenom products that are tailored to endemic venomous snake species is a crucial component of recent coordinated efforts to reduce the global burden of snakebite envenoming. Multiple access barriers may affect the journey of antivenoms from manufacturers to the bedsides of patients. Our review describes the antivenom ecosystem at different levels and identifies solutions to overcome these challenges. At the global level, there is insufficient manufacturing output to meet clinical needs, notably for antivenoms intended for use in regions with a scarcity of producers. At national level, variable funding and deficient regulation of certain antivenom markets can lead to the procurement of substandard antivenom. This is particularly true when producers fail to seek registration of their products in the countries where they should be used, or where weak assessment frameworks allow registration without local clinical evaluation. Out-of-pocket expenses by snakebite victims are often the main source of financing antivenoms, which results in the underuse or under-dosing of antivenoms, and a preference for low-cost products regardless of efficacy. In resource-constrained rural areas, where the majority of victims are bitten, supply of antivenom in peripheral health facilities is often unreliable. Misconceptions about treatment of snakebite envenoming are common, further reducing demand for antivenom and exacerbating delays in reaching facilities equipped for antivenom use. Multifaceted interventions are needed to improve antivenom access in resource-limited settings. Particular attention should be paid to the comprehensive list of actions proposed within the WHO Strategy for Prevention and Control of Snakebite Envenoming.
Collapse
Affiliation(s)
- Julien Potet
- Médecins Sans Frontières Access Campaign, Geneva, Switzerland
| | - David Beran
- Division of Tropical and Humanitarian Medicine, Geneva University Hospitals, Geneva, Switzerland
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Nicolas Ray
- GeoHealth Group, Institute of Global Health, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Institute for Environmental Sciences, University of Geneva, Geneva, Switzerland
| | - Gabriel Alcoba
- Division of Tropical and Humanitarian Medicine, Geneva University Hospitals, Geneva, Switzerland
- Médecins Sans Frontières, Medical Department, Operational Center Geneva, Geneva, Switzerland
| | - Abdulrazaq Garba Habib
- Infectious Disease and Tropical Medicine Unit, Department of Medicine, College of Health Science, Bayero University Kano, Nigeria
| | - Garba Iliyasu
- Infectious Disease and Tropical Medicine Unit, Department of Medicine, College of Health Science, Bayero University Kano, Nigeria
| | | | - Ravikar Ralph
- Department of Internal Medicine & Poisons Information Center, Christian Medical College, Vellore, 632004, Tamil Nadu, India
| | | | - Wuelton Marcelo Monteiro
- Department of Research, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
- School of Health Sciences, Universidade Do Estado Do Amazonas, Manaus, Brazil
| | | | | | | | - Nicholas I. Brown
- Global Snakebite Initiative, 19 Haig Street, Ashgrove, Qld, 4060, Australia
- University of Queensland, Australia
| | - David J. Williams
- Global Snakebite Initiative, 19 Haig Street, Ashgrove, Qld, 4060, Australia
| |
Collapse
|
36
|
Malhotra A, Wüster W, Owens JB, Hodges CW, Jesudasan A, Ch G, Kartik A, Christopher P, Louies J, Naik H, Santra V, Kuttalam SR, Attre S, Sasa M, Bravo-Vega C, Murray KA. Promoting co-existence between humans and venomous snakes through increasing the herpetological knowledge base. Toxicon X 2021; 12:100081. [PMID: 34522881 PMCID: PMC8426276 DOI: 10.1016/j.toxcx.2021.100081] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/28/2021] [Accepted: 08/04/2021] [Indexed: 11/23/2022] Open
Abstract
Snakebite incidence at least partly depends on the biology of the snakes involved. However, studies of snake biology have been largely neglected in favour of anthropic factors, with the exception of taxonomy, which has been recognised for some decades to affect the design of antivenoms. Despite this, within-species venom variation and the unpredictability of the correlation with antivenom cross-reactivity has continued to be problematic. Meanwhile, other aspects of snake biology, including behaviour, spatial ecology and activity patterns, distribution, and population demography, which can contribute to snakebite mitigation and prevention, remain underfunded and understudied. Here, we review the literature relevant to these aspects of snakebite and illustrate how demographic, spatial, and behavioural studies can improve our understanding of why snakebites occur and provide evidence for prevention strategies. We identify the large gaps that remain to be filled and urge that, in the future, data and relevant metadata be shared openly via public data repositories so that studies can be properly replicated and data used in future meta-analyses.
Collapse
Affiliation(s)
- Anita Malhotra
- Molecular Ecology and Evolution @ Bangor, School of Natural Sciences, Bangor University, 3rd floor ECW, Deiniol Road, Bangor, LL57 2UW, UK
| | - Wolfgang Wüster
- Molecular Ecology and Evolution @ Bangor, School of Natural Sciences, Bangor University, 3rd floor ECW, Deiniol Road, Bangor, LL57 2UW, UK
| | - John Benjamin Owens
- Molecular Ecology and Evolution @ Bangor, School of Natural Sciences, Bangor University, 3rd floor ECW, Deiniol Road, Bangor, LL57 2UW, UK
- Captive & Field Herpetology Ltd, Wales, 13 Hirfron, Holyhead, Llaingoch, Anglesey, LL65 1YU, UK
| | - Cameron Wesley Hodges
- School of Biology, Institute of Science, Suranaree University of Technology, Muang Nakhon Ratchasima, Thailand
| | - Allwin Jesudasan
- Madras Crocodile Bank Trust, Centre for Herpetology, Post bag No.4, Vadanamelli Village, East Coast Road, Mamallapuram, 603 104, Tamil Nadu, India
| | - Gnaneswar Ch
- Madras Crocodile Bank Trust, Centre for Herpetology, Post bag No.4, Vadanamelli Village, East Coast Road, Mamallapuram, 603 104, Tamil Nadu, India
| | - Ajay Kartik
- Madras Crocodile Bank Trust, Centre for Herpetology, Post bag No.4, Vadanamelli Village, East Coast Road, Mamallapuram, 603 104, Tamil Nadu, India
| | - Peter Christopher
- Madras Crocodile Bank Trust, Centre for Herpetology, Post bag No.4, Vadanamelli Village, East Coast Road, Mamallapuram, 603 104, Tamil Nadu, India
| | | | - Hiral Naik
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg. P. O. Wits, 2050, Gauteng, South Africa
- Save the Snakes, R527, Blyderus, Hoedspruit, 1380, South Africa
| | - Vishal Santra
- Captive & Field Herpetology Ltd, Wales, 13 Hirfron, Holyhead, Llaingoch, Anglesey, LL65 1YU, UK
- Society for Nature Conservation, Research and Community Engagement (CONCERN), Nalikul, Hooghly, West Bengal 712407, India
| | - Sourish Rajagopalan Kuttalam
- Society for Nature Conservation, Research and Community Engagement (CONCERN), Nalikul, Hooghly, West Bengal 712407, India
| | - Shaleen Attre
- Durrell Institute of Conservation and Ecology, School of Anthropology and Conservation, Marlowe Building, University of Kent, Canterbury, Kent, CT2 7NR, UK
| | - Mahmood Sasa
- Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
- Escuela de Biología, Universidad de Costa Rica, San José, Costa Rica
| | - Carlos Bravo-Vega
- Research Group in Mathematical and Computational Biology (BIOMAC), Department of Biomedical Engineering, University of the Andes, Bogotá, Colombia
| | - Kris A. Murray
- MRC Centre for Global Infectious Disease Analysis, Imperial College London, UK
- MRC Unit The Gambia at London School of Hygiene and Tropical Medicine, Atlantic Boulevard, Fajara, Gambia
| |
Collapse
|
37
|
Ruiz-Campos M, Sanz L, Bonilla F, Sasa M, Lomonte B, Zaruma-Torres F, Terán M, Fernández J, Calvete JJ, Caldeira CAS, Da Silva SL. Venomics of the poorly studied hognosed pitvipers Porthidium arcosae and Porthidium volcanicum. J Proteomics 2021; 249:104379. [PMID: 34534714 DOI: 10.1016/j.jprot.2021.104379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/07/2021] [Accepted: 09/07/2021] [Indexed: 10/20/2022]
Abstract
We report the first proteomics analyses of the venoms of two poorly studied snakes, the Manabi hognosed pitviper Porthidium arcosae endemic to the western coastal province of Manabí (Ecuador), and the Costa Rican hognosed pitviper P. volcanicum with distribution restricted to South Pacific Costa Rica and western Panamá. These venom proteomes share a conserved compositional pattern reported in four other congeneric species within the clade of South American Porthidium species, P. nasutum, P. lansbergii, P. ophryomegas, and P. porrasi. The paraspecific immunorecognition profile of antivenoms produced in Costa Rica (ICP polyvalent), Perú (Instituto Nacional de Salud) and Brazil (soro antibotrópico pentavalente, SAB, from Instituto Butantan) against the venom of P. arcosae was investigated through a third-generation antivenomics approach. The maximal venom-binding capacities of the investigated antivenoms were 97.1 mg, 21.8 mg, and 25.7 mg of P. arcosae venom proteins per gram of SAB, ICP, and INS-PERU antibody molecules, respectively, which translate into 28.4 mg, 13.1 mg, and 15.2 mg of total venom proteins bound per vial of SAB, ICP, and INS-PERU AV. The antivenomics results suggest that 21.8%, 7.8% and 6.1% of the SAB, ICP, and INS-PERU antibody molecules recognized P. arcosae venom toxins. The SAB antivenom neutralized P. arcosae venom's lethality in mice with an ED50 of 31.3 mgV/g SAB AV. This preclinical neutralization paraspecificity points to Brazilian SAB as a promising candidate for the treatment of envenomings by Ecuadorian P. arcosae. BIOLOGICAL SIGNIFICANCE: Assessing the preclinical efficacy profile of antivenoms against homologous and heterologous medically relevant snake venoms represents an important goal towards defining the biogeographic range of their clinical utility. This is particularly relevant in regions, such as Mesoamerica, where a small number of pharmaceutical companies produce antivenoms against the venoms of a small number of species of maximum medical relevance among the local rich herpetofauna, leaving a wide range of snakes of secondary medical relevance, but also causing life-threatening human envenomings without nominal clinical coverage. This work is part of a larger project aiming at mapping the immunological characteristics of antivenoms generated in Latin American countries towards venoms of such poorly studied snakes of the local and neighboring countries' herpetofauna. Here we report the proteomics characterization of the Manabi hognosed pitviper Porthidium arcosae endemic to the western coastal province of Manabí (Ecuador), and the Costa Rican hognosed pitviper P. volcanicum with distribution restricted to southwestern Costa Rica, the antivenomics assessment of three bothropoid commercial antivenoms produced in Costa Rica, Perú, and Brazil against the venom components of P. arcosae, and the in vivo capacity of the Brazilian soro antibotrópico pentavalente (SAB) from Instituto Butantan to neutralize the murine lethality of P. arcosae venom. The preclinical paraspecific ED50 of 31.3 mg of P. arcosae venom per gram of antivenom points to Brazilian SAB as a promising candidate for the treatment of envenomings by the Manabi hognosed pitviper P. arcosae.
Collapse
Affiliation(s)
- Marco Ruiz-Campos
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501, Costa Rica
| | - Libia Sanz
- Laboratorio de Venómica Evolutiva y Traslacional, Consejo Superior de Investigaciones Científicas, Valencia, Spain.
| | - Fabián Bonilla
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501, Costa Rica.
| | - Mahmood Sasa
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501, Costa Rica; Centro Investigaciones, Biodiversidad y Ecología Tropical, Universidad de Costa Rica, San José, Costa Rica.
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501, Costa Rica.
| | - Fausto Zaruma-Torres
- College of Biochemistry and Pharmacy, Faculty of Chemical Sciences, University of Cuenca, Cuenca, Ecuador.
| | - Maria Terán
- Instituto Nacional de Investigación en Salud Pública (INSPI), Guayaquil, Ecuador.
| | - Julián Fernández
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501, Costa Rica
| | - Juan J Calvete
- Laboratorio de Venómica Evolutiva y Traslacional, Consejo Superior de Investigaciones Científicas, Valencia, Spain.
| | - Cleópatra A S Caldeira
- Centro de Estudos de Biomoléculas Aplicadas a Saúde CEBio/FIOCRUZ/UNIR, Rua da Beira 7671, Lagoa, CEP 76820-245 Porto Velho, Rondônia, Brazil; Programa de Pós-graduação em Biologia Experimental (PGBIOEXP), Universidade Federal de Rondônia (UNIR), Porto Velho, Brazil; Programa de Pós-graduação em Biodiversidade e Biotecnologia, rede BIONORTE, Porto Velho, RO, Brazil.
| | - Saulo L Da Silva
- College of Biochemistry and Pharmacy, Faculty of Chemical Sciences, University of Cuenca, Cuenca, Ecuador.
| |
Collapse
|
38
|
Bhatia S, Blotra A, Vasudevan K. Immunorecognition capacity of Indian polyvalent antivenom against venom toxins from two populations of Echis carinatus. Toxicon 2021; 201:148-154. [PMID: 34474069 DOI: 10.1016/j.toxicon.2021.08.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 11/25/2022]
Abstract
Clinicians report low efficacy of Indian polyvalent antivenom (PAV), with >20 vials required for treatment of a snakebite envenoming. We hypothesize that the antivenom efficacy could be reduced due to insufficient antibodies against some venom toxins. To test this, we used third-generation antivenomics to reveal bound and unbound venom toxins of Echis carinatus venom from Goa (ECVGO) and Tamil Nadu (ECVTN). We used 60, 120, 180, 240, 300, and 360 μg of venom and passed through mini-columns containing ~5 mg Antivenom bound to CNBr beads. The non-retained (unbound) and retained (bound) toxins were identified using reverse-phase HPLC and tandem mass spectrometry. Low molecular weight toxins - Short disintegrins (5.3 kDa) and DIS domain of P-II SVMP from ECVGO and ECVTN showed poor binding with antivenom. The immunorecognition sites of antivenom saturated at the lower antivenom-venom ratio for ECVGO than for ECVTN. The immunoretained capacity of antivenom against ECVTN was 140.6 μg and ECVGO was 125.1 μg. The amount of immunoretained toxins quantified can further be used to estimate the efficacy of antivenom by correlating it with in-vivo studies. The unbound toxins identified from this study could be targeted to improve the effectiveness of antivenom.
Collapse
Affiliation(s)
- Siddharth Bhatia
- CSIR-Centre for Cellular and Molecular Biology, Laboratory for the Conservation of Endangered Species, Hyderabad, 500048, India
| | - Avni Blotra
- CSIR-Centre for Cellular and Molecular Biology, Laboratory for the Conservation of Endangered Species, Hyderabad, 500048, India
| | - Karthikeyan Vasudevan
- CSIR-Centre for Cellular and Molecular Biology, Laboratory for the Conservation of Endangered Species, Hyderabad, 500048, India.
| |
Collapse
|
39
|
Puzari U, Fernandes PA, Mukherjee AK. Advances in the Therapeutic Application of Small-Molecule Inhibitors and Repurposed Drugs against Snakebite. J Med Chem 2021; 64:13938-13979. [PMID: 34565143 DOI: 10.1021/acs.jmedchem.1c00266] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The World Health Organization has declared snakebite as a neglected tropical disease. Antivenom administration is the sole therapy against venomous snakebite; however, several limitations of this therapy reinforce the dire need for an alternative and/or additional treatment against envenomation. Inhibitors against snake venoms have been explored from natural resources and are synthesized in the laboratory; however, repurposing of small-molecule therapeutics (SMTs) against the principal toxins of snake venoms to inhibit their lethality and/or obnoxious effect of envenomation has been garnering greater attention owing to their established pharmacokinetic properties, low-risk attributes, cost-effectiveness, ease of administration, and storage stability. Nevertheless, SMTs are yet to be approved and commercialized for snakebite treatment. Therefore, we have systematically reviewed and critically analyzed the scenario of small synthetic inhibitors and repurposed drugs against snake envenomation from 2005 to date and proposed novel approaches and commercialization strategies for the development of efficacious therapies against snake envenomation.
Collapse
Affiliation(s)
- Upasana Puzari
- Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur-784028, Assam, India
| | - Pedro Alexandrino Fernandes
- LAQV@REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua Do Campo Alegre S/N, 4169-007 Porto, Portugal
| | - Ashis K Mukherjee
- Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur-784028, Assam, India.,Institute of Advanced Study in Science and Technology, Vigyan Path Garchuk, Paschim Boragaon, Guwahati-781035, Assam, India
| |
Collapse
|
40
|
Yong MY, Tan KY, Tan CH. Potential para-specific and geographical utility of Thai Green Pit Viper (Trimeresurus albolabris) Monovalent Antivenom: Neutralization of procoagulant and hemorrhagic activities of diverse Trimeresurus pit viper venoms. Toxicon 2021; 203:85-92. [PMID: 34600909 DOI: 10.1016/j.toxicon.2021.09.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/01/2021] [Accepted: 09/22/2021] [Indexed: 11/29/2022]
Abstract
The Trimeresurus complex consists of diverse medically important venomous pit vipers that cause snakebite envenomation. Antivenoms, however, are in limited supply, and are specific to only two out of the many species across Asia. This study thus investigated the immunoreactivities of regional pit viper antivenoms toward selected Trimeresurus pit viper venoms, and examined the neutralization of their hemotoxic activities. Trimeresurus albolabris Monovalent Antivenom (TaMAV, Thailand) exhibited a higher immunoreactivity than Hemato Bivalent Antivenom (HBAV, raised against Trimeresurus stejnegeri and Protobothrops mucrosquamatus, Taiwan) and Gloydius brevicaudus Monovalent Antivenom (GbMAV, China), attributed to its monovalent nature and conserved antigens in the Trimeresurus pit viper venoms. The venoms showed moderate-to-strong in vitro procoagulant and in vivo hemorrhagic effects consistent with hemotoxic envenomation, except for the Sri Lankan Trimeresurus trigonocephalus venom which lacked hemorrhagic activity. TaMAV was able to differentially neutralize both in vitro and in vivo hemotoxic effects of the venoms, with the lowest efficacy shown against the procoagulant effect of T. trigonocephalus venom. The findings suggest that TaMAV is a potentially useful treatment for envenomation caused by hetero-specific Trimeresurus pit vipers, in particular those in Southeast Asia and East Asia. Clinical study is warranted to establish its spectrum of para-specific effectiveness, and dosages need be tailored to the different species in respective regions.
Collapse
Affiliation(s)
- Mun Yee Yong
- Venom Research and Toxicology Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kae Yi Tan
- Protein and Interactomics Laboratory, Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Choo Hock Tan
- Venom Research and Toxicology Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
41
|
Pintor AF, Ray N, Longbottom J, Bravo-Vega CA, Yousefi M, Murray KA, Ediriweera DS, Diggle PJ. Addressing the global snakebite crisis with geo-spatial analyses - Recent advances and future direction. Toxicon X 2021; 11:100076. [PMID: 34401744 PMCID: PMC8350508 DOI: 10.1016/j.toxcx.2021.100076] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 02/08/2023] Open
Abstract
Venomous snakebite is a neglected tropical disease that annually leads to hundreds of thousands of deaths or long-term physical and mental ailments across the developing world. Insufficient data on spatial variation in snakebite risk, incidence, human vulnerability, and accessibility of medical treatment contribute substantially to ineffective on-ground management. There is an urgent need to collect data, fill knowledge gaps and address on-ground management problems. The use of novel, and transdisciplinary approaches that take advantage of recent advances in spatio-temporal models, 'big data', high performance computing, and fine-scale spatial information can add value to snakebite management by strategically improving our understanding and mitigation capacity of snakebite. We review the background and recent advances on the topic of snakebite related geospatial analyses and suggest avenues for priority research that will have practical on-ground applications for snakebite management and mitigation. These include streamlined, targeted data collection on snake distributions, snakebites, envenomings, venom composition, health infrastructure, and antivenom accessibility along with fine-scale models of spatio-temporal variation in snakebite risk and incidence, intraspecific venom variation, and environmental change modifying human exposure. These measures could improve and 'future-proof' antivenom production methods, antivenom distribution and stockpiling systems, and human-wildlife conflict management practices, while simultaneously feeding into research on venom evolution, snake taxonomy, ecology, biogeography, and conservation.
Collapse
Affiliation(s)
- Anna F.V. Pintor
- Division of Data, Analytics and Delivery for Impact (DDI), World Health Organization, Geneva, Switzerland
- Australian Institute of Tropical Health and Medicine, Division of Tropical Health and Medicine, James Cook University, Cairns, Australia
| | - Nicolas Ray
- GeoHealth Group, Institute of Global Health, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Institute for Environmental Sciences, University of Geneva, Geneva, Switzerland
| | - Joshua Longbottom
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Centre for Health Informatics, Computing and Statistics, Lancaster Medical School, Lancaster University, Lancaster, United Kingdom
| | - Carlos A. Bravo-Vega
- Research Group in Mathematical and Computational Biology (BIOMAC), Department of Biomedical Engineering, University of Los Andes, Bogotá, Colombia
| | - Masoud Yousefi
- School of Biology, College of Science, University of Tehran, Iran
| | - Kris A. Murray
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, UK
- MRC Unit the Gambia at London School of Hygiene and Tropical Medicine, Atlantic Blvd, Fajara, Gambia
| | - Dileepa S. Ediriweera
- Health Data Science Unit, Faculty of Medicine, University of Kelaniya, Ragama, Sri Lanka
| | - Peter J. Diggle
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
42
|
Mukherjee AK, Mackessy SP. Prevention and improvement of clinical management of snakebite in Southern Asian countries: A proposed road map. Toxicon 2021; 200:140-152. [PMID: 34280412 DOI: 10.1016/j.toxicon.2021.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/10/2021] [Accepted: 07/13/2021] [Indexed: 10/20/2022]
Abstract
In the Southern Asian countries, snakebite takes a substantial toll in terms of human life, inflicts acute morbidity and long term disability both physical and psychological, and therefore represents a neglected socio-economic problem and severe health issue that requires immediate medical attention. The 'Big Four' venomous snakes, viz. Daboia russelii, Naja naja, Bungarus caeruleus and Echis carinatus, are prominent, medically important species and are the most dangerous snakes of this region; therefore, the commercial polyvalent antivenom (PAV) contains antibodies against the venoms of these snakes. However, envenomations by species other than the 'Big Four' snakes are grossly neglected, and PAV is only partially effective in neutralizing the venom of these snakes. Many issues confounding effective treatment of snakebite are discussed in this review, and these hurdles preventing successful treatment of snakebite must be addressed. However, in South Asian countries, the pre-hospital treatment and appropriate first aid are equally important to mitigate the problem of snakebite and therefore, these issues are also highlighted here. Further, this review suggests a roadmap and guidelines for the prevention of snakebite and improvement of hospital management of snakebite in these Southern Asian countries.
Collapse
Affiliation(s)
- Ashis K Mukherjee
- Division of Life Sciences, Institute of Advanced Study in Science and Technology, Vigyan Path Garchuk, Paschim Boragaon, Guwahati, 781035, Assam, India; Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, 78028, Assam, India; School of Biological Sciences, University of Northern Colorado, Greeley, CO, 80639-0017, USA.
| | - Stephen P Mackessy
- School of Biological Sciences, University of Northern Colorado, Greeley, CO, 80639-0017, USA
| |
Collapse
|
43
|
Wong KY, Tan KY, Tan NH, Gnanathasan CA, Tan CH. Elucidating the Venom Diversity in Sri Lankan Spectacled Cobra ( Naja naja) through De Novo Venom Gland Transcriptomics, Venom Proteomics and Toxicity Neutralization. Toxins (Basel) 2021; 13:558. [PMID: 34437429 PMCID: PMC8402536 DOI: 10.3390/toxins13080558] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/01/2021] [Accepted: 08/05/2021] [Indexed: 01/18/2023] Open
Abstract
Inadequate effectiveness of Indian antivenoms in treating envenomation caused by the Spectacled Cobra/Indian Cobra (Naja naja) in Sri Lanka has been attributed to geographical variations in the venom composition. This study investigated the de novo venom-gland transcriptomics and venom proteomics of the Sri Lankan N. naja (NN-SL) to elucidate its toxin gene diversity and venom variability. The neutralization efficacy of a commonly used Indian antivenom product in Sri Lanka was examined against the lethality induced by NN-SL venom in mice. The transcriptomic study revealed high expression of 22 toxin genes families in NN-SL, constituting 46.55% of total transcript abundance. Three-finger toxins (3FTX) were the most diversely and abundantly expressed (87.54% of toxin gene expression), consistent with the dominance of 3FTX in the venom proteome (72.19% of total venom proteins). The 3FTX were predominantly S-type cytotoxins/cardiotoxins (CTX) and α-neurotoxins of long-chain or short-chain subtypes (α-NTX). CTX and α-NTX are implicated in local tissue necrosis and fatal neuromuscular paralysis, respectively, in envenomation caused by NN-SL. Intra-species variations in the toxin gene sequences and expression levels were apparent between NN-SL and other geographical specimens of N. naja, suggesting potential antigenic diversity that impacts antivenom effectiveness. This was demonstrated by limited potency (0.74 mg venom/ml antivenom) of the Indian polyvalent antivenom (VPAV) in neutralizing the NN-SL venom. A pan-regional antivenom with improved efficacy to treat N. naja envenomation is needed.
Collapse
Affiliation(s)
- Kin Ying Wong
- Venom Research and Toxicology Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Kae Yi Tan
- Protein and Interactomics Laboratory, Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Nget Hong Tan
- Protein and Interactomics Laboratory, Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | | | - Choo Hock Tan
- Venom Research and Toxicology Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
| |
Collapse
|
44
|
Choraria A, Somasundaram R, Janani S, Rajendran S, Oukkache N, Michael A. Chicken egg yolk antibodies (IgY)-based antivenom for neutralization of snake venoms: a review. TOXIN REV 2021. [DOI: 10.1080/15569543.2021.1942063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Ankit Choraria
- Department of Microbiology, PSG College of Arts and Science, Coimbatore, India
| | | | - S. Janani
- Nanobiotechnology Laboratory, PSG Institute of Advanced Studies, Coimbatore, India
| | - Selvakumar Rajendran
- Nanobiotechnology Laboratory, PSG Institute of Advanced Studies, Coimbatore, India
| | - Naoual Oukkache
- Venoms and Toxins Laboratory, Institute Pasteur of Morocco, Casablanca, Morocco
| | - A. Michael
- Department of Microbiology, PSG College of Arts and Science, Coimbatore, India
| |
Collapse
|
45
|
Tan CH, Palasuberniam P, Tan KY. Snake Venom Proteomics, Immunoreactivity and Toxicity Neutralization Studies for the Asiatic Mountain Pit Vipers, Ovophis convictus, Ovophis tonkinensis, and Hime Habu, Ovophis okinavensis. Toxins (Basel) 2021; 13:toxins13080514. [PMID: 34437385 PMCID: PMC8402492 DOI: 10.3390/toxins13080514] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 01/01/2023] Open
Abstract
Snakebite envenomation is a serious neglected tropical disease, and its management is often complicated by the diversity of snake venoms. In Asia, pit vipers of the Ovophis species complex are medically important venomous snakes whose venom properties have not been investigated in depth. This study characterized the venom proteomes of Ovophis convictus (West Malaysia), Ovophis tonkinensis (northern Vietnam, southern China), and Ovophis okinavensis (Okinawa, Japan) by applying liquid chromatography-tandem mass spectrometry, which detected a high abundance of snake venom serine proteases (SVSP, constituting 40–60% of total venom proteins), followed by phospholipases A2, snake venom metalloproteinases of mainly P-III class, L-amino acid oxidases, and toxins from other protein families which were less abundant. The venoms exhibited different procoagulant activities in human plasma, with potency decreasing from O. tonkinensis > O. okinavensis > O. convictus. The procoagulant nature of venom confirms that consumptive coagulopathy underlies the pathophysiology of Ovophis pit viper envenomation. The hetero-specific antivenoms Gloydius brevicaudus monovalent antivenom (GbMAV) and Trimeresurus albolabris monovalent antivenom (TaMAV) were immunoreactive toward the venoms, and cross-neutralized their procoagulant activities, albeit at variably limited efficacy. In the absence of species-specific antivenom, these hetero-specific antivenoms may be useful in treating coagulotoxic envenomation caused by the different snakes in their respective regions.
Collapse
Affiliation(s)
- Choo Hock Tan
- Venom Research, Toxicology Research Lab, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
- Correspondence: (C.H.T.); (K.Y.T.)
| | - Praneetha Palasuberniam
- Venom Research, Toxicology Research Lab, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | - Kae Yi Tan
- Protein and Interactomics Lab, Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
- Correspondence: (C.H.T.); (K.Y.T.)
| |
Collapse
|
46
|
Patra A, Herrera M, Gutiérrez JM, Mukherjee AK. The application of laboratory-based analytical tools and techniques for the quality assessment and improvement of commercial antivenoms used in the treatment of snakebite envenomation. Drug Test Anal 2021; 13:1471-1489. [PMID: 34089574 DOI: 10.1002/dta.3108] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 12/18/2022]
Abstract
Snakebite envenomation is a public health problem of high impact, particularly for the developing world. Antivenom, which contains whole or protease-digested immunoglobulin G, purified from the plasma of hyper-immunized animals (mainly horses), is the mainstay for the treatment of snakebite envenomation. The success of antivenom therapy depends upon its ability to abrogate or reduce the local and systemic toxicity of envenomation. In addition, antivenom administration must be safe for the patients. Therefore, antivenom manufacturers must ensure that these products are effective and safe in the treatment of envenomations. Antivenom efficacy and safety are determined by the physicochemical characteristics of formulations, purity of the immunoglobulin fragments and antibodies, presence of protein aggregates, endotoxin burden, preservative load, and batch to batch variation, as well as on the ability to neutralize the most important toxins of the venoms against which the antivenom is designed. In this context, recent studies have shown that laboratory-based simple analytical techniques, for example, size exclusion chromatography, sodium dodecyl sulphate polyacrylamide gel electrophoresis, mass spectrometry, immunological profiling including immuno-turbidimetry and enzyme-linked immunosorbent assays, Western blotting, immune-chromatographic technique coupled to mass spectrometry analysis, reverse-phase high performance liquid chromatography, spectrofluorometric analysis, in vitro neutralization of venom enzymatic activities, and other methodologies, can be applied for the assessment of antivenom quality, safety, stability, and efficacy. This article reviews the usefulness of different analytical techniques for the quality assessment of commercial antivenoms. It is suggested that these tests should be applied for screening the quality of commercial antivenoms before their preclinical and clinical assessment.
Collapse
Affiliation(s)
- Aparup Patra
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, India
| | - María Herrera
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Ashis K Mukherjee
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, India.,Life Science Division, Institute of Advanced Study in Science and Technology, Vigyan Path, Garchuk, Paschim Boragaon, Guwahati, 781035, India
| |
Collapse
|
47
|
Damm M, Hempel BF, Süssmuth RD. Old World Vipers-A Review about Snake Venom Proteomics of Viperinae and Their Variations. Toxins (Basel) 2021; 13:toxins13060427. [PMID: 34204565 PMCID: PMC8235416 DOI: 10.3390/toxins13060427] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022] Open
Abstract
Fine-tuned by millions of years of evolution, snake venoms have frightened but also fascinated humanity and nowadays they constitute potential resources for drug development, therapeutics and antivenoms. The continuous progress of mass spectrometry techniques and latest advances in proteomics workflows enabled toxinologists to decipher venoms by modern omics technologies, so-called ‘venomics’. A tremendous upsurge reporting on snake venom proteomes could be observed. Within this review we focus on the highly venomous and widely distributed subfamily of Viperinae (Serpentes: Viperidae). A detailed public literature database search was performed (2003–2020) and we extensively reviewed all compositional venom studies of the so-called Old-World Vipers. In total, 54 studies resulted in 89 venom proteomes. The Viperinae venoms are dominated by four major, four secondary, six minor and several rare toxin families and peptides, respectively. The multitude of different venomics approaches complicates the comparison of venom composition datasets and therefore we differentiated between non-quantitative and three groups of quantitative workflows. The resulting direct comparisons within these groups show remarkable differences on the intra- and interspecies level across genera with a focus on regional differences. In summary, the present compilation is the first comprehensive up-to-date database on Viperinae venom proteomes and differentiating between analytical methods and workflows.
Collapse
Affiliation(s)
- Maik Damm
- Department of Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany;
| | - Benjamin-Florian Hempel
- BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, (BCRT), 10117 Berlin, Germany;
| | - Roderich D. Süssmuth
- Department of Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany;
- Correspondence: ; Tel.: +49-(0)30-314-24205
| |
Collapse
|
48
|
Remarkable intrapopulation venom variability in the monocellate cobra (Naja kaouthia) unveils neglected aspects of India's snakebite problem. J Proteomics 2021; 242:104256. [PMID: 33957314 DOI: 10.1016/j.jprot.2021.104256] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/29/2021] [Accepted: 05/01/2021] [Indexed: 11/20/2022]
Abstract
Interpopulation venom variation has been widely documented in snakes across large geographical distances. This variability is known to markedly influence the effectiveness of snakebite therapy, as antivenoms manufactured against one population may not be effective against others. In contrast, the extent of intrapopulation venom variability, especially at finer geographical scales, remains largely uninvestigated. Moreover, given the historical focus on the 'big four' Indian snakes, our understanding of venom variation in medically important yet neglected snakes, such as the monocellate cobra (Naja kaouthia), remains unclear. To address this shortcoming, we investigated N. kaouthia venoms sampled across a small spatial scale (<50 km) in Eastern India. An interdisciplinary approach employed in this study unveiled considerable intrapopulation differences in the venom proteomic composition, pharmacological and biochemical activities, and toxicity profiles. Documentation of stark differences in venoms at such a finer geographical scale, despite the influence of similar ecological and environmental conditions, is intriguing. Furthermore, evaluation of in vitro and in vivo venom recognition and neutralisation potential of Indian polyvalent 'big four' antivenoms and Thai monovalent N. kaouthia antivenom revealed concerning deficiencies. These results highlight the negative impact of phylogenetic divergence and intrapopulation snake venom variation on the effectiveness of conventional antivenom therapy. SIGNIFICANCE: In contrast to our understanding of snake venom variation across large distances, which is theorised to be shaped by disparities in ecology and environment, intrapopulation variation at finer geographic scales remains scarcely investigated. Assessment of intrapopulation venom variability in Naja kaouthia at a small spatial scale (<50 km) in Eastern India unravelled considerable differences in venom compositions, activities and potencies. While the influence of subtle differences in prey preference and local adaptations cannot be ruled out, these findings, perhaps, also emphasise the role of accelerated molecular evolutionary regimes that rapidly introduce variations in evolutionarily younger lineages, such as advanced snakes. The inability of 'big four' Indian antivenoms and Thai N. kaouthia monovalent antivenom in countering these variations highlights the importance of phylogenetic considerations for the development of efficacious snakebite therapy. Thus, we provide valuable insights into the venoms of one of the most medically important yet neglected Indian snakes.
Collapse
|
49
|
What's in a mass? Biochem Soc Trans 2021; 49:1027-1037. [PMID: 33929513 DOI: 10.1042/bst20210288] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/27/2021] [Accepted: 03/30/2021] [Indexed: 02/03/2023]
Abstract
This short essay pretends to make the reader reflect on the concept of biological mass and on the added value that the determination of this molecular property of a protein brings to the interpretation of evolutionary and translational snake venomics research. Starting from the premise that the amino acid sequence is the most distinctive primary molecular characteristics of any protein, the thesis underlying the first part of this essay is that the isotopic distribution of a protein's molecular mass serves to unambiguously differentiate it from any other of an organism's proteome. In the second part of the essay, we discuss examples of collaborative projects among our laboratories, where mass profiling of snake venom PLA2 across conspecific populations played a key role revealing dispersal routes that determined the current phylogeographic pattern of the species.
Collapse
|
50
|
Faisal T, Tan KY, Tan NH, Sim SM, Gnanathasan CA, Tan CH. Proteomics, toxicity and antivenom neutralization of Sri Lankan and Indian Russell's viper ( Daboia russelii) venoms. J Venom Anim Toxins Incl Trop Dis 2021; 27:e20200177. [PMID: 33995514 PMCID: PMC8092856 DOI: 10.1590/1678-9199-jvatitd-2020-0177] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/17/2021] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND The western Russell's viper (Daboia russelii) is widely distributed in South Asia, and geographical venom variation is anticipated among distant populations. Antivenoms used for Russell's viper envenomation are, however, raised typically against snakes from Southern India. The present study investigated and compared the venom proteomes of D. russelii from Sri Lanka (DrSL) and India (DrI), the immunorecognition of Indian VINS Polyvalent Antivenom (VPAV) and its efficacy in neutralizing the venom toxicity. METHODS The venoms of DrSL and DrI were decomplexed with C18 high-performance liquid chromatography and SDS-polyacrylamide gel electrophoresis under reducing conditions. The proteins fractionated were identified through nano-ESI-liquid chromatography-tandem mass spectrometry (LCMS/MS). The immunological studies were conducted with enzyme-linked immunosorbent assay. The neutralization of the venom procoagulant effect was evaluated in citrated human plasma. The neutralization of the venom lethality was assessed in vivo in mice adopting the WHO protocol. RESULTS DrSL and DrI venom proteomes showed comparable major protein families, with phospholipases A2 (PLA2) being the most abundant (> 60% of total venom proteins) and diverse (six protein forms identified). Both venoms were highly procoagulant and lethal (intravenous median lethal dose in mice, LD50 = 0.24 and 0.32 µg/g, for DrSL and DrI, respectively), while lacking hemorrhagic and anticoagulant activities. VPAV was immunoreactive toward DrSL and DrI venoms, indicating conserved protein antigenicity in the venoms. The high molecular weight venom proteins were, however, more effectively immunorecognized than small ones. VPAV was able to neutralize the coagulopathic and lethal effects of the venoms moderately. CONCLUSION Considering that a large amount of venom can be injected by Russell's viper during envenomation, the potency of antivenom can be further improved for optimal neutralization and effective treatment. Region-specific venoms and key toxins may be incorporated into the immunization procedure during antivenom production.
Collapse
Affiliation(s)
- Tasnim Faisal
- Department of Pharmacology, Faculty of Medicine, University of
Malaya, Kuala Lumpur, Malaysia
| | - Kae Yi Tan
- Department of Molecular Medicine, Faculty of Medicine, University of
Malaya, Kuala Lumpur, Malaysia
| | - Nget Hong Tan
- Department of Molecular Medicine, Faculty of Medicine, University of
Malaya, Kuala Lumpur, Malaysia
| | - Si Mui Sim
- Department of Pharmacology, Faculty of Medicine, University of
Malaya, Kuala Lumpur, Malaysia
| | | | - Choo Hock Tan
- Department of Pharmacology, Faculty of Medicine, University of
Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|