1
|
Santarriaga S, Gerlovin K, Layadi Y, Karmacharya R. Human stem cell-based models to study synaptic dysfunction and cognition in schizophrenia: A narrative review. Schizophr Res 2024; 273:78-97. [PMID: 36925354 PMCID: PMC10500041 DOI: 10.1016/j.schres.2023.02.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023]
Abstract
Cognitive impairment is the strongest predictor of functional outcomes in schizophrenia and is hypothesized to result from synaptic dysfunction. However, targeting synaptic plasticity and cognitive deficits in patients remains a significant clinical challenge. A comprehensive understanding of synaptic plasticity and the molecular basis of learning and memory in a disease context can provide specific targets for the development of novel therapeutics targeting cognitive impairments in schizophrenia. Here, we describe the role of synaptic plasticity in cognition, summarize evidence for synaptic dysfunction in schizophrenia and demonstrate the use of patient derived induced-pluripotent stem cells for studying synaptic plasticity in vitro. Lastly, we discuss current advances and future technologies for bridging basic science research of synaptic dysfunction with clinical and translational research that can be used to predict treatment response and develop novel therapeutics.
Collapse
Affiliation(s)
- Stephanie Santarriaga
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Chemical Biology and Therapeutic Science Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Kaia Gerlovin
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Chemical Biology and Therapeutic Science Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Yasmine Layadi
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Chimie ParisTech, Université Paris Sciences et Lettres, Paris, France
| | - Rakesh Karmacharya
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Chemical Biology and Therapeutic Science Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Schizophrenia and Bipolar Disorder Program, McLean Hospital, Belmont, MA, USA.
| |
Collapse
|
2
|
Shahcheraghi SH, Ayatollahi J, Lotfi M, Aljabali AAA, Al-Zoubi MS, Panda PK, Mishra V, Satija S, Charbe NB, Serrano-Aroca Á, Bahar B, Takayama K, Goyal R, Bhatia A, Almutary AG, Alnuqaydan AM, Mishra Y, Negi P, Courtney A, McCarron PA, Bakshi HA, Tambuwala MM. Gene Therapy for Neuropsychiatric Disorders: Potential Targets and Tools. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2023; 22:51-65. [PMID: 35249508 DOI: 10.2174/1871527321666220304153719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/16/2022] [Accepted: 01/16/2022] [Indexed: 01/01/2023]
Abstract
Neuropsychiatric disorders that affect the central nervous system cause considerable pressures on the health care system and have a substantial economic burden on modern societies. The present treatments based on available drugs are mostly ineffective and often costly. The molecular process of neuropsychiatric disorders is closely connected to modifying the genetic structures inherited or caused by damage, toxic chemicals, and some current diseases. Gene therapy is presently an experimental concept for neurological disorders. Clinical applications endeavor to alleviate the symptoms, reduce disease progression, and repair defective genes. Implementing gene therapy in inherited and acquired neurological illnesses entails the integration of several scientific disciplines, including virology, neurology, neurosurgery, molecular genetics, and immunology. Genetic manipulation has the power to minimize or cure illness by inducing genetic alterations at endogenous loci. Gene therapy that involves treating the disease by deleting, silencing, or editing defective genes and delivering genetic material to produce therapeutic molecules has excellent potential as a novel approach for treating neuropsychiatric disorders. With the recent advances in gene selection and vector design quality in targeted treatments, gene therapy could be an effective approach. This review article will investigate and report the newest and the most critical molecules and factors in neuropsychiatric disorder gene therapy. Different genome editing techniques available will be evaluated, and the review will highlight preclinical research of genome editing for neuropsychiatric disorders while also evaluating current limitations and potential strategies to overcome genome editing advancements.
Collapse
Affiliation(s)
- Seyed H Shahcheraghi
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Infectious Diseases Research Center, Shahid Sadoughi Hospital, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Jamshid Ayatollahi
- Infectious Diseases Research Center, Shahid Sadoughi Hospital, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Marzieh Lotfi
- Abortion Research Center, Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Alaa A A Aljabali
- Department of Pharmaceutics & Pharmaceutical Technology, Yarmouk University, Irbid, Jordan
| | - Mazhar S Al-Zoubi
- Yarmouk University, Faculty of Medicine, Department of Basic Medical Sciences, Irbid, Jordan
| | - Pritam K Panda
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, 75120 Uppsala, Sweden
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Saurabh Satija
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Nitin B Charbe
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Kingsville, TX 78363, USA
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Lab, Translational Research Centre San Alberto Magno, Catholic University of Valencia San Vicente Mártir, C/Guillem de Castro 94, 46001 Valencia, Spain
| | - Bojlul Bahar
- Nutrition Sciences and Applied Food Safety Studies, Research Centre for Global Development, School of Sport & Health Sciences, University of Central Lancashire, Preston, PR1 2HE, UK
| | - Kazuo Takayama
- Center for IPS Cell Research and Application, Kyoto University, Kyoto, 606-8397, Japan
| | - Rohit Goyal
- Neuropharmacology Laboratory, School of Pharmaceutical Sciences, Shoolini University, Post Box No. 9, Solan, Himachal Pradesh 173212, India
| | - Amit Bhatia
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Punjab 151001, India
| | - Abdulmajeed G Almutary
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Saudi Arabia
| | - Abdullah M Alnuqaydan
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Saudi Arabia
| | - Yachana Mishra
- Shri Shakti Degree College, Sankhahari, Ghatampur 209206, India
| | - Poonam Negi
- Shoolini University of Biotechnology and Management Sciences, Solan 173 212, India
| | - Aaron Courtney
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, County Londonderry, BT52 1SA, Northern Ireland, United Kingdom
| | - Paul A McCarron
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, County Londonderry, BT52 1SA, Northern Ireland, United Kingdom
| | - Hamid A Bakshi
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, County Londonderry, BT52 1SA, Northern Ireland, United Kingdom
| | - Murtaza M Tambuwala
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, County Londonderry, BT52 1SA, Northern Ireland, United Kingdom
| |
Collapse
|
3
|
Zhang Q, Huo JH, Guo L, Wang L, Wang C, Li M. Common and rare variants within SP4 exert distinct molecular mechanisms contributing to the risk of schizophrenia. Psychiatry Res 2022; 318:114948. [PMID: 36372009 DOI: 10.1016/j.psychres.2022.114948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/18/2022] [Accepted: 11/07/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Qing Zhang
- Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, PR China; School of Basic Medical Science, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Jin-Hua Huo
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, PR China
| | - Lei Guo
- Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, PR China; School of Basic Medical Science, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Lu Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, PR China
| | - Chuang Wang
- Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, PR China; School of Basic Medical Science, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, PR China.
| | - Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, PR China.
| |
Collapse
|
4
|
Pujar M, Vastrad B, Kavatagimath S, Vastrad C, Kotturshetti S. Identification of candidate biomarkers and pathways associated with type 1 diabetes mellitus using bioinformatics analysis. Sci Rep 2022; 12:9157. [PMID: 35650387 PMCID: PMC9160069 DOI: 10.1038/s41598-022-13291-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 05/16/2022] [Indexed: 12/14/2022] Open
Abstract
Type 1 diabetes mellitus (T1DM) is a metabolic disorder for which the underlying molecular mechanisms remain largely unclear. This investigation aimed to elucidate essential candidate genes and pathways in T1DM by integrated bioinformatics analysis. In this study, differentially expressed genes (DEGs) were analyzed using DESeq2 of R package from GSE162689 of the Gene Expression Omnibus (GEO). Gene ontology (GO) enrichment analysis, REACTOME pathway enrichment analysis, and construction and analysis of protein–protein interaction (PPI) network, modules, miRNA-hub gene regulatory network and TF-hub gene regulatory network, and validation of hub genes were performed. A total of 952 DEGs (477 up regulated and 475 down regulated genes) were identified in T1DM. GO and REACTOME enrichment result results showed that DEGs mainly enriched in multicellular organism development, detection of stimulus, diseases of signal transduction by growth factor receptors and second messengers, and olfactory signaling pathway. The top hub genes such as MYC, EGFR, LNX1, YBX1, HSP90AA1, ESR1, FN1, TK1, ANLN and SMAD9 were screened out as the critical genes among the DEGs from the PPI network, modules, miRNA-hub gene regulatory network and TF-hub gene regulatory network. Receiver operating characteristic curve (ROC) analysis confirmed that these genes were significantly associated with T1DM. In conclusion, the identified DEGs, particularly the hub genes, strengthen the understanding of the advancement and progression of T1DM, and certain genes might be used as candidate target molecules to diagnose, monitor and treat T1DM.
Collapse
Affiliation(s)
- Madhu Pujar
- Department of Pediatrics, J J M Medical College, Davangere, Karnataka, 577004, India
| | - Basavaraj Vastrad
- Department of Pharmaceutical Chemistry, K.L.E. College of Pharmacy, Gadag, Karnataka, 582101, India
| | - Satish Kavatagimath
- Department of Pharmacognosy, K.L.E. College of Pharmacy, Belagavi, Karnataka, 590010, India
| | - Chanabasayya Vastrad
- Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad, Karnataka, 580001, India.
| | - Shivakumar Kotturshetti
- Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad, Karnataka, 580001, India
| |
Collapse
|
5
|
Santos-Terra J, Deckmann I, Fontes-Dutra M, Schwingel GB, Bambini-Junior V, Gottfried C. Transcription factors in neurodevelopmental and associated psychiatric disorders: A potential convergence for genetic and environmental risk factors. Int J Dev Neurosci 2021; 81:545-578. [PMID: 34240460 DOI: 10.1002/jdn.10141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/23/2021] [Accepted: 07/02/2021] [Indexed: 12/16/2022] Open
Abstract
Neurodevelopmental disorders (NDDs) are a heterogeneous and highly prevalent group of psychiatric conditions marked by impairments in the nervous system. Their onset occurs during gestation, and the alterations are observed throughout the postnatal life. Although many genetic and environmental risk factors have been described in this context, the interactions between them challenge the understanding of the pathways associated with NDDs. Transcription factors (TFs)-a group of over 1,600 proteins that can interact with DNA, regulating gene expression through modulation of RNA synthesis-represent a point of convergence for different risk factors. In addition, TFs organize critical processes like angiogenesis, blood-brain barrier formation, myelination, neuronal migration, immune activation, and many others in a time and location-dependent way. In this review, we summarize important TF alterations in NDD and associated disorders, along with specific impairments observed in animal models, and, finally, establish hypotheses to explain how these proteins may be critical mediators in the context of genome-environment interactions.
Collapse
Affiliation(s)
- Júlio Santos-Terra
- Translational Research Group in Autism Spectrum Disorders (GETTEA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,School of Pharmacology and Biomedical Sciences, University of Central Lancashire, Autism Wellbeing And Research Development (AWARD) Institute, BR-UK-CA, Preston, UK
| | - Iohanna Deckmann
- Translational Research Group in Autism Spectrum Disorders (GETTEA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,School of Pharmacology and Biomedical Sciences, University of Central Lancashire, Autism Wellbeing And Research Development (AWARD) Institute, BR-UK-CA, Preston, UK
| | - Mellanie Fontes-Dutra
- Translational Research Group in Autism Spectrum Disorders (GETTEA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,School of Pharmacology and Biomedical Sciences, University of Central Lancashire, Autism Wellbeing And Research Development (AWARD) Institute, BR-UK-CA, Preston, UK
| | - Gustavo Brum Schwingel
- Translational Research Group in Autism Spectrum Disorders (GETTEA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,School of Pharmacology and Biomedical Sciences, University of Central Lancashire, Autism Wellbeing And Research Development (AWARD) Institute, BR-UK-CA, Preston, UK
| | - Victorio Bambini-Junior
- Translational Research Group in Autism Spectrum Disorders (GETTEA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,School of Pharmacology and Biomedical Sciences, University of Central Lancashire, Autism Wellbeing And Research Development (AWARD) Institute, BR-UK-CA, Preston, UK.,School of Pharmacology and Biomedical Sciences, University of Central Lancashire, Preston, UK
| | - Carmem Gottfried
- Translational Research Group in Autism Spectrum Disorders (GETTEA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,School of Pharmacology and Biomedical Sciences, University of Central Lancashire, Autism Wellbeing And Research Development (AWARD) Institute, BR-UK-CA, Preston, UK
| |
Collapse
|
6
|
The Potential Use of Peripheral Blood Mononuclear Cells as Biomarkers for Treatment Response and Outcome Prediction in Psychiatry: A Systematic Review. Mol Diagn Ther 2021; 25:283-299. [PMID: 33978935 DOI: 10.1007/s40291-021-00516-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Psychiatric disorders have a major impact on the global burden of disease while therapeutic interventions remain insufficient to adequately treat a large number of patients. Regrettably, the efficacy of several psychopharmacological treatment regimens becomes apparent only after 4-6 weeks, and at this point, a significant number of patients present as non-responsive. As such, many patients go weeks/months without appropriate treatment or symptom management. Adequate biomarkers for treatment success and outcome prediction are thus urgently needed. OBJECTIVE With this systematic review, we provide an overview of the use of peripheral blood mononuclear cells (PBMCs) and their signaling pathways in evaluating and/or predicting the effectiveness of different treatment regimens in the course of psychiatric illnesses. We highlight PBMC characteristics that (i) reflect treatment presence, (ii) allow differentiation of responders from non-responders, and (iii) prove predictive at baseline with regard to treatment outcome for a broad range of psychiatric intervention strategies. REVIEW METHODS A PubMed database search was performed to extract papers investigating the relation between any type of PBMC characteristic and treatment presence and/or outcome in patients suffering from severe mental illness. Criteria for eligibility were: written in English; psychiatric diagnosis based on DSM-III-R or newer; PBMC isolation via gradient centrifugation; comparison between treated and untreated patients via PBMC features; sample size ≥ n = 5 per experimental group. Papers not researching in vivo treatment effects between patients and healthy controls, non-clinical trials, and non-hypothesis-/data-driven (e.g., -omics designs) approaches were excluded. DATA SYNTHESIS Twenty-nine original articles were included and qualitatively summarized. Antidepressant and antipsychotic treatments were mostly reflected by intracellular inflammatory markers while intervention with mood stabilizers was evidenced through cell maturation pathways. Lastly, cell viability parameters mirrored predominantly non-pharmacological therapeutic strategies. As for response prediction, PBMC (subtype) counts and telomerase activity seemed most promising for antidepressant treatment outcome determination; full length brain-derived neurotrophic factor (BDNF)/truncated BDNF were shown to be most apt to prognosticate antipsychotic treatment. CONCLUSIONS We conclude that, although inherent limitations to and heterogeneity in study designs in combination with the scarce number of original studies hamper unambiguous identification, several PBMC characteristics-mostly related to inflammatory pathways and cell viability-indeed show promise towards establishment as clinically relevant treatment biomarkers.
Collapse
|
7
|
Bobilev AM, Perez JM, Tamminga CA. Molecular alterations in the medial temporal lobe in schizophrenia. Schizophr Res 2020; 217:71-85. [PMID: 31227207 DOI: 10.1016/j.schres.2019.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/29/2019] [Accepted: 06/01/2019] [Indexed: 11/30/2022]
Abstract
The medial temporal lobe (MTL) and its individual structures have been extensively implicated in schizophrenia pathophysiology, with considerable efforts aimed at identifying structural and functional differences in this brain region. The major structures of the MTL for which prominent differences have been revealed include the hippocampus, the amygdala and the superior temporal gyrus (STG). The different functions of each of these regions have been comprehensively characterized, and likely contribute differently to schizophrenia. While neuroimaging studies provide an essential framework for understanding the role of these MTL structures in various aspects of the disease, ongoing efforts have sought to employ molecular measurements in order to elucidate the biology underlying these macroscopic differences. This review provides a summary of the molecular findings in three major MTL structures, and discusses convergent findings in cellular architecture and inter-and intra-cellular networks. The findings of this effort have uncovered cell-type, network and gene-level specificity largely unique to each brain region, indicating distinct molecular origins of disease etiology. Future studies should test the functional implications of these molecular changes at the circuit level, and leverage new advances in sequencing technology to further refine our understanding of the differential contribution of MTL structures to schizophrenia.
Collapse
Affiliation(s)
- Anastasia M Bobilev
- Department of Psychiatry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, United States of America.
| | - Jessica M Perez
- Department of Psychiatry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, United States of America.
| | - Carol A Tamminga
- Department of Psychiatry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, United States of America.
| |
Collapse
|
8
|
Activation of Astroglial Connexin is Involved in Concentration-Dependent Double-Edged Sword Clinical Action of Clozapine. Cells 2020; 9:cells9020414. [PMID: 32054069 PMCID: PMC7072131 DOI: 10.3390/cells9020414] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 01/07/2023] Open
Abstract
Clozapine (CLZ) is a gold-standard antipsychotic against treatment-refractory schizophrenia, but is one of the most toxic antipsychotic agents. Pharmacological mechanisms of the double-edged sword clinical action of CLZ remain to be clarified. To explore the mechanisms of CLZ, the present study determined the astroglial transmission associated with connexin43 (Cx43), which is the most principal expression in astrocytes and myocardial cells, and expression of Cx43 in primary cultured astrocytes. Both acute and subchronic administrations of CLZ concentration-dependently increased Cx43-associated astroglial release of l-glutamate and d-serine, whereas therapeutic-relevant concentration of CLZ acutely did not affect but subchronically increased astroglial release. In contrast, after the subchronic administration of therapeutic-relevant concentration of valproate (VPA), acute administration of therapeutic-relevant concentration of CLZ drastically increased Cx43-associated astroglial releases. VPA increased Cx43 expression in cytosol fraction without affecting plasma membrane fraction, whereas CLZ increased Cx43 expression in both fractions. Acute administration of therapeutic-relevant concentration of CLZ drastically increased Cx43 expression in the plasma membrane fraction of astrocytes subchronically treated with VPA. The present findings suggest that CLZ-induced the activation of Cx43-associated channel activity and transported Cx43 to plasma membrane, probably contribute to the double-edged sword clinical action of CLZ, such as improvement of cognitive dysfunction and CLZ-induced myocarditis.
Collapse
|
9
|
Vila È, Huerta-Ramos E, Núñez C, Usall J, Ramos B. Specificity proteins 1 and 4 in peripheral blood mononuclear cells in postmenopausal women with schizophrenia: a 24-week double-blind, randomized, parallel, placebo-controlled trial. Eur Arch Psychiatry Clin Neurosci 2019; 269:941-948. [PMID: 30167782 DOI: 10.1007/s00406-018-0938-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 08/09/2018] [Indexed: 12/23/2022]
Abstract
Accumulating evidence suggests that Specificity Protein 1 (SP1) and 4 (SP4) transcription factors are involved in the pathophysiology of schizophrenia. The therapeutic use of selective oestrogen modulators such as raloxifene added to antipsychotic drugs in the treatment of postmenopausal women with schizophrenia has been investigated in a few clinical trials, which reported an improvement in negative, positive, and general psychopathological symptoms. We aimed to investigate the possible association between peripheral SP protein levels and symptom improvement in postmenopausal women with schizophrenia treated with adjuvant raloxifene. In a subgroup of 14 postmenopausal women with schizophrenia from a 24-week, randomized, parallel, double-blind, placebo-controlled clinical trial (NCT015736370), we investigated changes in SP1 and SP4 protein levels in peripheral blood mononuclear cells. Participants were randomized to either 60 mg/day adjunctive raloxifene or placebo. Psychopathological symptoms were assessed at baseline and at week 24 with the Positive and Negative Syndrome Scale (PANSS). The expression of SP proteins was evaluated by immunoblot, and changes in PANSS scores and protein levels were compared at baseline and after 24 weeks of treatment. An improvement in symptoms was observed in the intervention group, but not in placebo group. Post-treatment protein levels of SP4, but not SP1, correlated with improvements in general and total PANSS subscales in the raloxifene intervention group. A reduction in SP4 levels was found after raloxifene treatment. These results suggest that SP4 may be involved in raloxifene symptom improvement in postmenopausal women and could be a potential candidate for future studies investigating blood-based biomarkers for raloxifene effectiveness.
Collapse
Affiliation(s)
- Èlia Vila
- Psiquiatria Molecular, Institut de Recerca Sant Joan de Déu, Santa Rosa 39-57, 08950, Esplugues de Llobregat, Spain
| | - Elena Huerta-Ramos
- Intervencions en Salut Mental, Institut de Recerca Sant Joan de Déu, Santa Rosa 39-57, 08950, Esplugues de Llobregat, Spain
- Parc Sanitari Sant Joan de Déu, Doctor Antoni Pujadas 42, 08830, Sant Boi de Llobregat, Spain
- Instituto de Salud Carlos III, Centro de Investigación en Red de Salud Mental (CIBERSAM), Madrid, Spain
- Catalan Group in Women's Mental Health Research (GTRDSM), Barcelona, Spain
| | - Christian Núñez
- Intervencions en Salut Mental, Institut de Recerca Sant Joan de Déu, Santa Rosa 39-57, 08950, Esplugues de Llobregat, Spain
- Parc Sanitari Sant Joan de Déu, Doctor Antoni Pujadas 42, 08830, Sant Boi de Llobregat, Spain
- Catalan Group in Women's Mental Health Research (GTRDSM), Barcelona, Spain
| | - Judith Usall
- Intervencions en Salut Mental, Institut de Recerca Sant Joan de Déu, Santa Rosa 39-57, 08950, Esplugues de Llobregat, Spain.
- Parc Sanitari Sant Joan de Déu, Doctor Antoni Pujadas 42, 08830, Sant Boi de Llobregat, Spain.
- Instituto de Salud Carlos III, Centro de Investigación en Red de Salud Mental (CIBERSAM), Madrid, Spain.
- Catalan Group in Women's Mental Health Research (GTRDSM), Barcelona, Spain.
| | - Belén Ramos
- Psiquiatria Molecular, Institut de Recerca Sant Joan de Déu, Santa Rosa 39-57, 08950, Esplugues de Llobregat, Spain.
- Parc Sanitari Sant Joan de Déu, Doctor Antoni Pujadas 42, 08830, Sant Boi de Llobregat, Spain.
- Instituto de Salud Carlos III, Centro de Investigación en Red de Salud Mental (CIBERSAM), Madrid, Spain.
- Dept. de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
| |
Collapse
|
10
|
Al-Shammari AR, Bhardwaj SK, Musaelyan K, Srivastava LK, Szele FG. Schizophrenia-related dysbindin-1 gene is required for innate immune response and homeostasis in the developing subventricular zone. NPJ SCHIZOPHRENIA 2018; 4:15. [PMID: 30038210 PMCID: PMC6056426 DOI: 10.1038/s41537-018-0057-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 05/22/2018] [Accepted: 06/11/2018] [Indexed: 12/31/2022]
Abstract
Schizophrenia is a neurodevelopmental disorder likely caused by environmental and genetic risk factors but functional interactions between the risk factors are unclear. We tested the hypothesis that dysbindin-1 (Dtnbp1) gene mutation combined with postnatal exposure to viral mimetic polyI:C results in schizophrenia-related behavioural changes in adulthood, and mediates polyI:C-induced inflammation in the subventricular zone (SVZ). Adult Sandy (Sdy, Dtnbp1 mutant) mice given early postnatal polyI:C injections displayed reduced prepulse inhibition of startle, reduced locomotion and deficits in novel object recognition. PolyI:C induced a canonical immune response in the SVZ; it increased mRNA expression of its toll-like receptor 3 (Tlr3) and downstream transcription factors RelA and Sp1. PolyI:C also increased SVZ Dtnbp1 mRNA expression, suggesting dysbindin-1 regulates immune responses. Dysbindin-1 loss in Sdy mice blocked the polyI:C-induced increases in mRNA expression of Tlr3, RelA and Sp1 in the SVZ. Dtnbp1 overexpression in SVZ-derived Sdy neurospheres rescued Tlr3, RelA and Sp1 mRNA expression supporting a functional interaction between dysbindin-1 and polyI:C-induced inflammation. Immunohistochemistry showed higher Iba1+ immune cell density in the SVZ of Sdy mice than in WT postnatally. PolyI:C did not alter SVZ Iba1+ cell density but increased CD45+/Iba1− cell numbers in the SVZ of Sdy mice. Finally, polyI:C injections in Sdy, but not WT mice reduced postnatal and adult SVZ proliferation. Together, we show novel functional interactions between the schizophrenia-relevant dysbindin-1 gene and the immune response to polyI:C. This work sheds light on the molecular basis for amplified abnormalities due to combined genetic predisposition and exposure to environmental schizophrenia risk factors.
Collapse
Affiliation(s)
- Abeer R Al-Shammari
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.,Research and Development, Qatar Research Leadership Program, Qatar Foundation, Doha, Qatar.,Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Sanjeev K Bhardwaj
- Douglas Mental Health University Institute, McGill University, Montreal, Canada
| | - Ksenia Musaelyan
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Lalit K Srivastava
- Douglas Mental Health University Institute, McGill University, Montreal, Canada
| | - Francis G Szele
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|
11
|
Abstract
Duplications in 16p11.2 are a risk factor for schizophrenia (SCZ). Using genetically modified zebrafish, Golzio and colleagues identified KCTD13 within 16p11.2 as a major driver of the neuropsychiatric phenotype observed in humans. The aims of the present study were to explore the role of KCTD13 in the development of SCZ and to provide a more complete picture of the allelic architecture at this risk locus. The exons of KCTD13 were sequenced in 576 patients. The mutations c.6G>T and c.598G>A were identified in one patient each. Both mutations were predicted to be functionally relevant and were absent from the 1000 Genomes Project data and the Exome Variant Server. The mutation c.6G>T was predicted to abolish a potential transcription factor-binding site for specifity protein 1. Altered specifity protein 1 expression has been reported in SCZ patients compared with controls. Further studies in large cohorts are warranted to determine the relevance of the two identified mutations.
Collapse
|
12
|
Species composition and environmental adaptation of indigenous Chinese cattle. Sci Rep 2017; 7:16196. [PMID: 29170422 PMCID: PMC5700937 DOI: 10.1038/s41598-017-16438-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 11/13/2017] [Indexed: 12/13/2022] Open
Abstract
Indigenous Chinese cattle combine taurine and indicine origins and occupy a broad range of different environments. By 50 K SNP genotyping we found a discontinuous distribution of taurine and indicine cattle ancestries with extremes of less than 10% indicine cattle in the north and more than 90% in the far south and southwest China. Model-based clustering and f4-statistics indicate introgression of both banteng and gayal into southern Chinese cattle while the sporadic yak influence in cattle in or near Tibetan area validate earlier findings of mitochondrial DNA analysis. Geographic patterns of taurine and indicine mitochondrial and Y-chromosomal DNA diversity largely agree with the autosomal cline. The geographic distribution of the genomic admixture of different bovine species is proposed to be the combined effect of prehistoric immigrations, gene flow, major rivers acting as genetic barriers, local breeding objectives and environmental adaptation. Whole-genome scan for genetic differentiation and association analyses with both environmental and morphological covariables are remarkably consistent with previous studies and identify a number of genes implicated in adaptation, which include TNFRSF19, RFX4, SP4 and several coat color genes. We propose indigenous Chinese cattle as a unique and informative resource for gene-level studies of climate adaptation in mammals.
Collapse
|
13
|
MacDowell KS, Pinacho R, Leza JC, Costa J, Ramos B, García-Bueno B. Differential regulation of the TLR4 signalling pathway in post-mortem prefrontal cortex and cerebellum in chronic schizophrenia: Relationship with SP transcription factors. Prog Neuropsychopharmacol Biol Psychiatry 2017; 79:481-492. [PMID: 28803924 DOI: 10.1016/j.pnpbp.2017.08.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 07/28/2017] [Accepted: 08/06/2017] [Indexed: 12/21/2022]
Abstract
Alterations in innate immunity may underlie the pathophysiology of schizophrenia (SZ). Toll-like receptor-4 (TLR4) is a master element of innate immunity. The specificity proteins (SPs), transcription factors recently implicated in SZ, are putative regulatory agents of this. This work was aimed at describing alterations in the TLR4 signalling pathway in postmortem brain prefrontal cortex (PFC) and cerebellum (CB) of 16 chronic SZ patients and 14 controls. The possible association of TLR4 pathway with SP1 and SP4 and SZ negative symptomatology is explored. In PFC, TLR4/myeloid differentiation factor 88 (MyD88)/inhibitory subunit of nuclear factor kappa B alpha (IκBα) protein levels were lower in SZ patients, while nuclear transcription factor-κB (NFκB) activity, cyclooxygenase-2 (COX-2) expression and the lipid peroxidation index malondialdehyde (MDA) appeared increased. The pattern of changes in CB is opposite, except for COX-2 expression that remained augmented and MDA levels unaltered. Network interaction analysis showed that TLR4/MyD88/IκBα/NFκB/COX-2 pathway was coupled in PFC and uncoupled in CB. SP4 co-expressed with TLR4 and NFκB in PFC and both SP1 and SP4 co-expressed with NFκB in CB. In PFC, correlation analysis found an inverse relationship between NFκB and negative symptoms. In summary, we found brain region-specific alterations in the TLR4 signalling pathway in chronic SZ, in which SP transcription factors could participate at different levels. Further studies are required to elucidate the regulatory mechanisms of innate immunity in SZ and its relationship with symptoms.
Collapse
Affiliation(s)
- Karina S MacDowell
- Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Spain; Dept. of Pharmacology, Faculty of Medicine, Hospital 12 de Octubre Imas12, IUINQ, University Complutense, 28040 Madrid, Spain
| | - Raquel Pinacho
- Psiquiatria Molecular, Institut de Recerca Sant Joan de Déu, Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain
| | - Juan C Leza
- Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Spain; Dept. of Pharmacology, Faculty of Medicine, Hospital 12 de Octubre Imas12, IUINQ, University Complutense, 28040 Madrid, Spain
| | - Joan Costa
- Banc de Teixits Neurologics, Parc Sanitari Sant Joan de Déu, Sant Boi de Llobregat, 08830 Barcelona, Spain; Parc Sanitari Sant Joan de Déu, Dr. Antoni Pujadas, 42, 08830 Sant Boi de Llobregat, Spain
| | - Belén Ramos
- Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Spain; Psiquiatria Molecular, Institut de Recerca Sant Joan de Déu, Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain; Parc Sanitari Sant Joan de Déu, Dr. Antoni Pujadas, 42, 08830 Sant Boi de Llobregat, Spain; Dept. de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain.
| | - Borja García-Bueno
- Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Spain; Dept. of Pharmacology, Faculty of Medicine, Hospital 12 de Octubre Imas12, IUINQ, University Complutense, 28040 Madrid, Spain.
| |
Collapse
|
14
|
Ben-Shachar D. Mitochondrial multifaceted dysfunction in schizophrenia; complex I as a possible pathological target. Schizophr Res 2017; 187:3-10. [PMID: 27802911 DOI: 10.1016/j.schres.2016.10.022] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/10/2016] [Accepted: 10/14/2016] [Indexed: 01/09/2023]
Abstract
Mitochondria are key players in various essential cellular processes beyond being the main energy supplier of the cell. Accordingly, they are involved in neuronal synaptic transmission, neuronal growth and sprouting and consequently neuronal plasticity and connectivity. In addition, mitochondria participate in the modulation of gene transcription and inflammation as well in physiological responses in health and disease. Schizophrenia is currently regarded as a neurodevelopmental disorder associated with impaired immune system, aberrant neuronal differentiation and abnormalities in various neurotransmitter systems mainly the dopaminergic, glutaminergic and GABAergic. Ample evidence has been accumulated over the last decade indicating a multifaceted dysfunction of mitochondria in schizophrenia. Indeed, mitochondrial deficit can be of relevance for the majority of the pathologies observed in this disease. In the present article, we overview specific deficits of the mitochondria in schizophrenia, with a focus on the first complex (complex I) of the mitochondrial electron transport chain (ETC). We argue that complex I, being a major factor in the regulation of mitochondrial ETC, is a possible key modulator of various functions of the mitochondria. We review biochemical, molecular, cellular and functional evidence for mitochondrial impairments and their possible convergence to impact in-vitro neuronal differentiation efficiency in schizophrenia. Mitochondrial function in schizophrenia may advance our knowledge of the disease pathophysiology and open the road for new treatment targets for the benefit of the patients.
Collapse
Affiliation(s)
- Dorit Ben-Shachar
- Laboratory of Psychobiology, Department of Psychiatry, Rambam Health Care Campus, B. Rappaport Faculty of Medicine, Rappaport Family Institute for Research in the Medical Sciences, Technion-IIT, Haifa, Israel.
| |
Collapse
|
15
|
Level Set Based Hippocampus Segmentation in MR Images with Improved Initialization Using Region Growing. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2017; 2017:5256346. [PMID: 28191031 PMCID: PMC5274694 DOI: 10.1155/2017/5256346] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/10/2016] [Accepted: 12/22/2016] [Indexed: 02/05/2023]
Abstract
The hippocampus has been known as one of the most important structures referred to as Alzheimer's disease and other neurological disorders. However, segmentation of the hippocampus from MR images is still a challenging task due to its small size, complex shape, low contrast, and discontinuous boundaries. For the accurate and efficient detection of the hippocampus, a new image segmentation method based on adaptive region growing and level set algorithm is proposed. Firstly, adaptive region growing and morphological operations are performed in the target regions and its output is used for the initial contour of level set evolution method. Then, an improved edge-based level set method utilizing global Gaussian distributions with different means and variances is developed to implement the accurate segmentation. Finally, gradient descent method is adopted to get the minimization of the energy equation. As proved by experiment results, the proposed method can ideally extract the contours of the hippocampus that are very close to manual segmentation drawn by specialists.
Collapse
|
16
|
Klein HC. Silencing of Viral Elements: An Available Cure for Schizophrenia? Front Psychiatry 2017; 8:284. [PMID: 29321748 PMCID: PMC5733551 DOI: 10.3389/fpsyt.2017.00284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 11/30/2017] [Indexed: 01/06/2023] Open
Affiliation(s)
- Hans C Klein
- Department of Psychiatry and Medical Imaging Centre, University of Groningen, Groningen, Netherlands
| |
Collapse
|
17
|
Cope ZA, Powell SB, Young JW. Modeling neurodevelopmental cognitive deficits in tasks with cross-species translational validity. GENES BRAIN AND BEHAVIOR 2016; 15:27-44. [PMID: 26667374 DOI: 10.1111/gbb.12268] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/14/2015] [Accepted: 10/27/2015] [Indexed: 12/24/2022]
Abstract
Numerous psychiatric disorders whose cognitive dysfunction links to functional outcome have neurodevelopmental origins including schizophrenia, autism and bipolar disorder. Treatments are needed for these cognitive deficits, which require development using animal models. Models of neurodevelopmental disorders are as varied and diverse as the disorders themselves, recreating some but not all aspects of the disorder. This variety may in part underlie why purported procognitive treatments translated from these models have failed to restore functioning in the targeted patient populations. Further complications arise from environmental factors used in these models that can contribute to numerous disorders, perhaps only impacting specific domains, while diagnostic boundaries define individual disorders, limiting translational efficacy. The Research Domain Criteria project seeks to 'develop new ways to classify mental disorders based on behavioral dimensions and neurobiological measures' in hopes of facilitating translational research by remaining agnostic toward diagnostic borders derived from clinical presentation in humans. Models could therefore recreate biosignatures of cognitive dysfunction irrespective of disease state. This review highlights work within the field of neurodevelopmental models of psychiatric disorders tested in cross-species translational cognitive paradigms that directly inform this newly developing research strategy. By expounding on this approach, the hopes are that a fuller understanding of each model may be attainable in terms of the cognitive profile elicited by each manipulation. Hence, conclusions may begin to be drawn on the nature of cognitive neuropathology on neurodevelopmental and other disorders, increasing the chances of procognitive treatment development for individuals affected in specific cognitive domains.
Collapse
Affiliation(s)
- Z A Cope
- Department of Psychiatry, University of California San Diego, La Jolla
| | - S B Powell
- Department of Psychiatry, University of California San Diego, La Jolla.,Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - J W Young
- Department of Psychiatry, University of California San Diego, La Jolla.,Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
18
|
Asor E, Ben-Shachar D. Gene environment interaction in periphery and brain converge to modulate behavioral outcomes: Insights from the SP1 transient early in life interference rat model. World J Psychiatry 2016; 6:294-302. [PMID: 27679768 PMCID: PMC5031929 DOI: 10.5498/wjp.v6.i3.294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 07/21/2016] [Accepted: 08/08/2016] [Indexed: 02/05/2023] Open
Abstract
It is generally assumed that behavior results from an interaction between susceptible genes and environmental stimuli during critical life stages. The present article reviews the main theoretical and practical concepts in the research of gene environment interaction, emphasizing the need for models simulating real life complexity. We review a novel approach to study gene environment interaction in which a brief post-natal interference with the expression of multiple genes, by hindering the activity of the ubiquitous transcription factor specificity protein 1 (Sp1) is followed by later-in-life exposure of rats to stress. Finally, this review discusses the role of peripheral processes in behavioral responses, with the Sp1 model as one example demonstrating how specific behavioral patterns are linked to modulations in both peripheral and central physiological processes. We suggest that models, which take into account the tripartite reciprocal interaction between the central nervous system, peripheral systems and environmental stimuli will advance our understanding of the complexity of behavior.
Collapse
|
19
|
Nair B, Johar K, Priya A, Wong-Riley MTT. Specificity protein 4 (Sp4) transcriptionally regulates inhibitory GABAergic receptors in neurons. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:1-9. [PMID: 26469128 DOI: 10.1016/j.bbamcr.2015.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 10/05/2015] [Accepted: 10/10/2015] [Indexed: 10/22/2022]
Abstract
Previous studies in our laboratory have shown that the neuron-specific specificity protein 4 (Sp4) transcriptionally regulates many excitatory neurotransmitter receptor subunit genes, such as those for GluN1, GluN2A, and GluN2B of N-methyl-d-aspartate (NMDA) receptors and Gria2 of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. It also regulates Atp1a1 and Atp1b1 subunit genes of Na(+)/K(+)-ATPase, a major energy-consuming enzyme, as well as all 13 subunits of cytochrome c oxidase (COX), an important energy-generating enzyme. Thus, there is a tight coupling between energy consumption, energy production, and excitatory neuronal activity at the transcriptional level in neurons. The question is whether inhibitory neurotransmitter receptors are also regulated by Sp4. In the present study, we tested our hypothesis that Sp4 regulates receptor subunit genes of a major inhibitory neurotransmitter, GABA, specifically GABAA receptors. By means of multiple approaches, including in silico analysis, electrophoretic mobility shift and supershift assays, real-time quantitative PCR, chromatin immunoprecipitation, promoter mutational analysis, over-expression and shRNA of Sp4, functional assays, and western blots, we found that Sp4 functionally regulates the transcription of Gabra1 (GABAA α1) and Gabra2 (GABAA α2), but not Gabra3 (GABAA α3) subunit genes. The binding sites of Sp4 are conserved among rats, humans, and mice. Thus, our results substantiate our hypothesis that Sp4 plays a key role in regulating the transcription of GABAA receptor subunit genes. They also indicate that Sp4 is in a position to transcriptionally regulate the balance between excitatory and inhibitory neurochemical expressions in neurons.
Collapse
Affiliation(s)
- Bindu Nair
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Kaid Johar
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Anusha Priya
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Margaret T T Wong-Riley
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| |
Collapse
|
20
|
Santos MCT, Tegge AN, Correa BR, Mahesula S, Kohnke LQ, Qiao M, Ferreira MAR, Kokovay E, Penalva LOF. miR-124, -128, and -137 Orchestrate Neural Differentiation by Acting on Overlapping Gene Sets Containing a Highly Connected Transcription Factor Network. Stem Cells 2015; 34:220-32. [PMID: 26369286 DOI: 10.1002/stem.2204] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 08/14/2015] [Indexed: 12/19/2022]
Abstract
The ventricular-subventricular zone harbors neural stem cells (NSCs) that can differentiate into neurons, astrocytes, and oligodendrocytes. This process requires loss of stem cell properties and gain of characteristics associated with differentiated cells. miRNAs function as important drivers of this transition; miR-124, -128, and -137 are among the most relevant ones and have been shown to share commonalities and act as proneurogenic regulators. We conducted biological and genomic analyses to dissect their target repertoire during neurogenesis and tested the hypothesis that they act cooperatively to promote differentiation. To map their target genes, we transfected NSCs with antagomiRs and analyzed differences in their mRNA profile throughout differentiation with respect to controls. This strategy led to the identification of 910 targets for miR-124, 216 for miR-128, and 652 for miR-137. The target sets show extensive overlap. Inspection by gene ontology and network analysis indicated that transcription factors are a major component of these miRNAs target sets. Moreover, several of these transcription factors form a highly interconnected network. Sp1 was determined to be the main node of this network and was further investigated. Our data suggest that miR-124, -128, and -137 act synergistically to regulate Sp1 expression. Sp1 levels are dramatically reduced as cells differentiate and silencing of its expression reduced neuronal production and affected NSC viability and proliferation. In summary, our results show that miRNAs can act cooperatively and synergistically to regulate complex biological processes like neurogenesis and that transcription factors are heavily targeted to branch out their regulatory effect.
Collapse
Affiliation(s)
- Márcia C T Santos
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA.,Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Allison N Tegge
- Department of Computer Science, Virginia Tech, Blacksburg, Virginia, USA.,Department of Statistics, Virginia Tech, Blacksburg, Virginia, USA
| | - Bruna R Correa
- Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA.,Centro de Oncologia Molecular, Hospital Sírio-Libanês, São Paulo, Brazil
| | - Swetha Mahesula
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Luana Q Kohnke
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA.,Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Mei Qiao
- Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | | | - Erzsebet Kokovay
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Luiz O F Penalva
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA.,Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
21
|
Pinacho R, Saia G, Fusté M, Meléndez-Pérez I, Villalta-Gil V, Haro JM, Gill G, Ramos B. Phosphorylation of transcription factor specificity protein 4 is increased in peripheral blood mononuclear cells of first-episode psychosis. PLoS One 2015; 10:e0125115. [PMID: 25915526 PMCID: PMC4411105 DOI: 10.1371/journal.pone.0125115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 03/20/2015] [Indexed: 12/20/2022] Open
Abstract
Background Altered expression of transcription factor specificity protein 4 (SP4) has been found in the postmortem brain of patients with psychiatric disorders including schizophrenia and bipolar disorder. Reduced levels of SP4 protein have recently been reported in peripheral blood mononuclear cells in first-episode psychosis. Also, SP4 levels are modulated by lithium treatment in cultured neurons. Phosphorylation of SP4 at S770 is increased in the cerebellum of bipolar disorder subjects and upon inhibition of NMDA receptor signaling in cultured neurons. The aim of this study was to investigate whether SP4 S770 phosphorylation is increased in lymphocytes of first-episode psychosis patients and the effect of lithium treatment on this phosphorylation. Methods A cross-sectional study of S770 phosphorylation relative to total SP4 immunoreactivity using specific antibodies in peripheral blood mononuclear cells in first-episode psychosis patients (n = 14, treated with lithium or not) and matched healthy controls (n = 14) by immunoblot was designed. We also determined the effects of the prescribed drugs lithium, olanzapine or valproic acid on SP4 phosphorylation in rat primary cultured cerebellar granule neurons. Results We found that SP4 S770 phosphorylation was significantly increased in lymphocytes in first-episode psychosis compared to controls and decreased in patients treated with lithium compared to patients who did not receive lithium. Moreover, incubation with lithium but not olanzapine or valproic acid reduced SP4 phosphorylation in rat cultured cerebellar granule neurons. Conclusions The findings presented here indicate that SP4 S770 phosphorylation is increased in lymphocytes in first-episode psychosis which may be reduced by lithium treatment in patients. Moreover, our study shows lithium treatment prevents this phosphorylation in vitro in neurons. This pilot study suggests that S770 SP4 phosphorylation could be a peripheral biomarker of psychosis, and may be regulated by lithium treatment in first-episode psychosis.
Collapse
Affiliation(s)
- Raquel Pinacho
- Unitat de recerca, Fundació Sant Joan de Déu, Parc Sanitari Sant Joan de Déu, Universitat de Barcelona, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Sant Boi de Llobregat, Barcelona, Spain
| | - Gregory Saia
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Cell, Molecular and Developmental Biology Program, Sackler School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Montserrat Fusté
- Unitat de recerca, Fundació Sant Joan de Déu, Parc Sanitari Sant Joan de Déu, Universitat de Barcelona, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Sant Boi de Llobregat, Barcelona, Spain
| | - Iria Meléndez-Pérez
- Unitat de recerca, Fundació Sant Joan de Déu, Parc Sanitari Sant Joan de Déu, Universitat de Barcelona, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Sant Boi de Llobregat, Barcelona, Spain
| | - Victoria Villalta-Gil
- Unitat de recerca, Fundació Sant Joan de Déu, Parc Sanitari Sant Joan de Déu, Universitat de Barcelona, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Sant Boi de Llobregat, Barcelona, Spain
| | - Josep Maria Haro
- Unitat de recerca, Fundació Sant Joan de Déu, Parc Sanitari Sant Joan de Déu, Universitat de Barcelona, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Sant Boi de Llobregat, Barcelona, Spain
| | - Grace Gill
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail: (BR); (GG)
| | - Belén Ramos
- Unitat de recerca, Fundació Sant Joan de Déu, Parc Sanitari Sant Joan de Déu, Universitat de Barcelona, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Sant Boi de Llobregat, Barcelona, Spain
- * E-mail: (BR); (GG)
| |
Collapse
|