1
|
Sun X, He R, Xiao Y, Xiu M, Sun M, Wu F, Zhang XY. Interaction between baseline BMI and baseline disease severity predicts greater improvement in negative symptoms in first-episode schizophrenia. Eur Arch Psychiatry Clin Neurosci 2024; 274:1327-1332. [PMID: 38536473 DOI: 10.1007/s00406-024-01763-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 01/13/2024] [Indexed: 08/30/2024]
Abstract
Several studies have reported that baseline symptom severity in patients with schizophrenia (SCZ) is associated with the efficacy of antipsychotic medication. Overweight/obesity is common in SCZ and has also been reported to be correlated with therapeutic response to antipsychotics. This study aimed to evaluate whether baseline body mass index (BMI) and disease severity were associated with improvements in negative symptoms in patients with first-episode and medication-naïve (FEMN) SCZ. A total of 241 FEMN patients were recruited in this study and treated with oral risperidone over 3 months. Clinical symptoms were measured by the Positive and Negative Syndrome Scale (PANSS) and BMI was assessed at baseline and 3-month follow-up. We found that baseline BMI was correlated with the baseline severity of symptoms. Baseline BMI or baseline disease severity was associated with improvement in negative symptoms after 3 months of treatment. Linear regression analysis indicated that the interaction of BMI and disease severity at baseline was associated with improvement in negative symptoms in the early stage of SCZ after controlling for sex, age, and dose of risperidone. Our study suggests that the interaction of baseline BMI and disease severity may play a role in predicting negative symptom improvement after 3 months of risperidone treatment.
Collapse
Affiliation(s)
- Xiaobing Sun
- Jiahui International Hospital (Shanghai), Shanghai, China
| | - Ruiqing He
- Jiahui International Hospital (Shanghai), Shanghai, China
| | - Yuan Xiao
- Qingdao Mental Health Center, Qingdao, China
| | - Meihong Xiu
- Beijing HuiLongGuan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, China
| | - Maodi Sun
- North University of China, Taiyuan, China
| | - Fengchun Wu
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Biomedical Engineering, Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Xiang Yang Zhang
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
2
|
Jankovic T, Bogicevic M, Knezevic NN. The role of nitric oxide and hormone signaling in chronic stress, anxiety, depression and post-traumatic stress disorder. Mol Cell Endocrinol 2024; 590:112266. [PMID: 38718853 DOI: 10.1016/j.mce.2024.112266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/20/2024] [Accepted: 04/30/2024] [Indexed: 05/24/2024]
Abstract
This paper provides a summary of the role of nitric oxide (NO) and hormones in the development of chronic stress, anxiety, depression, and post-traumatic stress disorder (PTSD). These mental health conditions are prevalent globally and involve complex molecular interactions. Although there is a significant amount of research and therapeutic options available, the underlying mechanisms of these disorders are still not fully understood. The primary pathophysiologic processes involved in chronic stress, anxiety, depression, and PTSD include dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis, the intracellular influence of neuronal nitric oxide synthase (nNOS) on transcription factors, an inflammatory response with the formation of nitrergic oxidative species, and reduced serotonergic transmission in the dorsal raphe nucleus. Despite the extensive literature on this topic, there is a great need for further research to clarify the complexities inherent in these pathways, with the primary aim of improving psychiatric care.
Collapse
Affiliation(s)
- Tamara Jankovic
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL, USA
| | - Marko Bogicevic
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL, USA; Midwestern University Chicago College of Osteopathic Medicine, Downers Grove, IL, USA
| | - Nebojsa Nick Knezevic
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL, USA; Department of Anesthesiology, University of Illinois, Chicago, IL, USA; Department of Surgery, University of Illinois, Chicago, IL, USA.
| |
Collapse
|
3
|
Nicolazzi L, Gilbert L, Horsch A, Quansah DY, Puder JJ. Trajectories and associations of symptoms of mental health and well-being with insulin resistance and metabolic health in women with gestational diabetes. Psychoneuroendocrinology 2024; 160:106919. [PMID: 38091918 DOI: 10.1016/j.psyneuen.2023.106919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/17/2023] [Accepted: 12/05/2023] [Indexed: 01/02/2024]
Abstract
BACKGROUND Gestational diabetes mellitus (GDM) is characterized by increased insulin resistance and carries perinatal and long-term risks for the mother and her offspring. There is a link between perinatal depression or anxiety and GDM. Mental health problems are associated with higher insulin resistance and could explain the underlying association between GDM and depression or anxiety symptoms. We investigated the trajectories and associations between symptoms of mental health and well-being with insulin resistance and metabolic health in women with GDM. METHODS This study included the control group (n = 106) of a randomized controlled trial in women with GDM that were followed-up during pregnancy and up to 1-year postpartum. We measured symptoms of mental health (Edinburgh Postnatal Depression Scale (EPDS), Anxiety subscale of the Hospital Anxiety and Depression Scale (HADS-A), well-being (The World Health Organization Well-Being Index (WHO-5)) and metabolic health, including insulin resistance variables (HOMA-insulin resistance (IR) and Matsuda Index of insulin sensitivity) as well as weight during pregnancy and in the postpartum. RESULTS Participants' pre pregnancy weight and BMI were 69.7 kg ± 16.1 and 25.9 kg/m2 ± 5.5 respectively. HOMA-IR was higher during pregnancy compared to 6-8 weeks postpartum and increased between 6-8 weeks and 1-year postpartum (all p < 0.05). Matsuda index decreased between 6-8 weeks and 1-year postpartum (p < 0.001). EPDS scores decreased between pregnancy and both 6-8 weeks and 1-year postpartum (all p < 0.05). HADS-A scores did not change between pregnancy and the postpartum. WHO-5 scores improved significantly from pregnancy and both 6-8 weeks and 1-year postpartum (p < 0.001). Correlation coefficients within outcome at the three different time points were high for metabolic measures and ranged between 0.94 and 0.96 for weight, from 0.77 to 0.89 for HOMA-IR and 0.64 for the Matsuda index (all p < 0.001). Mental health and well-being variables were moderately correlated in all three time points including r = 0.36-0.55 for the EPDS (p < 0.001), r = 0.58 for HADS (p < 0.001), and r = 0.43-0.52 for the WHO-5 (p < 0.01). After adjustment for age and pre-pregnancy BMI, Matsuda index was negatively associated with EPDS scores and positively associated to WHO-5 scores at 6-8 weeks postpartum. No other association between insulin resistance and mental health or well-being outcomes were found. CONCLUSION While insulin resistance fluctuated with values being lowest in the early postpartum and increasing thereafter, both depression and well-being scores decreased between pregnancy and the postpartum and did not change in the postpartum period. Intraindividual variability was larger for mental health and well-being than for metabolic health outcomes at different time points, indicating a higher plasticity for mental health and well-being outcomes that could be acted upon. We found only few associations between mental health and well-being and metabolic health outcomes.
Collapse
Affiliation(s)
- Ludmila Nicolazzi
- Department of Medicine, Internal Medicine service, Lausanne University Hospital, Lausanne, Switzerland.
| | - Leah Gilbert
- Obstetric service, Department Woman-Mother-Child, Lausanne University Hospital, Lausanne, Switzerland.
| | - Antje Horsch
- Institute of Higher Education and Research in Healthcare (IUFRS), University of Lausanne, Switzerland; Neonatalogy Service, Department Woman-Mother-Child, Lausanne University Hospital, Lausanne, Switzerland.
| | - Dan Yedu Quansah
- Obstetric service, Department Woman-Mother-Child, Lausanne University Hospital, Lausanne, Switzerland.
| | - Jardena J Puder
- Obstetric service, Department Woman-Mother-Child, Lausanne University Hospital, Lausanne, Switzerland.
| |
Collapse
|
4
|
Chen X, Fan Y, Ren W, Sun M, Guan X, Xiu M, Li S. Baseline BMI is associated with clinical symptom improvements in first-episode schizophrenia: a longitudinal study. Front Pharmacol 2023; 14:1264591. [PMID: 38026922 PMCID: PMC10670888 DOI: 10.3389/fphar.2023.1264591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Background: There is sufficient evidence of the high prevalence of obesity in schizophrenia (SZ) compared to the general population. Previous studies have reported that weight gain correlated with the response to antipsychotics in patients with SZ. Nonetheless, the relationship between body mass index (BMI) and therapeutic benefits remains unclear. This study was designed to investigate the association between baseline BMI and improvements in clinical symptoms after treatment with antipsychotics in first-episode and medication-naïve SZ (FEMNS). Methods: A total of 241 FEMNS patients were enrolled and received risperidone over 12 weeks. The severity of symptoms was assessed by the Positive and Negative Syndrome Scale (PANSS) and BMI was measured at baseline and 12-week follow-up. Results: We found that risperidone treatment raised the body weight of FEMNS patients and baseline BMI was negatively correlated with the improvement in negative symptoms (r = -0.14, p = 0.03) after 12-week treatment. Linear regression analysis indicated that baseline BMI was an independent predictor of response to risperidone in the early stage of SZ. Conclusion: The current study suggests a close relationship between baseline BMI and improvement in negative symptoms in SZ.
Collapse
Affiliation(s)
- Xiaofang Chen
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing, China
| | - Yong Fan
- Qingdao Mental Health Center, Qingdao, China
| | - Wenchao Ren
- Qingdao Mental Health Center, Qingdao, China
| | - Maodi Sun
- North University of China, Taiyuan, China
| | - Xiaoni Guan
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing, China
| | - Meihong Xiu
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing, China
| | - Shuyun Li
- Department of Nutritional and Metabolic Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
5
|
Vaganova AN, Shemyakova TS, Lenskaia KV, Rodionov RN, Steenblock C, Gainetdinov RR. Trace Amine-Associated Receptors and Monoamine-Mediated Regulation of Insulin Secretion in Pancreatic Islets. Biomolecules 2023; 13:1618. [PMID: 38002300 PMCID: PMC10669413 DOI: 10.3390/biom13111618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Currently, metabolic syndrome treatment includes predominantly pharmacological symptom relief and complex lifestyle changes. Trace amines and their receptor systems modulate signaling pathways of dopamine, norepinephrine, and serotonin, which are involved in the pathogenesis of this disorder. Trace amine-associated receptor 1 (TAAR1) is expressed in endocrine organs, and it was revealed that TAAR1 may regulate insulin secretion in pancreatic islet β-cells. For instance, accumulating data demonstrate the positive effect of TAAR1 agonists on the dynamics of metabolic syndrome progression and MetS-associated disease development. The role of other TAARs (TAAR2, TAAR5, TAAR6, TAAR8, and TAAR9) in the islet's function is much less studied. In this review, we summarize the evidence of TAARs' contribution to the metabolic syndrome pathogenesis and regulation of insulin secretion in pancreatic islets. Additionally, by the analysis of public transcriptomic data, we demonstrate that TAAR1 and other TAAR receptors are expressed in the pancreatic islets. We also explore associations between the expression of TAARs mRNA and other genes in studied samples and demonstrate the deregulation of TAARs' functional associations in patients with metabolic diseases compared to healthy donors.
Collapse
Affiliation(s)
- Anastasia N. Vaganova
- Institute of Translational Biomedicine, St. Petersburg State University, 199034 St. Petersburg, Russia; (A.N.V.); (T.S.S.)
- St. Petersburg State University Hospital, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Taisiia S. Shemyakova
- Institute of Translational Biomedicine, St. Petersburg State University, 199034 St. Petersburg, Russia; (A.N.V.); (T.S.S.)
| | - Karina V. Lenskaia
- Department of Medicine, St. Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia;
| | - Roman N. Rodionov
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (R.N.R.); (C.S.)
| | - Charlotte Steenblock
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (R.N.R.); (C.S.)
| | - Raul R. Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg State University, 199034 St. Petersburg, Russia; (A.N.V.); (T.S.S.)
- St. Petersburg State University Hospital, St. Petersburg State University, 199034 St. Petersburg, Russia
| |
Collapse
|
6
|
Alberry B, Silveira PP. Brain insulin signaling as a potential mediator of early life adversity effects on physical and mental health. Neurosci Biobehav Rev 2023; 153:105350. [PMID: 37544390 DOI: 10.1016/j.neubiorev.2023.105350] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
In numerous brain structures, insulin signaling modulates the homeostatic processes, sensitivity to reward pathways, executive function, memory, and cognition. Through human studies and animal models, mounting evidence implicates central insulin signaling in the metabolic, physiological, and psychological consequences of early life adversity. In this review, we describe the consequences of early life adversity in the brain where insulin signaling is a key factor and how insulin may moderate the effects of adversity on psychiatric and cardio-metabolic health outcomes. Further understanding of how early life adversity and insulin signaling impact specific brain regions and mental and physical health outcomes will assist in prevention, diagnosis, and potential intervention following early life adversity.
Collapse
Affiliation(s)
- Bonnie Alberry
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Patricia Pelufo Silveira
- Department of Psychiatry, McGill University, Montreal, QC, Canada; Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada.
| |
Collapse
|
7
|
Alruwaili NS, Al-Kuraishy HM, Al-Gareeb AI, Albuhadily AK, Ragab AE, Alenazi AA, Alexiou A, Papadakis M, Batiha GES. Antidepressants and type 2 diabetes: highways to knowns and unknowns. Diabetol Metab Syndr 2023; 15:179. [PMID: 37653558 PMCID: PMC10470155 DOI: 10.1186/s13098-023-01149-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/09/2023] [Indexed: 09/02/2023] Open
Abstract
Type 2 diabetes (T2D) is a metabolic disease caused by the development of insulin resistance (IR), relative insulin deficiency, and hyperglycemia. Hyperglycemia-induced neurochemical dysregulation activates the progression of depression in T2D patients. Therefore, management of depression by antidepressant agents improves glucose homeostasis and insulin sensitivity. However, prolong use of antidepressant drugs may increase the risk for the development of T2D. However, there is strong controversy concerning the use of antidepressant drugs in T2D. Therefore, this review try to elucidate the potential effects of antidepressant drugs in T2D regarding their detrimental and beneficial effects.
Collapse
Affiliation(s)
- Nahi Sabih Alruwaili
- Eradah Complex of Mental Health -Northern Border Region, Ministry of Health, Al Bahah, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Clinical pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Ali K Albuhadily
- Department of Clinical pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Amany E Ragab
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta, Egypt.
| | | | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
- AFNP Med, Wien, 1030, Austria
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, Wuppertal, 42283, Germany.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, AlBeheira, 22511, Egypt
| |
Collapse
|
8
|
Batra A, Latsko M, Portella AK, Silveira PP. Early adversity and insulin: neuroendocrine programming beyond glucocorticoids. Trends Endocrinol Metab 2021; 32:1031-1043. [PMID: 34635400 DOI: 10.1016/j.tem.2021.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/07/2021] [Accepted: 09/10/2021] [Indexed: 02/07/2023]
Abstract
Exposure to direct or contextual adversities during early life programs the functioning of the brain and other biological systems, contributing to the development of physical as well as mental health issues in the long term. While the role of glucocorticoids in mediating the outcomes of early adversity has been explored for many years, less attention has been given to insulin. Beyond its metabolic effects in the periphery, central insulin action affects synaptic plasticity, brain neurotransmission, and executive functions. Knowledge about the interactions between the peripheral metabolism and brain function from a developmental perspective can contribute to prevention and diagnosis programs, as well as early interventions for vulnerable populations.
Collapse
Affiliation(s)
- Aashita Batra
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada.
| | - Maeson Latsko
- Department of Psychiatry, McGill University, Montreal, QC, Canada; Healthy Brains for Healthy Lives, McGill University, Montreal, QC, Canada
| | - Andre Krumel Portella
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Patricia P Silveira
- Department of Psychiatry, McGill University, Montreal, QC, Canada; Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada.
| |
Collapse
|
9
|
Agrawal R, Reno CM, Sharma S, Christensen C, Huang Y, Fisher SJ. Insulin action in the brain regulates both central and peripheral functions. Am J Physiol Endocrinol Metab 2021; 321:E156-E163. [PMID: 34056920 PMCID: PMC8321819 DOI: 10.1152/ajpendo.00642.2020] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The brain has been traditionally thought to be insensitive to insulin, primarily because insulin does not stimulate glucose uptake/metabolism in the brain (as it does in classic insulin-sensitive tissues such as muscle, liver, and fat). However, over the past 20 years, research in this field has identified unique actions of insulin in the brain. There is accumulating evidence that insulin crosses into the brain and regulates central nervous system functions such as feeding, depression, and cognitive behavior. In addition, insulin acts in the brain to regulate systemic functions such as hepatic glucose production, lipolysis, lipogenesis, reproductive competence, and the sympathoadrenal response to hypoglycemia. Decrements in brain insulin action (or brain insulin resistance) can be observed in obesity, type 2 diabetes (T2DM), aging, and Alzheimer's disease (AD), indicating a possible link between metabolic and cognitive health. Here, we describe recent findings on the pleiotropic actions of insulin in the brain and highlight the precise sites, specific neuronal population, and roles for supportive astrocytic cells through which insulin acts in the brain. In addition, we also discuss how boosting brain insulin action could be a therapeutic option for people at an increased risk of developing metabolic and cognitive diseases such as AD and T2DM. Overall, this perspective article serves to highlight some of these key scientific findings, identify unresolved issues, and indicate future directions of research in this field that would serve to improve the lives of people with metabolic and cognitive dysfunctions.
Collapse
Affiliation(s)
- Rahul Agrawal
- Division of Endocrinology, Metabolism and Diabetes, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Candace M Reno
- Division of Endocrinology, Metabolism and Diabetes, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Sunny Sharma
- Division of Endocrinology, Metabolism and Diabetes, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Camille Christensen
- Division of Endocrinology, Metabolism and Diabetes, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Yiqing Huang
- Division of Endocrinology, Metabolism and Diabetes, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Simon J Fisher
- Division of Endocrinology, Metabolism and Diabetes, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|
10
|
Lis M, Stańczykiewicz B, Liśkiewicz P, Misiak B. Impaired hormonal regulation of appetite in schizophrenia: A narrative review dissecting intrinsic mechanisms and the effects of antipsychotics. Psychoneuroendocrinology 2020; 119:104744. [PMID: 32534330 DOI: 10.1016/j.psyneuen.2020.104744] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/25/2020] [Accepted: 05/30/2020] [Indexed: 12/14/2022]
Abstract
Cardiometabolic diseases are the main contributor of reduced life expectancy in patients with schizophrenia. It is now widely accepted that antipsychotic treatment plays an important role in the development of obesity and its consequences. However, some intrinsic mechanisms need to be taken into consideration. One of these mechanisms might be related to impaired hormonal regulation of appetite in this group of patients. In this narrative review, we aimed to dissect impairments of appetite-regulating hormones attributable to intrinsic mechanisms and those related to medication effects. Early hormonal alterations that might be associated with intrinsic mechanisms include low levels of leptin and glucagon-like peptide-1 (GLP-1) together with elevated insulin levels in first-episode psychosis (FEP) patients. However, evidence regarding low GLP-1 levels in FEP patients is based on one large study. In turn, multiple-episode schizophrenia patients show elevated levels of insulin, leptin and orexin A together with decreased levels of adiponectin. In addition, patients receiving olanzapine may present with low ghrelin levels. Post mortem studies have also demonstrated reduced number of neuropeptide Y neurons in the prefrontal cortex of patients with schizophrenia. Treatment with certain second-generation antipsychotics may also point to these alterations. Although our understanding of hormonal regulation of appetite in schizophrenia has largely been improved, several limitations and directions for future studies need to be addressed. This is of particular importance since several novel pharmacological interventions for obesity and diabetes have already been developed and translation of these developments to the treatment of cardiometabolic comorbidities in schizophrenia patients is needed.
Collapse
Affiliation(s)
- Michał Lis
- Clinical Department of Internal Diseases, Endocrinology and Diabetology, The Central Clinical Hospital of the Ministry of the Interior in Warsaw, Wołoska 137 Street, 02-507 Warsaw, Poland
| | - Bartłomiej Stańczykiewicz
- Department of Nervous System Diseases, Wroclaw Medical University, Bartla 5 Street, 51-618, Wroclaw, Poland
| | - Paweł Liśkiewicz
- Department of Psychiatry, Pomeranian Medical University, Broniewskiego 26 Street, 71-460, Szczecin, Poland
| | - Błażej Misiak
- Department of Genetics, Wroclaw Medical University, Marcinkowskiego 1 Street, 50-368 Wroclaw, Poland.
| |
Collapse
|
11
|
Kullmann S, Kleinridders A, Small DM, Fritsche A, Häring HU, Preissl H, Heni M. Central nervous pathways of insulin action in the control of metabolism and food intake. Lancet Diabetes Endocrinol 2020; 8:524-534. [PMID: 32445739 DOI: 10.1016/s2213-8587(20)30113-3] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/22/2020] [Accepted: 03/20/2020] [Indexed: 12/18/2022]
Abstract
Insulin acts on the CNS to modulate behaviour and systemic metabolism. Disturbances in brain insulin action represent a possible link between metabolic and cognitive health. Current findings from human research suggest that boosting central insulin action in the brain modulates peripheral metabolism, enhancing whole-body insulin sensitivity and suppressing endogenous glucose production. Moreover, central insulin action curbs food intake by reducing the salience of highly palatable food cues and increasing cognitive control. Animal models show that the mesocorticolimbic circuitry is finely tuned in response to insulin, driven mainly by the dopamine system. These mechanisms are impaired in people with obesity, which might increase their risk of developing type 2 diabetes and associated diseases. Overall, current findings highlight the role of insulin action in the brain and its consequences on peripheral metabolism and cognition. Hence, improving central insulin action could represent a therapeutic option for people at an increased risk of developing metabolic and cognitive diseases.
Collapse
Affiliation(s)
- Stephanie Kullmann
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, Eberhard Karls University of Tübingen, Tübingen, Germany; Department of Internal Medicine, Division of Endocrinology, Diabetology, and Nephrology, Eberhard Karls University of Tübingen, Tübingen, Germany; German Center for Diabetes Research, Neuherberg, Germany.
| | - André Kleinridders
- German Center for Diabetes Research, Neuherberg, Germany; Central Regulation of Metabolism, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Dana M Small
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, Eberhard Karls University of Tübingen, Tübingen, Germany; Department of Psychiatry, Yale University, New Haven, CT, USA; Modern Diet and Physiology Research Centre, Yale University, New Haven, CT, USA
| | - Andreas Fritsche
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, Eberhard Karls University of Tübingen, Tübingen, Germany; Department of Internal Medicine, Division of Endocrinology, Diabetology, and Nephrology, Eberhard Karls University of Tübingen, Tübingen, Germany; German Center for Diabetes Research, Neuherberg, Germany
| | - Hans-Ulrich Häring
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, Eberhard Karls University of Tübingen, Tübingen, Germany; German Center for Diabetes Research, Neuherberg, Germany
| | - Hubert Preissl
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, Eberhard Karls University of Tübingen, Tübingen, Germany; Department of Internal Medicine, Division of Endocrinology, Diabetology, and Nephrology, Eberhard Karls University of Tübingen, Tübingen, Germany; Department of Pharmacy and Biochemistry, Interfaculty Centre for Pharmacogenomics and Pharma Research, Eberhard Karls University of Tübingen, Tübingen, Germany; German Center for Diabetes Research, Neuherberg, Germany; Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Martin Heni
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, Eberhard Karls University of Tübingen, Tübingen, Germany; Department of Internal Medicine, Division of Endocrinology, Diabetology, and Nephrology, Eberhard Karls University of Tübingen, Tübingen, Germany; German Center for Diabetes Research, Neuherberg, Germany
| |
Collapse
|
12
|
Mansur RB, Lee Y, McIntyre RS, Brietzke E. What is bipolar disorder? A disease model of dysregulated energy expenditure. Neurosci Biobehav Rev 2020; 113:529-545. [PMID: 32305381 DOI: 10.1016/j.neubiorev.2020.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/30/2020] [Accepted: 04/05/2020] [Indexed: 12/24/2022]
Abstract
Advances in the understanding and management of bipolar disorder (BD) have been slow to emerge. Despite notable recent developments in neurosciences, our conceptualization of the nature of this mental disorder has not meaningfully progressed. One of the key reasons for this scenario is the continuing lack of a comprehensive disease model. Within the increasing complexity of modern research methods, there is a clear need for an overarching theoretical framework, in which findings are assimilated and predictions are generated. In this review and hypothesis article, we propose such a framework, one in which dysregulated energy expenditure is a primary, sufficient cause for BD. Our proposed model is centered on the disruption of the molecular and cellular network regulating energy production and expenditure, as well its potential secondary adaptations and compensatory mechanisms. We also focus on the putative longitudinal progression of this pathological process, considering its most likely periods for onset, such as critical periods that challenges energy homeostasis (e.g. neurodevelopment, social isolation), and the resulting short and long-term phenotypical manifestations.
Collapse
Affiliation(s)
- Rodrigo B Mansur
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| | - Yena Lee
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Roger S McIntyre
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Elisa Brietzke
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada; Kingston General Hospital, Providence Care Hospital, Department of Psychiatry, Queen's University School of Medicine, Kingston, ON, Canada
| |
Collapse
|
13
|
Zou XH, Sun LH, Yang W, Li BJ, Cui RJ. Potential role of insulin on the pathogenesis of depression. Cell Prolif 2020; 53:e12806. [PMID: 32281722 PMCID: PMC7260070 DOI: 10.1111/cpr.12806] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/22/2020] [Accepted: 03/18/2020] [Indexed: 12/11/2022] Open
Abstract
The regulation of insulin on depression and depression-like behaviour has been widely reported. Insulin and activation of its receptor can promote learning and memory, affect the hypothalamic-pituitary-adrenal axis (HPA) balance, regulate the secretion of neurotrophic factors and neurotransmitters, interact with gastrointestinal microbiome, exert neuroprotective effects and have an impact on depression. However, the role of insulin on depression remains largely unclear. Therefore, in this review, we summarized the potential role of insulin on depression. It may provide new insight for clarifying role of insulin on the pathogenesis of depression.
Collapse
Affiliation(s)
- Xiao Han Zou
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Li Hua Sun
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Bing Jin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Ran Ji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
14
|
Pisanu C, Williams MJ, Ciuculete DM, Olivo G, Del Zompo M, Squassina A, Schiöth HB. Evidence that genes involved in hedgehog signaling are associated with both bipolar disorder and high BMI. Transl Psychiatry 2019; 9:315. [PMID: 31754094 PMCID: PMC6872724 DOI: 10.1038/s41398-019-0652-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 09/23/2019] [Accepted: 10/20/2019] [Indexed: 12/16/2022] Open
Abstract
Patients with bipolar disorder (BD) show higher frequency of obesity and type 2 diabetes (T2D), but the underlying genetic determinants and molecular pathways are not well studied. Using large publicly available datasets, we (1) conducted a gene-based analysis using MAGMA to identify genes associated with BD and body mass index (BMI) or T2D and investigated their functional enrichment; and (2) performed two meta-analyses between BD and BMI, as well as BD and T2D using Metasoft. Target druggability was assessed using the Drug Gene Interaction Database (DGIdb). We identified 518 and 390 genes significantly associated with BD and BMI or BD and T2D, respectively. A total of 52 and 12 genes, respectively, were significant after multiple testing correction. Pathway analyses conducted on nominally significant targets showed that genes associated with BD and BMI were enriched for the Neuronal cell body Gene Ontology (GO) term (p = 1.0E-04; false discovery rate (FDR) = 0.025) and different pathways, including the Signaling by Hedgehog pathway (p = 4.8E-05, FDR = 0.02), while genes associated with BD and T2D showed no specific enrichment. The meta-analysis between BD and BMI identified 64 relevant single nucleotide polymorphisms (SNPs). While the majority of these were located in intergenic regions or in a locus on chromosome 16 near and in the NPIPL1 and SH2B1 genes (best SNP: rs4788101, p = 2.1E-24), five were located in the ETV5 gene (best SNP: rs1516725, p = 1E-24), which was previously associated with both BD and obesity, and one in the RPGRIP1L gene (rs1477199, p = 5.7E-09), which was also included in the Signaling by Hedgehog pathway. The meta-analysis between BD and T2D identified six significant SNPs, three of which were located in ALAS1 (best SNP: rs352165, p = 3.4E-08). Thirteen SNPs associated with BD and BMI, and one with BD and T2D, were located in genes which are part of the druggable genome. Our results support the hypothesis of shared genetic determinants between BD and BMI and point to genes involved in Hedgehog signaling as promising targets.
Collapse
Affiliation(s)
- Claudia Pisanu
- Unit of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden.
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy.
| | - Michael J Williams
- Unit of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Diana M Ciuculete
- Unit of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Gaia Olivo
- Unit of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Maria Del Zompo
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Alessio Squassina
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Helgi B Schiöth
- Unit of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden.
- Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow, Russia.
| |
Collapse
|
15
|
Mansur RB, Subramaniapillai M, Zuckerman H, Park C, Iacobucci M, Lee Y, Tuineag M, Hawco C, Frey BN, Rasgon N, Brietzke E, McIntyre RS. Effort-based decision-making is affected by overweight/obesity in major depressive disorder. J Affect Disord 2019; 256:221-227. [PMID: 31181378 DOI: 10.1016/j.jad.2019.06.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/09/2019] [Accepted: 06/02/2019] [Indexed: 01/04/2023]
Abstract
BACKGROUND Anhedonia and abnormalities in reward behavior are core features of major depressive disorder (MDD). Convergent evidence indicates that overweight/obesity (OW), a highly prevalent condition in MDD, is independently associated with reward disturbances. We therefore aimed to investigate the moderating effect of OW on the willingness to expend efforts for reward in individuals with MDD and healthy controls (HC). METHODS Forty-one adults (HC n = 20, MDD n = 21) completed the Effort Expenditure for Rewards Task (EEfRT), clinical and cognitive measures. Anthropometric parameters were assessed in all participants, and an additional evaluation of laboratorial parameters were conducted solely on those with MDD. Individuals with MDD were all on vortioxetine monotherapy (10-20 mg/day). RESULTS Interactions between reward magnitude, group and OW were observed (χ2 = 9.192, p = 0.010); the OW-MDD group chose the hard task significantly less than normal weight (NW)-HC (p = 0.033) and OW-HC (p = 0.034), whereas there were no differences between NW-MDD and HCs. Within individuals with MDD, the proportion of hard task choices was more strongly correlated with body mass index (BMI) (r = -0.456, p = 0.043) and insulin resistance (HOMA2-IR) (r = -0.467, p = 0.038), than with depressive symptoms (r = 0.290, p = 0.214). CONCLUSIONS OW significantly moderated the association between MDD and willingness to make efforts for rewards. These findings offer novel evidence on the potential role of metabolic factors on the basis of anhedonia, and for the heuristic models proposing a pathophysiological connection between mood and metabolic disorders.
Collapse
Affiliation(s)
- Rodrigo B Mansur
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, M5T 2S8, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, M5T 2S8, Canada.
| | - Mehala Subramaniapillai
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, M5T 2S8, Canada
| | - Hannah Zuckerman
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, M5T 2S8, Canada
| | - Caroline Park
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, M5T 2S8, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, M5T 2S8, Canada
| | - Michelle Iacobucci
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, M5T 2S8, Canada
| | - Yena Lee
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, M5T 2S8, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, M5T 2S8, Canada
| | - Maria Tuineag
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, M5T 2S8, Canada
| | - Colin Hawco
- Department of Psychiatry, University of Toronto, Toronto, ON, M5T 2S8, Canada; Campbell Family Mental Health Institute, Centre for Addiction and Mental Health, 250 College St., Toronto, ON, Canada
| | - Benicio N Frey
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Ontario, Canada
| | - Natalie Rasgon
- Center for Neuroscience in Women's Health, Stanford University, Palo Alto, USA
| | - Elisa Brietzke
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, M5T 2S8, Canada; Department of Psychiatry, Queen's University, Kingston, ON, K7L 7X3, Canada; Research Group in Molecular and Behavioral Neurosciences of Mood Disorders, Department of Psychiatry, Universidade Federal de São Paulo, São Paulo, SP, 04038-000, Brazil
| | - Roger S McIntyre
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, M5T 2S8, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, M5T 2S8, Canada; Research Group in Molecular and Behavioral Neurosciences of Mood Disorders, Department of Psychiatry, Universidade Federal de São Paulo, São Paulo, SP, 04038-000, Brazil; Brain and Cognition Discovery Foundation, Mississauga, ON L5C 4E, Canada
| |
Collapse
|
16
|
Lyra E Silva NDM, Lam MP, Soares CN, Munoz DP, Milev R, De Felice FG. Insulin Resistance as a Shared Pathogenic Mechanism Between Depression and Type 2 Diabetes. Front Psychiatry 2019; 10:57. [PMID: 30837902 PMCID: PMC6382695 DOI: 10.3389/fpsyt.2019.00057] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 01/25/2019] [Indexed: 12/28/2022] Open
Abstract
Neuropsychiatric disorders and type 2 diabetes (T2D) are major public health concerns proposed to be intimately connected. T2D is associated with increased risk of dementia, neuropsychiatric and mood disorders. Evidences of the involvement of insulin signaling on brain mechanisms related to depression indicate that insulin resistance, a hallmark of type 2 diabetes, could develop in the brains of depressive patients. In this article, we briefly review possible molecular mechanisms associating defective brain insulin signaling with reward system, neurogenesis, synaptic plasticity and hypothalamic-pituitary-adrenal (HPA) stress axis in depression. We further discuss the involvement of tumor necrosis factor α (TNFα) promoting defective insulin signaling and depressive-like behavior in rodent models. Finally, due to the high resistant rate of anti-depressants, novel insights into the link between insulin resistance and depression may advance the development of alternative treatments for this disease.
Collapse
Affiliation(s)
| | - Minh P Lam
- Department of Psychiatry, Queen's University, Kingston, ON, Canada
| | - Claudio N Soares
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada.,Department of Psychiatry, Queen's University, Kingston, ON, Canada
| | - Douglas P Munoz
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - Roumen Milev
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada.,Department of Psychiatry, Queen's University, Kingston, ON, Canada
| | - Fernanda G De Felice
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada.,Department of Psychiatry, Queen's University, Kingston, ON, Canada.,Institute of Medical Biochemistry Leopoldo De Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|