1
|
Gomaa I, Aleid G, El-Moslamy SH, AlShammari A, Al-Marshedy S, Alshammary F, Gharkan J, Abdel-Hameed R, Kamoun EA. Synergistic efficacy of ZnO quantum dots, Ag NPs, and nitazoxanide composite against multidrug-resistant human pathogens as new trend of revolutionizing antimicrobial treatment. DISCOVER NANO 2024; 19:164. [PMID: 39361062 PMCID: PMC11450118 DOI: 10.1186/s11671-024-04085-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 08/20/2024] [Indexed: 10/06/2024]
Abstract
Antibiotic resistance is currently becoming a more serious threat to global health, especially in severe nosocomial infections treatment by multidrug-resistant bacteria. This research provides a new way of synergizing green-synthesis for zinc oxide quantum dots (ZnO-QDs with hexagonal crystals) that are 7 nm in diameter and zero-valent Ag cubic crystals that are 67 nm in size embedded with nitazoxanide substrate (NAZ). Instrumental characterization like SEM, TEM, EDAX, and FT-IR and comprehensive antimicrobial studies were conducted to study the incorporation behavior of composites based on Ag NPs/ZnO QDs/NAZ. This combination has not been hitherto addressed anywhere else in the published literature, as well as commercial viability. In this context, we have precisely tuned nanoparticle to nitazoxanide ratio for designing the formulation demonstrating potent activity against MDR infections. By employing nitazoxanide as a scaffold and careful decoration thereof antimicrobial potency has been unlocked overriding conventional therapies. In addition, Ag NPs/ZnO-QDs/nitazoxanide (G6) formula exhibited a therapeutic efficacy span of 96.15 ± 1.68% to 99.57 ± 0.20% against MDR human infections post 48 h incubation; a breakthrough in therapeutic efficacy levels has been achieved by our method. Accordingly, ZnO QDs/Ag NPs/NAZ composite offered potential multidrug resistant human pathogens as a new trend of revolutionizing antimicrobial treatment.
Collapse
Affiliation(s)
- Islam Gomaa
- Nanotechnology Research Centre (NTRC), The British University in Egypt (BUE), Suez Desert Road, El-Sherouk City, Cairo, 11837, Egypt
| | - Ghadah Aleid
- Basic Science Departments, Preparatory Year, University of Ha'il, 1560, Hail, Kingdom of Saudi Arabia
| | - Shahira H El-Moslamy
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg Al-Arab City, Alexandria, 21934, Egypt
| | - Anoud AlShammari
- Department of Physics and Chemistry, Northern Border University, Rafha, Kingdom of Saudi Arabia
| | - Sumayyah Al-Marshedy
- Biochemistry Department, College of Medicine, University of Ha'il, Hail, Kingdom of Saudi Arabia
| | - Freah Alshammary
- Department of Preventive Dental Sciences, College of Dentistry, University of Ha'il, Hail, Kingdom of Saudi Arabia
| | - Jouza Gharkan
- Emergency Medical Services and Critical Care, Inaya Medical College, Riyadh, Kingdom of Saudi Arabia
| | - Reda Abdel-Hameed
- Basic Science Departments, Preparatory Year, University of Ha'il, 1560, Hail, Kingdom of Saudi Arabia.
- Chemistry Department, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt.
| | - Elbadawy A Kamoun
- Department of Chemistry, College of Science, King Faisal University, 31982, Al-Ahsa, Kingdom of Saudi Arabia.
- Polymeric Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications, New Borg Al-Arab City, Alexandria, 21934, Egypt.
| |
Collapse
|
2
|
El Dougdoug NK, Attia MS, Malash MN, Abdel-Maksoud MA, Malik A, Kiani BH, Fesal AA, Rizk SH, El-Sayyad GS, Harb N. Aspergillus fumigatus-induced biogenic silver nanoparticles' efficacy as antimicrobial and antibiofilm agents with potential anticancer activity: An in vitro investigation. Microb Pathog 2024:106950. [PMID: 39303958 DOI: 10.1016/j.micpath.2024.106950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 06/18/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
A worldwide hazard to human health is posed by the growth of pathogenic bacteria that have contaminated fresh, processed, cereal, and seed products in storage facilities. As the number of multidrug-resistant (MDR) pathogenic microorganisms rises, we must find safe, and effective antimicrobials. The use of green synthesis of nanoparticles to combat microbial pathogens has gained a rising interest. The current study showed that Aspergillus fumigatus was applied as a promising biomass for the green synthesis of biogenic silver nanoparticles (Ag NPs). The UV-visible spectra of biosynthesized Ag NPs appeared characteristic surface plasmon absorption at 475 nm, round-shaped with sizes ranging from 17.11 to 75.54 nm and an average size of 50.37 ± 2.3 nm. In vitro tests were conducted to evaluate the antibacterial, antioxidant, and anticancer effects of various treatment procedures for Ag NP applications. The synthesized Ag NPs was revealed antimicrobial activity against Aspergillus flauvas, A. niger, Bacillus cereus, Candida albicans, Esherichia coli, Pseudomonas aerugonosa, and Staphylococcus aureus under optimum conditions. The tested bacteria were sensitive to low Ag NPs concentrations (5, 10, 11, 8, 7, 10, and 7 mg/mL) which was observed for the mentioned-before tested microorganisms, respectively. The tested bacterial pathogens experienced their biofilm formation effectively suppressed by Ag NPs at sub-inhibitory doses. Antibacterial reaction mechanism of Ag NPs were tested using scanning electron microscopy (SEM) to verify their antibacterial efficacy towards S. aureus and P. aeruginosa. These findings clearly show how harmful Ag NPs are to pathogenic bacteria. The synthesized Ag NPs showed antitumor activity with IC50 at 5 μg/mL against human HepG-2 and MCF-7 cellular carcinoma cells, while 50 mg/mL was required to induce 70 % of normal Vero cell mortality. These findings imply that green synthetic Ag NPs can be used on cancer cell lines in vitro for anticancer effect beside their potential as a lethal factor against some tested pathogenic microbes.
Collapse
Affiliation(s)
- Noha K El Dougdoug
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha, Egypt
| | - Mohamed S Attia
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt.
| | - Mohamed N Malash
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Mostafa A Abdel-Maksoud
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Abdul Malik
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Bushra H Kiani
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachuesetts, 01609, USA
| | - Abeer A Fesal
- Higher Institute for Agriculture, Shoubra El-Kheima, Cairo, Egypt
| | - Samar H Rizk
- Department of Biochemistry, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Gharieb S El-Sayyad
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, Galala City, Suez, Egypt; Drug Microbiology Lab., Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt; Medical Laboratory Technology Department, Faculty of Applied Health Sciences Technology, Badr University in Cairo (BUC), Cairo, Egypt.
| | - Nashwa Harb
- Department of Biology and Microbiology, Faculty of Science, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
3
|
Karthikeyan A, Gopinath N, Nair BG. Ecofriendly biosynthesis of copper nanoparticles from novel marine S. rhizophila species for enhanced antibiofilm, antimicrobial and antioxidant potential. Microb Pathog 2024; 194:106836. [PMID: 39103127 DOI: 10.1016/j.micpath.2024.106836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/23/2024] [Accepted: 08/01/2024] [Indexed: 08/07/2024]
Abstract
Marine microorganisms offer a promising avenue for the eco-friendly synthesis of nanoparticles due to their unique biochemical capabilities and adaptability to various environments. This study focuses on exploring the potential of a marine bacterial species, Stenotrophomonas rhizophila BGNAK1, for the synthesis of biocompatible copper nanoparticles and their application for hindering biofilms formed by monomicrobial species. The study begins with the isolation of the novel marine S. rhizophila species from marine soil samples collected from the West coast region of Kerala, India. The isolated strain is identified through 16S rRNA gene sequencing and confirmed to be S. rhizophila species. Biosynthesis of copper nanoparticles using S. rhizophila results in the formation of nanoparticles with size of range 10-50 nm. The nanoparticles exhibit a face-centered cubic crystal structure of copper, as confirmed by X-Ray Diffraction analysis. Furthermore, the synthesized nanoparticles display significant antimicrobial activity against various pathogenic bacteria and yeast. The highest inhibitory activity was against Staphylococcus aureus with a zone of 27 ± 1.00 mm and the least activity was against Pseudomonas aeruginosa with a zone of 22 ± 0.50 mm. The zone of inhibition against Candida albicans was 16 ± 0.60 mm. The antibiofilm activity against biofilm-forming clinical pathogens was evidenced by the antibiofilm assay and SEM images. Additionally, the copper nanoparticles exhibit antioxidant activity, as evidenced by their scavenging ability against DPPH, hydroxyl, nitric oxide, and superoxide radicals, as well as their reducing power in the FRAP assay. The study highlights the potential of the marine bacterium S. rhizophila BGNAK1 for the eco-friendly biosynthesis of copper nanoparticles with diverse applications. Synthesized nanoparticles exhibit promising antibiofilm, antimicrobial, and antioxidant properties, suggesting their potential utility in various fields such as medicine, wastewater treatment, and environmental remediation.
Collapse
Affiliation(s)
- Akash Karthikeyan
- Department of Bioscience and Engineering, National Institute of Technology Calicut, NIT PO, Kozhikode, 673601, India
| | - Nigina Gopinath
- Department of Bioscience and Engineering, National Institute of Technology Calicut, NIT PO, Kozhikode, 673601, India
| | - Baiju G Nair
- Department of Bioscience and Engineering, National Institute of Technology Calicut, NIT PO, Kozhikode, 673601, India.
| |
Collapse
|
4
|
Li J, Zhang Q, Chen B, Li F, Pang C. Cellulose-citric acid-chitosan@metal sulfide nanocomposites: Methyl orange dye removal and antibacterial activity. Int J Biol Macromol 2024; 276:133795. [PMID: 38992532 DOI: 10.1016/j.ijbiomac.2024.133795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/09/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
In this study, to develop efficient adsorbents in removing water pollution, new cellulose-citric acid-chitosan@metal sulfide nanocomposites (CL-CA-CS@NiS and CL-CA-CS@CuS) were synthesized by one-pot reaction at mild conditions and characterized using X-ray powder diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscope (SEM), Energy Dispersive X-ray (EDX) and Brunauer-Emmett-Teller (BET) isotherm. The results of characterization techniques confirm that the desired compounds have been successfully synthesized. The as-prepared composites were applied for the removal of methyl orange (MO) dye from aqueous solutions using a batch technique, and the effect of key factors such as initial pH, shaking time, MO concentration, temperature and adsorbent dose were investigated and discussed. Adsorption results exhibited positive impact of temperature, shaking time and adsorbent dose on the MO removal percent. The MO removal percent has been increased over a wide range of pH from 2 (27.6 %) to 6 (98.8 %). Also, almost being constant over a wide range of MO concentration (10-70 mg/L). The results demonstrated that the maximum removal percentage of MO dye (98.9 % and 93.4 % using CL-CA-CS@NiS and CL-CA-CS@CuS, respectively) was achieved under the conditions of pH 6, shaking time of 120 min, adsorbent dose of 0.02 g, MO concentration of 70 mg/L and temperature of 35 °C. The pseudo-second-order (PSO) and Langmuir models demonstrated the best fit to the kinetic and equilibrium data. Also, the thermodynamic results showed that the MO removal process is endothermic and spontaneous in nature. The MO adsorption can be happened by different electrostatic attraction, n-π and π-π stacking and also hydrogen bonding interaction. In addition, antibacterial activity of CL-CA-CS@NiS and CL-CA-CS@CuS nanocomposites exhibited a superior efficiency against S. aureus.
Collapse
Affiliation(s)
- Jie Li
- School of Chemistry & Chemical Engineering, Zhoukou Normal University, Zhoukou 466001, China
| | - Qian Zhang
- School of Chemistry& Chemical Engineering, China West Normal University, Nanchong 637001, China.
| | - Bowen Chen
- School of Chemistry& Chemical Engineering, China West Normal University, Nanchong 637001, China
| | - Fei Li
- School of Chemistry & Chemical Engineering, Zhoukou Normal University, Zhoukou 466001, China
| | - Chunxia Pang
- College of Biological Engineering, Sichuan University of Science & Engineering, Zigong 643000, China
| |
Collapse
|
5
|
Kumar V, Parida SN, Dhar S, Bisai K, Sarkar DJ, Panda SP, Das BK. Biogenic synthesis of silver nanoparticle by Cytobacillus firmus isolated from the river sediment with potential antimicrobial properties against Edwardsiella tarda. Front Microbiol 2024; 15:1416411. [PMID: 39282556 PMCID: PMC11392742 DOI: 10.3389/fmicb.2024.1416411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
The aquatic environment, independent of their host, is more favorable to pathogenic bacteria than the terrestrial environment. Consequently, pathogenic bacteria can reach very high densities around aquatic animals and can cause high mortality. The conventional approach, such as antibiotics, has minimal effectiveness. Additionally, due to the emergence of (multiple) resistance, their use is under intense scientific and public scrutiny. Hence, there is a need for the development of alternative control techniques, with an emphasis on prevention, which is likely to be more cost-effective. In this study, a potential bacterial strain Cytobacillus firmus was isolated from polluted river sediment and characterized using a comprehensive range of techniques including biochemical, 16S rRNA sequencing and antibiogram assay. The pathogenicity of the bacteria was tested in vivo on Labeo rohita fingerlings found as non-pathogenic. Further, the bacteria were found to synthesize silver nanoparticles (AgNPs) using AgNO3 as a substrate. The obtained AgNPs were characterized by various methods, including UV-vis spectroscopy, FTIR (Fourier-transform infrared spectroscopy), and Transmission Emission Microscopy (TEM). The study found that the AgNPs were 20 nm in size on average. The antimicrobial activity of synthesized AgNPs was examined against the model freshwater pathogenic bacteria, Edwardsiella tarda and both the MIC (Minimum Inhibitory Concentration) and MBC (Minimum Bactericidal Concentration) were 0.156 μM, while biofilm inhibition activity was also observed at 0.156 μM. The AgNPs showed no haemolytic activity at 0.313 μM. Our findings suggest that C. firmus mediated bacteriogenic AgNPs modulate the activity of common pathogenic bacteria E. tarda. The thoroughness of our research process gives us confidence in the potential of applying AgNPs in aquaculture as a considerable strategy to control the E. tarda infection.
Collapse
Affiliation(s)
- Vikash Kumar
- Biotechnology Laboratory, ICAR-Central Inland Fisheries Research Institute, Barrackpore, India
| | - Satya Narayan Parida
- College of Fisheries, Rani Lakshmi Bai Central Agricultural University, Jhansi, India
| | - Souvik Dhar
- Biotechnology Laboratory, ICAR-Central Inland Fisheries Research Institute, Barrackpore, India
| | - Kampan Bisai
- Biotechnology Laboratory, ICAR-Central Inland Fisheries Research Institute, Barrackpore, India
| | - Dhruba Jyoti Sarkar
- Biotechnology Laboratory, ICAR-Central Inland Fisheries Research Institute, Barrackpore, India
| | - Soumya Prasad Panda
- Biotechnology Laboratory, ICAR-Central Inland Fisheries Research Institute, Barrackpore, India
| | - Basanta Kumar Das
- Biotechnology Laboratory, ICAR-Central Inland Fisheries Research Institute, Barrackpore, India
| |
Collapse
|
6
|
Dam P, Shaw S, Mondal R, Chakraborty J, Bhattacharjee T, Sen IK, Manna S, Sadat A, Suin S, Sarkar H, Ertas YN, Mandal AK. Multifunctional silver nanoparticle embedded eri silk cocoon scaffolds against burn wounds-associated infection. RSC Adv 2024; 14:26723-26737. [PMID: 39184008 PMCID: PMC11342674 DOI: 10.1039/d4ra05029k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/15/2024] [Indexed: 08/27/2024] Open
Abstract
Antimicrobial wound dressings offer enhanced efficacy compared to conventional dressing platforms by limiting bacterial infections, expediting the healing process, and creating a barrier against additional wound contamination. The use of silk derived from silkworm cocoons in wound healing applications is attributed to its exceptional characteristics. Compared to mulberry silk, sericin from non-mulberry cocoons has higher water exchange mobility and moisture retention. Eri, a non-mulberry silkworm, is an unexplored source of silk with an eco-friendly nature of production where the natural life cycle of silkworms is not disrupted, and no moths are sacrificed. This work reports on an eri silk cocoon-based scaffold decorated with silver nanoparticles as a wound dressing material effective against burn-wound-associated multiple-drug-resistant bacteria. The UV-vis spectroscopy showed maximum absorbance at 448 nm due to the surface plasmon resonance of silver nanoparticles. FT-IR spectra exhibited the functional groups in the eri silk proteins accountable for the reduction of Ag+ to Ag0 in the scaffold. SEM-EDX analysis revealed the presence of elemental silver, and XRD analysis confirmed their particle size of 5.66-8.82 nm. The wound dressing platform showed excellent thermal stability and hydrophobicity, fulfilling the criteria of a standard waterproof dressing material, and anticipating the prevention of bacterial biofilm formation in chronic wounds. The scaffold was found to be effective against both Staphylococcus aureus (MTCC 87) and Pseudomonas aeruginosa (MTCC 1688) multiple-drug-resistant pathogens. Electron microscopy revealed the bacterial cell damage, suggesting its bactericidal property. The results further revealed that the scaffold was both hemocompatible and cytocompatible, suggesting its potential application in chronic wounds such as burns. As an outcome, this study presents a straightforward, cost-effective, and sustainable way of developing a multifunctional wound dressing platform, suggesting its significant therapeutic potential in clinical and biomedical sectors and facile commercialization.
Collapse
Affiliation(s)
- Paulami Dam
- Department of Sericulture, Raiganj University North Dinajpur 733134 West Bengal India
| | - Shubhajit Shaw
- Department of Sericulture, Raiganj University North Dinajpur 733134 West Bengal India
| | - Rittick Mondal
- Department of Sericulture, Raiganj University North Dinajpur 733134 West Bengal India
| | - Joydeep Chakraborty
- Department of Microbiology, Cell Biology and Bacteriology Laboratory, Raiganj University North Dinajpur 733134 India
| | - Trinankur Bhattacharjee
- Department of Conservation Biology, Durgapur Government College Jawahar Lal Nehru Road, Amarabati Colony Durgapur West Bengal 713214 India
| | - Ipsita Kumar Sen
- Department of Chemistry, Government General Degree College Salboni, Paschim Medinipur 721516 West Bengal India
| | - Sanjeet Manna
- Central Instrumentation Facility, Odisha University of Agriculture and Technology Bhubaneswar 751003 Odisha India
| | - Abdul Sadat
- Department of Sericulture, Raiganj University North Dinajpur 733134 West Bengal India
| | - Supratim Suin
- Department of Chemistry, Ramakrishna Mission Vivekananda Centenary College Rahara Kolkata 700118 India
| | - Hironmoy Sarkar
- Department of Microbiology, Cell Biology and Bacteriology Laboratory, Raiganj University North Dinajpur 733134 India
| | - Yavuz Nuri Ertas
- ERNAM-Nanotechnology Research and Application Center, Erciyes University Kayseri 38039 Turkey
- Department of Biomedical Engineering, Erciyes University Kayseri 38039 Turkey
- Department of Technical Sciences, Western Caspian University Baku AZ1001 Azerbaijan
| | - Amit Kumar Mandal
- Department of Sericulture, Raiganj University North Dinajpur 733134 West Bengal India
| |
Collapse
|
7
|
Ahmad N, Ansari MA, Al-Mahmeed A, Joji RM, Saeed NK, Shahid M. Biogenic silver nanomaterials synthesized from Ocimum sanctum leaf extract exhibiting robust antimicrobial and anticancer activities: Exploring the therapeutic potential. Heliyon 2024; 10:e35486. [PMID: 39170333 PMCID: PMC11336750 DOI: 10.1016/j.heliyon.2024.e35486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024] Open
Abstract
There is a surge in antibiotic consumption because of the emergence of resistance among microbial pathogens. In the escalating challenge of antibiotic resistance in microbial pathogens, silver nanoparticles (AgNPs)-mediated therapy has proven to be the most effective and alternative therapeutic strategy for bacterial infections and cancer treatment. This study aims to explore the potential of OsAgNPs derived from Ocimum sanctum's aqueous leaf extract as antimicrobial agents and anticancer drug delivery modalities. This study utilized a plant extract derived from Ocimum sanctum (Tulsi) leaves to synthesize silver nanoparticles (OsAgNPs), that were characterized by FTIR, TEM, SEM, and EDX. OsAgNPs were assessed for their antibacterial and anticancer potential. TEM analysis unveiled predominantly spherical or oval-shaped OsAgNPs, ranging in size from 4 to 98 nm. The (MICs) of OsAgNPs demonstrated a range from 0.350 to 19.53 μg/ml against clinical, multidrug-resistant (MDR), and standard bacterial isolates. Dual labelling with ethidium bromide and acridine orange demonstrated that OsAgNPs induced apoptosis in HeLa cells. The OsAgNPs-treated cells showed yellow-green fluorescence in early-stage apoptotic cells and orange fluorescence in late-stage cells. Furthermore, OsAgNPs exhibited a concentration-dependent decrease in HeLa cancer cell viability, with an IC50 value of 90 μg/ml noted. The study highlights the remarkable antibacterial efficacy of OsAgNPs against clinically significant bacterial isolates, including antibiotic-resistant strains. These results position the OsAgNPs as prospective therapeutic agents with the potential to address the growing challenges posed by antibiotic resistance and cervical cancer.
Collapse
Affiliation(s)
- Nayeem Ahmad
- Department of Microbiology, Immunology, and Infectious Diseases, College of Medicine & Medical Sciences, Arabian Gulf University, Bahrain
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Ali Al-Mahmeed
- Department of Microbiology, Immunology, and Infectious Diseases, College of Medicine & Medical Sciences, Arabian Gulf University, Bahrain
| | - Ronni Mol Joji
- Department of Microbiology, Immunology, and Infectious Diseases, College of Medicine & Medical Sciences, Arabian Gulf University, Bahrain
| | - Nermin Kamal Saeed
- Microbiology Section, Department of Pathology, Salmaniya Medical Complex, Bahrain
| | - Mohammad Shahid
- Department of Microbiology, Immunology, and Infectious Diseases, College of Medicine & Medical Sciences, Arabian Gulf University, Bahrain
| |
Collapse
|
8
|
Najafabadi SS, Doudi M, Tahmourespour A, Amiri G, Rezayatmand Z. Assessment of Antimicrobial Activity of Chitosan, ZnO, and Urtica dioica-ZnO NPs Against Staphylococcus aureus Isolated from Diabetic Ulcers. Curr Microbiol 2024; 81:295. [PMID: 39096343 DOI: 10.1007/s00284-024-03633-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 02/01/2024] [Indexed: 08/05/2024]
Abstract
Staphylococcus aureus (S. aureus) is considered as one of the challenging ulcer infections in diabetic patients especially those who have acquired antibiotic-resistant infections. Nanotechnology products have enormous potential to treat diseases including infectious diseases. As chitosan and zinc oxide (ZnO) nanoparticles (NPs) have harbored a high antimicrobial effect, this survey was aimed to synthesize chitosan, ZnO, and ZnO-Urtica. diocia (ZnO-U. diocia) NPs, and to assess their antimicrobial effects and their influence on virulence genes expression in S. aureus isolates from diabetic ulcers. The antibacterial effect of NPs was detected by microdilution method. The most frequently components in U. diocia aqueous extract were linalool,4-thujanol, camphor, carvacrol, propanedioic acid, and di(butyl) phthalate. More than 95% of clinical S. aureus isolates were resistant to several antibiotics including erythromycin, cefoxitin, clindamycin, and ciprofloxacin. The most resistant isolates were S. aureus ATDS 52, ATDS 53, F5232, and F91. The lowest MIC and MBC by the NPs on the isolates was detected as 0.128 g/mL and 0.178 g/mL, respectively. A significant decrease of 90% in the expression rates of lukED and RNAIII genes was reported for S. aureus isolates treated with the NPs. The synthetized ZnO-U. diocia and chitosan NPs can be proposed as a reliable and effective antimicrobial agent targeting diabetic ulcers infections caused by S. aureus because of its high effects on the bacterial growth and virulence genes expression.
Collapse
Affiliation(s)
| | - Monir Doudi
- Department of Microbiology, Falavarjan Branch, Islamic Azad University, Falavarjan, Isfahan, Iran.
| | - Arezoo Tahmourespour
- Department of Basic Medical Sciences, Faculty of Dentistry, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Gholamreza Amiri
- Department of Basic Sciences, Falavarjan Branch, Islamic Azad University, Falavarjan, Isfahan, Iran
| | - Zahra Rezayatmand
- Department of Biology, Falavarjan Branch, Islamic Azad University, Falavarjan, Isfahan, Iran
| |
Collapse
|
9
|
Kalakonda P, Kathi R, Ligory MG, Dabbeta N, Madipoju N, Mynepally S, Morampudi V, Banne S, Mandal P, Savu RN, Khanam SJ, Banavoth M, Sudarsanam Eve NV, Podila BB. Argyreia nervosa-driven biosynthesis of Cu-Ag bimetallic nanoparticles from plant leaves extract unveils enhanced antibacterial properties. Bioprocess Biosyst Eng 2024; 47:1307-1319. [PMID: 38698218 DOI: 10.1007/s00449-024-03020-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 04/10/2024] [Indexed: 05/05/2024]
Abstract
Our study specifically explores the biosynthesis of copper-silver bimetallic nanoparticles (Cu-Ag BMNPs) using Argyreia nervosa (AN) plant leaf green extract as a versatile agent for capping, reducing, and stabilizing. This biosynthesis method is characterized by its simplicity and cost-effectiveness, utilizing silver nitrate (AgNO3) and cupric oxide (CuO) as precursor materials. Our comprehensive characterization of the Cu-Ag BMNPs, employing techniques such as X-ray diffraction (XRD), UV-Vis spectrometry, scanning electron microscopy (SEM), Zetasizer, and Fourier transformed infrared spectrometry (FTIR). FTIR analysis reveals biofunctional groups and chemical bands, while SEM and XRD analyses provide morphological and structural details. To evaluate the antimicrobial properties of the Cu-Ag BMNPs, we conducted disc diffusion and minimum inhibitory concentration (MIC) assays against Escherichia coli (E. coli), with results compared to the standard gentamicin antibiotic. It is observed that the 2% and 5% CuO concentrations of AN Cu-Ag BMNPs exhibit substantial antibacterial activity in comparison to AN extract when tested on EPEC. Among these, the Cu-Ag BMNPs at a 2% concentration demonstrate higher antibacterial activity, potentially attributed to the enhanced dispersion of BMNPs facilitated by the lower CuO doping concentration. These two assays showcased the improved antimicrobial activity of Cu-Ag BMNPs, highlighting their synergistic effect, characterized by high MIC values and a broad zone of inhibition in the disc diffusion tests against E. coli. These results emphasize the significant antibacterial potential of the synthesized BMNPs, with a medicinal plant AN leaf extract playing a pivotal role in enhancing antibacterial activity.
Collapse
Affiliation(s)
- Parvathalu Kalakonda
- Department of Physics, Government City College, (A), Nayapul, Osmania University, Hyderabad, Telangana, 500002, India.
| | - Rajitha Kathi
- Department of Physics, Government City College, (A), Nayapul, Osmania University, Hyderabad, Telangana, 500002, India
| | | | - Naveenkumar Dabbeta
- Department of Physics, Government City College, (A), Nayapul, Osmania University, Hyderabad, Telangana, 500002, India
| | - Naveenkumar Madipoju
- Department of Physics, Government City College, (A), Nayapul, Osmania University, Hyderabad, Telangana, 500002, India
| | - Soujanyalakshmi Mynepally
- Department of Physics, Government City College, (A), Nayapul, Osmania University, Hyderabad, Telangana, 500002, India
- .Joseph's Degree and PG College, Hyderabad, Telangana, 500001, India
| | - Vijay Morampudi
- Department of Biochemistry, University of Hyderabad, Hyderabad, Telangana, 500046, India
| | - Sreenivas Banne
- Department of Chemistry and Biosciences, Rice University-BRC, Houston, TX, 77005, USA
| | - Pritam Mandal
- Department of Physics, Michigan Technological University, Houghton, MI, 49931, USA
| | - Ramu Naidu Savu
- Department of Chemistry, University of Hyderabad, Hyderabad, Telangana, 500046, India
| | - Sarvani Jowhar Khanam
- Department of Chemistry, University of Hyderabad, Hyderabad, Telangana, 500046, India
| | - Murali Banavoth
- Department of Chemistry, University of Hyderabad, Hyderabad, Telangana, 500046, India
| | - Naina Vinodini Sudarsanam Eve
- Department of Physics, Government City College, (A), Nayapul, Osmania University, Hyderabad, Telangana, 500002, India
| | - Bala Bhaskar Podila
- Department of Physics, Government City College, (A), Nayapul, Osmania University, Hyderabad, Telangana, 500002, India
| |
Collapse
|
10
|
Saifuddin NN, Matussin SN, Fariduddin Q, Khan MM. Potentials of roots, stems, leaves, flowers, fruits, and seeds extract for the synthesis of silver nanoparticles. Bioprocess Biosyst Eng 2024; 47:1119-1137. [PMID: 38904717 DOI: 10.1007/s00449-024-03044-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 06/06/2024] [Indexed: 06/22/2024]
Abstract
Silver nanoparticles (AgNPs) have gained significant attention in various applications due to their unique properties that differ from bulk or macro-sized counterparts. In the advancement of nanotechnology, a reliable, non-toxic, and eco-friendly green synthesis has widely been developed as an alternative method for the production of AgNPs, overcoming limitations associated with the traditional physical and chemical methods. Green synthesis of AgNPs involves the utilization of biological sources including plant extracts with silver salt as the precursor. The potential of phytochemicals in plant extracts serves as a reducing/capping and stabilizing agent to aid in the bio-reduction of Ag+ ions into a stable nanoform, Ag0. This review provides insights into the potentials of various plant parts like root, stem, leaf, flower, fruit, and seed extracts that have been extensively reported for the synthesis of AgNPs.
Collapse
Affiliation(s)
- Nurul Nazirah Saifuddin
- Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE, 1410, Brunei Darussalam
| | - Shaidatul Najihah Matussin
- Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE, 1410, Brunei Darussalam
| | - Qazi Fariduddin
- Plant Physiology and Biochemistry Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Mohammad Mansoob Khan
- Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE, 1410, Brunei Darussalam.
| |
Collapse
|
11
|
Harutyunyan A, Gabrielyan L, Aghajanyan A, Gevorgyan S, Schubert R, Betzel C, Kujawski W, Gabrielyan L. Comparative Study of Physicochemical Properties and Antibacterial Potential of Cyanobacteria Spirulina platensis-Derived and Chemically Synthesized Silver Nanoparticles. ACS OMEGA 2024; 9:29410-29421. [PMID: 39005782 PMCID: PMC11238227 DOI: 10.1021/acsomega.4c01604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/08/2024] [Accepted: 06/12/2024] [Indexed: 07/16/2024]
Abstract
The "green synthesis" of nanoparticles (NPs) offers cost-effective and environmentally friendly advantages over chemical synthesis by utilizing biological sources such as bacteria, algae, fungi, or plants. In this context, cyanobacteria and their components are valuable sources to produce various NPs. The present study describes the comparative analysis of physicochemical and antibacterial properties of chemically synthesized (Chem-AgNPs) and cyanobacteria Spirulina platensis-derived silver NPs (Splat-AgNPs). The physicochemical characterization applying complementary dynamic light scattering and transmission electron microscopy revealed that Splat-AgNPs have an average hydrodynamic radius of ∼ 28.70 nm and spherical morphology, whereas Chem-AgNPs are irregular-shaped with an average radius size of ∼ 53.88 nm. The X-ray diffraction pattern of Splat-AgNPs confirms the formation of face-centered cubic crystalline AgNPs by "green synthesis". Energy-dispersive spectroscopy analysis demonstrated the purity of the Splat-AgNPs. Fourier transform infrared spectroscopy analysis of Splat-AgNPs demonstrated the involvement of some functional groups in the formation of NPs. Additionally, Splat-AgNPs demonstrated high colloidal stability with a zeta-potential value of (-50.0 ± 8.30) mV and a pronounced bactericidal activity against selected Gram-positive (Enterococcus hirae and Staphylococcus aureus) and Gram-negative (Pseudomonas aeruginosa and Salmonella typhimurium) bacteria compared with Chem-AgNPs. Furthermore, our studies toward understanding the action mechanism of NPs showed that Splat-AgNPs alter the permeability of bacterial membranes and the energy-dependent H+-fluxes via FoF1-ATPase, thus playing a crucial role in bacterial energetics. The insights gained from this study show that Spirulina-derived synthesis is a low-cost, simple approach to producing stable AgNPs for their energy-metabolism-targeted antibacterial applications in biotechnology and biomedicine.
Collapse
Affiliation(s)
- Ani Harutyunyan
- Department of Biochemistry, Microbiology and Biotechnology, Biology Faculty, Yerevan State University, 1 Alex Manoukian Str., Yerevan 0025, Armenia
- Research Institute of Biology, Biology Faculty, Yerevan State University, 1 Alex Manoukian Str., Yerevan 0025, Armenia
| | - Liana Gabrielyan
- Department of Physical and Colloids Chemistry, Chemistry Faculty, Yerevan State University, 1 Alex Manoukian Str., Yerevan 0025, Armenia
- Chemical Research Center, Laboratory of Physical Chemistry, 1 Alex Manoukian Str., Yerevan 0025, Armenia
| | - Anush Aghajanyan
- Department of Biochemistry, Microbiology and Biotechnology, Biology Faculty, Yerevan State University, 1 Alex Manoukian Str., Yerevan 0025, Armenia
- Research Institute of Biology, Biology Faculty, Yerevan State University, 1 Alex Manoukian Str., Yerevan 0025, Armenia
| | - Susanna Gevorgyan
- The Hamburg Centre for Ultrafast Imaging (CUI), University of Hamburg, Luruper Chaussee 149, Hamburg 22761, Germany
- Institute of Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, University of Hamburg, c/o DESY, Notkestrasse 85, Build. 22A, Hamburg 22607, Germany
| | - Robin Schubert
- European X-Ray Free-Electron Laser Facility GmbH, Holzkoppel 4, Schenefeld 22869, Germany
| | - Christian Betzel
- The Hamburg Centre for Ultrafast Imaging (CUI), University of Hamburg, Luruper Chaussee 149, Hamburg 22761, Germany
- Institute of Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, University of Hamburg, c/o DESY, Notkestrasse 85, Build. 22A, Hamburg 22607, Germany
| | - Wojciech Kujawski
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarina Street, Toruń 87-100, Poland
| | - Lilit Gabrielyan
- Department of Biochemistry, Microbiology and Biotechnology, Biology Faculty, Yerevan State University, 1 Alex Manoukian Str., Yerevan 0025, Armenia
- Research Institute of Biology, Biology Faculty, Yerevan State University, 1 Alex Manoukian Str., Yerevan 0025, Armenia
| |
Collapse
|
12
|
Upoma N, Akter N, Ferdousi FK, Sultan MZ, Rahman S, Alodhayb A, Alibrahim KA, Habib A. Interactions of Co(II)- and Zn(II)porphyrin of 5,10,15,20-tetrakis(1-methyl-4-pyridinio)porphyrin with DNA in Aqueous Solution and Their Antimicrobial Activities. ACS OMEGA 2024; 9:22325-22335. [PMID: 38799349 PMCID: PMC11112571 DOI: 10.1021/acsomega.4c01708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/31/2024] [Accepted: 04/25/2024] [Indexed: 05/29/2024]
Abstract
Antibiotics are frequently used to treat, prevent, or control bacterial infections, but in recent years, infections resistant to all known classes of conventional antibiotics have significantly grown. The development of novel, nontoxic, and nonincursive antimicrobial methods that work more quickly and efficiently than the present antibiotics is required to combat this growing public health issue. Here, Co(II) and Zn(II) derivatives of tetrakis(1-methylpyridinium-4yl)porphyrin [H2TMPyP]4+ as a tetra(ρ-toluenesulfonate) were synthesized and purified to investigate their interactions with DNA (pH 7.40, 25 °C) using UV-vis, fluorescence techniques, and antimicrobial activity. UV-vis results showed that [H2TMPyP]4+ had a high hypochromicity (∼64%) and a substantial bathochromic shift (Δλ, 14 nm), while [Co(II)TMPyP]4+ and [Zn(II)TMPyP]4+ showed little hypochromicity (∼37%) and a small bathochromic shift (Δλ, 3-6 nm). Results reveal that [H2TMPyP]4+ interacts with DNA via intercalation, while Co(II)- and [Zn(II)TMPyP]4+ interact with DNA via outside self-stacking. Fluorescence results also confirmed the interaction of [H2TMPyP]4+ and the metalloporphyrins with DNA. Results of the antimicrobial activity assay revealed that the metalloporphyrins showed inhibitory effects on Gram-positive and Gram-negative bacteria and fungi, but that neither the counterions nor [H2TMPyP]4+ exhibited any inhibitory effects. Mechanism of antimicrobial activities of metalloporphyrins are discussed.
Collapse
Affiliation(s)
| | - Nazmin Akter
- Department
of Chemistry, University of Dhaka, Dhaka 1000, Bangladesh
| | | | - Md. Zakir Sultan
- Centre
for Advanced Research in Sciences (CARS), University of Dhaka, Dhaka 1000, Bangladesh
| | - Shofiur Rahman
- Biological
and Environmental Sensing Research Unit, King Abdullah Institute for
Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah Alodhayb
- Biological
and Environmental Sensing Research Unit, King Abdullah Institute for
Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia
| | - Khuloud A. Alibrahim
- Department
of Chemistry, College of Science, Princess
Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Ahsan Habib
- Department
of Chemistry, University of Dhaka, Dhaka 1000, Bangladesh
| |
Collapse
|
13
|
Alomar TS, AlMasoud N, Awad MA, AlOmar RS, Merghani NM, El-Zaidy M, Bhattarai A. Designing Green Synthesis-Based Silver Nanoparticles for Antimicrobial Theranostics and Cancer Invasion Prevention. Int J Nanomedicine 2024; 19:4451-4464. [PMID: 38799694 PMCID: PMC11127651 DOI: 10.2147/ijn.s440847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 03/09/2024] [Indexed: 05/29/2024] Open
Abstract
Introduction Researchers are increasingly favouring the use of biological resources in the synthesis of metallic nanoparticles. This synthesis process is quick and affordable. The current study examined the antibacterial and anticancer effects of silver nanoparticles (AgNPs) derived from the Neurada procumbens plant. Biomolecules derived from natural sources can be used to coat AgNPs to make them biocompatible. Methods UV-Vis spectroscopy was used to verify the synthesis of AgNPs from Neurada procumbens plant extract, while transmission electron microscopy (TEM), photoluminescence (PL) spectroscopy, dynamic light scattering (DLS), and Fourier transform infrared spectroscopy (FTIR) were used to characterize their morphology, crystalline structure, stability, and coating. Results UV-visible spectrum of AgNPs shows an absorption peak at 422 nm, indicating the isotropic nature of these nanoparticles. As a result of the emergence of a transmission peak at 804.53 and 615.95 cm-1 in the spectrum of the infrared light emitted by atoms in a sample, FTIR spectroscopy demonstrated that the Ag stretching vibration mode is metal-oxygen (M-O). Electron dispersive X-ray (EDX) spectral analysis shows that elementary silver has a peak at 3 keV. Irradiating the silver surface with electrons, photons, or laser beams triggers the illumination. The emission peak locations have been found between 300 and 550 nm. As a result of DLS analysis, suspended particles showed a bimodal size distribution, with their Z-average particle size being 93.38 nm. Conclusion The findings showed that the antibacterial action of AgNPs was substantially (p≤0.05) more evident against Gramme-positive strains (S. aureus and B. cereus) than E. coli. The biosynthesis of AgNPs is an environmentally friendly method for making nanostructures that have antimicrobial and anticancer properties.
Collapse
Affiliation(s)
- Taghrid S Alomar
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Najla AlMasoud
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Manal A Awad
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Reem S AlOmar
- Department of Family and Community Medicine, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, 32210, Saudi Arabia
| | - Nada M Merghani
- Central Research Laboratory, Vice Rectorate for Studies and Scientific Research, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohamed El-Zaidy
- Department of Botany and Microbiology, Faculty of Science, King Saud University, Riyadh, 11459, Saudi Arabia
| | - Ajaya Bhattarai
- Department of Chemistry, Mahendra Morang Adarsh Multiple Campus, Tribhuvan University, Biratnagar, 56613, Nepal
| |
Collapse
|
14
|
U Din M, Batool A, Ashraf RS, Yaqub A, Rashid A, U Din NM. Green Synthesis and Characterization of Biologically Synthesized and Antibiotic-Conjugated Silver Nanoparticles followed by Post-Synthesis Assessment for Antibacterial and Antioxidant Applications. ACS OMEGA 2024; 9:18909-18921. [PMID: 38708285 PMCID: PMC11064210 DOI: 10.1021/acsomega.3c08927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/01/2024] [Accepted: 03/27/2024] [Indexed: 05/07/2024]
Abstract
The paper presents the antibacterial and antioxidant activities of silver nanoparticles (AgNPs) when conjugated with two antibiotics levofloxacin and ciprofloxacin as well as biologically synthesized nanoparticles from Moringa oleifera and Curcuma longa. Leaves of Moringa and powder of Curcuma were used in the green synthesis of silver nanoparticles. Ultraviolet-visible spectroscopy (UV), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM) were used for the characterization of the synthesized silver nanoparticles. Comparison of levofloxacin and ciprofloxacin and their conjugated AgNPs was also studied for antibacterial and antioxidant activity. The synthesis of Moringa-AgNPs, turmeric-AgNPs, levofloxacin-AgNPs, and ciprofloxacin-AgNPs was confirmed by UV spectroscopy. An absorption peak value of 400-450 nm was observed, and light to dark brown color indicated the synthesis of AgNPs. Moringa-AgNPs revealed high antioxidant activity (80.3 ± 3.14) among all of the synthesized AgNPs. Lev-AgNPs displayed the highest zone of inhibition for Staphylococcus aureus, while in Escherichia coli, Cip-AgNPs showed high antibacterial activity. Furthermore, AgNPs synthesized using green methods exhibit high and efficient antimicrobial activities against two food-borne pathogens. Biologically synthesized nanoparticles exhibited antibacterial activity against E. coli (13.73 ± 0.46 with Tur-AgNPs and 13.53 ± 0.32 with Mor-AgNPs) and S. aureus (14.16 ± 0.24 with Tur-AgNPs and 13.36 ± 0.77 with Mor-AgNPs) by using a well diffusion method with significant shrinkage and damage of the bacterial cell wall, whereas antibiotic-conjugated nanoparticles showed high antibacterial activity compared to biologically synthesized nanoparticles with 14.4 ± 0.37 for Cip-AgNPs and 13.93 ± 0.2 for Lev-AgNPs for E. coli and 13.3 ± 0.43 for Cip-AgNPs and 14.33 ± 0.12 for Lev-AgNPs for S. aureus. The enhanced efficiency of conjugated silver nanoparticles is attributed to their increased surface area compared to larger particles. Conjugation of different functional groups contributes to improved reactivity, creating active sites for catalytic reactions. Additionally, the precise control over the size and shape of green-synthesized nanoparticles further augments their catalytic and antibiotic activities.
Collapse
Affiliation(s)
- Mehwish
Mohy U Din
- Department
of Zoology, Dr. Nazir Ahmad Institute of Biological Sciences, Government College University, Lahore, 54000 Lahore, Pakistan
| | - Andleeb Batool
- Department
of Zoology, Dr. Nazir Ahmad Institute of Biological Sciences, Government College University, Lahore, 54000 Lahore, Pakistan
| | - Raja Shahid Ashraf
- Department
of Chemistry, Institute of Chemical Sciences, Government College University, Lahore, 54000 Lahore, Pakistan
| | - Atif Yaqub
- Department
of Zoology, Dr. Nazir Ahmad Institute of Biological Sciences, Government College University, Lahore, 54000 Lahore, Pakistan
| | - Aneeba Rashid
- Department
of Botany, Dr. Nazir Ahmad Institute of Biological Sciences, Government College University, Lahore, 54000 Lahore, Pakistan
| | - Nazish Mohy U Din
- Sustainable
Development Study Center, Government College
University, Lahore, 54000 Lahore, Pakistan
| |
Collapse
|
15
|
Choudhary S, Kumawat G, Khandelwal M, Khangarot RK, Saharan V, Nigam S, Harish. Phyco-synthesis of silver nanoparticles by environmentally safe approach and their applications. Sci Rep 2024; 14:9568. [PMID: 38671168 PMCID: PMC11053078 DOI: 10.1038/s41598-024-60195-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 03/07/2024] [Indexed: 04/28/2024] Open
Abstract
In recent years, there has been an increasing interest in the green synthesis of metallic nanoparticles, mostly because of the evident limitations associated with chemical and physical methods. Green synthesis, commonly referred to as "biogenic synthesis," is seen as an alternative approach to produce AgNPs (silver nanoparticles). The current work focuses on the use of Asterarcys sp. (microalga) for biological reduction of AgNO3 to produce AgNPs. The optimal parameters for the reduction of AgNPs were determined as molarity of 3 mM for AgNO3 and an incubation duration of 24 h at pH 9, using a 20:80 ratio of algal extract to AgNO3. The biosynthesized Ast-AgNPs were characterised using ultraviolet-visible spectroscopy (UV-Vis), zeta potential, scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), and high-resolution transmission electron microscopy (HR-TEM) with selected area electron diffraction (SAED) patterns. The nanoparticles exhibited their highest absorption in the UV-visible spectra at 425 nm. The X-ray diffraction (XRD) investigation indicated the presence of characteristic peaks at certain angles: 38.30° (1 1 1), 44.40° (2 0 0), 64.64° (2 2 0), and 77.59° (3 1 1) according to the JCPDS file No. 04-0783. Based on SEM and TEM, the Ast-AgNPs had an average size of 35 nm and 52 nm, respectively. The zeta potential was determined to be - 20.8 mV, indicating their stability. The highest antibacterial effectiveness is shown against Staphylococcus aureus, with a zone of inhibition of 25.66 ± 1.52 mm at 250 μL/mL conc. of Ast-AgNPs. Likewise, Ast-AgNPs significantly suppressed the growth of Fusarium sp. and Curvularia sp. by 78.22% and 85.05%, respectively, at 150 μL/mL conc. of Ast-AgNPs. In addition, the Ast-AgNPs exhibited significant photocatalytic activity in degrading methylene blue (MB), achieving an 88.59% degradation in 120 min, revealing multiple downstream applications of Ast-AgNPs.
Collapse
Affiliation(s)
- Sunita Choudhary
- Department of Botany, Mohanlal Sukhadia University, Udaipur, 313001, India
| | - Geetanjali Kumawat
- Department of Botany, Mohanlal Sukhadia University, Udaipur, 313001, India
| | - Manisha Khandelwal
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur, 313001, India
| | | | - Vinod Saharan
- Department of Molecular Biology and Biotechnology, Rajasthan College of Agriculture, Maharana Pratap University of Agriculture and Technology, Udaipur, 313001, Rajasthan, India
| | - Subhasha Nigam
- Amity Institute of Biotechnology, Amity University, Noida, 201313, Uttar Pradesh, India
| | - Harish
- Department of Botany, Mohanlal Sukhadia University, Udaipur, 313001, India.
| |
Collapse
|
16
|
Rahman S, Sadaf S, Hoque ME, Mishra A, Mubarak NM, Malafaia G, Singh J. Unleashing the promise of emerging nanomaterials as a sustainable platform to mitigate antimicrobial resistance. RSC Adv 2024; 14:13862-13899. [PMID: 38694553 PMCID: PMC11062400 DOI: 10.1039/d3ra05816f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 04/02/2024] [Indexed: 05/04/2024] Open
Abstract
The emergence and spread of antibiotic-resistant (AR) bacterial strains and biofilm-associated diseases have heightened concerns about exploring alternative bactericidal methods. The WHO estimates that at least 700 000 deaths yearly are attributable to antimicrobial resistance, and that number could increase to 10 million annual deaths by 2050 if appropriate measures are not taken. Therefore, the increasing threat of AR bacteria and biofilm-related infections has created an urgent demand for scientific research to identify novel antimicrobial therapies. Nanomaterials (NMs) have emerged as a promising alternative due to their unique physicochemical properties, and ongoing research holds great promise for developing effective NMs-based treatments for bacterial and viral infections. This review aims to provide an in-depth analysis of NMs based mechanisms combat bacterial infections, particularly those caused by acquired antibiotic resistance. Furthermore, this review examines NMs design features and attributes that can be optimized to enhance their efficacy as antimicrobial agents. In addition, plant-based NMs have emerged as promising alternatives to traditional antibiotics for treating multidrug-resistant bacterial infections due to their reduced toxicity compared to other NMs. The potential of plant mediated NMs for preventing AR is also discussed. Overall, this review emphasizes the importance of understanding the properties and mechanisms of NMs for the development of effective strategies against antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Sazedur Rahman
- Department of Mechanical and Production Engineering, Ahsanullah University of Science and Technology Dhaka Bangladesh
| | - Somya Sadaf
- Department of Civil and Environmental Engineering, Birla Institute of Technology Mesra Ranchi 835215 Jharkhand India
| | - Md Enamul Hoque
- Department of Biomedical Engineering, Military Institute of Science and Technology Dhaka Bangladesh
| | - Akash Mishra
- Department of Civil and Environmental Engineering, Birla Institute of Technology Mesra Ranchi 835215 Jharkhand India
| | - Nabisab Mujawar Mubarak
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei Bandar Seri Begawan BE1410 Brunei Darussalam
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University Jalandhar Punjab India
| | - Guilherme Malafaia
- Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute Urutaí GO Brazil
| | - Jagpreet Singh
- Department of Chemistry, University Centre for Research and Development, Chandigarh University Mohali-140413 India
| |
Collapse
|
17
|
Khan MH, Unnikrishnan S, Ramalingam K. Antipathogenic Efficacy of Biogenic Silver Nanoparticles and Antibiofilm Activities Against Multi-drug-Resistant ESKAPE Pathogens. Appl Biochem Biotechnol 2024; 196:2031-2052. [PMID: 37462813 DOI: 10.1007/s12010-023-04630-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2023] [Indexed: 04/23/2024]
Abstract
The silver nanoparticles (AgNPs) were produced by employing a biogenic loom and tested for antipathogenic assets against multi-drug-resistant (MDR) ESKAPE bacteria. Biogenically synthesized AgNPs were characterized adopting various high-throughput techniques such as UHRTEM, SEM with EDX, DLS, TGA-DTA, and XRD and spectroscopic analysis showed polydispersion of nanoparticles. In this context, AgNPs with the attribute of spherical-shaped nanoparticles with an average size of 26 nm were successfully synthesized utilizing bacterial supernatant. The antipathogenic activities of AgNPs were assessed against 11 strains of MDR ESKAPE bacteria including Enterococcus faecium; methicillin-resistant Staphylococcus aureus; Klebsiella pneumonia; Acinetobacter baumannii; Pseudomonas aeruginosa; Enterobacter aerogenes; and Enterobacter species. The exposure of biogenic AgNPs in a well diffusion assay showed all the growth inhibitions of ESKAPE bacteria at 200 μg/ml after 18 h of incubation. Growth kinetics demonstrated maximum killing at 60 μg/ml after 4 h of completion. The highest biofilm depletions were found at 100 μg/ml in adhesion assay. Live/dead assays showed effective killing of the ESKAPE bacteria at 10 μg/ml in pre-existing biofilms. The effective inhibitory concentrations of AgNPs were investigated ranging from 10 to 200 μg/ml. The selected pathogens found sensitive to AgNPs are statistically significant (P < 0.05) than that of cefotaxime/AgNO3. Consequently, a broad spectrum of antimicrobial potentials of AgNPs can be alternative to conventional antimicrobial agents for future medicine.
Collapse
Affiliation(s)
- Mohd Hashim Khan
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, GST Road, Vandalur, Chennai, Tamil Nadu, 600 048, India
| | - Sneha Unnikrishnan
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, GST Road, Vandalur, Chennai, Tamil Nadu, 600 048, India
| | - Karthikeyan Ramalingam
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, GST Road, Vandalur, Chennai, Tamil Nadu, 600 048, India.
| |
Collapse
|
18
|
Thirupathi B, Pongen YL, Kaveriyappan GR, Dara PK, Rathinasamy S, Vinayagam S, Sundaram T, Hyun BK, Durairaj T, Sekar SKR. Padina boergesenii mediated synthesis of Se-ZnO bimetallic nanoparticles for effective anticancer activity. Front Microbiol 2024; 15:1358467. [PMID: 38468852 PMCID: PMC10925794 DOI: 10.3389/fmicb.2024.1358467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/02/2024] [Indexed: 03/13/2024] Open
Abstract
Introduction Evaluating the anticancer property of Padina boergesenii mediated bimetallic nanoparticles. Methods The present study focuses on synthesizing Se-ZnO bimetallic nanoparticles from an aqueous algal extract of brown algae Padina boergesenii.Synthesized Se-ZnO NPs were characterized by UV, FTIR, SEM-EDS and HRTEM for confirmation along with the anticancer activity by MTT assay. Results The UV gave an absorbance peak at 342 and 370 nm, and the FTIR showed functional groups involved in synthesizing Se-ZnO NPs. The TEM micrographs indicated the crystalline nature and confirmed the size of the Se-ZnO NPs to be at an average size of 26.14 nm. Anticancer efficacy against the MCF-7 breast and HepG2 (hepatoblastoma) cell lines were also demonstrated, attaining an IC50 value of 67.9 µg and 74.9 µg/ml respectively, which caused 50% cell death. Discussion This work aims to highlight an effective method for delivering bioactive compounds extracted from brown algae and emphasize its future therapeutic prospects. The potential of Selenium-Zinc oxide nanoparticles is of great interest due to the biocompatibility and low toxicity aspects of selenium combined with the cost-effectiveness and sustainability of zinc metal. The presence of bioactive compounds contributed to the stability of the nanoparticles and acted as capping properties.
Collapse
Affiliation(s)
- Balaji Thirupathi
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, India
| | - Yimtar Lanutoshi Pongen
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, India
| | | | - Pavan Kumar Dara
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, India
| | - Suresh Rathinasamy
- Research and Development Centre, Greensmed Labs, Thoraipakkam, Chennai, Tamil Nadu, India
| | - Saranya Vinayagam
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Thanigaivel Sundaram
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, India
| | - Baek Kwang Hyun
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, Republic of Korea
| | - Thirumurugan Durairaj
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, India
| | | |
Collapse
|
19
|
Talib H, Mehmood A, Amjad MS, Mustafa A, Khan MAR, Raffi M, Khan RT, Ahmad KS, Qureshi H. Antibacterial, antioxidant, and anticancer potential of green fabricated silver nanoparticles made from Viburnum grandiflorum leaf extract. BOTANICAL STUDIES 2024; 65:4. [PMID: 38252177 PMCID: PMC10803688 DOI: 10.1186/s40529-024-00411-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/14/2024] [Indexed: 01/23/2024]
Abstract
BACKGROUND Recently, researchers are focusing on creating new tools to combat the antibiotic resistant bacteria and malignancy issues, which pose significant threats to humanity. Biosynthesized silver nanoparticles (AgNPs) are thought to be a potential solution to these issues. The biosynthesis method, known for its environmentally friendly and cost-effective characteristics, can produce small-sized AgNPs with antimicrobial and anticancer properties. In this study, AgNPs were bio-fabricated from the distilled water and methanolic extracts of Viburnum grandiflorum leaves. Physio-chemical characterization of the bio-fabricated AgNPs was conducted using UV-visible spectroscopy, scanning electron microscopy, energy dispersive X-ray, and X-ray diffraction analysis. RESULTS AgNPs produced from the methanol extract were smaller in size (12.28 nm) compared to those from the aqueous extract (17.77 nm). The bioengineered AgNPs exhibited a circular shape with a crystalline nature. These biosynthesized AgNPs demonstrated excellent bactericidal activity against both gram-negative (Pseudomonas aeruginosa) and gram-positive (Staphylococcus aureus) bacteria. Highest antibacterial activity was observed with the methanol extract against P. aeruginosa (14.66 ± 0.74 mm). AgNPs from the methanol extract also displayed the highest antioxidant activity, with an IC50 value of 188.00 ± 2.67 μg/mL against 2,2-diphenyl-1-picrylhydrazyl (DPPH). Furthermore, AgNPs exhibited notable cytotoxic activity against Rhabdomyosarcoma cell line (RD cell) of human muscle cancer cell. The IC50 values calculated from the MTT assay were 26.28 ± 1.58 and 21.49 ± 1.44 μg/mL for AgNPs synthesized from aqueous and methanol extracts, respectively. CONCLUSION The methanol extract of V. grandiflorum leaves demonstrates significant potential for synthesizing AgNPs with effective antibacterial, antioxidant, and anticancer actions, making them applicable in various biomedical applications.
Collapse
Affiliation(s)
- Hina Talib
- Department of Botany, University of Poonch Rawalakot, Rawalakot, Azad Kashmir, 12350, Pakistan
| | - Ansar Mehmood
- Department of Botany, University of Poonch Rawalakot, Rawalakot, Azad Kashmir, 12350, Pakistan.
| | - Muhammad Shoaib Amjad
- Department of Botany, Women University of Azad Jammu and Kashmir Bagh, Bagh, 12500, Pakistan.
- Birmingham Institute of Forest Research, University of Birmingham, Birmingham, B15 2TT, UK.
| | - Amna Mustafa
- Department of Botany, University of Poonch Rawalakot, Rawalakot, Azad Kashmir, 12350, Pakistan
| | | | - Muhammad Raffi
- Department of Materials Engineering, National Institute of Lasers and Optronics (NILOP), Lehtrar Road, Nilore, Islamabad, 45650, Pakistan
| | - Rizwan Taj Khan
- Department of Botany, University of Azad Jammu & Kashmir, Muzaffarabad, Pakistan
| | - Khawaja Shafique Ahmad
- Department of Botany, University of Poonch Rawalakot, Rawalakot, Azad Kashmir, 12350, Pakistan
| | - Huma Qureshi
- Department of Botany, University of Chakwal, Chakwal, 48800, Pakistan
| |
Collapse
|
20
|
Martínez-García K, Zertuche-Arias T, Bernáldez-Sarabia J, Iñiguez E, Kretzchmar T, Camacho-Villegas TA, Lugo-Fabres PH, Licea Navarro AF, Bravo-Madrigal J, Castro-Ceseña AB. Radical Scavenging, Hemocompatibility, and Antibacterial Activity against MDR Acinetobacter baumannii in Alginate-Based Aerogels Containing Lipoic Acid-Capped Silver Nanoparticles. ACS OMEGA 2024; 9:2350-2361. [PMID: 38250422 PMCID: PMC10795026 DOI: 10.1021/acsomega.3c06114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/21/2023] [Accepted: 12/25/2023] [Indexed: 01/23/2024]
Abstract
Retaining the hemocompatibility, supporting cell growth, and exhibiting anti-inflammatory and antioxidant properties, while having antimicrobial activity, particularly against multidrug-resistant bacteria (MDR), remain a challenge when designing aerogels for biomedical applications. Here, we report that our synthesized alginate-based aerogels containing either 7.5 or 11.25 μg of lipoic acid-capped silver nanoparticles (AgNPs) showed improved hemocompatibility properties while retaining their antimicrobial effect against MDR Acinetobacter baumannii and the reference strain Escherichia coli, relative to a commercial dressing and polymyxin B, used as a reference. The differences in terms of the microstructure and nature of the silver, used as the bioactive agent, between our synthesized aerogels and the commercial dressing used as a reference allowed us to improve several biological properties in our aerogels with respect to the reference commercial material. Our aerogels showed significantly higher antioxidant capacity, in terms of nmol of Trolox equivalent antioxidant capacity per mg of aerogel, than the commercial dressing. All our synthesized aerogels showed anti-inflammatory activity, expressed as nmol of indomethacin equivalent anti-inflammatory activity per mg of aerogel, while this property was not found in the commercial dressing material. Finally, our aerogels were highly hemocompatible (less than 1% hemolysis ratio); however, the commercial material showed a 20% hemolysis rate. Therefore, our alginate-based aerogels with lipoic acid-capped AgNPs hold promise for biomedical applications.
Collapse
Affiliation(s)
- Kevin
D. Martínez-García
- Departamento
de Innovación Biomédica, Centro
de Investigación Científica y de Educación Superior
de Ensenada, Baja California (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860 Ensenada, Baja California, Mexico
| | - Tonatzin Zertuche-Arias
- Departamento
de Innovación Biomédica, Centro
de Investigación Científica y de Educación Superior
de Ensenada, Baja California (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860 Ensenada, Baja California, Mexico
| | - Johanna Bernáldez-Sarabia
- Departamento
de Innovación Biomédica, Centro
de Investigación Científica y de Educación Superior
de Ensenada, Baja California (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860 Ensenada, Baja California, Mexico
| | - Enrique Iñiguez
- Ciencias
de la Tierra, Centro de Investigación
Científica y de Educación Superior de Ensenada, Baja
California (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860 Ensenada, Baja California, Mexico
- CONAHCYT—Ciencias
de la Tierra, Centro de Investigación
Científica y de Educación Superior de Ensenada, Baja
California (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860 Ensenada, Baja California, Mexico
| | - Thomas Kretzchmar
- Ciencias
de la Tierra, Centro de Investigación
Científica y de Educación Superior de Ensenada, Baja
California (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860 Ensenada, Baja California, Mexico
| | - Tanya Amanda Camacho-Villegas
- Unidad
de Biotecnología Médica y Farmacéutica, Centro de Investigación Asistencia en Tecnología
y Diseño de Estado de Jalisco (CIATEJ), A.C. Av. Normalistas No. 800, Colinas de la Normal, C.P. 44270 Guadalajara, Jalisco, Mexico
- CONAHCYT-Unidad
de Biotecnología Médica y Farmacéutica, Centro de Investigación Asistencia en Tecnología
y Diseño del Estado de Jalisco (CIATEJ), A.C. Av. Normalistas No. 800, Colinas de la Normal, C.P. 44270 Guadalajara, Jalisco, Mexico
| | - Pavel H. Lugo-Fabres
- Unidad
de Biotecnología Médica y Farmacéutica, Centro de Investigación Asistencia en Tecnología
y Diseño de Estado de Jalisco (CIATEJ), A.C. Av. Normalistas No. 800, Colinas de la Normal, C.P. 44270 Guadalajara, Jalisco, Mexico
- CONAHCYT-Unidad
de Biotecnología Médica y Farmacéutica, Centro de Investigación Asistencia en Tecnología
y Diseño del Estado de Jalisco (CIATEJ), A.C. Av. Normalistas No. 800, Colinas de la Normal, C.P. 44270 Guadalajara, Jalisco, Mexico
| | - Alexei F. Licea Navarro
- Departamento
de Innovación Biomédica, Centro
de Investigación Científica y de Educación Superior
de Ensenada, Baja California (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860 Ensenada, Baja California, Mexico
| | - Jorge Bravo-Madrigal
- Unidad
de Biotecnología Médica y Farmacéutica, Centro de Investigación Asistencia en Tecnología
y Diseño de Estado de Jalisco (CIATEJ), A.C. Av. Normalistas No. 800, Colinas de la Normal, C.P. 44270 Guadalajara, Jalisco, Mexico
| | - Ana B. Castro-Ceseña
- Departamento
de Innovación Biomédica, Centro
de Investigación Científica y de Educación Superior
de Ensenada, Baja California (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860 Ensenada, Baja California, Mexico
- CONAHCYT-Departamento
de Innovación Biomédica, Centro
de Investigación Científica y de Educación Superior
de Ensenada, Baja California (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860 Ensenada, Baja California, Mexico
| |
Collapse
|
21
|
Al-Sahli SA, Al-Otibi F, Alharbi RI, Amina M, Al Musayeib NM. Silver nanoparticles improve the fungicidal properties of Rhazya stricta decne aqueous extract against plant pathogens. Sci Rep 2024; 14:1297. [PMID: 38221517 PMCID: PMC10788342 DOI: 10.1038/s41598-024-51855-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/10/2024] [Indexed: 01/16/2024] Open
Abstract
One of the most promising, non-toxic, and biocompatible developments for many biological activities is the green synthesis of nanoparticles from plants. In this work, we investigated the antifungal activity of silver nanoparticles (AgNPs) biosynthesized from Rhazya stricta aqueous extract against several plant pathogenic fungi. UV-visible spectroscopy, Zeta potential analysis, Fourier-transform infrared spectroscopy (FTIR), and transmitted electron microscopy (TEM) were used to analyze the biosynthesized AgNPs. Drechslera halodes, Drechslera tetramera, Macrophomina phaseolina, Alternaria alternata, and Curvularia australiensis were tested for their potential antifungal activity. Surface Plasmon Resonance (SPR) of Aq. AgNPs and Alkaline Aq. AgNPs was observed at 405 nm and 415 nm, respectively. FTIR analysis indicated hydroxyl, nitrile, amine, and ketone functional groups. Aq. AgNPs and Alka-line Aq. AgNPs had velocities of - 27.7 mV and - 37.9 mV and sizes of 21-90 nm and 7.2-25.3 nm, respectively, according to zeta potential studies and TEM. The antifungal examination revealed that all species' mycelial development was significantly inhibited, accompanied by severe ultra-structural alterations. Among all treatments, Aq. AgNPs were the most effective fungicide. M. phaseolina was statistically the most resistant, whereas A. alternata was the most vulnerable. To the best of our knowledge, this is the first report on R. stricta's antifungal activity against these species.
Collapse
Affiliation(s)
- Sarah A Al-Sahli
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 22452, 11495, Riyadh, Saudi Arabia
| | - Fatimah Al-Otibi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 22452, 11495, Riyadh, Saudi Arabia.
| | - Raedah I Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 22452, 11495, Riyadh, Saudi Arabia
| | - Musarat Amina
- Department of Pharmacognosy, Pharmacy College, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Nawal M Al Musayeib
- Department of Pharmacognosy, Pharmacy College, King Saud University, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
22
|
Masadeh MM, Al-Tal Z, Khanfar MS, Alzoubi KH, Sabi SH, Masadeh MM. Synergistic Effect of Silver Nanoparticles with Antibiotics for Eradication of Pathogenic Biofilms. Curr Pharm Biotechnol 2024; 25:1884-1903. [PMID: 38231054 DOI: 10.2174/0113892010279217240102100405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/16/2023] [Accepted: 12/22/2023] [Indexed: 01/18/2024]
Abstract
BACKGROUND The increase in nosocomial multidrug resistance and biofilm-forming bacterial infections led to the search for new alternative antimicrobial strategies other than traditional antibiotics. Silver nanoparticles (AgNP) could be a viable treatment due to their wide range of functions, rapid lethality, and minimal resistance potential. The primary aim of this study is to prepare silver nanoparticles and explore their antibacterial activity against biofilms. METHODS AgNPs with specific physicochemical properties such as size, shape, and surface chemistry were prepared using a chemical reduction technique, and then characterized by DLS, SEM, and FTIR. The activity of AgNPs was tested alone and in combination with some antibiotics against MDR Gram-negative and Gram-positive planktonic bacterial cells and their biofilms. Finally, mammalian cell cytotoxicity and hemolytic activity were tested using VERO and human erythrocytes. RESULTS The findings of this study illustrate the success of the chemical reduction method in preparing AgNPs. Results showed that AgNPs have MIC values against planktonic organisms ranging from 0.0625 to 0.125 mg/mL, with the greatest potency against gram-negative bacteria. It also effectively destroyed biofilm-forming cells, with minimal biofilm eradication concentrations (MBEC) ranging from 0.125 to 0.25 mg/ml. AgNPs also had lower toxicity profiles for the MTT test when compared to hemolysis to erythrocytes. Synergistic effect was found between AgNPs and certain antibiotics, where the MIC was dramatically reduced, down to less than 0.00195 mg/ml in some cases. CONCLUSION The present findings encourage the development of alternative therapies with high efficacy and low toxicity.
Collapse
Affiliation(s)
- Majed M Masadeh
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Zeinab Al-Tal
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Mai S Khanfar
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Karem H Alzoubi
- Department of Pharmacy Practice and Pharmacotherapeutics, University of Sharjah, Sharjah, UAE
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Salsabeel H Sabi
- Department of Biological Sciences, Faculty of Science, The Hashemite University, Zarqa 13110, Jordan
| | - Majd M Masadeh
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 22110, Jordan
| |
Collapse
|
23
|
Garza-Cervantes JA, Mendiola-Garza G, León-Buitimea A, Morones-Ramírez JR. Synergistic antibacterial effects of exopolysaccharides/nickel-nanoparticles composites against multidrug-resistant bacteria. Sci Rep 2023; 13:21519. [PMID: 38057583 PMCID: PMC10700344 DOI: 10.1038/s41598-023-48821-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023] Open
Abstract
The need for an alternative treatment to fight infectious diseases caused by antibiotic-resistant bacteria is increasing. A possible way to overcome bacterial resistance to antibiotics is by reintroducing commonly used antibiotics with a sensitizer capable of enhancing their antimicrobial effect in resistant bacteria. Here, we use a composite composed of exopolysaccharide capped-NiO NPs, with antimicrobial effects against antibiotic-resistant Gram-positive and Gram-negative bacteria. It potentiated the antimicrobial effects of four different antibiotics (ampicillin, kanamycin, chloramphenicol, and ciprofloxacin) at lower concentrations than their minimal inhibitory concentrations. We observed that the Ni-composite synergistically enhanced, fourfold, the antibacterial effect of kanamycin and chloramphenicol against multidrug-resistant Staphylococcus aureus and Pseudomonas aeruginosa, as well as ampicillin against multidrug-resistant Staphylococcus aureus, and ciprofloxacin against multidrug-resistant Pseudomonas aeruginosa by eightfold. We also found that Ni-composite could not inhibit biofilm synthesis on the tested bacterial strains. Our results demonstrated the possibility of using metal nanoparticles, like NiO, as a sensitizer to overcome bacterial antibiotic resistance.
Collapse
Affiliation(s)
- Javier A Garza-Cervantes
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, UANL, 66455, San Nicolás de los Garza, NL, Mexico
- Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Parque de Investigación e Innovación Tecnológica, 66629, Apodaca, Nuevo León, Mexico
| | - Gricelda Mendiola-Garza
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, UANL, 66455, San Nicolás de los Garza, NL, Mexico
- Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Parque de Investigación e Innovación Tecnológica, 66629, Apodaca, Nuevo León, Mexico
| | - Angel León-Buitimea
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, UANL, 66455, San Nicolás de los Garza, NL, Mexico
- Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Parque de Investigación e Innovación Tecnológica, 66629, Apodaca, Nuevo León, Mexico
| | - José Rubén Morones-Ramírez
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, UANL, 66455, San Nicolás de los Garza, NL, Mexico.
- Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Parque de Investigación e Innovación Tecnológica, 66629, Apodaca, Nuevo León, Mexico.
| |
Collapse
|
24
|
Al-Enazi NM. Structural, optical, morphological, sun-light driven photocatalytic and antimicrobial investigations of Ag 2S and Cu/Ag 2S nanoparticles. Saudi J Biol Sci 2023; 30:103840. [PMID: 37964782 PMCID: PMC10641547 DOI: 10.1016/j.sjbs.2023.103840] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/26/2023] [Accepted: 10/15/2023] [Indexed: 11/16/2023] Open
Abstract
This study focusses on the preparation of silver sulphide (Ag2S) and Cu-doped Ag2S (Cu/Ag2S) nanoparticles (NPs) by sol-gel method and demonstrated their photocatalytic and antibacterial applications. The X-ray diffraction (XRD) and Fourier-transform infrared (FTIR) analysis demonstrated that the prepared NPs are effectively crystallized in the polycrystalline single-phase monoclinic geometry of Ag2S. The optical bandgap is significantly reduced, and for both the sample the average grain size is observed to have narrowed from 42 nm to 23 nm. Both NPs were confirmed to be spherical nature as observed by scanning electron microscopy (SEM), and the energy dispersive X-ray (EDX) spectroscopy analysis validated the presence of all necessary components at the expected concentrations in the obtained samples. Under the irradiation of sunshine, the photocatalytic properties of each sample were investigated for their ability to facilitate the photodegradation of a hazardous methylene blue (MB) dye in an aqueous solution. Cu/Ag2S sample possesses a profound photocatalytic reaction for the destruction of MB dye. Furthermore, the Cu-doped Ag2S NPs suppress the proliferation of Staphylococcus aureus and Escherichia coli. In comparison to pure Ag2S NPs, Cu/Ag2S showed enhanced antibacterial activity against both the bacteria. Current study suggests that the Cu doped Ag2S NPs could be a promising material for wastewater treatment and antimicrobial agents.
Collapse
Affiliation(s)
- Nouf M. Al-Enazi
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
25
|
Laime-Oviedo LA, Arenas-Chávez CA, Yáñez JA, Vera-Gonzáles CA. Plackett-Burman design in the biosynthesis of silver nanoparticles with Mutisia acuminatta (Chinchircoma) and preliminary evaluation of its antibacterial activity. F1000Res 2023; 12:1462. [PMID: 38434649 PMCID: PMC10905015 DOI: 10.12688/f1000research.140883.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/22/2023] [Indexed: 03/05/2024] Open
Abstract
Background: The aim of this study was to synthesize silver nanoparticles (AgNPs) using the methanolic fraction of Mutisia acuminatta leaves using Plackett-Burman design to optimize process parameters and to evaluate its antibacterial effect. Methods: For the separation of Mutisia acuminatta phytoconstituents, chromatographic techniques were used. For characterization and identification, UV - VIS spectrophotometry, FTIR spectrophotometry, Dynamic Light Scattering (DLS) and transmission electron microscopy (TEM) were used. The Plackett-Burman design used polynomial regression statistical analysis to determine the most influential variables. Results: UV-VIS spectroscopy reported an absorbance concerning surface plasmon resonance between 410-420 nm wavelength for the AgNPs. FTIR spectrophotometry reported characteristic peaks in the biosynthesized AgNPs, observing the disappearance of spectral peaks between 1000-1500 cm -1. By UHPLC-MS, caffeic acid derivatives, coumarins, flavonoids, lignans, disaccharide and a complex formed between silver and the solvent (AgCH3CN+) were identified. Using DLS, the AgNPs presented an average hydrodynamic size of 45.91 nm. TEM determined the spherical shape of the AgNPs, presenting diameters in the range of 30 to 60 nm. The biosynthesized AgNPs showed higher antibacterial activity against Escherichia coli and Staphylococcus aureus than the total extract, the methanolic fraction and pure methanol. The polynomial model in the biosynthesis was validated with an adequate fitting representing the experimental data of the process. The most significant variables for the model obtained were the reaction pH (X 2) and the concentration of the precursor salt AgNO 3 (X 6). Conclusions: The synthesized AgNPs offer a viable option for further development due to the presence of bioactive compounds, adequate characterization and antibacterial activity.
Collapse
Affiliation(s)
- Luis A. Laime-Oviedo
- Escuela de Ingenieria Quimica ,Facultad de Ingeniería de Procesos, Universidad Nacional de San Agustin de Arequipa, Arequipa, Arequipa, 04000, Peru
| | - Carlos A. Arenas-Chávez
- Departamento Académico de Biología, Facultad de Ciencias Biológicas, Universidad Nacional de San Agustin de Arequipa, Arequipa, Arequipa, 04000, Peru
| | - Jaime A. Yáñez
- Vicerrectorado de Investigación, Universidad Norbert Wiener, Lima, Lima, 15046, Peru
| | - Corina A. Vera-Gonzáles
- Laboratorio de Preparación, Caracterización e Identificación de Nanomateriales (LAPCINANO), Departamento Academico de Quimica, Facultad de Ciencias Naturales y Formales, Universidad Nacional de San Agustin de Arequipa, Arequipa, Arequipa, 04000, Peru
| |
Collapse
|
26
|
Shanmuganathan R, Hoang Le Q, Devanesan S, R M Sayed S, Rajeswari VD, Liu X, Jhanani GK. Mint leaves (Mentha arvensis) mediated CaO nanoparticles in dye degradation and their role in anti-inflammatory, anti-cancer properties. ENVIRONMENTAL RESEARCH 2023; 236:116718. [PMID: 37481060 DOI: 10.1016/j.envres.2023.116718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/24/2023]
Abstract
In ancient times, herbal plants were considered one of the greatest gifts from nature that human beings could receive, and about 80% of these plants have medicinal uses. In traditional medicine, Mentha arvensis, commonly known as mint, has many applications, and in the present study, the mint leaf extract has been used to synthesis nanoparticles using the mint leaf extract as a biosource for the extraction of nanoparticles. In addition to having a wide range of applications in various fields, calcium oxide (CaO) nanoparticles are also considered to be safe for human use. In order to assess the characteristics of the abstracted CaO nanoparticles, UV-visible absorption spectrophotometers, Fourier Transform Infrared spectrophotometers (FTIR), Scanning Electron Microscopes (SEMs), Dynamic Light Scattering (DLS), and X-ray Diffraction Spectrophotometers (XRDs) were used. By conducting a protein denaturation assay and nitric oxide scavenging assay, mint leaf mediated CaO nanoparticles were evaluated for their therapeutic applications. MTT assays were used to prove that the CaO nanoparticles mediated by mint leaf had anti-cancer properties. By examining the ability of mint leaf mediated CaO nanoparticles to degrade various dyes such as methyl red, methyl orange, and methylene blue, which are the most used azo dyes in textile industries resulting in water contamination, the ability of these nanoparticles to act as a photocatalytic agent was examined.
Collapse
Affiliation(s)
- Rajasree Shanmuganathan
- School of Medicine and Pharmacy, Duy Tan University, Da Nang, Vietnam; Institute of Research and Development, Duy Tan University, Da Nang, Vietnam.
| | - Quynh Hoang Le
- School of Medicine and Pharmacy, Duy Tan University, Da Nang, Vietnam; Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
| | - Sandhanasamy Devanesan
- Department of Physics and Astronomy, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Shaban R M Sayed
- Department of Botany and Microbiology, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - V Devi Rajeswari
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Xinghui Liu
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, 999077, Hong Kong, China
| | - G K Jhanani
- Center for Transdisciplinary Research (CFTR), Department of Pharmacology, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| |
Collapse
|
27
|
Shah SH, Shan X, Baig S, Zhao H, Ismail B, Shahzadi I, Majeed Z, Nawazish S, Siddique M, Baig A. First identification of potato tuber rot caused by Penicillium solitum, its silver nanoparticles synthesis, characterization and use against harmful pathogens. FRONTIERS IN PLANT SCIENCE 2023; 14:1255480. [PMID: 37929179 PMCID: PMC10620797 DOI: 10.3389/fpls.2023.1255480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 09/19/2023] [Indexed: 11/07/2023]
Abstract
Potato is one of the highly consumed vegetable crop grown in different regions across Pakistan that is affected by fungal diseases. The current research was conducted to identify fungal pathogen causing mold-like disease of potato in Khyber Pakhtunkhwa (KP), Pakistan. For molecular identification and characterization of the fungal disease; potato tuber samples were collected followed by culturing on potato dextrose agar (PDA). Based on morphological features, the pathogen was identified as a Penicillium species. This result was obtained in 45 different isolates from potato tubers. Molecular identification was done using β-tubulin primers and ITS5 sequencing of 13 different isolates that releveled 98% homology with BLAST (GenBank accession no. KX958076) as Penicillium solitum (GenBank accession nos. ON307317; ON307475 and ON310801). Phylogenetic tree was constructed that showed Penicillium solitum prevalence along with Penicillium polonicum and Penicillium citrinum on potato tubers. Based on this, Penicillium solitum based silver nanoparticles (Ag NPs) were synthesized and characterized using UV-visible spectroscopy, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), energy dispersive X-ray (EDX) and field emission scanning electron microscopy (FE SEM). UV-analysis showed a characteristic peak at 410 nm confirming synthesis of Penicillium solitum based Ag NPs. This was further confirmed by XRD followed by EDX and SEM that showed face cubic crystal structure with Ag as major constituent of 18 nm formed spherical Ag NPs. FTIR showed band stretching of O-H, N-O and C-H of biological origin. Similarly, Penicillium solitum based Ag NPs presented strong anti-bacterial and anti-fungal activity at 0.5 level of significance LSD. According to our knowledge, this is the first report of Penicillium solitum identification in Pakistan, its Ag NPs synthesis and characterization to be used against pathogens of agricultural significance.
Collapse
Affiliation(s)
- Syed Haseeb Shah
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Xiaoliang Shan
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Sofia Baig
- Independent Researcher, Abbottabad, Pakistan
| | - Hongwei Zhao
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Bushra Ismail
- Department of Chemistry, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Irum Shahzadi
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Zahid Majeed
- Department of Biotechnology, The University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
| | - Shamyla Nawazish
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Maria Siddique
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Ayesha Baig
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad, Pakistan
| |
Collapse
|
28
|
Arafa FM, Mogahed NMFH, Eltarahony MM, Diab RG. Biogenic selenium nanoparticles: trace element with promising anti-toxoplasma effect. Pathog Glob Health 2023; 117:639-654. [PMID: 36871204 PMCID: PMC10498805 DOI: 10.1080/20477724.2023.2186079] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
Toxoplasmosis is an opportunistic infection caused by the coccidian Toxoplasma gondii which represents a food and water contaminant. The available chemotherapeutic agents for toxoplasmosis are limited and the choice is difficult when considering the side effects. Selenium is an essential trace element. It is naturally found in dietary sources, especially seafood, and cereals. Selenium and selenocompounds showed anti-parasitic effects through antioxidant, immunomodulatory, and anti-inflammatory mechanisms. The present study evaluated the potential efficacy of environmentally benign selenium nanoparticles (SeNPs) against acute toxoplasmosis in a mouse model. SeNPs were fabricated by nanobiofactory Streptomyces fulvissimus and characterized by different analytical techniques including, UV-spectrophotometry, transmission electron microscopy, EDX, and XRD. Swiss albino mice were infected with Toxoplasma RH strain in a dose of 3500 tachyzoites in 100 μl saline to induce acute toxoplasmosis. Mice were divided into five groups. Group I: non-infected, non-treated, group II: infected, non-treated, group III: non-infected, treated with SeNPs, group IV: infected, treated with co-trimoxazole (sulfamethoxazole/trimethoprim) and group V: infected, treated with SeNPs. There was a significant increase in survival time in the SeNPs-treated group and minimum parasite count was observed compared to untreated mice in hepatic and splenic impression smears. Scanning electron microscopy showed tachyzoites deformity with multiple depressions and protrusions, while transmission electron microscopy showed excessive vacuolization and lysis of the cytoplasm, especially in the area around the nucleus and the apical complex, together with irregular cell boundary and poorly demarcated cell organelles. The present study demonstrated that the biologically synthesized SeNPs can be a potential natural anti-Toxoplasma agent in vivo.
Collapse
Affiliation(s)
- Fadwa M. Arafa
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Nermine M. F. H. Mogahed
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Marwa M. Eltarahony
- Environmental Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), Universities and Research centers District, Alexandria, Egypt
| | - Radwa G. Diab
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
29
|
Haider HI, Zafar I, Ain QU, Noreen A, Nazir A, Javed R, Sehgal SA, Khan AA, Rahman MM, Rashid S, Garai S, Sharma R. Synthesis and characterization of copper oxide nanoparticles: its influence on corn (Z. mays) and wheat (Triticum aestivum) plants by inoculation of Bacillus subtilis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:37370-37385. [PMID: 36571685 DOI: 10.1007/s11356-022-24877-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Nanotechnology is now playing an emerging role in green synthesis in agriculture as nanoparticles (NPs) are used for various applications in plant growth and development. Copper is a plant micronutrient; the amount of copper oxide nanoparticles (CuONPs) in the soil determines whether it has positive or adverse effects. CuONPs can be used to grow corn and wheat plants by combining Bacillus subtilis. In this research, CuONPs were synthesized by precipitation method using different precursors such as sodium hydroxide (0.1 M) and copper nitrate (Cu(NO3)2) having 0.1 M concentration with a post-annealing method. The NPs were characterized through X-ray diffraction (XRD), scanning electron microscope (SEM), and ultraviolet (UV) visible spectroscopy. Bacillus subtilis is used as a potential growth promoter for microbial inoculation due to its prototrophic nature. The JAR experiment was conducted, and the growth parameter of corn (Z. mays) and wheat (Triticum aestivum) was recorded after 5 days. The lab assay evaluated the germination in JARs with and without microbial inoculation under CuONP stress at different concentrations (25 and 50 mg). The present study aimed to synthesize CuONPs and systematically investigate the particle size effects of copper (II) oxide (CuONPs) (< 50 nm) on Triticum aestivum and Z. mays. In our results, the XRD pattern of CuONPs at 500 °C calcination temperature with monoclinic phase is observed, with XRD peak intensity slightly increasing. The XRD patterns showed that the prepared CuONPs were extremely natural, crystal-like, and nano-shaped. We used Scherrer's formula to calculate the average size of the particle, indicated as 23 nm. The X-ray diffraction spectrum of synthesized materials and SEM analysis show that the particles of CuONPs were spherical in nature. The results revealed that the synthesized CuONPs combined with Bacillus subtilis used in a field study provided an excellent result, where growth parameters of Z. Mays and Triticum aestivum such as root length, shoot length, and plant biomass was improved as compared to the control group.
Collapse
Affiliation(s)
| | - Imran Zafar
- Department of Bioinformatics and Computational Biology, Virtual University of Pakistan, Lahore, Pakistan
| | - Qurat Ul Ain
- Department of Chemistry, Government College Women University, Faisalabad, Pakistan
| | - Asifa Noreen
- Department of Chemistry, Riphah International University, Faisalabad Campus, , Faisalabad, Pakistan
| | - Aamna Nazir
- Department of Chemistry, University of Lahore, Sargodha Campus, Sargodha, Pakistan
| | - Rida Javed
- Department of Chemistry, University of Sargodha, Sargodha, Pakistan
| | - Sheikh Arslan Sehgal
- Department of Bioinformatics, University of Okara, Okara, Pakistan
- Department of Bioinformatics, Institute of Biochemistry, Biotechnology and Bioinformatics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Azmat Ali Khan
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Md Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj, 11942, Saudi Arabia
| | - Somenath Garai
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
30
|
Pungle R, Nile SH, Kharat AS. Green synthesis and characterization of Solanum xanthocarpum capped silver nanoparticles and its antimicrobial effect on multidrug-resistant bacterial (MDR) isolates. Chem Biol Drug Des 2023; 101:469-478. [PMID: 34453485 DOI: 10.1111/cbdd.13945] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/12/2021] [Indexed: 12/17/2022]
Abstract
Plant extracts and their bioactive compounds are considered as the promising options for green synthesis of nanoparticles instead expensive and hazardous materials. Here, Solanum xanthocarpum fruit was used for synthesis of silver nanoparticles (AgNP). The synthesized AgNPs were characterized by using chromatographic and spectroscopic analytical methods. AgNPs were confirmed by UV-visible absorbance at 420-470 nm. TEM analysis showed AgNP with 22.45 nm average size. X-ray diffraction studies revealed the crystalline and face central cubic nature of AgNPs. FTIR analysis revealed functional group present over AgNPs. The aminodiphenyl acetic acid, clomipramine, and fonisopril from fruit extracts were found to be major capping agents on AgNPs as a result of analysis by HRLC-MS. All clinical isolates showed resistance for ampicilline, amoxyclav, niladixic acid, and sulphafurazole, suggesting multidrug resistance. The results showed that all isolates were sensitive to AgNPs synthesized fruit extracts. On the contrary, all isolates were resistant to whole S. xanthocarpum fruit extracts alone. The antimicrobial activity of AgNP was explored against multidrug-resistant (MDR) Gram-negative clinical isolates including Escherichia coli, Shigella spp., Aeronomonas spp. and Pseudomonas spp. MIC values ranged between 1.25 mg/ml and 2.5 mg/ml at 8 McFarland's standards. Minimum bactericidal concentration was found to be in between 2.5 mg/ml to 5 mg/ml. Nanoparticles synthesized from fruit extract of S. xanthocarpum containing aminodiphenyl acetic acid, clomipramine, and fonisopril metabolites exhibit promising antimicrobial activity against MDR Gram-negative clinical isolates.
Collapse
Affiliation(s)
- Rohini Pungle
- Department of Biotechnology, Shivchattrapati College, Aurangabad, India.,Department of Biotechnology, Dr. Babasaheb Ambedkar Marathwada University, Sub-Campus Osmanabad, Aurangabad, India
| | - Shivraj Hariram Nile
- Laboratory of Medicinal Plant and Food Biotechnology, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Arun S Kharat
- Department of Biotechnology, Dr. Babasaheb Ambedkar Marathwada University, Sub-Campus Osmanabad, Aurangabad, India.,Laboratory of Applied Microbiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
31
|
Synthesis and Properties of Alginate-Based Nanoparticles Incorporated with Different Inorganic Nanoparticulate Modifiers for Enhanced Encapsulation and Controlled Release of Favipiravir. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023] Open
|
32
|
Mostafa HY, El-Sayyad GS, Nada HG, Ellethy RA, Zaki EG. Promising antimicrobial and antibiofilm activities of Orobanche aegyptiaca extract-mediated bimetallic silver-selenium nanoparticles synthesis: Effect of UV-exposure, bacterial membrane leakage reaction mechanism, and kinetic study. Arch Biochem Biophys 2023; 736:109539. [PMID: 36746259 DOI: 10.1016/j.abb.2023.109539] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 02/08/2023]
Abstract
In this research, Orobanche aegyptiaca extract was utilized as an eco-friendly, and cost-effective green route for the construction of bimetallic silver-selenium nanoparticles (Ag-Se NPs). Bimetallic Ag-Se NPs were characterized by XRD, EDX, FTIR, HR-TEM, DLS, SEM/mapping and EDX studies. Antimicrobial, and antibiofilm potentials were tested against some selected pathogenic bacteria and unicellular fungi by ZOI, MIC, effect of UV exposure, and inhibition %. Reaction mechanism was assessed through membrane leakage assay and SEM imaging. HRTEM analysis confirmed the spherical nature and was ranged from 18.1 nm to 72.0 nm, and the avarage particle size is determined to be 30.58 nm. SEM imaging prove that bimetallic Ag-Se NPs presents as a bright particles, and both Ag and Se were distributed equally across O. aegyptiaca extract and Guar gum stabilizers. ZOI results showed that, bimetallic Ag-Se NPs have antimicrobial activity against S. aureus (20.0 nm), E. coli (18.5 nm), P. aeruginosa (12.6 nm), and C. albicans (18.2 nm). In addition, bimetallic Ag-Se NPs were able to inhibit the biofilm formation for S. aureus by 79.48%, for E. coli by 78.79%, for P. aeruginosa by 77.50%, and for C. albicans by 73.73%. Bimetallic Ag-Se NPs are an excellent disinfectant once it had excited by UV light. It was observed that the quantity of cellular protein discharged from S. aureus is directly proportional to the concentration of bimetallic Ag-Se NPs and found to be 244.21 μg/mL after the treatment with 1 mg/mL, which proves the antibacterial characteristics, and explains the creation of holes in the cell membrane of S. aureus producing in the oozing out of the proteins from the S. aureus cytoplasm. Based on the promising properties, they showed superior antimicrobial potential at low concentration (to avoid toxicity) and continued-phase durability, they may use in pharmaceutical and biomedical applications.
Collapse
Affiliation(s)
- Hamida Y Mostafa
- Refining Department, Egyptian Petroleum Research Institute (EPRI), Cairo, Egypt
| | - Gharieb S El-Sayyad
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, New Galala City, Suez, Egypt; Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt; Chemical Engineering Department, Military Technical Collage (MTC), Egyptian Armed Forces, Cairo, Egypt.
| | - Hanady G Nada
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Rania A Ellethy
- Biochemistry Division, Chemistry Department, Faculty of Science, Helwan University, Ain Helwan, Cairo, Egypt
| | - E G Zaki
- Petroleum Applications Department, Egyptian Petroleum Research Institute (EPRI), Cairo, Egypt
| |
Collapse
|
33
|
Anti-bacterial Effect and Characteristics of Gold Nanoparticles (AuNps) Formed with Vitex negundo Plant Extract. Appl Biochem Biotechnol 2023; 195:1630-1643. [PMID: 36355335 DOI: 10.1007/s12010-022-04217-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2022] [Indexed: 11/11/2022]
Abstract
Our current study reports the anti-bacterial activity of the gold nanoparticles (AuNps) synthesized by the green synthesis method using Vitex negundo plant leaves. The aqueous extract of Vitex negundo plant leaves are acting as the capping and stabilizing agent in the synthesis of AuNps. It is already evident from earlier studies that Vitex negundo is an abundant source of polyphenols, flavonoids, terpenoids, and many other biologically active compounds. The present study reveals the potential of biologically active compounds from the plant in the reduction reaction of chloroauric acid (HAuCl4) into gold nanoparticles. The green synthesis method is adapted instead of the chemical method, which is toxic and more expensive. The gold nanoparticles subjected to characterization with the help of UV-visible spectroscopy, FTIR to determine functional groups, light scattering to estimate size and uniformity, scanning emission microscopy with EDX for accurate size and shape of AuNps, and X-ray diffraction to reveal the crystalline structure. The characteristics of AuNps formed are UV reading at 520 nm, FTIR showing the presence of phenols and alkenes, DLS, SEM, and XRD confirming the spherical shape with the size around 70-90 nm. The anti-bacterial activity of the gold nanoparticles is evaluated against four different species of bacteria, each two gram-positive and gram-negative. The gold nanoparticles formed by Vitex negundo show good anti-bacterial activity against Salmonella typhi and M. luteus bacteria with a zone of inhibition of 6 mm and 2 mm respectively. Furthermore, the cytotoxic activities of the gold nanoparticles are yet to be known to their full extent.
Collapse
|
34
|
Budhalakoti N. Synthesis of Silver Nanoparticles Using Onion Peel Polyphenols and Their Antimicrobial Effect. BIONANOSCIENCE 2023. [DOI: 10.1007/s12668-023-01076-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
35
|
Kamaraj C, Ragavendran C, Manimaran K, Sarvesh S, Islam ARMT, Malafaia G. Green synthesis of silver nanoparticles from Cassia Auriculata: Targeting antibacterial, antioxidant activity, and evaluation of their possible effects on saltwater microcrustacean, Artemia Nauplii (non-target organism). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160575. [PMID: 36462660 DOI: 10.1016/j.scitotenv.2022.160575] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/25/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Due to their huge surface area to volume ratio, metallic nanoparticles are becoming increasingly important in numerous spheres of life. Here, initially, we aimed to evaluate the potential use of Cassia auriculata (CA) extract to synthesize silver nanoparticles (AgNPs). Then, we evaluated its antimicrobial potential and antioxidant capacity, as well as performed in silico analysis, and investigated the possible non-toxic effect of AgNPs on Artemia nauplii. Fourier transform infrared (FTIR) spectroscopy, scanning and transmission electron microscopy (SEM/TEM), energy dispersive spectroscopy (EDX), X-ray diffraction (XRD), and dynamic light scattering (DLS) studies were used to characterize the biosynthesized AgNPs. Our data indicate that Bacillus cereus, Escherichia coli, Klebsiella pneumoniae, and Staphylococcus aureus bacteria were susceptible to the biosynthesized AgNPs, whose effect was concentration-response. With a ZOI of 10 mm, the AgNPs were most efficient against gram-positive B. cereus bacteria at the highest concentration (75 μg/mL). The biosynthesized AgNPs (at 25 to 125 μg/mL) showed good antioxidant activity in the DPPH (2,2-diphenyl-1-picryl-hydrazyl-hydrate) and FRAP (ferric reducing antioxidant power) assays. Oleanolic acid from CA exhibited strong binding affinity and high binding energy to E. coli and B. cereus (-9.66 and - 9.74 kcal/mol) on in silico research. According to the comparative non-toxicity analysis, AgNPs, AgNO3, and CA bark extract had the least toxic effects on A. nauplii, with respective mortality rates of 28.14, 32.26, and 38.42 %, respectively. In conclusion, the current work showed that AgNPs produced from CA bark could be a promising material for diverse applications.
Collapse
Affiliation(s)
- Chinnaperumal Kamaraj
- Interdisciplinary Institute of Indian System of Medicine (IIISM), Directorate of Research, SRM Institute of Science and Technology (SRMIST), Kattankulathur 603203, Tamil Nadu, India.
| | - Chinnasamy Ragavendran
- Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 600077, India
| | - Kumar Manimaran
- Department of Botany, School of Life Sciences, Periyar University, Periyar Palkalai Nagar, Salem 636011, Tamil Naddu, India
| | - Sabarathinam Sarvesh
- Interdisciplinary Institute of Indian System of Medicine (IIISM), Directorate of Research, SRM Institute of Science and Technology (SRMIST), Kattankulathur 603203, Tamil Nadu, India
| | | | - Guilherme Malafaia
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
36
|
Dugganaboyana GK, Kumar Mukunda C, Jain A, Kantharaju RM, Nithya RR, Ninganna D, Ahalliya RM, Shati AA, Alfaifi MY, Elbehairi SEI, Silina E, Stupin V, Velliyur Kanniappan G, Achar RR, Shivamallu C, Kollur SP. Environmentally benign silver bio-nanomaterials as potent antioxidant, antibacterial, and antidiabetic agents: Green synthesis using Salacia oblonga root extract. Front Chem 2023; 11:1114109. [PMID: 36817178 PMCID: PMC9935694 DOI: 10.3389/fchem.2023.1114109] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/17/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction: The use of plant extracts in the green synthesis of metallic nanoparticles is one of the simplest, most practical, economical, and ecologically friendly methods for avoiding the use of toxic chemicals. Method: Silver nanoparticles (AgNPs) were synthesized, employing a high-efficiency, non- toxic, cost-effective, green, and simple technique that included the use of Salacia oblonga root extract (SOR) as a capping agent compared to synthetic nanoparticles. The use of S. oblonga can be seen in traditional medicines for treating diabetes, obesity, rheumatism, gonorrhea, asthma, and hyperglycemia. The objectives of the current study were to green synthesize S. oblonga root extract silver nanoparticles (SOR-AgNPs), characterize them, and study their antioxidant, antibacterial, and antidiabetic activities. Result: The shape of SOR-AgNPs was spherical, at less than 99.8 nm in size, and exhibited a crystalline peak at XRD. The green synthesized SOR-AgNPs showed significant antioxidant properties like DPPH (80.64 μg/mL), reducing power capacity (81.09 ± SEM μg/mL), nitric oxide (96.58 μg/mL), and hydroxyl (58.38 μg/mL) radical scavenging activities. The MIC of SOR-AgNPs was lower in gram-positive bacteria. The SOR-AgNPs have displayed efficient inhibitory activity against α-amylase, with an EC50 of 58.38 μg/mL. Analysis of capping protein around the SOR-AgNPs showed a molecular weight of 30 kDa. Discussion: These SOR-AgNPs could be used as antibacterial and antidiabetic drugs in the future as it is cheap, non-toxic, and environmentally friendly. Bio-fabricated AgNPs had a significant impact on bacterial strains and could be used as a starting point for future antibacterial drug development.
Collapse
Affiliation(s)
- Guru Kumar Dugganaboyana
- Division of Biochemistry, School of Life Sciences, JSS Academy of Higher Education and Research, Mysore, Karnataka, India
| | - Chethan Kumar Mukunda
- Department of Biochemistry, JSS College of Arts, Commerce and Science, Mysore, Karnataka, India
| | - Anisha Jain
- Department of Microbiology, JSS Academy of Higher Education and Research, Mysore, Karnataka, India
| | | | - Rani R. Nithya
- Division of Biochemistry, School of Life Sciences, JSS Academy of Higher Education and Research, Mysore, Karnataka, India
| | - Divya Ninganna
- Department of Biochemistry, JSS College of Arts, Commerce and Science, Mysore, Karnataka, India
| | | | - Ali A. Shati
- Biology Department, Faculty of Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mohammad Y. Alfaifi
- Biology Department, Faculty of Sciences, King Khalid University, Abha, Saudi Arabia
| | - Serag Eldin I. Elbehairi
- Biology Department, Faculty of Sciences, King Khalid University, Abha, Saudi Arabia,Cell Culture Lab, Egyptian Organization for Biological Products and Vaccines (VACSERA Holding Company), Giza, Egypt
| | - Ekaterina Silina
- Institute of Biodesign and Modeling of Complex Systems, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Victor Stupin
- Department of Hospital Surgery, N. I. Pirogov Russian National Research Medical University (RNRMU), Moscow, Russia
| | - Gopalakrishnan Velliyur Kanniappan
- School of Medicine, Bule Hora University Institute of Health, Bule Hora University, Bule Hora, Ethiopia,*Correspondence: Gopalakrishnan Velliyur Kanniappan, ; Raghu Ram Achar, ; Chandan Shivamallu, ; Shiva Prasad Kollur,
| | - Raghu Ram Achar
- Division of Biochemistry, School of Life Sciences, JSS Academy of Higher Education and Research, Mysore, Karnataka, India,*Correspondence: Gopalakrishnan Velliyur Kanniappan, ; Raghu Ram Achar, ; Chandan Shivamallu, ; Shiva Prasad Kollur,
| | - Chandan Shivamallu
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysore, Karnataka, India,*Correspondence: Gopalakrishnan Velliyur Kanniappan, ; Raghu Ram Achar, ; Chandan Shivamallu, ; Shiva Prasad Kollur,
| | - Shiva Prasad Kollur
- School of Physical Sciences, Amrita Vishwa Vidyapeetham, Mysuru Campus, Mysore, Karnataka, India,*Correspondence: Gopalakrishnan Velliyur Kanniappan, ; Raghu Ram Achar, ; Chandan Shivamallu, ; Shiva Prasad Kollur,
| |
Collapse
|
37
|
Rashid S, Ahmad R, Azeem M, Al Farraj DA, Ali Khan S, Soliman Elshikh M, Mehmood Abbasi A. Synthesis of Rumex hastatus based silver nanoparticles induced the inhibition of human pathogenic bacterial strains. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023] Open
|
38
|
More PR, Pandit S, Filippis AD, Franci G, Mijakovic I, Galdiero M. Silver Nanoparticles: Bactericidal and Mechanistic Approach against Drug Resistant Pathogens. Microorganisms 2023; 11:369. [PMID: 36838334 PMCID: PMC9961011 DOI: 10.3390/microorganisms11020369] [Citation(s) in RCA: 57] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/11/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
This review highlights the different modes of synthesizing silver nanoparticles (AgNPs) from their elemental state to particle format and their mechanism of action against multidrug-resistant and biofilm-forming bacterial pathogens. Various studies have demonstrated that the AgNPs cause oxidative stress, protein dysfunction, membrane disruption, and DNA damage in bacteria, ultimately leading to bacterial death. AgNPs have also been found to alter the adhesion of bacterial cells to prevent biofilm formation. The benefits of using AgNPs in medicine are, to some extent, counter-weighted by their toxic effect on humans and the environment. In this review, we have compiled recent studies demonstrating the antibacterial activity of AgNPs, and we are discussing the known mechanisms of action of AgNPs against bacterial pathogens. Ongoing clinical trials involving AgNPs are briefly presented. A particular focus is placed on the mechanism of interaction of AgNPs with bacterial biofilms, which are a significant pathogenicity determinant. A brief overview of the use of AgNPs in other medical applications (e.g., diagnostics, promotion of wound healing) and the non-medical sectors is presented. Finally, current drawbacks and limitations of AgNPs use in medicine are discussed, and perspectives for the improved future use of functionalized AgNPs in medical applications are presented.
Collapse
Affiliation(s)
- Pragati Rajendra More
- Department of Experimental Medicine, Section of Microbiology and Clinical Microbiology, University of Campania “L. Vanvitelli”, Via De Crecchio, 7, 80138 Naples, Italy
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Santosh Pandit
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Anna De Filippis
- Department of Experimental Medicine, Section of Microbiology and Clinical Microbiology, University of Campania “L. Vanvitelli”, Via De Crecchio, 7, 80138 Naples, Italy
| | - Gianluigi Franci
- Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, 84081 Baronissi, Italy
| | - Ivan Mijakovic
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
- Novo Nordisk Foundation Center for Bio Sustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Massimiliano Galdiero
- Department of Experimental Medicine, Section of Microbiology and Clinical Microbiology, University of Campania “L. Vanvitelli”, Via De Crecchio, 7, 80138 Naples, Italy
| |
Collapse
|
39
|
Green synthesis of silver nanoparticles using banana peel extract and application on banana preservation. FOOD FRONTIERS 2023. [DOI: 10.1002/fft2.206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
40
|
Mondéjar-López M, López-Jimenez AJ, Ahrazem O, Gómez-Gómez L, Niza E. Chitosan coated - biogenic silver nanoparticles from wheat residues as green antifungal and nanoprimig in wheat seeds. Int J Biol Macromol 2023; 225:964-973. [PMID: 36402386 DOI: 10.1016/j.ijbiomac.2022.11.159] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022]
Abstract
In this study, chitosan-coated biogenic silver nanoparticles (AgNP-CH) were obtained through green chemistry by recycling wheat crop leaf residues. The nanoparticles were characterized by UV-VIS spectroscopy, and total reflectance-Fourier transform infrared spectroscopy confirmed the nanoparticle formation, and the incorporation of chitosan surrounding silver nanoparticles. The size and morphology of nanoparticles were evaluated by microscopy techniques, showing a size range of 2-10 nm, with spherical shape and narrow distribution. The antifungal assay indicated a higher antimicrobial activity showing values of minimum inhibitory concentrations of 41.7 μg/mL against Fusarium oxysporum, and 208.37 μg/mL for Aspergillus niger, A. versicolor and A. brasiliensis. Finally, non-phytotoxic effects were observed in germination assays at early plant stage of development, and an increase in chlorophyll levels were observed at the doses tested with AgNP-CH. Thus, the use of AgNP-CH could be a potential alternative for the prevention of fungal infections in cereals in the early stages of wheat crop development.
Collapse
Affiliation(s)
- María Mondéjar-López
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain
| | - Alberto José López-Jimenez
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain; Escuela Técnica Superior de Ingenieros Agrónomos y Montes, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain
| | - Oussama Ahrazem
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain; Escuela Técnica Superior de Ingenieros Agrónomos y Montes, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain
| | - Lourdes Gómez-Gómez
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain; Facultad de Farmacia, C/ José María Sánchez Ibáñez s/n, 02008 Albacete, Spain
| | - Enrique Niza
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain; Facultad de Farmacia, C/ José María Sánchez Ibáñez s/n, 02008 Albacete, Spain.
| |
Collapse
|
41
|
Abo-Neima SE, Ahmed AA, El-Sheekh M, Makhlof MEM. Polycladia myrica-based delivery of selenium nanoparticles in combination with radiotherapy induces potent in vitro antiviral and in vivo anticancer activities against Ehrlich ascites tumor. Front Mol Biosci 2023; 10:1120422. [PMID: 37122561 PMCID: PMC10132313 DOI: 10.3389/fmolb.2023.1120422] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/14/2023] [Indexed: 05/02/2023] Open
Abstract
Background: Over the last few decades, nanotechnology has entered daily life through various applications, therefore, there has been a trend toward developing new approaches to green-mediated nanotechnology that encourage nanomaterial formation through biological methods such as plants or microorganisms. Algae have gained increasing attention from nanotechnology scientists and have paved the way for the emergence of "algae nanotechnology" as a promising field. Methods: Via using the aqueous extract of the brown alga Polycladia myrica, selenium nanoparticles were synthesized and characterized by using seven instruments: SEM, TEM, UV spectra, Zeta potential, EDX, X-ray diffraction, and FTIR. P. myrica selenium nanoparticles (PoSeNPs) were then examined for their antiviral activity against HSV-1 (Herpes simplex I) and anticancer against human colon cancer cell line (HCT-116) in vitro and in vivo alone and in combination with laser therapy of power 2 mW against Ehrlich carcinoma (EAC). Results: PoSeNPs ranging between 17.48 nm and 23.01 nm in size, and EDX revealed the selenium mass and its atoms as 0.46% ± 0.07% and 0.08% ± 0.01% respectively. Their anticancer potentiality in vitro was with maximum inhibitions of 80.57% and 73% and IC50 = 14.86 μg/mL and 50 mg/mL against HCT-116 and EAC cell lines respectively, while their in vivo alone and in combination with laser therapy of power 2 mW showed a potent therapy effect against Ehrlich ascites carcinoma (EAC). Conclusion: This study concluded that PoSeNPs do not have a toxic effect; they exhibit high effectiveness as a photothermal agent for cancer therapy, with promising applications in future biomedical fields. The combined therapy showed a significant decrease in tumor volume, massive tumor cell necrosis, shrinking, and disappearance. It also showed improvement in liver TEM, histology, kidney function: urea and creatinine, and liver enzymes: ALT, and AST.
Collapse
Affiliation(s)
- Sahar E. Abo-Neima
- Physics Department, Faculty of Science, Damanhour University, Damanhour, Egypt
| | - Abdelhamid A. Ahmed
- Plastic Surgery Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Mostafa El-Sheekh
- Botany Department, Faculty of Science, Tanta University, Tanta, Egypt
- *Correspondence: Mostafa El-Sheekh,
| | - Mofida E. M. Makhlof
- Botany and Microbiology Department, Faculty of Science, Damanhour University, Damanhour, Egypt
| |
Collapse
|
42
|
Shaaban MT, Zayed M, Salama HS. Antibacterial Potential of Bacterial Cellulose Impregnated with Green Synthesized Silver Nanoparticle Against S. aureus and P. aeruginosa. Curr Microbiol 2023; 80:75. [PMID: 36648563 PMCID: PMC9845145 DOI: 10.1007/s00284-023-03182-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 01/03/2023] [Indexed: 01/18/2023]
Abstract
In this study, bacterial cellulose (BC) impregnated with green synthesized silver nanoparticles (AgNPs) is evaluated as an antimicrobial membrane for wound-healing treatment. Green synthesized silver nanoparticles using Moringa oleifera leaf extract were characterized using UV‒visible spectroscopy, FTIR, X-ray diffraction, and transmission electron microscopy. The results confirmed that the resulted particles were Ag2O and metallic Ag in nanoscale with an average size ranged from 24 to 40 nm. The green synthesized nanoparticles incorporated within both bacterial cellulose and filter paper discs showed excellent antibacterial activities against Staphylococcus aureus ATCC 6538 and Pseudomonas aeruginosa ATCC 9027. There was no significant difference noticed between bacterial cellulose and filter paper holding capacity to nanoparticles and there was lack of interaction between bacterial cellulose and impregnated nanoparticles as elaborated by Fourier transform infrared spectral analyses. Scanning electron microscopy investigation showed major distortions effects of green synthesized silver nanoparticles on bacterial cell morphology.
Collapse
Affiliation(s)
- Mohamed T. Shaaban
- Botany and Microbiology Department, Faculty of Science, Menoufia University, Shebin El-Kom, Egypt
| | - Muhammad Zayed
- Botany and Microbiology Department, Faculty of Science, Menoufia University, Shebin El-Kom, Egypt
| | - Hussein S. Salama
- Botany and Microbiology Department, Faculty of Science, Menoufia University, Shebin El-Kom, Egypt
| |
Collapse
|
43
|
Khan H, Andleeb S, Nisar T, Latif Z, Raja SA, Awan UA, Maqbool K, Khurshid S. Interactions of Chitosan-coated Green Synthesized Silver Nanoparticles using Mentha spicata and Standard Antibiotics against Bacterial Pathogens. Curr Pharm Biotechnol 2023; 24:203-212. [PMID: 35382716 DOI: 10.2174/1389201023666220405120914] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/30/2022] [Accepted: 02/17/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Infectious diseases are caused by various multidrug-resistant pathogenic bacteria and in recent scenarios, nanoparticles have been used as innovative antimicrobial agents. AIMS This current research aimed to evaluate the bactericidal effect of chitosan-coated green synthesized silver nanoparticles using aqueous extract of Mentha spicata (MSaqu) against bacterial pathogens, i.e., Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Serratia marcescens, Staphylococcus aureus, and Streptococcus pyogenes. METHODS Synthesis and characterization of silver nanoparticles (MSAgNPs) were carried out via atomic absorption spectrometer and Fourier-transform infrared spectroscopy. Agar well and agar disc diffusion methods were used to assess the antibacterial and synergistic effect of chitosanmediated biogenic silver nanoparticles and standard antibiotics. Three types of interactions, i.e., antagonistic (↓), synergistic (↑), and additive (¥) were observed. RESULTS Synergistic effect was recorded against Pseudomonas aeruginosa (8.5±0.25 mm↑), Serratia marcescens (19.0±1.0 mm↑), and Klebsiela pneumonia (8.5±0.25 mm↑), an additive effect was exhibited by Escherichia coli (9.0±0.0 mm¥), Streptococcus pyogenes (10.0±0.0 mm¥), and Staphylococcus aureus (7.5±0.25 mm↓) and they showed antagonistic effects when chitosan-coated silver nanoparticles (CLMSAgNPs) were applied compared to chitosan, MSaqu, and MSAgNPs. Interesting antibacterial results were recorded when chitosan-coated Mentha spicata extract and silver nanoparticles were applied along with antibiotics. The synergistic effects of chitosan-coated silver nanoparticles (CLMSAgNPs) + K were recorded against E. coli (14.5±0.25 mm). The synergistic effects of chitosan-coated silver nanoparticles (CLMSAgNPs) + AML were recorded against E. coli (5.5±0.0 mm), S. pyogenes (10.0±0.0 mm), K. pneumonia (5.5±0.0 mm), and S. aureus (4.0±0.0 mm). The synergistic effects of chitosan-coated silver nanoparticles (CLMSAgNPs) + NOR were recorded against E. coli (16.0±0.0 mm), P. aeruginosa (19.0±0.0 mm), S. marcescens (19.5±0.25 mm), S. pyogenes (11.5.0±0.25 mm), K. pneumonia (23.0±0.0 mm), and S. aureus (8.5±0.25 mm). CONCLUSION Current findings concluded that chitosan-coated biogenic silver nanoparticles have potential bactericidal effects against infectious pathogens and could be used as forthcoming antibacterial agents.
Collapse
Affiliation(s)
- Habib Khan
- Microbial Biotechnology lab, Department of Zoology, University of Azad Jammu and Kashmir, King Abdullah Campus, Chattar Kalas, Muzaffarabad, 13100, Pakistan
| | - Saiqa Andleeb
- Microbial Biotechnology lab, Department of Zoology, University of Azad Jammu and Kashmir, King Abdullah Campus, Chattar Kalas, , 13100, Pakistan
| | - Tayba Nisar
- Microbial Biotechnology lab, Department of Zoology, University of Azad Jammu and Kashmir, King Abdullah Campus, Chattar Kalas, Muzaffarabad, 13100, Pakistan
| | - Zahid Latif
- Microbial Biotechnology lab, Department of Zoology, University of Azad Jammu and Kashmir, King Abdullah Campus, Chattar Kalas, Muzaffarabad, 13100, Pakistan
| | - Sadaf Azad Raja
- Department of Bioscience, COMSATS University, Park Road, Tarlai Kalan, Islamabad, 44000, Pakistan
| | - Uzma Azeem Awan
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan
| | - Kiran Maqbool
- Microbial Biotechnology lab, Department of Zoology, University of Azad Jammu and Kashmir, King Abdullah Campus, Chattar Kalas, Muzaffarabad, 13100, Pakistan
| | - Sadia Khurshid
- Microbial Biotechnology lab, Department of Zoology, University of Azad Jammu and Kashmir, King Abdullah Campus, Chattar Kalas, Muzaffarabad, 13100, Pakistan
| |
Collapse
|
44
|
Jini D, Sharmila S, Anitha A, Pandian M, Rajapaksha RMH. In vitro and in silico studies of silver nanoparticles (AgNPs) from Allium sativum against diabetes. Sci Rep 2022; 12:22109. [PMID: 36543812 PMCID: PMC9772310 DOI: 10.1038/s41598-022-24818-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 11/21/2022] [Indexed: 12/24/2022] Open
Abstract
In the present study, the silver nanoparticles (AgNPs) were synthesized from the bulbs of Allium sativum, characterized by UV-visible spectroscopy, FT-IR, SEM, HR-TEM, EDAX analysis and investigated its action on the inhibition of starch digestion. The results proved that the biosynthesized nanoparticles were uniformly dispersed, spherical shaped with the size ranging from 10 to 30 nm. The phytochemical and FT-IR analysis showed the presence of phenols, terpenoids, and amino acids in the synthesized AgNPs. The cytotoxicity analysis revealed that the synthesized AgNPs were non-toxic to the normal cells. The synthesized AgNPs exhibited significant free radical scavenging activity. The in vitro antidiabetic activity showed that the synthesized AgNPs increased glucose utilization, decreased hepatic glucose production, inhibited the activity of starch digestive enzymes such as α-amylase and α-glucosidase, and were not involved in the stimulation of pancreatic cells for the secretion of insulin. The in silico antidiabetic activity analysis (molecular docking) also revealed that the silver atoms of the AgNPs interacted with the amino acid residues of α-amylase, α-glucosidase, and insulin. The present study proved that the AgNPs synthesized from A. sativum have prominent antidiabetic activity in terms of reducing the hyperglycemia through the increased glucose utilization, decreased hepatic glucose production, and the inhibition of α-amylase and α-glucosidase enzymes. So it can be used as a promising nanomedicine for the treatment of diabetes.
Collapse
Affiliation(s)
- D Jini
- Department of Biotechnology, Malankara Catholic College, Mariagiri, Kanyakumari, Tamil Nadu, India.
| | - S Sharmila
- Department of Chemical Engineering, Hindustan Institute of Technology and Science, Chennai, Tamil Nadu, India
| | - A Anitha
- Department of Chemical Engineering, Hindustan Institute of Technology and Science, Chennai, Tamil Nadu, India
| | - Mahalakshmi Pandian
- Center for Nanosciencesand Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - R M H Rajapaksha
- Department of Chemistry, Faculty of Science, University of Kelaniya, Kelaniya, Sri Lanka
| |
Collapse
|
45
|
Bulla SS, Bhajantri RF, Chavan C, Sakthipandi K. Biosynthesized Silver Nanoparticles Encapsulated in a Poly(vinyl alcohol) Matrix: Dielectric and Structural Properties. ChemistrySelect 2022. [DOI: 10.1002/slct.202201771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Soumya S. Bulla
- Department of Physics Karnatak University Dharwad 580 003 Karnataka India
- Department of Studies in Physics Davangere University, Shivagangotri Davangere 577 007 Karnataka India
| | - R. F. Bhajantri
- Department of Physics Karnatak University Dharwad 580 003 Karnataka India
| | - Chetan Chavan
- Department of Physics Karnatak University Dharwad 580 003 Karnataka India
| | - K. Sakthipandi
- Department of Physics SRM TRP Engineering College Tiruchirappalli 621 105 Tamil Nadu India
| |
Collapse
|
46
|
Tripathi RM, Chung SJ. Ultrasensitive and selective colorimetric detection of uric acid using peroxidase mimetic activity of biogenic palladium nanoparticles. LUMINESCENCE 2022. [PMID: 36519806 DOI: 10.1002/bio.4425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/28/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022]
Abstract
Uric acid (2,6,8-trihydroxypurine) is a metabolic product of purine, which is one of the important markers of human health. The development of a rapid, facile, highly sensitive, and selective method for uric acid detection is critical for the diagnosis of related diseases and is still a strategic challenge. In this study, we developed a highly sensitive and selective colorimetric assay for the detection of uric acid using biogenic palladium nanoparticles (Pd NPs). The synthesized nanoparticles were shown to acquire peroxidase mimetic activity that oxidized 3,3',5,5'-tetramethylbenzidine and produced a blue colour in an assay. The developed colorimetric assay is instrument-free detection of uric acid with a limit of detection of 0.05 μM and a 1.11 μM limit of quantification (LOQ). This is the first report determining the LOQ for a colorimetric assay that gives the lowest quantity of analyte that can be evaluated with more precision under the specified conditions of the analysis. The developed assay had a linear response at low uric acid concentrations of 0.05 to 1 μM and a 0.99841 linear regression correlation coefficient. This colorimetric detection provides a rapid, cost-effective, and easy-to-use platform for the clinical diagnosis of uric acid biomarkers.
Collapse
Affiliation(s)
- Ravi Mani Tripathi
- School of Pharmacy, Sungkyunkwan University, 2066 Seoburo, Jangan-gu, Suwon, Gyeonggido, Republic of Korea
| | - Sang J Chung
- School of Pharmacy, Sungkyunkwan University, 2066 Seoburo, Jangan-gu, Suwon, Gyeonggido, Republic of Korea
| |
Collapse
|
47
|
Sekar V, Balakrishnan C, Kathirvel P, Swamiappan S, Alshehri MA, Sayed S, Panneerselvam C. Ultra-sonication-enhanced green synthesis of silver nanoparticles using Barleria buxifolia leaf extract and their possible application. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2022; 50:177-187. [PMID: 35735785 DOI: 10.1080/21691401.2022.2084100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 05/11/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
The main aim of the study, green route to the synthesis of silver nanoparticles (AgNPs) is a new technique that has recently gained popularity due to several advantages over conventional chemical methods. The objective of the study was focused on the green synthesis of AgNPs using Barleria buxifolia leaf extract via a rapid and eco-friendly ultrasonic-assisted technique. The obtained AgNPs were characterized using ultraviolet-visible (UV-Vis) absorption spectrum of the organically reduced silver showed a surface plasmon peak at 435 nm, characteristic for silver colloidal solutions. UV-Vis absorption spectrum, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy-dispersive X-ray spectroscopy (EDS) analysis showed that the obtained AgNPs were dispersed spheres with a uniform size of 80 nm. Furthermore, the Fourier-transform infrared spectroscopy (FTIR) and X-ray powder diffraction (XRD) analysis indicated that the surface of the obtained AgNPs was covered with organic molecules in plant extracts. Green synthesized AgNPs showed the highest antioxidant, antibacterial and anti-biofilm activity than a plant extract. In vitro anticancer assay demonstrated half-maximal inhibitory concentration (IC50) values of 31.42, 30.67, 51.07 and 56.26 µg/mL against MCF-7, HeLa and HepG2 cancer cell lines, respectively, which confirms its potent anticancer action. The biocompatibility of green synthesized AgNPs is confirmed by their lack of cytotoxicity against normal human cells. The potent bioactivity exhibited by the green synthesized AgNPs leads towards the multiple use as antioxidant, antibacterial, anti-biofilm and cytotoxic agent.
Collapse
Affiliation(s)
- Vanaraj Sekar
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Cindhu Balakrishnan
- Department of Microbial Biotechnology, Bharathiar University, Coimbatore, India
| | - Preethi Kathirvel
- Department of Microbial Biotechnology, Bharathiar University, Coimbatore, India
| | | | - Mohammed Ali Alshehri
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia;
| | - Samy Sayed
- Department of Science and Technology, University College of Ranyah, Taif University, Taif, Saudi Arabia
| | | |
Collapse
|
48
|
Taher HS, Sayed R, Loutfi A, Abdulla H. Construction of a domestic wastewater disinfection filter from biosynthesized and commercial nanosilver: a comparative study. ANN MICROBIOL 2022. [DOI: 10.1186/s13213-022-01688-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Purpose
Biosynthesis of nanoparticles is an eco-friendly process and considered one of the most significant aspects of nanotechnology. Silver nanoparticles (Ag NPs) have a better bactericidal activity due to its high surface area to volume ratio. In this paper, Streptomyces sp. U13 (KP109813) was used to biosynthesize silver nanoparticles (Ag NPs) to construct wastewater disinfection filter.
Methods
The biosynthesized nanosilver and a commercially available ink nanosilver were characterized, and their wastewater disinfection efficiency was compared. The nanometrological characteristics of both nanosilver such as structure, shape, and size were investigated using the X-ray diffraction (XRD), Fourier transform-infrared spectroscopy (FTIR), high-resolution transmission electron microscope (HR-TEM), and UV-visible spectroscopy.
Result
The results revealed that the biosynthesized and ink Ag NPs were well dispersed and had a spherical shape, with sizes ranged from 5 to 37 nm and from 2 to 26 nm, respectively. To examine the disinfection capabilities, Ag NPs were loaded on two substrates, foam and limestone gravel, and packed into a glass column receiving domestic wastewater. Results showed that Ag NPs attached to limestone gravel eliminate 100% of the coliform bacteria better than foam. Comparing to control columns (without silver), only 50 and 10% reduction of the total coliform in gravel and foam column were achieved, respectively.
Conclusion
This work concluded that the type of substrate controls the amount of Ag NPs loaded on it and thus controls the disinfection process. No significant difference between biosynthesized and ink nanosilver in wastewater disinfection was observed. Using limestone gravel filter loaded with 200 mg/l Ag NPs with contact time of 150 min achieves a complete eradication of coliform bacteria.
Collapse
|
49
|
Deivanathan SK, Prakash JTJ. Bio-synthesis of silver nanoparticles using leaf extract of Rhaphidophora pertusa and its characterization, antimicrobial, antioxidant and cytotoxicity activities. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04888-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
50
|
Synthesis of Green Engineered Silver Nanoparticles through Urtica dioica: An Inhibition of Microbes and Alleviation of Cellular and Organismal Toxicity in Drosophila melanogaster. Antibiotics (Basel) 2022; 11:antibiotics11121690. [PMID: 36551347 PMCID: PMC9774676 DOI: 10.3390/antibiotics11121690] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/09/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022] Open
Abstract
Plant fractions have a diversity of biomolecules that can be used to make complicated reactions for the bioactive fabrication of metal nanoparticles (NPs), in addition to being beneficial as antioxidant medications or dietary supplements. The current study shows that Urtica dioica (UD) and biologically synthesized silver nanoparticles (AgNPs) of UD have antibacterial and antioxidant properties against bacteria (Escherichia coli and Pseudomonas putida) and Drosophila melanogaster (Oregon R+). According to their ability to scavenge free radicals, DPPH, ABTS, TFC, and TPC initially estimated the antioxidant potential of UD and UD AgNPs. The fabricated AgNPs were analyzed (UV−Vis, FTIR, EDS, and SEM) to determine the functional groups (alcohol, carboxylic acids, phenol, proteins, and aldehydes) and to observe the shape (agglomerated crystalline and rod-shaped structure). The disc diffusion method was used to test the antimicrobial properties of synthesized Ag-NPs against E. coli and P. putida. For 24 to 120 h, newly enclosed flies and third instar larvae of Drosophila were treated with UD and UD AgNPs. After exposure, tests for biochemical effects (acetylcholinesterase inhibition and protein estimation assays), cytotoxicity (dye exclusion), and behavioral effects (jumping and climbing assays) were conducted. The results showed that nanoparticles were found to have potent antimicrobial activity against all microbial strains tested at various concentrations. In this regard, ethno-medicinal characteristics exhibit a similar impact in D. melanogaster, showing (p < 0.05) significantly decreased cellular toxicity (trypan blue dye), enhanced biochemical markers (AChE efficacy and proteotoxicity), and improved behavioral patterns in the organism treated with UD AgNPs, especially in comparison to UD extract. The results of this study may help in the utilization of specific plants as reliable sources of natural antioxidants that may have been beneficial in the synthesis of metallic NPs, which aids in the production of nanomedicine and other therapeutic applications.
Collapse
|