1
|
Pompili A, Iorio C, Gasbarri A. Effects of sex steroid hormones on memory. Acta Neurobiol Exp (Wars) 2020. [DOI: 10.21307/ane-2020-012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
2
|
Nguyen TV. Developmental effects of androgens in the human brain. J Neuroendocrinol 2018; 30. [PMID: 28489322 DOI: 10.1111/jne.12486] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/03/2017] [Accepted: 05/04/2017] [Indexed: 12/25/2022]
Abstract
Neuroendocrine theories of brain development posit that androgens play a crucial role in sex-specific cortical growth, although little is known about the differential effects of testosterone and dehydroepiandrosterone (DHEA) on cortico-limbic development and cognition during adolescence. In this context, the National Institutes of Health Study of Normal Brain Development, a longitudinal study of typically developing children and adolescents aged 4-24 years (n=433), offers a unique opportunity to examine the developmental effects of androgens on cortico-limbic maturation and cognition. Using data from this sample, our group found that higher testosterone levels were associated with left-sided decreases in cortical thickness (CTh) in post-pubertal boys, particularly in the prefrontal cortex, compared to right-sided increases in CTh in somatosensory areas in pre-pubertal girls. Prefrontal-amygdala and prefrontal-hippocampal structural covariance (considered to reflect structural connectivity) also varied according to testosterone levels, with the testosterone-related brain phenotype predicting higher aggression levels and lower executive function, particularly in boys. By contrast, DHEA was associated with a pre-pubertal increase in CTh of several regions involved in cognitive control in both boys and girls. Covariance within several cortico-amygdalar structural networks also varied as a function of DHEA levels, with the DHEA-related brain phenotype predicting improvements in visual attention in both boys and girls. DHEA-related cortico-hippocampal structural covariance, on the other hand, predicted higher scores on a test of working memory. Interestingly, there were significant interactions between testosterone and DHEA, such that DHEA tended to mitigate the anti-proliferative effects of testosterone on brain structure. In sum, testosterone-related effects on the developing brain may lead to detrimental effects on cortical functions (ie, higher aggression and lower executive function), whereas DHEA-related effects may optimise cortical functions (ie, better attention and working memory), perhaps by decreasing the influence of amygdalar and hippocampal afferents on cortical functions.
Collapse
Affiliation(s)
- T-V Nguyen
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- Department of Obstetrics-Gynecology, McGill University Health Center, Montreal, QC, Canada
- Research Institute of the McGill University Health Center, Montreal, QC, Canada
| |
Collapse
|
3
|
Nguyen TV, Wu M, Lew J, Albaugh MD, Botteron KN, Hudziak JJ, Fonov VS, Collins DL, Campbell BC, Booij L, Herba C, Monnier P, Ducharme S, McCracken JT. Dehydroepiandrosterone impacts working memory by shaping cortico-hippocampal structural covariance during development. Psychoneuroendocrinology 2017; 86:110-121. [PMID: 28946055 PMCID: PMC5659912 DOI: 10.1016/j.psyneuen.2017.09.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/08/2017] [Accepted: 09/11/2017] [Indexed: 11/18/2022]
Abstract
Existing studies suggest that dehydroepiandrosterone (DHEA) may be important for human brain development and cognition. For example, molecular studies have hinted at the critical role of DHEA in enhancing brain plasticity. Studies of human brain development also support the notion that DHEA is involved in preserving cortical plasticity. Further, some, though not all, studies show that DHEA administration may lead to improvements in working memory in adults. Yet these findings remain limited by an incomplete understanding of the specific neuroanatomical mechanisms through which DHEA may impact the CNS during development. Here we examined associations between DHEA, cortico-hippocampal structural covariance, and working memory (216 participants [female=123], age range 6-22 years old, mean age: 13.6 +/-3.6 years, each followed for a maximum of 3 visits over the course of 4 years). In addition to administering performance-based, spatial working memory tests to these children, we also collected ecological, parent ratings of working memory in everyday situations. We found that increasingly higher DHEA levels were associated with a shift toward positive insular-hippocampal and occipito-hippocampal structural covariance. In turn, DHEA-related insular-hippocampal covariance was associated with lower spatial working memory but higher overall working memory as measured by the ecological parent ratings. Taken together with previous research, these results support the hypothesis that DHEA may optimize cortical functions related to general attentional and working memory processes, but impair the development of bottom-up, hippocampal-to-cortical connections, resulting in impaired encoding of spatial cues.
Collapse
Affiliation(s)
- Tuong-Vi Nguyen
- Department of Psychiatry, McGill University, Montreal, QC, H3A1A1, Canada; Department of Obstetrics-Gynecology, McGill University Health Center, Montreal, QC, H4A 3J1, Canada; Research Institute of the McGill University Health Center, Montreal, QC, H4A 3J1, Canada.
| | - Mia Wu
- Department of Psychology, McGill University, Montreal, QC, H4A 3J1, Canada
| | - Jimin Lew
- Department of Psychology, McGill University, Montreal, QC, H4A 3J1, Canada
| | - Matthew D Albaugh
- Department of Psychology, University of Vermont, College of Medicine, Burlington, VT, 05405, USA
| | - Kelly N Botteron
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA; Brain Development Cooperative Group, United States
| | - James J Hudziak
- Department of Psychology, University of Vermont, College of Medicine, Burlington, VT, 05405, USA; Brain Development Cooperative Group, United States
| | - Vladimir S Fonov
- McConnell Brain imaging Centre, Montreal Neurological Institute, Montreal, QC, H3A 2B4, Canada
| | - D Louis Collins
- McConnell Brain imaging Centre, Montreal Neurological Institute, Montreal, QC, H3A 2B4, Canada
| | - Benjamin C Campbell
- Department of Anthropology, University of Wisconsin-Milwaukee, Milwaukee, WI, 53211, USA
| | - Linda Booij
- Department of Psychiatry, McGill University, Montreal, QC, H3A1A1, Canada; Department of Psychology, Concordia University, Montreal, QC, H4B 1R6, Canada; CHU Sainte Justine Hospital Research Centre, University of Montreal, Montreal, QC, H3T1C5, Canada
| | - Catherine Herba
- CHU Sainte Justine Hospital Research Centre, University of Montreal, Montreal, QC, H3T1C5, Canada; Department of Psychology, Université du Québec à Montréal, Montreal, QC, Canada
| | - Patricia Monnier
- Department of Obstetrics-Gynecology, McGill University Health Center, Montreal, QC, H4A 3J1, Canada; Research Institute of the McGill University Health Center, Montreal, QC, H4A 3J1, Canada
| | - Simon Ducharme
- Department of Psychiatry, McGill University, Montreal, QC, H3A1A1, Canada; McConnell Brain imaging Centre, Montreal Neurological Institute, Montreal, QC, H3A 2B4, Canada; Department of Neurology & Neurosurgery, McGill University, Montreal, QC, H3A 1A1, Canada
| | - James T McCracken
- Brain Development Cooperative Group, United States; Department of Child and Adolescent Psychiatry, University of California in Los Angeles, Los Angeles, CA, 90024, USA
| |
Collapse
|
4
|
STÁRKA L. The Origin of 7α-Hydroxy-Dehydroepiandrosterone and Its Physiological Role: a History of Discoveries. Physiol Res 2017; 66:S285-S294. [DOI: 10.33549/physiolres.933717] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Nearly 60 years has elapsed since the first isolation and identification of 7α-hydroxy-dehydroepiandrosterone, and in that time much information has been gained on its occurrence, metabolism, ontogeny, immunomodulatory activity, cell proliferation, cortisol control in local tissues and neuroactivity. Additional knowledge about this steroid may elucidate its role in obesity, neurodegenerative disturbances such as Alzheimer’s disease, or psychiatric disorders such as schizophrenia or depression. This review aims to provide a comprehensive summary of the available literature on 7α-hydroxy-dehydroepiandrosterone.
Collapse
Affiliation(s)
- L. STÁRKA
- Institute of Endocrinology, Prague, Czech Republic
| |
Collapse
|
5
|
Sosvorova L, Hill M, Mohapl M, Vitku J, Hampl R. Steroid hormones in prediction of normal pressure hydrocephalus. J Steroid Biochem Mol Biol 2015; 152:124-32. [PMID: 25976421 DOI: 10.1016/j.jsbmb.2015.05.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 04/13/2015] [Accepted: 05/07/2015] [Indexed: 12/20/2022]
Abstract
Normal pressure hydrocephalus (NPH) is a treatable neurological disorder affecting elderly people with the prevalence increasing with age. NPH is caused by abnormal cerebrospinal fluid (CSF) reabsorption and manifested as a balance impairment, urinary incontinence and dementia development. These symptoms are potentially reversible if recognized early. Diagnosis of NPH is difficult and can be easily mistaken for other neurodegenerative disorders, which makes NPH one of the major misdiagnosed diseases worldwide. The aim of the study was to find out the appropriate combination of indicators, based on CSF steroids, which would contribute to a clearer NPH diagnosis. The levels of CSF cortisol, cortisone, dehydroepiandrosterone (DHEA), 7α-OH-DHEA, 7β-OH-DHEA, 7-oxo-DHEA, 16α-OH-DHEA and aldosterone (all LC-MS/MS) were determined in our patients (n=30; NPH, 65-80 years) and controls (n=10; 65-80 years). The model of orthogonal projections to latent structures (OPLS) was constructed to predict NPH. Cortisone, 7α-OH-DHEA, 7β-OH-DHEA, 7-oxo-DHEA, aldosterone, 7α-OH-DHEA /DHEA, 7-oxo-DHEA/7α-OH-DHEA, 7β-OH-DHEA/7-oxo-DHEA and 16α-OH-DHEA/DHEA in the CSF were identified as the key predictors and the model discriminated patients from controls with 100% sensitivity and 100% specificity. The suggested model would contribute to early and accurate NPH diagnosis, enabling promptly treatment of the disease.
Collapse
Affiliation(s)
- Lucie Sosvorova
- Institute of Endocrinology, Department of Steroids and Proteofactors, Narodni 8, 116 94 Prague, Czech Republic.
| | - Martin Hill
- Institute of Endocrinology, Department of Steroids and Proteofactors, Narodni 8, 116 94 Prague, Czech Republic
| | - Milan Mohapl
- University Military Hospital Prague, Department of Neurosurgery, U Vojenske nemocnice 1200, 169 02 Prague, Czech Republic
| | - Jana Vitku
- Institute of Endocrinology, Department of Steroids and Proteofactors, Narodni 8, 116 94 Prague, Czech Republic
| | - Richard Hampl
- Institute of Endocrinology, Department of Steroids and Proteofactors, Narodni 8, 116 94 Prague, Czech Republic
| |
Collapse
|
6
|
Colciago A, Casati L, Negri-Cesi P, Celotti F. Learning and memory: Steroids and epigenetics. J Steroid Biochem Mol Biol 2015; 150:64-85. [PMID: 25766520 DOI: 10.1016/j.jsbmb.2015.02.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 02/11/2015] [Accepted: 02/12/2015] [Indexed: 12/19/2022]
Abstract
Memory formation and utilization is a complex process involving several brain structures in conjunction as the hippocampus, the amygdala and the adjacent cortical areas, usually defined as medial temporal lobe structures (MTL). The memory processes depend on the formation and modulation of synaptic connectivity affecting synaptic strength, synaptic plasticity and synaptic consolidation. The basic neurocognitive mechanisms of learning and memory are shortly recalled in the initial section of this paper. The effect of sex hormones (estrogens, androgens and progesterone) and of adrenocortical steroids on several aspects of memory processes are then analyzed on the basis of animal and human studies. A specific attention has been devoted to the different types of steroid receptors (membrane or nuclear) involved and on local metabolic transformations when required. The review is concluded by a short excursus on the steroid activated epigenetic mechanisms involved in memory formation.
Collapse
Affiliation(s)
- Alessandra Colciago
- Department of Pharmacological and Biomolecular Sciences, Section of Biomedicine and Endocrinology, Via Balzaretti 9, 20133 Milano, Italy
| | - Lavinia Casati
- Department of Medical Biotechnologies and Translational Medicine, Via Vanvitelli 32, 20129 Milano, Italy
| | - Paola Negri-Cesi
- Department of Pharmacological and Biomolecular Sciences, Section of Biomedicine and Endocrinology, Via Balzaretti 9, 20133 Milano, Italy
| | - Fabio Celotti
- Department of Pharmacological and Biomolecular Sciences, Section of Biomedicine and Endocrinology, Via Balzaretti 9, 20133 Milano, Italy
| |
Collapse
|
7
|
Sosvorova L, Vitku J, Chlupacova T, Mohapl M, Hampl R. Determination of seven selected neuro- and immunomodulatory steroids in human cerebrospinal fluid and plasma using LC-MS/MS. Steroids 2015; 98:1-8. [PMID: 25676787 DOI: 10.1016/j.steroids.2015.01.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 12/31/2014] [Accepted: 01/23/2015] [Indexed: 01/17/2023]
Abstract
Dehydroepiandrosterone (DHEA) and its 7-oxo- and 7-hydroxy-metabolites occurring in the brain are considered neurosteroids. Metabolism of the latter is catalysed by 11β-hydroxysteroid dehydrogenase (11β-HSD) which also interconverts cortisol and cortisone. The concurrent metabolic reaction to DHEA 7-hydroxylation is the formation of 16α-hydroxy-DHEA. The LC-MS/MS method using triple stage quadrupole-mass spectrometer was developed for simultaneous quantification of free DHEA, 7α-hydroxy-DHEA, 7β-hydroxy-DHEA, 7-oxo-DHEA, 16α-hydroxy-DHEA, cortisol and cortisone in human plasma and cerebrospinal fluid (CSF). The method employs 500 μL of human plasma and 3000 μL of CSF extracted with diethyl ether and derivatized with 2-hydrazinopyridine. It has been validated in terms of sensitivity, precision and recovery. In plasma, the following values were obtained: limit of detection: 2-50p g/mL; limit of quantification: 5-140 pg/mL; within-day precision 0.58-14.58%; between-day precision: 1.24-13.89% and recovery: 85-113.2%). For CSF, the values of limit of detection: 2-28 pg/mL; limit of quantification: 6-94 pg/mL; within-day precision; 0.63-5.48%; between-day precision: 0.88-14.59% and recovery: 85.1-109.4% were acquired. Medians and concentration ranges of detected steroids in plasma and CSF are given in subjects with excluded normal pressure hydrocephalus (n=37; 65-80 years). The method enables simultaneous quantification of steroids important for the estimation of 11β-HSD activity in human plasma and CSF. It will be helpful in better understanding various degenerative diseases development and progression.
Collapse
Affiliation(s)
- Lucie Sosvorova
- Institute of Endocrinology, Department of Steroids and Proteofactors, Narodni 8, 11694 Prague, Czech Republic
| | - Jana Vitku
- Institute of Endocrinology, Department of Steroids and Proteofactors, Narodni 8, 11694 Prague, Czech Republic
| | - Tereza Chlupacova
- Institute of Endocrinology, Department of Steroids and Proteofactors, Narodni 8, 11694 Prague, Czech Republic
| | - Milan Mohapl
- Military University Hospital Prague, Department of Neurosurgery, U Vojenske nemocnice 1200, 16902 Prague, Czech Republic
| | - Richard Hampl
- Institute of Endocrinology, Department of Steroids and Proteofactors, Narodni 8, 11694 Prague, Czech Republic.
| |
Collapse
|
8
|
Stárka L, Dušková M, Hill M. Dehydroepiandrosterone: a neuroactive steroid. J Steroid Biochem Mol Biol 2015; 145:254-60. [PMID: 24704258 DOI: 10.1016/j.jsbmb.2014.03.008] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 03/20/2014] [Accepted: 03/24/2014] [Indexed: 10/25/2022]
Abstract
Dehydroepiandrosterone (DHEA) and its sulfate bound form (DHEAS) are important steroids of mainly adrenal origin. They are produced also in gonads and in the brain. Dehydroepiandrosterone easily crosses the brain-blood barrier and in part is also produced locally in the brain tissue. In the brain, DHEA exerts its effects after conversion to either testosterone and dihydrotestosterone or estradiol via androgen and estrogen receptors present in the most parts of the human brain, through mainly non-genomic mechanisms, or eventually indirectly via the effects of its metabolites formed locally in the brain. As a neuroactive hormone, DHEA in co-operation with other hormones and transmitters significantly affects some aspects of human mood, and modifies some features of human emotions and behavior. It has been reported that its administration can increase feelings of well-being and is useful in ameliorating atypical depressive disorders. It has neuroprotective and antiglucocorticoid activity and modifies immune reactions, and some authors have also reported its role in degenerative brain diseases. Here we present a short overview of the possible actions of dehydroepiandrosterone and its sulfate in the brain, calling attention to various mechanisms of their action as neurosteroids and to prospects for the knowledge of their role in brain disorders.
Collapse
Affiliation(s)
- Luboslav Stárka
- Institute of Endocrinology, Národní 8, 11694 Prague, Czech Republic.
| | - Michaela Dušková
- Institute of Endocrinology, Národní 8, 11694 Prague, Czech Republic.
| | - Martin Hill
- Institute of Endocrinology, Národní 8, 11694 Prague, Czech Republic.
| |
Collapse
|
9
|
Slominski AT, Zmijewski MA, Semak I, Zbytek B, Pisarchik A, Li W, Zjawiony J, Tuckey RC. Cytochromes p450 and skin cancer: role of local endocrine pathways. Anticancer Agents Med Chem 2014; 14:77-96. [PMID: 23869782 DOI: 10.2174/18715206113139990308] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 01/30/2013] [Accepted: 04/10/2013] [Indexed: 12/19/2022]
Abstract
Skin is the largest body organ forming a metabolically active barrier between external and internal environments. The metabolic barrier is composed of cytochromes P450 (CYPs) that regulate its homeostasis through activation or inactivation of biologically relevant molecules. In this review we focus our attention on local steroidogenic and secosteroidogenic systems in relation to skin cancer, e.g., prevention, attenuation of tumor progression and therapy. The local steroidogenic system is composed of locally expressed CYPs involved in local production of androgens, estrogens, gluco- and mineralo-corticosteroids from cholesterol (initiated by CYP11A1) or from steroid precursors delivered to the skin, and of their metabolism and/or inactivation. Cutaneous 7-hydroxylases (CYP7A1, CYP7B1 and CYP39) potentially can produce 7-hydroxy/oxy-steroids/sterols with modifying effects on local tumorigenesis. CYP11A1 also transforms 7-dehydrocholesterol (7DHC)→22(OH)7DHC→20,22(OH)2-7DHC→7-dehydropregnenolone, which can be further metabolized to other 5,7- steroidal dienes. These 5,7-dienal intermediates are converted by ultraviolet radiation B (UVB) into secosteroids which show pro-differentiation and anti-cancer properties. Finally, the skin is the site of activation of vitamin D3 through two alternative pathways. The classical one involves sequential hydroxylation at positions 25 and 1 to produce active 1,25(OH)2D3, which is further inactivated through hydroxylation at C24. The novel pathway is initiated by CYP11A1 with predominant production of 20(OH)D3 which is further metabolized to biologically active but non-calcemic D3-hydroxyderivatives. Classical and non-classical (novel) vitamin D analogs show pro-differentiation, anti-proliferative and anticancer properties. In addition, melatonin is metabolized by local CYPs. In conclusion cutaneously expressed CYPs have significant effects on skin physiology and pathology trough regulation of its chemical milieu.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Robert C Tuckey
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, 930 Madison Avenue, RM525, Memphis, TN 38163, USA.
| |
Collapse
|
10
|
Slominski AT, Manna PR, Tuckey RC. Cutaneous glucocorticosteroidogenesis: securing local homeostasis and the skin integrity. Exp Dermatol 2014; 23:369-374. [PMID: 24888781 PMCID: PMC4046116 DOI: 10.1111/exd.12376] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2014] [Indexed: 12/15/2022]
Abstract
Human skin has the ability to synthesize glucocorticoids de novo from cholesterol or from steroid intermediates of systemic origin. By interacting with glucocorticoid receptors, they regulate skin immune functions as well as functions and phenotype of the epidermal, dermal and adnexal compartments. Most of the biochemical (enzyme and transporter activities) and regulatory (neuropeptides mediated activation of cAMP and protein kinase A dependent pathways) principles of steroidogenesis in the skin are similar to those operating in classical steroidogenic organs. However, there are also significant differences determined by the close proximity of synthesis and action (even within the same cells) allowing para-, auto- or intracrine modes of regulation. We also propose that ultraviolet light B (UVB) can regulate the availability of 7-dehydrocholesterol for transformation to cholesterol with its further metabolism to steroids, oxysterols or ∆7 steroids, because of its transformation to vitamin D3. In addition, UVB can rearrange locally produced ∆7 steroids to the corresponding secosteroids with a short- or no-side chain. Thus, different mechanisms of regulation occur in the skin that can be either stochastic or structuralized. We propose that local glucocorticosteroidogenic systems and their regulators, in concert with cognate receptors operate to stabilize skin homeostasis and prevent or attenuate skin pathology.
Collapse
Affiliation(s)
- Andrzej T Slominski
- Department of Pathology and Laboratory Medicine, University of Tennessee, Health Science Center, Memphis, TN, USA
- Department of Medicine, Division of Rheumatology and Connective Tissue Diseases, University of Tennessee, Health Science Center, Memphis, TN, USA
| | - Pulak R Manna
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Robert C Tuckey
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
11
|
Gottfried-Blackmore A, Jellinck PH, Vecchiarelli HA, Masheeb Z, Kaufmann M, McEwen BS, Bulloch K. 7α-hydroxylation of dehydroepiandrosterone does not interfere with the activation of glucocorticoids by 11β-hydroxysteroid dehydrogenase in E(t)C cerebellar neurons. J Steroid Biochem Mol Biol 2013; 138:290-7. [PMID: 23851218 DOI: 10.1016/j.jsbmb.2013.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Revised: 06/14/2013] [Accepted: 07/03/2013] [Indexed: 10/26/2022]
Abstract
The neuroprotective action of dehydroepiandrosterone (DHEA) in the absence of a known specific receptor has been attributed to its metabolism by different cell types in the brain to various steroids, with a preference to its 7-hydroxylated products. The E(t)C cerebellar granule cell line converts DHEA almost exclusively to 7α-hydroxy-DHEA (7α-OH-DHEA). It has been postulated that DHEA's 7-OH and 7-oxo metabolites can decrease glucocorticoid levels by an interactive mechanism involving 11β-hydroxysteroid dehydrogenase (11β-HSD). In order to study the relationship of 7-hydroxylation of DHEA and glucocorticoid metabolism in intact brain cells, we examined whether E(t)C cerebellar neurons, which are avid producers of 7α-OH-DHEA, could also metabolize glucocorticoids. We report that E(t)C neuronal cells exhibit 11β-HSD1 reductase activity, and are able to convert 11-dehydrocorticosterone into corticosterone, whereas they do not demonstrate 11β-HSD2 dehydrogenase activity. Consequently, E(t)C cells incubated with DHEA did not yield 7-oxo- or 7β-OH-DHEA. Our findings are supported by the reductive environment of E(t)C cells through expression of hexose-6-phosphate dehydrogenase (H6PDH), which fosters 11β-HSD1 reductase activity. To further explore the role of 7α-OH-DHEA in E(t)C neuronal cells, we examined the effect of preventing its formation using the CYP450 inhibitor ketoconazole. Treatment of the cells with this drug decreased the yield of 7α-OH-DHEA by about 75% without the formation of alternate DHEA metabolites, and had minimal effects on glucocorticoid conversion. Likewise, elevated levels of corticosterone, the product of 11β-HSD1, had no effect on the metabolic profile of DHEA. This study shows that in a single population of whole-cells, with a highly reductive environment, 7α-OH-DHEA is unable to block the reducing activity of 11β-HSD1, and that 7-hydroxylation of DHEA does not interfere with the activation of glucocorticoids. Our investigation on the metabolism of DHEA in E(t)C neuronal cells suggest that other alternate mechanisms must be at play to explain the in vivo anti-glucocorticoid properties of DHEA and its 7-OH-metabolites.
Collapse
Affiliation(s)
- Andres Gottfried-Blackmore
- Harold and Margaret Milliken Hatch, Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Tsutsui K, Haraguchi S, Fukada Y, Vaudry H. Brain and pineal 7α-hydroxypregnenolone stimulating locomotor activity: identification, mode of action and regulation of biosynthesis. Front Neuroendocrinol 2013; 34:179-89. [PMID: 23685042 DOI: 10.1016/j.yfrne.2013.05.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 05/01/2013] [Accepted: 05/08/2013] [Indexed: 11/30/2022]
Abstract
Biologically active steroids synthesized in the central and peripheral nervous systems are termed neurosteroids. However, the biosynthetic pathways leading to the formation of neurosteroids are still incompletely elucidated. 7α-Hydroxypregnenolone, a novel bioactive neurosteroid stimulating locomotor activity, has been recently identified in the brain of newts and quail. Subsequently, the mode of action and regulation of biosynthesis of 7α-hydroxypregnenolone have been determined. Moreover, recent studies on birds have demonstrated that the pineal gland, an endocrine organ located close to the brain, is an important site of production of neurosteroids de novo from cholesterol. 7α-Hydroxypregnenolone is a major pineal neurosteroid that stimulates locomotor activity in juvenile chickens, connecting light-induced gene expression with locomotion. This review summarizes the advances in our understanding of the identification, mode of action and regulation of biosynthesis of brain and pineal 7α-hydroxypregnenolone, a potent stimulator of locomotor activity.
Collapse
Affiliation(s)
- Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Tokyo 162-8480, Japan.
| | | | | | | |
Collapse
|
13
|
Manca P, Caria MA, Blasi J, Martín-Satué M, Mameli O. Cytochrome P450 17α-hydroxylase/C(17,20)-lyase immunoreactivity and molecular expression in the cerebellar nuclei of adult male rats. J Chem Neuroanat 2012; 45:18-25. [PMID: 22800812 DOI: 10.1016/j.jchemneu.2012.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 06/15/2012] [Accepted: 07/04/2012] [Indexed: 10/28/2022]
Abstract
Several probes have been developed to identify steroidogenic activity in the brain of vertebrates. However, the presence of the cytochrome P450 17α-hydroxylase/C(17,20)-lyase (P450C(17)), an enzyme that converts pregnenolone and progesterone into dehydroepiandrosterone and androstenedione, in specific areas of the cerebellum such as the deep cerebellar nuclei, remains virtually unexplored. Using Western blot analysis and immunohistochemistry, we found molecular expression of P450C(17) in the lateral, interposed and medial deep cerebellar nuclei. Moreover, double immunofluorescence procedures enabled localization of P450C(17) mainly in neurons, axons and glutamatergic synapses. Taken together, these data demonstrate the occurrence of P450C(17) in the deep cerebellar nuclei, and enable the chemical characterization of the cells that express the cytochrome.
Collapse
Affiliation(s)
- Paolo Manca
- Department of Clinical and Experimental Medicine, Human Physiology, University of Sassari, Italy.
| | | | | | | | | |
Collapse
|
14
|
El Kihel L. Oxidative metabolism of dehydroepiandrosterone (DHEA) and biologically active oxygenated metabolites of DHEA and epiandrosterone (EpiA)--recent reports. Steroids 2012; 77:10-26. [PMID: 22037250 DOI: 10.1016/j.steroids.2011.09.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 09/14/2011] [Accepted: 09/18/2011] [Indexed: 12/24/2022]
Abstract
Dehydroepiandrosterone (DHEA) is a multifunctional steroid with a broad range of biological effects in humans and animals. DHEA can be converted to multiple oxygenated metabolites in the brain and peripheral tissues. The mechanisms by which DHEA exerts its effects are not well understood. However, evidence that the effects of DHEA are mediated by its oxygenated metabolites has accumulated. This paper will review the panel of oxygenated DHEA metabolites (7, 16 and 17-hydroxylated derivatives) including a number of 5α-androstane derivatives, such as epiandrosterone (EpiA) metabolites. The most important aspects of the oxidative metabolism of DHEA in the liver, intestine and brain are described. Then, this article reviews the reported biological effects of oxygenated DHEA metabolites from recent findings with a specific focus on cancer, inflammatory and immune processes, osteoporosis, thermogenesis, adipogenesis, the cardiovascular system, the brain and the estrogen and androgen receptors.
Collapse
Affiliation(s)
- Laïla El Kihel
- Université de Caen Basse-Normandie, UFR des Sciences Pharmaceutiques, Centre d'Etudes et de Recherche sur le Médicament de Normandie, UPRES EA-4258, FR CNRS INC3M, Caen, France.
| |
Collapse
|
15
|
Choudhary MI, Zafar S, Khan NT, Ahmad S, Noreen S, Marasini BP, Al-Khedhairy AA, Atta-ur-Rahman. Biotransformation of dehydroepiandrosterone with Macrophomina phaseolina and β-glucuronidase inhibitory activity of transformed products. J Enzyme Inhib Med Chem 2011; 27:348-55. [DOI: 10.3109/14756366.2011.590804] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- M. Iqbal Choudhary
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi,
Karachi, Pakistan
- Department of Chemistry, College of Science, King Saud University,
Riyadh, Saudi Arabia
| | - Salman Zafar
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi,
Karachi, Pakistan
| | - Naik Tameen Khan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi,
Karachi, Pakistan
| | - Saeed Ahmad
- Department of Pharmacy, Islamia University,
Bahawalpur, Pakistan
| | - Shagufta Noreen
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi,
Karachi, Pakistan
| | - Bishnu P. Marasini
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi,
Karachi, Pakistan
| | | | - Atta-ur-Rahman
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi,
Karachi, Pakistan
| |
Collapse
|
16
|
Hoyk Z, Csákvári E, Szájli A, Kóti J, Paragi G, Gyenes A, Wölfling J, Pfoh R, Rühl S, Párducz A. Computer-aided structure analysis of an epimerized dehydroepiandrosterone derivative and its biological effect in a model of reactive gliosis. Steroids 2010; 75:265-71. [PMID: 20064537 DOI: 10.1016/j.steroids.2010.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 11/06/2009] [Accepted: 01/03/2010] [Indexed: 11/28/2022]
Abstract
The naturally occurring steroid dehydroepiandrosterone (DHEA) is reported to reduce glial fibrillary acidic protein (GFAP) overexpression in a model of reactive gliosis due to its conversion to estradiol by the enzyme aromatase. In the present study we examined the biological effect of a new epimerized derivative of DHEA, 16alpha-iodomethyl-13alpha-dehydroepiandrosterone derivative (16alpha-iodomethyl-13alpha-DHEAd, 16alpha-iodomethyl-13alpha-androst-5-en-3beta,17beta-diol), using the same model system, and compared the 3D structure of this molecule with that of DHEA and two steroidal type aromatase inhibitors, formestane and exemestane. The synthetic compound, in contrast to the reported effect of DHEA, was able to reduce GFAP overexpression only if the enzyme aromatase was inhibited. Data obtained from computational calculations fortified by X-ray crystallography revealed that contrary to the nearly planar sterane framework of DHEA, the synthetic derivative 16alpha-iodomethyl-13alpha-DHEAd has a bent sterane skeleton, resulting in a 3D structure that is similar to that of formestane or exemestane. Moreover, 16alpha-iodomethyl-13alpha-DHEAd resulted to be metabolically more stable than DHEA. The results suggest that epimerization of the sterane skeleton of DHEA inclines the plane of the D ring, leading to a significantly altered biological activity. The synthetic molecule has a DHEA-like effect on GFAP overexpression when the enzyme aromatase is inhibited and the naturally occurring DHEA is ineffective in this respect. On the other hand, based on their structural similarity it can be hypothesized that 16alpha-iodomethyl-13alpha-DHEAd applied alone might have a biological effect similar to that of formestane or exemestane.
Collapse
Affiliation(s)
- Zsófia Hoyk
- Institute of Biophysics, Biological Research Center, Szeged, Temesvári krt. 62, H-6726 Szeged, Hungary
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Mo Q, Lu S, Garippa C, Brownstein MJ, Simon NG. Genome-wide analysis of DHEA- and DHT-induced gene expression in mouse hypothalamus and hippocampus. J Steroid Biochem Mol Biol 2009; 114:135-43. [PMID: 19429443 DOI: 10.1016/j.jsbmb.2009.01.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Revised: 01/07/2009] [Accepted: 01/11/2009] [Indexed: 11/22/2022]
Abstract
Dehydroepiandrosterone (DHEA) is the most abundant steroid in humans and a multi-functional neuroactive steroid that has been implicated in a variety of biological effects in both the periphery and central nervous system. Mechanistic studies of DHEA in the periphery have emphasized its role as a prohormone and those in the brain have focused on effects exerted at cell surface receptors. Recent results demonstrated that DHEA is intrinsically androgenic. It competes with DHT for binding to androgen receptor (AR), induces AR-regulated reporter gene expression in vitro, and exogenous DHEA administration regulates gene expression in peripheral androgen-dependent tissues and LnCAP prostate cancer cells, indicating genomic effects and adding a level of complexity to functional models. The absence of information about the effect of DHEA on gene expression in the CNS is a significant gap in light of continuing clinical interest in the compound as a hormone replacement therapy in older individuals, patients with adrenal insufficiency, and as a treatment that improves sense of well-being, increases libido, relieves depressive symptoms, and serves as a neuroprotective agent. In the present study, ovariectomized CF-1 female mice, an established model for assessing CNS effects of androgens, were treated with DHEA (1mg/day), dihydrotestosterone (DHT, a potent androgen used as a positive control; 0.1mg/day) or vehicle (negative control) for 7 days. The effects of DHEA on gene expression were assessed in two regions of the CNS that are enriched in AR, hypothalamus and hippocampus, using DNA microarray, real-time RT-PCR, and immunohistochemistry. RIA of serum samples assessed treatment effects on circulating levels of major steroids. In hypothalamus, DHEA and DHT significantly up-regulated the gene expression of hypocretin (Hcrt; also called orexin), pro-melanin-concentrating hormone (Pmch), and protein kinase C delta (Prkcd), and down-regulated the expression of deleted in bladder cancer chromosome region candidate 1 (Dbccr1) and chitinase 3-like 3 (Chi3l3). Two-step real-time RT-PCR confirmed changes in the expression of three genes (Pmch, Hcrt and Prkcd) using the same RNA sample employed in the microarray experiment. Immunohistochemistry showed augmentation of prepro-hypocretin (pHcrt) neuropeptide protein expression by DHEA and DHT in hypothalamus, consistent with the localization of orexin neurons. In hippocampus, DHT down-regulated the expression of Prkcd, while DHEA did not have significant effects. RIA results supported the view that DHEA-induced effects were mediated through AR. The current study identified neurogenomic effects of DHEA treatment on a subset of genes directly implicated in the regulation of appetite, energy utilization, alertness, apoptosis, and cell survival. These changes in gene expression in the CNS represent a constellation of effects that may help explain the diverse benefits attributed to replacement therapy with DHEA. The data also provide a new level of detail regarding the genomic mechanism of action of DHEA in the CNS and strongly support a central role for the androgen receptor in the production of these effects. More broadly, the results may be clinically significant because they provide new insights into processes that appear to mediate the diverse CNS effects attributed to DHEA.
Collapse
Affiliation(s)
- Qianxing Mo
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| | | | | | | | | |
Collapse
|
18
|
Maninger N, Wolkowitz OM, Reus VI, Epel ES, Mellon SH. Neurobiological and neuropsychiatric effects of dehydroepiandrosterone (DHEA) and DHEA sulfate (DHEAS). Front Neuroendocrinol 2009; 30:65-91. [PMID: 19063914 PMCID: PMC2725024 DOI: 10.1016/j.yfrne.2008.11.002] [Citation(s) in RCA: 524] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Revised: 11/10/2008] [Accepted: 11/11/2008] [Indexed: 01/12/2023]
Abstract
DHEA and DHEAS are steroids synthesized in human adrenals, but their function is unclear. In addition to adrenal synthesis, evidence also indicates that DHEA and DHEAS are synthesized in the brain, further suggesting a role of these hormones in brain function and development. Despite intensifying research into the biology of DHEA and DHEAS, many questions concerning their mechanisms of action and their potential involvement in neuropsychiatric illnesses remain unanswered. We review and distill the preclinical and clinical data on DHEA and DHEAS, focusing on (i) biological actions and putative mechanisms of action, (ii) differences in endogenous circulating concentrations in normal subjects and patients with neuropsychiatric diseases, and (iii) the therapeutic potential of DHEA in treating these conditions. Biological actions of DHEA and DHEAS include neuroprotection, neurite growth, and antagonistic effects on oxidants and glucocorticoids. Accumulating data suggest abnormal DHEA and/or DHEAS concentrations in several neuropsychiatric conditions. The evidence that DHEA and DHEAS may be fruitful targets for pharmacotherapy in some conditions is reviewed.
Collapse
Affiliation(s)
- Nicole Maninger
- Department of Psychiatry, University of California San Francisco, School of Medicine, San Francisco 94143, USA
| | | | | | | | | |
Collapse
|
19
|
Kołek T, Szpineter A, Swizdor A. Baeyer-Villiger oxidation of DHEA, pregnenolone, and androstenedione by Penicillium lilacinum AM111. Steroids 2008; 73:1441-5. [PMID: 18755205 DOI: 10.1016/j.steroids.2008.07.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Revised: 07/24/2008] [Accepted: 07/25/2008] [Indexed: 11/23/2022]
Abstract
The Baeyer-Villiger monooxygenase (BVMO) produced by Penicillium lilacinum AM111, in contrast to other enzymes of this group known in the literature, is able to process 3beta-hydroxy-5-ene steroid substrates. Transformation of DHEA and pregnenolone yielded, as a sole or main product, 3beta-hydroxy-17a-oxa-d-homo-androst-5-en-17-one, a new metabolite of these substrates; pregnenolone was transformed also to testololactone. Testololactone was the only product of oxidation of androstenedione by P. lilacinum AM111. Investigations of the time evolution of reaction progress have indicated that the substrates stimulate activity of BVMO(s) of P. lilacinum AM111.
Collapse
Affiliation(s)
- Teresa Kołek
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | | | | |
Collapse
|
20
|
Gottfried-Blackmore A, Sierra A, Jellinck PH, McEwen BS, Bulloch K. Brain microglia express steroid-converting enzymes in the mouse. J Steroid Biochem Mol Biol 2008; 109:96-107. [PMID: 18329265 PMCID: PMC2423427 DOI: 10.1016/j.jsbmb.2007.12.013] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the CNS, steroid hormones play a major role in the maintenance of brain homeostasis and it's response to injury. Since activated microglia are the pivotal immune cell involved in neurodegeneration, we investigated the possibility that microglia provide a discrete source for the metabolism of active steroid hormones. Using RT-PCR, our results showed that mouse microglia expressed mRNA for 17beta-hydroxysteroid dehydrogenase type 1 and steroid 5alpha-reductase type 1, which are involved in the metabolism of androgens and estrogens. Microglia also expressed the peripheral benzodiazepine receptor and steroid acute regulatory protein; however, the enzymes required for de novo formation of progesterone and DHEA from cholesterol were not expressed. To test the function of these enzymes, primary microglia cultures were incubated with steroid precursors, DHEA and AD. Microglia preferentially produced delta-5 androgens (Adiol) from DHEA and 5alpha-reduced androgens from AD. Adiol behaved as an effective estrogen receptor agonist in neuronal cells. Activation of microglia with pro-inflammatory factors, LPS and INFgamma did not affect the enzymatic properties of these proteins. However, PBR ligands reduced TNFalpha production signifying an immunomodulatory role for PBR. Collectively, our results suggest that microglia utilize steroid-converting enzymes and related proteins to influence inflammation and neurodegeneration within microenvironments of the brain.
Collapse
Affiliation(s)
| | - Amanda Sierra
- Laboratory of Neuroendocrinology, Rockefeller University, 1230 York Ave, New York, NY 10065
| | - Peter H. Jellinck
- Department of Biochemistry, Queen’s University, Kingston, Ontario K7L 3N6 Canada
| | - Bruce S. McEwen
- Laboratory of Neuroendocrinology, Rockefeller University, 1230 York Ave, New York, NY 10065
| | - Karen Bulloch
- Laboratory of Cell Physiology and Immunology, Rockefeller University, 1230 York Ave, New York, NY 10065
- CORRESPONDING AUTHOR: Karen Bulloch, Laboratory of Cell Physiology and Immunology, Rockefeller University (box 165), 1230 York Ave, New York, NY 10065. E-mail:
| |
Collapse
|
21
|
Jellinck PH, Kaufmann M, Gottfried-Blackmore A, McEwen BS, Jones G, Bulloch K. Selective conversion by microglia of dehydroepiandrosterone to 5-androstenediol-A steroid with inherent estrogenic properties. J Steroid Biochem Mol Biol 2007; 107:156-62. [PMID: 17681749 DOI: 10.1016/j.jsbmb.2007.04.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2007] [Accepted: 04/23/2007] [Indexed: 11/20/2022]
Abstract
The well-established neuroprotective effect of dehydroepiandrosterone (DHEA) has been attributed to its metabolism in the brain to provide estrogens known to be neuroprotective and to enhance memory and learning in humans and animals. However, our previous work showed that the conversion of DHEA to 4-androstenedione (AD), the precursor of estrone (E(1)) and estradiol (E(2)), is very low in several different types of neural cells, and that the main product is 7alpha-hydroxy-DHEA (7alpha-OH-DHEA). In this study, we found that microglia are an exception and produce mainly 5-androstene-3beta,17beta-diol (Delta(5)-Adiol), a C(19) steroid with estrogen-like activity from DHEA. Virtually, no other products, including testosterone (T) were detected by TLC or HPLC in incubations of (3)H-labeled DHEA with the BV2 microglial cell line. Microglia are important brain cells that are thought to play a house-keeping role during the steady state, and that are crucial to the brain's immune reaction to injury and the healing process. Our findings suggest that the microglia-produced Delta(5)-Adiol might have a role in modulating estrogen-sensitive neuroplastic events in the brain, in the absence of adequate local synthesis of estrone and estradiol.
Collapse
Affiliation(s)
- Peter H Jellinck
- Department of Biochemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | | | | | | | | | | |
Collapse
|
22
|
Characterization of a cerebellar granule progenitor cell line, EtC.1, and its responsiveness to 17-beta-estradiol. Brain Res 2007; 1186:29-40. [PMID: 17980864 DOI: 10.1016/j.brainres.2007.08.071] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Revised: 08/17/2007] [Accepted: 08/23/2007] [Indexed: 01/19/2023]
Abstract
Mouse cerebellar development occurs at late embryonic stages and through the first few weeks of postnatal life. Hormones such as 17-beta-estradiol (E2) have been implicated in cerebellar development, through the expression of E2 receptors (ER). However, the role of E2 in the development and function of cerebellar neurons has yet to be fully elucidated. To gain insight into E2's actions on the developing cerebellum, we characterized a cloned neuronal cell line, E(t)C.1, derived from late embryonic cerebellum for its neural properties and responsiveness to E2. Our results revealed that E(t)C.1 cells express markers characteristic of neural progenitor cells such as Nestin, Musashi, and Doublecortin (DCX), and of the granule cell lineage such as Math1 and Zipro1. The ER alpha and beta (ERalpha and ERbeta) were also identified in this cell line. Functionality of ERs was verified using an Estrogen Response Element (ERE)-Luciferase reporter plasmid. E2 modulated ERalpha, FMRP, and IL-6, which were expressed in these cells. However, E2 did not induce changes in neural proteins nor induce maturation of E(t)C.1 cells. CREB and ERK(1/2) protein kinases were not modulated by E2 either. Interestingly, E(t)C.1 expressed active p450 Aromatase (P450arom), which was confirmed by the aromatization of androstenedione (AD) to E2 and other estrogen metabolites. Collectively, our results show that the E(t)C.1 cell line may serve as a model to study early development of cerebellar progenitor granule cells, and their responsiveness to E2.
Collapse
|
23
|
Mo Q, Lu SF, Simon NG. Dehydroepiandrosterone and its metabolites: differential effects on androgen receptor trafficking and transcriptional activity. J Steroid Biochem Mol Biol 2006; 99:50-8. [PMID: 16524719 DOI: 10.1016/j.jsbmb.2005.11.011] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2005] [Accepted: 11/14/2005] [Indexed: 12/20/2022]
Abstract
Dehydroepiandrosterone (DHEA) is a multi-functional steroid that has been implicated in a broad range of biological effects in humans and rodents. Recent studies demonstrated that DHEA acts genomically through the androgen receptor (AR) in addition to its well-known effects on cell surface receptors. However, the relative contribution of DHEA and its major metabolites, including DHEA-Sulfate (DHEA-S), 7alpha-OH-DHEA, 7beta-OH-DHEA, 7-oxo-DHEA, androstenedione (Adione), and androstenediol (Adiol), in the production of genomic effects remains controversial, in part because the metabolism of DHEA varies in different cells and tissues. In the current study, the ability of DHEA and its metabolites to promote AR intracellular trafficking and regulate AR-mediated reporter gene expression, which are characteristic effects of androgens, was determined. Intracellular trafficking of AR-GFP protein was assessed in COS-7 cells while AR transcriptional activity was tested in CV-1 cells transiently co-transfected with AR expression plasmid and an MMTV-ARE-CAT reporter. The results demonstrated that DHEA, the 3beta-HSD metabolite Adione, and the 17beta-HSD metabolite Adiol, were androgenic. Each promoted AR-GFP intracellular trafficking, the formation of nuclear clusters, and AR-dependent transcriptional activity in a dose-dependent manner. In contrast, DHEA-S, 7alpha-OH-DHEA, 7beta-OH-DHEA, and 7-oxo-DHEA were ineffective and exhibited minimal androgenic activity, even at relatively high concentrations (10(-6) M). These results provide the first systematic comparison of the (i) androgenic activity of DHEA and its sulfated and hydroxylated metabolites, (ii) relative androgenicity of DHEA itself vs. the established androgens Adione and Adiol, and (iii) ability of DHEA and its major metabolites to promote AR-GFP intracellular trafficking. In addition to partitioning DHEA and its metabolites into compounds with (DHEA, Adione, Adiol) and without (DHEA-S, 7alpha-OH-DHEA, 7beta-OH-DHEA, and 7-oxo-DHEA) androgenic activity, the findings improve our understanding of the intracellular processes mediating the genomic effects of DHEA through AR.
Collapse
Affiliation(s)
- Qianxing Mo
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, United States
| | | | | |
Collapse
|
24
|
Jellinck PH, Kaufmann M, Gottfried-Blackmore A, Croft G, Byford V, McEwen BS, Jones G, Bulloch K. Dehydroepiandrosterone (DHEA) metabolism in the brain: identification by liquid chromatography/mass spectrometry of the delta-4-isomer of DHEA and related steroids formed from androstenedione by mouse BV2 microglia. J Steroid Biochem Mol Biol 2006; 98:41-7. [PMID: 16203131 DOI: 10.1016/j.jsbmb.2005.07.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2005] [Accepted: 07/15/2005] [Indexed: 10/25/2022]
Abstract
Studies to elucidate the role of dehydroepiandrosterone (DHEA) metabolism in neuroprotection have compared its relative 7-hydroxylation against estrogen formation by way of 4-androstenedione (AD) in various rodent brain cell lines. In all cases, the 7alpha- and 7beta-hydroxy epimers of DHEA were found to be the dominant products with one notable exception. BV2 mouse microglia were virtually unable to hydroxylate DHEA at C-7 and converted AD to a major unknown metabolite not observed with mouse BHc hippocampal cells. In this paper, we describe the identification of this compound based on its physical properties and analysis by TLC and HPLC. Its identity as 3beta-hydroxy-4-androstene-17-one, the Delta(4)-isomer of DHEA, was confirmed by mass spectrometry (LC/MS), as well as by reverse isotope dilution analysis involving co-crystallization with the synthetic steroid. Possible mechanisms for the formation of this isomer of DHEA by BV2 microglia are proposed, together with that of other C-19 steroids detected which include testosterone (T), 5alpha-dihydrotestosterone and 5alpha-androstanedione.
Collapse
Affiliation(s)
- Peter H Jellinck
- Department of Biochemistry, Queen's University, Kingston, Ont., Canada K7l 3N6
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Simon NG, Mo Q, Hu S, Garippa C, Lu SF. Hormonal Pathways Regulating Intermale And Interfemale Aggression. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2006; 73:99-123. [PMID: 16737902 DOI: 10.1016/s0074-7742(06)73003-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Affiliation(s)
- Neal G Simon
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| | | | | | | | | |
Collapse
|