1
|
Erzurumlu Y, Dogan HK, Catakli D, Aydogdu E, Muhammed MT. Estrogens drive the endoplasmic reticulum-associated degradation and promote proto-oncogene c-Myc expression in prostate cancer cells by androgen receptor/estrogen receptor signaling. J Cell Commun Signal 2023; 17:793-811. [PMID: 36696010 PMCID: PMC10409964 DOI: 10.1007/s12079-022-00720-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 12/21/2022] [Indexed: 01/26/2023] Open
Abstract
The tumorigenic properties of prostate cancer are regulated by advanced hormonal regulation-mediated complex molecular signals. Therefore, characterizing the regulation of these signal transduction systems is crucial for understanding prostate cancer biology. Recent studies have shown that endoplasmic reticulum (ER)-localized protein quality control mechanisms, including ER-associated degradation (ERAD) and unfolded protein response (UPR) signaling contribute to prostate carcinogenesis and to the development of drug resistance. It has also been determined that these systems are tightly regulated by androgens. However, the role of estrogenic signaling in prostate cancer and its effects on protein quality control mechanisms is not fully understood. Herein, we investigated the regulatory effects of estrogens on ERAD and UPR and their impacts on prostate carcinogenesis. We found that estrogens strongly regulated the ERAD components and IRE1⍺ branch of UPR by Er⍺/β/AR axis. Besides, estrogenic signaling rigorously regulated the tumorigenicity of prostate cancer cells by promoting c-Myc expression and epithelial-mesenchymal transition (EMT). Moreover, estrogenic signal blockage significantly decreased the tumorigenic features of prostate cancer cells. Additionally, simultaneous inhibition of androgenic/estrogenic signals more efficiently inhibited tumorigenicity of prostate cancer cells, including proliferation, migration, invasion and colonial growth. Furthermore, computational-based molecular docking, molecular dynamics simulations and MMPBSA calculations supported the estrogenic stimulation of AR. Present findings suggested that ERAD components and IRE1⍺ signaling are tightly regulated by estrogen-stimulated AR and Er⍺/β. Our data suggest that treatment approaches targeting the co-inhibition of androgenic/estrogenic signals may pave the way for new treatment approaches to be developed for prostate cancer. The present model of the impact of estrogens on ERAD and UPR signaling in androgen-sensitive prostate cancer cells.
Collapse
Affiliation(s)
- Yalcin Erzurumlu
- Department of Biochemistry, Faculty of Pharmacy, Suleyman Demirel University, 32260 Isparta, Turkey
| | - Hatice Kubra Dogan
- Department of Bioengineering, Institute of Science, Suleyman Demirel University, 32260 Isparta, Turkey
| | - Deniz Catakli
- Department of Pharmacology, Faculty of Medicine, Suleyman Demirel University, 32260 Isparta, Turkey
| | - Esra Aydogdu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Suleyman Demirel University, 32260 Isparta, Turkey
| | - Muhammed Tilahun Muhammed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Suleyman Demirel University, 32260 Isparta, Turkey
| |
Collapse
|
2
|
Arvelo F, Sojo F. Transición epitelio – mesenquima y cáncer. INVESTIGACIÓN CLÍNICA 2023; 64:379-404. [DOI: 10.54817/ic.v64n3a10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Cancer cell migration and invasion are critical components of metastatic disease, the leading cause of death in cancer patients. The epithe-lium-mesenchyme-transition (EMT) and mesenchyme-epithelium-transition (MET) are pathways involved in cancer metastasis. This process involves the degradation of cell-cell and cell-extracellular matrix junctions and the subse-quent loss of regulation of binding proteins such as E-cadherin. Cells undergo a reorganization of the cytoskeleton. These alterations are associated with a change in cell shape from epithelial to mesenchymal morphology. Understand-ing EMT and MET’s molecular and cellular basis provides fundamental insights into cancer etiology and may lead to new therapeutic strategies. In this review, we discuss some of the regulatory mechanisms and pathological role of epitheli-al-mesenchymal plasticity, focusing on the knowledge about the complexity and dynamics of this phenomenon in cancer
Collapse
Affiliation(s)
- Francisco Arvelo
- Fundación Instituto de Estudios Avanzados-IDEA, Area Salud, Caracas-Venezuela. Laboratorio de Cultivo de Tejidos y Biología de Tumores, Instituto de Biología Experimental, Universidad Central de Venezuela, Caracas, Venezuela
| | - Felipe Sojo
- Fundación Instituto de Estudios Avanzados-IDEA, Area Salud, Caracas-Venezuela. Laboratorio de Cultivo de Tejidos y Biología de Tumores, Instituto de Biología Experimental, Universidad Central de Venezuela, Caracas, Venezuela
| |
Collapse
|
3
|
Pacheco-Velázquez SC, Ortega-Mejía II, Vargas-Navarro JL, Padilla-Flores JA, Robledo-Cadena DX, Tapia-Martínez G, Peñalosa-Castro I, Aguilar-Ponce JL, Granados-Rivas JC, Moreno-Sánchez R, Rodríguez-Enríquez S. 17-β Estradiol up-regulates energy metabolic pathways, cellular proliferation and tumor invasiveness in ER+ breast cancer spheroids. Front Oncol 2022; 12:1018137. [PMID: 36419896 PMCID: PMC9676491 DOI: 10.3389/fonc.2022.1018137] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/18/2022] [Indexed: 09/08/2024] Open
Abstract
Several biological processes related to cancer malignancy are regulated by 17-β estradiol (E2) in ER+-breast cancer. To establish the role of E2 on the atypical cancer energy metabolism, a systematic study analyzing transcription factors, proteins, and fluxes associated with energy metabolism was undertaken in multicellular tumor spheroids (MCTS) from human ER+ MCF-7 breast cancer cells. At E2 physiological concentrations (10 and 100 nM for 24 h), both ERα and ERβ receptors, and their protein target pS2, increased by 0.6-3.5 times vs. non-treated MCTS, revealing an activated E2/ER axis. E2 also increased by 30-470% the content of several transcription factors associated to mitochondrial biogenesis and oxidative phosphorylation (OxPhos) (p53, PGC1-α) and glycolytic pathways (HIF1-α, c-MYC). Several OxPhos and glycolytic proteins (36-257%) as well as pathway fluxes (48-156%) significantly increased being OxPhos the principal ATP cellular supplier (>75%). As result of energy metabolism stimulation by E2, cancer cell migration and invasion processes and related proteins (SNAIL, FN, MM-9) contents augmented by 24-189% vs. non-treated MCTS. Celecoxib at 10 nM blocked OxPhos (60%) as well as MCTS growth, cell migration and invasiveness (>40%); whereas the glycolytic inhibitor iodoacetate (0.5 µM) and doxorubicin (70 nM) were innocuous. Our results show for the first time using a more physiological tridimensional cancer model, resembling the initial stages of solid tumors, that anti-mitochondrial therapy may be useful to deter hormone-dependent breast carcinomas.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ignacio Peñalosa-Castro
- Laboratorio de Control Metabólico, Carrera de Biología, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Reyes Ixtacala, Hab, Tlalnepantla, Mexico
| | | | - Juan Carlos Granados-Rivas
- Laboratorio de Control Metabólico, Carrera de Medicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Reyes Ixtacala, Hab, Tlalnepantla, Mexico
| | - Rafael Moreno-Sánchez
- Laboratorio de Control Metabólico, Carrera de Biología, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Reyes Ixtacala, Hab, Tlalnepantla, Mexico
| | - Sara Rodríguez-Enríquez
- Departamento de Bioquímica, Instituto Nacional de Cardiología, Ciudad de México, Mexico
- Laboratorio de Control Metabólico, Carrera de Medicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Reyes Ixtacala, Hab, Tlalnepantla, Mexico
| |
Collapse
|
4
|
Zhu X, Xue C, Kang X, Jia X, Wang L, Younis MH, Liu D, Huo N, Han Y, Chen Z, Fu J, Zhou C, Yao X, Du Y, Cai W, Kang L, Lyu Z. DNMT3B-mediated FAM111B methylation promotes papillary thyroid tumor glycolysis, growth and metastasis. Int J Biol Sci 2022; 18:4372-4387. [PMID: 35864964 PMCID: PMC9295055 DOI: 10.7150/ijbs.72397] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/13/2022] [Indexed: 11/15/2022] Open
Abstract
Over the past decades, the incidence of thyroid cancer (TC) rapidly increased all over the world, with the papillary thyroid cancer (PTC) accounting for the vast majority of TC cases. It is crucial to investigate novel diagnostic and therapeutic targets for PTC and explore more detailed molecular mechanisms in the carcinogenesis and progression of PTC. Based on the TCGA and GEO databases, FAM111B is downregulated in PTC tissues and predicts better prognosis in PTC patients. FAM111B suppresses the growth, migration, invasion and glycolysis of PTC both in vitro and in vivo. Furthermore, estrogen inhibits FAM111B expression by DNMT3B methylation via enhancing the recruitment of DNMT3B to FAM111B promoter. DNMT3B-mediated FAM111B methylation accelerates the growth, migration, invasion and glycolysis of PTC cells. In clinical TC patient specimens, the expression of FAM111B is inversely correlated with the expressions of DNMT3B and the glycolytic gene PGK1. Besides, the expression of FAM111B is inversely correlated while DNMT3B is positively correlated with glucose uptake in PTC patients. Our work established E2/DNMT3B/FAM111B as a crucial axis in regulating the growth and progression of PTC. Suppression of DNMT3B or promotion of FAM111B will be potential promising strategies in the estrogen induced PTC.
Collapse
Affiliation(s)
- Xiang Zhu
- Department of Endocrinology, the First Medical Center of PLA General Hospital, Beijing, China.,Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Chunyuan Xue
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Xiaofeng Kang
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Xiaomeng Jia
- Department of Endocrinology, the First Medical Center of PLA General Hospital, Beijing, China
| | - Lin Wang
- Department of Endocrinology, the First Medical Center of PLA General Hospital, Beijing, China
| | - Muhsin H Younis
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Donghui Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Nan Huo
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Yuchen Han
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Zhao Chen
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Jing Fu
- Department of Pathology, Beijing Haidian Hospital, Beijing, China
| | - Chunyu Zhou
- Department of Pathology, Beijing Haidian Hospital, Beijing, China
| | - Xiaoxiang Yao
- Department of Pathology, Beijing Haidian Hospital, Beijing, China
| | - Yimeng Du
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Lei Kang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Zhaohui Lyu
- Department of Endocrinology, the First Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
5
|
Darbre PD. Endocrine disrupting chemicals and breast cancer cells. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2021; 92:485-520. [PMID: 34452695 DOI: 10.1016/bs.apha.2021.04.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Many hundreds of endocrine disrupting chemicals (EDCs) have been measured as entering human breast tissue from a range of environmental sources, and this review focuses on discussion of mechanisms by which such EDCs may be contributing to the globally rising incidence of breast cancer. Many of the distinguishing features of breast cancer may be accounted for by EDC exposure, including, but not limited to, the fact that many EDCs possess estrogenic activity and exposure to estrogen is a main risk factor for breast cancer. Studies of the actions of EDCs in human breast cancer cells are aided by use of the conceptual framework of the hallmarks of cancer, and, acting by a variety of genomic and nongenomic mechanisms, EDCs have now been shown to enable all the hallmarks of cancer to develop in human breast cancer cells. Many studies report that hallmarks can develop at concentrations which are within the range of those measured in human breast tissues, especially when added as mixtures. The varied levels of different EDCs measured in individual breast tissue samples together with the overlapping and complementary mechanisms of action of the EDCs imply that thematic mechanisms will be driven inevitably by different chemical mixtures. Despite the complexity, EDCs do need to now be acknowledged as a risk factor for breast cancer in order for preventative strategies to include reduction in EDC exposure.
Collapse
Affiliation(s)
- Philippa D Darbre
- School of Biological Sciences, University of Reading, Reading, United Kingdom.
| |
Collapse
|
6
|
Turnham DJ, Yang WW, Davies J, Varnava A, Ridley AJ, Conlan RS, Clarkson RWE. Bcl-3 promotes multi-modal tumour cell migration via NF-κB1 mediated regulation of Cdc42. Carcinogenesis 2021; 41:1432-1443. [PMID: 31957805 DOI: 10.1093/carcin/bgaa005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 11/21/2019] [Accepted: 01/15/2020] [Indexed: 12/21/2022] Open
Abstract
A key challenge in the implementation of anti-metastatics as cancer therapies is the multi-modal nature of cell migration, which allows tumour cells to evade the targeted inhibition of specific cell motility pathways. The nuclear factor-kappaB (NF-κB) co-factor B-cell lymphoma 3 (Bcl-3) has been implicated in breast cancer cell migration and metastasis, yet it remains to be determined exactly which cell motility pathways are controlled by Bcl-3 and whether migrating tumour cells are able to evade Bcl-3 intervention. Addressing these questions and the mechanism underpinning Bcl-3's role in this process would help determine its potential as a therapeutic target. Here we identify Bcl-3 as an upstream regulator of the two principal forms of breast cancer cell motility, involving collective and single-cell migration. This was found to be mediated by the master regulator Cdc42 through binding of the NF-κB transcription factor p50 to the Cdc42 promoter. Notably, Bcl-3 depletion inhibited both stable and transitory motility phenotypes in breast cancer cells with no evidence of migratory adaptation. Overexpression of Bcl-3 enhanced migration and increased metastatic tumour burden of breast cancer cells in vivo, whereas overexpression of a mutant Bcl-3 protein, which is unable to bind p50, suppressed cell migration and metastatic tumour burden suggesting that disruption of Bcl-3/NF-κB complexes is sufficient to inhibit metastasis. These findings identify a novel role for Bcl-3 in intrinsic and adaptive multi-modal cell migration mediated by its direct regulation of the Rho GTPase Cdc42 and identify the upstream Bcl-3:p50 transcription complex as a potential therapeutic target for metastatic disease.
Collapse
Affiliation(s)
- Daniel J Turnham
- European Cancer Stem Cell Research Institute, School of Bioscience, Cardiff University, Cardiff, UK
| | - William W Yang
- Department of Pathology, UCL Cancer Institute, University College London, London, UK
| | - Julia Davies
- Swansea University Medical School, Singleton Park, Swansea, UK
| | - Athina Varnava
- European Cancer Stem Cell Research Institute, School of Bioscience, Cardiff University, Cardiff, UK
| | - Anne J Ridley
- School of Cellular and Molecular Medicine, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, UK
| | - R Steven Conlan
- Swansea University Medical School, Singleton Park, Swansea, UK
| | - Richard W E Clarkson
- European Cancer Stem Cell Research Institute, School of Bioscience, Cardiff University, Cardiff, UK
| |
Collapse
|
7
|
Zbiral B, Weber A, Iturri J, Vivanco MDM, Toca-Herrera JL. Estrogen Modulates Epithelial Breast Cancer Cell Mechanics and Cell-to-Cell Contacts. MATERIALS 2021; 14:ma14112897. [PMID: 34071397 PMCID: PMC8198807 DOI: 10.3390/ma14112897] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 01/04/2023]
Abstract
Excessive estrogen exposure is connected with increased risk of breast cancer and has been shown to promote epithelial-mesenchymal-transition. Malignant cancer cells accumulate changes in cell mechanical and biochemical properties, often leading to cell softening. In this work we have employed atomic force microscopy to probe the influence of estrogen on the viscoelastic properties of MCF-7 breast cancer cells cultured either in normal or hormone free-medium. Estrogen led to a significant softening of the cells in all studied cases, while growing cells in hormone free medium led to an increase in the studied elastic and viscoelastic moduli. In addition, fluorescence microscopy shows that E-cadherin distribution is changed in cells when culturing them under estrogenic conditions. Furthermore, cell-cell contacts seemed to be weakened. These results were supported by AFM imaging showing changes in surfaces roughness, cell-cell contacts and cell height as result of estrogen treatment. This study therefore provides further evidence for the role of estrogen signaling in breast cancer.
Collapse
Affiliation(s)
- Barbara Zbiral
- Institute for Biophysics, Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria; (B.Z.); (J.I.)
| | - Andreas Weber
- Institute for Biophysics, Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria; (B.Z.); (J.I.)
- Correspondence: (A.W.); (J.L.T.-H.)
| | - Jagoba Iturri
- Institute for Biophysics, Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria; (B.Z.); (J.I.)
| | - Maria d. M. Vivanco
- CIC bioGUNE, Basque Research and Technology Alliance, BRTA, Bizkaia Technology Park, 48160 Derio, Spain;
| | - José L. Toca-Herrera
- Institute for Biophysics, Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria; (B.Z.); (J.I.)
- Correspondence: (A.W.); (J.L.T.-H.)
| |
Collapse
|
8
|
Farasani A, Darbre PD. Long-term exposure to triclosan increases migration and invasion of human breast epithelial cells in vitro. J Appl Toxicol 2020; 41:1115-1126. [PMID: 33171535 PMCID: PMC8246770 DOI: 10.1002/jat.4097] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/15/2020] [Accepted: 10/15/2020] [Indexed: 01/30/2023]
Abstract
Extensive use of triclosan (2,4,4'-trichloro-2'-hydroxydiphenyl ether) as an antimicrobial agent in household and personal care products has resulted in global exposure of the human population. Its presence in human tissues, including milk, and its oestrogen-disrupting properties raise concerns for an involvement in breast cancer. Because metastatic tumour spread is the main cause of breast cancer mortality, we have investigated the effects of triclosan on cell migration and invasion using three human breast epithelial cell lines and using concentrations comparable with those in human tissues. Long-term exposure to 10-7 M of triclosan resulted in increased migration and invasion as measured by xCELLigence technology for all three cell lines, for the immortalized but nontransformed MCF-10F breast epithelial cells (after 28 weeks), the oestrogen-responsive MCF-7 breast cancer cells (after 17 weeks) and the oestrogen-unresponsive MDA-MB-231 breast cancer cells (after 20 weeks). The effects were therefore not limited to cancerous cells or to oestrogen-responsive cells. This was paralleled in the MCF-10F and MCF-7 (but not MDA-MB-231) cells by a reduction in levels of E-cadherin mRNA as measured by reverse transcription-polymerase chain reaction (RT-PCR) and of E-cadherin protein as measured by western immunoblotting, suggesting a mechanism involving epithelial-to-mesenchymal transition. This adds triclosan to the increasing list of ingredients of personal care products that can not only enter human breast tissue and increase cell proliferation but also influence cell motility. If mixtures of components in household and personal care products contribute to increasing cell migration and invasion, then reduction in exposure could offer a strategy for reducing breast cancer spread.
Collapse
Affiliation(s)
- Abdullah Farasani
- Biomedical Research Unit, Medical Research Centre, and Department of Medical Laboratory Technology, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | | |
Collapse
|
9
|
Eslami Amirabadi H, Tuerlings M, Hollestelle A, SahebAli S, Luttge R, van Donkelaar CC, Martens JWM, den Toonder JMJ. Characterizing the invasion of different breast cancer cell lines with distinct E-cadherin status in 3D using a microfluidic system. Biomed Microdevices 2019; 21:101. [PMID: 31760501 PMCID: PMC6875428 DOI: 10.1007/s10544-019-0450-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
E-cadherin is a cell-cell adhesion protein that plays a prominent role in cancer invasion. Inactivation of E-cadherin in breast cancer can arise from gene promoter hypermethylation or genetic mutation. Depending on their E-cadherin status, breast cancer cells adopt different morphologies with distinct invasion modes. The tumor microenvironment (TME) can also affect the cell morphology and invasion mode. In this paper, we used a previously developed microfluidic system to quantify the three-dimensional invasion of breast cancer cells with different E-cadherin status, namely MCF-7, CAMA-1 and MDA-MB-231 with wild type, mutated and promoter hypermethylated E-cadherin, respectively. The cells migrated into a stable and reproducible microfibrous polycaprolactone mesh in the chip under a programmed stable chemotactic gradient. We observed that the MDA-MB-231 cells invaded the most, as single cells. MCF-7 cells collectively invaded into the matrix more than CAMA-1 cells, maintaining their E-cadherin expression. The CAMA-1 cells exhibited multicellular multifocal infiltration into the matrix. These results are consistent with what is seen in vivo in the cancer biology literature. In addition, comparison between complete serum and serum gradient conditions showed that the MDA-MB-231 cells invaded more under the serum gradient after one day, however this behavior was inverted after 3 days. The results showcase that the microfluidic system can be used to quantitatively assess the invasion behavior of cancer cells with different E-cadherin expression, for a longer period than conventional invasion models. In the future, it can be used to quantitatively investigate effects of matrix structure and cell treatments on cancer invasion.
Collapse
Affiliation(s)
- H Eslami Amirabadi
- Microsystems group, Department of Mechanical Engineering and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Groene Loper 15, 5612AZ, Eindhoven, the Netherlands
- Healthy living division, TNO, Zeist, the Netherlands
- Institute for Pharmeceutical Sciences, Department of Pharmacology, Utrecht University, Utrecht, the Netherlands
| | - M Tuerlings
- Microsystems group, Department of Mechanical Engineering and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Groene Loper 15, 5612AZ, Eindhoven, the Netherlands
- Orthopaedic Biomechanics group, Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Groene Loper 15, 5612AZ, Eindhoven, the Netherlands
| | - A Hollestelle
- Department of Medical oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - S SahebAli
- Microsystems group, Department of Mechanical Engineering and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Groene Loper 15, 5612AZ, Eindhoven, the Netherlands
| | - R Luttge
- Microsystems group, Department of Mechanical Engineering and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Groene Loper 15, 5612AZ, Eindhoven, the Netherlands
| | - C C van Donkelaar
- Orthopaedic Biomechanics group, Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Groene Loper 15, 5612AZ, Eindhoven, the Netherlands
| | - J W M Martens
- Department of Medical oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - J M J den Toonder
- Microsystems group, Department of Mechanical Engineering and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Groene Loper 15, 5612AZ, Eindhoven, the Netherlands.
| |
Collapse
|
10
|
Upmanyu N, Bulldan A, Failing K, Scheiner-Bobis G. DHEAS prevents pro-metastatic and proliferative effects of 17ß-estradiol on MCF-7 breast cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1867:118600. [PMID: 31760088 DOI: 10.1016/j.bbamcr.2019.118600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/14/2019] [Accepted: 11/04/2019] [Indexed: 12/11/2022]
Abstract
It is generally assumed that circulating dehydroepiandrosterone sulfate (DHEAS) can be desulfated and further metabolized to estrogen, which is of concern for all patients with estrogen-responsive breast cancer. We addressed this issue by comparing the effects of DHEAS, its desulfated form DHEA, and 17ß-estradiol on human metastatic, estrogen-responsive MCF-7 breast cancer cells. Physiological concentrations of DHEAS promoted phosphorylation of Erk1/2, whereas DHEA and 17ß-estradiol failed to stimulate Erk1/2 phosphorylation, indicating that the sulfated steroid acts as an autonomous hormone. Exposure of MCF-7 cells to 17ß-estradiol stimulated cell proliferation and the expression of pro-metastatic and pro-invasive elements such as claudin-1, matrix metalloproteinase 9 (MMP9), and the CC chemokine ligand 2 (CCL2). In contrast, treatment with DHEAS did not stimulate these responses but prevented all of the actions of 17ß-estradiol, and as a consequence cell migration and invasion were completely inhibited. The results of this study not only challenge the assumption that DHEAS poses a danger as an endogenous source of estrogen, they rather favor the idea that keeping DHEAS levels within a physiological range might be supportive in treating estrogen-responsive breast cancer.
Collapse
Affiliation(s)
- Neha Upmanyu
- Institute for Veterinary-Physiology and -Biochemistry, Justus-Liebig-University, Giessen, Germany
| | - Ahmed Bulldan
- Institute for Veterinary-Physiology and -Biochemistry, Justus-Liebig-University, Giessen, Germany
| | - Klaus Failing
- Biomathematics and Data Processing, School of Veterinary Medicine, Justus-Liebig-University, Giessen, Germany
| | - Georgios Scheiner-Bobis
- Institute for Veterinary-Physiology and -Biochemistry, Justus-Liebig-University, Giessen, Germany.
| |
Collapse
|
11
|
Kumar A, Manjegowda MC, John Mary DJS, Pal U, Kumar S, Limaye AM. Estrogen receptor‑α is a determinant of protocadherin‑8 expression in breast cancer cells. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2018.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
12
|
Upmanyu N, Bulldan A, Papadopoulos D, Dietze R, Malviya VN, Scheiner-Bobis G. Impairment of the Gnα11-controlled expression of claudin-1 and MMP-9 and collective migration of human breast cancer MCF-7 cells by DHEAS. J Steroid Biochem Mol Biol 2018; 182:50-61. [PMID: 29684479 DOI: 10.1016/j.jsbmb.2018.04.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/22/2018] [Accepted: 04/17/2018] [Indexed: 11/21/2022]
Abstract
Although dehydroepiandrosterone sulfate (DHEAS) constitutes the most abundant steroid in humans, in-depth investigations of its effects are rather scarce. We address here DHEAS effects on the estrogen receptor-positive metastatic human breast cancer cell line MCF-7. We focus on DHEAS-mediated signaling that might influence expression of claudin-1 and matrix metalloproteinase-9 (MMP-9), both known to be critical factors for migration and invasiveness of various cancers, including breast cancer cells. Physiological concentrations of DHEAS trigger persistent phosphorylation of Erk1/2 in MCF-7 cells. Exposure of these cells for 24 h to 1 μM DHEAS also leads to a significant reduction of claudin-1 expression that cannot be prevented by high concentrations of the steroid sulfatase inhibitor STX64, indicating that desulfation and further conversion of DHEAS to some other steroid hormone is not required for this action. In addition, exposure of MCF-7 cells to the same concentration of DHEAS completely abolishes MMP-9 expression and considerably impairs cell migratory behavior. Abrogation of Gnα11 expression by siRNA prevents the stimulatory effect of DHEAS on Erk1/2 phosphorylation, consistent with a G-protein-coupled receptor being involved in the DHEAS-induced signaling. Nevertheless, Gnα11 also has direct effects that do not depend on DHEAS; thus, when Gnα11 expression is suppressed, expression of claudin-1 and MMP-9 as well as cell migration are significantly reduced. This is the first report demonstrating direct involvement of DHEAS and Gnα11 in the regulation of claudin-1 and MMP-9 expression and migration of MCF-7 cells.
Collapse
Affiliation(s)
- Neha Upmanyu
- Institute for Veterinary-Physiology and -Biochemistry, School of Veterinary Medicine, Justus-Liebig-University, Giessen, Germany
| | - Ahmed Bulldan
- Institute for Veterinary-Physiology and -Biochemistry, School of Veterinary Medicine, Justus-Liebig-University, Giessen, Germany
| | - Dimitrios Papadopoulos
- Institute for Veterinary-Physiology and -Biochemistry, School of Veterinary Medicine, Justus-Liebig-University, Giessen, Germany
| | - Raimund Dietze
- Department of Obstetrics and Gynecology, Faculty of Medicine, Justus-Liebig-University, Giessen, Germany
| | | | - Georgios Scheiner-Bobis
- Institute for Veterinary-Physiology and -Biochemistry, School of Veterinary Medicine, Justus-Liebig-University, Giessen, Germany.
| |
Collapse
|
13
|
Smith LC, Moreno S, Robertson L, Robinson S, Gant K, Bryant AJ, Sabo-Attwood T. Transforming growth factor beta1 targets estrogen receptor signaling in bronchial epithelial cells. Respir Res 2018; 19:160. [PMID: 30165855 PMCID: PMC6117929 DOI: 10.1186/s12931-018-0861-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 08/13/2018] [Indexed: 02/08/2023] Open
Abstract
Background Sex differences in idiopathic pulmonary fibrosis (IPF) suggest a protective role for estrogen (E2); however, mechanistic studies in animal models have produced mixed results. Reports using cell lines have investigated molecular interactions between transforming growth factor beta1 (TGF-β1) and estrogen receptor (ESR) pathways in breast, prostate, and skin cells, but no such interactions have been described in human lung cells. To address this gap in the literature, we investigated a role for E2 in modulating TGF-β1-induced signaling mechanisms and identified novel pathways impacted by estrogen in bronchial epithelial cells. Methods We investigated a role for E2 in modulating TGF-β1-induced epithelial to mesenchymal transition (EMT) in bronchial epithelial cells (BEAS-2Bs) and characterized the effect of TGF-β1 on ESR mRNA and protein expression in BEAS-2Bs. We also quantified mRNA expression of ESRs in lung tissue from individuals with IPF and identified potential downstream targets of E2 signaling in BEAS-2Bs using RNA-Seq and gene set enrichment analysis. Results E2 negligibly modulated TGF-β1-induced EMT; however, we report the novel observation that TGF-β1 repressed ESR expression, most notably estrogen receptor alpha (ESR1). Results of the RNA-Seq analysis showed that TGF-β1 and E2 inversely modulated the expression of several genes involved in processes such as extracellular matrix (ECM) turnover, airway smooth muscle cell contraction, and calcium flux regulation. We also report that E2 specifically modulated the expression of genes involved in chromatin remodeling pathways and that this regulation was absent in the presence of TGF-β1. Conclusions Collectively, these results suggest that E2 influences unexplored pathways that may be relevant to pulmonary disease and highlights potential roles for E2 in the lung that may contribute to sex-specific differences. Electronic supplementary material The online version of this article (10.1186/s12931-018-0861-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- L Cody Smith
- Department of Physiological Sciences, University of Florida, Gainesville, FL, USA.,Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, USA
| | - Santiago Moreno
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, USA
| | - Lauren Robertson
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, USA.,Department of Environmental and Global Health, Center for Environmental and Human Toxicology, University of Florida, Box 110885, 2187 Mowry Rd, Gainesville, FL, 32611, USA
| | - Sarah Robinson
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, USA.,Department of Environmental and Global Health, Center for Environmental and Human Toxicology, University of Florida, Box 110885, 2187 Mowry Rd, Gainesville, FL, 32611, USA
| | - Kristal Gant
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, USA.,Department of Environmental and Global Health, Center for Environmental and Human Toxicology, University of Florida, Box 110885, 2187 Mowry Rd, Gainesville, FL, 32611, USA
| | - Andrew J Bryant
- Department of Medicine, University of Florida, Gainesville, FL, USA
| | - Tara Sabo-Attwood
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, USA. .,Department of Environmental and Global Health, Center for Environmental and Human Toxicology, University of Florida, Box 110885, 2187 Mowry Rd, Gainesville, FL, 32611, USA.
| |
Collapse
|
14
|
Wang C, Bai F, Zhang LH, Scott A, Li E, Pei XH. Estrogen promotes estrogen receptor negative BRCA1-deficient tumor initiation and progression. Breast Cancer Res 2018; 20:74. [PMID: 29996906 PMCID: PMC6042319 DOI: 10.1186/s13058-018-0996-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 05/30/2018] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Estrogen promotes breast cancer development and progression mainly through estrogen receptor (ER). However, blockage of estrogen production or action prevents development of and suppresses progression of ER-negative breast cancers. How estrogen promotes ER-negative breast cancer development and progression is poorly understood. We previously discovered that deletion of cell cycle inhibitors p16Ink4a (p16) or p18Ink4c (p18) is required for development of Brca1-deficient basal-like mammary tumors, and that mice lacking p18 develop luminal-type mammary tumors. METHODS A genetic model system with three mouse strains, one that develops ER-positive mammary tumors (p18 single deletion) and the others that develop ER-negative tumors (p16;Brca1 and p18;Brca1 compound deletion), human BRCA1 mutant breast cancer patient-derived xenografts, and human BRCA1-deficient and BRCA1-proficient breast cancer cells were used to determine the role of estrogen in activating epithelial-mesenchymal transition (EMT), stimulating cell proliferation, and promoting ER-negative mammary tumor initiation and metastasis. RESULTS Estrogen stimulated the proliferation and tumor-initiating potential of both ER-positive Brca1-proficient and ER-negative Brca1-deficient tumor cells. Estrogen activated EMT in a subset of Brca1-deficient mammary tumor cells that maintained epithelial features, and enhanced the number of cancer stem cells, promoting tumor progression and metastasis. Estrogen activated EMT independent of ER in Brca1-deficient, but not Brca1-proficient, tumor cells. Estrogen activated the AKT pathway in BRCA1-deficient tumor cells independent of ER, and pharmaceutical inhibition of AKT activity suppressed EMT and cell proliferation preventing BRCA1 deficient tumor progression. CONCLUSIONS This study reveals for the first time that estrogen promotes BRCA1-deficient tumor initiation and progression by stimulation of cell proliferation and activation of EMT, which are dependent on AKT activation and independent of ER.
Collapse
Affiliation(s)
- Chuying Wang
- Department of Medical Oncology, The First Affiliated hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061 People’s Republic of China
- Molecular Oncology Program, Division of Surgical Oncology, Dewitt Daughtry Family Department of Surgery, University of Miami, Miami, FL 33136 USA
| | - Feng Bai
- Molecular Oncology Program, Division of Surgical Oncology, Dewitt Daughtry Family Department of Surgery, University of Miami, Miami, FL 33136 USA
| | - Li-han Zhang
- Molecular Oncology Program, Division of Surgical Oncology, Dewitt Daughtry Family Department of Surgery, University of Miami, Miami, FL 33136 USA
| | - Alexandria Scott
- Molecular Oncology Program, Division of Surgical Oncology, Dewitt Daughtry Family Department of Surgery, University of Miami, Miami, FL 33136 USA
| | - Enxiao Li
- Department of Medical Oncology, The First Affiliated hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061 People’s Republic of China
| | - Xin-Hai Pei
- Molecular Oncology Program, Division of Surgical Oncology, Dewitt Daughtry Family Department of Surgery, University of Miami, Miami, FL 33136 USA
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136 USA
| |
Collapse
|
15
|
Pirsko V, Cakstina I, Priedite M, Dortane R, Feldmane L, Nakazawa-Miklasevica M, Daneberga Z, Gardovskis J, Miklasevics E. An Effect of Culture Media on Epithelial Differentiation Markers in Breast Cancer Cell Lines MCF7, MDA-MB-436 and SkBr3. MEDICINA (KAUNAS, LITHUANIA) 2018; 54:E11. [PMID: 30344242 PMCID: PMC6037242 DOI: 10.3390/medicina54020011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 03/19/2018] [Accepted: 03/27/2018] [Indexed: 12/19/2022]
Abstract
Background and objectives: Cell culture is one of the mainstays in the research of breast cancer biology, although the extent to which this approach allows to preserve the original characteristics of originating tumor and implications of cell culture findings to real life situations have been widely debated in the literature. The aim of this study was to determine the role of three cell culture media on transcriptional expression of breast cancer markers in three breast cancer reference cell lines (MCF7, SkBr3 and MDA-MB-436). Materials and methods: Cell lines were conditioned in three studied media (all containing 5% fetal bovine serum (FBS) + hormones/growth factors; different composition of basal media) for four passages. Population growth was characterized by cumulative population doubling levels, average generation time, cell yield and viability at the fourth passage. Transcriptional expression of breast cancer differentiation markers and regulatory transcriptional programs was measured by qPCR. Results: Differences in the composition of growth media significantly influenced the growth of studied cell lines and the expression of mammary lineage governing transcriptional programs and luminal/basal markers. Effects of media on transcriptional expression were more pronounced in luminal cell lines (MCF7, SkBr3), than in the basal cell line (MDA-MB-436). Changes in growth media in terms of supplementation and basal medium delayed growth of cells, but improved cell yields. Conclusions: The expression of breast cancer cell differentiation phenotypic markers depends on the composition of cell growth medium, therefore cell culture as a tool in phenotypic studies should be used considering this effect. The findings of such studies should always be interpreted with caution. The formulation of cell growth media has greater effect on the expression of phenotypic markers in luminal, rather than basal cell lines. Media containing mitogens and higher vitamin content improved efficacy of cell culture in terms of cell yields, although greatly increased growth times.
Collapse
Affiliation(s)
- Valdis Pirsko
- Institute of Oncology, Riga Stradins University, LV1086 Riga, Latvia.
| | - Inese Cakstina
- Institute of Oncology, Riga Stradins University, LV1086 Riga, Latvia.
| | - Marta Priedite
- Institute of Oncology, Riga Stradins University, LV1086 Riga, Latvia.
| | - Rasma Dortane
- Institute of Oncology, Riga Stradins University, LV1086 Riga, Latvia.
| | - Linda Feldmane
- Institute of Oncology, Riga Stradins University, LV1086 Riga, Latvia.
| | | | - Zanda Daneberga
- Institute of Oncology, Riga Stradins University, LV1086 Riga, Latvia.
| | - Janis Gardovskis
- Institute of Oncology, Riga Stradins University, LV1086 Riga, Latvia.
| | | |
Collapse
|
16
|
Vora HH, Patel NA, Rajvik KN, Mehta SV, Brahmbhatt BV, Shah MJ, Shukla SN, Shah PM. Cytokeratin and Vimentin Expression in Breast Cancer. Int J Biol Markers 2018; 24:38-46. [DOI: 10.1177/172460080902400106] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background The transition from epithelial keratin to mesenchymal vimentin expression marks an important step in the malignant progression of breast cancer. This study analyzed the clinical significance of cytokeratin and vimentin in patients with breast cancer. Materials and methods Expression of cytokeratin and vimentin was evaluated by immunohistochemistry on paraffin-embedded tissue sections of patients with breast cancer. Results Loss of cytokeratin was seen in 11% of the patients. A clearer trend towards loss of cytokeratin was observed in patients with stage IV disease and PR negativity. Weak cytokeratin expression was present in patients who developed recurrence or metastatic disease. Loss of cytokeratin was associated with reduced overall survival in univariate and multi-variate analysis, gain of vimentin expression was seen in 57% of breast carcinoma patients. It was higher in patients with lymph node positivity, advanced stage, HER2 positivity, and disease recurrence or metastasis. Multivariate survival analysis indicated that gain of vimentin expression was associated with reduced relapse-free survival. Conclusion Loss of cytokeratin and gain of vimentin expression are indicators of biologically aggressive breast carcinoma.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Pankaj M. Shah
- Honorary Director, The Gujarat Cancer and Research Institute, Asarwa, Ahmedabad - India
| |
Collapse
|
17
|
Zhang S, Wu T, Peng X, Liu J, Liu F, Wu S, Liu S, Dong Y, Xie S, Ma S. Mesenchymal phenotype of circulating tumor cells is associated with distant metastasis in breast cancer patients. Cancer Manag Res 2017; 9:691-700. [PMID: 29200889 PMCID: PMC5703158 DOI: 10.2147/cmar.s149801] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In this study, we investigated the relationship between the epithelial–mesenchymal transition phenotype of circulating tumor cells (CTCs) and distant metastasis in breast cancer patients. We analyzed the expression of epithelial (epithelial cell adhesion molecule, cytokeratin [CK]8, CK18 and CK19) and mesenchymal (vimentin and TWIST1) markers in CTCs from a large cohort of Chinese breast cancer patients (N=1083) using Canpatrol™ CTC assays. We identified CTCs in 84.9% (920/1083) of the breast cancer patients enrolled in this study. Among these 920 patients, 547 showed epithelial CTCs, 793 showed biphenotypic CTCs and 516 showed mesenchymal CTCs. Receiver operating characteristic (ROC) curves demonstrated circulation of both biphenotypic and mesenchymal CTCs (area under ROC curve value: 0.728; sensitivity: 68.7% and specificity: 71.6%) in patients was associated with distant metastasis. These findings demonstrate that the epithelial–mesenchymal transition phenotype of CTCs is a potential biomarker predictive of distant metastasis in breast cancer.
Collapse
Affiliation(s)
- Shirong Zhang
- Translational Medicine Research Center, Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, China
| | - Tiecheng Wu
- Department of Oncology, PKUCare Luzhong Hospital, Zibo, China
| | - Xinguo Peng
- Department of Laboratory, Binzhou Medical University Hospital, Binzhou, China
| | - Jian Liu
- Department of Breast Surgery, Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, China
| | - Fang Liu
- SurExam Bio-Tech Co., Guangzhou, China
| | | | - Suyan Liu
- SurExam Bio-Tech Co., Guangzhou, China
| | - Yan Dong
- SurExam Bio-Tech Co., Guangzhou, China
| | - Shujun Xie
- Translational Medicine Research Center, Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, China
| | - Shenglin Ma
- Department of Oncology, Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, China
| |
Collapse
|
18
|
Alamer M, Darbre PD. Effects of exposure to six chemical ultraviolet filters commonly used in personal care products on motility of MCF-7 and MDA-MB-231 human breast cancer cells in vitro. J Appl Toxicol 2017; 38:148-159. [PMID: 28990245 DOI: 10.1002/jat.3525] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 08/17/2017] [Accepted: 08/17/2017] [Indexed: 12/15/2022]
Abstract
Benzophenone (BP)-1, BP-2, BP-3, octylmethoxycinnamate (OMC), 4-methylbenzilidenecamphor and homosalate are added to personal care products to absorb ultraviolet light. Their presence in human milk and their oestrogenic activity suggests a potential to influence breast cancer development. As metastatic tumour spread is the main cause of breast cancer mortality, we have investigated the effects of these compounds on migration and invasion of human breast cancer cell lines. Increased motility of oestrogen-responsive MCF-7 human breast cancer cells was observed after long-term exposure (>20 weeks) to each of the six compounds at ≥10-7 m concentrations using three independent assay systems (scratch assay, live cell imaging, xCELLigence technology) and increased invasive activity was observed through matrigel using the xCELLigence system. Increased motility of oestrogen-unresponsive MDA-MB-231 human breast cancer cells was observed after 15 weeks of exposure to each of the six compounds by live cell imaging and xCELLigence technology, implying the increased migratory activity was not confined to oestrogen-responsive cells. Molecular mechanisms varied between compounds and cell lines. Using MCF-7 cells, reduction in E-cadherin was observed following 24 weeks' exposure to 10-5 m BP-1 and 10-5 m homosalate, and reduction in β-catenin was noted following 24 weeks' exposure to 10-5 m OMC. Using MDA-MB-231 cells, increased levels of matrix metalloproteinase 2 were observed after 15 weeks exposure to 10-7 m OMC and 10-7 m 4-methylbenzilidenecamphor. Although molecular mechanisms differ, these results demonstrate that exposure to any of these six compounds can increase migration and invasion of human breast cancer cells.
Collapse
Affiliation(s)
- Maha Alamer
- School of Biological Sciences, University of Reading, Reading, RG6 6UB, UK
| | - Philippa D Darbre
- School of Biological Sciences, University of Reading, Reading, RG6 6UB, UK
| |
Collapse
|
19
|
Shin S, Im HJ, Kwon YJ, Ye DJ, Baek HS, Kim D, Choi HK, Chun YJ. Human steroid sulfatase induces Wnt/β-catenin signaling and epithelial-mesenchymal transition by upregulating Twist1 and HIF-1α in human prostate and cervical cancer cells. Oncotarget 2017; 8:61604-61617. [PMID: 28977889 PMCID: PMC5617449 DOI: 10.18632/oncotarget.18645] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 05/22/2017] [Indexed: 12/15/2022] Open
Abstract
Steroid sulfatase (STS) catalyzes the hydrolysis of estrone sulfate and dehydroepiandrosterone sulfate (DHEAS) to their unconjugated biologically active forms. Although STS is considered a therapeutic target for estrogen-dependent diseases, the cellular functions of STS remain unclear. We found that STS induces Wnt/β-catenin s Delete ignaling in PC-3 and HeLa cells. STS increases levels of β-catenin, phospho-β-catenin, and phospho-GSK3β. Enhanced translocation of β-catenin to the nucleus by STS might activate transcription of target genes such as cyclin D1, c-myc, and MMP-7. STS knockdown by siRNA resulted in downregulation of Wnt/β-catenin signaling. β-Catenin/TCF-mediated transcription was also enhanced by STS. STS induced an epithelial-mesenchymal transition (EMT) as it reduced the levels of E-cadherin, whereas levels of mesenchymal markers such as N-cadherin and vimentin were enhanced. We found that STS induced Twist1 expression through HIFα activation as HIF-1α knockdown significantly blocks the ability of STS to induce Twist1 transcription. Furthermore, DHEA, but not DHEAS is capable of inducing Twist1. Treatment with a STS inhibitor prevented STS-mediated Wnt/β-catenin signaling and Twist1 expression. Interestingly, cancer cell migration, invasion, and MMPs expression induced by STS were also inhibited by a STS inhibitor. Taken together, these results suggest that STS induces Wnt/β-catenin signaling and EMT by upregulating Twist1 and HIF-1α. The ability of STS to induce the Wnt/β-catenin signaling and EMT has profound implications on estrogen-mediated carcinogenesis in human cancer cells.
Collapse
Affiliation(s)
- Sangyun Shin
- College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hee-Jung Im
- College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Yeo-Jung Kwon
- College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Dong-Jin Ye
- College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hyoung-Seok Baek
- College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Donghak Kim
- Department of Biological Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyung-Kyoon Choi
- College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Young-Jin Chun
- College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
20
|
Belkaid A, Ouellette RJ, Surette ME. 17β-estradiol-induced ACSL4 protein expression promotes an invasive phenotype in estrogen receptor positive mammary carcinoma cells. Carcinogenesis 2017; 38:402-410. [PMID: 28334272 DOI: 10.1093/carcin/bgx020] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 02/20/2017] [Indexed: 12/16/2022] Open
Abstract
Long chain acyl-CoA synthase-4 (ACSL4) expression has been associated with an aggressive phenotype in breast carcinoma cells, whereas its role in ERα-positive breast cancer has not been studied. ACSL4 prefers 20-carbon polyunsaturated fatty acid (PUFA) substrates, and along with other ACSLs has been associated with cellular uptake of exogenous fatty acids. 17β-estradiol induces proliferation and invasive capacities in ERα+ve breast carcinoma that is associated with modifications of cellular lipid metabolism. In this study, treatment of steroid-starved ERα-positive MCF-7 and T47D mammary carcinoma cells with 17β-estradiol resulted in increased cellular uptake of the PUFA arachidonic acid (AA) and eicosapentaenoic acid (EPA), important building blocks for cellular membranes, and increased ACSL4 protein levels. There was no change in the expression of the ACSL1, ACSL3 and ACSL6 protein isotypes. Increased ACSL4 protein expression was not accompanied by changes in ACSL4 mRNA expression, but was associated with a significant increase in the protein half-life compared to untreated cells. ERα silencing reversed the impact of 17β-estradiol on ACSL4 protein levels and half-life. Silencing of ACSL4 eliminated the 17β-estradiol-induced increase in AA and EPA uptake, as well as the 17β-estradiol-induced cell migration, proliferation and invasion capacities. ASCL4 silencing also prevented the 17β-estradiol induced increases in p-Akt and p-GSK3β, and decrease in E-cadherin expression, important events in epithelial to mesenchymal transition. Taken together, these results demonstrate that ACSL4 is a target of 17β-estradiol-stimulated ERα and is required for the cellular uptake of exogenous PUFA and the manifestation of a more malignant phenotype in ERα+ve breast carcinoma cells.
Collapse
Affiliation(s)
- Anissa Belkaid
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB E1A 3E9, Canada and.,Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| | | | - Marc E Surette
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB E1A 3E9, Canada and
| |
Collapse
|
21
|
Janani G, Pillai MM, Selvakumar R, Bhattacharyya A, Sabarinath C. An
in vitro
3D model using collagen coated gelatin nanofibers for studying breast cancer metastasis. Biofabrication 2017; 9:015016. [DOI: 10.1088/1758-5090/aa5510] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
22
|
Son HK, Park I, Kim JY, Kim DK, Illeperuma RP, Bae JY, Lee DY, Oh ES, Jung DW, Williams DR, Kim J. A distinct role for interleukin-6 as a major mediator of cellular adjustment to an altered culture condition. J Cell Biochem 2016; 116:2552-62. [PMID: 25939389 PMCID: PMC4832257 DOI: 10.1002/jcb.25200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 04/14/2015] [Accepted: 04/14/2015] [Indexed: 12/22/2022]
Abstract
Tissue microenvironment adjusts biological properties of different cells by modulating signaling pathways and cell to cell interactions. This study showed that epithelial–mesenchymal transition (EMT)/ mesenchymal–epithelial transition (MET) can be modulated by altering culture conditions. HPV E6/E7‐transfected immortalized oral keratinocytes (IHOK) cultured in different media displayed reversible EMT/MET accompanied by changes in cell phenotype, proliferation, gene expression at transcriptional, and translational level, and migratory and invasive activities. Cholera toxin, a major supplement to culture medium, was responsible for inducing the morphological and biological changes of IHOK. Cholera toxin per se induced EMT by triggering the secretion of interleukin 6 (IL‐6) from IHOK. We found IL‐6 to be a central molecule that modulates the reversibility of EMT based not only on the mRNA level but also on the level of secretion. Taken together, our results demonstrate that IL‐6, a cytokine whose transcription is activated by alterations in culture conditions, is a key molecule for regulating reversible EMT/MET. This study will contribute to understand one way of cellular adjustment for surviving in unfamiliar conditions. J. Cell. Biochem. 116: 2552–2562, 2015. © 2015 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hwa-Kyung Son
- Department of Dental Hygiene, Division of Health science, Yeungnam University College, Daegu, Korea.,Department of Oral Pathology, Oral Cancer Research Institute, Brain Korea 21 Plus Project, Yonsei University, College of Dentistry, Seoul, Korea
| | - Iha Park
- Chonnam National University Research Institute of Medical Sciences, Gwangju, Korea
| | - Jue Young Kim
- Department of Oral Pathology, Oral Cancer Research Institute, Brain Korea 21 Plus Project, Yonsei University, College of Dentistry, Seoul, Korea
| | - Do Kyeong Kim
- Department of Oral Pathology, Oral Cancer Research Institute, Brain Korea 21 Plus Project, Yonsei University, College of Dentistry, Seoul, Korea
| | - Rasika P Illeperuma
- Department of Medical Laboratory Science, Faculty of Allied Health Sciences, University of Peradeniya, Sri Lanka
| | - Jung Yoon Bae
- Department of Oral Pathology, Oral Cancer Research Institute, Brain Korea 21 Plus Project, Yonsei University, College of Dentistry, Seoul, Korea
| | - Doo Young Lee
- Department of Oral Pathology, Oral Cancer Research Institute, Brain Korea 21 Plus Project, Yonsei University, College of Dentistry, Seoul, Korea
| | - Eun-Sang Oh
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 500-712, Korea
| | - Da-Woon Jung
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 500-712, Korea
| | - Darren R Williams
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 500-712, Korea
| | - Jin Kim
- Department of Oral Pathology, Oral Cancer Research Institute, Brain Korea 21 Plus Project, Yonsei University, College of Dentistry, Seoul, Korea
| |
Collapse
|
23
|
Kim HY, Jackson TR, Davidson LA. On the role of mechanics in driving mesenchymal-to-epithelial transitions. Semin Cell Dev Biol 2016; 67:113-122. [PMID: 27208723 DOI: 10.1016/j.semcdb.2016.05.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 05/12/2016] [Accepted: 05/17/2016] [Indexed: 01/27/2023]
Abstract
The mesenchymal-to-epithelial transition (MET) is an intrinsically mechanical process describing a multi-step progression where autonomous mesenchymal cells gradually become tightly linked, polarized epithelial cells. METs are fundamental to a wide range of biological processes, including the evolution of multicellular organisms, generation of primary and secondary epithelia during development and organogenesis, and the progression of diseases including cancer. In these cases, there is an interplay between the establishment of cell polarity and the mechanics of neighboring cells and microenvironment. In this review, we highlight a spectrum of METs found in normal development as well as in pathological lesions, and provide insight into the critical role mechanics play at each step. We define MET as an independent process, distinct from a reverse-EMT, and propose questions to further explore the cellular and physical mechanisms of MET.
Collapse
Affiliation(s)
- Hye Young Kim
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Timothy R Jackson
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Lance A Davidson
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Developmental Biology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
24
|
Steroid Tumor Environment in Male and Female Mice Model of Canine and Human Inflammatory Breast Cancer. BIOMED RESEARCH INTERNATIONAL 2016; 2016:8909878. [PMID: 27195300 PMCID: PMC4852361 DOI: 10.1155/2016/8909878] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 03/27/2016] [Accepted: 03/31/2016] [Indexed: 01/26/2023]
Abstract
Canine inflammatory mammary cancer (IMC) shares clinical and histopathological characteristics with human inflammatory breast cancer (IBC) and has been proposed as a good model for studying the human disease. The aim of this study was to evaluate the capacity of female and male mice to reproduce IMC and IBC tumors and identify the hormonal tumor environment. To perform the study sixty 6–8-week-old male and female mice were inoculated subcutaneously with a suspension of 106IPC-366 and SUM149 cells. Tumors and serum were collected and used for hormonal analysis. Results revealed that IPC-366 reproduced tumors in 90% of males inoculated after 2 weeks compared with 100% of females that reproduced tumor at the same time. SUM149 reproduced tumors in 40% of males instead of 80% of females that reproduced tumors after 4 weeks. Both cell lines produce distant metastasis in lungs being higher than the metastatic rates in females. EIA analysis revealed that male tumors had higher T and SO4E1 concentrations compared to female tumors. Serum steroid levels were lower than those found in tumors. In conclusion, IBC and IMC male mouse model is useful as a tool for IBC research and those circulating estrogens and intratumoral hormonal levels are crucial in the development and progression of tumors.
Collapse
|
25
|
Vantangoli MM, Wilson S, Madnick SJ, Huse SM, Boekelheide K. Morphologic effects of estrogen stimulation on 3D MCF-7 microtissues. Toxicol Lett 2016; 248:1-8. [PMID: 26921789 DOI: 10.1016/j.toxlet.2016.02.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/29/2016] [Accepted: 02/22/2016] [Indexed: 12/16/2022]
Abstract
In the development of human cell-based assays, 3-dimensional (3D) cell culture models are intriguing as they are able to bridge the gap between animal models and traditional two-dimensional (2D) cell culture. Previous work has demonstrated that MCF-7 human breast carcinoma cells cultured in a 3D scaffold-free culture system self-assemble and develop into differentiated microtissues that possess a luminal space. Exposure to estradiol for 7 days decreased lumen formation in MCF-7 microtissues, altered microtissue morphology and altered expression of genes involved in estrogen signaling, cell adhesion and cell cycle regulation. Exposure to receptor-specific agonists for estrogen receptor alpha, estrogen receptor beta and g-protein coupled estrogen receptor resulted in unique, receptor-specific phenotypes and gene expression signatures. The use of a differentiated scaffold-free 3D culture system offers a unique opportunity to study the phenotypic and molecular changes associated with exposure to estrogenic compounds.
Collapse
Affiliation(s)
- Marguerite M Vantangoli
- Department of Pathology and Laboratory Medicine, 70 Ship Street, Brown University, Providence, RI 02903, USA
| | - Shelby Wilson
- Department of Pathology and Laboratory Medicine, 70 Ship Street, Brown University, Providence, RI 02903, USA
| | - Samantha J Madnick
- Department of Pathology and Laboratory Medicine, 70 Ship Street, Brown University, Providence, RI 02903, USA
| | - Susan M Huse
- Department of Pathology and Laboratory Medicine, 70 Ship Street, Brown University, Providence, RI 02903, USA
| | - Kim Boekelheide
- Department of Pathology and Laboratory Medicine, 70 Ship Street, Brown University, Providence, RI 02903, USA.
| |
Collapse
|
26
|
Estrogen Enhances the Cell Viability and Motility of Breast Cancer Cells through the ERα-ΔNp63-Integrin β4 Signaling Pathway. PLoS One 2016; 11:e0148301. [PMID: 26845172 PMCID: PMC4742232 DOI: 10.1371/journal.pone.0148301] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 01/15/2016] [Indexed: 12/19/2022] Open
Abstract
Estrogen induces ERα-positive breast cancer aggressiveness via the promotion of cell proliferation and survival, the epithelial-mesenchymal transition, and stem-like properties. Integrin β4 signaling has been implicated in estrogen/ERα-induced tumorigenicity and anti-apoptosis; however, this signaling cascade poorly understood. ΔNp63, an N-terminally truncated isoform of the p63 transcription factor, functions as a transcription factor of integrinβ4 and therefore regulates cellular adhesion and survival. Therefore, the aim of the present study was to investigate the estrogen-induced interaction between ERα, ΔNp63 and integrin β4 in breast cancer cells. In ERα-positive MCF-7 cells, estrogen activated ERα transcription, which induced ΔNp63 expression. And ΔNp63 subsequently induced integrin β4 expression, which resulted in AKT phosphorylation and enhanced cell viability and motility. Conversely, there was no inductive effect of estrogen on ΔNp63-integrinβ4-AKT signaling or on cell viability and motility in ERα-negative MDA-MB-231 cells. ΔNp63 knockdown abolishes these estrogen-induced effects and reduces cell viability and motility in MCF-7 cells. Nevertheless, ΔNp63 knockdown also inhibited cell migration in MDA-MB-231 cells through reducing integrin β4 expression and AKT phosphorylation. In conclusion, estrogen enhances ERα-positive breast cancer cell viability and motility through activating the ERα-ΔNp63-integrin β4 signaling pathway to induce AKT phosphorylated activation. Those findings should be useful to elucidate the crosstalk between estrogen/ER signaling and ΔNp63 signaling and provide novel insights into the effects of estrogen on breast cancer progression.
Collapse
|
27
|
Vantangoli MM, Madnick SJ, Huse SM, Weston P, Boekelheide K. MCF-7 Human Breast Cancer Cells Form Differentiated Microtissues in Scaffold-Free Hydrogels. PLoS One 2015; 10:e0135426. [PMID: 26267486 PMCID: PMC4534042 DOI: 10.1371/journal.pone.0135426] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 07/21/2015] [Indexed: 01/06/2023] Open
Abstract
Three-dimensional (3D) cultures are increasing in use because of their ability to represent in vivo human physiology when compared to monolayer two-dimensional (2D) cultures. When grown in 3D using scaffold-free agarose hydrogels, MCF-7 human breast cancer cells self-organize to form directionally-oriented microtissues that contain a luminal space, reminiscent of the in vivo structure of the mammary gland. When compared to MCF-7 cells cultured in 2D monolayer culture, MCF-7 microtissues exhibit increased mRNA expression of luminal epithelial markers keratin 8 and keratin 19 and decreased expression of basal marker keratin 14 and the mesenchymal marker vimentin. These 3D MCF-7 microtissues remain responsive to estrogens, as demonstrated by induction of known estrogen target mRNAs following exposure to 17β-estradiol. Culture of MCF-7 cells in scaffold-free conditions allows for the formation of more differentiated, estrogen-responsive structures that are a more relevant system for evaluation of estrogenic compounds than traditional 2D models.
Collapse
Affiliation(s)
- Marguerite M. Vantangoli
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, United States of America
| | - Samantha J. Madnick
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, United States of America
| | - Susan M. Huse
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, United States of America
| | - Paula Weston
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, United States of America
| | - Kim Boekelheide
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, United States of America
- * E-mail:
| |
Collapse
|
28
|
Cichon MA, Nelson CM, Radisky DC. Regulation of epithelial-mesenchymal transition in breast cancer cells by cell contact and adhesion. Cancer Inform 2015; 14:1-13. [PMID: 25698877 PMCID: PMC4325704 DOI: 10.4137/cin.s18965] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 12/29/2014] [Accepted: 01/04/2015] [Indexed: 02/06/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a physiological program that is activated during cancer cell invasion and metastasis. We show here that EMT-related processes are linked to a broad and conserved program of transcriptional alterations that are influenced by cell contact and adhesion. Using cultured human breast cancer and mouse mammary epithelial cells, we find that reduced cell density, conditions under which cell contact is reduced, leads to reduced expression of genes associated with mammary epithelial cell differentiation and increased expression of genes associated with breast cancer. We further find that treatment of cells with matrix metalloproteinase-3 (MMP-3), an inducer of EMT, interrupts a defined subset of cell contact-regulated genes, including genes encoding a variety of RNA splicing proteins known to regulate the expression of Rac1b, an activated splice isoform of Rac1 known to be a key mediator of MMP-3-induced EMT in breast, lung, and pancreas. These results provide new insights into how MMPs act in cancer progression and how loss of cell-cell interactions is a key step in the earliest stages of cancer development.
Collapse
Affiliation(s)
- Magdalena A Cichon
- Department of Cancer Biology, Mayo Clinic Cancer Center, Jacksonville, FL USA
| | - Celeste M Nelson
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Derek C Radisky
- Department of Cancer Biology, Mayo Clinic Cancer Center, Jacksonville, FL USA
| |
Collapse
|
29
|
Abstract
Proliferative thyroid diseases are more prevalent in females than in males. Upon the onset of puberty, the incidence of thyroid cancer increases in females only and declines again after menopause. Estrogen is a potent growth factor both for benign and malignant thyroid cells that may explain the sex difference in the prevalence of thyroid nodules and thyroid cancer. It exerts its growth-promoting effect through a classical genomic and a non-genomic pathway, mediated via a membrane-bound estrogen receptor. This receptor is linked to the tyrosine kinase signaling pathways MAPK and PI3K. In papillary thyroid carcinomas, these pathways may be activated either by a chromosomal rearrangement of the tyrosine receptor kinase TRKA, by RET/PTC genes, or by a BRAF mutation and, in addition, in females they may be stimulated by high levels of estrogen. Furthermore, estrogen is involved in the regulation of angiogenesis and metastasis that are critical for the outcome of thyroid cancer. In contrast to other carcinomas, however, detailed knowledge on this regulation is still missing for thyroid cancer.
Collapse
Affiliation(s)
- Michael Derwahl
- Department of MedicineSt Hedwig Hospital and Charite, University Medicine Berlin, Grosse Hamburger Straße 5-11, 10115 Berlin, Germany
| | - Diana Nicula
- Department of MedicineSt Hedwig Hospital and Charite, University Medicine Berlin, Grosse Hamburger Straße 5-11, 10115 Berlin, Germany
| |
Collapse
|
30
|
Jiménez-Salazar JE, Posadas-Rodríguez P, Lazzarini-Lechuga RC, Luna-López A, Zentella-Dehesa A, Gómez-Quiroz LE, Königsberg M, Domínguez-Gómez G, Damián-Matsumura P. Membrane-initiated estradiol signaling of epithelial-mesenchymal transition-associated mechanisms through regulation of tight junctions in human breast cancer cells. Discov Oncol 2014; 5:161-73. [PMID: 24771004 DOI: 10.1007/s12672-014-0180-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 04/09/2014] [Indexed: 02/07/2023] Open
Abstract
Tumor cells utilize inappropriate epithelial-mesenchymal transition (EMT) mechanisms during the invasive process. It is becoming increasingly clear that estradiol (E2) induces breast cancer cell progression and enhances EMT; however, the mechanisms associated with this are unclear. We investigated the role of E2 on the expression and intracellular localization of the tight junction (TJ)-associated proteins, zonula occluden 1 (ZO-1), ZO-1-associated nucleic acid binding (ZONAB), and occludin, on the activation of c-Src and human epidermal growth factor receptor 2 (HER2) expression and cellular migration in the estrogen receptor (ER)-positive breast cancer cell lines, MCF-7 and T47D. We demonstrated that 1 nM E2 elicits c-Src activation after 15 min. The p-Src/ZO-1 complex led to ZO-1 and ZONAB disruption at the TJ and increased expression of HER2 mRNAs. These changes correlate with decreased expression of the epithelial markers occludin and CRB3 and increased synthesis of N-cadherin. This led to increased MCF-7 cell migration induced by E2, even in the presence of a cell proliferation inhibitor. Incubation with ICI 182,780 (Fulvestrant), an ER antagonist, precluded the effects of E2 on c-Src phosphorylation, p-Src/ZO-1 complex formation, ZO-1/ZONAB nuclear translocation, and migration of MCF-7 cells. Our findings suggest that E2 promotes TJ disruption during tumor progression and increases cell motility. We propose a novel pathway where estrogens promote EMT-associated mechanisms that possibly lead to metastasis.
Collapse
Affiliation(s)
- Javier E Jiménez-Salazar
- Department of Biology of Reproduction, Universidad Autonoma Metropolitana (UAM), 09310, Mexico City, Mexico
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Khanna S, Dash PR, Darbre PD. Exposure to parabens at the concentration of maximal proliferative response increases migratory and invasive activity of human breast cancer cellsin vitro. J Appl Toxicol 2014; 34:1051-9. [DOI: 10.1002/jat.3003] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 01/14/2014] [Accepted: 01/30/2014] [Indexed: 01/23/2023]
Affiliation(s)
- Sugandha Khanna
- School of Biological Sciences; University of Reading; Reading RG6 6UB UK
| | - Philip R. Dash
- School of Biological Sciences; University of Reading; Reading RG6 6UB UK
| | - Philippa D. Darbre
- School of Biological Sciences; University of Reading; Reading RG6 6UB UK
| |
Collapse
|
32
|
Progression of luminal breast tumors is promoted by ménage à trois between the inflammatory cytokine TNFα and the hormonal and growth-supporting arms of the tumor microenvironment. Mediators Inflamm 2013; 2013:720536. [PMID: 24369447 PMCID: PMC3867893 DOI: 10.1155/2013/720536] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 10/09/2013] [Indexed: 02/06/2023] Open
Abstract
Breast cancer progression is strongly linked to inflammatory processes, aggravating disease course. The impacts of the inflammatory cytokine TNFα on breast malignancy are not fully substantiated, and they may be affected by cooperativity between TNFα and other protumoral mediators. Here, we show that together with representatives of other important arms of the tumor microenvironment, estrogen (hormonal) and EGF (growth-supporting), TNFα potently induced metastasis-related properties and functions in luminal breast tumor cells, representing the most common type of breast cancer. Jointly, TNFα + Estrogen + EGF had a stronger effect on breast cancer cells than each element alone, leading to the following: (1) extensive cell spreading and formation of FAK/paxillin-enriched cellular protrusions; (2) elevated proportion of tumor cells coexpressing high levels of CD44 and β1 and VLA6; (3) EMT and cell migration; (4) resistance to chemotherapy; (5) release of protumoral factors (CXCL8, CCL2, MMPs). Importantly, the tumor cells used in this study are known to be nonmetastatic under all conditions; nevertheless, they have acquired high metastasizing abilities in vivo in mice, following a brief stimulation by TNFα + Estrogen + EGF. These dramatic findings indicate that TNFα can turn into a strong prometastatic factor, suggesting a paradigm shift in which clinically approved inhibitors of TNFα would be applied in breast cancer therapy.
Collapse
|
33
|
Balogh P, Szabó A, Katz S, Likó I, Patócs A, L.Kiss A. Estrogen receptor alpha is expressed in mesenteric mesothelial cells and is internalized in caveolae upon Freund's adjuvant treatment. PLoS One 2013; 8:e79508. [PMID: 24244516 PMCID: PMC3828353 DOI: 10.1371/journal.pone.0079508] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 09/27/2013] [Indexed: 12/03/2022] Open
Abstract
Transformation of epithelial cells into connective tissue cells (epithelial-mesenchymal transition, EMT) is a complex mechanism involved in tumor metastasis, and in normal embryogenesis, while type II EMT is mainly associated with inflammatory events and tissue regenaration. In this study we examined type II EMT at the ultrastructural and molecular level during the inflammatory process induced by Freund's adjuvant treatment in rat mesenteric mesothelial cells. We found that upon the inflammatory stimulus mesothelial cells lost contact with the basal lamina and with each other, and were transformed into spindle-shaped cells. These morphological changes were accompanied by release of interleukins IL-1alpha, -1beta and IL-6 and by secretion of transforming growth factor beta (TGF-β) into the peritoneal cavity. Mesothelial cells also expressed estrogen receptor alpha (ER-α) as shown by immunolabeling at the light and electron microscopical levels, as well as by quantitative RT-PCR. The mRNA level of ER-α showed an inverse correlation with the secretion of TGF-β. At the cellular and subcellular levels ER-α was colocalized with the coat protein caveolin-1 and was found in the plasma membrane of mesothelial cells, in caveolae close to multivesicular bodies (MVBs) or in the membrane of these organelles, suggesting that ER-α is internalized via caveola-mediated endocytosis during inflammation. We found asymmetric, thickened, electron dense areas on the limiting membrane of MVBs (MVB plaques) indicating that these sites may serve as platforms for collecting and organizing regulatory proteins. Our morphological observations and biochemical data can contribute to form a potential model whereby ER-α and its caveola-mediated endocytosis might play role in TGF-β induced type II EMT in vivo.
Collapse
Affiliation(s)
- Petra Balogh
- Department of Human Morphology and Developmental Biology, Semmelweis University, Budapest, Hungary
- * E-mail:
| | - Arnold Szabó
- Department of Human Morphology and Developmental Biology, Semmelweis University, Budapest, Hungary
| | - Sándor Katz
- Department of Human Morphology and Developmental Biology, Semmelweis University, Budapest, Hungary
| | - István Likó
- Pharmacology and Drug Safety Research, R. Gedeon Plc, Hungary
| | - Attila Patócs
- HSA-SE Lendület Hereditary Endocrine Tumors Research Group, Budapest, Hungary
| | - Anna L.Kiss
- Department of Human Morphology and Developmental Biology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
34
|
Zhang X, Zhang Y, Li Y. β-elemene decreases cell invasion by upregulating E-cadherin expression in MCF-7 human breast cancer cells. Oncol Rep 2013; 30:745-50. [PMID: 23732279 DOI: 10.3892/or.2013.2519] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 05/03/2013] [Indexed: 11/05/2022] Open
Abstract
Inactivation of E-cadherin results in cell migration and invasion, hence leading to cancer aggressiveness and metastasis. Downregulation of E-cadherin is closely correlated with a poor prognosis in invasive breast cancer. Thus, re-introducing E-cadherin is a novel strategy for cancer therapy. The aim of the present study was to determine the effects of the traditional Chinese medicine, β-elemene (ELE), on E-cadherin expression, cell migration and invasion in the breast cancer cell line MCF-7. MCF-7 cells were treated with 50 and 100 µg/ml ELE. E-cadherin mRNA was analyzed by reverse transcription‑polymerase chain reaction. E-cadherin protein levels were determined by immunofluorescence and western blot assays. Cell motility was measured by a Transwell assay. ELE increased both the protein and mRNA levels of E-cadherin, accompanied by decreased cell migration and invasion. Further analysis demonstrated that ELE upregulated estrogen receptor‑α (ERα) and metastasis-associated protein 3 (MTA3), and decreased the nuclear transcription factor Snail. In conclusion, our results demonstrate that ELE decreases cell migration and invasion by upregulating E-cadherin expression via controlling the ERα/MTA3/Snail signaling pathway.
Collapse
Affiliation(s)
- Xian Zhang
- Department of Oncology, Second Affiliated Hospital of Dalian Medical University, Dalian 116023, PR China
| | | | | |
Collapse
|
35
|
Notas G, Kampa M, Pelekanou V, Troullinaki M, Jacquot Y, Leclercq G, Castanas E. Whole transcriptome analysis of the ERα synthetic fragment P295-T311 (ERα17p) identifies specific ERα-isoform (ERα, ERα36)-dependent and -independent actions in breast cancer cells. Mol Oncol 2013; 7:595-610. [PMID: 23474223 DOI: 10.1016/j.molonc.2013.02.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Revised: 02/06/2013] [Accepted: 02/07/2013] [Indexed: 02/07/2023] Open
Abstract
ERα17p is a peptide corresponding to the sequence P295LMIKRSKKNSLALSLT311 of the estrogen receptor alpha (ERα) and initially found to interfere with ERα-related calmodulin binding. ERα17p was subsequently found to elicit estrogenic responses in E2-deprived ERα-positive breast cancer cells, increasing proliferation and ERE-dependent gene transcription. Surprisingly, in E2-supplemented media, ERα17p-induced apoptosis and modified the actin network, influencing cell motility. Here, we report that ERα17p internalizes in breast cancer cells (T47D, MDA-MB-231, SKBR3) and induces a massive early (3 h) transcriptional activity. Remarkably, about 75% of significantly modified transcripts were also modified by E2, confirming the pro-estrogenic profile of ERα17p. The different ER spectra of the used cell lines allowed us to identify a specific ERα17p signature related to ERα as well as its variant ERα36. With respect to ERα, the peptide activates nuclear (cell cycle, cell proliferation, nucleic acid and protein synthesis) and extranuclear signaling pathways. In contrast, through ERα36, it mainly triggers inhibitory actions on inflammation. This is the first work reporting a detailed ERα36-specific transcriptional signature. In addition, we report that ERα17p-induced transcripts related to apoptosis and actin modifying effects of the peptide are independent from its estrogen receptor(s)-related actions. We discuss our findings in view of the potential use of ERα17p as a selective peptidomimetic estrogen receptor modulator (PERM).
Collapse
Affiliation(s)
- George Notas
- Laboratory of Experimental Endocrinology, University of Crete, School of Medicine, P.O. Box 2208, Heraklion 71003, Greece
| | | | | | | | | | | | | |
Collapse
|
36
|
Cirillo F, Nassa G, Tarallo R, Stellato C, De Filippo MR, Ambrosino C, Baumann M, Nyman TA, Weisz A. Molecular mechanisms of selective estrogen receptor modulator activity in human breast cancer cells: identification of novel nuclear cofactors of antiestrogen-ERα complexes by interaction proteomics. J Proteome Res 2012; 12:421-31. [PMID: 23170835 DOI: 10.1021/pr300753u] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Estrogen receptor alpha (ERα) is a ligand-activated transcription factor that controls key cellular pathways via protein-protein interactions involving multiple components of transcriptional coregulator and signal transduction complexes. Natural and synthetic ERα ligands are classified as agonists (17β-estradiol/E(2)), selective estrogen receptor modulators (SERMs: Tamoxifen/Tam and Raloxifene/Ral), and pure antagonists (ICI 182,780-Fulvestrant/ICI), according to the response they elicit in hormone-responsive cells. Crystallographic analyses reveal ligand-dependent ERα conformations, characterized by specific surface docking sites for functional protein-protein interactions, whose identification is needed to understand antiestrogen effects on estrogen target tissues, in particular breast cancer (BC). Tandem affinity purification (TAP) coupled to mass spectrometry was applied here to map nuclear ERα interactomes dependent upon different classes of ligands in hormone-responsive BC cells. Comparative analyses of agonist (E(2))- vs antagonist (Tam, Ral or ICI)-bound ERα interacting proteins reveal significant differences among ER ligands that relate with their biological activity, identifying novel functional partners of antiestrogen-ERα complexes in human BC cell nuclei. In particular, the E(2)-dependent nuclear ERα interactome is different and more complex than those elicited by Tam, Ral, or ICI, which, in turn, are significantly divergent from each other, a result that provides clues to explain the pharmacological specificities of these compounds.
Collapse
Affiliation(s)
- Francesca Cirillo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine and Surgery, University of Salerno, Baronissi, Salerno, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Scherbakov AM, Andreeva OE, Shatskaya VA, Krasil'nikov MA. The relationships between snail1 and estrogen receptor signaling in breast cancer cells. J Cell Biochem 2012; 113:2147-55. [PMID: 22307688 DOI: 10.1002/jcb.24087] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The loss of hormonal dependency of breast tumor cells is often accompanied with the appearance of epithelial-mesenchymal transition (EMT) features and increase in cell metastasis and invasiveness. The central role in the EMT belongs to transcription factors Snail responded for the decrease in E-cadherin expression and cell contacts, stimulation of cell mobility and invasiveness. Aim was to study the relationships between estrogen receptor machinery and Snail1 signaling, and mechanism of Snail1 regulation in hormone-resistant breast cancer cells. The experiments were performed on the estrogen-dependent MCF-7 breast cancer cells, estrogen-hyposensitive MCF-7/LS subline generated through long-term cultivation of the parental cells in steroid-free medium, and ER-negative estrogen-resistant HBL-100 cells. Snail1, estrogen receptor, p65 NF-κB, E-cadherin levels were analyzed by Western blot. We found that decrease in the estrogen dependency is correlated with increase in Snail1 expression and activity, we demonstrated the Snail1 involvement in the negative regulation of ER, and showed that Snail1 inhibition partially restores the sensitivity of the estrogen-hyposensitive cells to antiestrogen tamoxifen. Furthermore, NF-κB was found to serve as a positive regulator of Snail1 in breast cancer cells, and simultaneous inhibition of NF-κB and Snail1 resulted in additional increase in cell response to tamoxifen. In general, the results obtained demonstrate the phenomenon of Snail1 activation in the hormone-resistant breast cancer cells, and show that Snail1 and NF-κB may serve as an important targets in the treatment of breast cancer, both estrogen-dependent and estrogen-independent tumors.
Collapse
Affiliation(s)
- Alexander M Scherbakov
- Laboratory of Clinical Biochemistry, Institute of Clinical Oncology, N.N. Blokhin Cancer Research Centre, Kashirskoye sh. 24, Moscow 115478, Russia.
| | | | | | | |
Collapse
|
38
|
Zhao G, Nie Y, Lv M, He L, Wang T, Hou Y. ERβ-mediated estradiol enhances epithelial mesenchymal transition of lung adenocarcinoma through increasing transcription of midkine. Mol Endocrinol 2012; 26:1304-15. [PMID: 22669742 DOI: 10.1210/me.2012-1028] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) plays a specific role in the migration of tumor cells. Both estrogen and midkine (MK) have been thought to be important factors in promoting the progression of non-small-cell lung cancer (NSCLC) and can enhance EMT. Some evidence indicated the correlation between estradiol (E2) and MK, but the precise mechanism on their interreaction is unknown. Here, we try to clarify whether and how E2 regulates MK expression to promote EMT. We found that E2 increased MK mRNA expression in lung adenocarcinoma cells LTEP-a2 and A549 in a time-dependent manner. E2-induced MK expression was inhibited by the estrogen receptor (ER) antagonist ICI 182,780 and tamoxifen but not by phosphoinositide-3 kinase and MAPK inhibitors, suggesting a genomic mechanism of E2 on the regulation of MK transcription. Moreover, luciferase reporter and chromatin immunoprecipitation assays exhibited that E2 induced ERβ recruitment to the estrogen response element in the MK promoter. Small interfering RNA to ERα and ERβ revealed that ERβ mainly mediated E2-induced MK transcription. Interestingly, E2 enhanced MK expression in accordance with increase of EMT, whereas knockdown of MK could block EMT under E2 stimulation. Importantly, through analyzing lung adenocarcinoma tissues, there was indeed a correlation among levels of E2, MK, and EMT-related protein expression. Taken together, we reported a previously unrecognized mechanism on E2 in the regulation of MK expression and proved that MK plays a pivotal role in progression of E2-regulated EMT.
Collapse
Affiliation(s)
- Guangfeng Zhao
- Immunology and Reproductive Biology Laboratory, Medical School & State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, PR China
| | | | | | | | | | | |
Collapse
|
39
|
Luminal breast cancer metastasis is dependent on estrogen signaling. Clin Exp Metastasis 2012; 29:493-509. [PMID: 22427027 DOI: 10.1007/s10585-012-9466-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 01/10/2012] [Indexed: 12/29/2022]
Abstract
Luminal breast cancer is the most frequently encountered type of human breast cancer and accounts for half of all breast cancer deaths due to metastatic disease. We have developed new in vivo models of disseminated human luminal breast cancer that closely mimic the human disease. From initial lesions in the tibia, locoregional metastases develop predictably along the iliac and retroperitoneal lymph node chains. Tumors cells retain their epithelioid phenotype throughout the process of dissemination. In addition, systemically injected metastatic MCF-7 cells consistently give rise to metastases in the skeleton, floor of mouth, adrenal glands, as well as in the lungs, liver, brain and mammary fat pad. We show that growth of luminal breast cancer metastases is highly dependent on estrogen in a dose-dependent manner and that estrogen withdrawal induces rapid growth arrest of metastatic disease. On the other hand, even though micrometastases at secondary sites remain viable in the absence of estrogen, they are dormant and do not progress to macrometastases. Thus, homing to and seeding of secondary sites do not require estrogen. Moreover, in sharp contrast to basal-like breast cancer metastasis in which transforming growth factor-β signaling plays a key role, luminal breast cancer metastasis is independent of this cytokine. These findings have important implications for the development of targeted anti-metastatic therapy for luminal breast cancer.
Collapse
|
40
|
Modulation of tumorigenesis and oestrogen receptor-α expression by cell culture conditions in a stem cell-derived breast epithelial cell line. Biol Cell 2012; 102:159-72. [DOI: 10.1042/bc20090132] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
41
|
Role of estrogen receptor signaling in breast cancer metastasis. Int J Breast Cancer 2011; 2012:654698. [PMID: 22295247 PMCID: PMC3262597 DOI: 10.1155/2012/654698] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 09/16/2011] [Accepted: 09/19/2011] [Indexed: 12/21/2022] Open
Abstract
Metastatic breast cancer is a life-threatening stage of cancer and is the leading cause of death in advanced breast cancer patients. Estrogen signaling and the estrogen receptor (ER) are implicated in breast cancer progression, and the majority of the human breast cancers start out as estrogen dependent. Accumulating evidence suggests that ER signaling is complex, involving coregulatory proteins and extranuclear actions. ER-coregualtory proteins are tightly regulated under normal conditions with miss expression primarily reported in cancer. Deregulation of ER coregualtors or ER extranuclear signaling has potential to promote metastasis in ER-positive breast cancer cells. This review summarizes the emerging role of ER signaling in promoting metastasis of breast cancer cells, discusses the molecular mechanisms by which ER signaling contributes to metastasis, and explores possible therapeutic targets to block ER-driven metastasis.
Collapse
|
42
|
Sakai K, Kurokawa T, Furui Y, Kuronuma Y, Sekiguchi M, Ando J, Inagaki Y, Tang W, Nakata M, Fujita-Yamaguchi Y. Invasion of carcinoma cells into reconstituted type I collagen gels: visual real-time analysis by time-lapse microscopy. Biosci Trends 2011; 5:10-6. [PMID: 21422595 DOI: 10.5582/bst.2011.v5.1.10] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Stromal-epithelial interactions play a critical role in promoting tumorigenesis and invasion. To obtain detailed information on cancer cell behaviors on the stroma and kinetics of cell migration, which cannot be observed by conventionally-used Boyden chamber assays, this study was aimed at analyzing the cell invasion process in vitro using time-lapse microscopic observation. Serum-free conditions and reconstituted type I collagen gels which provided a basal membrane-stroma-like microenvironment were used to first establish a basal condition. Time-lapse microscopic observation for 30 h of cell invasion into the collagen gel revealed kinetic parameters and individualistic behavior of cancer cells. Of breast cancer MDA-MB-231 or MCF-7 cells and colon cancer LS180 or HT29 cells examined, MDA-MB-231 cells most rapidly disappeared from the collagen gel surface under basal conditions. Estrogen-dependent MCF-7 cells disappeared at a rate approximately two times slower than that of MDA-MB-231 cells under serum- and phenol red-free conditions. By the addition of 10 nM β-estradiol to the basal medium, MCF-7 cell invasion was facilitated to a rate similar to that of MDA-MB-231 cells. Microscopic analyses of collagen gel-sections demonstrated that most of the MDA-MB-231 and MCF-7 cells remained within 60 μm from the gel top under basal conditions, which is consistent with the observation obtained using Boyden chambers that no cells could cross the collagen I gel barrier unless 1% fetal calf serum was added to basal conditions. In summary, this study demonstrated future applicability of this method to understand the initial phase of cancer cell invasion processes.
Collapse
Affiliation(s)
- K Sakai
- Department of Applied Biochemistry, Tokai University, Hiratsuka, Kanagawa, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Barone I, Brusco L, Gu G, Selever J, Beyer A, Covington KR, Tsimelzon A, Wang T, Hilsenbeck SG, Chamness GC, Andò S, Fuqua SAW. Loss of Rho GDIα and resistance to tamoxifen via effects on estrogen receptor α. J Natl Cancer Inst 2011; 103:538-52. [PMID: 21447808 PMCID: PMC3071355 DOI: 10.1093/jnci/djr058] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Revised: 02/07/2011] [Accepted: 02/07/2011] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Estrogen receptor (ER) α is a successful therapeutic target in breast cancer, but patients eventually develop resistance to antiestrogens such as tamoxifen. METHODS To identify genes whose expression was associated with the development of tamoxifen resistance and metastasis, we used microarrays to compare gene expression in four primary tumors from tamoxifen-treated patients whose breast cancers did not recur vs five metastatic tumors from patients whose cancers progressed during adjuvant tamoxifen treatment. Because Rho guanine dissociation inhibitor (GDI) α was underexpressed in the tamoxifen-resistant group, we stably transfected ERα-positive MCF-7 breast cancer cells with a plasmid encoding a short hairpin (sh) RNA to silence Rho GDIα expression. We used immunoblots and transcription assays to examine the role of Rho GDIα in ER-related signaling and growth of cells in vitro and as xenografts in treated nude mice (n = 8-9 per group) to examine the effects of Rho GDIα blockade on hormone responsiveness and metastatic behavior. The time to tumor tripling as the time in weeks from randomization to a threefold increase in total tumor volume over baseline was examined in treated mice. The associations of Rho GDIα and MTA2 levels with tamoxifen resistance were examined in microarray data from patients. All statistical tests were two-sided. RESULTS Rho GDIα was expressed at lower levels in ERα-positive tumors that recurred during tamoxifen treatment than in ERα-positive tamoxifen-sensitive primary tumors. MCF-7 breast cancer cells in which Rho GDIα expression had been silenced were tamoxifen-resistant, had increased Rho GTPase and p21-activated kinase 1 activity, increased phosphorylation of ERα at serine 305, and enhanced tamoxifen-induced ERα transcriptional activity compared with control cells. MCF-7 cells in which Rho GDIα expression was silenced metastasized with high frequency when grown as tumor xenografts. When mice were treated with estrogen or estrogen withdrawal, tripling times for xenografts from cells with Rho GDIα silencing were similar to those from vector-containing control cells; however, tripling times were statistically significantly faster than control when mice were treated with tamoxifen (median tripling time for tumors with Rho GDIα small interfering RNA = 2.34 weeks; for control tumors = not reached, hazard ratio = 4.13, 95% confidence interval = 1.07 to 15.96, P = .040 [adjusted for multiple comparisons, P = .119]). Levels of the metastasis-associated protein MTA2 were also increased upon Rho GDIα silencing, and combined Rho GDIα and MTA2 levels were associated with recurrence in 250 tamoxifen-treated patients. CONCLUSION Loss of Rho GDIα enhances metastasis and resistance to tamoxifen via effects on both ERα and MTA2 in models of ERα-positive breast cancer and in tumors of tamoxifen-treated patients.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Hormonal/pharmacology
- Antineoplastic Agents, Hormonal/therapeutic use
- Breast Neoplasms/metabolism
- Breast Neoplasms/prevention & control
- Cell Line, Tumor
- Down-Regulation
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Enzyme Activation
- Estrogen Antagonists/pharmacology
- Estrogen Antagonists/therapeutic use
- Estrogen Receptor alpha/drug effects
- Estrogen Receptor alpha/metabolism
- Female
- Gene Expression Regulation, Neoplastic
- Gene Silencing
- Genome-Wide Association Study
- Guanine Nucleotide Dissociation Inhibitors/genetics
- Guanine Nucleotide Dissociation Inhibitors/metabolism
- Histone Deacetylases/genetics
- Histone Deacetylases/metabolism
- Humans
- Immunoblotting
- Immunohistochemistry
- Immunoprecipitation
- Mice
- Mice, Nude
- Neoplasm Recurrence, Local/metabolism
- Neoplasm Recurrence, Local/prevention & control
- Odds Ratio
- Phenotype
- Plasmids
- Protein Array Analysis
- RNA, Small Interfering/metabolism
- Random Allocation
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Retrospective Studies
- Secondary Prevention/methods
- Selective Estrogen Receptor Modulators/pharmacology
- Signal Transduction/drug effects
- Signal Transduction/genetics
- Tamoxifen/pharmacology
- Tamoxifen/therapeutic use
- Time Factors
- Transcriptional Activation
- Transplantation, Heterologous
- Tumor Stem Cell Assay
- rho GTP-Binding Proteins/metabolism
- rho Guanine Nucleotide Dissociation Inhibitor alpha
- rho-Specific Guanine Nucleotide Dissociation Inhibitors
Collapse
Affiliation(s)
- Ines Barone
- Lester and Sue Smith Breast Center, Breast Center, Baylor College of Medicine, Houston, TX 77479, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Zhou WJ, Geng ZH, Chi S, Zhang W, Niu XF, Lan SJ, Ma L, Yang X, Wang LJ, Ding YQ, Geng JG. Slit-Robo signaling induces malignant transformation through Hakai-mediated E-cadherin degradation during colorectal epithelial cell carcinogenesis. Cell Res 2011; 21:609-26. [PMID: 21283129 PMCID: PMC3203654 DOI: 10.1038/cr.2011.17] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 09/19/2010] [Accepted: 09/21/2010] [Indexed: 12/11/2022] Open
Abstract
The Slit family of guidance cues binds to Roundabout (Robo) receptors and modulates cell migration. We report here that ectopic expression of Slit2 and Robo1 or recombinant Slit2 treatment of Robo1-expressing colorectal epithelial carcinoma cells recruited an ubiquitin ligase Hakai for E-cadherin (E-cad) ubiquitination and lysosomal degradation, epithelial-mesenchymal transition (EMT), and tumor growth and liver metastasis, which were rescued by knockdown of Hakai. In contrast, knockdown of endogenous Robo1 or specific blockade of Slit2 binding to Robo1 prevented E-cad degradation and reversed EMT, resulting in diminished tumor growth and liver metastasis. Ectopic expression of Robo1 also triggered a malignant transformation in Slit2-positive human embryonic kidney 293 cells. Importantly, the expression of Slit2 and Robo1 was significantly associated with an increased metastatic risk and poorer overall survival in colorectal carcinoma patients. We conclude that engagement of Robo1 by Slit2 induces malignant transformation through Hakai-mediated E-cad ubiquitination and lysosomal degradation during colorectal epithelial cell carcinogenesis.
Collapse
Affiliation(s)
- Wei-Jie Zhou
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Zhen H Geng
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Shan Chi
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Wenli Zhang
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xiao-Feng Niu
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Shu-Jue Lan
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Li Ma
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Xuesong Yang
- Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou, Guangdong 510632, China
| | - Li-Jing Wang
- Vascular Biology Research Institute, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China
| | - Yan-Qing Ding
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jian-Guo Geng
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
- Vascular Biology Research Institute, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China
| |
Collapse
|
45
|
Fu XD, Russo E, Zullino S, Genazzani AR, Simoncini T. Sex steroids and breast cancer metastasis. Horm Mol Biol Clin Investig 2010; 3:383-9. [PMID: 25961210 DOI: 10.1515/hmbci.2010.058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2010] [Accepted: 10/19/2010] [Indexed: 11/15/2022]
Abstract
Sex steroids, particularly estrogen and progesterone, promote normal breast tissue growth and differentiation. Prolonged exposure of estrogen and/or progesterone is considered a risk factor for breast cancer carcinogenesis, and the effects of sex steroids on breast cancer metastasis are controversial. Emerging evidence indicates that sex steroids regulate breast cancer metastatic processes via nongenomic and genomic mechanisms. Through the regulation of actin-binding proteins estrogen and progesterone rapidly provoke actin cytoskeleton reorganization in breast cancer cells, leading to formation of membrane structures facilitating breast cancer cell migration and invasion. In addition, steroid receptors interact and trans-activate receptor tyrosine kinases (including epidermal growth factor receptor and insulin-like growth factor receptor), resulting in growth factor-like effects that promote cancer cell invasive behavior. Moreover, sex steroids regulate the expression of metastasis-associated molecules, such as E-cadherin, matrix metalloproteinases, growth factors, chemokines and their receptors, leading to epithelial-to-mesenchymal-like transition. However, there is also evidence that sex steroids and their receptors protect against breast cancer cell invasiveness through distinct mechanisms. Here, we present an overview of the currently identified actions of sex steroids on breast cancer metastasis and their potential clinical implications.
Collapse
|
46
|
Li Y, Wang JP, Santen RJ, Kim TH, Park H, Fan P, Yue W. Estrogen stimulation of cell migration involves multiple signaling pathway interactions. Endocrinology 2010; 151:5146-56. [PMID: 20861240 PMCID: PMC2954727 DOI: 10.1210/en.2009-1506] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Hormone-dependent breast cancers respond to inhibitors of estrogen synthesis or action with tumor regression and with a reduction of new metastases. The mechanisms underlying the effects of estrogen on metastasis likely differ from those on tumor regression. Cell migration is a key first step in the metastatic process. Based on our prior work and other published data, we designed and tested a working model that suggested that estrogen receptor α, epidermal growth factor receptor, focal adhesion kinase (FAK), paxillin, phosphatidylinositol 3 kinase, p60 Src tyrosine kinase (c-Src), c-Jun N-terminal kinase, and MAPK interact to facilitate estradiol (E(2))-induced cell migration. Accordingly, we examined the effect of E(2) on activation of these pathways and demonstrated mechanistic effects by blocking each component and assessing cell migration as a biologic endpoint. Initial studies validated a robust cell migration assay characterized by highly reproducible, dose-dependent responses to E(2). Examining various mechanisms involved in migration, we showed that E(2) induced activation of c-Src, FAK, and paxillin with early peaks within 5-30 min and later peaks at 24 h. ERK and protein kinase B phosphorylation exhibited only early peaks. Blockade of various steps in these signaling pathways with use of small interfering RNA or specific inhibitors demonstrated mechanistic effects of these signaling molecules on cell migration. Our results suggest that the effects of E(2) on cell migration involve multiple, interacting signaling pathways. Important effects are mediated by the MAPK, phosphatidylinositol 3 kinase, and c-Jun N-terminal kinase pathways and use FAK, paxillin, and c-Src for activation. Each pathway represents a potential target for blocking cell migration and metastasis of breast cancer cells.
Collapse
Affiliation(s)
- Yan Li
- Division of Endocrinology, Department of Medicine, University of Virginia Health Sciences System, Virginia 22908, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Uchino M, Kojima H, Wada K, Imada M, Onoda F, Satofuka H, Utsugi T, Murakami Y. Nuclear beta-catenin and CD44 upregulation characterize invasive cell populations in non-aggressive MCF-7 breast cancer cells. BMC Cancer 2010; 10:414. [PMID: 20696077 PMCID: PMC3087322 DOI: 10.1186/1471-2407-10-414] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Accepted: 08/10/2010] [Indexed: 01/18/2023] Open
Abstract
Background In breast cancer cells, the metastatic cell state is strongly correlated to epithelial-to-mesenchymal transition (EMT) and the CD44+/CD24- stem cell phenotype. However, the MCF-7 cell line, which has a luminal epithelial-like phenotype and lacks a CD44+/CD24- subpopulation, has rare cell populations with higher Matrigel invasive ability. Thus, what are the potentially important differences between invasive and non-invasive breast cancer cells, and are the differences related to EMT or CD44/CD24 expression? Methods Throughout the sequential selection process using Matrigel, we obtained MCF-7-14 cells of opposite migratory and invasive capabilities from MCF-7 cells. Comparative analysis of epithelial and mesenchymal marker expression was performed between parental MCF-7, selected MCF-7-14, and aggressive mesenchymal MDA-MB-231 cells. Furthermore, using microarray expression profiles of these cells, we selected differentially expressed genes for their invasive potential, and performed pathway and network analysis to identify a set of interesting genes, which were evaluated by RT-PCR, flow cytometry or function-blocking antibody treatment. Results MCF-7-14 cells had enhanced migratory and invasive ability compared with MCF-7 cells. Although MCF-7-14 cells, similar to MCF-7 cells, expressed E-cadherin but neither vimentin nor fibronectin, β-catenin was expressed not only on the cell membrane but also in the nucleus. Furthermore, using gene expression profiles of MCF-7, MCF-7-14 and MDA-MB-231 cells, we demonstrated that MCF-7-14 cells have alterations in signaling pathways regulating cell migration and identified a set of genes (PIK3R1, SOCS2, BMP7, CD44 and CD24). Interestingly, MCF-7-14 and its invasive clone CL6 cells displayed increased CD44 expression and downregulated CD24 expression compared with MCF-7 cells. Anti-CD44 antibody treatment significantly decreased cell migration and invasion in both MCF-7-14 and MCF-7-14 CL6 cells as well as MDA-MB-231 cells. Conclusions MCF-7-14 cells are a novel model for breast cancer metastasis without requiring constitutive EMT and are categorized as a "metastable phenotype", which can be distinguished from both epithelial and mesenchymal cells. The alterations and characteristics of MCF-7-14 cells, especially nuclear β-catenin and CD44 upregulation, may characterize invasive cell populations in breast cancer.
Collapse
Affiliation(s)
- Masahiro Uchino
- Neo-Technology Development Division, Bio Matrix Research Inc., 105 Higashifukai, Nagareyama, Chiba 270-0101, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Bolós V, Gasent JM, López-Tarruella S, Grande E. The dual kinase complex FAK-Src as a promising therapeutic target in cancer. Onco Targets Ther 2010; 3:83-97. [PMID: 20616959 PMCID: PMC2895777 DOI: 10.2147/ott.s6909] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Indexed: 12/11/2022] Open
Abstract
Focal adhesion kinase (FAK) and steroid receptor coactivator (Src) are intracellular (nonreceptor) tyrosine kinases that physically and functionally interact to promote a variety of cellular responses. Plenty of reports have already suggested an additional central role for this complex in cancer through its ability to promote proliferation and anoikis resistance in tumor cells. An important role for the FAK/Src complex in tumor angiogenesis has also been established. Furthermore, FAK and Src have been associated with solid tumor metastasis through their ability to promote the epithelial mesenchymal transition. In fact, a strong correlation between increased FAK/Src expression/phosphorylation and the invasive phenotype in human tumors has been found. Additionally, an association for FAK/Src with resistances to the current anticancer therapies has already been established. Currently, novel anticancer agents that target FAK or Src are under development in a broad variety of solid tumors. In this article we will review the normal cellular functions of the FAK/Src complex as an effector of integrin and/or tyrosine kinase receptor signaling. We will also collect data about their role in cancer and we will summarize the most recent data from the FAK and Src inhibitors under clinical and preclinical development. Furthermore, the association of both these proteins with chemotherapy and hormonal therapy resistances, as a rationale for new combined therapeutic approaches with these novel agents, to abrogate treatment associated resistances, will also be reviewed.
Collapse
|
49
|
Blick T, Hugo H, Widodo E, Waltham M, Pinto C, Mani SA, Weinberg RA, Neve RM, Lenburg ME, Thompson EW. Epithelial mesenchymal transition traits in human breast cancer cell lines parallel the CD44(hi/)CD24 (lo/-) stem cell phenotype in human breast cancer. J Mammary Gland Biol Neoplasia 2010; 15:235-52. [PMID: 20521089 DOI: 10.1007/s10911-010-9175-z] [Citation(s) in RCA: 216] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 04/20/2010] [Indexed: 02/06/2023] Open
Abstract
We review here the recently emerging relationship between epithelial-mesenchymal transition (EMT) and breast cancer stem cells (BCSC), and provide analyses of published data on human breast cancer cell lines, supporting their utility as a model for the EMT/BCSC state. Genome-wide transcriptional profiling of these cell lines has confirmed the existence of a subgroup with mesenchymal tendencies and enhanced invasive properties ('Basal B'/Mesenchymal), distinct from subgroups with either predominantly luminal ('Luminal') or mixed basal/luminal ('Basal A') features (Neve et al. Cancer Cell, 2006). A literature-derived EMT gene signature has shown specific enrichment within the Basal B subgroup of cell lines, consistent with their over-expression of various EMT transcriptional drivers. Basal B cell lines are found to resemble BCSC, being CD44(high)CD24(low). Moreover, gene products that distinguish Basal B from Basal A and Luminal cell lines (Basal B Discriminators) showed close concordance with those that define BCSC isolated from clinical material, as reported by Shipitsin et al. (Cancer Cell, 2007). CD24 mRNA levels varied across Basal B cell lines, correlating with other Basal B Discriminators. Many gene products correlating with CD24 status in Basal B cell lines were also differentially expressed in isolated BCSC. These findings confirm and extend the importance of the cellular product of the EMT with Basal B cell lines, and illustrate the value of analysing these cell lines for new leads that may improve breast cancer outcomes. Gene products specific to Basal B cell lines may serve as tools for the detection, quantification, and analysis of BCSC/EMT attributes.
Collapse
Affiliation(s)
- Tony Blick
- Invasion and Metastasis Unit, St. Vincent's Institute, 9 Princes St, Fitzroy, Melbourne 3065, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Arachidonic acid promotes epithelial-to-mesenchymal-like transition in mammary epithelial cells MCF10A. Eur J Cell Biol 2010; 89:476-88. [PMID: 20207443 DOI: 10.1016/j.ejcb.2009.12.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Revised: 12/19/2009] [Accepted: 12/21/2009] [Indexed: 11/22/2022] Open
Abstract
Epidemiological studies and animal models suggest an association between high levels of dietary fat intake and an increased risk of breast cancer. Cancer progression requires the development of metastasis, which is characterized by an increase in cell motility and invasion. Epithelial-to-mesenchymal transition (EMT) is a process, by which epithelial cells are transdifferentiated to a more mesenchymal state. A similar process takes place during tumor progression, when carcinoma cells stably or transiently lose epithelial polarities and acquire a mesenchymal phenotype. Arachidonic acid (AA) is a fatty acid that mediates cellular processes, such as cell survival, angiogenesis, chemotaxis, mitogenesis, migration and apoptosis. However, the role of AA on the EMT process in human mammary epithelial cells remains to be studied. We demonstrate here that AA promotes an increase in vimentin and N-cadherin expression, MMP-9 secretion, a decrease in E-cadherin junctional levels, and the activation of FAK, Src and NF-kappaB in MCF10A cells. Furthermore, AA also promotes cell migration in an Src kinase activity-dependent fashion. In conclusion, our results demonstrate, for the first time, that AA promotes an epithelial-to-mesenchymal-like transition in MCF10A human mammary non-tumorigenic epithelial cells.
Collapse
|