1
|
Nowotny HF, Braun L, Reisch N. The Landscape of Androgens in Cushing's Syndrome. Exp Clin Endocrinol Diabetes 2024; 132:670-677. [PMID: 38788777 DOI: 10.1055/a-2333-1907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Hyperandrogenemia in patients with Cushing's syndrome (CS) presents a diagnostic pitfall due to its rare occurrence and overlapping symptoms with more common conditions like polycystic ovary syndrome (PCOS). This review explores the significance of androgen dysregulation in CS, focusing on both classical and 11-oxygenated androgens. While classical androgens contribute to hyperandrogenism in CS, their levels alone do not fully account for clinical symptoms. Recent research highlights the overlooked role of 11oxC19 androgens, particularly 11OHA4 and 11KT, in driving hyperandrogenic manifestations across all CS subtypes. These adrenal-specific and highly potent androgens offer stable expression throughout the lifespan of a woman, serving as valuable diagnostic biomarkers. Understanding their prominence not only aids in subtype differentiation but also provides insights into the complex nature of androgen dysregulation in CS. Recognizing the diagnostic potential of 11oxC19 androgens promises to refine diagnostic approaches and improve clinical management strategies for patients with CS.
Collapse
Affiliation(s)
- Hanna F Nowotny
- Department of Medicine IV, LMU University Hospital, LMU Munich
| | - Leah Braun
- Department of Medicine IV, LMU University Hospital, LMU Munich
| | - Nicole Reisch
- Department of Medicine IV, LMU University Hospital, LMU Munich
| |
Collapse
|
2
|
Liimatta J, du Toit T, Voegel CD, Jääskeläinen J, Lakka TA, Flück CE. Multiple androgen pathways contribute to the steroid signature of adrenarche. Mol Cell Endocrinol 2024; 592:112293. [PMID: 38838762 DOI: 10.1016/j.mce.2024.112293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/06/2024] [Accepted: 06/01/2024] [Indexed: 06/07/2024]
Abstract
CONTEXT Adrenarche is a normal developmental event in mid-childhood characterized by increasing adrenal androgen secretion. The role of the classic androgen pathway has been well described in adrenarche, but the role of newer active androgens and additional androgen pathways is less clear. OBJECTIVE To study the contribution of novel androgens and related steroid biosynthesis pathways to the development of adrenarche, and to identify additional steroid biomarkers of adrenarche. DESIGN A longitudinal study of children aged 6-8 years at baseline, followed up at ages 8-10 and 14-16 years. A total of 34 children (20 girls) with clinical and/or biochemical signs of adrenarche (cases) and 24 children (11 girls) without these signs (controls) at age 8-10 years were included. Serum steroid profiling was performed by liquid chromatography high-resolution mass spectrometry. MAIN OUTCOME MEASURES Thirty-two steroids compartmentalized in progestagens, gluco- and mineralocorticoid pathways, and four androgen related pathways, including the classic, backdoor, 11-oxy, and 11-oxy backdoor pathways. RESULTS The classic and 11-oxy androgen pathways were more active, and serum concentrations of main androgens in the classic (dehydroepiandrosterone, dehydroepiandrosterone sulfate, androstenedione and androsterone) and 11-oxy (11β-hydroxyandrostenedione, 11β-hydroxytestosterone, 11-ketoandrostenedione, and 11-ketotestosterone) pathways were higher in cases at ages 6-8 and 8-10 years. Pregnenolone concentrations at adrenarchal age (8-10 years) and cortisol concentrations at adolescence (14-16 years) were higher in cases. 11β-hydroxyandrosterone and 11-ketoandrosterone tended to be higher in cases with clinical signs compared to cases who had only biochemical evidence of adrenarche, albeit they were detected at low levels. In biomarker analyses, calculated steroid ratios with cortisol, cortisone, or 11-deoxycortisone as dividers were better classifiers for adrenarche than single steroids. Among these ratios, androstenedione/cortisone was the best. CONCLUSIONS The classic and 11-oxy androgen pathways are active in adrenarche. Children with earlier timing of adrenarche have higher serum cortisol levels at late pubertal age, suggesting that early adrenarche might have long-term effects on adrenal steroidogenesis by increasing the activity of the glucocorticoid pathway. Future studies should employ comprehensive steroid profiling to define novel classifiers and biomarkers for adrenarche and premature adrenarche.
Collapse
Affiliation(s)
- Jani Liimatta
- Pediatric Endocrinology, Diabetology, and Metabolism, Inselspital, Bern University Hospital, Bern, Switzerland; Department of BioMedical Research (DBMR), University of Bern, Bern, Switzerland; Kuopio Pediatric Research Unit (KuPRU), University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland.
| | - Therina du Toit
- Pediatric Endocrinology, Diabetology, and Metabolism, Inselspital, Bern University Hospital, Bern, Switzerland; Department of BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Clarissa D Voegel
- Department of BioMedical Research (DBMR), University of Bern, Bern, Switzerland; Department of Nephrology and Hypertension, Bern University Hospital, Bern, Switzerland
| | - Jarmo Jääskeläinen
- Kuopio Pediatric Research Unit (KuPRU), University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Timo A Lakka
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland; Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland; Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
| | - Christa E Flück
- Pediatric Endocrinology, Diabetology, and Metabolism, Inselspital, Bern University Hospital, Bern, Switzerland; Department of BioMedical Research (DBMR), University of Bern, Bern, Switzerland.
| |
Collapse
|
3
|
Swart AC, van Rooyen D, du Toit T, Heyns B, Molphy J, Wilson M, Leahy R, Atkin SL. Circulating adrenal and gonadal steroid hormones heterogeneity in active young males and the contribution of 11-oxy androgens. Sci Rep 2024; 14:16226. [PMID: 39003307 PMCID: PMC11246537 DOI: 10.1038/s41598-024-66749-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 07/03/2024] [Indexed: 07/15/2024] Open
Abstract
The classical androgens, testosterone and dihydrotestosterone, together with dehydroepiandrosterone, the precusrsor to all androgens, are generally included in diagnostic steroid evaluations of androgen excess and deficiency disorders and monitored in androgen replacement and androgen suppressive therapies. The C11-oxy androgens also contribute to androgen excess disorders and are still often excluded from clinical and research-based steroids analysis. The contribution of the C11-oxy androgens to the androgen pool has not been considered in androgen deficiency. An exploratory investigation into circulating adrenal and gonadal steroid hormones in men was undertaken as neither the classical androgens nor the C11-oxy androgens have been evaluated in the context of concurrent measurement of all adrenal steroid hormones. Serum androgens, mineralocorticoids, glucocorticoids, progesterones and androgens were assessed in 70 healthy young men using ultra high performance supercritical fluid chromatography and tandem mass spectrometry. Testosterone, 24.5 nmol/L was the most prominent androgen detected in all participants while dihydrotestosterone, 1.23 nmol/L, was only detected in 25% of the participants. The 11-oxy androgens were present in most of the participants with 11-hydroxyandrostenedione, 3.37 nmol, in 98.5%, 11-ketoandrostenedione 0.764 in 77%, 11-hydroxytestosterone, 0.567 in 96% and 11-ketotestosterone: 0.440 in 63%. A third of the participants with normal testosterone and comparable 11-ketotestosterone, had significantly lower dehydroepiandrosterone (p < 0.001). In these males 11-hydroxyandrostenedione (p < 0.001), 11-ketoandrostenedione (p < 0.01) and 11-hydroxytestosterone (p < 0.006) were decreased. Glucocorticoids were also lower: cortisol (p < 0.001), corticosterone (p < 0.001), cortisone (p < 0.006) 11-dehydrocorticosterone (p < 0.001) as well as cortisol:cortisone (p < 0.001). The presence of dehydroepiandrosterone was associated with 16-hydroxyprogesterone (p < 0.001), which was also significantly lower. Adrenal and gonadal steroid analysis showed unexpected steroid heterogeneity in normal young men. Testosterone constitutes 78% of the circulating free androgens with the 11-oxy androgens abundantly present in all participants significantly contributing 22%. In addition, a subset of men were identified with low circulating dehydroepiandrosterone who showed altered adrenal steroids with decreased glucocorticoids and decreased C11-oxy androgens. Analysis of the classical and 11-oxy androgens with the additional measurement of dehydroepiandrosterone and 16-hydroxyprogesterone may allow better diagnostic accuracy in androgen excess or deficiency.
Collapse
Affiliation(s)
- Amanda C Swart
- Department of Biochemistry, Stellenbosch University, Stellenbosch, 7600, South Africa.
- Department of Chemistry and Polymer Science, Stellenbosch University, Stellenbosch, 7600, South Africa.
| | - Desmaré van Rooyen
- Department of Biochemistry, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Therina du Toit
- Department of Biochemistry, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Bianca Heyns
- Department of Biochemistry, Stellenbosch University, Stellenbosch, 7600, South Africa
- Department of Chemistry and Polymer Science, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - John Molphy
- Research Institute of Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Mathew Wilson
- Institute of Sport, Exercise and Health, University College London, London, WC1E 6BT, UK
| | - Roisin Leahy
- Data Science Centre, School of Population Health, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin 2, Ireland
| | - Stephen L Atkin
- Royal College of Surgeons in Ireland, Busaiteen, Bahrain
- Weill Cornell Medicine Qatar, Doha, Qatar
| |
Collapse
|
4
|
Schiffer L, Oestlund I, Snoep JL, Gilligan LC, Taylor AE, Sinclair AJ, Singhal R, Freeman A, Ajjan R, Tiganescu A, Arlt W, Storbeck KH. Inhibition of the glucocorticoid-activating enzyme 11β-hydroxysteroid dehydrogenase type 1 drives concurrent 11-oxygenated androgen excess. FASEB J 2024; 38:e23574. [PMID: 38551804 DOI: 10.1096/fj.202302131r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/19/2024] [Accepted: 03/11/2024] [Indexed: 04/02/2024]
Abstract
Aldo-keto reductase 1C3 (AKR1C3) is a key enzyme in the activation of both classic and 11-oxygenated androgens. In adipose tissue, AKR1C3 is co-expressed with 11β-hydroxysteroid dehydrogenase type 1 (HSD11B1), which catalyzes not only the local activation of glucocorticoids but also the inactivation of 11-oxygenated androgens, and thus has the potential to counteract AKR1C3. Using a combination of in vitro assays and in silico modeling we show that HSD11B1 attenuates the biosynthesis of the potent 11-oxygenated androgen, 11-ketotestosterone (11KT), by AKR1C3. Employing ex vivo incubations of human female adipose tissue samples we show that inhibition of HSD11B1 results in the increased peripheral biosynthesis of 11KT. Moreover, circulating 11KT increased 2-3 fold in individuals with type 2 diabetes after receiving the selective oral HSD11B1 inhibitor AZD4017 for 35 days, thus confirming that HSD11B1 inhibition results in systemic increases in 11KT concentrations. Our findings show that HSD11B1 protects against excess 11KT production by adipose tissue, a finding of particular significance when considering the evidence for adverse metabolic effects of androgens in women. Therefore, when targeting glucocorticoid activation by HSD11B1 inhibitor treatment in women, the consequently increased generation of 11KT may offset beneficial effects of decreased glucocorticoid activation.
Collapse
Affiliation(s)
- Lina Schiffer
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - Imken Oestlund
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | - Jacky L Snoep
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
- Molecular Cell Biology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Lorna C Gilligan
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - Angela E Taylor
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - Alexandra J Sinclair
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - Rishi Singhal
- Upper GI Unit and Minimally Invasive Unit, Heartlands Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Adrian Freeman
- Emerging Innovations Unit, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Ramzi Ajjan
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
- NIHR Leeds Biomedical Research Center, Leeds Teaching Hospitals, NHS Trust, Leeds, UK
| | - Ana Tiganescu
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
- NIHR Leeds Biomedical Research Center, Leeds Teaching Hospitals, NHS Trust, Leeds, UK
| | - Wiebke Arlt
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College, London, UK
- Medical Research Council Laboratory of Medical Sciences, London, UK
| | - Karl-Heinz Storbeck
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
5
|
Oestlund I, Snoep J, Schiffer L, Wabitsch M, Arlt W, Storbeck KH. The glucocorticoid-activating enzyme 11β-hydroxysteroid dehydrogenase type 1 catalyzes the activation of testosterone. J Steroid Biochem Mol Biol 2024; 236:106436. [PMID: 38035948 DOI: 10.1016/j.jsbmb.2023.106436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/23/2023] [Accepted: 11/26/2023] [Indexed: 12/02/2023]
Abstract
Testosterone biosynthesis from its precursor androstenedione is thought to be exclusively catalysed by the 17β-hydroxysteroid dehydrogenases-HSD17B3 in testes, and AKR1C3 in the ovary, adrenal and peripheral tissues. Here we show for the first time that the glucocorticoid activating enzyme 11β-hydroxysteroid dehydrogenase type 1 (HSD11B1) can also catalyse the 17β-reduction of androstenedione to testosterone, using a combination of in vitro enzyme kinetic assays, mathematical modelling, and molecular docking analysis. Furthermore, we show that co-expression of HSD11B1 and AKR1C3 increases testosterone production several-fold compared to the rate observed with AKR1C3 only, and that HSD11B1 is likely to contribute significantly to testosterone production in peripheral tissues.
Collapse
Affiliation(s)
- Imken Oestlund
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | - Jacky Snoep
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa; Molecular Cell Biology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Lina Schiffer
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, University Hospital of Ulm, Ulm, Germany
| | - Wiebke Arlt
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College, London, UK; Medical Research Council Laboratory of Medical Sciences, London, UK
| | - Karl-Heinz Storbeck
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa; Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK.
| |
Collapse
|
6
|
Gent R, Van Rooyen D, Atkin SL, Swart AC. C11-hydroxy and C11-oxo C 19 and C 21 Steroids: Pre-Receptor Regulation and Interaction with Androgen and Progesterone Steroid Receptors. Int J Mol Sci 2023; 25:101. [PMID: 38203272 PMCID: PMC10778819 DOI: 10.3390/ijms25010101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/09/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024] Open
Abstract
C11-oxy C19 and C11-oxy C21 steroids have been identified as novel steroids but their function remains unclear. This study aimed to investigate the pre-receptor regulation of C11-oxy steroids by 11β-hydroxysteroid dehydrogenase (11βHSD) interconversion and potential agonist and antagonist activity associated with the androgen (AR) and progesterone receptors (PRA and PRB). Steroid conversions were investigated in transiently transfected HEK293 cells expressing 11βHSD1 and 11βHSD2, while CV1 cells were utilised for agonist and antagonist assays. The conversion of C11-hydroxy steroids to C11-oxo steroids by 11βHSD2 occurred more readily than the reverse reaction catalysed by 11βHSD1, while the interconversion of C11-oxy C19 steroids was more efficient than C11-oxy C21 steroids. Furthermore, 11-ketodihydrotestosterone (11KDHT), 11-ketotestosterone (11KT) and 11β-hydroxydihydrotestosterone (11OHDHT) were AR agonists, while only progestogens, 11β-hydroxyprogesterone (11βOHP4), 11β-hydroxydihydroprogesterone (11βOHDHP4), 11α-hydroxyprogesterone (11αOHP4), 11α-hydroxydihydroprogesterone (11αOHDHP4), 11-ketoprogesterone (11KP4), 5α-pregnan-17α-diol-3,11,20-trione (11KPdione) and 21-deoxycortisone (21dE) exhibited antagonist activity. C11-hydroxy C21 steroids, 11βOHP4, 11βOHDHP4 and 11αOHP4 exhibited PRA and PRB agonistic activity, while only C11-oxo steroids, 11KP4 and 11-ketoandrostanediol (11K3αdiol) demonstrated PRB agonism. While no steroids antagonised the PRA, 11OHA4, 11β-hydroxytestosterone (11OHT), 11KT and 11KDHT exhibited PRB antagonism. The regulatory role of 11βHSD isozymes impacting receptor activation is clear-C11-oxo androgens exhibit AR agonist activity; only C11-hydroxy progestogens exhibit PRA and PRB agonist activity. Regulation by the downstream metabolites of active C11-oxy steroids at the receptor level is apparent-C11-hydroxy and C11-oxo metabolites antagonize the AR and PRB, progestogens the former, androgens the latter. The findings highlight the intricate interplay between receptors and active as well as "inactive" C11-oxy steroids, suggesting novel regulatory tiers.
Collapse
Affiliation(s)
- Rachelle Gent
- Department of Biochemistry, Stellenbosch University, Stellenbosch 7600, South Africa; (R.G.)
| | - Desmaré Van Rooyen
- Department of Biochemistry, Stellenbosch University, Stellenbosch 7600, South Africa; (R.G.)
| | - Stephen L. Atkin
- School of Postgraduate Studies and Research, Royal College of Surgeons in Ireland Bahrain, Adliya 15503, Bahrain;
| | - Amanda C. Swart
- Department of Biochemistry, Stellenbosch University, Stellenbosch 7600, South Africa; (R.G.)
- Department of Chemistry and Polymer Science, Stellenbosch University, Stellenbosch 7600, South Africa
| |
Collapse
|
7
|
Swart AC, van Rooyen D, du Toit T. Investigating the biosynthesis and metabolism of 11β-hydroxyandrostenedione. Methods Enzymol 2023; 689:387-431. [PMID: 37802580 DOI: 10.1016/bs.mie.2023.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
The "rediscovery" 11β-hydroxyandrostenedione (11OHA4) placed the spotlight on this unique adrenal-derived hormone with researchers and clinicians once again focusing on the steroid's presence in endocrine pathology. Little was known about the steroid other than its chemical characterisation and that a mitochondrial cytochrome P450 enzyme catalysed the 11β-hydroxylation of 11OHA4. The fact that neither the biosynthesis nor metabolism of 11OHA4 had been fully characterised presented an ideal opportunity to investigate the metabolic pathways. In addition, methodologies and analytical tools have improved vastly since 11OHA4 was first identified in the 1950s. Cell models, recombinant DNA technology and steroid quantification using liquid chromatography mass spectrometry have greatly facilitated investigations in the field of steroidogenesis. Evident from the structure is that 11OHA4 can be metabolised by hydroxysteroid dehydrogenases and reductases acting on the C4/C5 double bond and on functional moieties at specific carbons on the cyclopentane-perhydro-phenanthrene backbone of the steroid. In this chapter, the biosynthesis and metabolism of 11OHA4 is followed using two strategies that complement each another; (i) human cell models either transiently transfected with recombinant DNA or expressing endogenous steroidogenic enzymes and (ii) steroid identification and quantification using high resolution mass spectrometry. These methodologies have proven invaluable in the determination of 11OHA4's metabolic route. Both strategies are presented with the focus on the accurate identification and quantification of steroids using UHPLC-MS/MS and UPC2-MS/MS. The protocols described in this chapter lay a sound foundation which can aid the researcher and be adapted and implement in future studies.
Collapse
Affiliation(s)
- Amanda C Swart
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa; Department of Chemistry, Stellenbosch University, Stellenbosch, South Africa.
| | - Desmaré van Rooyen
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | - Therina du Toit
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
8
|
Kley M, Moser SO, Winter DV, Odermatt A. In vitro methods to assess 11β-hydroxysteroid dehydrogenase type 1 activity. Methods Enzymol 2023; 689:121-165. [PMID: 37802569 DOI: 10.1016/bs.mie.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1) converts inactive 11-keto-glucocorticoids to their active 11β-hydroxylated forms. It also catalyzes the oxoreduction of other endogenous and exogenous substrates. The ubiquitously expressed 11β-HSD1 shows high levels in liver and other metabolically active tissues such as brain and adipose tissue. Pharmacological inhibition of 11β-HSD1 was found to ameliorate adverse metabolic effects of elevated glucocorticoids in rodents and humans, improve wound healing and delay skin aging, and enhance memory and cognition in rodent Alzheimer's disease models. Thus, there is an interest to develop 11β-HSD1 inhibitors for therapeutic purposes. This chapter describes in vitro methods to assess 11β-HSD1 enzyme activity for different purposes, be it in disease models, for the assessment of the kinetics of novel substrates or for the screening and characterization of inhibitors. 11β-HSD1 protein expression and preparations of the different biological samples are discussed first, followed by a description of a well-established and easily adaptable 11β-HSD1 enzyme activity assay. Finally, different readout methods are shortly described. This chapter should provide the reader with a toolbox of methods to assess 11β-HSD1 activity with instructions in the form of a decision tree for the choice and implementation of an appropriate enzyme activity assay.
Collapse
Affiliation(s)
- Manuel Kley
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland; Swiss Centre for Applied Human Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Seraina O Moser
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland; Swiss Centre for Applied Human Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Denise V Winter
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Alex Odermatt
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland; Swiss Centre for Applied Human Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland.
| |
Collapse
|
9
|
Storbeck KH. A commentary on the origins of 11-ketotestosterone. Eur J Endocrinol 2022; 187:C5-C8. [PMID: 36173704 DOI: 10.1530/eje-22-0820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 09/29/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Karl-Heinz Storbeck
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
10
|
Kothmann KH, Jons A, Wilhelmi B, Kasozi N, Graham L, Gent R, Atkin SL, Swart AC, Newell-Fugate AE. Non-invasive assessment of fecal glucocorticoid, progesterone, and androgen metabolites and microbiome in free-ranging southern white rhinoceros (Ceratotherium simum simum) in South Africa. Gen Comp Endocrinol 2022; 329:114099. [PMID: 35914652 DOI: 10.1016/j.ygcen.2022.114099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 07/14/2022] [Accepted: 07/26/2022] [Indexed: 11/04/2022]
Abstract
Increased poaching in northern South Africa has necessitated relocation of large numbers of southern white rhinoceros (Ceratotherium simum simum) to the Eastern Cape Province. The climate and grassland ecology of this province differ from that of northern South Africa which may impact the health of this species. This assessment of fecal steroid levels and microbiome in 10 free-ranging southern white rhinoceros in the Eastern Cape will provide insights into white rhinoceros physiology in this biome. Fecal steroid metabolites were analyzed using enzyme immunoassay (EIA) and ultra-performance convergence chromatography tandem mass spectrometry (UPC2-MS/MS). Fecal microbial composition was assessed via next generation sequencing. EIAs with antibodies raised against progesterone (P4; mouse monoclonal - CL425 clone), testosterone (T; rabbit polyclonal), corticosterone (B; sheep polyclonal) were utilized. Pregnant females had large quantities of fecal progesterone metabolites (FPMs) detected by CL425 EIA. Pregnant females also had native P4 and 11α-hydroxydihydroprogesterone (11αOHDHP4; 4-pregnen-11α-ol-3,20-dione) detected by UPC2-MS/MS but these concentrations were 1000-fold less than the concentrations of FPMs detected by the CL425 EIA. By contrast, non-pregnant females had FPM concentrations detected by CL425 EIA which were similar to native P4 and 11αOHDHP4 concentrations detected by UPC2-MS/MS. Mean fecal androgen metabolite (FAM) concentrations detected by the T EIA were similar between males and females. 11-ketoandrostenedione (11KA4) detected by UPC2-MS/MS was higher in females than males. However, there was no difference between males and females in the concentration of fecal glucocorticoid metabolites (FGMs) detected by the B EIA. Bacteroidia, followed by Clostridia, was the most abundant classes of fecal microbes. The unfiltered microbiome of females was more diverse than that of males. The core fecal microbiome of young rhinoceros had a higher observed species richness (Shannon diversity index, and Simpson diversity index) than that of old rhinoceros. In the alpha male, immobilization was associated with an increase in FGMs detected by 11-deoxycortisol (S) detected by UPC2-MS/MS coupled with decreased abundance of Spirochaetia. We detected substantially different FAM and FPM concentrations from those previously reported for both captive and wild white rhinoceros. Comparison of our UPC2-MS/MS and EIA results underscores the fact that most EIAs are highly cross reactive for many steroid metabolites. Our data also demonstrates a distinct effect of stress not only on FGMs but also on the fecal microbiome. This is the first non-invasive assessment of fecal steroid metabolites by UPC2-MS/MS and the fecal microbiome in wild white rhinoceros.
Collapse
Affiliation(s)
- K H Kothmann
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - A Jons
- Department of Molecular and Cellular Medicine, Health Science Center, Texas A&M University, College Station, TX 77843, USA
| | - B Wilhelmi
- Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140 South Africa
| | - N Kasozi
- Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140 South Africa
| | - L Graham
- Ikahala Veterinary Wildlife Services, Paterson 6131 South Africa
| | - R Gent
- Department of Biochemistry, Stellenbosch University, Stellenbosch 7600 South Africa
| | - S L Atkin
- Royal College of Surgeons in Ireland, Bahrain
| | - A C Swart
- Department of Biochemistry, Stellenbosch University, Stellenbosch 7600 South Africa; Department of Chemistry and Polymer Science, Stellenbosch University, Stellenbosch 7600 South Africa
| | - A E Newell-Fugate
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
11
|
Paulukinas RD, Mesaros CA, Penning TM. Conversion of Classical and 11-Oxygenated Androgens by Insulin-Induced AKR1C3 in a Model of Human PCOS Adipocytes. Endocrinology 2022; 163:6585535. [PMID: 35560164 PMCID: PMC9162389 DOI: 10.1210/endocr/bqac068] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Indexed: 11/19/2022]
Abstract
Polycystic ovary syndrome (PCOS) is the most prevalent endocrinopathy in women. A common symptom of PCOS is hyperandrogenism (AE); however, the source of these androgens is uncertain. Aldo-keto reductase family 1 member C3 (AKR1C3) catalyzes the formation of testosterone (T) and 5α-dihydrotestosterone (DHT) in peripheral tissues, which activate the androgen receptor (AR). AKR1C3 is induced by insulin in adipocytes and may be central in driving the AE in PCOS. We elucidated the conversion of both classical and 11-oxygenated androgens to potent androgens in a model of PCOS adipocytes. Using high-performance liquid chromatography (HPLC) discontinuous kinetic assays to measure product formation by recombinant AKR1C3, we found that the conversion of 11-keto-Δ4-androstene-3,17-dione (11K-4AD) to 11-ketotestosterone (11K-T) and 11-keto-5α-androstane-3,17-dione (11K-5AD) to 11-keto-5α-dihydrotestosterone (11K-DHT) were superior to the formation of T and DHT. We utilized a stable isotope dilution liquid chromatography high resolution mass spectrometric (SID-LC-HRMS) assay for the quantification of both classical and 11-oxygenated androgens in differentiated Simpson-Golabi-Behmel syndrome adipocytes in which AKR1C3 was induced by insulin. Adipocytes were treated with adrenal derived 11β-hydroxy-Δ4-androstene-3,17-dione (11β-OH-4AD), 11K-4AD, or Δ4-androstene-3,17-dione (4AD). The conversion of 11β-OH-4AD and 11K-4AD to 11K-T required AKR1C3. We also found that once 11K-T is formed, it is inactivated to 11β-hydroxy-testosterone (11β-OH-T) by 11β-hydroxysteroid dehydrogenase type 1 (HSD11B1). Our data reveal a unique role for HSD11B1 in protecting the AR from AE. We conclude that the 11-oxygenated androgens formed in adipocytes may contribute to the hyperandrogenic profile of PCOS women and that AKR1C3 is a potential therapeutic target to mitigate the AE of PCOS.
Collapse
Affiliation(s)
- Ryan D Paulukinas
- Department of Systems Pharmacology and Translational Therapeutics, Philadelphia, PA 19104, USA
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Clementina A Mesaros
- Department of Systems Pharmacology and Translational Therapeutics, Philadelphia, PA 19104, USA
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Trevor M Penning
- Correspondence: Dr. Trevor M. Penning, Department of Systems Pharmacology and Translational Therapeutics, 1315 BRB II/III, 421 Curie Blvd., Philadelphia, PA 19104-6061, USA.
| |
Collapse
|
12
|
du Toit T, Swart AC. Turning the spotlight on the C11-oxy androgens in human fetal development. J Steroid Biochem Mol Biol 2021; 212:105946. [PMID: 34171490 DOI: 10.1016/j.jsbmb.2021.105946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/16/2021] [Accepted: 06/20/2021] [Indexed: 11/28/2022]
Abstract
Research into the biosynthesis of C11-oxy C19 steroids during human fetal development, specifically fetal adrenal development and during the critical period of sex differentiation, is currently lacking. Cortisol, which possesses a C11-hydroxyl moiety has, however, been firmly established in this context. Compelling questions are whether the C11-oxy C19 steroids (11β-hydroxyandrostenedione, 11β-hydroxytestosterone, 11-ketoandrostenedione and 11-ketotestosterone [11KT]) and the C11-oxy C21 steroids (11β-hydroxyprogesterone and 11-ketoprogesterone) are biosynthesised during gestation, and whether these hormones circulate between the placenta and the developing fetus, and between the placenta and the mother. This review will consider the role of cortisol, 11KT and 11β-hydroxysteroid dehydrogenase type 2 (11βHSD2) in determining the sex of teleost fish, while these hormones and 11βHSD2 will also be discussed with regards to murine mammals. The focus of the review will shift to highlight the potential role of C11-oxy steroids in human fetal development based on the timely expression of steroidogenic enzymes in the adrenal, testes and ovary, as well as in the placenta; summarising reported evidence of C11-oxy steroids in neonatal life.
Collapse
Affiliation(s)
- Therina du Toit
- Department of Biochemistry, Stellenbosch University, Stellenbosch, 7600, South Africa.
| | - Amanda C Swart
- Department of Biochemistry, Stellenbosch University, Stellenbosch, 7600, South Africa; Department of Chemistry and Polymer Science, Stellenbosch University, Stellenbosch, 7600, South Africa
| |
Collapse
|
13
|
Turcu AF, Zhao L, Chen X, Yang R, Rege J, Rainey WE, Veldhuis JD, Auchus RJ. Circadian rhythms of 11-oxygenated C19 steroids and ∆5-steroid sulfates in healthy men. Eur J Endocrinol 2021; 185:K1-K6. [PMID: 34324429 PMCID: PMC8826489 DOI: 10.1530/eje-21-0348] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/27/2021] [Indexed: 11/08/2022]
Abstract
BACKGROUND Many hormones display distinct circadian rhythms, driven by central regulators, hormonal bioavailability, and half-life. A set of 11-oxygenated C19 steroids (11-oxyandrogens) and pregnenolone sulfate (PregS) are elevated in congenital adrenal hyperplasia and other disorders, but their circadian patterns have not been characterized. PARTICIPANTS AND METHODS Peripheral blood was collected every 2 h over 24 h from healthy volunteer men (10 young, 18-30 years, and 10 older, 60-80 years). We used mass spectrometry to quantify 15 steroids, including androstenedione (A4), testosterone (T), 11β-hydroxy- and 11-ketotestosterone (11OHT, 11KT),11β-hydroxy- and 11-ketoandrostenedione (11OHA4, 11KA4), and 4 ∆5-steroid sulfates. Diurnal models including mesor (rhythm adjusted median), peak, and nadir concentrations, acrophase, and amplitude were computed. RESULTS 11OHA4 followed a rhythm similar to cortisol: acrophase 8:00 h, nadir 21:00 h and were similar in young and old men. 11KT had similar diurnal patterns, but the peak was lower in older than in young men, as was the case for A4. All four steroid sulfates were higher in young vs older men. PregS and 17-hydroxypregnenolone sulfate (17OHPregS) showed sustained elevations between 8:00 and 18:00 h, and nadirs around midnight, while DHEAS and AdiolS displayed minimal diurnal variations. All 4 11-oxyandrogens correlated tightly with cortisol (r from 0.54 for 11OHT to 0.81 for 11OHA4, P < 0.0001 for all), but very weakly with T, supporting their adrenal origin and ACTH governance. CONCLUSIONS 11-Oxyandrogens, PregS, and 17OHPregS display distinct circadian and age variations, which should be accounted for when used as clinical biomarkers.
Collapse
Affiliation(s)
- Adina F Turcu
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, Michigan, USA
| | - Lili Zhao
- School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Xuan Chen
- School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Rebecca Yang
- Endocrine Research Unit, Mayo School of Graduate Medical Education, Center for Translational Science Activities, Mayo Clinic, Rochester, Minnesota, USA
| | - Juilee Rege
- Department of Physiology and Molecular Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - William E Rainey
- Department of Physiology and Molecular Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Johannes D Veldhuis
- Endocrine Research Unit, Mayo School of Graduate Medical Education, Center for Translational Science Activities, Mayo Clinic, Rochester, Minnesota, USA
| | - Richard J Auchus
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, Michigan, USA
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
14
|
Caron P, Turcotte V, Guillemette C. A quantitative analysis of total and free 11-oxygenated androgens and its application to human serum and plasma specimens using liquid-chromatography tandem mass spectrometry. J Chromatogr A 2021; 1650:462228. [PMID: 34090133 DOI: 10.1016/j.chroma.2021.462228] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/13/2021] [Accepted: 04/30/2021] [Indexed: 01/16/2023]
Abstract
Bioactive 11-oxygenated C19 adrenal-derived steroids (11-oxy C19) are potentially relevant in diverse endocrine and metabolic contexts. We report the development and validation of a liquid chromatography electrospray ionization tandem mass spectrometric method (LC-ESI-MS/MS) for the simultaneous quantification of seven 11-oxy C19 using 200 µL of plasma or serum. Sample preparation involved chemical derivatization using hydroxylamine after liquid-liquid extraction to improve specificity and sensitivity. The method allowed the quantitation of total 11-oxy C19 (free + sulfate and glucuronide conjugates) following enzymatic hydrolysis. This included the abundant precursor 11-hydroxyandrostenedione (11OHA4) and the most potent androgenic derivatives 11-keto-testosterone (11KT) and 11-keto-dihydrotestosterone (11KDHT), their abundant metabolites 11-hydroxyandrosterone (11OHAST) and 11-keto-androsterone (11KAST) potentially feeding back into the pool of potent androgens, in addition to 11-keto-androstenedione (11KA4) and 11-hydroxytestosterone (11OHT). Stable isotopes were used as internal standards, and calibrators and quality controls were prepared in the same matrix as the study samples. Performance was validated against the Food and Drug Administration Criteria. The method was sensitive with lower limit of quantification (LLOQ) values of 10 and 20 pg/mL for free and total 11-oxy C19, respectively. The applicability was demonstrated in men and women adult donors that showed sex-differences. All steroids were quantified well above LLOQ, except 11KDHT that remained undetectable suggesting interfering endogenous molecules present in non-derivatized samples in which a peak was observed. By providing accurate and reliable quantitative data, this method will permit to evaluate how profiling of 11-oxy C19 will be most informative as diagnostic, prognostic and/or theranostic tools.
Collapse
Affiliation(s)
- Patrick Caron
- Pharmacogenomics Laboratory, Centre Hospitalier Universitaire (CHU) de Québec - Université Laval Research Center and Faculty of Pharmacy, Laval University, Québec city, QC, Canada
| | - Véronique Turcotte
- Pharmacogenomics Laboratory, Centre Hospitalier Universitaire (CHU) de Québec - Université Laval Research Center and Faculty of Pharmacy, Laval University, Québec city, QC, Canada
| | - Chantal Guillemette
- Pharmacogenomics Laboratory, Centre Hospitalier Universitaire (CHU) de Québec - Université Laval Research Center and Faculty of Pharmacy, Laval University, Québec city, QC, Canada; Canada Research Chair in Pharmacogenomics, Canada.
| |
Collapse
|
15
|
Kupczyk D, Studzińska R, Baumgart S, Bilski R, Kosmalski T, Kołodziejska R, Woźniak A. A Novel N-Tert-Butyl Derivatives of Pseudothiohydantoin as Potential Target in Anti-Cancer Therapy. Molecules 2021; 26:molecules26092612. [PMID: 33947052 PMCID: PMC8125440 DOI: 10.3390/molecules26092612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 11/16/2022] Open
Abstract
Tumors are currently more and more common all over the world; hence, attempts are being made to explain the biochemical processes underlying their development. The search for new therapeutic pathways, with particular emphasis on enzymatic activity and its modulation regulating the level of glucocorticosteroids, may contribute to the development and implementation of new therapeutic options in the treatment process. Our research focuses on understanding the role of 11β-HSD1 and 11β-HSD2 as factors involved in the differentiation and proliferation of neoplastic cells. In this work, we obtained the 9 novel N-tert-butyl substituted 2-aminothiazol-4(5H)-one (pseudothiohydantoin) derivatives, differing in the substituents at C-5 of the thiazole ring. The inhibitory activity and selectivity of the obtained derivatives in relation to two isoforms of 11β-HSD were evaluated. The highest inhibitory activity for 11β-HSD1 showed compound 3h, containing the cyclohexane substituent at the 5-position of the thiazole ring in the spiro system (82.5% at a conc. 10 µM). On the other hand, the derivative 3f with the phenyl substituent at C-5 showed the highest inhibition of 11β-HSD2 (53.57% at a conc. of 10 µM). A low selectivity in the inhibition of 11β-HSD2 was observed but, unlike 18β-glycyrrhetinic acid, these compounds were found to inhibit the activity of 11β-HSD2 to a greater extent than 11β-HSD1, which makes them attractive for further research on their anti-cancer activity.
Collapse
Affiliation(s)
- Daria Kupczyk
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karłowicza 24, 85–092 Bydgoszcz, Poland; (R.B.); (R.K.); (A.W.)
- Correspondence: (D.K.); (R.S.)
| | - Renata Studzińska
- Department of Organic Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Jurasza 2, 85–089 Bydgoszcz, Poland; (S.B.); (T.K.)
- Correspondence: (D.K.); (R.S.)
| | - Szymon Baumgart
- Department of Organic Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Jurasza 2, 85–089 Bydgoszcz, Poland; (S.B.); (T.K.)
| | - Rafał Bilski
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karłowicza 24, 85–092 Bydgoszcz, Poland; (R.B.); (R.K.); (A.W.)
| | - Tomasz Kosmalski
- Department of Organic Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Jurasza 2, 85–089 Bydgoszcz, Poland; (S.B.); (T.K.)
| | - Renata Kołodziejska
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karłowicza 24, 85–092 Bydgoszcz, Poland; (R.B.); (R.K.); (A.W.)
| | - Alina Woźniak
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karłowicza 24, 85–092 Bydgoszcz, Poland; (R.B.); (R.K.); (A.W.)
| |
Collapse
|
16
|
Gomez-Sanchez EP, Gomez-Sanchez CE. 11β-hydroxysteroid dehydrogenases: A growing multi-tasking family. Mol Cell Endocrinol 2021; 526:111210. [PMID: 33607268 PMCID: PMC8108011 DOI: 10.1016/j.mce.2021.111210] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/02/2021] [Accepted: 02/07/2021] [Indexed: 02/06/2023]
Abstract
This review briefly addresses the history of the discovery and elucidation of the three cloned 11β-hydroxysteroid dehydrogenase (11βHSD) enzymes in the human, 11βHSD1, 11βHSD2 and 11βHSD3, an NADP+-dependent dehydrogenase also called the 11βHSD1-like dehydrogenase (11βHSD1L), as well as evidence for yet identified 11βHSDs. Attention is devoted to more recently described aspects of this multi-functional family. The importance of 11βHSD substrates other than glucocorticoids including bile acids, 7-keto sterols, neurosteroids, and xenobiotics is discussed, along with examples of pathology when functions of these multi-tasking enzymes are disrupted. 11βHSDs modulate the intracellular concentration of glucocorticoids, thereby regulating the activation of the glucocorticoid and mineralocorticoid receptors, and 7β-27-hydroxycholesterol, an agonist of the retinoid-related orphan receptor gamma (RORγ). Key functions of this nuclear transcription factor include regulation of immune cell differentiation, cytokine production and inflammation at the cell level. 11βHSD1 expression and/or glucocorticoid reductase activity are inappropriately increased with age and in obesity and metabolic syndrome (MetS). Potential causes for disappointing results of the clinical trials of selective inhibitors of 11βHSD1 in the treatment of these disorders are discussed, as well as the potential for more targeted use of inhibitors of 11βHSD1 and 11βHSD2.
Collapse
Affiliation(s)
| | - Celso E Gomez-Sanchez
- Department of Pharmacology and Toxicology, Jackson, MS, USA; Medicine (Endocrinology), Jackson, MS, USA; University of Mississippi Medical Center and G.V. (Sonny) Montgomery VA Medical Center(3), Jackson, MS, USA
| |
Collapse
|
17
|
Barnard L, du Toit T, Swart AC. Back where it belongs: 11β-hydroxyandrostenedione compels the re-assessment of C11-oxy androgens in steroidogenesis. Mol Cell Endocrinol 2021; 525:111189. [PMID: 33539964 DOI: 10.1016/j.mce.2021.111189] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/22/2021] [Accepted: 01/24/2021] [Indexed: 12/29/2022]
Abstract
Adrenal steroidogenesis has, for decades, been depicted as three biosynthesis pathways -the mineralocorticoid, glucocorticoid and androgen pathways with aldosterone, cortisol and androstenedione as the respective end products. 11β-hydroxyandrostenedione was not included as an adrenal steroid despite the adrenal output of this steroid being twice that of androstenedione. While it is the end of the line for aldosterone and cortisol, as it is in these forms that they exhibit their most potent receptor activities prior to inactivation and conjugation, 11β-hydroxyandrostenedione is another matter entirely. The steroid, which is weakly androgenic, has its own designated pathway yielding 11-ketoandrostenedione, 11β-hydroxytestosterone and the potent androgens, 11-ketotestosterone and 11-ketodihydrotestosterone, primarily in the periphery. Over the last decade, these C11-oxy C19 steroids have once again come to the fore with the rising number of studies contradicting the generally accepted notion that testosterone and it's 5α-reduced product, dihydrotestosterone, are the principal potent androgens in humans. These C11-oxy androgens have been shown to contribute to the androgen milieu in adrenal disorders associated with androgen excess and in androgen dependant disease progression. In this review, we will highlight these overlooked C11-oxy C19 steroids as well as the C11-oxy C21 steroids and their contribution to congenital adrenal hyperplasia, polycystic ovarian syndrome and prostate cancer. The focus is on new findings over the past decade which are slowly but surely reshaping our current outlook on human sex steroid biology.
Collapse
Affiliation(s)
- Lise Barnard
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Therina du Toit
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Amanda C Swart
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa; Department of Chemistry and Polymer Science, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa.
| |
Collapse
|
18
|
Glass SM, Reddish MJ, Child SA, Wilkey CJ, Stec DF, Guengerich FP. Characterization of human adrenal cytochrome P450 11B2 products of progesterone and androstenedione oxidation. J Steroid Biochem Mol Biol 2021; 208:105787. [PMID: 33189850 PMCID: PMC7954869 DOI: 10.1016/j.jsbmb.2020.105787] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/19/2020] [Accepted: 10/26/2020] [Indexed: 11/17/2022]
Abstract
Cytochrome P450 (P450) 11B1 and 11B2 both catalyze the 11β-hydroxylation of 11-deoxycorticosterone and the subsequent 18-hydroxylation of the product. P450 11B2, but not P450 11B1, catalyzes a further C-18 oxidation to yield aldosterone. 11-Oxygenated androgens are of interest, and 11-hydroxy progesterone has been reported to be a precursor of these. Oxidation of progesterone by purified recombinant P450 11B2 yielded a mono-hydroxy derivative as the major product, and co-chromatography with commercial standards and 2-D NMR spectroscopy indicated 11β-hydroxylation. 18-Hydroxyprogesterone and a dihydroxyprogesterone were also formed. Similarly, oxidation of androstenedione by P450 11B2 yielded 11β-hydroxyandrostenedione, 18-hydroxyandrostenedione, and a dihydroxyandrostenedione. The steady-state kinetic parameters for androstenedione and progesterone 11β-hydroxylation were similar to those reported for the classic substrate 11-deoxycorticosterone. The source of 11α-hydroxyprogesterone in humans remains unresolved.
Collapse
Affiliation(s)
- Sarah M Glass
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, United States
| | - Michael J Reddish
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, United States; Department of Chemistry and Fermentation Sciences, Appalachian State University, Boone, NC, 28608, United States
| | - Stella A Child
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, United States
| | - Clayton J Wilkey
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, United States
| | - Donald F Stec
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, 37122, United States
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, United States.
| |
Collapse
|
19
|
Steroid hormone analysis of adolescents and young women with polycystic ovarian syndrome and adrenocortical dysfunction using UPC 2-MS/MS. Pediatr Res 2021; 89:118-126. [PMID: 32247282 PMCID: PMC7541460 DOI: 10.1038/s41390-020-0870-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 01/07/2020] [Accepted: 03/11/2020] [Indexed: 11/08/2022]
Abstract
BACKGROUND We recently identified 35 women with polycystic ovarian syndrome (PCOS) who exhibited features of micronodular adrenocortical hyperplasia. Steroid hormone analysis can be more accurate using state-of-the-art ultra-performance convergence chromatography-tandem mass spectrometry (UPC2-MS/MS). We hypothesized that UPC2-MS/MS may be used to better define hormonally this distinct subgroup of patients with PCOS. METHODS Plasma from PCOS patients (n = 35) and healthy volunteers (HVs, n = 19) who all received dexamethasone testing was analyzed. Samples were grouped per dexamethasone responses and followed by UPC2-MS/MS analysis. When insufficient, samples were pooled from patients with similar responses to allow quantification over the low end of the assay. RESULTS The C11-oxy C19 (11β-hydroxyandrostenedione, 11keto-androstenedione, 11β-hydroxytestosterone, 11keto-testosterone):C19 (androstenedione, testosterone) steroid ratio was decreased by 1.75-fold in PCOS patients compared to HVs. Downstream steroid metabolites 11β-hydroxyandrosterone and 11keto-androsterone were also measurable. The C11-oxy C21 steroids, 11-hydroxyprogesterone and 11keto-dihydroprogesterone levels, were 1.2- and 1.7-fold higher in PCOS patients compared to HVs, respectively. CONCLUSIONS We hypothesized that UPC2-MS/MS may accurately quantify steroids, in vivo, and identify novel metabolites in a subgroup of patients with PCOS and adrenal abnormalities. Indeed, it appears that adrenal C11-oxy steroids have the potential of being used diagnostically to identify younger women and adolescents with PCOS who also have some evidence of micronodular adrenocortical hyperplasia. IMPACT Adrenal C11-oxy steroids may be clinically important in identifying young patients with PCOS and adrenal abnormalities. The steroids presented in our manuscript have not yet been considered in the clinical setting so far, and we believe that this study could represent a first focused step towards the characterization of a distinct subgroup of women with PCOS who may in fact be treated differently than the average patient with PCOS. This paper can change the understanding of PCOS as one disorder: it is in fact a heterogeneous condition. In addition, for the subgroup of patients with PCOS associated with adrenocortical dysfunction, our paper provides novel hormonal markers that can be used diagnostically. Finally, the paper also adds to the basic pathophysiological understanding of adrenocortical-ovarian interactions in steroidogenesis of young women and adolescent girls with PCOS.
Collapse
|
20
|
du Toit T, van Rooyen D, Stander MA, Atkin SL, Swart AC. Analysis of 52 C19 and C21 steroids by UPC2-MS/MS: Characterising the C11-oxy steroid metabolome in serum. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1152:122243. [DOI: 10.1016/j.jchromb.2020.122243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/22/2020] [Accepted: 06/11/2020] [Indexed: 02/04/2023]
|
21
|
Endo S, Morikawa Y, Kudo Y, Suenami K, Matsunaga T, Ikari A, Hara A. Human dehydrogenase/reductase SDR family member 11 (DHRS11) and aldo-keto reductase 1C isoforms in comparison: Substrate and reaction specificity in the reduction of 11-keto-C 19-steroids. J Steroid Biochem Mol Biol 2020; 199:105586. [PMID: 31926269 DOI: 10.1016/j.jsbmb.2020.105586] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/07/2020] [Accepted: 01/07/2020] [Indexed: 10/25/2022]
Abstract
Recent studies have shown that an adrenal steroid 11β-hydroxy-4-androstene-3,17-dione serves as the precursor to androgens, 11-ketotestosterone and 11-ketodihydrotestosterone (11KDHT). The biosynthetic pathways include the reduction of 3- and 17-keto groups of the androgen precursors 11-keto-C19-steroids, which has been reported to be mediated by three human enzymes; aldo-keto reductase (AKR)1C2, AKR1C3 and 17β-hydroxysteroid dehydrogenase (HSD) type-3. To explore the contribution of the enzymes in the reductive metabolism, we kinetically compared the substrate specificity for 11-keto-C19-steroids among purified recombinant preparations of four AKRs (1C1, 1C2,1C3 and 1C4) and DHRS11, which shows 17β-HSD activity. Although AKR1C1 did not reduce the 11-keto-C19-steroids, AKR1C3 and DHRS11 reduced 17-keto groups of 11-keto-4-androstene-3,17-dione, 11-keto-5α-androstane-3,17-dione (11K-Adione) and 11-ketoandrosterone with Km values of 5-28 μM. The 3-keto groups of 11KDHT and 11K-Adione were reduced by AKR1C4 (Km 1 μM) more efficiently than by AKR1C2 (Km 5 and 8 μM, respectively). GC/MS analysis of the products showed that DHRS11 acts as 17β-HSD, and that AKR1C2 and AKR1C4 are predominantly 3α-HSDs, but formed a minor 3β-metabolite from 11KDHT. Since DHRS11 was thus newly identified as 11-keto-C19-steroid reductase, we also investigated its substrate-binding mode by molecular docking and site-directed mutagenesis of Thr163 and Val200, and found the following structural features: 1). There is a space that accommodates the 11-keto group of the 11-keto-C19-steroids in the substrate-binding site. 2) Val200 is a critical determinant for exhibiting the strict 17β-HSD activity of the enzyme, because the Val200Leu mutation resulted in both significant impairment of the 17β-HSD activity and emergence of 3β-HSD activity towards 5α-androstanes including 11KDHT.
Collapse
Affiliation(s)
- Satoshi Endo
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu, 501-1196, Japan.
| | - Yoshifumi Morikawa
- Forensic Science Laboratory, Gifu Prefectural Police Headquarters, Gifu, 500-8501, Japan
| | - Yudai Kudo
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Koichi Suenami
- Forensic Science Laboratory, Gifu Prefectural Police Headquarters, Gifu, 500-8501, Japan
| | - Toshiyuki Matsunaga
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Akira Ikari
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Akira Hara
- Faculty of Engineering, Gifu University, Gifu, 501-1193, Japan
| |
Collapse
|
22
|
Abstract
The adrenal gland is a source of sex steroid precursors, and its activity is particularly relevant during fetal development and adrenarche. Following puberty, the synthesis of androgens by the adrenal gland has been considered of little physiologic importance. Dehydroepiandrosterone (DHEA) and its sulfate, DHEAS, are the major adrenal androgen precursors, but they are biologically inactive. The second most abundant unconjugated androgen produced by the human adrenals is 11β-hydroxyandrostenedione (11OHA4). 11-Ketotestosterone, a downstream metabolite of 11OHA4 (which is mostly produced in peripheral tissues), and its 5α-reduced product, 11-ketodihydrotestosterone, are bioactive androgens, with potencies equivalent to those of testosterone and dihydrotestosterone. These adrenal-derived androgens all share an oxygen atom on carbon 11, so we have collectively termed them 11-oxyandrogens. Over the past decade, these androgens have emerged as major components of several disorders of androgen excess, such as congenital adrenal hyperplasia, premature adrenarche and polycystic ovary syndrome, as well as in androgen-dependent tumours, such as castration-resistant prostate cancer. Moreover, in contrast to the more extensively studied, traditional androgens, circulating concentrations of 11-oxyandrogens do not demonstrate an age-dependent decline. This Review focuses on the rapidly expanding knowledge regarding the implications of 11-oxyandrogens in human physiology and disease.
Collapse
Affiliation(s)
- Adina F Turcu
- Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA.
| | - Juilee Rege
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Richard J Auchus
- Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - William E Rainey
- Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
23
|
van Rooyen D, Yadav R, Scott EE, Swart AC. CYP17A1 exhibits 17αhydroxylase/17,20-lyase activity towards 11β-hydroxyprogesterone and 11-ketoprogesterone metabolites in the C11-oxy backdoor pathway. J Steroid Biochem Mol Biol 2020; 199:105614. [PMID: 32007561 DOI: 10.1016/j.jsbmb.2020.105614] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 10/25/2022]
Abstract
Cytochrome P450 17α-hydroxylase/17,20-lyase (CYP17A1) plays a pivotal role in the regulation of adrenal and gonadal steroid hormone biosynthesis. More recent studies highlighted the enzyme's role in the backdoor pathway leading to androgen production. Increased CYP17A1 activity in endocrine disorders and diseases are associated with elevated C21 and C19 steroids which include 17α-hydroxyprogesterone and androgens, as well as C11-oxy C21 and C11-oxy C19 steroids. We previously reported that 11β-hydroxyprogesterone (11OHP4), 21-deoxycortisol (21dF) and their keto derivatives are converted by 5α-reductases and hydroxysteroid dehydrogenases yielding C19 steroids in the backdoor pathway. In this study the 17α-hydroxylase and 17,20-lyase activity of CYP17A1 towards the unconventional C11-oxy C21 steroid substrates and their 5α- and 3α,5α-reduced metabolites was investigated in transfected HEK-293 cells. CYP17A1 catalysed the 17α-hydroxylation of 11OHP4 to 21dF and 11-ketoprogesterone (11KP4) to 21-deoxycortisone (21dE) with negligible hydroxylation of their 5α-reduced metabolites while no lyase activity was detected. The 3α,5α-reduced C11-oxy C21 steroids-5α-pregnan-3α,11β-diol-20-one (3,11diOH-DHP4) and 5α-pregnan-3α-ol-11,20-dione (alfaxalone) were rapidly hydroxylated to 5α-pregnan-3α,11β,17α-triol-20-one (11OH-Pdiol) and 5α-pregnan-3α,17α-diol-11,20-dione (11K-Pdiol), with the lyase activity subsequently catalysing to conversion to the C11-oxy C19 steroids, 11β-hydroxyandrosterone and 11-ketoandrosterone, respectively. Docking of 11OHP4, 11KP4 and the 5α-reduced metabolites, 5α-pregnan-11β-ol-3,20-dione (11OH-DHP4) and 5α-pregnan-3,11,20-trione (11K-DHP4) with human CYP17A1 showed minimal changes in the orientation of these C11-oxy C21 steroids in the active pocket when compared with the binding of progesterone suggesting the 17,20-lyase is impaired by the C11-hydroxyl and keto moieties. The structurally similar 3,11diOH-DHP4 and alfaxalone showed a greater distance between C17 and the heme group compared to the natural substrate, 17α-hydroxypregnenolone potentially allowing more orientational freedom and facilitating the conversion of the C11-oxy C21 to C11-oxy C19 steroids. In summary, our in vitro assays showed that while CYP17A1 readily hydroxylated 11OHP4 and 11KP4, the enzyme was unable to catalyse the 17,20-lyase reaction of these C11-oxy C21 steroid products. Although CYP17A1 exhibited no catalytic activity towards the 5α-reduced intermediates, once the C4-C5 double bond and the keto group at C3 were reduced, both the hydroxylation and lyase reactions proceeded efficiently. These findings show that the C11-oxy C21 steroids could potentially contribute to the androgen pool in tissue expressing steroidogenic enzymes in the backdoor pathway.
Collapse
Affiliation(s)
- Desmaré van Rooyen
- Biochemistry Department, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Rahul Yadav
- Medicinal Chemistry Department, University of Michigan, Ann Arbor, MI 48109, United States of America; Department of Chemistry, Mississippi State University, Mississippi State, MS 39762, United States of America
| | - Emily E Scott
- Medicinal Chemistry Department, University of Michigan, Ann Arbor, MI 48109, United States of America; Departments of Pharmacology and Biological Chemistry and Biophysics Program, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Amanda C Swart
- Biochemistry Department, Stellenbosch University, Stellenbosch 7600, South Africa.
| |
Collapse
|
24
|
Swart AC, van Rooyen D, Gent R, du Toit T. CYP11B and CYP17A1 in the Biosynthesis and Metabolism of C11‐oxy Steroids. FASEB J 2020. [DOI: 10.1096/fasebj.2020.34.s1.05214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
25
|
Wright C, O’Day P, Alyamani M, Sharifi N, Auchus RJ. Abiraterone acetate treatment lowers 11-oxygenated androgens. Eur J Endocrinol 2020; 182:413-421. [PMID: 32045360 PMCID: PMC7096060 DOI: 10.1530/eje-19-0905] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 02/10/2020] [Indexed: 01/13/2023]
Abstract
CONTEXT The human adrenal is the dominant source of androgens in castration-resistant prostate cancer (CRPC) and classic 21-hydroxylase deficiency (21OHD). Abiraterone, derived from the prodrug abiraterone acetate (AA), inhibits the activity of cytochrome P450 17-hydroxylase/17,20-lyase (CYP17A1), the enzyme required for all androgen biosynthesis. AA treatment effectively lowers testosterone and androstenedione in 21OHD and CRPC patients. The 11-oxygenated androgens are major adrenal-derived androgens, yet little is known regarding the effects of AA administration on 11-oxygenated androgens. OBJECTIVE To test the hypothesis that AA therapy decreases 11-oxygenated androgens. DESIGN Samples were obtained from 21OHD or CRPC participants in AA or AA plus prednisone (AAP)-treatment studies, respectively. METHODS We employed liquid chromatography-tandem mass spectrometry (LC-MS/MS) to measure the 11-oxygenated androgens, 11β-hydroxyandrostenedione, 11-ketoandrostenedione, 11β-hydroxytestosterone, and 11-ketotestosterone, in plasma or serum samples from six 21OHD and six CRPC patients before and after treatment with AA or AAP, respectively. RESULTS In CRPC patients, administration of AAP (1000 mg/day AA with prednisone and medical castration) lowered all four 11-oxygenated androgens to below the lower limits of quantitation (<0.1-0.3 nmol/L), equivalent to 64-94% reductions from baseline. In 21OHD patients, administration of AA (100-250 mg/day for 6 days) reduced all 11-oxygenated androgens by on average 56-77% from baseline. CONCLUSIONS We conclude that AA and AAP therapies markedly reduce the production of the adrenal-derived 11-oxygenated androgens, both in patients with high (21OHD) or normal (CRPC) 11-oxygenated androgens at baseline, respectively. Reduction of 11-oxygenated androgens is an important aspect of AA and AAP pharmacology.
Collapse
Affiliation(s)
- Connor Wright
- Division of Metabolism, Diabetes, and Endocrinology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109
| | - Patrick O’Day
- Division of Metabolism, Diabetes, and Endocrinology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109
| | - Mohammed Alyamani
- Genitourinary Malignancies Research Center, Lerner Research Institute
| | - Nima Sharifi
- Genitourinary Malignancies Research Center, Lerner Research Institute
- Department of Urology, Glickman Urological and Kidney Institute
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Richard J. Auchus
- Division of Metabolism, Diabetes, and Endocrinology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
26
|
Barnard M, Mostaghel EA, Auchus RJ, Storbeck KH. The role of adrenal derived androgens in castration resistant prostate cancer. J Steroid Biochem Mol Biol 2020; 197:105506. [PMID: 31672619 PMCID: PMC7883395 DOI: 10.1016/j.jsbmb.2019.105506] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/17/2019] [Accepted: 10/22/2019] [Indexed: 01/02/2023]
Abstract
Castration resistant prostate cancer (CRPC) remains androgen dependant despite castrate levels of circulating testosterone following androgen deprivation therapy, the first line of treatment for advanced metstatic prostate cancer. CRPC is characterized by alterations in the expression levels of steroidgenic enzymes that enable the tumour to derive potent androgens from circulating adrenal androgen precursors. Intratumoral androgen biosynthesis leads to the localized production of both canonical androgens such as 5α-dihydrotestosterone (DHT) as well as less well characterized 11-oxygenated androgens, which until recently have been overlooked in the context of CRPC. In this review we discuss the contribution of both canonical and 11-oxygenated androgen precursors to the intratumoral androgen pool in CRPC. We present evidence that CRPC remains androgen dependent and discuss the alterations in steroidogenic enzyme expression and how these affect the various pathways to intratumoral androgen biosynthesis. Finally we summarize the current treatment strategies for targeting adrenal derived androgen biosynthesis.
Collapse
Affiliation(s)
- Monique Barnard
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | - Elahe A Mostaghel
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Department of Medicine, University of Washington, Seattle, WA, USA; Geriatric Research, Education and Clinical Center, VA Puget Sound Health Care System, Seattle, WA, USA
| | - Richard J Auchus
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI, USA; Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - Karl-Heinz Storbeck
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa.
| |
Collapse
|
27
|
Ni CM, Huang WL, Jiang YM, Xu J, Duan R, Zhu YL, Zhu XP, Fan XM, Luo GA, Wang YM, Li YY, He Q, Xu L. Improving the accuracy and efficacy of diagnosing polycystic ovary syndrome by integrating metabolomics with clinical characteristics: study protocol for a randomized controlled trial. Trials 2020; 21:169. [PMID: 32046752 PMCID: PMC7014640 DOI: 10.1186/s13063-020-4060-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 01/09/2020] [Indexed: 12/17/2022] Open
Abstract
Background Polycystic ovary syndrome (PCOS) is a complex endocrine syndrome with poorly understood mechanisms. To provide patients with PCOS with individualized therapy, it is critical to precisely diagnose the phenotypes of the disease. However, the criteria for diagnosing the different phenotypes are mostly based on symptoms, physical examination and laboratory results. This study aims to compare the accuracy and efficacy of diagnosing PCOS by integrating metabolomic markers with common clinical characteristics. Methods This is a prospective, multicenter, analyst-blinded, randomized controlled trial. Participants will be grouped into (1) people without PCOS (healthy control group), (2) patients diagnosed with PCOS based on clinical indices (experimental group 1), and (3) patients diagnosed with PCOS based on metabolomic indices (experimental group 2). A total of 276 participants, including 60 healthy people and 216 patients with PCOS, will be recruited. The 216 patients with PCOS will be randomly assigned to the two experimental groups in a 1:1 ratio, and each group will receive a different 6-month treatment. The primary outcome for the experimental groups will be the effect of PCOS treatment. Discussion The results of this trial should help to determine whether using metabolomic indices is more accurate and effective than using clinical characteristics in diagnosing the phenotypes of PCOS. The results could provide a solid foundation for the accurate diagnosis of different PCOS subgroups and for future research on individualized PCOS therapy. Trial registration Chinese Clinical Trial Registry, ID: ChiCTR-INR-1800016346. Registered 26 May 2018.
Collapse
Affiliation(s)
- Cheng-Ming Ni
- Department of Endocrinology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Nanjing Medical University, Wuxi, 214023, China
| | - Wen-Long Huang
- Department of Endocrinology, Jiangyin People's Hospital, Wuxi, 214400, China
| | - Yan-Min Jiang
- Department of Endocrinology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Nanjing Medical University, Wuxi, 214023, China
| | - Juan Xu
- Department of Endocrinology, Jiangyin People's Hospital, Wuxi, 214400, China
| | - Ru Duan
- Department of Good Clinical Practice (GCP), The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214023, China
| | - Yun-Long Zhu
- Department of Endocrinology, The Affiliated Wuxi Maternal and Child Health Centers Clinical Hospital of Nanjing Medical University, Wuxi, 214023, China
| | - Xu-Ping Zhu
- Department of Endocrinology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Nanjing Medical University, Wuxi, 214023, China
| | - Xue-Mei Fan
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100000, China
| | - Guo-An Luo
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100000, China
| | - Yi-Ming Wang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100000, China
| | - Yan-Yu Li
- Department of Endocrinology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Nanjing Medical University, Wuxi, 214023, China
| | - Qing He
- Department of Good Clinical Practice (GCP), The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214023, China.
| | - Lan Xu
- Department of Endocrinology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Nanjing Medical University, Wuxi, 214023, China.
| |
Collapse
|
28
|
du Toit T, Swart AC. The 11β-hydroxyandrostenedione pathway and C11-oxy C 21 backdoor pathway are active in benign prostatic hyperplasia yielding 11keto-testosterone and 11keto-progesterone. J Steroid Biochem Mol Biol 2020; 196:105497. [PMID: 31626910 DOI: 10.1016/j.jsbmb.2019.105497] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/07/2019] [Accepted: 10/08/2019] [Indexed: 01/07/2023]
Abstract
In clinical approaches to benign prostatic hyperplasia (BPH) and prostate cancer (PCa), steroidogenesis or the disruption thereof is the main thrust in treatments restricting active androgen production. Extensive studies have been undertaken focusing on testosterone and dihydrotestosterone (DHT). However, the adrenal C11-oxy C19 steroid, 11β-hydroxyandrostenedione (11OHA4), also contributes to the active androgen pool in the prostate microenvironment, and while it has been shown to impact castration resistant prostate cancer, the C11-oxy C19 steroids together with the C11-oxy C21 steroids have not been studied in BPH. The study firstly investigated the metabolism of these adrenal steroids in the BPH-1 model. Comprehensive profiles identified 11keto-testosterone as the predominant active androgen in the metabolism of the C11-oxy C19 steroids, and we identified, for the first time, 11β-hydroxy-5α-androstane-3α,17β-diol, a novel steroid in the 11OHA4-pathway. Analysis of the inactivation and reactivation of the metabolites showed that DHT is more readily inactivated than 11keto-dihydrotestosterone (11KDHT). The conversion of 11β-hydroxyprogesterone (11βOHPROG) yielded 11keto-progesterone (11KPROG), while the latter yielded 11keto-dihydroprogesterone (11KDHPROG). BPH tissue analysis identified high levels of 11β-hydroxyandrosterone (4-14 ng/g) and 11keto-androsterone (9-160 ng/g), together with androstenedione (A4; ∼7.5 ng/g). The major C11-oxy C21 steroids detected were 11βOHPROG (∼46 ng/g), 11KPROG (∼130 ng/g) as well as 11KDHPROG (∼282 ng/g). While circulatory 11βOHPROG was detected below the limit of quantification, 11KPROG and 11KDHPROG were detected at 6 and 8.5 nmol/L, respectively. Glucuronide derivatives of both 11KPROG and pregnanetriol were also detected. 11OHA4 was the major free androgen in circulation at 85.9 nmol/L, ±12-fold higher than A4, together with 5α-androstane-3α,17β-diol quantified at 69.3 nmol/L. Circulatory C11-oxy C19 steroids levels were also significantly higher (8-fold) than the C11-oxy C21 steroid levels, while the former were similar to the C19 steroid levels, in contrast to levels in PCa. The study highlights the contribution of adrenal C11-oxy steroids to the androgen pool in BPH underscoring their limited reactivation and elimination, and significant inter-individual variations regarding steroid levels and conjugation. Targeted steroid metabolome analysis is critical to understanding prostate steroidogenesis and disease progression, and analysis of circulatory C11-oxy C19 and C11-oxy C21 steroids, together with intraprostatic levels, add to our current understanding of BPH.
Collapse
Affiliation(s)
- Therina du Toit
- Department of Biochemistry, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Amanda C Swart
- Department of Biochemistry, Stellenbosch University, Stellenbosch, 7600, South Africa.
| |
Collapse
|
29
|
Tributyltin and triphenyltin induce 11β-hydroxysteroid dehydrogenase 2 expression and activity through activation of retinoid X receptor α. Toxicol Lett 2020; 322:39-49. [PMID: 31927052 DOI: 10.1016/j.toxlet.2020.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/17/2019] [Accepted: 01/05/2020] [Indexed: 02/07/2023]
Abstract
Exposure to the environmental pollutants organotins is of toxicological concern for the marine ecosystem and sensitive human populations, including pregnant women and their unborn children. Using a placenta cell model, we investigated whether organotins at nanomolar concentrations affect the expression and activity of 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2). 11β-HSD2 represents a placental barrier controlling access of maternal glucocorticoids to the fetus. The organotins tributyltin (TBT) and triphenyltin (TPT) induced 11β-HSD2 expression and activity in JEG-3 placenta cells, an effect confirmed at the mRNA level in primary human trophoblast cells. Inhibition/knock-down of retinoid X receptor alpha (RXRα) in JEG-3 cells reduced the effect of organotins on 11β-HSD2 activity, mRNA and protein levels, revealing involvement of RXRα. Experiments using RNA and protein synthesis inhibitors indicated that the effect of organotins on 11β-HSD2 expression was direct and caused by increased transcription. Induction of placental 11β-HSD2 activity by TBT, TPT and other endocrine disrupting chemicals acting as RXRα agonists may affect placental barrier function by altering the expression of glucocorticoid-dependent genes and resulting in decreased availability of active glucocorticoids for the fetus, disturbing development and increasing the risk for metabolic and cardiovascular complications in later life.
Collapse
|
30
|
Gent R, du Toit T, Swart AC. 11α-Hydroxyprogesterone, a potent 11β-hydroxysteroid dehydrogenase inhibitor, is metabolised by steroid-5α-reductase and cytochrome P450 17α-hydroxylase/17,20-lyase to produce C11α-derivatives of 21-deoxycortisol and 11-hydroxyandrostenedione in vitro. J Steroid Biochem Mol Biol 2019; 191:105369. [PMID: 31039398 DOI: 10.1016/j.jsbmb.2019.04.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/19/2019] [Accepted: 04/22/2019] [Indexed: 12/17/2022]
Abstract
11α-Hydroxyprogesterone (11αOHP4) and 11β-hydroxyprogesterone (11βOHP4) have been reported to be inhibitors of 11β-hydroxysteroid dehydrogenase (11βHSD) type 2, together with 11β-hydroxytestosterone and 11β-hydroxyandrostenedione, and their C11-keto derivatives being inhibitors of 11βHSD1. Our in vitro assays in transiently transfected HEK293 cells, however, show that 11αOHP4 is a potent inhibitor of 11βHSD2 and while this steroid does not serve as a substrate for the enzyme, the aforementioned C11-oxy steroids are indeed substrates for both 11βHSD isozymes. 11βOHP4 is metabolised by 11βHSD2 yielding 11-ketoprogesterone with 11βHSD1 catalysing the reverse reaction, similar to the reduction of the other C11-oxy steroids. In the same model system, novel 11αOHP4 metabolites were detected in its conversion by steroid-5α-reductase (SRD5A) types 1 and 2 yielding 11α-hydroxydihydroprogesterone and its conversion by cytochrome P450 17A1 (CYP17A1) yielding the hydroxylase product, 11α,17α-dihydroxyprogesterone, and the 17,20 lyase product, 11α-hydroxyandrostenedione. We also detected both 11αOHP4 and 11βOHP4 in prostate cancer tissue- ∼23 and ∼32 ng/g respectively with 11KP4 levels >300 ng/g. In vitro assays in PC3 and LNCaP prostate cancer cell models, showed that the metabolism of 11αOHP4 and 11βOHP4 was comparable. In LNCaP cells expressing CYP17A1, 11αOHP4 and 11βOHP4 were metabolised with negligible substrate, 4%, remaining after 48 h, while the steroid substrate 11β,17α-dihydroxyprogesterone (21dF) was metabolised to C11-keto C19 steroids yielding 11-ketotestosterone. Despite the fact that 11αOHP4 is not metabolised by 11βHSD2, it is a substrate for SRD5A and CYP17A1, yielding C11α-hydroxy C19 steroids as well as the C11α-hydroxy derivative of 21dF-the latter associated with clinical conditions characterised by androgen excess. With our data showing that 11αOHP4 is present at high levels in prostate cancer tissue, the steroid may serve as a precursor to unique C11α-hydroxy C19 steroids. The potential impact of 11αOHP4 and its metabolites on human pathophysiology can however only be fully assessed once C11α-hydroxyl metabolite levels are comprehensively analysed.
Collapse
Key Words
- 11-hydroxyprogesterone (11OHP4, 4-PREGNEN-11β-OL-3,20-DIONE)
- 11-ketoprogesterone (11KP4, 4-PREGNEN-3,11,20-TRIONE)
- 11-ketotestosterone (11KT, 4-ANDROSTEN-17β-OL-3,11-DIONE)
- 21-deoxycortisol (21-desoxycortisol, 21dF, 4-PREGNEN-11β,17-DIOL-3,20-DIONE)
- 21-hydroxylase deficiency (21OHD, 21-OH CAH)
- Congenital adrenal hyperplasia(CAH)
- Cytochrome P450 17α-hydroxylase/17,20-lyase (CYP17A1, P450c17)
- LNCaP and PC3 prostate cancer cells
Collapse
Affiliation(s)
- Rachelle Gent
- Department of Biochemistry, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Therina du Toit
- Department of Biochemistry, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Amanda C Swart
- Department of Biochemistry, Stellenbosch University, Stellenbosch, 7600, South Africa.
| |
Collapse
|