1
|
He X, Bai Q, Zhang X, Zhang L. MgCl 2 Attenuates ox-LDL-Induced Vascular Smooth Muscle-Derived Foam Cells Pyroptosis by Downregulating the TLR4/NF-κB Signaling Pathway. Biol Trace Elem Res 2023; 201:5242-5256. [PMID: 36719541 DOI: 10.1007/s12011-023-03585-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/24/2023] [Indexed: 02/01/2023]
Abstract
Pyroptosis is a type of programmed cell death that is generally upregulated during atherosclerosis (AS). Magnesium, an important cation in the body, has exhibited an antiatherosclerotic effect. We collected AS model datasets from the Gene Expression Omnibus (GEO) and explored the correlation between pyroptosis and AS through a series of bioinformatics methods. We next investigated the impact of oxidized low-density lipoprotein (ox-LDL) on primary cultured vascular smooth muscle cells (VSMCs) foaminess and pyroptosis. Finally, foam cells were preconditioned with different concentrations of MgCl2 to explore its influence on ox-LDL-induced VSMCs pyroptosis. NLRP3-mediated pyroptosis plays a core role in regulating AS progression as shown by bioinformatic analysis. Ox-LDL (50/75/100 mg/L) increased CE/TE ratio (> 50%) in VSMCs and prompted VSMC-derived foam cell formation, and (75/100 mg/L) ox-LDL-induced pyroptosis. Compared to 1 mmol/L MgCl2, 10 mmol/L MgCl2 significantly downregulated the expression of pyroptosis related molecules in VSMCs induced by 75 mg/L ox-LDL, including NLRP3, ASC, caspase-1, and GSDMD. The secretion of IL-1β, IL-18, and LDH was also inhibited by MgCl2. According to CCK-8 and Hoechst 33,342/PI staining, the damage to VSMCs viability induced by ox-LDL was ameliorated by MgCl2. In addition, MgCl2 attenuated the upregulation of TLR4, IKKβ, and p65 and the downregulation of IκBα in VSMCs induced by ox-LDL. The present study demonstrated that pyroptosis-related genes were the core genes in AS. We also revealed the effect and underlying mechanism of MgCl2 on ox-LDL-induced VSMCs pyroptosis, suggesting that MgCl2 has promising clinical applications for AS pyroptosis prevention and treatment.
Collapse
Affiliation(s)
- Xiao He
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin, 150001, Heilongjiang Province, China
| | - Qingquan Bai
- Department of Hepatology & Gastroenterology, Charité University Medical Center, Augustenburger Pl. 1, 13353, Berlin, Germany
| | - Xiaosi Zhang
- Metro-Medic Clinic, 1538 Sherbrooke Ouest, Suite 100, Montreal, QC, H3G 1L5, Canada.
| | - Liming Zhang
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin, 150001, Heilongjiang Province, China.
| |
Collapse
|
2
|
Gu WJ, Duan XJ, Liu XZ, Cen Y, Tao LY, Lyu J, Yin HY. Association of magnesium sulfate use with mortality in critically ill patients with sepsis: a retrospective propensity score-matched cohort study. Br J Anaesth 2023; 131:861-870. [PMID: 37684164 DOI: 10.1016/j.bja.2023.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/21/2023] [Accepted: 08/02/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND Trials have demonstrated lower rates of acute kidney injury in critically ill patients receiving magnesium supplementation, but they have yielded conflicting results regarding mortality. METHODS This is a retrospective cohort study based on the MIMIC-IV (Medical Information Mart in Intensive Care-IV) database. Adult critically ill patients with sepsis were included in the analysis. The exposure was magnesium sulfate use during ICU stay. The primary outcome was 28-day all-cause mortality. Propensity score matching (PSM) was conducted at a 1:1 ratio. Multivariable analyses were used to adjust for confounders. RESULTS The pre-matched and propensity score-matched cohorts included 10 999 and 6052 patients, respectively. In the PSM analysis, 28-day all-cause mortality rate was 20.2% (611/3026) in the magnesium sulfate use group and 25.0% (757/3026) in the no use group. Magnesium sulfate use was associated with lower 28-day all-cause mortality (hazard ratio [HR], 0.70; 95% CI, 0.61-0.79; P<0.001). Lower mortality was observed regardless of baseline serum magnesium status: for hypomagnesaemia, HR, 0.64; 95% confidence interval (CI), 0.45-0.93; P=0.020; for normomagnesaemia, HR, 0.70; 95% CI, 0.61-0.80; P<0.001. Magnesium sulfate use was also associated with lower ICU mortality (odds ratio [OR], 0.52; 95% CI, 0.42-0.64; P<0.001), lower in-hospital mortality (OR, 0.65; 95% CI, 0.55-0.77; P<0.001), and renal replacement therapy (OR, 0.67; 95% CI, 0.52-0.87; P=0.002). A sensitivity analysis using the entire cohort also demonstrated lower 28-day all-cause mortality (HR, 0.62; 95% CI, 0.56-0.69; P<0.001). CONCLUSIONS Magnesium sulfate use was associated with lower mortality in critically ill patients with sepsis. Prospective studies are needed to verify this finding.
Collapse
Affiliation(s)
- Wan-Jie Gu
- Department of Intensive Care Unit, The First Affiliated Hospital of Jinan University, Guangzhou, China; Department of Clinical Research, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiang-Jie Duan
- Department of Infectious Diseases, The First People's Hospital of Changde City, Changde, China
| | - Xiao-Zhu Liu
- Medical Data Science Academy, Chongqing Medical University, Chongqing, China
| | - Yun Cen
- Department of Intensive Care Unit, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Li-Yuan Tao
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, China
| | - Jun Lyu
- Department of Clinical Research, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| | - Hai-Yan Yin
- Department of Intensive Care Unit, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| |
Collapse
|
3
|
Liao Z, Fu L, Li P, Wu J, Yuan X, Ning C, Ding Z, Sui X, Liu S, Guo Q. Incorporation of Magnesium Ions into an Aptamer-Functionalized ECM Bioactive Scaffold for Articular Cartilage Regeneration. ACS APPLIED MATERIALS & INTERFACES 2023; 15:22944-22958. [PMID: 37134259 DOI: 10.1021/acsami.3c02317] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The regeneration and reconstruction of articular cartilage (AC) after a defect are often difficult. The key to the treatment of AC defects lies in regeneration of the defect site and regulation of the inflammatory response. In this investigation, a bioactive multifunctional scaffold was formulated using the aptamer Apt19S as a mediator for mesenchymal stem cell (MSC)-specific recruitment and the enhancement of cellular chondrogenic and inflammatory regulation through the incorporation of Mg2+. Apt19S, which can recruit MSCs in vitro and in vivo, was chemically conjugated to a decellularized cartilage extracellular matrix (ECM)-lysed scaffold. The results from in vitro experiments using the resulting scaffold demonstrated that the inclusion of Mg2+ could stimulate not only the chondrogenic differentiation of synovial MSCs but also the increased polarization of macrophages toward the M2 phenotype. Additionally, Mg2+ inhibited NLRP3 inflammasome activation, thereby decreasing chondrocyte pyroptosis. Subsequently, Mg2+ was incorporated into the bioactive multifunctional scaffold, and the resulting scaffold promoted cartilage regeneration in vivo. In conclusion, this study confirms that the combination of Mg2+ and aptamer-functionalized ECM scaffolds is a promising strategy for AC regeneration based on in situ tissue engineering and early inflammatory regulation.
Collapse
Affiliation(s)
- Zhiyao Liao
- School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
- Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing 100853, People's Republic of China
| | - Liwei Fu
- School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
- Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing 100853, People's Republic of China
| | - Pinxue Li
- School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
- Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing 100853, People's Republic of China
| | - Jiang Wu
- Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing 100853, People's Republic of China
| | - Xun Yuan
- Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing 100853, People's Republic of China
| | - Chao Ning
- Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing 100853, People's Republic of China
| | - Zhengang Ding
- Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing 100853, People's Republic of China
| | - Xiang Sui
- Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing 100853, People's Republic of China
| | - Shuyun Liu
- School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
- Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing 100853, People's Republic of China
| | - Quanyi Guo
- School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
- Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing 100853, People's Republic of China
| |
Collapse
|
4
|
Ouhaddi Y, Charbonnier B, Porge J, Zhang YL, Garcia I, Gbureck U, Grover L, Gilardino M, Harvey E, Makhoul N, Barralet J. Development of Neovasculature in Axially Vascularized Calcium Phosphate Cement Scaffolds. J Funct Biomater 2023; 14:jfb14020105. [PMID: 36826904 PMCID: PMC9966587 DOI: 10.3390/jfb14020105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Augmenting the vascular supply to generate new tissues, a crucial aspect in regenerative medicine, has been challenging. Recently, our group showed that calcium phosphate can induce the formation of a functional neo-angiosome without the need for microsurgical arterial anastomosis. This was a preclinical proof of concept for biomaterial-induced luminal sprouting of large-diameter vessels. In this study, we investigated if sprouting was a general response to surgical injury or placement of an inorganic construct around the vessel. Cylindrical biocement scaffolds of differing chemistries were placed around the femoral vein. A contrast agent was used to visualize vessel ingrowth into the scaffolds. Cell populations in the scaffold were mapped using immunohistochemistry. Calcium phosphate scaffolds induced 2.7-3 times greater volume of blood vessels than calcium sulphate or magnesium phosphate scaffolds. Macrophage and vSMC populations were identified that changed spatially and temporally within the scaffold during implantation. NLRP3 inflammasome activation peaked at weeks 2 and 4 and then declined; however, IL-1β expression was sustained over the course of the experiment. IL-8, a promoter of angiogenesis, was also detected, and together, these responses suggest a role of sterile inflammation. Unexpectedly, the effect was distinct from an injury response as a result of surgical placement and also was not simply a foreign body reaction as a result of placing a rigid bioceramic next to a vein, since, while the materials tested had similar microstructures, only the calcium phosphates tested elicited an angiogenic response. This finding then reveals a potential path towards a new strategy for creating better pro-regenerative biomaterials.
Collapse
Affiliation(s)
- Yassine Ouhaddi
- Division of Orthopaedics, Department of Surgery, Faculty of Medicine and Health Sciences, Montreal General Hospital, Montreal, QC H3G 1A4, Canada
| | - Baptiste Charbonnier
- Division of Orthopaedics, Department of Surgery, Faculty of Medicine and Health Sciences, Montreal General Hospital, Montreal, QC H3G 1A4, Canada
| | - Juliette Porge
- Faculty of Dentistry, McGill University, 2001 McGill College Avenue, Montreal, QC H3A 1G1, Canada
| | - Yu-Ling Zhang
- Division of Orthopaedics, Department of Surgery, Faculty of Medicine and Health Sciences, Montreal General Hospital, Montreal, QC H3G 1A4, Canada
| | - Isadora Garcia
- Division of Operative Dentistry, Department of General Dentistry, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Uwe Gbureck
- Department of Functional Materials in Medicine and Dentistry, University of Würzburg, D-97070 Würzburg, Germany
| | - Liam Grover
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK
| | - Mirko Gilardino
- Division of Orthopaedics, Department of Surgery, Faculty of Medicine and Health Sciences, Montreal General Hospital, Montreal, QC H3G 1A4, Canada
| | - Edward Harvey
- Division of Orthopaedics, Department of Surgery, Faculty of Medicine and Health Sciences, Montreal General Hospital, Montreal, QC H3G 1A4, Canada
| | - Nicholas Makhoul
- Faculty of Dentistry, McGill University, 2001 McGill College Avenue, Montreal, QC H3A 1G1, Canada
| | - Jake Barralet
- Division of Orthopaedics, Department of Surgery, Faculty of Medicine and Health Sciences, Montreal General Hospital, Montreal, QC H3G 1A4, Canada
- Faculty of Dentistry, McGill University, 2001 McGill College Avenue, Montreal, QC H3A 1G1, Canada
- Correspondence:
| |
Collapse
|
5
|
Wang H, Zhou X, Li C, Yan S, Feng C, He J, Li Z, Tu C. The emerging role of pyroptosis in pediatric cancers: from mechanism to therapy. J Hematol Oncol 2022; 15:140. [PMID: 36209102 PMCID: PMC9547461 DOI: 10.1186/s13045-022-01365-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 10/04/2022] [Indexed: 11/18/2022] Open
Abstract
Pediatric cancers are the driving cause of death for children and adolescents. Due to safety requirements and considerations, treatment strategies and drugs for pediatric cancers have been so far scarcely studied. It is well known that tumor cells tend to progressively evade cell death pathways, which is known as apoptosis resistance, one of the hallmarks of cancer, dominating tumor drug resistance. Recently, treatments targeting nonapoptotic cell death have drawn great attention. Pyroptosis, a newly specialized form of cell death, acts as a critical physiological regulator in inflammatory reaction, cell development, tissue homeostasis and stress response. The action in different forms of pyroptosis is of great significance in the therapy of pediatric cancers. Pyroptosis could be induced and consequently modulate tumorigenesis, progression, and metastasis if treated with local or systemic therapies. However, excessive or uncontrolled cell death might lead to tissue damage, acute inflammation, or even cytokine release syndrome, which facilitates tumor progression or recurrence. Herein, we aimed to describe the molecular mechanisms of pyroptosis, to highlight and discuss the challenges and opportunities for activating pyroptosis pathways through various oncologic therapies in multiple pediatric neoplasms, including osteosarcoma, neuroblastoma, leukemia, lymphoma, and brain tumors.
Collapse
Affiliation(s)
- Hua Wang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.,Xiangya School of Medicine, Central South University, Changsha, 410011, Hunan, China
| | - Xiaowen Zhou
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.,Xiangya School of Medicine, Central South University, Changsha, 410011, Hunan, China
| | - Chenbei Li
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Shuxiang Yan
- Xiangya School of Medicine, Central South University, Changsha, 410011, Hunan, China
| | - Chengyao Feng
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Jieyu He
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Zhihong Li
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China. .,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| | - Chao Tu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China. .,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
6
|
Gencturk E, Kasim M, Morova B, Kiraz A, Ulgen KO. Understanding the Link between Inflammasome and Apoptosis through the Response of THP-1 Cells against Drugs Using Droplet-Based Microfluidics. ACS OMEGA 2022; 7:16323-16332. [PMID: 35601322 PMCID: PMC9118214 DOI: 10.1021/acsomega.1c06569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 04/20/2022] [Indexed: 05/09/2023]
Abstract
Droplet-based microfluidic devices are used to investigate monocytic THP-1 cells in response to drug administration. Consistent and reproducible droplets are created, each of which acts as a bioreactor to carry out single cell experiments with minimized contamination and live cell tracking under an inverted fluorescence microscope for more than 2 days. Here, the effects of three different drugs (temsirolimus, rifabutin, and BAY 11-7082) on THP-1 are examined and the results are analyzed in the context of the inflammasome and apoptosis relationship. The ASC adaptor gene tagged with GFP is monitored as the inflammasome reporter. Thus, a systematic way is presented for deciphering cell-to-cell heterogeneity, which is an important issue in cancer treatment. The drug temsirolimus, which has effects of disrupting the mTOR pathway and triggering apoptosis in tumor cells, causes THP-1 cells to express ASC and to be involved in apoptosis. Treatment with rifabutin, which inhibits proliferation and initiates apoptosis in cells, affects ASC expression by first increasing and then decreasing it. CASP-3, which has a role in apoptosis and is directly related to ASC, has an increasing level in inflammasome conditioning. Thus, the cell under the effect of rifabutin might be faced with programmed cell death faster. The drug BAY 11-7082, which is responsible for NFκB inhibition, shows similar results to temsirolimus with more than 60% of cells having high fluorescence intensity (ASC expression). The microfluidic platform presented here offers strong potential for studying newly developed small-molecule inhibitors for personalized/precision medicine.
Collapse
Affiliation(s)
- Elif Gencturk
- Department
of Chemical Engineering, Boǧaziçi
University, Biosystems Engineering Laboratory, Istanbul 34342, Turkey
| | - Muge Kasim
- Department
of Chemical Engineering, Boǧaziçi
University, Biosystems Engineering Laboratory, Istanbul 34342, Turkey
| | - Berna Morova
- Department
of Physics, Koç University, Sariyer, 34450 Istanbul, Turkey
| | - Alper Kiraz
- Department
of Physics, Koç University, Sariyer, 34450 Istanbul, Turkey
- Department
of Electrical and Electronics Engineering, Koç University, Sariyer, 34450 Istanbul, Turkey
| | - Kutlu O. Ulgen
- Department
of Chemical Engineering, Boǧaziçi
University, Biosystems Engineering Laboratory, Istanbul 34342, Turkey
| |
Collapse
|
7
|
Tumor Necrosis Factor-α Mediates Lung Injury in the Early Phase of Endotoxemia. Pharmaceuticals (Basel) 2022; 15:ph15030287. [PMID: 35337084 PMCID: PMC8953981 DOI: 10.3390/ph15030287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 02/18/2022] [Indexed: 11/23/2022] Open
Abstract
Endotoxemia induces lung injury. We assessed the therapeutic efficacy between triple cytokine (tumor necrosis factor-α [TNF-α], interleukin-1β [IL-1β], and IL-6) inhibition (mediated by KCF18 peptide) and single cytokine (TNF-α) inhibition (mediated by SEM18 peptide) on alleviating lung injury in the early phase of endotoxemia. Mice receiving endotoxin (Endo group), endotoxin plus KCF18 (EKCF group), or endotoxin plus SEM18 (ESEM) were monitored and euthanized at 24 h after endotoxin. Our data demonstrated altered lung function (decreases in tidal volume, minute ventilation, and dynamic compliance; and by contrast, increases in airway resistance and end expiration work) and histology (increases in injury scores, leukocyte infiltration, vascular permeability, and tissue water content) in the Endo group with significant protection observed in the EKCF and ESEM groups (all p < 0.05). Levels of inflammation (macrophage activation and cytokine upregulations), oxidation (lipid peroxidation), necroptosis, pyroptosis, and apoptosis in EKCF and ESEM groups were comparable and all were significantly lower than in the Endo group (all p < 0.05). These data demonstrate that single cytokine TNF-α inhibition can achieve therapeutic effects similar to triple cytokines TNF-α, IL-1β, and IL-6 inhibition on alleviating endotoxin-induced lung injury, indicating that TNF-α is the major cytokine in mediating lung injury in the early phase of endotoxemia.
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW It is well established that controlled immune activation and balance is critical for women's reproductive health and successful pregnancy outcomes. Research in recent decades in both clinical and animal studies has demonstrated that aberrant immune activation and inflammation play a role in the development and progression of women's reproductive health and pregnancy-related disorders. Inflammasomes are multi-protein cytoplasmic complexes that mediate immune activation. In this review, we summarize current knowledge on the role of inflammasome activation in pregnancy-related disorders. RECENT FINDINGS Increased activation of inflammasome is associated with multiple women's health reproductive disorders and pregnancy-associated disorders, including preeclampsia (PreE). Inflammasome activation is also associated with the novel coronavirus disease 2019 (COVID-19) disease caused by the SARS-Cov-2 virus. We and others have observed a positive association between increased PreE incidences with the onset of the COVID-19 pandemic. Here, we present our recent data indicating increased inflammasome activation, represented by caspase-1 activity, in women with COVID-19 and PreE compared to normotensive pregnant women COVID-19. The role of inflammation in pregnancy-related disorders is an area of intense research interest. With the onset of the COVID-19 pandemic and the associated increase in PreE observed clinically, there is a greater need to identify mechanisms of pathophysiology and targets to treat this maternal disorder. Inflammasome activation is associated with PreE and COVID-19 infection and may hold therapeutic potential to improve outcomes associated with PreE and curb the morbidity attributed to PreE.
Collapse
|
9
|
Story MJ. Essential sufficiency of zinc, ω-3 polyunsaturated fatty acids, vitamin D and magnesium for prevention and treatment of COVID-19, diabetes, cardiovascular diseases, lung diseases and cancer. Biochimie 2021; 187:94-109. [PMID: 34082041 PMCID: PMC8166046 DOI: 10.1016/j.biochi.2021.05.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/19/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023]
Abstract
Despite the development of a number of vaccines for COVID-19, there remains a need for prevention and treatment of the virus SARS-CoV-2 and the ensuing disease COVID-19. This report discusses the key elements of SARS-CoV-2 and COVID-19 that can be readily treated: viral entry, the immune system and inflammation, and the cytokine storm. It is shown that the essential nutrients zinc, ω-3 polyunsaturated fatty acids (PUFAs), vitamin D and magnesium provide the ideal combination for prevention and treatment of COVID-19: prevention of SARS-CoV-2 entry to host cells, prevention of proliferation of SARS-CoV-2, inhibition of excessive inflammation, improved control of the regulation of the immune system, inhibition of the cytokine storm, and reduction in the effects of acute respiratory distress syndrome (ARDS) and associated non-communicable diseases. It is emphasized that the non-communicable diseases associated with COVID-19 are inherently more prevalent in the elderly than the young, and that the maintenance of sufficiency of zinc, ω-3 PUFAs, vitamin D and magnesium is essential for the elderly to prevent the occurrence of non-communicable diseases such as diabetes, cardiovascular diseases, lung diseases and cancer. Annual checking of levels of these essential nutrients is recommended for those over 65 years of age, together with appropriate adjustments in their intake, with these services and supplies being at government cost. The cost:benefit ratio would be huge as the cost of the nutrients and the testing of their levels would be very small compared with the cost savings of specialists and hospitalization.
Collapse
Affiliation(s)
- Michael J Story
- Story Pharmaceutics Pty Ltd, PO Box 6086, Linden Park, South Australia, 5065, Australia.
| |
Collapse
|
10
|
Gao L, Dong X, Gong W, Huang W, Xue J, Zhu Q, Ma N, Chen W, Fu X, Gao X, Lin Z, Ding Y, Shi J, Tong Z, Liu T, Mukherjee R, Sutton R, Lu G, Li W. Acinar cell NLRP3 inflammasome and gasdermin D (GSDMD) activation mediates pyroptosis and systemic inflammation in acute pancreatitis. Br J Pharmacol 2021; 178:3533-3552. [PMID: 33871879 DOI: 10.1111/bph.15499] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 02/22/2021] [Accepted: 04/06/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND AND PURPOSE Pyroptosis is a lytic form of pro-inflammatory cell death characterised as caspase 1 dependent with canonical NLRP3 inflammasome-induced gasdermin D (GSDMD) activation. We aimed to investigate the role of acinar pyroptotic cell death in pancreatic injury and systemic inflammation in AP. EXPERIMENTAL APPROACH Pancreatic acinar pyroptotic cell death pathway activation upon pancreatic toxin stimulation in vitro and in vivo was investigated. Effects of pharmacological (NLRP3 and caspase-1 inhibitors), constitutive (Nlrp3-/- , Casp1-/- and Gsdmd-/- ) and acinar cell conditional (Pdx1Cre Nlrp3Δ/Δ and Pdx1Cre GsdmdΔ/Δ ) genetic inhibition on pyroptotic acinar cell death, pancreatic necrosis and systemic inflammation were assessed using mouse AP models (caerulein, sodium taurocholate and l-arginine). Effects of Pdx1Cre GsdmdΔ/Δ versus myeloid conditional knockout (Lyz2Cre GsdmdΔ/Δ ) and Gsdmd-/- versus receptor-interacting protein 3 (RIP3) inhibitor were compared in CER-AP. KEY RESULTS There was consistent pyroptotic acinar cell death upon pancreatic toxin stimulation both in vitro and in vivo, which was significantly reduced by pharmacological or genetic pyroptosis inhibition. Pdx1Cre GsdmdΔ/Δ but not Lyz2Cre GsdmdΔ/Δ mice showed significantly reduced pyroptotic acinar cell death, pancreatic necrosis and systemic inflammation in caerulein-AP. Co-application of RIP3 inhibitor on Gsdmd-/- mice further increased protection on caerulein-AP. CONCLUSION AND IMPLICATIONS This work demonstrates a critical role for NLRP3 inflammasome and GSDMD activation-mediated pyroptosis in acinar cells, linking pancreatic necrosis and systemic inflammation in AP. Targeting pyroptosis signalling pathways holds promise for specific AP therapy.
Collapse
Affiliation(s)
- Lin Gao
- Center of Severe Acute Pancreatitis (CASP), Department of Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xiaowu Dong
- Center of Severe Acute Pancreatitis (CASP), Department of Critical Care Medicine, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Weijuan Gong
- Pancreatic Center, Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Centre for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Wei Huang
- Department and Laboratory of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Xue
- State Key Laboratory of Oncogenes and Related Genes, Stem Cell Research Centre, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qingtian Zhu
- Pancreatic Center, Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Nan Ma
- Center of Severe Acute Pancreatitis (CASP), Department of Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Weiwei Chen
- Center of Severe Acute Pancreatitis (CASP), Department of Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xianghui Fu
- Division of Endocrinology and Metabolism, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Centre of Biotherapy, Chengdu, China
| | - Xiang Gao
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Hepatopancreatobiliary Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Centre, Nanjing University, Nanjing, China
| | - Zhaoyu Lin
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Hepatopancreatobiliary Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Centre, Nanjing University, Nanjing, China
| | - Yanbing Ding
- Pancreatic Center, Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Juanjuan Shi
- State Key Laboratory of Oncogenes and Related Genes, Stem Cell Research Centre, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhihui Tong
- Center of Severe Acute Pancreatitis (CASP), Department of Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Tingting Liu
- Department and Laboratory of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Rajarshi Mukherjee
- Liverpool Pancreatitis Research Group, Liverpool University Hospitals NHS Foundation Trust and Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Robert Sutton
- Liverpool Pancreatitis Research Group, Liverpool University Hospitals NHS Foundation Trust and Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Guotao Lu
- Pancreatic Center, Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Weiqin Li
- Center of Severe Acute Pancreatitis (CASP), Department of Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China.,Center of Severe Acute Pancreatitis (CASP), Department of Critical Care Medicine, Jinling Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
11
|
Yu P, Zhang X, Liu N, Tang L, Peng C, Chen X. Pyroptosis: mechanisms and diseases. Signal Transduct Target Ther 2021; 6:128. [PMID: 33776057 PMCID: PMC8005494 DOI: 10.1038/s41392-021-00507-5] [Citation(s) in RCA: 975] [Impact Index Per Article: 325.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 01/14/2021] [Accepted: 01/20/2021] [Indexed: 02/08/2023] Open
Abstract
Currently, pyroptosis has received more and more attention because of its association with innate immunity and disease. The research scope of pyroptosis has expanded with the discovery of the gasdermin family. A great deal of evidence shows that pyroptosis can affect the development of tumors. The relationship between pyroptosis and tumors is diverse in different tissues and genetic backgrounds. In this review, we provide basic knowledge of pyroptosis, explain the relationship between pyroptosis and tumors, and focus on the significance of pyroptosis in tumor treatment. In addition, we further summarize the possibility of pyroptosis as a potential tumor treatment strategy and describe the side effects of radiotherapy and chemotherapy caused by pyroptosis. In brief, pyroptosis is a double-edged sword for tumors. The rational use of this dual effect will help us further explore the formation and development of tumors, and provide ideas for patients to develop new drugs based on pyroptosis.
Collapse
Affiliation(s)
- Pian Yu
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China
| | - Xu Zhang
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China
| | - Nian Liu
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China
| | - Ling Tang
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China
| | - Cong Peng
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China.
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China.
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China.
| | - Xiang Chen
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China.
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China.
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China.
| |
Collapse
|
12
|
Li C, Chen M, He X, Ouyang D. A mini-review on ion fluxes that regulate NLRP3 inflammasome activation. Acta Biochim Biophys Sin (Shanghai) 2021; 53:131-139. [PMID: 33355638 DOI: 10.1093/abbs/gmaa155] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Indexed: 12/15/2022] Open
Abstract
The activation of NLR family pyrin domain containing 3 (NLRP3) inflammasome can be induced by a wide spectrum of activators. This is unlikely achieved by the binding of different activators directly to the NLRP3 protein itself, as the activators found so far show different forms of chemical structures. Previous studies have shown that these activators can induce potassium ion (K+) and chloride ion (Cl-) efflux, calcium (Ca2+) and other ion mobilization, mitochondrial dysfunction, and lysosomal disruption, all of which are believed to cause NLRP3 inflammasome activation; how these events are induced by the activators and how they coordinate with each other in inducing the NLRP3 inflammasome activation are not fully understood. Increasing evidence suggests that the coordinated change of intracellular ion concentrations may be a common mechanism for the NLRP3 activation by different activators. In this mini-review, we present a brief summary of the current knowledge about how different ionic flows (including K+, sodium ion, Ca2+, magnesium ion, manganese ion, zinc ion, iron ion, and Cl-) are involved in regulating the NLRP3 inflammasome activation in macrophages.
Collapse
Affiliation(s)
- Chenguang Li
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Mingye Chen
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xianhui He
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Dongyun Ouyang
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
13
|
Gao G, Liu F, Xu Z, Wan D, Han Y, Kuang Y, Wang Q, Zhi Q. Evidence of nigericin as a potential therapeutic candidate for cancers: A review. Biomed Pharmacother 2021; 137:111262. [PMID: 33508621 DOI: 10.1016/j.biopha.2021.111262] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/21/2020] [Accepted: 01/07/2021] [Indexed: 02/07/2023] Open
Abstract
Emerging studies have shown that nigericin, an H+, K+ and Pb2+ ionophore, has exhibited a promising anti-cancer activity in various cancers. However, its anti-cancer mechanisms have not been fully elucidated. In this review, the recent progresses on the use of nigericin in human cancers have been summarized. By exchanging H+ and K+ across cell membranes, nigericin shows promising anti-cancer activities in in vitro and in vivo as a single agent or in combination with other anti-cancer drugs through decreasing intracellular pH (pHi). The underlying mechanisms of nigericin also include the inactivation of Wnt/β-catenin signals, blockade of Androgen Receptor (AR) signaling, and activation of Stress-Activated Protein Kinase/c-Jun N-terminal Kinase (SAPK/JNK) signaling pathways. In many cancers, nigericin is proved to specifically target putative Cancer Stem Cells (CSCs), and its synergistic effects on photodynamic therapy are also reported. Other mechanisms of nigericin including influencing the mitochondrial membrane potentials, inducing an increase in drug accumulation and autophagy, controlling insulin accumulation in nuclei, and increasing the cytotoxic activity of liposome-entrapped drugs, are also discussed. Notably, the potential adverse effects such as teratogenic effects, insulin resistance and eryptosis shall not be ignored. Taken together, these reports suggest that treatment of cancer cells with nigericin may offer a novel therapeutic strategy and future potential of translation to clinics.
Collapse
Affiliation(s)
- Guanzhuang Gao
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Fei Liu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Zhihua Xu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Daiwei Wan
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Ye Han
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Yuting Kuang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Qiang Wang
- Department of General Surgery, Jiangsu Shengze Hospital, Wujiang, Jiangsu, 215228, China.
| | - Qiaoming Zhi
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| |
Collapse
|
14
|
Dobson GP, Biros E, Letson HL, Morris JL. Living in a Hostile World: Inflammation, New Drug Development, and Coronavirus. Front Immunol 2021; 11:610131. [PMID: 33552070 PMCID: PMC7862725 DOI: 10.3389/fimmu.2020.610131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/25/2020] [Indexed: 12/14/2022] Open
Abstract
We present a brief history of the immune response and show that Metchnikoff's theory of inflammation and phagocytotic defense was largely ignored in the 20th century. For decades, the immune response was believed to be triggered centrally, until Lafferty and Cunningham proposed the initiating signal came from the tissues. This shift opened the way for Janeway's pattern recognition receptor theory, and Matzinger's danger model. All models failed to appreciate that without inflammation, there can be no immune response. The situation changed in the 1990s when cytokine biology was rapidly advancing, and the immune system's role expanded from host defense, to the maintenance of host health. An inflammatory environment, produced by immune cells themselves, was now recognized as mandatory for their attack, removal and repair functions after an infection or injury. We explore the cellular programs of the immune response, and the role played by cytokines and other mediators to tailor the right response, at the right time. Normally, the immune response is robust, self-limiting and restorative. However, when the antigen load or trauma exceeds the body's internal tolerances, as witnessed in some COVID-19 patients, excessive inflammation can lead to increased sympathetic outflows, cardiac dysfunction, coagulopathy, endothelial and metabolic dysfunction, multiple organ failure and death. Currently, there are few drug therapies to reduce excessive inflammation and immune dysfunction. We have been developing an intravenous (IV) fluid therapy comprising adenosine, lidocaine and Mg2+ (ALM) that confers a survival advantage by preventing excessive inflammation initiated by sepsis, endotoxemia and sterile trauma. The multi-pronged protection appears to be unique and may provide a tool to examine the intersection points in the immune response to infection or injury, and possible ways to prevent secondary tissue damage, such as that reported in patients with COVID-19.
Collapse
Affiliation(s)
- Geoffrey P. Dobson
- Heart, Trauma and Sepsis Research Laboratory, College of Medicine and Dentistry, James Cook University, Townsville, QLD, Australia
| | | | | | | |
Collapse
|
15
|
Magnesium Sulfate Mitigates the Progression of Monocrotaline Pulmonary Hypertension in Rats. Int J Mol Sci 2019; 20:ijms20184622. [PMID: 31540416 PMCID: PMC6770589 DOI: 10.3390/ijms20184622] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 12/16/2022] Open
Abstract
We investigated whether magnesium sulfate (MgSO4) mitigated pulmonary hypertension progression in rats. Pulmonary hypertension was induced by a single intraperitoneal injection of monocrotaline (60 mg/kg). MgSO4 (100 mg/kg) was intraperitoneally administered daily for 3 weeks, from the seventh day after monocrotaline injection. Adult male rats were randomized into monocrotaline (MCT) or monocrotaline plus MgSO4 (MM) groups (n = 15 per group); control groups were maintained simultaneously. For analysis, surviving rats were euthanized on the 28th day after receiving monocrotaline. The survival rate was higher in the MM group than in the MCT group (100% versus 73.3%, p = 0.043). Levels of pulmonary artery wall thickening, α-smooth muscle actin upregulation, right ventricular systolic pressure increase, and right ventricular hypertrophy were lower in the MM group than in the MCT group (all p < 0.05). Levels of lipid peroxidation, mitochondrial injury, inflammasomes and cytokine upregulation, and apoptosis in the lungs and right ventricle were lower in the MM group than in the MCT group (all p < 0.05). Notably, the mitigation effects of MgSO4 on pulmonary artery wall thickening and right ventricular hypertrophy were counteracted by exogenous calcium chloride. In conclusion, MgSO4 mitigates pulmonary hypertension progression, possibly by antagonizing calcium.
Collapse
|
16
|
Joshi S, Khan SR. Opportunities for future therapeutic interventions for hyperoxaluria: targeting oxidative stress. Expert Opin Ther Targets 2019; 23:379-391. [PMID: 30905219 DOI: 10.1080/14728222.2019.1599359] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Oxalate is a toxic byproduct of metabolism and is normally produced in quantities easily removed from the body. However, under specific circumstances oxalate production is increased resulting in deposition of calcium oxalate (CaOx) crystals in the kidneys as well as other organs causing inflammation and injury. Excessive buildup of crystal deposits in the kidneys causes eventual loss of renal function requiring renal transplantation. Areas covered: Cellular exposure to CaOx crystals induces the production of reactive oxygen species (ROS) with the involvement of renin-angiotensin aldosterone system (RAAS), mitochondria, and NADPH oxidase. Inflammasomes are activated and pro-inflammatory cytokines, such as IL-1β and IL-18 are produced. We reviewed results of experimental and clinical studies of crystal renal epithelial cell interactions with emphasis on cellular injury and ROS production. Expert opinion: Treatment should depend upon the level of hyperoxaluria and whether it is associated with CaOx crystal deposition. Persistent low grade or intermittent hyperoxaluria can be treated with antioxidants, free radical scavengers. Hyperoxaluria associated with CaOx crystal deposition will require administration of angiotensin II receptor blockers, and NADPH oxidase or NLRP3 inflammasome inhibitors. DASH-style diet will be beneficial in both cases.
Collapse
Affiliation(s)
- Sunil Joshi
- a Department of Pathology, Immunology & Laboratory Medicine, College of Medicine , University of Florida , Gainesville , FL , USA
| | - Saeed R Khan
- a Department of Pathology, Immunology & Laboratory Medicine, College of Medicine , University of Florida , Gainesville , FL , USA
| |
Collapse
|
17
|
Liu T, Zeng Q, Zhao X, Wei W, Li Y, Deng H, Song D. Synthesis and Biological Evaluation of Fangchinoline Derivatives as Anti-Inflammatory Agents through Inactivation of Inflammasome. Molecules 2019; 24:molecules24061154. [PMID: 30909541 PMCID: PMC6470529 DOI: 10.3390/molecules24061154] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/11/2019] [Accepted: 03/21/2019] [Indexed: 02/06/2023] Open
Abstract
Twenty eight 7-substitued fangchinoline analogues, of which twenty two were novel, were synthesized and evaluated for their effect to inhibit lipopolysaccharide/nigericin (LPS/NIG)-induced IL-1β release at both cell and protein levels at the concentration of 5 μM. Among them, compound 6 exhibited promising inhibitory potency against IL-β activation with an IC50 value of 3.7 μM. Preliminary mechanism study revealed that 6 might target NLRP3 protein, and then block ASC pyroptosome formation with-NLRP3, rather than acting on the activation of the NLRP3 inflammasome (NF-κB and MAPK pathways) or caspase-1 protein. Our current study supported the potential role of compound 6 against IL-β activation, and provided powerful information for developing fangchinoline derivatives into a novel class of anti-inflammatory agents.
Collapse
Affiliation(s)
- Ting Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
- Institute for Food and Cosmetics Control, National Institutes for Food and Drug Control, Beijing 100050, China.
| | - Qingxuan Zeng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Xiaoqiang Zhao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Wei Wei
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Yinghong Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Hongbin Deng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Danqing Song
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
18
|
Cross SN, Nelson RA, Potter JA, Norwitz ER, Abrahams VM. Magnesium sulfate differentially modulates fetal membrane inflammation in a time-dependent manner. Am J Reprod Immunol 2018; 80:e12861. [PMID: 29709093 DOI: 10.1111/aji.12861] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 03/27/2018] [Indexed: 12/17/2022] Open
Abstract
PROBLEM Chorioamnionitis and infection-associated inflammation are major causes of preterm birth. Magnesium sulfate (MgSO4 ) is widely used in obstetrics as a tocolytic; however, its mechanism of action is unclear. This study sought to investigate how MgSO4 modulates infection-associated inflammation in fetal membranes (FMs), and whether the response was time dependent. METHOD OF STUDY Human FM explants were treated with or without bacterial lipopolysaccharide (LPS); with or without MgSO4 added either: 1 hour before LPS; at the same time as LPS; 1 hour post-LPS; or 2 hours post-LPS. Explants were also treated with or without viral dsRNA and LPS, alone or in combination; and MgSO4 added 1 hour post-LPS After 24 hours, supernatants were measured for cytokines/chemokines; and tissue lysates measured for caspase-1 activity. RESULTS Lipopolysaccharide-induced FM inflammation by upregulating the secretion of a number of inflammatory cytokines/chemokines. Magnesium sulfate administered 1-hour post-LPS inhibited FM secretion of IL-1β, IL-6, G-CSF, RANTES, and TNFα. Magnesium sulfate administered 2 hours post-LPS augmented FM secretion of these factors as well as IL-8, IFNγ, VEGF, GROα and IP-10. Magnesium sulfate delivered 1- hour post-LPS inhibited LPS-induced caspase-1 activity, and inhibited the augmented IL-1β response triggered by combination viral dsRNA and LPS. CONCLUSION Magnesium sulfate differentially modulates LPS-induced FM inflammation in a time-dependent manner, in part through its modulation of caspase-1 activity. Thus, the timing of MgSO4 administration may be critical in optimizing its anti-inflammatory effects in the clinical setting. MgSO4 might also be useful at preventing FM inflammation triggered by a polymicrobial viral-bacterial infection.
Collapse
Affiliation(s)
- Sarah N Cross
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Rachel A Nelson
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Julie A Potter
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Errol R Norwitz
- Department of Obstetrics & Gynecology, Tufts University School of Medicine, Boston, MA, USA
| | - Vikki M Abrahams
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|