1
|
Wang S, Yang H. Low-molecular-weight heparin ameliorates intestinal barrier dysfunction in aged male rats via protection of tight junction proteins. Biogerontology 2024; 25:1039-1051. [PMID: 38970715 DOI: 10.1007/s10522-024-10118-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
The intestinal barrier weakens and chronic gut inflammation occurs in old age, causing age-related illnesses. Recent research shows that low-molecular-weight heparin (LMWH), besides anticoagulation, also has anti-inflammatory and anti-apoptotic effects, protecting the intestinal barrier. This study aims to analyze the effect of LMWH on the intestinal barrier of old male rodents. This study assigned Sprague-Dawley male rats to four groups: young (3 months), young + LMWH, old (20 months), and old + LMWH. The LMWH groups received 1 mg/kg LMWH via subcutaneous injection for 7 days. Optical and transmission electron microscopy (TEM) were used to examine morphological changes in intestinal mucosa due to aging. Intestinal permeability was measured using fluorescein isothiocyanate (FITC)-dextran. ELISA kits were used to measure serum levels of IL-6 and IL-1β, while Quantitative RT-PCR detected their mRNA levels in intestinal tissues. Western blotting and immunohistochemistry (IHC) evaluated the tight junction (TJ) protein levels such as occludin, zonula occludens-1 (ZO-1), and claudin-2. Western blotting assessed the expression of the apoptosis marker cleaved caspase 3, while IHC was used to detect LGR5+ intestinal stem cells. The intestinal permeability of aged rats was significantly higher than that of young rats, indicating significant differences. With age, the protein levels of occludin and ZO-1 decreased significantly, while the level of claudin-2 increased significantly. Meanwhile, our study found that the levels of IL-1β and IL-6 increased significantly with age. LMWH intervention effectively alleviated age-related intestinal barrier dysfunction. In aged rats treated with LMWH, the expression of occludin and ZO-1 proteins in the intestine increased, while the expression of claudin-2 decreased. Furthermore, LMWH administration in aged rats resulted in a decrease in IL-1β and IL-6 levels. LMWH also reduced age-related cleaved caspase3 expression, but IHC showed no difference in LGR5+ intestinal stem cells between groups. Research suggests that LMWH could potentially be a favorable therapeutic choice for age-related diseases associated with intestinal barrier dysfunction, by protecting TJ proteins, reducing inflammation, and apoptosis.
Collapse
Affiliation(s)
- Shaojun Wang
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Hong Yang
- Emergency Department, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
2
|
Yang L, Lin Z, Mu R, Wu W, Zhi H, Liu X, Yang H, Liu L. Neurons enhance blood-brain barrier function via upregulating claudin-5 and VE-cadherin expression due to glial cell line-derived neurotrophic factor secretion. eLife 2024; 13:RP96161. [PMID: 39475379 PMCID: PMC11524583 DOI: 10.7554/elife.96161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024] Open
Abstract
Blood-brain barrier (BBB) prevents neurotoxins from entering central nervous system. We aimed to establish and characterize an in vitro triple co-culture BBB model consisting of brain endothelial cells hCMEC/D3, astrocytoma U251 cells, and neuroblastoma SH-SY5Y cells. Co-culture of SH-SY5Y and U251 cells markedly enhanced claudin-5 and VE-cadherin expression in hCMEC/D3 cells, accompanied by increased transendothelial electrical resistance and decreased permeability. Conditioned medium (CM) from SH-SY5Y cells (S-CM), U251 cells (U-CM), and co-culture of SH-SY5Y and U251 cells (US-CM) also promoted claudin-5 and VE-cadherin expression. Glial cell line-derived neurotrophic factor (GDNF) levels in S-CM and US-CM were significantly higher than CMs from hCMEC/D3 and U-CM. Both GDNF and US-CM upregulated claudin-5 and VE-cadherin expression, which were attenuated by anti-GDNF antibody and GDNF signaling inhibitors. GDNF increased claudin-5 expression via the PI3K/AKT/FOXO1 and MAPK/ERK pathways. Meanwhile, GDNF promoted VE-cadherin expression by activating PI3K/AKT/ETS1 and MAPK/ERK/ETS1 signaling. The roles of GDNF in BBB integrity were validated using brain-specific Gdnf silencing mice. The developed triple co-culture BBB model was successfully applied to predict BBB permeability. In conclusion, neurons enhance BBB integrity by upregulating claudin-5 and VE-cadherin expression through GDNF secretion and established triple co-culture BBB model may be used to predict drugs' BBB permeability.
Collapse
Affiliation(s)
- Lu Yang
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical UniversityNanjingChina
| | - Zijin Lin
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical UniversityNanjingChina
| | - Ruijing Mu
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical UniversityNanjingChina
| | - Wenhan Wu
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical UniversityNanjingChina
| | - Hao Zhi
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical UniversityNanjingChina
| | - Xiaodong Liu
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical UniversityNanjingChina
| | - Hanyu Yang
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical UniversityNanjingChina
| | - Li Liu
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical UniversityNanjingChina
| |
Collapse
|
3
|
Yang X, Li J, Ma Y, Dong X, Qu J, Liang F, Liu J. Curcumin-mediated enhancement of lung barrier function in rats with high-altitude-associated acute lung injury via inhibition of inflammatory response. Respir Res 2024; 25:354. [PMID: 39342264 PMCID: PMC11439224 DOI: 10.1186/s12931-024-02975-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/10/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Exposure to a hypobaric hypoxic environment at high altitudes can lead to lung injury. In this study, we aimed to determine whether curcumin (Cur) could improve lung barrier function and protect against high-altitude-associated acute lung injury. METHODS Two hundred healthy rats were randomly divided into standard control, high-altitude control (HC), salidroside (40 mg/kg, positive control), and Cur (200 mg/kg) groups. Each group was further divided into five subgroups. Basic vital signs, lung injury histopathology, routine blood parameters, plasma lactate level, and arterial blood gas indicators were evaluated. Protein and inflammatory factor (tumor necrosis factor α (TNF-α), interleukin [IL]-1β, IL-6, and IL-10) concentrations in bronchoalveolar lavage fluid (BALF) were determined using the bicinchoninic acid method and enzyme-linked immunosorbent assay, respectively. Inflammation-related and lung barrier function-related proteins were analyzed using immunoblotting. RESULTS Cur improved blood routine indicators such as hemoglobin and hematocrit and reduced the BALF protein content and TNF-α, IL-1β, and IL-6 levels compared with those in the HC group. It increased IL-10 levels and reduced pulmonary capillary congestion, alveolar hemorrhage, and the degree of pulmonary interstitial edema. It increased oxygen partial pressure, oxygen saturation, carbonic acid hydrogen radical, and base excess levels, and the expression of zonula occludens 1, occludin, claudin-4, and reduced carbon dioxide partial pressure, plasma lactic acid, and the expression of phospho-nuclear factor kappa. CONCLUSIONS Exposure to a high-altitude environment for 48 h resulted in severe lung injury in rats. Cur improved lung barrier function and alleviated acute lung injury in rats at high altitudes.
Collapse
Affiliation(s)
- Xinyue Yang
- Key Laboratory of Special Environmental Medicine of Xinjiang, General Hospital of Xinjiang Military Command, Urumqi, 830000, China
- Graduate School , Xinjiang Medical University, Urumqi, 830000, China
| | - Jiajia Li
- Key Laboratory of Special Environmental Medicine of Xinjiang, General Hospital of Xinjiang Military Command, Urumqi, 830000, China
- College of Pharmacy, Xinjiang Medical University, Urumqi, 830000, China
| | - Yan Ma
- Department of Anesthesiology, Xinjiang Medical University Affiliated First Hospital, Urumqi, 830054, China
| | - Xiang Dong
- Key Laboratory of Special Environmental Medicine of Xinjiang, General Hospital of Xinjiang Military Command, Urumqi, 830000, China
| | - Jinquan Qu
- Key Laboratory of Special Environmental Medicine of Xinjiang, General Hospital of Xinjiang Military Command, Urumqi, 830000, China
| | - Feixing Liang
- Key Laboratory of Special Environmental Medicine of Xinjiang, General Hospital of Xinjiang Military Command, Urumqi, 830000, China
| | - Jiangwei Liu
- Key Laboratory of Special Environmental Medicine of Xinjiang, General Hospital of Xinjiang Military Command, Urumqi, 830000, China.
| |
Collapse
|
4
|
Tang F, Zhao XL, Xu LY, Zhang JN, Ao H, Peng C. Endothelial dysfunction: Pathophysiology and therapeutic targets for sepsis-induced multiple organ dysfunction syndrome. Biomed Pharmacother 2024; 178:117180. [PMID: 39068853 DOI: 10.1016/j.biopha.2024.117180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/13/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024] Open
Abstract
Sepsis and septic shock are critical medical conditions characterized by a systemic inflammatory response to infection, significantly contributing to global mortality rates. The progression to multiple organ dysfunction syndrome (MODS) represents the most severe complication of sepsis and markedly increases clinical mortality. Central to the pathophysiology of sepsis, endothelial cells play a crucial role in regulating microcirculation and maintaining barrier integrity across various organs and tissues. Recent studies have underscored the pivotal role of endothelial function in the development of sepsis-induced MODS. This review aims to provide a comprehensive overview of the pathophysiology of sepsis-induced MODS, with a specific focus on endothelial dysfunction. It also compiles compelling evidence regarding potential small molecules that could attenuate sepsis and subsequent multi-organ damage by modulating endothelial function. Thus, this review serves as an essential resource for clinical practitioners involved in the diagnosing, managing, and providing intensive care for sepsis and associated multi-organ injuries, emphasizing the importance of targeting endothelial cells to enhance outcomes of the patients.
Collapse
Affiliation(s)
- Fei Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Xiao-Lan Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Li-Yue Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Jing-Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Hui Ao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
5
|
Song Y, Wu Y, Ding F, Li S, Shen Y, Yang B, Tang X, Ren L, Deng L, Jin X, Yan Y. The Preventive and Therapeutic Effects of Acute and Severe Inflammatory Disorders with Heparin and Heparinoid. Biomolecules 2024; 14:1078. [PMID: 39334845 PMCID: PMC11430252 DOI: 10.3390/biom14091078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/18/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
Systematic inflammatory response syndrome (SIRS) and the accompanying sepsis pose a huge threat to human health worldwide. Heparin is a part of the standard supportive care for the disease. However, the molecular mechanism is not fully understood yet, and the potential signaling pathways that play key roles have not yet been elucidated. In this paper, the main findings regarding the molecular mechanisms associated with the beneficial effects of heparin, including inhibiting HMGB-1-driven inflammation reactions, histone-induced toxicity, thrombo-inflammatory response control and the new emerging mechanisms are concluded. To set up the link between the preclinical research and the clinical effects, the outcomes of the clinical trials are summarized. Then, the structure and function relationship of heparin is discussed. By providing an updated analysis of the above results, the paper highlights the feasibility of heparin as a possible alternative for sepsis prophylaxis and therapy.
Collapse
Affiliation(s)
- Ying Song
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Yuxiang Wu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Fangfang Ding
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Shuo Li
- Medi-X Pingshan, Southern University of Science and Technology, Shenzhen 518118, China
| | - Yaojia Shen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Bingyan Yang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Xinran Tang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Lige Ren
- Shenzhen Hepalink Pharmaceutical Group Co., Ltd., Shenzhen 518057, China
| | - Lirong Deng
- Shenzhen Hepalink Pharmaceutical Group Co., Ltd., Shenzhen 518057, China
| | - Xuewen Jin
- Shenzhen Hepalink Pharmaceutical Group Co., Ltd., Shenzhen 518057, China
| | - Yishu Yan
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
6
|
杨 汀, 李 育, 苏 白. [Mechanism of Extracellular Histone-Induced Endothelial Dysfunction Leading to Sepsis-Induced Acute Respiratory Distress Syndrome]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2024; 55:902-910. [PMID: 39170019 PMCID: PMC11334276 DOI: 10.12182/20240760508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Indexed: 08/23/2024]
Abstract
Objective Sepsis-induced acute respiratory distress syndrome (ARDS) is an independent risk factor for mortality in critically ill septic patients. However, effective therapeutic targets are still unavailable due to the lack of understanding of its unclear pathogenesis. With increasing understanding in the roles of circulating histones and endothelial dysfunction in sepsis, we aimed to investigate the mechanism of histone-induced endothelial dysfunction leading to sepsis-induced ARDS and to provide experimental support for histone-targeted treatment of sepsis-induced ARDS. Methods First of all, in vitro experiments were conducted. Human umbilical vein endothelial cells (HUVEC) were stimulated with gradient concentrations of histones to explore for the optimal stimulation concentration in vitro. Then, HUVEC were exposed to histones at an optimal concentration with or without resatorvid (TAK-242), a selective inhibitor of Toll-like receptor 4 (TLR4), for 24 hours for modeling. The cells were divided into 4 groups: 1) the blank control group, 2) the blank control+TAK-242 intervention group, 3) the histone stimulation group, and 4) the histone+TAK-242 intervention group. HUVEC apoptosis was determined by flow cytometry, VE-Cadherin expression in endothelial cells was determined by Western blot, and the integrity of adhesion connections between endothelial cells was evaluated with confocal fluorescence microscopic images. Male C57BL/6 mice aged 6-8 weeks and weighing 22-25 g were used for the in vivo experiment. Then, the mice were given cecal ligation and puncture (CLP) as well as histone injection at 50 mg/kg via the tail vein for sepsis modeling. The experimental animals were divided into 6 groups: 1) the blank control group, 2) the blank control+TAK-242 intervention group, 3) the CLP model group, 4) the CLP+TAK-242 intervention group, 5) the histone model group, and 6) the histone+TAK-242 intervention group. After 24 h, the concentrations of serum interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) were determined using ELISA kits. Western blot was performed to determine the expression of vascular endothelial (VE)-cadherin in the lung tissue. Hematoxylin and eosin (HE) staining was performed to observe the pathological changes in the lung tissue of the mice. Evans Blue was injected via the tail vein 30 min before the mice were sacrificed. Lung tissue was collected after the mice were sacrificed. Then, the concentrations of Evans blue dye per unit mass in the lung tissue from mice of different groups were evaluated, the rates of pulmonary endothelial leakage were calculated, and the integrity of the pulmonary endothelial barrier was evaluated. Results The results of the in vitro experiment showed that, compared with those of the control group, HUVEC apoptosis was significantly increased under histone stimulation (P<0.05), the expression of VE-cadherin was decreased (P<0.05), and the integrity of adherens junctions between endothelial cells was damaged. TAK-242 can significantly inhibit histone-induced HUVEC apoptosis and VE-cadherin expression reduction and maintain the integrity of adherens junctions between endothelial cells. According to the findings from the in vivo experiments, in mice with CLP-induced and histone-induced sepsis, TAK-242 effectively alleviated the increase in serum concentrations of IL-6 and TNF-α, reduced the downregulation of VE-cadherin expression in the lung tissue (P<0.05), decreased endothelial permeability of the lung vessels, and improved pathological injury in the lung tissue. Conclusion By binding to TLR-4, histone decreases VE-cadherin expression on the surface of vascular endothelial cells, disrupts the integrity of intercellular adherens junctions, and triggers pathological damage to lung tissue. Using TLR-4 inhibitors can prevent sepsis-induced ARDS in histone-induced sepsis.
Collapse
Affiliation(s)
- 汀航 杨
- 四川大学华西医院 肾脏内科/肾脏病研究所 (成都 610041)Department of Nephrology/Kidney Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 育霈 李
- 四川大学华西医院 肾脏内科/肾脏病研究所 (成都 610041)Department of Nephrology/Kidney Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 白海 苏
- 四川大学华西医院 肾脏内科/肾脏病研究所 (成都 610041)Department of Nephrology/Kidney Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
7
|
Liu YS, Chen WL, Zeng YW, Li ZH, Zheng HL, Pan N, Zhao LY, Wang S, Chen SH, Jiang MH, Jin CC, Mi YC, Cai ZH, Fang XZ, Liu YJ, Liu L, Wang GL. Isaridin E Protects against Sepsis by Inhibiting Von Willebrand Factor-Induced Endothelial Hyperpermeability and Platelet-Endothelium Interaction. Mar Drugs 2024; 22:283. [PMID: 38921594 PMCID: PMC11204489 DOI: 10.3390/md22060283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/14/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024] Open
Abstract
Endothelial hyperpermeability is pivotal in sepsis-associated multi-organ dysfunction. Increased von Willebrand factor (vWF) plasma levels, stemming from activated platelets and endothelium injury during sepsis, can bind to integrin αvβ3, exacerbating endothelial permeability. Hence, targeting this pathway presents a potential therapeutic avenue for sepsis. Recently, we identified isaridin E (ISE), a marine-derived fungal cyclohexadepsipeptide, as a promising antiplatelet and antithrombotic agent with a low bleeding risk. ISE's influence on septic mortality and sepsis-induced lung injury in a mouse model of sepsis, induced by caecal ligation and puncture, is investigated in this study. ISE dose-dependently improved survival rates, mitigating lung injury, thrombocytopenia, pulmonary endothelial permeability, and vascular inflammation in the mouse model. ISE markedly curtailed vWF release from activated platelets in septic mice by suppressing vesicle-associated membrane protein 8 and soluble N-ethylmaleide-sensitive factor attachment protein 23 overexpression. Moreover, ISE inhibited healthy human platelet adhesion to cultured lipopolysaccharide (LPS)-stimulated human umbilical vein endothelial cells (HUVECs), thereby significantly decreasing vWF secretion and endothelial hyperpermeability. Using cilengitide, a selective integrin αvβ3 inhibitor, it was found that ISE can improve endothelial hyperpermeability by inhibiting vWF binding to αvβ3. Activation of the integrin αvβ3-FAK/Src pathway likely underlies vWF-induced endothelial dysfunction in sepsis. In conclusion, ISE protects against sepsis by inhibiting endothelial hyperpermeability and platelet-endothelium interactions.
Collapse
Affiliation(s)
- Yao-Sheng Liu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; (Y.-S.L.); (Y.-W.Z.); (Z.-H.L.); (L.-Y.Z.); (S.W.); (C.-C.J.); (Y.-C.M.); (Z.-H.C.); (X.-Z.F.)
| | - Wen-Liang Chen
- Scientific Research Center, the Medical Interdisciplinary Science Research Center of Western Guangdong, College of Women and Children, the Second Affiliated Hospital of Guangdong Medical University, Zhanjiang 524023, China;
| | - Yu-Wei Zeng
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; (Y.-S.L.); (Y.-W.Z.); (Z.-H.L.); (L.-Y.Z.); (S.W.); (C.-C.J.); (Y.-C.M.); (Z.-H.C.); (X.-Z.F.)
| | - Zhi-Hong Li
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; (Y.-S.L.); (Y.-W.Z.); (Z.-H.L.); (L.-Y.Z.); (S.W.); (C.-C.J.); (Y.-C.M.); (Z.-H.C.); (X.-Z.F.)
| | - Hao-Lin Zheng
- Division of Biosciences, University College London, London WC1E 6BT, UK;
| | - Ni Pan
- Department of Pharmacy, The Second Clinical College, Guangzhou Medical University, Guangzhou 510261, China;
| | - Li-Yan Zhao
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; (Y.-S.L.); (Y.-W.Z.); (Z.-H.L.); (L.-Y.Z.); (S.W.); (C.-C.J.); (Y.-C.M.); (Z.-H.C.); (X.-Z.F.)
| | - Shu Wang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; (Y.-S.L.); (Y.-W.Z.); (Z.-H.L.); (L.-Y.Z.); (S.W.); (C.-C.J.); (Y.-C.M.); (Z.-H.C.); (X.-Z.F.)
| | - Sen-Hua Chen
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China; (S.-H.C.); (M.-H.J.)
- Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| | - Ming-Hua Jiang
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China; (S.-H.C.); (M.-H.J.)
- Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| | - Chen-Chen Jin
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; (Y.-S.L.); (Y.-W.Z.); (Z.-H.L.); (L.-Y.Z.); (S.W.); (C.-C.J.); (Y.-C.M.); (Z.-H.C.); (X.-Z.F.)
| | - Yu-Chen Mi
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; (Y.-S.L.); (Y.-W.Z.); (Z.-H.L.); (L.-Y.Z.); (S.W.); (C.-C.J.); (Y.-C.M.); (Z.-H.C.); (X.-Z.F.)
| | - Zhao-Hui Cai
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; (Y.-S.L.); (Y.-W.Z.); (Z.-H.L.); (L.-Y.Z.); (S.W.); (C.-C.J.); (Y.-C.M.); (Z.-H.C.); (X.-Z.F.)
| | - Xin-Zhe Fang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; (Y.-S.L.); (Y.-W.Z.); (Z.-H.L.); (L.-Y.Z.); (S.W.); (C.-C.J.); (Y.-C.M.); (Z.-H.C.); (X.-Z.F.)
| | - Yong-Jun Liu
- Guangdong Provincial Clinical Research Center of Critical Care Medicine, Guangzhou 510080, China
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Lan Liu
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China; (S.-H.C.); (M.-H.J.)
- Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| | - Guan-Lei Wang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; (Y.-S.L.); (Y.-W.Z.); (Z.-H.L.); (L.-Y.Z.); (S.W.); (C.-C.J.); (Y.-C.M.); (Z.-H.C.); (X.-Z.F.)
| |
Collapse
|
8
|
Su Y, Lucas R, Fulton DJ, Verin AD. Mechanisms of pulmonary endothelial barrier dysfunction in acute lung injury and acute respiratory distress syndrome. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2024; 2:80-87. [PMID: 39006829 PMCID: PMC11242916 DOI: 10.1016/j.pccm.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Endothelial cells (ECs) form a semi-permeable barrier between the interior space of blood vessels and the underlying tissues. Pulmonary endothelial barrier integrity is maintained through coordinated cellular processes involving receptors, signaling molecules, junctional complexes, and protein-regulated cytoskeletal reorganization. In acute lung injury (ALI) or its more severe form acute respiratory distress syndrome (ARDS), the loss of endothelial barrier integrity secondary to endothelial dysfunction caused by severe pulmonary inflammation and/or infection leads to pulmonary edema and hypoxemia. Pro-inflammatory agonists such as histamine, thrombin, bradykinin, interleukin 1β, tumor necrosis factor α, vascular endothelial growth factor, angiopoietin-2, and platelet-activating factor, as well as bacterial toxins and reactive oxygen species, cause dynamic changes in cytoskeletal structure, adherens junction disorganization, and detachment of vascular endothelial cadherin (VE-cadherin) from the actin cytoskeleton, leading to an increase in endothelial permeability. Endothelial interactions with leukocytes, platelets, and coagulation enhance the inflammatory response. Moreover, inflammatory infiltration and the associated generation of pro-inflammatory cytokines during infection cause EC death, resulting in further compromise of the structural integrity of lung endothelial barrier. Despite the use of potent antibiotics and aggressive intensive care support, the mortality of ALI is still high, because the mechanisms of pulmonary EC barrier disruption are not fully understood. In this review, we summarized recent advances in the studies of endothelial cytoskeletal reorganization, inter-endothelial junctions, endothelial inflammation, EC death, and endothelial repair in ALI and ARDS, intending to shed some light on the potential diagnostic and therapeutic targets in the clinical management of the disease.
Collapse
Affiliation(s)
- Yunchao Su
- Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Research Service, Charlie Norwood Veterans Affairs Medical Center, Augusta, GA 30912, USA
| | - Rudolf Lucas
- Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - David J.R. Fulton
- Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Alexander D. Verin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
9
|
Shi W, Zhu W, Yu J, Shi Y, Zhao Y. LncRNA HOTTIP as a diagnostic biomarker for acute respiratory distress syndrome in patients with sepsis and to predict the short-term clinical outcome: a case-control study. BMC Anesthesiol 2024; 24:30. [PMID: 38238652 PMCID: PMC10795278 DOI: 10.1186/s12871-024-02405-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/05/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND The present research aims to investigate the clinical diagnostic value of LncRNA HOXA distal transcript antisense RNA (HOTTIP) in acute respiratory distress syndrome (ARDS) of sepsis and its predictive significance for mortality. METHODS One hundred eighteenth patients with sepsis and 96 healthy individuals were enrolled. RT-qPCR to examine HOTTIP levels. The incidence of ARDS and death was recorded. The diagnostic significance of HOTTIP in sepsis ARDS was examined using ROC and logistic regression analysis. The correlation between HOTTIP and disease severity was evaluated using Pearson's coefficients. Kaplan-Meier analysis and COX regression were employed to examine the predictive significance of mortality. Validation of HOTTIP target miRNA by dual-luciferase assay. RESULTS HOTTIP was persistently up-regulated in patients with ARDS sepsis than in patients without ARDS patients (P < 0.05). HOTTIP was a risk factor for the development of ARDS, which could be diagnosed in ARDS patients from non-ARDS patients (AUC = 0.847). Both the SOFA score (r = 0.6793) and the APACHE II score (r = 0.6384) were positively correlated with the HOTTIP levels. Furthermore, serum HOTTIP was an independent predictor of short-term mortality (HR = 4.813. 95%CI: 1.471-15.750, P = 0.009) and noticeably predicted the occurrence of short-term death (log rank = 0.020). miR-574-5p, a target miRNA for HOTTIP, was reduced in patients with sepsis ARDS and negatively correlated with HOTTIP. CONCLUSIONS The presence of HOTTIP serves as a diagnostic biomarker for the occurrence of ARDS, exhibits correlation with disease severity, and provides predictive value of short-term mortality in sepsis patients. HOTTIP may be involved in ARDS progression by targeting miR-574-5p.
Collapse
Affiliation(s)
- Weitao Shi
- Department of Critical Care Medicine, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University (The First People's Hospital of Xuzhou), Xuzhou, Jiangsu Province, 221000, China
| | - Wang Zhu
- Department of Critical Care Medicine, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University (The First People's Hospital of Xuzhou), Xuzhou, Jiangsu Province, 221000, China
| | - Jiani Yu
- Department of Rheumatology and Immunology, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University (The First People's Hospital of Xuzhou), Xuzhou, Jiangsu Province, 221000, China
| | - Yingjun Shi
- Department of Critical Care Medicine, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University (The First People's Hospital of Xuzhou), Xuzhou, Jiangsu Province, 221000, China
| | - Yuliang Zhao
- Department of Critical Care Medicine, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University (The First People's Hospital of Xuzhou), Xuzhou, Jiangsu Province, 221000, China.
| |
Collapse
|
10
|
Zhu W, Liu X, Luo L, Huang X, Wang X. Interaction between mitochondrial homeostasis and barrier function in lipopolysaccharide-induced endothelial cell injury. Int J Exp Pathol 2023; 104:272-282. [PMID: 37828780 PMCID: PMC10652695 DOI: 10.1111/iep.12495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/20/2023] [Accepted: 09/24/2023] [Indexed: 10/14/2023] Open
Abstract
This study aimed to investigate the effects of mitochondrial homeostasis on lipopolysaccharide (LPS)-induced endothelial cell barrier function and the mechanisms that underlie these effects. Cells were treated with LPS or oligomycin (mitochondrial adenosine triphosphate synthase inhibitor) and the mitochondrial morphology, mitochondrial reactive oxygen species (mtROS), and mitochondrial membrane potential (ΔΨm) were evaluated. Moreover, the shedding of glycocalyx-heparan sulphate (HS), the levels of HS-specific degrading enzyme heparanase (HPA), and the expression of occludin and zonula occludens (ZO-1) of Tight Junctions (TJ)s, which are mediated by myosin light chain phosphorylation (p-MLC), were assessed. Examining the changes in mitochondrial homeostasis showed that adding heparinase III, which is an exogenous HPA, can destroy the integrity of glycocalyx. LPS simultaneously increased mitochondrial swelling, mtROS, and ΔΨm. Without oligomycin effects, HS, HPA levels, and p-MLC were found to be elevated, and the destruction of occludin and ZO-1 increased. Heparinase III not only damaged the glycocalyx by increasing HS shedding but also increased mitochondrial swelling and mtROS and decreased ΔΨm. Mitochondrial homeostasis is involved in LPS-induced endothelial cell barrier dysfunction by aggravating HPA and p-MLC levels. In turn, the integrated glycocalyx protects mitochondrial homeostasis.
Collapse
Affiliation(s)
- Weiwei Zhu
- Department of Intensive Care UnitBinzhou Medical University HospitalBinzhouChina
| | - Xiaojing Liu
- Department of Intensive Care UnitBinzhou Medical University HospitalBinzhouChina
| | - Liqing Luo
- Department of HematologyBinzhou Medical University HospitalBinzhouChina
| | - Xiao Huang
- Department of Intensive Care UnitBinzhou Medical University HospitalBinzhouChina
| | - Xiaozhi Wang
- Department of Intensive Care UnitBinzhou Medical University HospitalBinzhouChina
| |
Collapse
|
11
|
Bai R, Pei J, Pei S, Cong X, Chun J, Wang F, Chen X. LPA 2 Alleviates Septic Acute Lung Injury via Protective Endothelial Barrier Function Through Activation of PLC-PKC-FAK. J Inflamm Res 2023; 16:5095-5109. [PMID: 38026263 PMCID: PMC10640838 DOI: 10.2147/jir.s419578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/27/2023] [Indexed: 12/01/2023] Open
Abstract
Background Increased endothelial permeability of pulmonary vessels is a primary pathological characteristic of septic acute lung injury (ALI). Previously, elevated lysophosphatidic acid (LPA) levels and LPA2 (an LPA receptor) expression have been found in the peripheral blood and lungs of septic mice, respectively. However, the specific role of LPA2 in septic ALI remains unclear. Methods A lipopolysaccharide (LPS)-induced model of sepsis was established in wild-type (WT) and global LPA2 knockout (Lpar2-/-) mice. We examined mortality, lung injury, assessed endothelial permeability through Evans blue dye (EBD) assay in vivo, and transendothelial electrical resistance (TEER) of mouse lung microvascular endothelial cells (MLMECs) in vitro. Enzyme-linked immunosorbent assay (ELISA), histopathological, immunofluorescence, immunohistochemistry, and Western blot were employed to investigate the role of LPA2 in septic ALI. Results Lpar2 deficiency increased vascular endothelial permeability, impaired lung injury, and increased mortality. Histological examination revealed aggravated inflammation, edema, hemorrhage and alveolar septal thickening in the lungs of septic Lpar2-/- mice. In vitro, loss of Lpar2 resulted in increased permeability of MLMECs. Pharmacological activation of LPA2 by the agonist DBIBB led to significantly reduced inflammation, edema and hemorrhage, as well as increased expression of the vascular endothelial tight junction (TJ) protein zonula occludens-1 (ZO-1) and claudin-5, as well as the adheren junction (AJ) protein VE-cadherin. Moreover, DBIBB treatment was found to alleviate mortality by protecting against vascular endothelial permeability. Mechanistically, we demonstrated that vascular endothelial permeability was alleviated through LPA-LPA2 signaling via the PLC-PKC-FAK pathway. Conclusion These data provide a novel mechanism of endothelial barrier protection via PLC-PKC-FAK pathway and suggest that LPA2 may contribute to the therapeutic effects of septic ALI.
Collapse
Affiliation(s)
- Ruifeng Bai
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Jianqiu Pei
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Shengqiang Pei
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Xiangfeng Cong
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Jerold Chun
- Neuroscience Drug Discovery, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Fang Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Diagnostic Laboratory Service, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Department of Clinical Laboratory, Fuwai Yunnan Cardiovascular Hospital, Kunming, People’s Republic of China
| | - Xi Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Diagnostic Laboratory Service, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| |
Collapse
|
12
|
Wu J, Lan Y, Wu J, Zhu K. Sepsis-Induced Acute Lung Injury Is Alleviated by Small Molecules from Dietary Plants via Pyroptosis Modulation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12153-12166. [PMID: 37537751 DOI: 10.1021/acs.jafc.2c08926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Sepsis-induced acute respiratory distress syndrome (ARDS) has high morbidity and mortality, and it has three major pathogeneses, namely alveolar-capillary barrier destruction, elevated gut permeability, and reduced neutrophil extracellular traps (NETS), all of which are pyroptosis-involved. Due to limitations of current agents like adverse reaction superposition, inevitable drug resistance, and relatively heavier financial burden, naturally extracted small-molecule compounds have a broad market even though chemically modified drugs have straightforward efficacy. Despite increased understanding of the molecular biology and mechanism underlying sepsis-induced ARDS, there are no specific reviews concerning how small molecules from dietary plants alleviate sepsis-induced acute lung injury (ALI) via regulating pyroptotic cell death. Herein, we traced and reviewed the molecular underpinnings of sepsis-induced ALI with a focus on small-molecule compounds from dietary plants, the top three categories of which are respectively flavonoids and flavone, terpenoids, and polyphenol and phenolic acids, and how they rescued septic ALI by restraining pyroptosis.
Collapse
Affiliation(s)
- Jiasi Wu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yuejia Lan
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Jinghan Wu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Keli Zhu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
13
|
Wang Y, Wang Y, Ma J, Li Y, Cao L, Zhu T, Hu H, Liu H. YuPingFengSan ameliorates LPS-induced acute lung injury and gut barrier dysfunction in mice. JOURNAL OF ETHNOPHARMACOLOGY 2023; 312:116452. [PMID: 37019161 DOI: 10.1016/j.jep.2023.116452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/24/2023] [Accepted: 03/31/2023] [Indexed: 05/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Yupingfengsan (YPFS) is a traditional Chinese medicine decoction. YPFS comprises Astragalus mongholicus Bunge (Huangqi), Atractylodes rubra Dekker (Baizhu), and Saposhnikovia divaricata (Turcz.ex Ledeb.) Schischk (Fangfeng). YPFS is commonly used to treat chronic obstructive pulmonary disease, asthma, respiratory infections, and pneumonia, but the mechanism of action remains unclear. AIM OF THE STUDY Acute lung injury (ALI) and its severe form of acute respiratory distress syndrome (ARDS) cause morbidity and mortality in critical patients. YPFS is a commonly used herbal soup to treat respiratory and immune system diseases. Nevertheless, the effect of YPFS on ALI remains unclear. This study aimed to investigate the effect of YPFS on lipopolysaccharide (LPS)-induced ALI in mice and elucidate its potential molecular mechanisms. MATERIALS AND METHODS The major components of YPFS were detected by High-performance liquid chromatography (HPLC). C57BL/6J mice were given YPFS for seven days and then treated with LPS. IL-1β, IL-6, TNF-α, IL-8, iNOS, NLRP3, PPARγ, HO-1, ZO-1, Occludin, Claudin-1, AQP3, AQP4, AQP5, ENaCα, ENaCβ, EnaCγ mRNA in lung and ZO-1, Occludin, Claudin-1, AQP3, AQP4, AQP5, ENaCα, ENaCβ, and EnaCγ mRNA in colon tissues were measured by Real-Time Quantitative PCR (RT-qPCR). The expressions of TLR4, MyD88, NOD-like receptor thermal protein domain associated protein 3 (NLRP3), ASC, MAPK signaling pathway, Nrf2, and HO-1 in the lung were detected by Western blot. Plasma inflammatory factors Interleukin (IL)-1β, IL-6, and Tumor Necrosis Factor-α (TNF-α) were determined by Enzyme-linked Immunosorbent Assay (ELISA). Lung tissues were processed for H & E staining, and colon tissues for HE, WGA-FITC, and Alcian Blue staining. RESULTS The results showed that YPFS administration alleviated lung injury and suppressed the production of inflammatory factors, including IL-1β, IL-6, and TNF-α. Additionally, YPFS reduced pulmonary edema by promoting the expressions of aquaporin and sodium channel-related genes (AQP3, AQP4, AQP5, ENaCα, ENaCβ, and EnaCγ). Further, YPFS intervention exhibited a therapeutic effect on ALI by inhibiting the activation of the NLRP3 inflammasome and MAPK signaling pathways. Finally, YPFS improved gut barrier integrity and suppressed intestinal inflammation in LPS-challenged mice. CONCLUSIONS YPFS protected mice against LPS-induced ALI by attenuating lung and intestinal tissue damage. This study sheds light on the potential application of YPFS to treat ALI/ARDS.
Collapse
Affiliation(s)
- Yao Wang
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan, 430065, PR China; College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan, 430065, PR China
| | - Yanchun Wang
- Clinical College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan, 430065, PR China
| | - Jun Ma
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan, 430065, PR China
| | - Yanan Li
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan, 430065, PR China
| | - Lu Cao
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan, 430065, PR China
| | - Tianxiang Zhu
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan, 430065, PR China
| | - Haiming Hu
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan, 430065, PR China.
| | - Hongtao Liu
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan, 430065, PR China.
| |
Collapse
|
14
|
Gazzaniga G, Tavecchia GA, Bravi F, Scavelli F, Travi G, Campo G, Vandenbriele C, Tritschler T, Sterne JAC, Murthy S, Morici N. The effect of antithrombotic treatment on mortality in patients with acute infection: A meta-analysis of randomized clinical trials. Int J Cardiol 2023:S0167-5273(23)00646-0. [PMID: 37149006 DOI: 10.1016/j.ijcard.2023.04.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 04/26/2023] [Accepted: 04/30/2023] [Indexed: 05/08/2023]
Abstract
BACKGROUND AND AIMS Acute infections cause relevant activation of innate immunity and inflammatory cascade. An excessive response against pathogens has been proved to trigger the pathophysiological process of thrombo-inflammation. Nevertheless, an association between the use of antithrombotic agents and the outcome of critically ill patients with infectious diseases is lacking. The aim of this meta-analysis is to determine the impact of antithrombotic treatment on survival of patients with acute infective disease. METHODS MEDLINE, Embase, Cinahl, Web of Science and Cochrane Central Register of Controlled Trials (CENTRAL) databases were systematically searched from inception to March 2021. We included randomized controlled trials (RCTs) that evaluated any antithrombotic agent in patients with infectious diseases other than COVID-19. Two authors independently performed study selection, data extraction and risk of bias evaluation. The primary outcome was all-cause mortality. Summary estimates for mortality were calculated using the inverse-variance random-effects method. RESULTS A total of 16,588 patients participating in 18 RCTs were included, of whom 2141 died. Four trials evaluated therapeutic-dose anticoagulation, 1 trial prophylactic-dose anticoagulation, 4 trials aspirin, and 9 trials other antithrombotic agents. Overall, the use of antithrombotic agents was not associated with all-cause mortality (relative risk 0.96; 95% confidence interval, 0.90-1.03). CONCLUSIONS The use of antithrombotics is not associated with all-cause mortality in patients with infectious disease other than COVID-19. Complex pathophysiological interplays between inflammatory and thrombotic pathways may explain these results and need further investigation. REGISTRATION PROSPERO, CRD42021241182.
Collapse
Affiliation(s)
- Gianluca Gazzaniga
- Department of Medical Biotechnology and Translational Medicine, Postgraduate School of Clinical Pharmacology and Toxicology, Università degli Studi di Milano, Milan, Italy
| | - Giovanni Amedeo Tavecchia
- Cardiology Department and De Gasperis Cardio Center, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy; Postgraduate School of Cardiovascular Diseases, University of Milano Bicocca, Milan, Italy
| | - Francesca Bravi
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Francesca Scavelli
- Cardiology Department and De Gasperis Cardio Center, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Giovanna Travi
- Infectious Diseases Unit, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Gianluca Campo
- Cardiovascular Institute, Azienda Ospedaliera Universitaria di Ferrara, Cona, Italy
| | | | - Tobias Tritschler
- Department of General Internal Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Jonathan A C Sterne
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Srinivas Murthy
- BC Children's Hospital, Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Nuccia Morici
- IRCCS S. Maria Nascente - Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy.
| |
Collapse
|
15
|
Zhao CQ, Wang C, Liu MM, Cao M, Peng J, Kong DQ, Ren XT, Liu R, Hai CX, Zhang XD. Single-cell transcriptomes reveal heterogeneity of chlorine-induced mice acute lung injury and the inhibitory effect of pentoxifylline on ferroptosis. Sci Rep 2023; 13:6833. [PMID: 37100790 PMCID: PMC10131515 DOI: 10.1038/s41598-023-32093-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 03/22/2023] [Indexed: 04/28/2023] Open
Abstract
To investigate the effect of pentoxifylline (PTX) on Chlorine (Cl2)-induced acute lung injury (ALI) by single-cell RNA sequencing (scRNA-seq). Female BALB/c mice were exposed to Cl2 at 400 ppm for 15 min. H&E staining was used to observe the degree of lung injury. scRNA-seq was conducted to analysis of normal and Cl2-exposed mice lung tissues. Immunofluorescence was used to observe genes of interest. Thirty-two mice were randomly divided into four groups: Control, Cl2, Cl2+Fer-1, Cl2+PTX. TEM, WB and ELISA were used to detect ferroptosis-related indicators. The 5, 8, 10, 12, 16, 20 clusters were epithelial cells and 4, 15, 18, 19, 21 clusters were endothelial cells. Pseudo-time analysis revealed the differentiation trajectory of epithelial cells and key regulatory genes (Gclc, Bpifa1, Dnah5 and Dnah9) during the process of injury. Cell-cell communication analysis identified several important receptor-ligand complexes (Nrp1-Vegfa, Nrp2-Vegfa, Flt1-Vegfa and Flt4-Vegfa). Ferroptosis were found up-regulated in epithelial and endothelial cells by GSVA analysis. Highly expressed genes to which closely related ferroptosis were found by SCENIC analysis. PTX could significantly decrease the levels of MDA and abnormal high expression of solute carrier family 7 member 11 (SLC7A11, the key transporter of cystine) as well as increase the expression of GSH/GSSG and glutathione peroxidase 4 (GPX4) (p < 0.05). This study revealed novel molecular features of Cl2-induced ALI. PTX may be a potential specific drug by inhibiting the process of ferroptosis in epithelial and endothelial cells.
Collapse
Affiliation(s)
- Chen-Qian Zhao
- Department of Medical Experiment Center, Shaanxi University of Chinese Medicine, Xi'an, 712046, Xianyang, China
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, Xi'an, 710032, China
| | - Chong Wang
- Department of Medical Experiment Center, Shaanxi University of Chinese Medicine, Xi'an, 712046, Xianyang, China
| | - Meng-Meng Liu
- Department of Health Service, Logistics University of Chinese People's Armed Police Force, Tianjin, 300309, China
| | - Meng Cao
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, Xi'an, 710032, China
| | - Jie Peng
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, Xi'an, 710032, China
| | - De-Qin Kong
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, Xi'an, 710032, China
| | - Xiao-Ting Ren
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, Xi'an, 710032, China
| | - Rui Liu
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, Xi'an, 710032, China
| | - Chun-Xu Hai
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, Xi'an, 710032, China.
| | - Xiao-di Zhang
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, Xi'an, 710032, China.
| |
Collapse
|
16
|
Hu W, Wu Z, Zhang M, Yu S, Zou X. Identification of ferroptosis-related genes in male mice with sepsis-induced acute lung injury based on transcriptome sequencing. BMC Pulm Med 2023; 23:133. [PMID: 37081490 PMCID: PMC10116744 DOI: 10.1186/s12890-023-02361-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 02/14/2023] [Indexed: 04/22/2023] Open
Abstract
BACKGROUND Sepsis can result in acute lung injury (ALI). Studies have shown that pharmacological inhibition of ferroptosis can treat ALI. However, the regulatory mechanisms of ferroptosis in sepsis-induced ALI remain unclear. METHODS Transcriptome sequencing was performed on lung tissue samples from 10 sepsis-induced mouse models of ALI and 10 control mice. After quality control measures, clean data were used to screen for differentially expressed genes (DEGs) between the groups. The DEGs were then overlapped with ferroptosis-related genes (FRGs) to obtain ferroptosis-related DEGs (FR-DEGs). Subsequently, least absolute shrinkage and selection operator (Lasso) and Support Vector Machine-Recursive Feature Elimination (SVM-RFE) were used to obtain key genes. In addition, Ingenuity Pathway Analysis (IPA) was employed to explore the disease, function, and canonical pathways related to the key genes. Gene set enrichment analysis (GSEA) was used to investigate the functions of the key genes, and regulatory miRNAs of key genes were predicted using the NetworkAnalyst and StarBase databases. Finally, the expression of key genes was validated with the GSE165226 and GSE168796 datasets sourced from the Gene Expression Omnibus (GEO) database and using quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS Thirty-three FR-DEGs were identified between 1843 DEGs and 259 FRGs. Three key genes, Ncf2, Steap3, and Gclc, were identified based on diagnostic models established by the two machine learning methods. They are mainly involved in infection, immunity, and apoptosis, including lymphatic system cell migration and lymphocyte and T cell responses. Additionally, the GSEA suggested that Ncf2 and Steap3 were similarly enriched in mRNA processing, response to peptides, and leukocyte differentiation. Furthermore, a key gene-miRNA network including 2 key genes (Steap3 and Gclc) and 122 miRNAs, and a gene-miRNA network with 1 key gene (Steap3) and 3 miRNAs were constructed using NetworkAnalyst and StarBase, respectively. Both databases predicted that mmu-miR-15a-5p was the target miRNA of Steap3. Finally, Ncf2 expression was validated using both datasets and qRT-PCR, and Steap3 was validated using GSE165226 and qRT-PCR. CONCLUSIONS This study identified two FR-DEGs (Ncf2 and Steap3) associated with sepsis-induced ALI via transcriptome analyses, as well as their functional and metabolic pathways.
Collapse
Affiliation(s)
- Wen Hu
- Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Zhen Wu
- Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Mei Zhang
- Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Shilin Yu
- Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Xiaohua Zou
- The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China.
| |
Collapse
|
17
|
Chihade DB, Smith P, Swift DA, Otani S, Zhang W, Chen CW, Jeffers LA, Liang Z, Shimazui T, Burd EM, Farris AB, Staitieh BS, Guidot DM, Ford ML, Koval M, Coopersmith CM. MYOSIN LIGHT CHAIN KINASE DELETION WORSENS LUNG PERMEABILITY AND INCREASES MORTALITY IN PNEUMONIA-INDUCED SEPSIS. Shock 2023; 59:612-620. [PMID: 36640152 PMCID: PMC10065930 DOI: 10.1097/shk.0000000000002081] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
ABSTRACT Increased epithelial permeability in sepsis is mediated via disruptions in tight junctions, which are closely associated with the perijunctional actin-myosin ring. Genetic deletion of myosin light chain kinase (MLCK) reverses sepsis-induced intestinal hyperpermeability and improves survival in a murine model of intra-abdominal sepsis. In an attempt to determine the generalizability of these findings, this study measured the impact of MLCK deletion on survival and potential associated mechanisms following pneumonia-induced sepsis. MLCK -/- and wild-type mice underwent intratracheal injection of Pseudomonas aeruginosa . Unexpectedly, survival was significantly worse in MLCK -/- mice than wild-type mice. This was associated with increased permeability to Evans blue dye in bronchoalveolar lavage fluid but not in tissue homogenate, suggesting increased alveolar epithelial leak. In addition, bacterial burden was increased in bronchoalveolar lavage fluid. Cytokine array using whole-lung homogenate demonstrated increases in multiple proinflammatory and anti-inflammatory cytokines in knockout mice. These local pulmonary changes were associated with systemic inflammation with increased serum levels of IL-6 and IL-10 and a marked increase in bacteremia in MLCK -/- mice. Increased numbers of both bulk and memory CD4 + T cells were identified in the spleens of knockout mice, with increased early and late activation. These results demonstrate that genetic deletion of MLCK unexpectedly increases mortality in pulmonary sepsis, associated with worsened alveolar epithelial leak and both local and systemic inflammation. This suggests that caution is required in targeting MLCK for therapeutic gain in sepsis.
Collapse
Affiliation(s)
| | - Prestina Smith
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Emory University School of Medicine, Atlanta, GA
| | | | | | | | | | - Lauren A Jeffers
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Emory University School of Medicine, Atlanta, GA
| | | | | | - Eileen M Burd
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA
| | - Alton B Farris
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA
| | | | - David M Guidot
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Emory University School of Medicine, Atlanta, GA
| | | | - Michael Koval
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Emory University School of Medicine, Atlanta, GA
| | | |
Collapse
|
18
|
Hogwood J, Mulloy B, Lever R, Gray E, Page CP. Pharmacology of Heparin and Related Drugs: An Update. Pharmacol Rev 2023; 75:328-379. [PMID: 36792365 DOI: 10.1124/pharmrev.122.000684] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 02/17/2023] Open
Abstract
Heparin has been used extensively as an antithrombotic and anticoagulant for close to 100 years. This anticoagulant activity is attributed mainly to the pentasaccharide sequence, which potentiates the inhibitory action of antithrombin, a major inhibitor of the coagulation cascade. More recently it has been elucidated that heparin exhibits anti-inflammatory effect via interference of the formation of neutrophil extracellular traps and this may also contribute to heparin's antithrombotic activity. This illustrates that heparin interacts with a broad range of biomolecules, exerting both anticoagulant and nonanticoagulant actions. Since our previous review, there has been an increased interest in these nonanticoagulant effects of heparin, with the beneficial role in patients infected with SARS2-coronavirus a highly topical example. This article provides an update on our previous review with more recent developments and observations made for these novel uses of heparin and an overview of the development status of heparin-based drugs. SIGNIFICANCE STATEMENT: This state-of-the-art review covers recent developments in the use of heparin and heparin-like materials as anticoagulant, now including immunothrombosis observations, and as nonanticoagulant including a role in the treatment of SARS-coronavirus and inflammatory conditions.
Collapse
Affiliation(s)
- John Hogwood
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., E.G., C.P.P.); National Institute for Biological Standards and Control, South Mimms, Hertfordshire, United Kingdom (J.H., E.G.) and School of Pharmacy, University College London, London, United Kingdom (R.L.)
| | - Barbara Mulloy
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., E.G., C.P.P.); National Institute for Biological Standards and Control, South Mimms, Hertfordshire, United Kingdom (J.H., E.G.) and School of Pharmacy, University College London, London, United Kingdom (R.L.)
| | - Rebeca Lever
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., E.G., C.P.P.); National Institute for Biological Standards and Control, South Mimms, Hertfordshire, United Kingdom (J.H., E.G.) and School of Pharmacy, University College London, London, United Kingdom (R.L.)
| | - Elaine Gray
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., E.G., C.P.P.); National Institute for Biological Standards and Control, South Mimms, Hertfordshire, United Kingdom (J.H., E.G.) and School of Pharmacy, University College London, London, United Kingdom (R.L.)
| | - Clive P Page
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., E.G., C.P.P.); National Institute for Biological Standards and Control, South Mimms, Hertfordshire, United Kingdom (J.H., E.G.) and School of Pharmacy, University College London, London, United Kingdom (R.L.)
| |
Collapse
|
19
|
Fang Y, Lin S, Dou Q, Gui J, Li W, Tan H, Wang Y, Zeng J, Khan A, Wei DQ. Network pharmacology- and molecular simulation-based exploration of therapeutic targets and mechanisms of heparin for the treatment of sepsis/COVID-19. J Biomol Struct Dyn 2023; 41:12586-12598. [PMID: 36661370 DOI: 10.1080/07391102.2023.2167114] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 01/05/2023] [Indexed: 01/21/2023]
Abstract
Critically infected patients with COVID-19 (coronavirus disease 2019) are prone to develop sepsis-related coagulopathy as a result of a robust immune response. The mechanism underlying the relationship between sepsis and COVID-19 is largely unknown. LMWH (low molecular weight heparin) exhibits both anti-inflammatory and anti-coagulating properties that result in a better prognosis of severely ill patients with COVID-19 co-associated with sepsis-induced coagulopathy or with a higher D-dimer value. Heparin-associated molecular targets and their mechanism of action in sepsis/COVID-19 are not well understood. In this work, we characterize the pharmacological targets, biological functions and therapeutic actions of heparin in sepsis/COVID-19 from the perspective of network pharmacology. A total of 38 potential targets for heparin action against sepsis/COVID-19 and 8 core pharmacological targets were identified, including IL6, KNG1, CXCL8, ALB, VEGFA, F2, IL10 and TNF. Moreover, enrichment analysis showed that heparin could help in treating sepsis/COVID-19 through immunomodulation, inhibition of the inflammatory response, regulation of angiogenesis and antiviral activity. The pharmacological effects of heparin against these targets were further confirmed by molecular docking and simulation analysis, suggesting that heparin exerts effective binding capacity by targeting the essential residues in sepsis/COVID-19. Prospective clinical practice evaluations may consider the use of these key prognostic indicators for the treatment of sepsis/COVID-19.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Yitian Fang
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Peng Cheng Laboratory, Shenzhen, Guangdong, China
| | - Shenggeng Lin
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Qingli Dou
- Department of Emergency Medicine, Affiliated Baoan Hospital of Shenzhen, Southern Medical University, Shenzhen, Guangdong, China
| | - Jianjun Gui
- Department of Emergency Medicine, Affiliated Baoan Hospital of Shenzhen, Southern Medical University, Shenzhen, Guangdong, China
| | - Weimin Li
- National Tuberculosis Clinical Lab of China, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Hongsheng Tan
- Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanjing Wang
- Engineering Research Center of Cell and Therapeutics Antibody, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Jumei Zeng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Abbas Khan
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Dong-Qing Wei
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Peng Cheng Laboratory, Shenzhen, Guangdong, China
| |
Collapse
|
20
|
Sang L, Guo X, Zhao Y, Shi J, Niu Z, Wu Z, Hou S, Fan H, Lv Q. Protective Effect of Nebulized Heparin in the Animal Models of Smoke Inhalation Injury: A Meta-analysis and Systematic Review of Experimental Studies. J Burn Care Res 2023; 44:42-52. [PMID: 36269755 DOI: 10.1093/jbcr/irac156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Indexed: 01/14/2023]
Abstract
The pathophysiological mechanism of abnormal coagulation can result from smoke inhalation injury (SII). Heparin nebulization is a common treatment for lung disorders. This study aimed to use meta-analysis in animal models to examine the effectiveness of atomized heparin on SII. For our online searches, we used the Cochrane Central Register of Controlled Trials, PubMed, Web of Science, Chinese National Knowledge Infrastructure, Chinese BioMedical Literature Database, and Wanfang Database up to January 2022. Data for SII were retrieved and compared to control animals. The studies' findings were determined by combining standardized mean difference (SMD) analysis with 95% confidence intervals (CIs). The findings showed that as compared to the control group, the heparin-treated group had a lower death rate (relative risk 0.42; 95% CI 0.22, 0.80; p < .05). The meta-analysis demonstrated favorable changes in lung physiology, including PaO2/FiO2 (SMD 1.04; 95% CI 0.65, 1.44; p < .001), lung wet-to-dry weight ratio (SMD -1.83; 95% CI -2.47, -1.18; p < .001), and pulmonary shunt Qs/Qt (SMD -0.69; 95% CI -1.29, -0.08; p < .05) after heparin nebulization for lung injury. The present data indicated that pulmonary artery mean pressure in the heparin therapy group was significantly lowered after 24 and 48 hours of therapy, suggesting that the cardiovascular system could recover following heparin treatment. As a result, heparin nebulization appeared to be more effective against SII and improved cardiopulmonary function compared to the control group. Graphical Abstract.
Collapse
Affiliation(s)
- Lu Sang
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China.,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Xiaoqin Guo
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China.,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Yuchen Zhao
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China.,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Jie Shi
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China.,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Zhifang Niu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China.,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Zhenlong Wu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China.,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Shike Hou
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China.,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Haojun Fan
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China.,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Qi Lv
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China.,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| |
Collapse
|
21
|
Brock S, Jackson DB, Soldatos TG, Hornischer K, Schäfer A, Diella F, Emmert MY, Hoerstrup SP. Whole patient knowledge modeling of COVID-19 symptomatology reveals common molecular mechanisms. FRONTIERS IN MOLECULAR MEDICINE 2023; 2:1035290. [PMID: 39086962 PMCID: PMC11285600 DOI: 10.3389/fmmed.2022.1035290] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/12/2022] [Indexed: 08/02/2024]
Abstract
Infection with SARS-CoV-2 coronavirus causes systemic, multi-faceted COVID-19 disease. However, knowledge connecting its intricate clinical manifestations with molecular mechanisms remains fragmented. Deciphering the molecular basis of COVID-19 at the whole-patient level is paramount to the development of effective therapeutic approaches. With this goal in mind, we followed an iterative, expert-driven process to compile data published prior to and during the early stages of the pandemic into a comprehensive COVID-19 knowledge model. Recent updates to this model have also validated multiple earlier predictions, suggesting the importance of such knowledge frameworks in hypothesis generation and testing. Overall, our findings suggest that SARS-CoV-2 perturbs several specific mechanisms, unleashing a pathogenesis spectrum, ranging from "a perfect storm" triggered by acute hyper-inflammation, to accelerated aging in protracted "long COVID-19" syndromes. In this work, we shortly report on these findings that we share with the community via 1) a synopsis of key evidence associating COVID-19 symptoms and plausible mechanisms, with details presented within 2) the accompanying "COVID-19 Explorer" webserver, developed specifically for this purpose (found at https://covid19.molecularhealth.com). We anticipate that our model will continue to facilitate clinico-molecular insights across organ systems together with hypothesis generation for the testing of potential repurposing drug candidates, new pharmacological targets and clinically relevant biomarkers. Our work suggests that whole patient knowledge models of human disease can potentially expedite the development of new therapeutic strategies and support evidence-driven clinical hypothesis generation and decision making.
Collapse
Affiliation(s)
| | | | - Theodoros G. Soldatos
- Molecular Health GmbH, Heidelberg, Germany
- SRH Hochschule, University of Applied Science, Heidelberg, Germany
| | | | | | | | - Maximilian Y. Emmert
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Wyss Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
- Department of Cardiothoracic and Vascular Surgery, German Heart Institute Berlin, Berlin, Germany
- Department of Cardiovascular Surgery, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Simon P. Hoerstrup
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Wyss Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
22
|
Li N, Li Y, Wu B, Sun R, Zhao M, Hu Z. CIRCKLHL2 KNOCKDOWN ALLEVIATES SEPSIS-INDUCED ACUTE LUNG INJURY BY REGULATING MIR-29B-3P MEDIATED ROCK1 EXPRESSION DOWN-REGULATION. Shock 2023; 59:99-107. [PMID: 36476974 DOI: 10.1097/shk.0000000000002034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
ABSTRACT Background: Acute lung injury (ALI) induced by sepsis is distinguished by an inflammatory progression. Herein, we investigated the action of circular RNA kelch like family member 2 (circKlhl2) in sepsis-induced ALI. Methods: The animal or cell model of sepsis ALI was established by LPS stimulation. The contents of circKlhl2, microRNA-29b-3p (miR-29b-3p), rho-associated coiled-coil containing protein kinase 1 (ROCK1), CyclinD1, B-cell lymphoma-2 (Bcl-2), and cleaved-caspase 3 (C-caspase-3) were detected by quantitative real-time polymerase chain reaction and western blot, respectively. Cell viability was assessed by cell counting kit 8 assay. Cell cycle and apoptosis were evaluated by flow cytometry. The abundances of proinflammatory cytokines were detected by enzyme-linked immunosorbent assay. Besides, the targeted relationship between miR-29b-3p and circKlhl2 or ROCK1 was verified by dual-luciferase reporter assay, RNA immunoprecipitation assay and RNA pull-down assay. Results: Loss of circKlhl2 mitigated lung injury and proinflammatory cytokine expression in sepsis-ALI mice model and alleviated LPS-induced apoptosis and inflammatory response in microvascular endothelial cell (MPVECs) in vitro . The abundances of circKlhl2 and ROCK1 were boosted, while the miR-29b-3p level was diminished in the animal or cell model of sepsis-ALI. MiR-29b-3p inhibition abrogated circKlhl2 knockdown-mediated effects on MPVECs injury. Moreover, miR-29b-3p overexpression promoted cell proliferation and inhibited apoptosis and inflammation in LPS-treated MPVECs, while ROCK1 enhancement reversed these effects. Conclusion: CircKlhl2 expedited the sepsis-induced ALI by adjusting miR-29b-3p/ROCK1 axis.
Collapse
Affiliation(s)
| | - Yuqiang Li
- Clinical Biological Sample Center, The First Affiliated Hospital Of Jinzhou Medical University, Jinzhou City, Liaoning Province, China
| | - Bin Wu
- Clinical Biological Sample Center, The First Affiliated Hospital Of Jinzhou Medical University, Jinzhou City, Liaoning Province, China
| | - Rongli Sun
- Clinical Biological Sample Center, The First Affiliated Hospital Of Jinzhou Medical University, Jinzhou City, Liaoning Province, China
| | - Mingzhou Zhao
- Clinical Biological Sample Center, The First Affiliated Hospital Of Jinzhou Medical University, Jinzhou City, Liaoning Province, China
| | | |
Collapse
|
23
|
Remuzzi G, Schiaffino S, Santoro MG, FitzGerald GA, Melino G, Patrono C. Drugs for the prevention and treatment of COVID-19 and its complications: An update on what we learned in the past 2 years. Front Pharmacol 2022; 13:987816. [PMID: 36304162 PMCID: PMC9595217 DOI: 10.3389/fphar.2022.987816] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/12/2022] [Indexed: 12/15/2022] Open
Abstract
The COVID-19 Committee of the Lincei Academy has reviewed the scientific evidence supporting the efficacy and safety of existing and new drugs/biologics for the preventing and treating of COVID-19 and its complications. This position paper reports what we have learned in the field in the past 2 years. The focus was on, but not limited to, drugs and neutralizing monoclonal antibodies, anti-SARS-CoV-2 agents, anti-inflammatory and immunomodulatory drugs, complement inhibitors and anticoagulant agents. We also discuss the risks/benefit of using cell therapies on COVID-19 patients. The report summarizes the available evidence, which supports recommendations from health authorities and panels of experts regarding some drugs and biologics, and highlights drugs that are not recommended, or drugs for which there is insufficient evidence to recommend for or against their use. We also address the issue of the safety of drugs used to treat underlying concomitant conditions in COVID-19 patients. The investigators did an enormous amount of work very quickly to understand better the nature and pathophysiology of COVID-19. This expedited the development and repurposing of safe and effective therapeutic interventions, saving an impressive number of lives in the community as well as in hospitals.
Collapse
Affiliation(s)
- Giuseppe Remuzzi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | | | - Maria Gabriella Santoro
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
- Institute of Translational Pharmacology, CNR, Rome, Italy
| | - Garret A. FitzGerald
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Philadelphia, Philadelphia, PA, United States
| | - Gennaro Melino
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Carlo Patrono
- Department of Pharmacology, Catholic University of the Sacred Heart, Rome, Italy
| |
Collapse
|
24
|
Han X. Inhibiting P2Y12 receptor relieves LPS-induced inflammation and endothelial dysfunction. Immun Inflamm Dis 2022; 10:e697. [PMID: 36169256 PMCID: PMC9449590 DOI: 10.1002/iid3.697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/14/2022] [Accepted: 08/20/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Acute lung injury (ALI) is characterized by abnormal inflammatory response without effective therapies. P2Y12 receptor (P2Y12R) plays a vital role in inflammatory response. This study intends to explore whether P2Y12R antagonists can inhibit LPS-induced inflammatory injury of human pulmonary microvascular endothelial cells (HPMVECs) and endothelial cell dysfunction. METHODS Using a cell model of ALI, the role of P2Y12R was investigated in LPS-induced HPMVECs. The expression of P2Y12R was detected by RT-qPCR and Western blot analysis assay and TNF-α, IL-1β, and IL-6 levels were analyzed by RT-qPCR. NO levels were also analyzed through NO kit. The levels of NF-κB p65, P-IκB-α, and IκB-α, as well as p-AKT and eNOS levels were detected by Western blot analysis assay. Wound healing assay was performed to evaluate HPMVECs migration. FITC-dextran was used to evaluate endothelial cell permeability, and the analysis of adherens junction protein VE-cadherin and endothelial cell tight junction proteins ZO-1, Claudin 5 and Occludin expression was performed by RT-qPCR and Western blot analysis assay. RESULTS In vitro, LPS increased the expression levels of P2Y12R and pro-inflammatory mediators (TNF-α, IL-1β, and IL-6), followed by a decrease in HPMVECs migration. In addition, LPS led to an increase in endothelial cell permeability. P2Y12R antagonists Ticagrelor or clopidogrel treatment significantly reversed these effects of LPS. CONCLUSION The inhibitor of P2Y12R was able to decrease inflammatory response, promote migration and improve endothelial cell function and permeability, suggesting a key role of P2Y12R in ALI.
Collapse
Affiliation(s)
- Xiuxia Han
- Medical Department of Shandong University HospitalJinanShandongChina
| |
Collapse
|
25
|
Zou ZY, Huang JJ, Luan YY, Yang ZJ, Zhou ZP, Zhang JJ, Yao YM, Wu M. Early prophylactic anticoagulation with heparin alleviates mortality in critically ill patients with sepsis: a retrospective analysis from the MIMIC-IV database. BURNS & TRAUMA 2022; 10:tkac029. [PMID: 36168402 PMCID: PMC9501718 DOI: 10.1093/burnst/tkac029] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/14/2022] [Indexed: 02/05/2023]
Abstract
Background Minimal data exist on anticoagulation use and timing and the dose of heparin in patients with sepsis, and whether heparin use improves sepsis survival remains largely unclear. This study was performed to assess whether heparin administration would provide a survival advantage in critically ill patients with sepsis. Methods A retrospective cohort study of patients with sepsis in the Medical Information Mart for Intensive Care (MIMIC)-IV database was conducted. Cox proportional hazards model and propensity score matching (PSM) were used to evaluate the outcomes of prophylactic anticoagulation with heparin administered by subcutaneous injection within 48 h of intensive care unit (ICU) admission. The primary outcome was in-hospital mortality. Secondary outcomes included 60-day mortality, length of ICU stay, length of hospital stay and incidence of acute kidney injury (AKI) on day 7. E-Value analysis were used for unmeasured confounding. Results A total of 6646 adult septic patients were included and divided into an early prophylactic heparin group (n = 3211) and a nonheparin group (n = 3435). In-hospital mortality in the heparin therapy group was significantly lower than that in the nonheparin group (prematched 14.7 vs 20.0%, hazard ratio (HR) 0.77, 95% confidence interval (CI) [0.68-0.87], p < 0.001, and postmatched 14.9 vs 18.3%, HR 0.78, 95% CI [0.68-0.89], p < 0.001). Secondary endpoints, including 60-day mortality and length of ICU stay, differed between the heparin and nonheparin groups (p < 0.01). Early prophylactic heparin administration was associated with in-hospital mortality among septic patients in different adjusted covariates (HR 0.71-0.78, p < 0.001), and only administration of five doses of heparin was associated with decreased in-hospital mortality after PSM (HR 0.70, 95% CI 0.56-0.87, p < 0.001). Subgroup analysis showed that heparin use was significantly associated with reduced in-hospital mortality in patients with sepsis-induced coagulopathy, septic shock, sequential organ failure assessment score ≥ 10, AKI, mechanical ventilation, gram-positive bacterial infection and gram-negative bacterial infection, with HRs of 0.74, 0.70, 0.58, 0.74, 0.73, 0.64 and 0.72, respectively (p <0.001). E-Value analysis suggested robustness to unmeasured confounding. Conclusions This study found an association between early administration prophylactic heparin provided to patients with sepsis and reduced risk-adjusted mortality. A prospective randomized-controlled study should be designed to further assess the relevant findings.
Collapse
Affiliation(s)
- Zhi-ye Zou
- Department of Critical Care Medicine and Hospital Infection Prevention and Control, Shenzhen Second People’s Hospital & First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China
| | - Jia-jia Huang
- Department of Critical Care Medicine and Hospital Infection Prevention and Control, Shenzhen Second People’s Hospital & First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China
- Postgraduate Education, Shantou University Medical College, Shantou 515041, China
| | - Ying-yi Luan
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, China
| | - Zhen-jia Yang
- Department of Critical Care Medicine and Hospital Infection Prevention and Control, Shenzhen Second People’s Hospital & First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China
- Postgraduate Education, Shantou University Medical College, Shantou 515041, China
| | - Zhi-peng Zhou
- Department of Critical Care Medicine and Hospital Infection Prevention and Control, Shenzhen Second People’s Hospital & First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China
| | - Jing-jing Zhang
- Department of Critical Care Medicine and Hospital Infection Prevention and Control, Shenzhen Second People’s Hospital & First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China
- Postgraduate Education, Shantou University Medical College, Shantou 515041, China
| | - Yong-ming Yao
- Trauma Research Center, Medical Innovation Research Department and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100048, China
| | - Ming Wu
- Department of Critical Care Medicine and Hospital Infection Prevention and Control, Shenzhen Second People’s Hospital & First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China
- Postgraduate Education, Shantou University Medical College, Shantou 515041, China
- Guangxi University of Chinese Medicine, Nanning 530200, China
| |
Collapse
|
26
|
Yang R, Zhang X. A potential new pathway for heparin treatment of sepsis-induced lung injury: inhibition of pulmonary endothelial cell pyroptosis by blocking hMGB1-LPS-induced caspase-11 activation. Front Cell Infect Microbiol 2022; 12:984835. [PMID: 36189354 PMCID: PMC9519888 DOI: 10.3389/fcimb.2022.984835] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/29/2022] [Indexed: 11/18/2022] Open
Abstract
Sepsis is a significant cause of mortality in critically ill patients. Acute lung injury (ALI) is a leading cause of death in these patients. Endothelial cells exposed to the bacterial endotoxin lipopolysaccharide (LPS) can progress into pyroptosis, a programmed lysis of cell death triggered by inflammatory caspases. It is characterized by lytic cell death induced by the binding of intracellular LPS to caspases 4/5 in human cells and caspase-11 in mouse cells. In mice,caspase-11-dependent pyroptosis plays an important role in endotoxemia. HMGB1 released into the plasma binds to LPS and is internalized into lysosomes in endothelial cells via the advanced glycation end product receptor. In the acidic lysosomal environment, HMGB1 permeates the phospholipid bilayer, which is followed by the leakage of LPS into the cytoplasm and the activation of caspase-11. Heparin is an anticoagulant widely applied in the treatment of thrombotic disease. Previous studies have found that heparin could block caspase-11-dependent inflammatory reactions, decrease sepsis-related mortality, and reduce ALI, independent of its anticoagulant activity. Heparin or modified heparin with no anticoagulant property could inhibit the alarmin HMGB1-LPS interactions, minimize LPS entry into the cytoplasm, and thus blocking caspase-11 activation. Heparin has been studied in septic ALI, but the regulatory mechanism of pulmonary endothelial cell pyroptosis is still unclear. In this paper, we discuss the potential novel role of heparin in the treatment of septic ALI from the unique mechanism of pulmonary endothelial cell pyroptosis.
Collapse
|
27
|
Li W, Li D, Chen Y, Abudou H, Wang H, Cai J, Wang Y, Liu Z, Liu Y, Fan H. Classic Signaling Pathways in Alveolar Injury and Repair Involved in Sepsis-Induced ALI/ARDS: New Research Progress and Prospect. DISEASE MARKERS 2022; 2022:6362344. [PMID: 35726235 PMCID: PMC9206211 DOI: 10.1155/2022/6362344] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/23/2022] [Indexed: 11/18/2022]
Abstract
Sepsis is a common critical clinical disease with high mortality that can cause approximately 10 million deaths worldwide each year. Acute lung injury (ALI) or acute respiratory distress syndrome (ARDS) is a common clinical complication of sepsis, which occurs primarily as diffuse alveolar injury, hypoxemia, and respiratory distress. The mortality rate of ALI/ARDS is as high as 30%-40%, which greatly endangers human health. Due to the unclear pathogenesis of ALI/ARDS, its treatment is still a worldwide problem. At present, clinical treatment mainly relies on lung-protective ventilation, prone position ventilation, and fluid management. However, there is a lack of effective and specific treatment measures. In recent years, domestic and foreign scholars have committed to basic research on ALI/ARDS, trying to further clarify its pathogenesis and find new targets and methods for the treatment of ALI/ARDS. In this review, we summarize the signaling pathways related to alveolar injury and repair in sepsis-induced ALI/ARDS and their latest research progress. They include the NF-κB, JAK2/STAT3, mitogen-activated protein kinase (MAPK), mTOR, and Notch signaling pathways. Understanding the molecular mechanisms of these signaling pathways in sepsis-induced ALI/ARDS may provide new targets and ideas for the clinical treatment of this disease.
Collapse
Affiliation(s)
- Wenli Li
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Duo Li
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Yuansen Chen
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Halidan Abudou
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Haiwang Wang
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Jinxia Cai
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Yiping Wang
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Ziquan Liu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Yanqing Liu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Haojun Fan
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| |
Collapse
|
28
|
Flumignan RL, Civile VT, Tinôco JDDS, Pascoal PI, Areias LL, Matar CF, Tendal B, Trevisani VF, Atallah ÁN, Nakano LC. Anticoagulants for people hospitalised with COVID-19. Cochrane Database Syst Rev 2022; 3:CD013739. [PMID: 35244208 PMCID: PMC8895460 DOI: 10.1002/14651858.cd013739.pub2] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND The primary manifestation of coronavirus disease 2019 (COVID-19) is respiratory insufficiency that can also be related to diffuse pulmonary microthrombosis and thromboembolic events, such as pulmonary embolism, deep vein thrombosis, or arterial thrombosis. People with COVID-19 who develop thromboembolism have a worse prognosis. Anticoagulants such as heparinoids (heparins or pentasaccharides), vitamin K antagonists and direct anticoagulants are used for the prevention and treatment of venous or arterial thromboembolism. Besides their anticoagulant properties, heparinoids have an additional anti-inflammatory potential. However, the benefit of anticoagulants for people with COVID-19 is still under debate. OBJECTIVES To assess the benefits and harms of anticoagulants versus active comparator, placebo or no intervention in people hospitalised with COVID-19. SEARCH METHODS We searched the CENTRAL, MEDLINE, Embase, LILACS and IBECS databases, the Cochrane COVID-19 Study Register and medRxiv preprint database from their inception to 14 April 2021. We also checked the reference lists of any relevant systematic reviews identified, and contacted specialists in the field for additional references to trials. SELECTION CRITERIA Eligible studies were randomised controlled trials (RCTs), quasi-RCTs, cluster-RCTs and cohort studies that compared prophylactic anticoagulants versus active comparator, placebo or no intervention for the management of people hospitalised with COVID-19. We excluded studies without a comparator group and with a retrospective design (all previously included studies) as we were able to include better study designs. Primary outcomes were all-cause mortality and necessity for additional respiratory support. Secondary outcomes were mortality related to COVID-19, deep vein thrombosis, pulmonary embolism, major bleeding, adverse events, length of hospital stay and quality of life. DATA COLLECTION AND ANALYSIS We used standard Cochrane methodological procedures. We used Cochrane RoB 1 to assess the risk of bias for RCTs, ROBINS-I to assess risk of bias for non-randomised studies (NRS) and GRADE to assess the certainty of evidence. We meta-analysed data when appropriate. MAIN RESULTS We included seven studies (16,185 participants) with participants hospitalised with COVID-19, in either intensive care units, hospital wards or emergency departments. Studies were from Brazil (2), Iran (1), Italy (1), and the USA (1), and two involved more than country. The mean age of participants was 55 to 68 years and the follow-up period ranged from 15 to 90 days. The studies assessed the effects of heparinoids, direct anticoagulants or vitamin K antagonists, and reported sparse data or did not report some of our outcomes of interest: necessity for additional respiratory support, mortality related to COVID-19, and quality of life. Higher-dose versus lower-dose anticoagulants (4 RCTs, 4647 participants) Higher-dose anticoagulants result in little or no difference in all-cause mortality (risk ratio (RR) 1.03, 95% CI 0.92 to 1.16, 4489 participants; 4 RCTs) and increase minor bleeding (RR 3.28, 95% CI 1.75 to 6.14, 1196 participants; 3 RCTs) compared to lower-dose anticoagulants up to 30 days (high-certainty evidence). Higher-dose anticoagulants probably reduce pulmonary embolism (RR 0.46, 95% CI 0.31 to 0.70, 4360 participants; 4 RCTs), and slightly increase major bleeding (RR 1.78, 95% CI 1.13 to 2.80, 4400 participants; 4 RCTs) compared to lower-dose anticoagulants up to 30 days (moderate-certainty evidence). Higher-dose anticoagulants may result in little or no difference in deep vein thrombosis (RR 1.08, 95% CI 0.57 to 2.03, 3422 participants; 4 RCTs), stroke (RR 0.91, 95% CI 0.40 to 2.03, 4349 participants; 3 RCTs), major adverse limb events (RR 0.33, 95% CI 0.01 to 7.99, 1176 participants; 2 RCTs), myocardial infarction (RR 0.86, 95% CI 0.48 to 1.55, 4349 participants; 3 RCTs), atrial fibrillation (RR 0.35, 95% CI 0.07 to 1.70, 562 participants; 1 study), or thrombocytopenia (RR 0.94, 95% CI 0.71 to 1.24, 2789 participants; 2 RCTs) compared to lower-dose anticoagulants up to 30 days (low-certainty evidence). It is unclear whether higher-dose anticoagulants have any effect on necessity for additional respiratory support, mortality related to COVID-19, and quality of life (very low-certainty evidence or no data). Anticoagulants versus no treatment (3 prospective NRS, 11,538 participants) Anticoagulants may reduce all-cause mortality but the evidence is very uncertain due to two study results being at critical and serious risk of bias (RR 0.64, 95% CI 0.55 to 0.74, 8395 participants; 3 NRS; very low-certainty evidence). It is uncertain if anticoagulants have any effect on necessity for additional respiratory support, mortality related to COVID-19, deep vein thrombosis, pulmonary embolism, major bleeding, stroke, myocardial infarction and quality of life (very low-certainty evidence or no data). Ongoing studies We found 62 ongoing studies in hospital settings (60 RCTs, 35,470 participants; 2 prospective NRS, 120 participants) in 20 different countries. Thirty-five ongoing studies plan to report mortality and 26 plan to report necessity for additional respiratory support. We expect 58 studies to be completed in December 2021, and four in July 2022. From 60 RCTs, 28 are comparing different doses of anticoagulants, 24 are comparing anticoagulants versus no anticoagulants, seven are comparing different types of anticoagulants, and one did not report detail of the comparator group. AUTHORS' CONCLUSIONS When compared to a lower-dose regimen, higher-dose anticoagulants result in little to no difference in all-cause mortality and increase minor bleeding in people hospitalised with COVID-19 up to 30 days. Higher-dose anticoagulants possibly reduce pulmonary embolism, slightly increase major bleeding, may result in little to no difference in hospitalisation time, and may result in little to no difference in deep vein thrombosis, stroke, major adverse limb events, myocardial infarction, atrial fibrillation, or thrombocytopenia. Compared with no treatment, anticoagulants may reduce all-cause mortality but the evidence comes from non-randomised studies and is very uncertain. It is unclear whether anticoagulants have any effect on the remaining outcomes compared to no anticoagulants (very low-certainty evidence or no data). Although we are very confident that new RCTs will not change the effects of different doses of anticoagulants on mortality and minor bleeding, high-quality RCTs are still needed, mainly for the other primary outcome (necessity for additional respiratory support), the comparison with no anticoagulation, when comparing the types of anticoagulants and giving anticoagulants for a prolonged period of time.
Collapse
Affiliation(s)
- Ronald Lg Flumignan
- Department of Surgery, Division of Vascular and Endovascular Surgery, Universidade Federal de São Paulo, São Paulo, Brazil
- Cochrane Brazil, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Vinicius T Civile
- Cochrane Brazil, Universidade Federal de São Paulo, São Paulo, Brazil
- Department of Physiotherapy, Universidade Paulista, São Paulo, Brazil
| | | | - Patricia If Pascoal
- Department of Surgery, Division of Vascular and Endovascular Surgery, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Libnah L Areias
- Department of Surgery, Division of Vascular and Endovascular Surgery, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Charbel F Matar
- Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Britta Tendal
- Living Guidelines Program, Cochrane Australia, Melbourne, Australia
| | - Virginia Fm Trevisani
- Cochrane Brazil, Universidade Federal de São Paulo, São Paulo, Brazil
- Medicina de Urgência, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Álvaro N Atallah
- Cochrane Brazil, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Luis Cu Nakano
- Department of Surgery, Division of Vascular and Endovascular Surgery, Universidade Federal de São Paulo, São Paulo, Brazil
- Cochrane Brazil, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
29
|
Fu S, Yu S, Wang L, Ma X, Li X. Unfractionated heparin improves the clinical efficacy in adult sepsis patients: a systematic review and meta-analysis. BMC Anesthesiol 2022; 22:28. [PMID: 35062871 PMCID: PMC8777179 DOI: 10.1186/s12871-021-01545-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/10/2021] [Indexed: 12/29/2022] Open
Abstract
Background The anticoagulant treatment and clinical efficacy of heparin in sepsis remains controversial. We conducted a meta-analysis to estimate the clinical efficacy of unfractionated heparin (UFH) in adult septic patients. Method A systematic review of Medline, Cochrane Library, PubMed, Embase, WEIPU database, CNKI database, WANFANG database was performed from inception to January 2021. We included Randomized controlled trials (RCTs) and the main outcome was 28 d mortality. Data analysis was performed with Review Manager (RevMan) version 5.3 software. The meta-analysis included 2617 patients from 15 RCTs. Results Comparing to control group, UFH could reduce 28 d mortality (RR: 0.82; 95% CI: 0.72 to 0.94) especially for patient with Acute Physiology and Chronic Health Evaluation II (APACHE II) > 15, (RR: 0.83; 95% CI: 0.72 to 0.96). In UFH group, the platelet (PLT) (MD: 9.18; 95% CI: 0.68 to 17.68) was higher, the activated partial thromboplastin time (APTT) was shorter (MD: -8.01; 95% CI: − 13.84 to − 2.18) and the prothrombin time (PT) results (P > 0.05) failed to reach statistical significance. UFH decreased multiple organ dysfunction syndrome (MODS) incidence (RR: 0.61; 95% CI: 0.45 to 0.84), length of stay (LOS) in ICU (MD: -4.94; 95% CI: − 6.89 to − 2.99) and ventilation time (MD: -3.01; 95% CI: − 4.0 to − 2.02). And UFH had no adverse impact on bleeding (RR: 1.10; 95% CI: 0.54 to 2.23). Conclusion This meta-analysis suggests that UFH may reduce 28 d mortality and improve the clinical efficacy in sepsis patients without bleeding adverse effect. Supplementary Information The online version contains supplementary material available at 10.1186/s12871-021-01545-w.
Collapse
|
30
|
Ennemoser M, Rieger J, Muttenthaler E, Gerlza T, Zatloukal K, Kungl AJ. Enoxaparin and Pentosan Polysulfate Bind to the SARS-CoV-2 Spike Protein and Human ACE2 Receptor, Inhibiting Vero Cell Infection. Biomedicines 2021; 10:biomedicines10010049. [PMID: 35052728 PMCID: PMC8772983 DOI: 10.3390/biomedicines10010049] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/16/2021] [Accepted: 12/23/2021] [Indexed: 02/03/2023] Open
Abstract
As with many other pathogens, SARS-CoV-2 cell infection is strongly dependent on the interaction of the virus-surface Spike protein with the glycosaminoglycans of target cells. The SARS-CoV-2 Spike glycoprotein was previously shown to interact with cell-surface-exposed heparan sulfate and heparin in vitro. With the aim of using Enoxaparin as a treatment for COVID-19 patients and as prophylaxis to prevent interpersonal viral transmission, we investigated GAG binding to the Spike full-length protein, as well as to its receptor binding domain (RBD) in solution by isothermal fluorescence titration. We found that Enoxaparin bound to both protein variants with similar affinities, compared to the natural GAG ligand heparan sulfate (with Kd-values in the range of 600–680 nM). Using size-defined Enoxaparin fragments, we discovered the optimum binding for dp6 or dp8 for the full-length Spike protein, whereas the RBD did not exhibit a significant chain-length-dependent affinity for heparin oligosaccharides. The soluble ACE2 receptor was found to interact with unfractionated GAGs in the low µM Kd range, but with size-defined heparins with clearly sub-µM Kd-values. Interestingly, the structural heparin analogue, pentosan polysulfate (PPS), exhibited high binding affinities to both Spike variants as well as to the ACE2 receptor. In viral infection experiments, Enoxaparin and PPS both showed a strong inhibition of infection in a concentration range of 50–500 µg/mL. Both compounds were found to retain their inhibitory effects at 500 µg/mL in a natural biomatrix-like human sputum. Our data suggest the early topical treatment of SARS-CoV-2 infections with inhaled Enoxaparin; some clinical studies in this direction are already ongoing, and they further imply an oral or nasal prophylactic inactivation of the virus by Enoxaparin or PPS for the prevention of inter-personal viral transmission.
Collapse
Affiliation(s)
- Maria Ennemoser
- Department of Pharmaceutical Chemistry, Institute of Pharmaceutical Sciences, Karl-Franzens-University Graz, A-8010 Graz, Austria; (M.E.); (E.M.); (T.G.)
| | - Julia Rieger
- Diagnostic and Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, A-8010 Graz, Austria; (J.R.); (K.Z.)
| | - Eva Muttenthaler
- Department of Pharmaceutical Chemistry, Institute of Pharmaceutical Sciences, Karl-Franzens-University Graz, A-8010 Graz, Austria; (M.E.); (E.M.); (T.G.)
| | - Tanja Gerlza
- Department of Pharmaceutical Chemistry, Institute of Pharmaceutical Sciences, Karl-Franzens-University Graz, A-8010 Graz, Austria; (M.E.); (E.M.); (T.G.)
| | - Kurt Zatloukal
- Diagnostic and Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, A-8010 Graz, Austria; (J.R.); (K.Z.)
| | - Andreas J. Kungl
- Department of Pharmaceutical Chemistry, Institute of Pharmaceutical Sciences, Karl-Franzens-University Graz, A-8010 Graz, Austria; (M.E.); (E.M.); (T.G.)
- Antagonis Biotherapeutics GmbH, Strasserhofweg 77a, A-8045 Graz, Austria
- Correspondence:
| |
Collapse
|
31
|
Khandelwal G, Ray A, Sethi S, Harikrishnan HK, Khandelwal C, Sadasivam B. COVID-19 and thrombotic complications-the role of anticoagulants, antiplatelets and thrombolytics. J Family Med Prim Care 2021; 10:3561-3567. [PMID: 34934647 PMCID: PMC8653484 DOI: 10.4103/jfmpc.jfmpc_1297_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/13/2020] [Accepted: 07/09/2021] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a global pandemic the world is dealing with currently. Clinical evidences suggest that the patients are predisposed to both venous and arterial thrombotic complications. This is because of severe inflammatory responses, injury to endothelium and activation of platelets leading to increased coagulation. Additionally, individuals who are already receiving antithrombotic drug therapy for various cardiovascular diseases and complications might contract the disease in which case, attention should be given to the choice and duration of the therapy besides close monitoring of biochemical blood parameters. Herein, we review the incidences of thrombotic complications and their outcomes in COVID-19 patients as reported till date, while understanding the prophylactic and therapeutic roles of anticoagulants, antiplatelets and thrombolytics in the management of this severe viral respiratory illness.
Collapse
Affiliation(s)
- Gaurav Khandelwal
- Department of Cardiology, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India
| | - Avik Ray
- Department of Pharmacology, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India
| | - Samdish Sethi
- Department of Medicine, All India Institute of Medical Sciences, Raipur, Chhattisgarh, India
| | - H K Harikrishnan
- Department of Medicine, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India
| | - Chaitanya Khandelwal
- Department of Medicine, All India Institute of Medical Sciences, Raipur, Chhattisgarh, India
| | - Balakrishnan Sadasivam
- Department of Pharmacology, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India
| |
Collapse
|
32
|
Moore P, Esmail F, Qin S, Nand S, Berg S. Hypercoagulability of COVID-19 and Neurological Complications: A Review. J Stroke Cerebrovasc Dis 2021; 31:106163. [PMID: 34763262 PMCID: PMC8547944 DOI: 10.1016/j.jstrokecerebrovasdis.2021.106163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 10/02/2021] [Accepted: 10/03/2021] [Indexed: 12/13/2022] Open
Abstract
The SARS-CoV-2 virus, which causes Coronavirus disease 2019 (COVID-19), has resulted in millions of worldwide deaths. When the SARS-CoV-2 virus emerged from Wuhan, China in December 2019, reports of patients with COVID-19 revealed that hospitalized patients had acute changes in mental status, cognition, and encephalopathy. Neurologic complications can be a consequence from overall severity of the systemic infection, direct viral invasion of the SARS-CoV-2 virus in the central nervous system, and possible immune mediated mechanisms. We will examine the landscape regarding this topic in this review in addition to current understandings of COVID-19 and hemostasis, treatment, and prevention, as well as vaccination.
Collapse
Affiliation(s)
- Patrick Moore
- Loyola University Medical Center Department of Internal Medicine Division of Hematology and Oncology, United States.
| | - Fatema Esmail
- Loyola University Medical Center Department of Internal Medicine Division of Hematology and Oncology, United States.
| | - Shuai Qin
- Loyola University Medical Center Department of Internal Medicine Division of Hematology and Oncology, United States.
| | - Sucha Nand
- Loyola University Medical Center Department of Internal Medicine Division of Hematology and Oncology, United States; Loyola University Medical Center Department of Internal Medicine Neurology, Division of Hematology and Oncology, Loyola University Chicago Professor of Internal Medicine, United States.
| | - Stephanie Berg
- Loyola University Medical Center Department of Internal Medicine Division of Hematology and Oncology and Department of Cancer Biology, Loyola University Chicago Assistant Professor of Medicine, United States.
| |
Collapse
|
33
|
Huang Y, Xiao Y, Zhang X, Huang X, Li Y. The Emerging Roles of Tripartite Motif Proteins (TRIMs) in Acute Lung Injury. J Immunol Res 2021; 2021:1007126. [PMID: 34712740 PMCID: PMC8548118 DOI: 10.1155/2021/1007126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/09/2021] [Indexed: 11/21/2022] Open
Abstract
Acute lung injury (ALI) is an inflammatory disorder of the lung that causes high mortality and lacks any pharmacological intervention. Ubiquitination plays a critical role in the pathogenesis of ALI as it regulates the alveolocapillary barrier and the inflammatory response. Tripartite motif (TRIM) proteins are one of the subfamilies of the RING-type E3 ubiquitin ligases, which contains more than 80 distinct members in humans involved in a broad range of biological processes including antivirus innate immunity, development, and tumorigenesis. Recently, some studies have shown that several members of TRIM family proteins play important regulatory roles in inflammation and ALI. Herein, we integrate emerging evidence regarding the roles of TRIMs in ALI. Articles were selected from the searches of PubMed database that had the terms "acute lung injury," "ubiquitin ligases," "tripartite motif protein," "inflammation," and "ubiquitination" using both MeSH terms and keywords. Better understanding of these mechanisms may ultimately lead to novel therapeutic approaches by targeting TRIMs for ALI treatment.
Collapse
Affiliation(s)
- Yingjie Huang
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yue Xiao
- The First Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Xuekang Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xuan Huang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Yong Li
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
34
|
Vincent JL, Ince C, Pickkers P. Endothelial dysfunction: a therapeutic target in bacterial sepsis? Expert Opin Ther Targets 2021; 25:733-748. [PMID: 34602020 DOI: 10.1080/14728222.2021.1988928] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Endothelial cells maintain vascular integrity, tone, and patency and have important roles in hemostasis and inflammatory responses. Although some degree of endothelial dysfunction with increased vascular permeability may be necessary to control local infection, excessive dysfunction plays a central role in the pathogenesis of sepsis-related organ dysfunction and failure as it results in dysregulated inflammation, vascular leakage, and abnormal coagulation. The vascular endothelium has thus been proposed as a potential target for therapeutic intervention in patients with sepsis. AREAS COVERED Different mechanisms underlying sepsis-related dysfunction of the vascular endothelium are discussed, including glycocalyx shedding, nitrosative stress, and coagulation factors. Potential therapeutic implications of each mechanism are mentioned. EXPERT OPINION Multiple targets to protect or restore endothelial function have been suggested, but endothelium-driven treatments remain a future potential at present. As some endothelial dysfunction and permeability may be necessary to remove infection and repair damaged tissue, targeting the endothelium may be a particular challenge. Ideally, therapies should be guided by biomarkers related to that specific pathway to ensure they are given only to patients most likely to respond. This enrichment based on biological plausibility and theragnostics will increase the likelihood of a beneficial response in individual patients and enable more personalized treatment.
Collapse
Affiliation(s)
- Jean-Louis Vincent
- Dept of Intensive Care, Erasme Hospital, Université Libre De Bruxelles, Brussels, Belgium
| | - Can Ince
- Department of Intensive Care, Laboratory of Translational Intensive Care, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Peter Pickkers
- Dept of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
35
|
Abutaleb A, Nathan S. COVID-19 infection-associated coagulopathy: Pathophysiology and clinical implications. Interv Neuroradiol 2021; 27:6-12. [PMID: 34747644 PMCID: PMC8579353 DOI: 10.1177/15910199211035894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 01/19/2023] Open
Affiliation(s)
| | - Sandeep Nathan
- Department of Internal Medicine, University of Chicago, Chicago, IL, USA
| |
Collapse
|
36
|
Zhu L, Wei M, Yang N, Li X. Glycyrrhizic acid alleviates the meconium-induced acute lung injury in neonatal rats by inhibiting oxidative stress through mediating the Keap1/Nrf2/HO-1 signal pathway. Bioengineered 2021; 12:2616-2626. [PMID: 34499011 PMCID: PMC8806485 DOI: 10.1080/21655979.2021.1937445] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Meconium aspiration syndrome (MAS) is a disease closely related to inflammation and oxidative stress. Glycyrrhizic acid (GA) is a triterpenoid isolated from licorice with multiple bioprotective properties. In the present study, impacts of GA against MAS rats, as well as the potential mechanism, will be investigated. MAS model was established on newborn rats, followed by the treatment of 12.5, 25, and 50 mg/kg GA. The wet/dry weight ratio of lung tissues was calculated. The production of IL-6, IL-1β, TNF-α, malonaldehyde (MDA), superoxide dismutase (SOD), glutathione (GSH) was measured using ELISA assay. HE staining was used to evaluate the pathological state of lung tissues and TUNEL assay was used to detect the apoptotic state. The protein expression of Nrf2, Keap1, HO-1, Bcl-2, Bax, and cleaved-Caspase3 was measured by Western blotting assay. The elevated W/D ratio, release of inflammatory factors, lung injury score, and apoptotic index, as well as the activated oxidative stress and suppressed Keap1/Nrf2/HO-1 pathway, in MAS rats were significantly alleviated by GA. After introducing the inhibitor of Nrf2, ML385, the protective property of GA on the pathological state, apoptotic index, and oxidative stress in MAS rats was pronouncedly abolished. Taken together, glycyrrhizin alleviated GAH in rats by suppressing Keap1/Nrf2/HO-1 signaling mediated oxidative stress.
Collapse
Affiliation(s)
- Linhan Zhu
- Pediatric Department, Beijing Friendship Hospital, Capital Medical University, Beijing China
| | - Meichen Wei
- Pediatric Department, Beijing Friendship Hospital, Capital Medical University, Beijing China
| | - Nan Yang
- Pediatric Department, Beijing Friendship Hospital, Capital Medical University, Beijing China
| | - Xuehua Li
- Pediatric Department, Beijing Friendship Hospital, Capital Medical University, Beijing China
| |
Collapse
|
37
|
An Experimental Workflow for Studying Barrier Integrity, Permeability, and Tight Junction Composition and Localization in a Single Endothelial Cell Monolayer: Proof of Concept. Int J Mol Sci 2021; 22:ijms22158178. [PMID: 34360944 PMCID: PMC8347178 DOI: 10.3390/ijms22158178] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/21/2021] [Accepted: 07/27/2021] [Indexed: 12/13/2022] Open
Abstract
Endothelial and epithelial barrier function is crucial for the maintenance of physiological processes. The barrier paracellular permeability depends on the composition and spatial distribution of the cell-to-cell tight junctions (TJ). Here, we provide an experimental workflow that yields several layers of physiological data in the setting of a single endothelial cell monolayer. Human umbilical vein endothelial cells were grown on Transwell filters. Transendothelial electrical resistance (TER) and 10 kDa FITC dextran flux were measured using Alanyl-Glutamine (AlaGln) as a paracellular barrier modulator. Single monolayers were immunolabelled for Zonula Occludens-1 (ZO-1) and Claudin-5 (CLDN5) and used for automated immunofluorescence imaging. Finally, the same monolayers were used for single molecule localization microscopy (SMLM) of ZO-1 and CLDN5 at the nanoscale for spatial clustering analysis. The TER increased and the paracellular dextran flux decreased after the application of AlaGln and these functional changes of the monolayer were mediated by an increase in the ZO-1 and CLDN5 abundance in the cell–cell interface. At the nanoscale level, the functional and protein abundance data were accompanied by non-random increased clustering of CLDN5. Our experimental workflow provides multiple data from a single monolayer and has wide applicability in the setting of paracellular studies in endothelia and epithelia.
Collapse
|
38
|
Zou L, Yu Q, Zhang L, Yuan X, Fang F, Xu F. Identification of inflammation related lncRNAs and Gm33647 as a potential regulator in septic acute lung injury. Life Sci 2021; 282:119814. [PMID: 34298039 DOI: 10.1016/j.lfs.2021.119814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 10/20/2022]
Abstract
Sepsis is commonly complicated by acute lung injury (ALI). We aimed to determine the long non-coding RNAs (lncRNAs) and mRNAs expression profiles. Septic acute lung injury mouse model was established by cecal ligation and puncture. LPS was applied to induce inflammation in mouse alveolar macrophages (MH-s). Besides, LPS/Nigericin sodium salt was used to activate inflammasome in MH-s. LncRNA and mRNA profiles were detected using an Agilent microarray and identified by qPCR. Bioinformatic analyses were employed to analyze the expression profiles and multiple biological functions. Inflammation-related mRNAs were selected according to KEGG pathways and GO terms including inflammation response, immune response and cytokine activity. A network of inflammation related mRNAs and co-expressed lncRNAs was conducted. Finally, Gm33647 was identified as potential regulator in septic acute lung injury. Gm33647 was knock-downed via siRNA to explore functions. The results showed 353 differentially expressed lncRNAs and 3116 differentially expressed mRNAs were identified. Co-expression networks of lncRNA-mRNA showed Gm33647 was a hub gene. Cis- and trans-regulation analyses revealed Gm41442, Gm38850 and Gm36841 could function as a network in septic ALI. LncRNA Gm33647 was reduced by LPS and increased by inflammasome activation in MH-s. Silencing Gm33647 up-regulated IL-6, IL10 and TNF-α in MH-s. When inflammasome was activated by LPS/Nigericin sodium salt, IL-1β, IL-18 and Caspase 1 were increased by silencing Gm33647 in MH-s. These results identified inflammation related lncRNAs and Gm33647 as potential regulators in septic ALI.
Collapse
Affiliation(s)
- Liying Zou
- Department of Critical Care Medicine, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China
| | - Qing Yu
- Department of Critical Care Medicine, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China
| | - Luyun Zhang
- Department of Critical Care Medicine, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China
| | - Xiu Yuan
- Department of Critical Care Medicine, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China
| | - Fang Fang
- Department of Critical Care Medicine, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China
| | - Feng Xu
- Department of Critical Care Medicine, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China.
| |
Collapse
|
39
|
Ding YH, Miao RX, Zhang Q. Hypaphorine exerts anti-inflammatory effects in sepsis induced acute lung injury via modulating DUSP1/p38/JNK pathway. Kaohsiung J Med Sci 2021; 37:883-893. [PMID: 34250720 DOI: 10.1002/kjm2.12418] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 01/02/2023] Open
Abstract
Sepsis is a systemic inflammatory response syndrome attributed to infection, while sepsis-induced acute lung injury (ALI) has high morbidity and mortality. Here, we aimed to explore the specific mechanism of hypaphorine's anti-inflammatory effects in ALI. Lipopolysaccharide (LPS) was adopted to construct ALI model both in vivo and in vitro. BEAS-2B cell viability and apoptosis was testified by the MTT assay and flow cytometry. Reverse transcription-polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA) were performed to examine the expression of proinflammatory cytokines (IL-1β, IL-6, TNF-α, and IL-18), and Western blot was adopted to examine the expression of the apoptosis-related proteins (Bax, Bcl2, and Caspase3) and the DUSP1/p38/JNK signaling pathway. At the same time, lung injury score, lactate dehydrogenase (LDH) and myeloperoxidase (MPO) activity were monitored. The dry/wet weight method was used to examine lung edema, and the total protein content in BALF was determined to test pulmonary vascular permeability. As the data suggested, hypaphorine inhibited the LPS-mediated apoptosis of alveolar epithelial cells. What is more, hypaphorine attenuated the expression of inflammatory factors (IL-1β, IL-6, TNF-α, and IL-18) and inactivated the p38/JNK signaling pathway through upregulating DUSP1 in a dose-dependent manner. Meanwhile, DUSP1 knockdown weakened the anti-inflammatory effect of hypaphorine on LPS-mediated lung injury. Furthermore, hypaphorine also relieved LPS induced ALI in rats with anti-inflammatory effects. Taken together, hypaphorine prevented LPS-mediated ALI and proinflammatory response via inactivating the p38/JNK signaling pathway by upregulating DUSP1.
Collapse
Affiliation(s)
- Yu-Hua Ding
- Department of Pharmacy, Zaozhuang Hospital of Traditional Chinese Medicine, Zaozhuang, Shandong, China
| | - Run-Xin Miao
- Department of Emergency, Zaozhuang Hospital of Traditional Chinese Medicine, Zaozhuang, Shandong, China
| | - Qiang Zhang
- Department of Pharmacy, Zaozhuang Hospital of Traditional Chinese Medicine, Zaozhuang, Shandong, China
| |
Collapse
|
40
|
Magomedov A, Zickler D, Karaivanov S, Kurreck A, Münch FH, Kamhieh-Milz J, Ferse C, Kahl A, Piper SK, Eckardt KU, Dörner T, Kruse JM. Viscoelastic testing reveals normalization of the coagulation profile 12 weeks after severe COVID-19. Sci Rep 2021; 11:13325. [PMID: 34172793 PMCID: PMC8233385 DOI: 10.1038/s41598-021-92683-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 06/14/2021] [Indexed: 02/06/2023] Open
Abstract
COVID 19 is associated with a hypercoagulable state and frequent thromboembolic complications. For how long this acquired abnormality lasts potentially requiring preventive measures, such as anticoagulation remains to be delineated. We used viscoelastic rotational thrombelastometry (ROTEM) in a single center cohort of 13 critical ill patients and performed follow up examinations three months after discharge from ICU. We found clear signs of a hypercoagulable state due to severe hypofibrinolysis and a high rate of thromboembolic complications during the phase of acute illness. Three month follow up revealed normalization of the initial coagulation abnormality and no evidence of venous thrombosis in all thirteen patients. In our cohort the coagulation profile was completely normalized three months after COVID-19. Based on these findings, discontinuation of anticoagulation can be discussed in patients with complete venous reperfusion.
Collapse
Affiliation(s)
- Abakar Magomedov
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Daniel Zickler
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Stoyan Karaivanov
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Annika Kurreck
- Department of Hematology and Oncology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Frédéric H Münch
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Julian Kamhieh-Milz
- Department of Transfusion Medince, Universitätsmedizin Berlin, Berlin, Germany
- Wimedko GmbH, Manfred-von-Richthofen Str. 15, 12101, Berlin, Germany
| | - Caroline Ferse
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Andreas Kahl
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Sophie K Piper
- Institute of Biometry and Clinical Epidemiology, Charité-Universitätmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Anna-Louisa-Karsch 2, 10178, Berlin, Germany
| | - Kai-Uwe Eckardt
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Thomas Dörner
- Department of Rheumatology und Clinical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Deutsches Rheumaforschungszentrum (DRFZ) Berlin, Berlin, Germany
| | - Jan Matthias Kruse
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
| |
Collapse
|
41
|
Silva Andrade B, Siqueira S, de Assis Soares WR, de Souza Rangel F, Santos NO, dos Santos Freitas A, Ribeiro da Silveira P, Tiwari S, Alzahrani KJ, Góes-Neto A, Azevedo V, Ghosh P, Barh D. Long-COVID and Post-COVID Health Complications: An Up-to-Date Review on Clinical Conditions and Their Possible Molecular Mechanisms. Viruses 2021; 13:700. [PMID: 33919537 PMCID: PMC8072585 DOI: 10.3390/v13040700] [Citation(s) in RCA: 209] [Impact Index Per Article: 69.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 02/06/2023] Open
Abstract
The COVID-19 pandemic has infected millions worldwide, leaving a global burden for long-term care of COVID-19 survivors. It is thus imperative to study post-COVID (i.e., short-term) and long-COVID (i.e., long-term) effects, specifically as local and systemic pathophysiological outcomes of other coronavirus-related diseases (such as Middle East Respiratory Syndrome (MERS) and Severe Acute Respiratory Syndrome (SARS)) were well-cataloged. We conducted a comprehensive review of adverse post-COVID health outcomes and potential long-COVID effects. We observed that such adverse outcomes were not localized. Rather, they affected different human systems, including: (i) immune system (e.g., Guillain-Barré syndrome, rheumatoid arthritis, pediatric inflammatory multisystem syndromes such as Kawasaki disease), (ii) hematological system (vascular hemostasis, blood coagulation), (iii) pulmonary system (respiratory failure, pulmonary thromboembolism, pulmonary embolism, pneumonia, pulmonary vascular damage, pulmonary fibrosis), (iv) cardiovascular system (myocardial hypertrophy, coronary artery atherosclerosis, focal myocardial fibrosis, acute myocardial infarction, cardiac hypertrophy), (v) gastrointestinal, hepatic, and renal systems (diarrhea, nausea/vomiting, abdominal pain, anorexia, acid reflux, gastrointestinal hemorrhage, lack of appetite/constipation), (vi) skeletomuscular system (immune-mediated skin diseases, psoriasis, lupus), (vii) nervous system (loss of taste/smell/hearing, headaches, spasms, convulsions, confusion, visual impairment, nerve pain, dizziness, impaired consciousness, nausea/vomiting, hemiplegia, ataxia, stroke, cerebral hemorrhage), (viii) mental health (stress, depression and anxiety). We additionally hypothesized mechanisms of action by investigating possible molecular mechanisms associated with these disease outcomes/symptoms. Overall, the COVID-19 pathology is still characterized by cytokine storm that results to endothelial inflammation, microvascular thrombosis, and multiple organ failures.
Collapse
Affiliation(s)
- Bruno Silva Andrade
- Laboratório de Bioinformática e Química Computacional, Departamento de Ciências Biológicas, Universidade Estadual do Sudoeste da Bahia (UESB), Jequié, Bahia CEP 45206-190, Brazil; (B.S.A.); (S.S.); (W.R.d.A.S.); (F.d.S.R.); (A.d.S.F.); (P.R.d.S.)
| | - Sérgio Siqueira
- Laboratório de Bioinformática e Química Computacional, Departamento de Ciências Biológicas, Universidade Estadual do Sudoeste da Bahia (UESB), Jequié, Bahia CEP 45206-190, Brazil; (B.S.A.); (S.S.); (W.R.d.A.S.); (F.d.S.R.); (A.d.S.F.); (P.R.d.S.)
| | - Wagner Rodrigues de Assis Soares
- Laboratório de Bioinformática e Química Computacional, Departamento de Ciências Biológicas, Universidade Estadual do Sudoeste da Bahia (UESB), Jequié, Bahia CEP 45206-190, Brazil; (B.S.A.); (S.S.); (W.R.d.A.S.); (F.d.S.R.); (A.d.S.F.); (P.R.d.S.)
- Departamento de Saúde II, Universidade Estadual do Sudoeste da Bahia (UESB), Jequié, Bahia CEP 45206-190, Brazil
| | - Fernanda de Souza Rangel
- Laboratório de Bioinformática e Química Computacional, Departamento de Ciências Biológicas, Universidade Estadual do Sudoeste da Bahia (UESB), Jequié, Bahia CEP 45206-190, Brazil; (B.S.A.); (S.S.); (W.R.d.A.S.); (F.d.S.R.); (A.d.S.F.); (P.R.d.S.)
- Programa de Pós-graduação em Genética e Biologia Molecular, Universidade Estadual de Santa Cruz, Ilhéus, Bahia CEP 45662-900, Brazil;
| | - Naiane Oliveira Santos
- Programa de Pós-graduação em Genética e Biologia Molecular, Universidade Estadual de Santa Cruz, Ilhéus, Bahia CEP 45662-900, Brazil;
| | - Andria dos Santos Freitas
- Laboratório de Bioinformática e Química Computacional, Departamento de Ciências Biológicas, Universidade Estadual do Sudoeste da Bahia (UESB), Jequié, Bahia CEP 45206-190, Brazil; (B.S.A.); (S.S.); (W.R.d.A.S.); (F.d.S.R.); (A.d.S.F.); (P.R.d.S.)
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais CEP 31270-901, Brazil; (S.T.); (V.A.)
| | - Priscila Ribeiro da Silveira
- Laboratório de Bioinformática e Química Computacional, Departamento de Ciências Biológicas, Universidade Estadual do Sudoeste da Bahia (UESB), Jequié, Bahia CEP 45206-190, Brazil; (B.S.A.); (S.S.); (W.R.d.A.S.); (F.d.S.R.); (A.d.S.F.); (P.R.d.S.)
| | - Sandeep Tiwari
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais CEP 31270-901, Brazil; (S.T.); (V.A.)
| | - Khalid J Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Aristóteles Góes-Neto
- Laboratório de Biologia Molecular e Computacional de Fungos, Departamento de Microbiologia, Insti-tuto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais CEP 31270-901, Brazil;
| | - Vasco Azevedo
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais CEP 31270-901, Brazil; (S.T.); (V.A.)
| | - Preetam Ghosh
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284, USA;
| | - Debmalya Barh
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Bio-technology (IIOAB), Nonakuri, Purba Medinipur, West Bengal 721172, India
| |
Collapse
|
42
|
Qiu M, Huang S, Luo C, Wu Z, Liang B, Huang H, Ci Z, Zhang D, Han L, Lin J. Pharmacological and clinical application of heparin progress: An essential drug for modern medicine. Biomed Pharmacother 2021; 139:111561. [PMID: 33848775 DOI: 10.1016/j.biopha.2021.111561] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/20/2021] [Accepted: 03/31/2021] [Indexed: 12/22/2022] Open
Abstract
Heparin is the earliest and most widely used anticoagulant and antithrombotic drug that is still used in a variety of clinical indications. Since it was discovered in 1916, after more than a century of repeated exploration, heparin has not been replaced by other drugs, but a great progress has been made in its basic research and clinical application. Besides anticoagulant and antithrombotic effects, heparin also has antitumor, anti-inflammatory, antiviral, and other pharmacological activities. It is widely used clinically in cardiovascular and cerebrovascular diseases, lung diseases, kidney diseases, cancer, etc., as the first anticoagulant medicine in COVID-19 exerts anticoagulant, anti-inflammatory and antiviral effects. At the same time, however, it also leads to a lot of adverse reactions, such as bleeding, thrombocytopenia, elevated transaminase, allergic reactions, and others. This article comprehensively reviews the modern research progress of heparin compounds; discusses the structure, preparation, and adverse reactions of heparin; emphasizes the pharmacological activity and clinical application of heparin; reveals the possible mechanism of the therapeutic effect of heparin in related clinical applications; provides evidence support for the clinical application of heparin; and hints on the significance of exploring the wider application fields of heparin.
Collapse
Affiliation(s)
- Min Qiu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Shengjie Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Chuanhong Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Zhenfeng Wu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, PR China
| | - Binzhu Liang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Haozhou Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Zhimin Ci
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Dingkun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Li Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
| | - Junzhi Lin
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, PR China.
| |
Collapse
|
43
|
Tehrani HA, Darnahal M, Vaezi M, Haghighi S. COVID-19 associated thrombotic thrombocytopenic purpura (TTP) ; A case series and mini-review. Int Immunopharmacol 2021; 93:107397. [PMID: 33524803 PMCID: PMC7825972 DOI: 10.1016/j.intimp.2021.107397] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/11/2021] [Accepted: 01/11/2021] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Thrombotic microangiopathies are a group of disorders that are mainly related to endothelial dysfunction. This category of endothelial dysfunction results of several imbalances between platelets, endothelium and immune system, also cytokine production. AIM OF THIS STUDY To report cases with thrombotic thrombocytopenic purpura (TTP) and COVID-19 and review COVID-19 endothelial dysfunction literature. METHODS Primary laboratory data, peripheral blood smear, ADAMTS13 antigen activity level, and antibody ordered for each of these four patients. Treatments for COVID-19 administered for all patients. Traditional treatments for TTP also were administered. RESULTS There were numerous schistocytes (more than 5%) in peripheral blood smears for each patient. ADAMTS13 antigen activity level was below 10%, and ADAMTS13 antibody was elevated for each patient. COVID-19 PCR was positive for all patients, and CT-Scans were indicative of the involvement of COVID-19. CONCLUSION In this case series, we reported four COVID-19 patients who presented with signs and symptoms of anemia and thrombocytopenia, resulting in thrombotic thrombocytopenic purpura.
Collapse
Affiliation(s)
- Hamed Azhdari Tehrani
- Department of Hematology and Medical Oncology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Darnahal
- Department of Hematology and Medical Oncology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Vaezi
- Hematology-Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Shirin Haghighi
- Department of Hematology and Medical Oncology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
44
|
Chen C, Zhang H, Ge M, Ye J, Li R, Wang D. LncRNA NEAT1 acts as a key regulator of cell apoptosis and inflammatory response by the miR-944/TRIM37 axis in acute lung injury. J Pharmacol Sci 2021; 145:202-212. [PMID: 33451755 DOI: 10.1016/j.jphs.2020.11.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 02/07/2023] Open
Abstract
Acute lung injury (ALI), a common complication of sepsis, is characterized by the impairment and injury of pulmonary function. The nuclear factor kappa-B (NF-κB) pathway is activated in ALI. Tripartite motif-containing 37 (TRIM37) can activate the NF-κB pathway and is closely associated with inflammation. The purpose of our study is to reveal the role of TRIM37 in ALI. The present study revealed that TRIM37 presented high levels in lung tissues of ALI mice, and knockdown of TRIM37 alleviated lipopolysaccharide (LPS)-induced lung injury, inflammatory response, and cell apoptosis in vivo. In addition, knockdown of TRIM37 inhibited the inflammatory response, and cell apoptosis of LPS-treated WI-38 cells. Mechanistically, miR-944 was identified to bind with and negatively regulate TRIM37. Furthermore, NEAT1 was indicated to act as a competitive endogenous RNA to promote TRIM37 expression by sequestering miR-944. Detailly, NEAT1 bound with miR-944, negatively modulated miR-944 expression, and positively modulated TRIM37 expression. The rescue assays suggested that overexpression of TRIM37 rescued the influence of NEAT1 knockdown on cell apoptosis and inflammatory response. Overall, NEAT1 facilitated cell apoptosis and inflammatory response of WI-38 cells by the miR-944/TRIM37 axis in sepsis-induced ALI, implying that NEAT1 may provide a novel insight for the treatment of sepsis-induced ALI.
Collapse
Affiliation(s)
- Cheng Chen
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu, China; Institute of Cardiothoracic Vascular Disease, Nanjing University, Nanjing 210008, Jiangsu, China
| | - Haitao Zhang
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Graduate School of Peking Union Medical College, Nanjing, 210008, China
| | - Min Ge
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu, China
| | - Jiaxin Ye
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu, China
| | - Ruisha Li
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu, China; Institute of Cardiothoracic Vascular Disease, Nanjing University, Nanjing 210008, Jiangsu, China
| | - Dongjin Wang
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu, China; Institute of Cardiothoracic Vascular Disease, Nanjing University, Nanjing 210008, Jiangsu, China.
| |
Collapse
|
45
|
Mazilu L, Katsiki N, Nikolouzakis TK, Aslanidis MI, Lazopoulos G, Kouretas D, Tsatsakis A, Suceveanu AI, Stoian AP, Parepa IR, Voinea F, Suceveanu AP, Arsene AL, Velescu BȘ, Vesa C, Nitipir C. Thrombosis and Haemostasis challenges in COVID-19 - Therapeutic perspectives of heparin and tissue-type plasminogen activator and potential toxicological reactions-a mini review. Food Chem Toxicol 2021; 148:111974. [PMID: 33421462 PMCID: PMC7837001 DOI: 10.1016/j.fct.2021.111974] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/19/2020] [Accepted: 01/02/2021] [Indexed: 12/20/2022]
Abstract
The coronavirus disease (COVID)-19 pandemic is a major challenge for the health systems worldwide. Acute respiratory distress syndrome (ARDS), is one of the most common complications of the COVID-19 infection. The activation of the coagulation system plays an important role in the pathogenesis of ARDS. The development of lung coagulopathy involves thrombin generation and fibrinolysis inhibition. Unfractionated heparin and its recently introduced counterpart low molecular weight heparin (LMWH), are widely used anticoagulants with a variety of clinical indications allowing for limited and manageable physio-toxicologic side effects while the use of protamine sulfate, heparin's effective antidote, has made their use even safer. Tissue-type plasminogen activator (tPA) is approved as intravenous thrombolytic treatment. The present narrative review discusses the use of heparin and tPA in the treatment of COVID-19-induced ARDS and their related potential physio-toxicologic side effects. The article is a quick review of articles on anticoagulation in COVID infection and the potential toxicologic reactions associated with these drugs.
Collapse
Affiliation(s)
- Laura Mazilu
- Oncology Department, Clinical Emergency Hospital, Faculty of Medicine, "Ovidius" University, Constanța, Romania
| | - Niki Katsiki
- First Department of Internal Medicine, Diabetes Center, Division of Endocrinology and Metabolism, AHEPA University Hospital, Thessaloniki, Greece
| | | | | | - George Lazopoulos
- Department of Cardiothoracic Surgery, University General Hospital of Heraklion, Medical School, University of Crete, Greece
| | - Dimitrios Kouretas
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, Greece
| | - Aristidis Tsatsakis
- Department of Biochemistry and Biotechnology, University of Thessaly, Larisa, 41500, Greece
| | - Andra-Iulia Suceveanu
- Gastroenterology Department, Clinical Emergency Hospital, Faculty of Medicine, "Ovidius" University, Constanța, Romania
| | - Anca-Pantea Stoian
- Department of Diabetes, Nutrition and Metabolic Diseases, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania.
| | - Irinel-Raluca Parepa
- Cardiology Department, Clinical Emergency Hospital, Faculty of Medicine, "Ovidius" University, Constanța, Romania
| | - Felix Voinea
- Urology Department, Clinical Emergency Hospital, Faculty of Medicine, "Ovidius" University, Constanța, Romania
| | - Adrian Paul Suceveanu
- Internal Medicine Department, Clinical Emergency Hospital, Faculty of Medicine, "Ovidius" University, Constanța, Romania
| | - Andreea Letiția Arsene
- Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Bruno Ștefan Velescu
- Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Cosmin Vesa
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| | - Cornelia Nitipir
- Oncology Department, Elias Emergency Hospital, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
46
|
Obi AT, Barnes GD, Napolitano LM, Henke PK, Wakefield TW. Venous thrombosis epidemiology, pathophysiology, and anticoagulant therapies and trials in severe acute respiratory syndrome coronavirus 2 infection. J Vasc Surg Venous Lymphat Disord 2021; 9:23-35. [PMID: 32916371 PMCID: PMC7834652 DOI: 10.1016/j.jvsv.2020.08.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/12/2020] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus confers a risk of significant coagulopathy, with the resulting development of venous thromboembolism (VTE), potentially contributing to the morbidity and mortality. The purpose of the present review was to evaluate the potential mechanisms that contribute to this increased risk of coagulopathy and the role of anticoagulants in treatment. METHODS A literature review of coronavirus disease 2019 (COVID-19) and/or SARS-CoV-2 and cell-mediated inflammation, clinical coagulation abnormalities, hypercoagulability, pulmonary intravascular coagulopathy, and anticoagulation was performed. The National Clinical Trials database was queried for ongoing studies of anticoagulation and/or antithrombotic treatment or the incidence or prevalence of thrombotic events in patients with SARS-CoV-2 infection. RESULTS The reported rate of VTE among critically ill patients infected with SARS-CoV-2 has been 21% to 69%. The phenomenon of breakthrough VTE, or the acute development of VTE despite adequate chemoprophylaxis or treatment dose anticoagulation, has been shown to occur with severe infection. The pathophysiology of overt hypercoagulability and the development of VTE is likely multifactorial, with evidence supporting the role of significant cell-mediated responses, including neutrophils and monocytes/macrophages, endothelialitis, cytokine release syndrome, and dysregulation of fibrinolysis. Collectively, this inflammatory process contributes to the severe pulmonary pathology experienced by patients with COVID-19. As the infection worsens, extreme D-dimer elevations, significant thrombocytopenia, decreasing fibrinogen, and prolongation of prothrombin time and partial thromboplastin time occur, often associated with deep vein thrombosis, in situ pulmonary thrombi, and/or pulmonary embolism. A new phenomenon, termed pulmonary intravascular coagulopathy, has been associated with morbidity in patients with severe infection. Heparin, both unfractionated heparin and low-molecular-weight heparin, have emerged as agents that can address the viral infection, inflammation, and thrombosis in this syndrome. CONCLUSIONS The overwhelming inflammatory response in patients with SARS-CoV-2 infection can lead to a hypercoagulable state, microthrombosis, large vessel thrombosis, and, ultimately, death. Early VTE prophylaxis should be provided to all admitted patients. Therapeutic anticoagulation therapy might be beneficial for critically ill patients and is the focus of 39 ongoing trials. Close monitoring for thrombotic complications is imperative, and, if confirmed, early transition from prophylactic to therapeutic anticoagulation should be instituted. The interplay between inflammation and thrombosis has been shown to be a hallmark of the SARS-CoV-2 viral infection.
Collapse
Affiliation(s)
- Andrea T Obi
- Section of Vascular Surgery, Department of Surgery, Samuel and Jean Frankel Cardiovascular Center, University of Michigan, Ann Arbor, Mich
| | - Geoffrey D Barnes
- Division of Cardiovascular Medicine, Department of Internal Medicine, Samuel and Jean Frankel Cardiovascular Center, University of Michigan, Ann Arbor, Mich
| | - Lena M Napolitano
- Division of Critical Care Surgery, Department of Surgery, University of Michigan, Ann Arbor, Mich
| | - Peter K Henke
- Section of Vascular Surgery, Department of Surgery, Samuel and Jean Frankel Cardiovascular Center, University of Michigan, Ann Arbor, Mich
| | - Thomas W Wakefield
- Section of Vascular Surgery, Department of Surgery, Samuel and Jean Frankel Cardiovascular Center, University of Michigan, Ann Arbor, Mich.
| |
Collapse
|
47
|
Emerging cellular and pharmacologic therapies for acute respiratory distress syndrome. Curr Opin Crit Care 2020; 27:20-28. [PMID: 33278121 DOI: 10.1097/mcc.0000000000000784] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW Advances in our understanding of the pathophysiology and biology of ARDS has identified a number of promising cellular and pharmacological therapies. These emerging therapeutics can modulate the immune response, reduce epithelial injury, target endothelial and vascular dysfunction, have anticoagulant effects, and enhance ARDS resolution. RECENT FINDINGS Mesenchymal stromal cell therapy shows promise in earlier phase clinical testing, whereas a number of issues regarding clinical translation, such as donor and effect variability, are currently being optimized to enable larger scale clinical trials. Furthermore, a number of promising mesenchymal stromal cell therapy clinical studies for COVID-19-induced ARDS are underway. Recent studies provide support for several emerging ARDS pharmacotherapies, including steroids, statins, vitamins, anticoagulants, interferons, and carbon monoxide. The history of unsuccessful clinical trials of potential therapies highlights the challenges to successful translation for this heterogeneous clinical syndrome. Given this, attention has focused on the potential to identify biologically homogenous subtypes within ARDS, to enable us to target more specific therapies, i.e. 'precision medicines'. SUMMARY Mesenchymal stromal cells, steroids, statins, vitamins, anticoagulants, interferons and carbon monoxide have therapeutic promise for ARDS. Identifying ARDS sub-populations most likely to benefit from targeted therapies may facilitate future advances.
Collapse
|
48
|
Vassiliou AG, Kotanidou A, Dimopoulou I, Orfanos SE. Endothelial Damage in Acute Respiratory Distress Syndrome. Int J Mol Sci 2020; 21:ijms21228793. [PMID: 33233715 PMCID: PMC7699909 DOI: 10.3390/ijms21228793] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/14/2020] [Accepted: 11/18/2020] [Indexed: 01/01/2023] Open
Abstract
The pulmonary endothelium is a metabolically active continuous monolayer of squamous endothelial cells that internally lines blood vessels and mediates key processes involved in lung homoeostasis. Many of these processes are disrupted in acute respiratory distress syndrome (ARDS), which is marked among others by diffuse endothelial injury, intense activation of the coagulation system and increased capillary permeability. Most commonly occurring in the setting of sepsis, ARDS is a devastating illness, associated with increased morbidity and mortality and no effective pharmacological treatment. Endothelial cell damage has an important role in the pathogenesis of ARDS and several biomarkers of endothelial damage have been tested in determining prognosis. By further understanding the endothelial pathobiology, development of endothelial-specific therapeutics might arise. In this review, we will discuss the underlying pathology of endothelial dysfunction leading to ARDS and emerging therapies. Furthermore, we will present a brief overview demonstrating that endotheliopathy is an important feature of hospitalised patients with coronavirus disease-19 (COVID-19).
Collapse
Affiliation(s)
- Alice G. Vassiliou
- 1st Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 106 76 Athens, Greece; (A.G.V.); (A.K.); (I.D.)
| | - Anastasia Kotanidou
- 1st Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 106 76 Athens, Greece; (A.G.V.); (A.K.); (I.D.)
| | - Ioanna Dimopoulou
- 1st Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 106 76 Athens, Greece; (A.G.V.); (A.K.); (I.D.)
| | - Stylianos E. Orfanos
- 1st Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 106 76 Athens, Greece; (A.G.V.); (A.K.); (I.D.)
- 2nd Department of Critical Care, School of Medicine, National and Kapodistrian University of Athens, Attikon Hospital, 124 62 Athens, Greece
- Correspondence: or ; Tel.: +30-2107-235-521
| |
Collapse
|
49
|
Oxycodone attenuates vascular leak and lung inflammation in a clinically relevant two-hit rat model of acute lung injury. Cytokine 2020; 138:155346. [PMID: 33187816 DOI: 10.1016/j.cyto.2020.155346] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 10/06/2020] [Accepted: 10/12/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Oxycodone is a synthetic opioid receptor agonist that exerts antinociceptive activity via κ-, μ- and δ-opioid receptors (KOR, MOR and DOR, respectively). Activation of MOR has been reported to provide protection against acute lung injury (ALI). We hypothesized that pretreatment with oxycodone would attenuate lung injury at the level of alveolar tight junctions (TJs) and aquaporins (AQPs) and investigated this possibility in a two-hit model of ALI induced by lipopolysaccharide (LPS) and mechanical ventilation (MV). METHOD Male Sprague Dawley rats and A59 cells were divided into 6 groups: the control group, ALI group, oxycodone-pretreated group, and oxycodone/κ-, μ-, or δ-opioid receptor antagonist-pretreated groups. The rats were pretreated with oxycodone 30 min before intravenous injection of LPS and then allowed to recover for 24 h prior to MV, establishing a two-hit model of ALI. The cells were similarly treated with oxycodone (with or without antagonists) 30 min after exposure to lipopolysaccharide. The cells were cyclically stretched 24 h later to mirror the in vivo MV protocol. RESULTS Oxycodone alleviated the histological lung changes in the rats with ALI and decreased pulmonary microvascular permeability both in vivo and in vitro. Oxycodone upregulated the expression of claudin-5, ZO-1, AQP1, and AQP5 but downregulated the expression of TNF-α, IL-1β, TLR4, NF-κB, MMP9, and caspase-3 and suppressed endothelial apoptosis in vivo and in vitro. These protective effects of oxycodone were partly eliminated by KOR and MOR antagonists but not by DOR antagonists. CONCLUSION Oxycodone pretreatment appears to act via κ- and μ-opioid receptors to ameliorate LPS- and MV-induced lung injury by suppressing inflammation and apoptosis, and this protective effect might be mediated through the inhibition of the TLR4/NF-κB pathways.
Collapse
|
50
|
Successful Catheter-Directed Thrombolysis for Acute Lower Limb Ischemia Secondary to COVID-19 Infection. Ann Vasc Surg 2020; 71:103-111. [PMID: 33157249 PMCID: PMC7607236 DOI: 10.1016/j.avsg.2020.09.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 12/28/2022]
Abstract
A 49-year-old man was admitted to his local hospital with left leg pain and breathing difficulties. He had negative nasopharyngeal polymerase chain reaction tests for severe acute respiratory syndrome coronavirus 2. Chest X-ray and Computed tomography pulmonary angiogram displayed typical coronavirus disease 2019 (COVID-19) radiological features as ground-glass opacities and bronchovascular thickening. His respiratory symptoms resolved after four days of supportive treatment, whereas his left leg became more painful and discolored. He was referred to our center with acute left leg ischemia. computed tomography angiogram revealed eccentric mural thrombus at the aortic bifurcation, extending into left common iliac and an abrupt occlusion of left popliteal, tibioperoneal, and posterior tibial arteries. He was treated with catheter-directed thrombolysis for 48-hours that achieved successful revascularization of the ischemic limb with no intervention-related complications. At six-week follow-up, he showed full recovery. Our case demonstrates that catheter-directed thrombolysis is a successful and safe treatment option in a COVID-19 patient with acute arterial occlusion.
Collapse
|