1
|
Jujic A, Molvin J, Schomburg L, Hartmann O, Bergmann A, Melander O, Magnusson M. Selenoprotein P deficiency is associated with higher risk of incident heart failure. Free Radic Biol Med 2023; 207:11-16. [PMID: 37423559 DOI: 10.1016/j.freeradbiomed.2023.07.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/30/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
INTRODUCTION Selenium deficiency has been associated with mortality, cardiovascular disease and worsened prognosis in heart failure (HF). In a recent population-based study, high selenium levels were shown to be associated with reduced mortality and reduced incidence of HF, but only in non-smokers. Here, we aimed to examine if selenoprotein P (SELENOP), a main selenium carrier protein, is associated with incident HF. MATERIALS AND METHODS SELENOP concentrations were measured in plasma of 5060 randomly selected subjects from the population-based prospective cohort "Malmö Preventive Project" (n = 18240) using an ELISA approach. Exclusion of subjects with prevalent HF (n = 230) and subjects with missing data on co-variates included in the regression analysis (n = 27) resulted in complete data for 4803 subjects (29.1% women, mean age 69.6 ± 6.2 years, 19.7% smokers). Cox regression models adjusted for traditional risk factors were used to analyse SELENOP's association with incident HF. Further, subjects within the quintile with the lowest SELENOP concentrations were compared to subjects in the remaining quintiles. RESULTS Each 1 standard deviation increment in SELENOP levels was associated with lower risk of incident HF (n = 436) during a median follow-up period of 14.7 years (hazard ratio (HR) 0.90; CI95% 0.82-0.99; p = 0.043). Further analyses showed that subjects in the lowest SELENOP quintile were at the highest risk of incident HF when compared to quintiles 2-5 (HR 1.52; CI95% 1.21-1.89; p = 2.5 × 10-4). CONCLUSION Low selenoprotein P levels are associated with a higher risk of incident HF in a general population. Further studies are warranted.
Collapse
Affiliation(s)
- Amra Jujic
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden; Department of Cardiology, Skåne University Hospital, Malmö, Sweden
| | - John Molvin
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden; Department of Cardiology, Skåne University Hospital, Malmö, Sweden
| | - Lutz Schomburg
- Institut für Experimentelle Endokrinologie, CCM, Charité-Universitätsmedizin Berlin, Germany
| | | | | | - Olle Melander
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden; Department of Emergency and Internal Medicine, Clinical Research Center, Skåne University Hospital, Malmö, Sweden
| | - Martin Magnusson
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden; Department of Cardiology, Skåne University Hospital, Malmö, Sweden; Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden; Hypertension in Africa Research Team (HART), North-West University, Potchefstroom, South Africa.
| |
Collapse
|
2
|
Sun Y, Zhang P, Li Y, Hou Y, Yin C, Wang Z, Liao Z, Fu X, Li M, Fan C, Sun D, Cheng L. Light-Activated Gold-Selenium Core-Shell Nanocomposites with NIR-II Photoacoustic Imaging Performances for Heart-Targeted Repair. ACS NANO 2022; 16:18667-18681. [PMID: 36264835 DOI: 10.1021/acsnano.2c07311] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Mitochondrial dysfunction and oxidative damage represent important pathological mechanisms of myocardial ischemia-reperfusion injury (MI/RI). Searching for potential antioxidant agents to attenuate MI/RI is of great significance in clinic. Herein, gold-selenium core-shell nanostructures (AS-I/S NCs) with good near-infrared (NIR)-II photoacoustic imaging were designed for MI/RI treatment. The AS-I/S NCs after ischemic myocardium-targeted peptide (IMTP) and mitochondrial-targeted antioxidant peptide SS31 modification achieved cardiomyocytes-targeted cellular uptake and enhanced antioxidant ability and significantly inhibited oxygen-glucose deprivation-recovery (OGD/R)-induced cardiotoxicity of H9c2 cells by inhibiting the depletion of mitochondrial membrane potential (MMP) and restoring ATP synthase activity. Furthermore, the AS-I/S NCs after SS31 modification achieved mitochondria-targeted inhibition of reactive oxygen species (ROS) and subsequently attenuated oxidative damage in OGD/R-treated H9c2 cells by inhibition of apoptosis and oxidative damage, regulation of MAPKs and PI3K/AKT pathways. The in vivo AS-I/S NCs administration dramatically improved myocardial functions and angiogenesis and inhibited myocardial fibrosis through inhibiting myocardial apoptosis and oxidative damage in MI/RI of rats. Importantly, the AS-I/S NCs showed good safety and biocompatibility in vivo. Therefore, our findings validated the rational design that mitochondria-targeted selenium-gold nanocomposites could attenuate MI/RI of rats by inhibiting ROS-mediated oxidative damage and regulating MAPKs and PI3K/AKT pathways, which could be a potential therapy for the MI/RI treatment.
Collapse
Affiliation(s)
- Yu Sun
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Pu Zhang
- Department of Cardiology, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong 271000, China
| | - Yuqing Li
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Yajun Hou
- Department of Neurology, Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000 Shandong China
| | - Chenyang Yin
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Zekun Wang
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Ziyu Liao
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Xiaoyan Fu
- Department of Neurology, Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000 Shandong China
| | - Man Li
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Cundong Fan
- Department of Neurology, Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000 Shandong China
| | - Dongdong Sun
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Liang Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| |
Collapse
|
3
|
Patwardhan RS, Sharma D, Sandur SK. Thioredoxin reductase: An emerging pharmacologic target for radiosensitization of cancer. Transl Oncol 2022; 17:101341. [PMID: 35078017 PMCID: PMC8790659 DOI: 10.1016/j.tranon.2022.101341] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 12/15/2022] Open
Abstract
Novel agents are required to increase the radiosensitivity of cancer and improve the outcome of radiotherapy. Thioredoxin (Trx) and thioredoxin reductase (TrxR) reduce the oxidized cysteine thiols in several proteins, which regulate cellular redox, survival, proliferation, DNA synthesis, transcription factor activity and apoptosis. TrxR is essential for maintaining a conducive redox state for tumor growth, survival and resistance to therapy. Therefore, it is an appealing pharmacological target for the radiosensitization of tumors. Ionizing radiation (IR) is known to cause cytotoxicity through ROS, oxidative stress and DNA damage. Inhibition of thioredoxin system augments IR induced oxidative stress and potentiates cytotoxic effects. However, TrxR also regulates several critical cellular processes in normal cells. Here, we highlight the pre-clinical research and pharmacological studies to surmise possible utility of different TrxR inhibitors for radiosensitization. This review provides a succinct perspective on the role of TrxR inhibitors during the radiotherapy of cancer.
Collapse
Affiliation(s)
- Raghavendra S Patwardhan
- Radiation Biology and Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Deepak Sharma
- Radiation Biology and Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.
| | - Santosh K Sandur
- Radiation Biology and Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.
| |
Collapse
|
4
|
Kondaparthi P, Deore M, Naqvi S, Flora SJS. Dose-dependent hepatic toxicity and oxidative stress on exposure to nano and bulk selenium in mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:53034-53044. [PMID: 34023997 DOI: 10.1007/s11356-021-14400-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Abstract
Selenium is an essential mineral naturally found in soil, water, and some of the food and is required as essential elements in human and animal body. Se supplementation is required especially for those having Se deficiency. Food supplement of selenium has several forms such as selenocysteine, selenite, selenomethionine, and selenate. Recently, Se supplement as selenium nanoparticles (SeNPs) has gained worldwide attention due to its bioactivities and properties. In the present study, we determined the potential hepatotoxicity of nano and bulk selenium using low and high doses in mice. Twenty-five Swiss albino mice (n=5) were randomly divided into 5 groups and treated orally for 28 days: Group 1: sterile saline (0.9%) as a control; Group 2: sodium selenite (1mg/kg); Group 3: sodium selenite (4mg/kg); Group 4: selenium nanoparticles (1mg/kg); and Group 5: selenium nanoparticles (4mg/kg). Administration of nano-selenium (70-90 nm) led to an increase in the activities of serum transaminases (ALT and AST), while no significant effects were noted on biochemical variables indicative of changes in heme synthesis pathway and oxidative stress like blood δ-aminolevulinic acid dehydratase (δ-ALAD), hepatic reactive oxygen species (ROS), catalase activity, superoxide dismutase (SOD), malondialdehyde assay (MDA), reduced glutathione (GSH) and oxidized glutathione (GSSG), glutathione peroxidase (GPx) compared to controls, and a high dose of sodium selenite. Our results suggest that nano-selenium at low dose (1mg/kg) exhibited antioxidant effects in the liver compared to the high dose (4mg/kg) of SeNPs and sodium selenite (1 and 4 mg/kg). The data from the present study might be useful for pharmacologists and toxicologists in providing future directions while designing selenium-based therapeutic strategies.
Collapse
Affiliation(s)
- Prashanth Kondaparthi
- Department of Pharmacology and Toxicology/Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER-R), Bijnor-Sisendi Road, P.O. Mati, Lucknow, UP, 226002, India
| | - Monika Deore
- Department of Pharmacology and Toxicology/Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER-R), Bijnor-Sisendi Road, P.O. Mati, Lucknow, UP, 226002, India
| | - Saba Naqvi
- Department of Pharmacology and Toxicology/Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER-R), Bijnor-Sisendi Road, P.O. Mati, Lucknow, UP, 226002, India
| | - Swaran Jeet Singh Flora
- Department of Pharmacology and Toxicology/Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER-R), Bijnor-Sisendi Road, P.O. Mati, Lucknow, UP, 226002, India.
| |
Collapse
|
5
|
Ghasemzadeh Rahbardar M, Cheraghi Farmad H, Hosseinzadeh H, Mehri S. Protective effects of selenium on acrylamide-induced neurotoxicity and hepatotoxicity in rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:1041-1049. [PMID: 34804421 PMCID: PMC8591759 DOI: 10.22038/ijbms.2021.55009.12331] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 06/14/2021] [Indexed: 12/12/2022]
Abstract
Objective(s): Acrylamide (ACR), has wide uses in different industries. ACR induced several toxicities including neurotoxicity and hepatotoxicity. The probable protective effects of selenium on ACR-induced neurotoxicity and hepatotoxicity in rats were evaluated. Materials and Methods: Male Wistar rats were studied for 11 days in 8 groups: 1. Control, 2. ACR (50 mg/kg, IP), 3-5. ACR+ selenium (0.2, 0.4, 0.6 mg/kg, IP), 6. ACR+ the most effective dose of selenium (0.6 mg/kg, IP) three days after ACR administration, 7. ACR+ vitamin E (200 mg/kg IP, every other day) 8. Selenium (0.6 mg/kg IP). Finally, behavioral tests were done. The levels of malondialdehyde (MDA), glutathione (GSH), Bcl-2, Bax and caspase 3 proteins in liver and cerebral cortex tissues were measured. Also, the amount of albumin, total protein, alanine transaminase (ALT) and aspartate transaminase (AST) enzymes were determined in serum. Results: ACR caused the severe motor impairment, increased MDA level and decreased GSH content, enhanced Bax/Bcl-2 ratio and caspase 3 proteins in brain and liver tissues. Besides, the level of AST was elevated while the total serum protein and albumin levels were decreased. Administration of selenium (0.6 mg/kg) (from the first day of the experiment and the third day) significantly recovered locomotor disorders, increased GSH content, and reduced MDA level. Also, selenium decreased Bax/Bcl-2 ratio and caspase 3 levels in brain and liver tissues. Conclusion: The oxidative stress and apoptosis pathways have important roles in neurotoxicity and hepatotoxicity of ACR. Selenium significantly reduced ACR-induced toxicity through inhibition of oxidative stress and apoptosis.
Collapse
Affiliation(s)
| | | | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soghra Mehri
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Yue D, Zeng C, Okyere SK, Chen Z, Hu Y. Glycine nano-selenium prevents brain oxidative stress and neurobehavioral abnormalities caused by MPTP in rats. J Trace Elem Med Biol 2021; 64:126680. [PMID: 33242795 DOI: 10.1016/j.jtemb.2020.126680] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/01/2020] [Accepted: 11/06/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Parkinson's disease (PD) is a common degenerative disease of the central nervous system in the elderly. In recent years, the results of clinical and experimental studies have shown that oxidative stress is one of the important pathogenesis of PD. Selenium is one of the minor elements reported to possess antioxidant properties. Thus, the purpose of this study was to investigate the recovery effect of glycine nano-selenium on neurobehavioral abnormalities and oxidative stress caused by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in rat. MATERIALS AND METHODS SD male rats weighing 280-310 g were purchased from the Chengdu Dossy Experimental Animals Company, China. All rats were housed in a temperature-controlled room, with a 12 h light-dark cycles and had free access to food and water ad libitum. Rats were randomly divided into 4 groups with 8 animals in each group: the control group (normal saline), 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine group (MPTP), MPTP + 0.05 mg/kg glycine nano-selenium (MPTP + 0.05 Se), MPTP + 0.1 mg/kg glycine nano-selenium (MPTP + 0.1 Se). Behavioral assessment, clinical symptoms, Immunohistochemistry analysis of tyrosine hydroxylase (TH) and antioxidant activity were accessed to determine the protective effects glycine nano-selenium have on PD rats. RESULTS From the results, Rats showed a decrease in spontaneous motor behavior and an increase in pole test score. Also, the number of TH+ neurons were also significantly decreased (P < 0.05) after treated with MPTP for 7 days indicating that MPTP could successfully induce neurobehavioral abnormalities in rats. Furthermore, the lipid peroxide (MDA) levels of the PD model group were significantly increased and the antioxidant activities (SOD and GSH-PX) were significantly inhibited (P < 0.05) compared to the control group indicating the important role oxidative stress played in dopaminergic neuron death and neurobehavioral abnormalities in PD rats. Compared with the PD model group, glycine nano-selenium administration could significantly improve behavior and increase the number of TH+ neurons (P < 0.05) to protect against the loss of dopaminergic neurons. At the same time, glycine nano-selenium could decrease the MDA levels and increase the activities of SOD and GSH-PX significantly (P < 0.05). CONCLUSION In conclusion, PD rat model was successfully developed by intraperitoneal injection of MPTP and the intragastric administration of glycine nano-selenium reduced neurobehavioral abnormalities by decreasing oxidative stress in rat brain.
Collapse
Affiliation(s)
- Dong Yue
- Key Laboratory of Animal Disease and Human Health in Sichuan Province, Veterinary Medicine College of Sichuan Agricultural University, Chengdu 611130, China
| | - Chaorong Zeng
- Affiliated Sichuan Ba-Yi Rehabilitation Center of Chengdu University of TCM, Chengdu 611135, China.
| | - Samuel Kumi Okyere
- Key Laboratory of Animal Disease and Human Health in Sichuan Province, Veterinary Medicine College of Sichuan Agricultural University, Chengdu 611130, China
| | - Zhengli Chen
- Key Laboratory of Animal Disease and Human Health in Sichuan Province, Veterinary Medicine College of Sichuan Agricultural University, Chengdu 611130, China
| | - Yanchun Hu
- Key Laboratory of Animal Disease and Human Health in Sichuan Province, Veterinary Medicine College of Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
7
|
Ma W, He S, Xu Y, Qi G, Ma H, Bang JJ, Li PA. Ameliorative Effect of Sodium Selenite on Silver Nanoparticles-Induced Myocardiocyte Structural Alterations in Rats. Int J Nanomedicine 2020; 15:8281-8292. [PMID: 33149575 PMCID: PMC7603418 DOI: 10.2147/ijn.s271457] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/11/2020] [Indexed: 01/03/2023] Open
Abstract
Background The application of silver nanoparticles (AgNPs) is growing exponentially, and its potential damage to the cardiac remains to be elucidated. The purpose of this study was to investigate the ameliorative effect of sodium selenite on silver nanoparticles-induced myocardiocyte structural alterations in rats. Materials and Methods Forty male Sprague-Dawley (SD) rats were randomly divided into four groups: control group, AgNPs group, Se control group, and AgNPs + Se group. SD rats were administered AgNPs through a single intratracheal instillation, and sodium selenite was given by intraperitoneal injection for seven days. Cardiac function was determined by echocardiography and hemodynamic, ultrastructural changes by transmission electron microscopy examination. Mitochondrial fission and autophagy markers were measured by Western blotting. Results AgNPs caused a significant decrease in cardiac contraction, diastolic dysfunction, fragmentation, and lysis of the myofibrils, the formation of stenosis in the capillary, damaging the mitochondria membrane and cristae. AgNPs significantly increased mitochondrial fission markers dynamin-related protein 1 (Drp1), phospho-Drp1 (p-Drp1), and mitochondrial fission protein 1 (Fis1), as well as autophagy marker LC3 II/I (P<0.05). Treatment with sodium selenite is capable of protecting cardiac function from AgNPs toxicity through attenuating ultrastructural alterations, stabilizing mitochondrial dynamic balance and blocking mitochondrial autophagy. Conclusion We conclude that the protection of sodium selenite against silver nanoparticles-induced myocardiocyte structural alterations is associated with stabilizing mitochondrial dynamic balance and mitophagy.
Collapse
Affiliation(s)
- Wanrui Ma
- Department of General Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China.,Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technological Enterprise (BRITE), North Carolina Central University, Durham, NC, USA
| | - Shan He
- Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - Yanping Xu
- Unit of Echocardiography, Division of Functional Examination in Heart Center, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - Guoxue Qi
- Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - Huiyan Ma
- Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - John J Bang
- Department of Environmental, Earth and Geospatial Sciences, North Carolina Central University, Durham, NC, USA
| | - P Andy Li
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technological Enterprise (BRITE), North Carolina Central University, Durham, NC, USA
| |
Collapse
|
8
|
Khan N, Hashmi S, Siddiqui AJ, Farooq S, Sami SA, Basir N, Bokhari SS, Sharif H, Junejo S, El-Seedi HR, Musharraf SG. Understanding of metals dysregulation in patients with systolic and diastolic dysfunction in ischemic heart disease. Sci Rep 2020; 10:13948. [PMID: 32811884 PMCID: PMC7434915 DOI: 10.1038/s41598-020-70733-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 06/15/2020] [Indexed: 11/09/2022] Open
Abstract
Ischemic heart disease (IHD) is the leading cause of death and chronic disability in the world. IHD affects both the systolic and diastolic function of the heart which progressively leads to heart failure; a structural and functional impairment of filling or ejection of blood from the heart. In this study, the progression of systolic and diastolic dysfunction characterized according to their echocardiographic parameters including left ventricular ejection fraction (EF), grades of diastolic dysfunction and ratio between early mitral inflow velocity and mitral annular early diastolic velocity (E/eʹ), were correlated with differential regulation of various metals in patients sera samples (n = 62) using inductive coupled plasma-mass spectrometry (ICP-MS). Chromium, nickel and selenium were found significant (p < 0.05) in patients having EF < 45% compared with EF > 45%. In patients with systolic dysfunction (EF < 45%), the level of selenium was decreased while the level of chromium and nickel was increased compared to patients with EF > 45%. Selenium level was also decreased significantly (p < 0.05) in grade 1A and 2 patients that are considered as higher grades of diastole dysfunction in comparison to grade 0–1. Overall, selenium deficiency was identified in both systolic and diastolic dysfunctions of IHD patients corresponding to the progression of disease that could be related to many metabolic and translational pathways specifically which involve selenoproteins.
Collapse
Affiliation(s)
- Noman Khan
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Satwat Hashmi
- Department of Biological and Biomedical Sciences, Agha Khan University, Karachi, 74800, Pakistan
| | - Amna Jabbar Siddiqui
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Sabiha Farooq
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Shahid Ahmed Sami
- Department of Surgery, Aga Khan University, Karachi, 74800, Pakistan
| | - Nageeb Basir
- Department of Medicine, Aga Khan University, Karachi, 74800, Pakistan
| | | | - Hasanat Sharif
- Department of Surgery, Aga Khan University, Karachi, 74800, Pakistan
| | | | - Hesham R El-Seedi
- Pharmacognosoy Group, Department of Medicinal Chemistry, Biomedical Centre, Uppsala University, Box 574, 75 123, Uppsala, Sweden. .,International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, 212013, China.
| | - Syed Ghulam Musharraf
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan. .,Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
9
|
Ma W, He S, Ma H, Jiang H, Yan N, Zhu L, Bang JJ, Li PA, Jia S. Silver Nanoparticle Exposure Causes Pulmonary Structural Damage and Mitochondrial Dynamic Imbalance in the Rat: Protective Effects of Sodium Selenite. Int J Nanomedicine 2020; 15:633-645. [PMID: 32099356 PMCID: PMC6996549 DOI: 10.2147/ijn.s232986] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/14/2020] [Indexed: 12/13/2022] Open
Abstract
Background With the increased application of Silver nanoparticles (AgNP), its potential concerns to the health of human beings remain to be defined. This study aims to explore the harmful effects of AgNP on lung tissue in animals and to examine the mechanisms of protection achieved by sodium selenite. Methods Sprague-Dawley(SD) rats were exposed to AgNP (200 μL,1mg/mL) through a single intratracheal instillation. Sodium selenite (0.2mg/kg) was i.p. injected. Malondialdehyde (MDA) and glutathione (GSH) were measured using a spectrophotometer. Histological outcomes and ultrastructural changes were assessed by hematoxylin and eosin (HE) staining and electronic microscopy. Caspases and mitochondrial fission and fusion markers were measured by Western blotting. Results The histopathologic findings showed that AgNP significantly increased the thickness of alveolar septa, accumulation of macrophage, and the formation of pulmonary bullae and pulmonary consolidation. Ultrastructural studies showed localization of AgNP inside the mitochondria, hyperplasia and vacuolation of type I and type II alveolar cells, lysis of osmiophilic lamellar bodies, and swollen of the mitochondria. AgNP elevated MDA and reduced GSH levels. AgNP activated caspases-3, increased mitochondrial fission markers Dynamin-related protein 1 (Drp1) and phospho-Drp1(p-Drp1), and decreased fusion proteins optic atrophy 1 (Opa1) and mitofusins 2 (Mfn2). Treatment with sodium selenite for 7 days corrected the AgNP-caused alterations in morphological, ultrastructural, oxidative stress, caspase-3 activation and mitochondrial dynamic imbalance. Conclusion We conclude that the exposure of AgNP causes lung tissue damage by enhances oxidative stress, activates caspases-3, and triggers mitochondrial dynamic imbalance towards fission. Sodium selenite effectively detoxifies the AgNP-induced damage to the lung tissue by preventing the above alterations.
Collapse
Affiliation(s)
- Wanrui Ma
- Department of General Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China.,Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technological Enterprise (BRITE), North Carolina Central University, Durham, NC, USA.,Department of Environmental, Earth and Geospatial Sciences, North Carolina Central University, Durham, NC, USA
| | - Shan He
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, People's Republic of hina
| | - Huiyan Ma
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, People's Republic of hina
| | - Haifeng Jiang
- Department of Pathology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - Ning Yan
- Heart Centre, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - Lili Zhu
- Heart Centre, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - John J Bang
- Department of Environmental, Earth and Geospatial Sciences, North Carolina Central University, Durham, NC, USA
| | - P Andy Li
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technological Enterprise (BRITE), North Carolina Central University, Durham, NC, USA
| | - Shaobin Jia
- Heart Centre, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| |
Collapse
|
10
|
Reyes L, Bishop DP, Hawkins CL, Rayner BS. Assessing the Efficacy of Dietary Selenomethionine Supplementation in the Setting of Cardiac Ischemia/Reperfusion Injury. Antioxidants (Basel) 2019; 8:antiox8110546. [PMID: 31766199 PMCID: PMC6912310 DOI: 10.3390/antiox8110546] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/07/2019] [Accepted: 11/11/2019] [Indexed: 11/17/2022] Open
Abstract
Oxidative stress is a major hallmark of cardiac ischemia/reperfusion (I/R) injury. This partly arises from the presence of activated phagocytes releasing myeloperoxidase (MPO) and its production of hypochlorous acid (HOCl). The dietary supplement selenomethionine (SeMet) has been shown to bolster endogenous antioxidant processes as well as readily react with MPO-derived oxidants. The aim of this study was to assess whether supplementation with SeMet could modulate the extent of cellular damage observed in an in vitro cardiac myocyte model exposed to (patho)-physiological levels of HOCl and an in vivo rat model of cardiac I/R injury. Exposure of the H9c2 cardiac myoblast cell line to HOCl resulted in a dose-dependent increase in necrotic cell death, which could be prevented by SeMet supplementation and was attributed to SeMet preventing the HOCl-induced loss of mitochondrial inner trans-membrane potential, and the associated cytosolic calcium accumulation. This protection was credited primarily to the direct oxidant scavenging ability of SeMet, with a minor contribution arising from the ability of SeMet to bolster cardiac myoblast glutathione peroxidase (GPx) activity. In vivo, a significant increase in selenium levels in the plasma and heart tissue were seen in male Wistar rats fed a diet supplemented with 2 mg kg−1 SeMet compared to controls. However, SeMet-supplementation demonstrated only limited improvement in heart function and did not result in better heart remodelling following I/R injury. These data indicate that SeMet supplementation is of potential benefit within pathological settings where excessive HOCl is known to be generated but has limited efficacy as a therapeutic agent for the treatment of heart attack.
Collapse
Affiliation(s)
- Leila Reyes
- Heart Research Institute, Sydney 2042, Australia; (L.R.); (C.L.H.)
- Sydney Medical School, University of Sydney, Sydney 2006, Australia
| | - David P. Bishop
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney 2007, Australia;
| | - Clare L. Hawkins
- Heart Research Institute, Sydney 2042, Australia; (L.R.); (C.L.H.)
- Sydney Medical School, University of Sydney, Sydney 2006, Australia
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Benjamin S. Rayner
- Heart Research Institute, Sydney 2042, Australia; (L.R.); (C.L.H.)
- Sydney Medical School, University of Sydney, Sydney 2006, Australia
- Correspondence: ; Tel.: +61-2808-8900
| |
Collapse
|
11
|
Kilic A, Ustunova S, Usta C, Bulut H, Meral I, Demirci Tansel C, Gurel Gurevin E. Angiotensin II type 2 receptor blocker PD123319 has more beneficial effects than losartan on ischemia-reperfusion injury and oxidative damage in isolated rat heart. Can J Physiol Pharmacol 2019; 97:1124-1131. [PMID: 31361968 DOI: 10.1139/cjpp-2019-0076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Our study aimed to determine the effects of losartan and PD123319 in ischemia-reperfusion (IR) injury in isolated perfused rat heart. The study used 40 male Wistar albino rats that were grouped as Control, IR, and IR treatment groups that received losartan (20 mg/kg), PD123319 (20 mg/kg), and losartan+PD123319. The hearts were attached to Langendorff isolated heart system by employing in situ cannulation method, and cardiodynamic parameters were recorded during the experiment. At the end of experiment, hearts were retained for biochemical analysis and all data were statistically evaluated. A partial recovery of cardiodynamic parameters was observed in all treatment groups. A significant increase in oxidative stress parameters were seen in the IR group, whereas all treatment groups exhibited lower increase. Furthermore, levels of all antioxidant parameters were significantly lower in the IR group, but higher in the treatment groups. Effects on all parameters were much more remarkable in the PD123319 group. Levels of angiotensin II and renin were increased (P < 0.001) with IR application and decreased (P < 0.001) with the treatment of both antagonists. In conclusion, treatment of losartan and PD123319 played a cardioprotective role against IR injury, PD123319 being more effective in this protection.
Collapse
Affiliation(s)
- Aysu Kilic
- Department of Physiology, Faculty of Medicine, Bezmialem Vakif University, 34093 Fatih, Istanbul, Turkey
| | - Savas Ustunova
- Department of Physiology, Faculty of Medicine, Bezmialem Vakif University, 34093 Fatih, Istanbul, Turkey
| | - Cansu Usta
- Institute of Graduate Studies in Science and Engineering, Istanbul University, 34134 Fatih, Istanbul, Turkey
| | - Huri Bulut
- Department of Medical Biochemistry, Faculty of Medicine, Bezmialem Vakif University, 34093 Fatih, Istanbul, Turkey
| | - Ismail Meral
- Department of Physiology, Faculty of Medicine, Bezmialem Vakif University, 34093 Fatih, Istanbul, Turkey
| | - Cihan Demirci Tansel
- Department of Biology, Faculty of Science, Istanbul University, 34134 Fatih, Istanbul, Turkey
| | - Ebru Gurel Gurevin
- Department of Biology, Faculty of Science, Istanbul University, 34134 Fatih, Istanbul, Turkey
| |
Collapse
|
12
|
Gould RL, Pazdro R. Impact of Supplementary Amino Acids, Micronutrients, and Overall Diet on Glutathione Homeostasis. Nutrients 2019; 11:E1056. [PMID: 31083508 PMCID: PMC6566166 DOI: 10.3390/nu11051056] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 05/06/2019] [Accepted: 05/08/2019] [Indexed: 12/22/2022] Open
Abstract
Glutathione (GSH) is a critical endogenous antioxidant found in all eukaryotic cells. Higher GSH concentrations protect against cellular damage, tissue degeneration, and disease progression in various models, so there is considerable interest in developing interventions that augment GSH biosynthesis. Oral GSH supplementation is not the most efficient option due to the enzymatic degradation of ingested GSH within the intestine by γ-glutamyltransferase, but supplementation of its component amino acids-cysteine, glycine, and glutamate-enhances tissue GSH synthesis. Furthermore, supplementation with some non-precursor amino acids and micronutrients appears to influence the redox status of GSH and related antioxidants, such as vitamins C and E, lowering systemic oxidative stress and slowing the rate of tissue deterioration. In this review, the effects of oral supplementation of amino acids and micronutrients on GSH metabolism are evaluated. And since specific dietary patterns and diets are being prescribed as first-line therapeutics for conditions such as hypertension and diabetes, the impact of overall diets on GSH homeostasis is also assessed.
Collapse
Affiliation(s)
- Rebecca L Gould
- Department of Foods and Nutrition, University of Georgia, Athens, GA 30602, USA.
| | - Robert Pazdro
- Department of Foods and Nutrition, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
13
|
Rocca C, Boukhzar L, Granieri MC, Alsharif I, Mazza R, Lefranc B, Tota B, Leprince J, Cerra MC, Anouar Y, Angelone T. A selenoprotein T-derived peptide protects the heart against ischaemia/reperfusion injury through inhibition of apoptosis and oxidative stress. Acta Physiol (Oxf) 2018; 223:e13067. [PMID: 29575758 DOI: 10.1111/apha.13067] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 03/13/2018] [Accepted: 03/19/2018] [Indexed: 12/13/2022]
Abstract
AIM Selenoprotein T (SelT or SELENOT) is a novel thioredoxin-like enzyme whose genetic ablation in mice results in early embryonic lethality. SelT exerts an essential cytoprotective action during development and after injury through its redox-active catalytic site. This study aimed to determine the expression and regulation of SelT in the mammalian heart in normal and pathological conditions and to evaluate the cardioprotective effect of a SelT-derived peptide, SelT43-52(PSELT) encompassing the redox motif which is key to its function, against ischaemia/reperfusion(I/R) injury. METHODS We used the isolated Langendorff rat heart model and different analyses by immunohistochemistry, Western blot and ELISA. RESULTS We found that SelT expression is very abundant in embryo but is undetectable in adult heart. However, SelT expression was tremendously increased after I/R. PSELT (5 nmol/L) was able to induce pharmacological post-conditioning cardioprotection as evidenced by a significant recovery of contractility (dLVP) and reduction of infarct size (IS), without changes in cardiac contracture (LVEDP). In contrast, a control peptide lacking the redox site did not confer cardioprotection. Immunoblot analysis showed that PSELT-dependent cardioprotection is accompanied by a significant increase in phosphorylated Akt, Erk-1/2 and Gsk3α-β, and a decrement of p38MAPK. PSELT inhibited the pro-apoptotic factors Bax, caspase 3 and cytochrome c and stimulated the anti-apoptotic factor Bcl-2. Furthermore, PSELT significantly reduced several markers of I/R-induced oxidative and nitrosative stress. CONCLUSION These results unravel the role of SelT as a cardiac modulator and identify PSELT as an effective pharmacological post-conditioning agent able to protect the heart after ischaemic injury.
Collapse
Affiliation(s)
- C. Rocca
- Laboratory of Cellular and Molecular Cardiovascular Physiology; Department of Biology, Ecology and E.S.; University of Calabria; Rende Italy
- Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine; Institut de Recherche et d'Innovation Biomédicale de Normandie and Centre Universitaire de Recherche et D'Innovation en Biologie; Normandie University, UNIROUEN, INSERM; Rouen France
| | - L. Boukhzar
- Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine; Institut de Recherche et d'Innovation Biomédicale de Normandie and Centre Universitaire de Recherche et D'Innovation en Biologie; Normandie University, UNIROUEN, INSERM; Rouen France
| | - M. C. Granieri
- Laboratory of Cellular and Molecular Cardiovascular Physiology; Department of Biology, Ecology and E.S.; University of Calabria; Rende Italy
| | - I. Alsharif
- Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine; Institut de Recherche et d'Innovation Biomédicale de Normandie and Centre Universitaire de Recherche et D'Innovation en Biologie; Normandie University, UNIROUEN, INSERM; Rouen France
| | - R. Mazza
- Laboratory of Cellular and Molecular Cardiovascular Physiology; Department of Biology, Ecology and E.S.; University of Calabria; Rende Italy
| | - B. Lefranc
- Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine; Institut de Recherche et d'Innovation Biomédicale de Normandie and Centre Universitaire de Recherche et D'Innovation en Biologie; Normandie University, UNIROUEN, INSERM; Rouen France
| | - B. Tota
- Laboratory of Cellular and Molecular Cardiovascular Physiology; Department of Biology, Ecology and E.S.; University of Calabria; Rende Italy
- National Institute of Cardiovascular Research (INRC); Bologna Italy
| | - J. Leprince
- Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine; Institut de Recherche et d'Innovation Biomédicale de Normandie and Centre Universitaire de Recherche et D'Innovation en Biologie; Normandie University, UNIROUEN, INSERM; Rouen France
| | - M. C. Cerra
- Laboratory of Cellular and Molecular Cardiovascular Physiology; Department of Biology, Ecology and E.S.; University of Calabria; Rende Italy
- National Institute of Cardiovascular Research (INRC); Bologna Italy
| | - Y. Anouar
- Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine; Institut de Recherche et d'Innovation Biomédicale de Normandie and Centre Universitaire de Recherche et D'Innovation en Biologie; Normandie University, UNIROUEN, INSERM; Rouen France
| | - T. Angelone
- Laboratory of Cellular and Molecular Cardiovascular Physiology; Department of Biology, Ecology and E.S.; University of Calabria; Rende Italy
- National Institute of Cardiovascular Research (INRC); Bologna Italy
| |
Collapse
|
14
|
Tinkov AA, Bjørklund G, Skalny AV, Holmgren A, Skalnaya MG, Chirumbolo S, Aaseth J. The role of the thioredoxin/thioredoxin reductase system in the metabolic syndrome: towards a possible prognostic marker? Cell Mol Life Sci 2018; 75:1567-1586. [PMID: 29327078 PMCID: PMC11105605 DOI: 10.1007/s00018-018-2745-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/13/2017] [Accepted: 01/03/2018] [Indexed: 12/12/2022]
Abstract
Mammalian thioredoxin reductase (TrxR) is a selenoprotein with three existing isoenzymes (TrxR1, TrxR2, and TrxR3), which is found primarily intracellularly but also in extracellular fluids. The main substrate thioredoxin (Trx) is similarly found (as Trx1 and Trx2) in various intracellular compartments, in blood plasma, and is the cell's major disulfide reductase. Thioredoxin reductase is necessary as a NADPH-dependent reducing agent in biochemical reactions involving Trx. Genetic and environmental factors like selenium status influence the activity of TrxR. Research shows that the Trx/TrxR system plays a significant role in the physiology of the adipose tissue, in carbohydrate metabolism, insulin production and sensitivity, blood pressure regulation, inflammation, chemotactic activity of macrophages, and atherogenesis. Based on recent research, it has been reported that the modulation of the Trx/TrxR system may be considered as a new target in the management of the metabolic syndrome, insulin resistance, and type 2 diabetes, as well as in the treatment of hypertension and atherosclerosis. In this review evidence about a possible role of this system as a marker of the metabolic syndrome is reported.
Collapse
Affiliation(s)
- Alexey A Tinkov
- Yaroslavl State University, Yaroslavl, Russia
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
- Institute of Cellular and Intracellular Symbiosis, Russian Academy of Sciences, Orenburg, Russia
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Toften 24, 8610, Mo i Rana, Norway.
| | - Anatoly V Skalny
- Yaroslavl State University, Yaroslavl, Russia
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
- Trace Element Institute for UNESCO, Lyon, France
- Orenburg State University, Orenburg, Russia
| | - Arne Holmgren
- Department of Medical Biochemistry and Biophysics (MBB), Karolinska Institute, Stockholm, Sweden
| | | | - Salvatore Chirumbolo
- Department of Neurological and Movement Sciences, University of Verona, Verona, Italy
| | - Jan Aaseth
- Research Department, Innlandet Hospital Trust, Brumunddal, Norway
- Inland Norway University of Applied Sciences, Elverum, Norway
| |
Collapse
|
15
|
Ney Y, Jawad Nasim M, Kharma A, Youssef LA, Jacob C. Small Molecule Catalysts with Therapeutic Potential. Molecules 2018; 23:E765. [PMID: 29584669 PMCID: PMC6017662 DOI: 10.3390/molecules23040765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 03/22/2018] [Accepted: 03/24/2018] [Indexed: 01/21/2023] Open
Abstract
Catalysts are employed in many areas of research and development where they combine high efficiency with often astonishing selectivity for their respective substrates. In biology, biocatalysts are omnipresent. Enzymes facilitate highly controlled, sophisticated cellular processes, such as metabolic conversions, sensing and signalling, and are prominent targets in drug development. In contrast, the therapeutic use of catalysts per se is still rather limited. Recent research has shown that small molecule catalytic agents able to modulate the redox state of the target cell bear considerable promise, particularly in the context of inflammatory and infectious diseases, stroke, ageing and even cancer. Rather than being "active" on their own in a more traditional sense, such agents develop their activity by initiating, promoting, enhancing or redirecting reactions between biomolecules already present in the cell, and their activity therefore depends critically on the predisposition of the target cell itself. Redox catalysts, for instance, preferably target cells with a distinct sensitivity towards changes in an already disturbed redox balance and/or increased levels of reactive oxygen species. Indeed, certain transition metal, chalcogen and quinone agents may activate an antioxidant response in normal cells whilst at the same time triggering apoptosis in cancer cells with a different pre-existing "biochemical redox signature" and closer to the internal redox threshold. In pharmacy, catalysts therefore stand out as promising lead structures, as sensor/effector agents which are highly effective, fairly selective, active in catalytic, i.e., often nanomolar concentrations and also very flexible in their structural design.
Collapse
Affiliation(s)
- Yannick Ney
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, D-66123 Saarbruecken, Germany.
| | - Muhammad Jawad Nasim
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, D-66123 Saarbruecken, Germany.
| | - Ammar Kharma
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, D-66123 Saarbruecken, Germany.
| | - Lama A Youssef
- Department of Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, Damascus University, Damascus, Syria.
| | - Claus Jacob
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, D-66123 Saarbruecken, Germany.
| |
Collapse
|
16
|
Ansar S, Alshehri SM, Abudawood M, Hamed SS, Ahamad T. Antioxidant and hepatoprotective role of selenium against silver nanoparticles. Int J Nanomedicine 2017; 12:7789-7797. [PMID: 29123393 PMCID: PMC5661492 DOI: 10.2147/ijn.s136748] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Silver nanoparticles (AgNPs) have attracted the most interest in terms of their potential biomedical and industrial applications. However, these nanoparticles have shown their toxic behavior toward environment, living tissues, and organisms. Selenium (Se), an essential trace element, is necessary for various metabolic processes, including protection against oxidative stress and immune function. The present study was undertaken to evaluate the effect of Se against AgNP-induced hepatic oxidative stress. AgNPs were synthesized and then prepared nanoparticles were characterized using various analytical techniques such as UV-visible spectroscopy, X-ray diffraction, and transmission electron microscopy. Rats were administered AgNPs intraperitoneally (5 mg/kg/day) and Se (0.2 mg/kg) was given by gavage. AgNP administration induced hepatic damage as indicated by the serum marker enzymes with reduction in levels of glutathione, and decrease in activities of SOD, CAT, and GSH-peroxidase (P<0.05). Decrease in levels of total antioxidant capacity (TAC) and increase in level of C-reactive protein (CRP) was also observed in AgNP-treated group compared to control group. However, Se markedly attenuated AgNP-induced biochemical alterations, levels of TAC, CRP, and serum transaminases (AST, ALT) (P<0.05). Taken together, these findings suggest that administration of AgNPs produces hepatotoxicity in rats, whereas Se supplementation attenuates these effects.
Collapse
Affiliation(s)
- Sabah Ansar
- Clinical Laboratory Sciences, Applied Medical Science, King Saud University, Riyadh, Saudi Arabia
| | - Saad M Alshehri
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Manal Abudawood
- Clinical Laboratory Sciences, Applied Medical Science, King Saud University, Riyadh, Saudi Arabia
| | - Sherifa S Hamed
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia.,Zoology Department, Faculty of Science, University of Alexandria, Moharram Bey, Alexandria, Egypt
| | - Tansir Ahamad
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
17
|
Reductive Stress in Inflammation-Associated Diseases and the Pro-Oxidant Effect of Antioxidant Agents. Int J Mol Sci 2017; 18:ijms18102098. [PMID: 28981461 PMCID: PMC5666780 DOI: 10.3390/ijms18102098] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/16/2017] [Accepted: 09/30/2017] [Indexed: 12/18/2022] Open
Abstract
Abstract: Reductive stress (RS) is the counterpart oxidative stress (OS), and can occur in response to conditions that shift the redox balance of important biological redox couples, such as the NAD⁺/NADH, NADP⁺/NADPH, and GSH/GSSG, to a more reducing state. Overexpression of antioxidant enzymatic systems leads to excess reducing equivalents that can deplete reactive oxidative species, driving the cells to RS. A feedback regulation is established in which chronic RS induces OS, which in turn, stimulates again RS. Excess reducing equivalents may regulate cellular signaling pathways, modify transcriptional activity, induce alterations in the formation of disulfide bonds in proteins, reduce mitochondrial function, decrease cellular metabolism, and thus, contribute to the development of some diseases in which NF-κB, a redox-sensitive transcription factor, participates. Here, we described the diseases in which an inflammatory condition is associated to RS, and where delayed folding, disordered transport, failed oxidation, and aggregation are found. Some of these diseases are aggregation protein cardiomyopathy, hypertrophic cardiomyopathy, muscular dystrophy, pulmonary hypertension, rheumatoid arthritis, Alzheimer's disease, and metabolic syndrome, among others. Moreover, chronic consumption of antioxidant supplements, such as vitamins and/or flavonoids, may have pro-oxidant effects that may alter the redox cellular equilibrium and contribute to RS, even diminishing life expectancy.
Collapse
|
18
|
Du Y, Li H, Chen B, Lai H, Li X, Chen T. Selenadiazole derivatives antagonize glucocorticoid-induced osteoblasts cells apoptosis by blocking ROS-mediated signaling, a new anti-osteoporosis strategy. RSC Adv 2017. [DOI: 10.1039/c7ra01306j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Herein we demonstrate that synthetic selenadiazole derivatives could protect osteoblasts cells against Dex-induced cell apoptosisviaattenuating oxidative stress and downstream signalling pathways.
Collapse
Affiliation(s)
- Yanxin Du
- Orthopedics Department
- Guangdong Provincial Hospital of Traditional Chinese Medicine
- Guangzhou 510120
- China
| | - Hong Li
- Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| | - Bolai Chen
- Orthopedics Department
- Guangdong Provincial Hospital of Traditional Chinese Medicine
- Guangzhou 510120
- China
| | - Haoqiang Lai
- Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| | - Xiaoling Li
- Institute of Food Safety and Nutrition
- Jinan University
- Guangzhou
- China
| | - Tianfeng Chen
- Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| |
Collapse
|
19
|
Bagheri F, Khori V, Alizadeh AM, Khalighfard S, Khodayari S, Khodayari H. Reactive oxygen species-mediated cardiac-reperfusion injury: Mechanisms and therapies. Life Sci 2016; 165:43-55. [DOI: 10.1016/j.lfs.2016.09.013] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 09/13/2016] [Accepted: 09/20/2016] [Indexed: 12/20/2022]
|
20
|
Pfister C, Dawzcynski H, Schingale FJ. Sodium selenite and cancer related lymphedema: Biological and pharmacological effects. J Trace Elem Med Biol 2016; 37:111-116. [PMID: 27267968 DOI: 10.1016/j.jtemb.2016.05.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 05/23/2016] [Accepted: 05/23/2016] [Indexed: 12/21/2022]
Abstract
A significant percentage of cancer patients develop secondary lymphedema after surgery or radiotherapy. The preferred treatment of secondary lymphedema is complex physical therapy. Pharmacotherapy, for example with diuretics, has received little attention, because they were not effective and only offered short-term solutions. Sodium selenite showed promise as a cost-effective, nontoxic anti-inflammatory agent. Treatment with sodium selenite lowers reactive oxygen species (ROS) production, causes a spontaneous reduction in lymphedema volume, increases the efficacy of physical therapy for lymphedema, and reduces the incidence of erysipelas infections in patients with chronic lymphedema. Besides biological effects in reducing excessive production of ROS, sodium selenite also displays various pharmacological effects. So far the exact mechanisms of these pharmacological effects are mostly unknown, but probably include inhibition of adhesion protein expression.
Collapse
Affiliation(s)
- Christina Pfister
- biosyn Arzneimittel GmbH, Schorndorfer Straße 32, 70734 Fellbach, Germany.
| | - Horst Dawzcynski
- biosyn Arzneimittel GmbH, Schorndorfer Straße 32, 70734 Fellbach, Germany
| | | |
Collapse
|
21
|
Thamilselvan V, Menon M, Thamilselvan S. Combination of carmustine and selenite effectively inhibits tumor growth by targeting androgen receptor, androgen receptor-variants, and Akt in preclinical models: New hope for patients with castration resistant prostate cancer. Int J Cancer 2016; 139:1632-47. [PMID: 27198552 DOI: 10.1002/ijc.30189] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 04/28/2016] [Accepted: 05/03/2016] [Indexed: 01/12/2023]
Abstract
Despite established androgen receptor (AR) antagonists, AR/AR-variants signaling remain a major obstacle for the successful treatment of castration resistant prostate cancer (CRPC). In addition, CRPC cells adapt to survive via AR-independent pathways to escape next generation therapies. Therefore, there is an urgent need for drugs that can target these signaling pathways in CRPC. In this study, we sought to determine whether carmustine and selenite in combination could induce apoptosis and inhibit growth of CRPC in-vitro and in-vivo. CRPC (22Rv1, VCaP, and PC-3) cell lines in culture and xenograft mouse were used. Combination of carmustine and selenite treatment significantly increased reactive oxygen species, apoptosis and growth inhibition in CRPC cells with down regulation of anti-apoptotic (Bcl-2 and Mcl-1) and proliferative proteins (c-Myc and cyclin-D1). This effect was associated with complete reduction of AR/AR-variants, AR-V7, PSA and significant induction of p27Kip1. Combination treatment substantially abolished phospho-Akt, phospho-GSK-3β, and anchorage-independent growth in AR-positive and AR-negative cells. Consistent with in-vitro results, combination treatment effectively induced apoptosis and completely inhibited xenograft tumor growth and markedly reduced AR/AR-variants, AR-V7, PSA, and Bcl-2 in xenograft tumors without causing genotoxicity in host mice. Individual agent treatment showed only partial effect. The combination treatment showed a significant synergistic effect. The present study is the first to demonstrate that the combination of carmustine and selenite treatment completely suppressed CRPC tumor growth by reducing AR/AR-variants and Akt signaling. Our findings suggest that the combination of carmustine and selenite could constitute a promising next-generation therapy for successful treatment of patients with CRPC.
Collapse
Affiliation(s)
| | - Mani Menon
- Vattikuti Urology Institute, Henry Ford Health System, Detroit, MI
| | | |
Collapse
|
22
|
Schubert AC, Wendt MMN, de Sá-Nakanishi AB, Amado CAB, Peralta RM, Comar JF, Bracht A. Oxidative state and oxidative metabolism of the heart from rats with adjuvant-induced arthritis. Exp Mol Pathol 2016; 100:393-401. [PMID: 27032477 DOI: 10.1016/j.yexmp.2016.03.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/11/2016] [Accepted: 03/20/2016] [Indexed: 02/01/2023]
Abstract
The aim of the present work was to investigate, in a more extensive way, the oxidative state and parameters related to energy metabolism of the heart tissue of rats using the model of adjuvant-induced arthritis. The latter is a model for the human arthritic disease. Measurements were done in the total tissue homogenate, isolated mitochondria and cytosolic fraction. The adjuvant-induced arthritis caused several modifications in the oxidative state of the heart which, in general, indicate an increased oxidative stress (+80% reactive oxygen species), protein damage (+53% protein carbonyls) and lipid damage (+63% peroxidation) in the whole tissue. The distribution of these changes over the various cell compartments was frequently unequal. For example, protein carbonyls were increased in the whole tissue and in the cytosol, but not in the mitochondria. No changes in GSH content of the whole tissue were found, but it was increased in the mitochondria (+33%) and decreased in the cytosol (-19%). The activity of succinate dehydrogenase was 77% stimulated by arthritis; the activities of glutamate dehydrogenase, isocitrate dehydrogenase and cytochrome c oxidase were diminished by 31, 25 and 35.3%, respectively. In spite of these alterations, no changes in the mitochondrial respiratory activity and in the efficiency of energy transduction were found. It can be concluded that the adjuvant-induced arthritis in rats causes oxidative damage to the heart with an unequal intracellular distribution. Compared to the liver and brain the modifications caused by arthritis in the heart are less pronounced on variables such as GSH levels and protein integrity. Possibly this occurs because the antioxidant system of the heart is less impaired by arthritis than that reported for the former tissues. Even so, the modifications caused by arthritis represent an imbalanced situation that probably contributes to the cardiac symptoms of the arthritis disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Adelar Bracht
- Department of Biochemistry, University of Maringá, 87020900 Maringá, Brazil.
| |
Collapse
|
23
|
Effects of Curcumin on Parameters of Myocardial Oxidative Stress and of Mitochondrial Glutathione Turnover in Reoxygenation after 60 Minutes of Hypoxia in Isolated Perfused Working Guinea Pig Hearts. Adv Pharmacol Sci 2016; 2016:6173648. [PMID: 26904113 PMCID: PMC4745620 DOI: 10.1155/2016/6173648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 12/13/2015] [Accepted: 12/22/2015] [Indexed: 01/07/2023] Open
Abstract
In cardiovascular surgery ischemia-reperfusion injury is a challenging problem, which needs medical intervention. We investigated the effects of curcumin on cardiac, myocardial, and mitochondrial parameters in perfused isolated working Guinea pig hearts. After preliminary experiments to establish the model, normoxia was set at 30 minutes, hypoxia was set at 60, and subsequent reoxygenation was set at 30 minutes. Curcumin was applied in the perfusion buffer at 0.25 and 0.5 μM concentrations. Cardiac parameters measured were afterload, coronary and aortic flows, and systolic and diastolic pressure. In the myocardium histopathology and AST in the perfusate indicated cell damage after hypoxia and malondialdehyde (MDA) levels increased to 232.5% of controls during reoxygenation. Curcumin protected partially against reoxygenation injury without statistically significant differences between the two dosages. Mitochondrial MDA was also increased in reoxygenation (165% of controls), whereas glutathione was diminished (35.2%) as well as glutathione reductase (29.3%), which was significantly increased again to 62.0% by 0.05 μM curcumin. Glutathione peroxidase (GPx) was strongly increased in hypoxia and even more in reoxygenation (255% of controls). Curcumin partly counteracted this increase and attenuated GPx activity independently in hypoxia and in reoxygenation, 0.25 μM concentration to 150% and 0.5 μM concentration to 200% of normoxic activity.
Collapse
|
24
|
Zendedel A, Delavari S, Ahmadvand H, Ghanadi K, Gholami M. Effects of Selenium on Antioxidant Activity and Recovery From Sciatic Nerve Ischemia–Reperfusion in Adult Rats. ACTA ACUST UNITED AC 2015. [DOI: 10.17795/zjrms-5200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Maghsoudi A, Fakharzadeh S, Hafizi M, Abbasi M, Kohram F, Sardab S, Tahzibi A, Kalanaky S, Nazaran MH. Neuroprotective effects of three different sizes nanochelating based nano complexes in MPP(+) induced neurotoxicity. Apoptosis 2015; 20:298-309. [PMID: 25451011 DOI: 10.1007/s10495-014-1069-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Parkinson's disease (PD) is the world's second most common dementia, which the drugs available for its treatment have not had effects beyond slowing the disease process. Recently nanotechnology has induced the chance for designing and manufacturing new medicines for neurodegenerative disease. It is demonstrated that by tuning the size of a nanoparticle, the physiological effect of the nanoparticle can be controlled. Using novel nanochelating technology, three nano complexes: Pas (150 nm), Paf (100 nm) and Pac (40 nm) were designed and in the present study their neuroprotective effects were evaluated in PC12 cells treated with 1-methyl-4-phenyl-pyridine ion (MPP (+)). PC12 cells were pre-treated with the Pas, Paf or Pac nano complexes, then they were subjected to 10 μM MPP (+). Subsequently, cell viability, intracellular free Calcium and reactive oxygen species (ROS) levels, mitochondrial membrane potential, catalase (CAT) and superoxide dismutase (SOD) activity, Glutathione (GSH) and malondialdehyde (MDA) levels and Caspase 3 expression were evaluated. All three nano complexes, especially Pac, were able to increase cell viability, SOD and CAT activity, decreased Caspase 3 expression and prevented the generation of ROS and the loss of mitochondrial membrane potential caused by MPP(+). Pre-treatment with Pac and Paf nano complexes lead to a decrease of intracellular free Calcium, but Pas nano complex could not decrease it. Only Pac nano complex decreased MDA levels and other nano complexes could not change this parameter compared to MPP(+) treated cells. Hence according to the results, all nanochelating based nano complexes induced neuroprotective effects in an experimental model of PD, but the smallest nano complex, Pac, showed the best results.
Collapse
|
26
|
Selenium supplementation induces mitochondrial biogenesis in trophoblasts. Placenta 2015; 36:863-9. [DOI: 10.1016/j.placenta.2015.06.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 06/16/2015] [Accepted: 06/21/2015] [Indexed: 11/20/2022]
|
27
|
Musik I, Kocot J, Lewandowska A, Żelazowska R, Kiełczykowska M. The investigation of the possible protective influence of selenium on antioxidant barrier in heart of rats exposed to lithium. Life Sci 2015; 132:1-5. [DOI: 10.1016/j.lfs.2015.03.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 03/11/2015] [Accepted: 03/22/2015] [Indexed: 12/12/2022]
|
28
|
Ma W, Jing L, Valladares A, Mehta SL, Wang Z, Li PA, Bang JJ. Silver nanoparticle exposure induced mitochondrial stress, caspase-3 activation and cell death: amelioration by sodium selenite. Int J Biol Sci 2015; 11:860-7. [PMID: 26157341 PMCID: PMC4495404 DOI: 10.7150/ijbs.12059] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 04/20/2015] [Indexed: 12/28/2022] Open
Abstract
Silver nanoparticles (AgNP), one of the most commonly used engineered nanomaterial for biomedical and industrial applications, has shown a toxic potential to our ecosystems and humans. In this study, murine hippocampal neuronal HT22 cells were used to delineate subcellular responses and mechanisms to AgNP by assessing the response levels of caspase-3, mitochondrial oxygen consumption, reactive oxygen species (ROS), and mitochondrial membrane potential in addition to cell viability testing. Selenium, an essential trace element that has been known to carry protecting property from heavy metals, was tested for its ameliorating potential in the cells exposed to AgNP. Results showed that AgNP reduced cell viability. The toxicity was associated with mitochondrial membrane depolarization, increased accumulation of ROS, elevated mitochondrial oxygen consumption, and caspase-3 activation. Treatment with sodium selenite reduced cell death, stabilized mitochondrial membrane potential and oxygen consumption rate, and prevented accumulation of ROS and activation of caspase-3. It is concluded that AgNP induces mitochondrial stress and treatment with selenite is capable of preventing the adverse effects of AgNP on the mitochondria.
Collapse
Affiliation(s)
- Wanrui Ma
- 1. Department of Comprehensive Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, P.R. China ; 4. Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technological Enterprise (BRITE), North Carolina Central University, Durham, North Carolina, USA
| | - Li Jing
- 2. Department of Pathology, College of Basic Sciences, Ningxia Medical University, Yinchuan, Ningxia, P.R. China ; 4. Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technological Enterprise (BRITE), North Carolina Central University, Durham, North Carolina, USA
| | - Alexandra Valladares
- 3. Department of Environmental, Earth and Geospatial Sciences, North Carolina Central University, Durham, North Carolina, USA
| | - Suresh L Mehta
- 4. Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technological Enterprise (BRITE), North Carolina Central University, Durham, North Carolina, USA. ; 5. Department of Neurological Surgery, University of Wisconsin, School of Medicine and Public Health, Madison, WI 53792, USA
| | - Zhizhong Wang
- 6. Department of Epidemiology and Biostatistics, School of Public Health, Ningxia Medical University, Yinchuan, China
| | - P Andy Li
- 4. Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technological Enterprise (BRITE), North Carolina Central University, Durham, North Carolina, USA
| | - John J Bang
- 3. Department of Environmental, Earth and Geospatial Sciences, North Carolina Central University, Durham, North Carolina, USA. ; 4. Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technological Enterprise (BRITE), North Carolina Central University, Durham, North Carolina, USA
| |
Collapse
|
29
|
The Characteristics of Antioxidant Activity after Liver Transplantation in Biliary Atresia Patients. BIOMED RESEARCH INTERNATIONAL 2015; 2015:421413. [PMID: 26064908 PMCID: PMC4443700 DOI: 10.1155/2015/421413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 04/29/2015] [Accepted: 04/30/2015] [Indexed: 12/27/2022]
Abstract
Purpose. Cholestatic liver injury is associated with a high production of free radicals. The pathogenesis of liver injury in biliary atresia (BA) patients is largely undefined. The goal of the present study was to clarify the oxidative damage and the changes in antioxidant enzyme activities that occur during the development of BA and after liver transplantation (LT). Methods. We enrolled BA patients and control subjects and collected their clinical information. The activities of antioxidant enzymes in BA patients before LT (BA group) and after LT (LT group) were analyzed. Results. The number of mitochondrial DNA copies had increased in the LT group compared with the BA group. Similarly, the activity of glutathione peroxidase had increased in the LT group compared with the BA group. The level of glutathione was higher in the LT group than in the BA group. Malondialdehyde levels were decreased in the LT group compared with the BA group. Conclusions. These data indicate that LT is associated with increased antioxidant enzyme activities and decreased malondialdehyde levels in BA patients. The manipulation of mitochondria-associated antioxidative activity might be an important future management strategy for BA.
Collapse
|
30
|
Baş H, Kalender Y, Pandir D, Kalender S. Effects of lead nitrate and sodium selenite on DNA damage and oxidative stress in diabetic and non-diabetic rat erythrocytes and leucocytes. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2015; 39:1019-1026. [PMID: 25863328 DOI: 10.1016/j.etap.2015.03.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 03/17/2015] [Accepted: 03/19/2015] [Indexed: 06/04/2023]
Abstract
The adverse effects of lead nitrate (LN) and the preventive role of sodium selenite were investigated in diabetic and non-diabetic rat blood by measuring trolox equivalent antioxidant capacity (TEAC), ferric reducing antioxidant power (FRAP), malondialdehyde (MDA) levels and activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione-S-transferase (GST) also by evaluating DNA damage with comet assay. LN increased the levels of MDA, tail DNA%, mean tail length and tail moment, decreased the enzymes activities, FRAP and TEAC values. In sodium selenite+LN group, we observed the protective effect of sodium selenite on examining parameters. Diabetes caused alterations on these parameters, too. We found that sodium selenite did not protect against diabetes caused damages. As a result, LN caused toxic effects on blood cells and sodium selenite alleviated this toxicity but it did not show preventive effect against diabetes. Also, LN caused more harmfull effects in diabetic groups than non-diabetic groups.
Collapse
Affiliation(s)
- Hatice Baş
- Bozok University, Faculty of Arts and Science, Department of Biology, 66100 Yozgat, Turkey.
| | - Yusuf Kalender
- Gazi University, Faculty of Science, Department of Biology, 06500 Ankara, Turkey
| | - Dilek Pandir
- Bozok University, Faculty of Arts and Science, Department of Biology, 66100 Yozgat, Turkey
| | - Suna Kalender
- Gazi University, Gazi Education Faculty, Department of Science Education, 06500, Ankara, Turkey
| |
Collapse
|
31
|
Selenium and its supplementation in cardiovascular disease--what do we know? Nutrients 2015; 7:3094-118. [PMID: 25923656 PMCID: PMC4446741 DOI: 10.3390/nu7053094] [Citation(s) in RCA: 202] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 04/07/2015] [Accepted: 04/16/2015] [Indexed: 02/07/2023] Open
Abstract
The trace element selenium is of high importance for many of the body’s regulatory and metabolic functions. Balanced selenium levels are essential, whereas dysregulation can cause harm. A rapidly increasing number of studies characterizes the wide range of selenium dependent functions in the human body and elucidates the complex and multiple physiological and pathophysiological interactions of selenium and selenoproteins. For the majority of selenium dependent enzymes, several biological functions have already been identified, like regulation of the inflammatory response, antioxidant properties and the proliferation/differentiation of immune cells. Although the potential role of selenium in the development and progression of cardiovascular disease has been investigated for decades, both observational and interventional studies of selenium supplementation remain inconclusive and are considered in this review. This review covers current knowledge of the role of selenium and selenoproteins in the human body and its functional role in the cardiovascular system. The relationships between selenium intake/status and various health outcomes, in particular cardiomyopathy, myocardial ischemia/infarction and reperfusion injury are reviewed. We describe, in depth, selenium as a biomarker in coronary heart disease and highlight the significance of selenium supplementation for patients undergoing cardiac surgery.
Collapse
|
32
|
Rose AH, Hoffmann PR. Selenoproteins and cardiovascular stress. Thromb Haemost 2014; 113:494-504. [PMID: 25354851 DOI: 10.1160/th14-07-0603] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 09/18/2014] [Indexed: 02/07/2023]
Abstract
Dietary selenium (Se) is an essential micronutrient that exerts its biological effects through its incorporation into selenoproteins. This family of proteins contains several antioxidant enzymes such as the glutathione peroxidases, redox-regulating enzymes such as thioredoxin reductases, a methionine sulfoxide reductase, and others. In this review, we summarise the current understanding of the roles these selenoproteins play in protecting the cardiovascular system from different types of stress including ischaemia-reperfusion, homocysteine dysregulation, myocardial hypertrophy, doxirubicin toxicity, Keshan disease, and others.
Collapse
Affiliation(s)
| | - Peter R Hoffmann
- Peter R. Hoffmann, University of Hawaii, John A. Burns School of Medicine, 651 Ilalo Street, Honolulu, HI 96813, USA, Fax: +1 808 692 1968, E-mail:
| |
Collapse
|
33
|
Oxidant balance in brain of rats receiving different compounds of selenium. Biometals 2013; 26:763-71. [PMID: 23839117 PMCID: PMC3776242 DOI: 10.1007/s10534-013-9654-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 07/02/2013] [Indexed: 11/09/2022]
Abstract
The influence of two organic selenocompounds and sodium selenite on oxidant processes in rat brain tissue was investigated. The study was performed on male Wistar rats. The animals were divided into four groups: I—control; II—administered with sodium selenite; III—provided with selenoorganic compound A of chain structure 4-(o-tolyl-)-selenosemicarbazide of 2-chlorobenzoic acid and IV—provided with selenoorganic compound B of ring structure 3-(2-chlorobenzoylamino-)-2-(o-tolylimino-)-4-methyl-4-selenazoline. Rats were treated by stomach tube at a dose of 5 × 10−4 mg of selenium/g of b.w. once a day for a period of 10 days. In brain homogenates total antioxidant status (TAS), activities of superoxide dismutase (SOD) and glutathione peroxidase (GPx), concentrations of ascorbic acid (AA) and reduced glutathione (GSH) as well as concentration of malonyl dialdehyde (MDA) were determined. TAS was insignificantly diminished in all selenium-supplemented groups versus control. SOD was not significantly influenced by administration of selenium. GPx was markedly decreased in group III versus control, whereas increased in group IV versus control and group III. Selenosemicarbazide depleted AA in well-marked way versus group II. GSH was significantly depressed in group III versus both control and group II and diminished in group IV versus group II. MDA was significantly decreased in group III versus both control and group II, whereas in group IV increased versus group III. As selenazoline A did not decrease elements of antioxidant barrier and increased GPx activity, it seems to be a promising agent for future studies concerning its possible application as a selenium supplement.
Collapse
|
34
|
Liu ZW, Niu XL, Chen KL, Xing YJ, Wang X, Qiu C, Gao DF. Selenium attenuates adriamycin-induced cardiac dysfunction via restoring expression of ATP-sensitive potassium channels in rats. Biol Trace Elem Res 2013; 153:220-8. [PMID: 23475371 DOI: 10.1007/s12011-013-9641-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 02/27/2013] [Indexed: 02/07/2023]
Abstract
The possible mechanism of adriamycin (ADR) and/or selenium (Se) deficiency-induced cardiac dysfunction, and cardioprotective effects of Se against ADR-induced cardiac toxicity were investigated in this study. Cardiac function was evaluated by plasma brain natriuretic peptide level and echocardiographic and hemodynamic parameters. Cardiac glutathione peroxidase (GPx) activity was assessed spectrophotometrically. Expression of ATP-sensitive potassium channels (KATP) subunits-SUR2A and Kir6.2-were examined by real-time PCR and Western blotting. The results showed that cardiac function and cardiac GPx activity decreased remarkably after administration of ADR or Se deficiency; more dramatic impairment of cardiac function and cardiac GPx activity were observed after co-administration of ADR and Se deficiency. Mechanically, it is novel for us to find down-regulation of KATP subunits gene expression in cardiac tissue after administration of ADR or Se deficiency, and more significant inhibition of cardiac KATP gene expression was identified after co-administration of ADR and Se deficiency. Furthermore, cardiac toxicity of ADR was found alleviated by Se supplementation, accompanied by restoring of cardiac GPx activity and cardiac KATP gene expression. These results indicate that decreased expression of cardiac KATP is involved in adriamycin and/or Se deficiency-induced cardiac dysfunction; Se deficiency exacerbates adriamycin-induced cardiac dysfunction by future inhibition of KATP expression; Se supplementation seems to protect against adriamycin-induced cardiac dysfunction via restoring KATP expression, showing potential clinical application in cancer chemotherapy.
Collapse
Affiliation(s)
- Zhong-Wei Liu
- Department of Cardiology, Second Affiliated Hospital, Xi'an Jiaotong University, Shaanxi, Xi'an 710004, China
| | | | | | | | | | | | | |
Collapse
|
35
|
Weekley CM, Harris HH. Which form is that? The importance of selenium speciation and metabolism in the prevention and treatment of disease. Chem Soc Rev 2013; 42:8870-94. [DOI: 10.1039/c3cs60272a] [Citation(s) in RCA: 371] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
36
|
Tanguy S, Grauzam S, de Leiris J, Boucher F. Impact of dietary selenium intake on cardiac health: experimental approaches and human studies. Mol Nutr Food Res 2012; 56:1106-21. [PMID: 22760983 DOI: 10.1002/mnfr.201100766] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Selenium, a dietary trace mineral, essential for humans and animals, exerts its effects mainly through its incorporation into selenoproteins. Adequate selenium intake is needed to maximize the activity of selenoproteins, among which glutathione peroxidases have been shown to play a major role in cellular defense against oxidative stress initiated by excess reactive oxygen species. In humans, a low selenium status has been linked to increased risk of various diseases, including heart disease. The main objective of this review is to present current knowledge on the role of selenium in cardiac health. Experimental studies have shown that selenium may exert protective effects on cardiac tissue in animal models involving oxidative stress. Because of the narrow safety margin of this mineral, most interventional studies in humans have reported inconsistent findings. Major determinants of selenium status in humans are not well understood and several nondietary factors might be associated with reduced selenium status. In this review, we discuss recent studies regarding the role of selenoproteins in the cardiovascular system, the effect of dietary intake on selenium status, the impact of selenium status on cardiac health, and the cellular mechanisms that can be involved in the physiological and toxic effects of selenium.
Collapse
|
37
|
Glutamate induces mitochondrial dynamic imbalance and autophagy activation: preventive effects of selenium. PLoS One 2012; 7:e39382. [PMID: 22724008 PMCID: PMC3378533 DOI: 10.1371/journal.pone.0039382] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 05/21/2012] [Indexed: 12/11/2022] Open
Abstract
Glutamate-induced cytotoxicity is partially mediated by enhanced oxidative stress. The objectives of the present study are to determine the effects of glutamate on mitochondrial membrane potential, oxygen consumption, mitochondrial dynamics and autophagy regulating factors and to explore the protective effects of selenium against glutamate cytotoxicity in murine neuronal HT22 cells. Our results demonstrated that glutamate resulted in cell death in a dose-dependent manner and supplementation of 100 nM sodium selenite prevented the detrimental effects of glutamate on cell survival. The glutamate induced cytotoxicity was associated with mitochondrial hyperpolarization, increased ROS production and enhanced oxygen consumption. Selenium reversed these alterations. Furthermore, glutamate increased the levels of mitochondrial fission protein markers pDrp1 and Fis1 and caused increase in mitochondrial fragmentation. Selenium corrected the glutamate-caused mitochondrial dynamic imbalance and reduced the number of cells with fragmented mitochondria. Finally, glutamate activated autophagy markers Beclin 1 and LC3-II, while selenium prevented the activation. These results suggest that glutamate targets the mitochondria and selenium supplementation within physiological concentration is capable of preventing the detrimental effects of glutamate on the mitochondria. Therefore, adequate selenium supplementation may be an efficient strategy to prevent the detrimental glutamate toxicity and further studies are warranted to define the therapeutic potentials of selenium in animal disease models and in human.
Collapse
|
38
|
Branco V, Canário J, Lu J, Holmgren A, Carvalho C. Mercury and selenium interaction in vivo: effects on thioredoxin reductase and glutathione peroxidase. Free Radic Biol Med 2012; 52:781-93. [PMID: 22198265 DOI: 10.1016/j.freeradbiomed.2011.12.002] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 11/29/2011] [Accepted: 12/05/2011] [Indexed: 12/14/2022]
Abstract
Mercury compounds exert toxic effects via interaction with many vital enzymes involved in antioxidant regulation, such as selenoenzymes thioredoxin reductase (TrxR) and glutathione peroxidase (GPx). Selenium supplementation can reactivate the mercury-inhibited TrxR and recover the cell viability in vitro. To gain an insight on how selenium supplementation affects mercury toxicity in vertebrates, we investigated the effects of selenium on the mercury accumulation and TrxR and GPx activities in a fish model. Juvenile zebra-seabreams were exposed either to methylmercury (MeHg) or inorganic mercury (Hg(2+)) in the presence or absence of sodium selenite (Se) for 28 days followed by 14 days of depuration. Mercury accumulation was found to be 10-fold higher under MeHg exposure than under Hg(2+) exposure. Selenium supplementation caused a half decrease of the accumulation of MeHg but did not influence Hg(2+) accumulation. Exposure to both mercurials led to a decrease of the activity of TrxR (<50% of control) in all organs. Se supplementation coincident with Hg(2+) exposure protected the thioredoxin system in fish liver. However, supplementation of Se during the depuration phase had no effects. The activity of GPx was only affected in the brain of fishes upon the exposure to MeHg and coexposure to MeHg and Se. Selenium supplementation has a limited capacity to prevent mercury effects in brain and kidney. These results demonstrate that Se supplementation plays a protective role in a tissue-specific manner and also highlight the importance of TrxR as a main target for mercurials in vivo.
Collapse
Affiliation(s)
- Vasco Branco
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, University of Lisbon, Av. Prof. Gama Pinto 1649-003 Lisbon, Portugal.
| | | | | | | | | |
Collapse
|
39
|
Christophersen OA. Radiation protection following nuclear power accidents: a survey of putative mechanisms involved in the radioprotective actions of taurine during and after radiation exposure. MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2012; 23:14787. [PMID: 23990836 PMCID: PMC3747764 DOI: 10.3402/mehd.v23i0.14787] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 11/18/2011] [Indexed: 12/28/2022]
Abstract
There are several animal experiments showing that high doses of ionizing radiation lead to strongly enhanced leakage of taurine from damaged cells into the extracellular fluid, followed by enhanced urinary excretion. This radiation-induced taurine depletion can itself have various harmful effects (as will also be the case when taurine depletion is due to other causes, such as alcohol abuse or cancer therapy with cytotoxic drugs), but taurine supplementation has been shown to have radioprotective effects apparently going beyond what might be expected just as a consequence of correcting the harmful consequences of taurine deficiency per se. The mechanisms accounting for the radioprotective effects of taurine are, however, very incompletely understood. In this article an attempt is made to survey various mechanisms that potentially might be involved as parts of the explanation for the overall beneficial effect of high levels of taurine that has been found in experiments with animals or isolated cells exposed to high doses of ionizing radiation. It is proposed that taurine may have radioprotective effects by a combination of several mechanisms: (1) during the exposure to ionizing radiation by functioning as an antioxidant, but perhaps more because it counteracts the prooxidant catalytic effect of iron rather than functioning as an important scavenger of harmful molecules itself, (2) after the ionizing radiation exposure by helping to reduce the intensity of the post-traumatic inflammatory response, and thus reducing the extent of tissue damage that develops because of severe inflammation rather than as a direct effect of the ionizing radiation per se, (3) by functioning as a growth factor helping to enhance the growth rate of leukocytes and leukocyte progenitor cells and perhaps also of other rapidly proliferating cell types, such as enterocyte progenitor cells, which may be important for immunological recovery and perhaps also for rapid repair of various damaged tissues, especially in the intestines, and (4) by functioning as an antifibrogenic agent. A detailed discussion is given of possible mechanisms involved both in the antioxidant effects of taurine, in its anti-inflammatory effects and in its role as a growth factor for leukocytes and nerve cells, which might be closely related to its role as an osmolyte important for cellular volume regulation because of the close connection between cell volume regulation and the regulation of protein synthesis as well as cellular protein degradation. While taurine supplementation alone would be expected to exert a therapeutic effect far better than negligible in patients that have been exposed to high doses of ionizing radiation, it may on theoretical grounds be expected that much better results may be obtained by using taurine as part of a multifactorial treatment strategy, where it may interact synergistically with several other nutrients, hormones or other drugs for optimizing antioxidant protection and minimizing harmful posttraumatic inflammatory reactions, while using other nutrients to optimize DNA and tissue repair processes, and using a combination of good diet, immunostimulatory hormones and perhaps other nontoxic immunostimulants (such as beta-glucans) for optimizing the recovery of antiviral and antibacterial immune functions. Similar multifactorial treatment strategies may presumably be helpful in several other disease situations (including severe infectious diseases and severe asthma) as well as for treatment of acute intoxications or acute injuries (both mechanical ones and severe burns) where severely enhanced oxidative and/or nitrative stress and/or too much secretion of vasodilatory neuropeptides from C-fibres are important parts of the pathogenetic mechanisms that may lead to the death of the patient. Some case histories (with discussion of some of those mechanisms that may have been responsible for the observed therapeutic outcome) are given for illustration of the likely validity of these concepts and their relevance both for treatment of severe infections and non-infectious inflammatory diseases such as asthma and rheumatoid arthritis.
Collapse
|
40
|
Pourkhalili N, Hosseini A, Nili-Ahmadabadi A, Hassani S, Pakzad M, Baeeri M, Mohammadirad A, Abdollahi M. Biochemical and cellular evidence of the benefit of a combination of cerium oxide nanoparticles and selenium to diabetic rats. World J Diabetes 2011; 2:204-10. [PMID: 22087357 PMCID: PMC3215770 DOI: 10.4239/wjd.v2.i11.204] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 10/26/2011] [Accepted: 10/31/2011] [Indexed: 02/05/2023] Open
Abstract
AIM: To study the combinative effects of nanocerium and selenium in a murine model of diabetes.
METHODS: Cerium oxide (CeO2) nanoparticles (60 mg/kg per day) and sodium selenite (5 μmol/kg per day) alone or in combination, or the metal form of CeO2 (60 mg/kg) were administered for 2 wk by intraperitoneal injection to streptozotocin-induced diabetic rats. At the end of treatment blood was collected, liver tissue dissected and then oxidative stress markers, extent of energy depletion and lipid profile were evaluated.
RESULTS: Antioxidant enzymes and high density lipoprotein decreased whereas oxidative stress, adenosine diphosphate/adenosine triphospahte levels, cholesterol, triglyceride and low density lipoprotein increased on induction of diabetes. All were improved by a combination of nanocerium and sodium selenite. There was a relative amelioration by CeO2 nanoparticles or sodium selenite alone, but the metal form of CeO2 showed no significant improvement.
CONCLUSION: The combination of nanocerium and sodium selenite is more effective than either alone in improving diabetes-induced oxidative stress.
Collapse
Affiliation(s)
- Nazila Pourkhalili
- Nazila Pourkhalili, Amir Nili-Ahmadabadi, Shokoufeh Hassani, Mohsen Pakzad, Maryam Baeeri, Azadeh Mohammadirad, Mohammad Abdollahi, Faculty of Pharmacy, Pharmaceutical Sciences Research Center, Tehran University of Medical sciences, Tehran 1417614411, Iran
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Kumar BS, Kunwar A, Singh BG, Ahmad A, Priyadarsini KI. Anti-hemolytic and peroxyl radical scavenging activity of organoselenium compounds: an in vitro study. Biol Trace Elem Res 2011; 140:127-38. [PMID: 20424929 DOI: 10.1007/s12011-010-8692-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2010] [Accepted: 03/30/2010] [Indexed: 11/30/2022]
Abstract
Selenium-containing amino acids, selenocystine (CysSeSeCys), methylselenocysteine (MeSeCys), and selenomethionine (SeMet) have been examined for anti-hemolytic and peroxyl radical scavenging ability. Effect of these compounds on membrane lipid peroxidation, release of hemoglobin, and loss of intracellular K(+) ion as a consequence of peroxyl radicals-induced oxidation of human red blood cells were used to evaluate their anti-hemolytic ability. The peroxyl radicals were generated from thermal degradation of 2,2'-azobis(2-methylpropionamidine) dihydrochloride. Significant delay (t(eff)) was observed in oxidative damage in the presence of the selenium compounds. From the IC(50) values for the inhibition of hemolysis, lipid peroxidation, and K(+) ion leakage, the relative anti-hemolytic ability of the compounds were found to be in the order of CysSeSeCys > MeSeCys > SeMet. The anti-hemolytic abilities of the compounds, when compared with sodium selenite (Na(2)SeO(3)) under identical experimental conditions, were found to be better than Na(2)SeO(3). Relative rate constants estimated for the reaction of MeSeCys and SeMet with peroxyl radicals by competition kinetics using ABTS(2-) as a reference confirmed that all the compounds are efficient peroxyl radical scavengers. Comparison of the GPx-like activity of these compounds, by NADPH-GSH reductase coupled assay, indicated that CysSeSeCys exhibits the highest activity. Based on these results, it is concluded that among the compounds examined, CysSeSeCys, possessing the ability to reduce peroxyl radicals and hydroperoxides showed efficient anti-hemolytic activity.
Collapse
Affiliation(s)
- B Santhosh Kumar
- Department of Physiology, Deccan College of Medical Sciences, Hyderabad, India.
| | | | | | | | | |
Collapse
|
42
|
Gandhi MS, Kamalov G, Shahbaz AU, Bhattacharya SK, Ahokas RA, Sun Y, Gerling IC, Weber KT. Cellular and molecular pathways to myocardial necrosis and replacement fibrosis. Heart Fail Rev 2011; 16:23-34. [PMID: 20405318 DOI: 10.1007/s10741-010-9169-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fibrosis is a fundamental component of the adverse structural remodeling of myocardium present in the failing heart. Replacement fibrosis appears at sites of previous cardiomyocyte necrosis to preserve the structural integrity of the myocardium, but not without adverse functional consequences. The extensive nature of this microscopic scarring suggests cardiomyocyte necrosis is widespread and the loss of these contractile elements, combined with fibrous tissue deposition in the form of a stiff in-series and in-parallel elastic elements, contributes to the progressive failure of this normally efficient muscular pump. Cellular and molecular studies into the signal-transducer-effector pathway involved in cardiomyocyte necrosis have identified the crucial pathogenic role of intracellular Ca2+ overloading and subsequent induction of oxidative stress, predominantly confined within its mitochondria, to be followed by the opening of the mitochondrial permeability transition pore that leads to the destruction of these organelles and cells. It is now further recognized that Ca2+ overloading of cardiac myocytes and mitochondria serves as a prooxidant and which is counterbalanced by an intrinsically coupled Zn2+ entry serving as antioxidant. The prospect of raising antioxidant defenses by increasing intracellular Zn2+ with adjuvant nutriceuticals can, therefore, be preferentially exploited to uncouple this intrinsically coupled Ca2+ - Zn2+ dyshomeostasis. Hence, novel yet simple cardioprotective strategies may be at hand that deserve to be further explored.
Collapse
Affiliation(s)
- Malay S Gandhi
- Division of Cardiovascular Diseases, Department of Medicine, University of Tennessee Health Science Center, 956 Court Ave., Suite A312, Memphis, TN 38163, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
McCann JC, Ames BN. Adaptive dysfunction of selenoproteins from the perspective of the triage theory: why modest selenium deficiency may increase risk of diseases of aging. FASEB J 2011; 25:1793-814. [PMID: 21402715 DOI: 10.1096/fj.11-180885] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The triage theory proposes that modest deficiency of any vitamin or mineral (V/M) could increase age-related diseases. V/M-dependent proteins required for short-term survival and/or reproduction (i.e., "essential") are predicted to be protected on V/M deficiency over other "nonessential" V/M-dependent proteins needed only for long-term health. The result is accumulation of insidious damage, increasing disease risk. We successfully tested the theory against published evidence on vitamin K. Here, we review about half of the 25 known mammalian selenoproteins; all of those with mouse knockout or human mutant phenotypes that could be used as criteria for a classification of essential or nonessential. Five selenoproteins (Gpx4, Txnrd1, Txnrd2, Dio3, and Sepp1) were classified as essential and 7 (Gpx1, Gpx 2, Gpx 3, Dio1, Dio2, Msrb1, and SelN) nonessential. On modest selenium (Se) deficiency, nonessential selenoprotein activities and concentrations are preferentially lost, with one exception (Dio1 in the thyroid, which we predict is conditionally essential). Mechanisms include the requirement of a special form of tRNA sensitive to Se deficiency for translation of nonessential selenoprotein mRNAs except Dio1. The same set of age-related diseases and conditions, including cancer, heart disease, and immune dysfunction, are prospectively associated with modest Se deficiency and also with genetic dysfunction of nonessential selenoproteins, suggesting that Se deficiency could be a causal factor, a possibility strengthened by mechanistic evidence. Modest Se deficiency is common in many parts of the world; optimal intake could prevent future disease.
Collapse
Affiliation(s)
- Joyce C McCann
- Nutrition and Metabolism Center, Children's Hospital Oakland Research Institute, 5700 Martin Luthur King Jr. Way, Oakland, CA 94609, USA.
| | | |
Collapse
|
44
|
Lymbury RS, Marino MJ, Perkins AV. Effect of dietary selenium on the progression of heart failure in the ageing spontaneously hypertensive rat. Mol Nutr Food Res 2011; 54:1436-44. [PMID: 20486210 DOI: 10.1002/mnfr.201000012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Oxidative stress has been directly implicated in hypertension and myocardial remodelling, two pathologies fundamental to the development of chronic heart failure. Selenium (Se) can act directly and indirectly as an antioxidant and a lowered Se status leads to a higher risk of cardiovascular disease. This study examined the role of Se on the development of hypertension and subsequent progression to chronic heart failure in spontaneously hypertensive rats (SHR). Three dietary groups were studied: (i) Se-free; (ii) normal Se (50 μg Se/kg food); and (iii) high Se (1000 μg Se/kg food). Systolic blood pressure and echocardiography were used to detect cardiac changes in vivo. At study end, cardiac tissues were assayed for glutathione peroxidase activity, thioredoxin reductase activity, and protein carbonyls. The major finding of this study was the high heart failure-related mortality rate in SHRs fed an Se-free diet (70%). Normal and high levels of dietary Se resulted in higher survival rates of 78 and 100%, respectively. Furthermore, high dietary Se was clearly associated with lower levels of cardiac oxidative damage and increased antioxidant expression, as well as a reduction in disease severity and mortality in the SHR.
Collapse
Affiliation(s)
- Robyn S Lymbury
- Heart Foundation Research Centre, School of Medical Science, Griffith University, Southport, Queensland, Australia
| | | | | |
Collapse
|
45
|
Abstract
Despite today's standard of care, aimed at preventing homeostatic neurohormonal activation, one in every five patients recently hospitalized with congestive heart failure (CHF) will be readmitted within 30 days of discharge because of a recurrence of their symptoms and signs. In light of recent pathophysiological insights, it is now propitious to revisit CHF with a view toward complementary and evolving management strategies. CHF is a progressive systemic illness. Its features include: oxidative stress in diverse tissues; an immunostimulatory state with circulating proinflammatory cytokines; a wasting of soft tissues; and a resorption of bone. Its origins are rooted in homeostatic mechanisms gone awry to beget dyshomeostasis. For example, marked excretory losses of Ca2+ and Mg2+ accompany renin-angiotensin-aldosterone system activation, causing ionized hypocalcemia and hypomagnesemia that lead to secondary hyperparathyroidism with consequent bone resorption and a propensity to atraumatic fractures. Parathyroid hormone accounts for paradoxical intracellular Ca2+ overloading in diverse tissues and consequent systemic induction of oxidative stress. In cardiac myocytes and mitochondria, these events orchestrate opening of the mitochondrial permeability transition pore with an ensuing osmotic-based destruction of these organelles and resultant cardiomyocyte necrosis with myocardial scarring. Contemporaneous with Ca2+ and Mg2+ dyshomeostasis is hypozincemia and hyposelenemia, which compromise metalloenzyme-based antioxidant defenses, whereas hypovitaminosis D threatens Ca2+ stores needed to prevent secondary hyperparathyroidism. An intrinsically coupled dyshomeostasis of intracellular Ca2+ and Zn2+, representing pro-oxidant and antioxidant, respectively, is integral to regulating the mitochondrial redox state; it can be uncoupled by a Zn2+ supplement in favor of antioxidant defenses. Hence, the complementary use of nutriceuticals to nullify dyshomeostatic responses involving macro- and micronutrients should be considered. Evolving strategies with mitochondria-targeted interventions interfering with their uptake of Ca2+ or serving as selective antioxidant or mitochondrial permeability transition pore inhibitor may also prove efficacious in the overall management of CHF.
Collapse
|
46
|
Dursun N, Taşkın E, Yerer Aycan MB, Şahin L. Selenium-mediated cardioprotection against adriamycin-induced mitochondrial damage. Drug Chem Toxicol 2011; 34:199-207. [DOI: 10.3109/01480545.2010.538693] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
47
|
Benner MJ, Drew RE, Hardy RW, Robison BD. Zebrafish (Danio rerio) vary by strain and sex in their behavioral and transcriptional responses to selenium supplementation. Comp Biochem Physiol A Mol Integr Physiol 2010; 157:310-8. [PMID: 20659579 PMCID: PMC3047475 DOI: 10.1016/j.cbpa.2010.07.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 07/16/2010] [Accepted: 07/20/2010] [Indexed: 12/23/2022]
Abstract
We used the Nadia, Gaighatta, Scientific Hatcheries, and TM1 zebrafish (Danio rerio) strains to test the hypothesis that variation among populations influences the behavioral and transcriptional responses to selenium supplementation. When fed a diet with control levels of selenium, zebrafish strains differed significantly in behavior, characterized as their mean horizontal and vertical swimming positions within the tank. The four strains also differed in brain expression of selenoprotein P1a (sepp1a), glutathione peroxidase 3 (gpx3), thioredoxin reductase 1 (txnrd1), and tRNA selenocysteine associated protein 1 (secp43). Iodothyronine deiodinase 2 (dio2) did not differ among strains but showed a sex-specific expression pattern. When supplemented with selenium, all strains spent a greater proportion of time near the front of the tank, but the response of vertical swimming depth varied by strain. Selenium supplementation also caused changes in selenoprotein expression in the brain that varied by strain for sepp1a, secp43, and dio2, and varied by strain and sex for txnrd1. Expression of gpx3 was unaffected by selenium. Our data indicate that selenium homeostasis in the brain may be a regulator of behavior in zebrafish, and the strain-specific effects of selenium supplementation suggest that genetic heterogeneity among populations can influence the results of selenium supplementation studies.
Collapse
Affiliation(s)
- Maia J. Benner
- Department of Biological Sciences, University of Idaho, Moscow, ID, 83844-3051, USA
| | - Robert E. Drew
- Department of Biological Sciences, University of Idaho, Moscow, ID, 83844-3051, USA
| | - Ronald W. Hardy
- Aquaculture Research Institute, Hagerman Fish Culture Experiment Station, University of Idaho, 3059 National Fish Hatchery Road # F, Hagerman, ID 83332-5851, USA
| | - Barrie D. Robison
- Department of Biological Sciences, University of Idaho, Initiative for Bioinformatics in Evolutionary Studies, University of Idaho, Moscow, ID, 83844-3051, USA
| |
Collapse
|
48
|
Ismail NA, Okasha SH, Dhawan A, Abdel-Rahman AO, Shaker OG, Sadik NA. Antioxidant enzyme activities in hepatic tissue from children with chronic cholestatic liver disease. Saudi J Gastroenterol 2010; 16:90-4. [PMID: 20339177 PMCID: PMC3016512 DOI: 10.4103/1319-3767.61234] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Accepted: 10/21/2009] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND/AIM To study the oxidative stress status in children with cholestatic chronic liver disease by determining activities of glutathione peroxidase (GPx), superoxide dismutase (SOD) and catalase (CAT) in liver tissue. MATERIALS AND METHODS A total of 34 children suffering from cholestatic chronic liver disease were studied. They were selected from the Hepatology Clinic, Cairo University, and compared with seven children who happened to have incidental normal liver biopsy. The patients were divided into three groups: extrahepatic biliary atresia (n=13), neonatal hepatitis (n=15) and paucity of intrahepatic bile ducts (n=6); GPx, SOD and CAT levels were measured in fresh liver tissue using ELISA. RESULTS In the cholestatic patients, a significant increase was found in mean levels of SOD, GPx and CAT in hepatic tissue compared to control children. The three enzymes significantly increased in the extrahepatic biliary atresia group, whereas in the groups of neonatal hepatitis and paucity of intrahepatic bile ducts, only GPx and CAT enzymes were significantly increased. CONCLUSION Oxidative stress could play a role in the pathogenesis of cholestatic chronic liver diseases. These preliminary results are encouraging to conduct more extensive clinical studies using adjuvant antioxidant therapy.
Collapse
Affiliation(s)
- Nagwa A Ismail
- Department of Pediatrics, Medical Research Division, National Research Centre, Dokki, Egypt.
| | | | | | | | | | | |
Collapse
|
49
|
Effects of pharmaconutrients on cellular dysfunction and the microcirculation in critical illness. Curr Opin Anaesthesiol 2009; 22:177-83. [PMID: 19307892 DOI: 10.1097/aco.0b013e328328d32f] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW A growing body of data has revealed that specific nutrient deficiencies contribute to microvascular and cellular dysfunction following critical illness. Further, targeted administration of these 'pharmaconutrients' may reverse or improve this dysfunction and improve clinical outcome. RECENT FINDINGS Specific nutrient therapy with glutamine protects cellular metabolism and vascular function via induction of heat shock proteins, which are key proteins found to be deficient following acute illness. Arginine becomes rapidly deficient following trauma and surgery. This leads to significant immunosuppression, which when treated by arginine administration significantly reduces postoperative infection. Omega-3 fatty acids attenuate the inflammatory response and provide for resolution of ongoing inflammatory injury via production of resolvins/protectins. Antioxidants (vitamin C and selenium) and trace elements (zinc) become rapidly depleted in critical illness and replacement appears vital to ensure optimal cellular and microvascular function. Data on targeted metabolic (mitochondrial) therapies (i.e. co-enzyme Q10) show promise to improve myocardial function following cardiac surgery. SUMMARY These specific nutrients have newly discovered vital mechanistic roles in the optimization of cellular and microcirculatory function in critical illness and injury. A growing body of literature is demonstrating that correction of key nutrient deficiencies via therapeutic administration of these pharmaconutrients can improve clinical outcome in critically ill patients.
Collapse
|
50
|
Abstract
Selenoproteins are proteins containing selenium in the form of the 21st amino acid, selenocysteine. Members of this protein family have many diverse functions, but their synthesis is dependent on a common set of cofactors and on dietary selenium. Although the functions of many selenoproteins are unknown, several disorders involving changes in selenoprotein structure, activity or expression have been reported. Selenium deficiency and mutations or polymorphisms in selenoprotein genes and synthesis cofactors are implicated in a variety of diseases, including muscle and cardiovascular disorders, immune dysfunction, cancer, neurological disorders and endocrine function. Members of this unusual family of proteins have roles in a variety of cell processes and diseases.
Collapse
|