1
|
Deng L, Luo Q, Liu Y, Wang Y, Xiong Z, Wang H, Zhao L, Jia L, Shi R, Huang C, Chen Z. Progressive iron overload in middle-aged mice impairs olfactory function, triggers lipid oxidation and induces apoptosis. Front Pharmacol 2024; 15:1506944. [PMID: 39749201 PMCID: PMC11693683 DOI: 10.3389/fphar.2024.1506944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 11/27/2024] [Indexed: 01/04/2025] Open
Abstract
Introduction This study aims to investigate the progressive impact of chronic iron overload on the olfactory bulb, a region significantly affected in early neurodegenerative diseases like Parkinson's and Alzheimer's. The focus is on understanding how iron accumulation leads to oxidative stress, mitochondrial dysfunction, and neuronal damage over time in middle-aged mice. Method The mice were continuously administered FC for a duration of 16 weeks, and the olfactory behavior of the mice was observed at intervals of 4 weeks. Inductively coupled plasma mass spectrometry (ICP-MS) was employed to detect alterations in iron content within the olfactory bulb of the mice, while levels of lipid peroxidation and antioxidant indexes were assessed using biochemical kits. Additionally, western blotting and qPCR techniques were utilized to analyze transcriptional and expression changes in proteins and genes related to iron metabolism. Furthermore, microstructural modifications as well as mitochondrial observations were conducted through paraffin sectioning and transmission electron microscopy (TEM). Result A significant and progressive increase in iron accumulation in the olfactory bulb, starting from week 8 and peaking at week 16. This accumulation coincided with a decline in olfactory function observed at week 12. Key markers of oxidative stress, such as 4-HNE and MDA, were elevated in specific layers, and antioxidant defenses were reduced. Mitochondrial damage became evident from week 8, with caspase-3 activation indicating increased apoptosis, particularly in the granular layer. This study is to demonstrate the link between chronic iron overload and progressive olfactory dysfunction in the context of neurodegenerative diseases. It provides evidence that iron-induced oxidative stress and mitochondrial damage in the olfactory bulb contribute to early sensory deficits, suggesting that the olfactory bulb's selective vulnerability can serve as an early biomarker for neurodegenerative conditions. Conclusion Chronic iron overload leads to progressive oxidative damage, mitochondrial dysfunction, and apoptosis in the olfactory bulb, causing sensory deficits. Targeting iron accumulation and oxidative damage may offer new strategies for early intervention in neurodegenerative diseases, highlighting the importance of addressing iron dysregulation.
Collapse
Affiliation(s)
- Lin Deng
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Chengdu, China
- Safety Evaluation Center, Sichuan Institute for Drug Control (Sichuan Testing Center of Medical Devices), Chengdu, China
| | - Qihui Luo
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Chengdu, China
| | - Yucong Liu
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Chengdu, China
| | - Yao Wang
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Chengdu, China
| | - Zongliang Xiong
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Chengdu, China
| | - Hongping Wang
- Safety Evaluation Center, Sichuan Institute for Drug Control (Sichuan Testing Center of Medical Devices), Chengdu, China
| | - Lu Zhao
- Safety Evaluation Center, Sichuan Institute for Drug Control (Sichuan Testing Center of Medical Devices), Chengdu, China
| | - Lanlan Jia
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Chengdu, China
| | - Riyi Shi
- Department of Basic Medical Sciences, Center for Paralysis Research, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Chao Huang
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Chengdu, China
| | - Zhengli Chen
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Chengdu, China
| |
Collapse
|
2
|
Rajendran K, Krishnan UM. Mechanistic insights and emerging therapeutic stratagems for Alzheimer's disease. Ageing Res Rev 2024; 97:102309. [PMID: 38615895 DOI: 10.1016/j.arr.2024.102309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 04/10/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
Alzheimer's disease (AD), a multi-factorial neurodegenerative disorder has affected over 30 million individuals globally and these numbers are expected to increase in the coming decades. Current therapeutic interventions are largely ineffective as they focus on a single target. Development of an effective drug therapy requires a deep understanding of the various factors influencing the onset and progression of the disease. Aging and genetic factors exert a major influence on the development of AD. Other factors like post-viral infections, iron overload, gut dysbiosis, and vascular dysfunction also exacerbate the onset and progression of AD. Further, post-translational modifications in tau, DRP1, CREB, and p65 proteins increase the disease severity through triggering mitochondrial dysfunction, synaptic loss, and differential interaction of amyloid beta with different receptors leading to impaired intracellular signalling. With advancements in neuroscience tools, new inter-relations that aggravate AD are being discovered including pre-existing diseases and exposure to other pathogens. Simultaneously, new therapeutic strategies involving modulation of gene expression through targeted delivery or modulation with light, harnessing the immune response to promote clearance of amyloid deposits, introduction of stem cells and extracellular vesicles to replace the destroyed neurons, exploring new therapeutic molecules from plant, marine and biological sources delivered in the free state or through nanoparticles and use of non-pharmacological interventions like music, transcranial stimulation and yoga. Polypharmacology approaches involving combination of therapeutic agents are also under active investigation for superior therapeutic outcomes. This review elaborates on various disease-causing factors, their underlying mechanisms, the inter-play between different disease-causing players, and emerging therapeutic options including those under clinical trials, for treatment of AD. The challenges involved in AD therapy and the way forward have also been discussed.
Collapse
Affiliation(s)
- Kayalvizhi Rajendran
- School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, Tamilnadu 613401, India; Centre for Nanotechnology & Advanced Biomaterials, SASTRA Deemed University, Thanjavur, Tamilnadu 613401, India
| | - Uma Maheswari Krishnan
- School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, Tamilnadu 613401, India; Centre for Nanotechnology & Advanced Biomaterials, SASTRA Deemed University, Thanjavur, Tamilnadu 613401, India; School of Arts, Sciences, Humanities & Education, SASTRA Deemed University, Thanjavur, Tamilnadu 613401, India.
| |
Collapse
|
3
|
Toraman E. Biochemical and molecular evaluation of oxidative stress and mitochondrial damage in fruit fly exposed to carmoisine. Mol Biol Rep 2024; 51:685. [PMID: 38796672 DOI: 10.1007/s11033-024-09616-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/06/2024] [Indexed: 05/28/2024]
Abstract
BACKGROUND In today's world, appearance is an important factor in almost all areas of our lives. Therefore, it has become common to use dyes to color foods to make them look appetizing and visually appealing. However, food additives have negative effects on biochemical processes in cells at both high and low doses. METHODS AND RESULTS This study investigated the effect of carmoisine, a commonly used food coloring, on oxidative stress and damage parameters in Drosophila melanogaster in terms of both enzymatic and gene expression. The change in mitochondrial DNA copy number (mtDNA-CN), a marker of oxidative stress, was also examined. When the data obtained were analyzed, it was observed that carmoisine caused a significant decrease in GSH levels depending on the increase in dose. SOD, CAT, GPx, and AChE enzyme activities and gene expression levels were also found to be significantly decreased. All groups also showed a significant decrease in mtDNA-CN. The effect of carmoisine on Drosophila melanogaster morphology was also investigated in our study. However, no significant change was observed in terms of morphological development in any group. CONCLUSIONS When all the findings were evaluated together, it was observed that carmoisin triggered oxidative stress and these effects became more risky at high doses. Therefore, we believe that the consumer should be made more aware of the side effects of azo dyes in food and that the type and concentration of each substance added to food should be specified.
Collapse
Affiliation(s)
- Emine Toraman
- Science Faculty, Department of Molecular Biology and Genetics, Atatürk University, Erzurum, Türkiye, 25240, Turkey.
| |
Collapse
|
4
|
Salimi Z, Afsharinasab M, Rostami M, Eshaghi Milasi Y, Mousavi Ezmareh SF, Sakhaei F, Mohammad-Sadeghipour M, Rasooli Manesh SM, Asemi Z. Iron chelators: as therapeutic agents in diseases. Ann Med Surg (Lond) 2024; 86:2759-2776. [PMID: 38694398 PMCID: PMC11060230 DOI: 10.1097/ms9.0000000000001717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/03/2024] [Indexed: 05/04/2024] Open
Abstract
The concentration of iron is tightly regulated, making it an essential element. Various cellular processes in the body rely on iron, such as oxygen sensing, oxygen transport, electron transfer, and DNA synthesis. Iron excess can be toxic because it participates in redox reactions that catalyze the production of reactive oxygen species and elevate oxidative stress. Iron chelators are chemically diverse; they can coordinate six ligands in an octagonal sequence. Because of the ability of chelators to trap essential metals, including iron, they may be involved in diseases caused by oxidative stress, such as infectious diseases, cardiovascular diseases, neurodegenerative diseases, and cancer. Iron-chelating agents, by tightly binding to iron, prohibit it from functioning as a catalyst in redox reactions and transfer iron and excrete it from the body. Thus, the use of iron chelators as therapeutic agents has received increasing attention. This review investigates the function of various iron chelators in treating iron overload in different clinical conditions.
Collapse
Affiliation(s)
- Zohreh Salimi
- Department of Clinical Biochemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan
| | - Mehdi Afsharinasab
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran
| | - Mehdi Rostami
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad
| | - Yaser Eshaghi Milasi
- Department of Clinical Biochemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan
| | - Seyedeh Fatemeh Mousavi Ezmareh
- Department of Clinical Biochemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan
| | - Fariba Sakhaei
- Department of Clinical Biochemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan
| | - Maryam Mohammad-Sadeghipour
- Department of Clinical Biochemistry, Afzalipoor Faculty of Medicine, Kerman University of Medical Sciences, Kerman
| | | | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| |
Collapse
|
5
|
Toraman E, Budak B, Bayram C, Sezen S, Mokhtare B, Hacımüftüoğlu A. Role of parthenolide in paclitaxel-induced oxidative stress injury and impaired reproductive function in rat testicular tissue. Chem Biol Interact 2024; 387:110793. [PMID: 37949423 DOI: 10.1016/j.cbi.2023.110793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/09/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023]
Abstract
The chemotherapeutic agent paclitaxel (PTX) causes testicular toxicity due to oxidative stress. Parthenolide (PTL), the active ingredient of the Tanacetum parthenium plant, is used to treat inflammation, dizziness, and spasms. In the present study, we evaluated the therapeutic effect of PTL on PTX-induced testicular toxicity in rats and its role in reproductive function. To this end, 6 groups were formed: control, PTX, sham, T1, T2, and T3. After testicular toxicity was induced in rats with 8 mg/kg PTX, the rats were treated with 1 mg/kg, 2 mg/kg, and 4 mg/kg PTL for 14 days. GSH and MDA levels were measured in rat testicular tissue after the last dose of PTL was administered. To determine the damage caused by PTX to testicular tissue by detecting 8-OHdG and iNOS, sections were prepared and examined histopathologically and immunohistochemically. Furthermore, the gene expressions and enzymatic activities of SOD, CAT, GPx, GST, and GR were investigated in all groups. After PTL treatment, MDA, 8-OHdG, and iNOS levels decreased while GSH levels increased in testicular tissue. Increased levels of antioxidant genes and enzymes also reduced oxidative stress. Additionally, the expression levels of the Dazl, Ddx4, and Amh genes, which are involved in gametogenesis and sperm production, decreased in case of toxicity and increased with PTL treatment. The data from this study show that PTL may have a therapeutic effect in the treatment of testicular damage by eliminating the oxidative stress-induced damage caused by PTX in testicular tissue, providing an effective approach to alleviating testicular toxicity, and playing an important role in reproduction/sperm production, especially at a dose of 4 mg/kg.
Collapse
Affiliation(s)
- Emine Toraman
- Atatürk University, Science Faculty, Department of Molecular Biology and Genetics, Erzurum, Turkey.
| | - Büşra Budak
- Atatürk University, Faculty of Medicine, Department of Obstetrics and Gynaecology, Erzurum, Turkey
| | - Cemil Bayram
- Atatürk University, Faculty of Medicine, Department of Medical Pharmacology, Erzurum, Turkey
| | - Selma Sezen
- Ağrı İbrahim Çeçen University, Faculty of Medicine, Department of Medical Pharmacology, Ağrı, Turkey
| | - Behzad Mokhtare
- Atatürk University, Faculty of Veterinary Medicine, Department of Veterinary Pathology, Erzurum, Turkey
| | - Ahmet Hacımüftüoğlu
- Atatürk University, Faculty of Medicine, Department of Medical Pharmacology, Erzurum, Turkey
| |
Collapse
|
6
|
Karagac MS, Ceylan H. Neuroprotective Potential of Tannic Acid Against Neurotoxic Outputs of Monosodium Glutamate in Rat Cerebral Cortex. Neurotox Res 2023; 41:670-680. [PMID: 37713032 DOI: 10.1007/s12640-023-00667-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 08/29/2023] [Accepted: 09/08/2023] [Indexed: 09/16/2023]
Abstract
Glutamate in monosodium glutamate (MSG), which is widely used in the food industry, has an important role in major brain functions such as memory, learning, synapse formation, and stabilization. However, extensive use of MSG has been linked with neurotoxicity. Therefore, in addition to clarifying the underlying mechanisms of MSG-induced neurotoxicity, it is also important to determine safe agents that can diminish the damage caused by MSG. Tannic acid (TA) is a naturally occurring plant polyphenol that exhibits versatile physiological effects such as anti-inflammatory, anti-carcinogenic, antioxidant, and radical scavenging. This study was conducted to assess the neurotoxic and neuroprotective effects of these two dietary components in the rat cerebral cortex. Twenty-four Sprague Dawley rats were divided into 4 equal groups and were treated with MSG (2 g/kg) and TA (50 mg/kg) alone and in combination for 3 weeks. Alterations in oxidative stress indicators (MDA and GSH) were measured in the cortex tissues. In addition, changes in enzymatic activities and gene expression patterns of antioxidant system components (GST, GPx, CAT, and SOD) were investigated. Furthermore, mRNA expressions of FoxO transcription factors (Foxo1 and Foxo3) and apoptotic markers (Casp3 and Casp9) were assessed. Results revealed that dietary TA intake significantly rehabilitated MSG-induced dysregulation in cortical tissue by regulating redox balance, cellular homeostasis, and apoptosis. The present study proposes that MSG-induced detrimental effects on cortical tissue are potentially mitigated by TA via modulation of oxidative stress, cell metabolism, and programmed cell death.
Collapse
Affiliation(s)
- Medine Sibel Karagac
- Department of Molecular Biology and Genetics, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Hamid Ceylan
- Department of Molecular Biology and Genetics, Faculty of Science, Atatürk University, Erzurum, Turkey.
| |
Collapse
|
7
|
Toraman E, Bayram C, Sezen S, Özkaraca M, Hacımüftüoğlu A, Budak H. Parthenolide as a potential analgesic in the treatment of paclitaxel-induced neuropathic pain: the rat modeling. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:3707-3721. [PMID: 37306715 DOI: 10.1007/s00210-023-02568-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/02/2023] [Indexed: 06/13/2023]
Abstract
In this study, we determined the therapeutic effect of parthenolide (PTL), the active component of Tanacetum parthenium, on neuropathic pain caused by paclitaxel (PTX), a chemotherapeutic drug frequently used in cancer treatment, at the gene and protein levels. To this end, 6 groups were formed: control, PTX, sham, 1 mg/PTL, 2 mg/kg PTL, and 4 mg/kg PTL. Pain formation was tested by Randall-Selitto analgesiometry and locomotor activity behavioral analysis. Then, PTL treatment was performed for 14 days. After the last dose of PTL was taken, Hcn2, Trpa1, Scn9a, and Kcns1 gene expressions were measured in rat brain (cerebral cortex/CTX) tissues. In addition, changes in the levels of SCN9A and KCNS1 proteins were determined by immunohistochemical analysis. Histopathological hematoxylin-eosin staining was also performed to investigate the effect of PTL in treating tissue damage on neuropathic pain caused by PTX treatment. When the obtained data were analyzed, pain threshold and locomotor activity decreased in PTX and sham groups and increased with PTL treatment. In addition, it was observed that the expression of the Hcn2, Trpa1, and Scn9a genes decreased while the Kcns1 gene expression increased. When protein levels were examined, it was determined that SCN9A protein expression decreased and the KCNS1 protein level increased. It was determined that PTL treatment also improved PTX-induced tissue damage. The results of this study demonstrate that non-opioid PTL is an effective therapeutic agent in the treatment of chemotherapy-induced neuropathic pain, especially when used at a dose of 4 mg/kg acting on sodium and potassium channels.
Collapse
Affiliation(s)
- Emine Toraman
- Science Faculty, Department of Molecular Biology and Genetics, Atatürk University, 25240, Erzurum, Türkiye
| | - Cemil Bayram
- Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, Atatürk University, Erzurum, Türkiye
| | - Selma Sezen
- Faculty of Medicine, Department of Medical Pharmacology, Ağrı İbrahim Çeçen University, Ağrı, Türkiye
| | - Mustafa Özkaraca
- Faculty of Veterinary Medicine, Department of Veterinary Pathology, Cumhuriyet University, Sivas, Türkiye
| | - Ahmet Hacımüftüoğlu
- Faculty of Medicine, Department of Medical Pharmacology, Atatürk University, Erzurum, Türkiye
| | - Harun Budak
- Science Faculty, Department of Molecular Biology and Genetics, Atatürk University, 25240, Erzurum, Türkiye.
| |
Collapse
|
8
|
Kizir D, Karaman M, Ceylan H. Tannic acid may ameliorate doxorubicin-induced changes in oxidative stress parameters in rat spleen. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:3605-3613. [PMID: 37272930 DOI: 10.1007/s00210-023-02563-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/30/2023] [Indexed: 06/06/2023]
Abstract
Doxorubicin (DOX) is a potent and broad-spectrum drug widely used in the treatment of cancer. However, the toxicity and side effects of DOX on various organs limit its clinical use. Approaches using natural antioxidants with these drugs have the potential to alleviate negative side effects. The aim of this study was to investigate the potential protective effect of tannic acid, a polyphenolic compound found naturally in plants, against DOX-induced spleen toxicity. Expression levels of Alox5, Inos, IL-6, Tnf-α, Casp-3, Bax, SOD, GST, CAT and GPx genes were determined using cDNAs obtained from spleen tissues of rats treated with DOX, tannic acid and both. In addition, SOD, CAT, GPx and GST enzyme activities, and GSH and MDA levels were measured in tissues. In the spleen tissues, DOX caused a decrease in the level of GSH and an increase in the level of MDA. In addition, it was determined that DOX had a suppressive effect on CAT, GST, SOD and GPx mRNA levels and its enzyme activities, which are antioxidant system components. The mRNA expression levels of proinflammatory cytokine markers, apoptotic genes, and some factors involved in cell metabolism showed a change compared to the control after DOX application. However, as a result of tannic acid treatment with DOX, these changes approached the values of the control group. The findings showed that tannic acid had a protective effect on the changes in the oxidative stress and inflammation system in the rat spleen as a result of the application of tannic acid together with DOX.
Collapse
Affiliation(s)
- Duygu Kizir
- Department of Molecular Biology and Genetics, Faculty of Science, Atatürk University, 25240, Erzurum, Turkey
| | - Melike Karaman
- Department of Molecular Biology and Genetics, Faculty of Science, Atatürk University, 25240, Erzurum, Turkey.
| | - Hamid Ceylan
- Department of Molecular Biology and Genetics, Faculty of Science, Atatürk University, 25240, Erzurum, Turkey
| |
Collapse
|
9
|
Chavoshinezhad S, Beirami E, Izadpanah E, Feligioni M, Hassanzadeh K. Molecular mechanism and potential therapeutic targets of necroptosis and ferroptosis in Alzheimer's disease. Biomed Pharmacother 2023; 168:115656. [PMID: 37844354 DOI: 10.1016/j.biopha.2023.115656] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/01/2023] [Accepted: 10/04/2023] [Indexed: 10/18/2023] Open
Abstract
Alzheimer's disease (AD), a neurodegenerative condition, is defined by neurofibrillary tangles, amyloid plaques, and gradual cognitive decline. Regardless of the advances in understanding AD's pathogenesis and progression, its causes are still contested, and there are currently no efficient therapies for the illness. The post-mortem analyses revealed widespread neuronal loss in multiple brain regions in AD, evidenced by a decrease in neuronal density and correlated with the disease's progression and cognitive deterioration. AD's neurodegeneration is complicated, and different types of neuronal cell death, alone or in combination, play crucial roles in this process. Recently, the involvement of non-apoptotic programmed cell death in the neurodegenerative mechanisms of AD has received a lot of attention. Aberrant activation of necroptosis and ferroptosis, two newly discovered forms of regulated non-apoptotic cell death, is thought to contribute to neuronal cell death in AD. In this review, we first address the main features of necroptosis and ferroptosis, cellular signaling cascades, and the mechanisms involved in AD pathology. Then, we discuss the latest therapies targeting necroptosis and ferroptosis in AD animal/cell models and human research to provide vital information for AD treatment.
Collapse
Affiliation(s)
- Sara Chavoshinezhad
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - Elmira Beirami
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Esmael Izadpanah
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Marco Feligioni
- Laboratory of Neuronal Cell Signaling, EBRI Rita Levi-Montalcini Foundation, 00161 Rome, Italy; Department of Neurorehabilitation Sciences, Casa di Cura del Policlinico, 20144 Milan, Italy.
| | - Kambiz Hassanzadeh
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| |
Collapse
|
10
|
Hukkamlı B, Dağdelen B, Sönmez Aydın F, Budak H. Comparison of the efficacy of the mouse hepatic and renal antioxidant systems against inflammation-induced oxidative stress. Cell Biochem Biophys 2023:10.1007/s12013-023-01126-3. [PMID: 36773183 DOI: 10.1007/s12013-023-01126-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2023] [Indexed: 02/12/2023]
Abstract
This study was conducted to compare the efficacy of the mouse hepatic and renal antioxidant systems against inflammation-induced oxidative stress. Increased Il-1 and Il-6 expressions, markers of inflammation, were represented by inflammation models in mouse liver and kidney tissues injected intraperitoneally with LPS. After establishing the model, the GSH level and the GSH/GSSG ratio, which are oxidative stress markers, were investigated in both tissues treated with LPS and the control group. The expression of Trx1, TrxR, and Txnip genes increased in the liver tissues of LPS-treated mice. In the kidney tissue, while Trx1 expression decreased, no change was observed in TrxR1 expression, and Txnip expression increased. In the kidneys, TRXR1 and GR activities decreased, whereas GPx activity increased. In both tissues, the TRXR1 protein expression decreased significantly, while TXNIP expression increased. In conclusion, different behaviors of antioxidant system members were observed during acute inflammation in both tissues. Additionally, it can be said that the kidney tissue is more sensitive and takes earlier measures than the liver tissue against cellular damage caused by inflammation and inflammation-induced oxidative stress.
Collapse
Affiliation(s)
- Berna Hukkamlı
- Department of Molecular Biology and Genetics, Science Faculty, Atatürk University, Erzurum, 25240, Türkiye
- Department of Chemical and Chemical Processing Technologies, Boyabat Vocational School, Sinop University, Sinop, 57200, Türkiye
| | - Burak Dağdelen
- Department of Medical Biology, Faculty of Medicine, Selçuk University, Konya, 42250, Türkiye
| | - Feyza Sönmez Aydın
- Department of Molecular Biology and Genetics, Science Faculty, Atatürk University, Erzurum, 25240, Türkiye
- Department of Pathology Laboratory Techniques, Vocational School, Doğuş University, Istanbul, 34775, Türkiye
| | - Harun Budak
- Department of Molecular Biology and Genetics, Science Faculty, Atatürk University, Erzurum, 25240, Türkiye.
| |
Collapse
|
11
|
Revisiting the Role of Vitamins and Minerals in Alzheimer's Disease. Antioxidants (Basel) 2023; 12:antiox12020415. [PMID: 36829974 PMCID: PMC9952129 DOI: 10.3390/antiox12020415] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Alzheimer's disease (AD) is the most common type of dementia that affects millions of individuals worldwide. It is an irreversible neurodegenerative disorder that is characterized by memory loss, impaired learning and thinking, and difficulty in performing regular daily activities. Despite nearly two decades of collective efforts to develop novel medications that can prevent or halt the disease progression, we remain faced with only a few options with limited effectiveness. There has been a recent growth of interest in the role of nutrition in brain health as we begin to gain a better understanding of what and how nutrients affect hormonal and neural actions that not only can lead to typical cardiovascular or metabolic diseases but also an array of neurological and psychiatric disorders. Vitamins and minerals, also known as micronutrients, are elements that are indispensable for functions including nutrient metabolism, immune surveillance, cell development, neurotransmission, and antioxidant and anti-inflammatory properties. In this review, we provide an overview on some of the most common vitamins and minerals and discuss what current studies have revealed on the link between these essential micronutrients and cognitive performance or AD.
Collapse
|
12
|
Liu J, Chen Y, Lu X, Xu X, Bulloch G, Zhu S, Zhu Z, Ge Z, Wang W, Shang X, He M. The Association between Dietary Iron Intake and Incidence of Dementia in Adults Aged 60 Years or over in the UK Biobank. Nutrients 2023; 15:nu15020260. [PMID: 36678132 PMCID: PMC9865143 DOI: 10.3390/nu15020260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 01/06/2023] Open
Abstract
Background Several studies have investigated the association between dietary iron intake and cognitive impairment, but little is known about the relationship between iron intake and dementia incidence. Objectives This study explored the association between dietary iron intake and incident dementia in males and females. Whether this association was modified by factors such as age and medical diseases was also examined. Methods We included 41,213 males and 48,892 females aged 60 years or over, from the UK-Biobank cohort. Dietary iron intake was measured using a web-based 24-h dietary recall questionnaire from between 2009 and 2012. Incident dementia was ascertained using hospital inpatient records and death registers until April 2021. Cox proportional regression models examined the association between iron intake and incident dementia, and hazard ratio curves were constructed with knots from the analysis indicating insufficient or excessive iron intake. Results During a mean follow-up of 11.8 years, 560 males and 492 females developed dementia. A non-linear relationship between iron intake and incident dementia was observed in both males and females. The lowest incidence rates were observed in the higher iron intake quintile (Q4: ≥15.73, <17.57 mg/day) for males, and the intermediate iron intake quintile (Q3: ≥12.4, <13.71 mg/day) for females. Among those aged 60 and above, all-cause dementia in males was associated with deficient iron intake (Q1 versus Q4: Hazard ratio [HR]: 1.37, 95% Confidence interval [95%CI]: 1.01−1.86, p = 0.042) and excessive iron intake (Q5 versus Q4: HR: 1.49, 95%CI: 1.14−1.96, p = 0.003), whilst significant associations between all-cause dementia and deficient iron intake were only observed in females without hypertension. Smoking status was a significant moderator (p-value for trend = 0.017) for dementia in males only. Conclusions Excessive iron intake (≥17.57 mg/day) is associated with a higher incidence of all-cause dementia in males and smoking status modified this association amongst males. Deficient iron intake (<10.93 mg/day) was associated with a higher incidence of all-cause dementia in females without a history of hypertension.
Collapse
Affiliation(s)
- Jiahao Liu
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC 3010, Australia
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC 3002, Australia
| | - Yutong Chen
- Faculty of Medicine, Nursing and Health Science, Monash University, Clayton, VIC 3800, Australia
| | - Xi Lu
- Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Xiaojing Xu
- Melbourne School of Population and Global Health, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Gabriella Bulloch
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC 3002, Australia
| | - Susan Zhu
- Austin Hospital, University of Melbourne, Melbourne, VIC 3084, Australia
| | - Zhuoting Zhu
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC 3002, Australia
| | - Zongyuan Ge
- Monash e-Research Center, Faculty of Engineering, Airdoc Research, Nvidia AI Technology Research Center, Monash University, Melbourne, VIC 3800, Australia
| | - Wei Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Xianwen Shang
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC 3002, Australia
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Mingguang He
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC 3002, Australia
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
- Correspondence:
| |
Collapse
|
13
|
Kocpinar EF, Baltaci NG, Akkemik E, Budak H. Depletion of Tip60/Kat5 affects the hepatic antioxidant system in mice. J Cell Biochem 2023; 124:103-117. [PMID: 36377816 DOI: 10.1002/jcb.30348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/05/2022] [Accepted: 10/31/2022] [Indexed: 11/16/2022]
Abstract
Tat-interactive protein 60 kDa (TIP60, also known as lysine acetyltransferase 5 [KAT5]) is a member of the MYST protein family with histone acetyltransferase activity. Recent studies have reported that TIP60 has multiple functions in many signal transduction mechanisms, especially p53-mediated apoptosis. Although the activation of apoptosis signaling pathways requires the presence of cellular reactive oxygen species (ROS) at a certain level, an imbalance between the production and consumption of ROS in cells results in oxidative stress (OS). In this study, we investigated for the first time how the absence of the Tip60 gene in the liver affects gene expression, enzyme activity, and protein expression of the hepatic antioxidant members localized in the cytoplasm, including superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GPx), and glutathione S-transferase (GST). First, we successfully generated liver-specific Tip60 knockout mice (mutants) using Cre/LoxP recombination. The reduced glutathione level and nicotinamide adenine dinucleotide phosphate oxidase 4 (Nox4) expression, a marker of OS, increased significantly in the Tip60 mutant liver. Gene expression, activity, and protein expression of the enzymatic antioxidant system, including SOD, CAT, GR, GPx, and GST were investigated in mutants and control groups. Despite a significant correlation between the gene, enzyme activity, and protein content for CAT and GR, this was not true for SOD and GPx. The overall results suggest that TIP60 acts on the hepatic antioxidant system both at the gene and protein levels, but the actual effect of the deletion of Tip60 is observed at the protein level, especially for SOD and GPx.
Collapse
Affiliation(s)
- Enver Fehim Kocpinar
- Department of Molecular Biology and Genetics, Science Faculty, Atatürk University, Erzurum, Türkiye.,Department of Medical Laboratory Techniques, Vocational School of Health Services, Muş Alparslan University, Mus, Türkiye
| | - Nurdan Gonul Baltaci
- Department of Molecular Biology and Genetics, Science Faculty, Atatürk University, Erzurum, Türkiye
| | - Ebru Akkemik
- Department of Engineering, Food Engineering, Siirt University, Siirt, Türkiye
| | - Harun Budak
- Department of Molecular Biology and Genetics, Science Faculty, Atatürk University, Erzurum, Türkiye.,Department of Genes and Behavior, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
14
|
Baltacı NG, Toraman E, Akyüz M, Kalın ŞN, Budak H. Tip60/Kat5 may be a novel candidate histone acetyltransferase for the regulation of liver iron localization via acetylation. Biometals 2022; 35:1187-1197. [PMID: 35986817 DOI: 10.1007/s10534-022-00435-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 08/10/2022] [Indexed: 12/14/2022]
Abstract
Hepcidin (HAMP), an iron regulatory hormone synthesized by liver hepatocytes, works together with ferritin (FTH) and ferroportin (FPN) in regulating the storage, transport, and utilization of iron in the cell. Epigenetic mechanisms, especially acetylation, also play an important role in the regulation of iron metabolism. However, a target protein has not been mentioned yet. With this preliminary study, we investigated the effect of histone acetyltransferase TIP60 on the expression of HAMP, FTH, and FPN. In addition, how the depletion of Tip60, which regulates the circadian system, affects the daily expression of Hamp was examined at six Zeitgeber time (ZT) points. For this purpose, liver-specific Tip60 knockout mice (mutant) were produced with tamoxifen-inducible Cre/lox recombination and an iron overload model in mice was generated. While HAMP and FTH expressions decreased, FPN expression increased in the mutant group. Interestingly, there was no change in the iron content. A significant increase was observed in the expressions of HAMP, FTH, and FPN and total liver iron content in the liver tissue of the iron overload group. Since intracellular iron concentration is involved in regulating the circadian clock, temporal expression of Hamp was investigated in control and mutant groups at six ZT points. In the control group, Hamp accumulated in a circadian manner with maximal and minimal levels reaching around ZT16 and ZT8, respectively. In the mutant group, there was a significant reduction in Hamp expression in the light phase ZT0 and ZT4 and in the dark phase ZT16. These data are the first findings demonstrating a possible relationship between Tip60 and iron metabolism.
Collapse
Affiliation(s)
- Nurdan Gönül Baltacı
- Department of Molecular Biology and Genetics, Science Faculty, Atatürk University, 25240, Erzurum, Türkiye
| | - Emine Toraman
- Department of Molecular Biology and Genetics, Science Faculty, Atatürk University, 25240, Erzurum, Türkiye
| | - Mesut Akyüz
- Department of Molecular Biology and Genetics, Science Faculty, Atatürk University, 25240, Erzurum, Türkiye
- Department of Molecular Biology and Genetics, Science Faculty, Erzurum Technical University, Erzurum, Türkiye
| | - Şeyda Nur Kalın
- Department of Molecular Biology and Genetics, Science Faculty, Atatürk University, 25240, Erzurum, Türkiye
| | - Harun Budak
- Department of Molecular Biology and Genetics, Science Faculty, Atatürk University, 25240, Erzurum, Türkiye.
| |
Collapse
|
15
|
Investigation of the multi-targeted protection potential of tannic acid against doxorubicin-induced kidney damage in rats. Chem Biol Interact 2022; 365:110111. [PMID: 35987278 DOI: 10.1016/j.cbi.2022.110111] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/20/2022]
Abstract
Doxorubicin (DOX) is an antitumor drug that is powerful but can cause worse outcomes, including nephrotoxicity, and therefore has limited clinical use. Therefore, it is necessary to identify safer agents that can minimize the damage caused by the drug without shifting the treatment performance, in addition to clarifying the underlying mechanisms of DOX-induced aberrant in vivo renal activation. In this study, we tested the prophylactic capacity and mechanisms of action of tannic acid (TA) against DOX-mediated kidney damage in rats and evaluated the nephrotoxic activity of DOX when used with TA. Rats were treated during the two weeks with cumulative (18 mg/kg with six different injections) DOX, daily TA (50 mg/kg), and the DOX + TA combination. Changes in major metabolites and components involved in antioxidant metabolism were evaluated in the kidney tissues of all animals. Further, the gene expression levels of regulatory factors that have critical importance in cell metabolism, inflammation, and apoptosis were investigated. Both biochemical and molecular examinations showed that TA improved DOX-induced dysregulations at both protein and gene levels in the kidneys. Increased lipid peroxidation and decreased glutathione levels were reversed. Consistent with oxidative stress marker metabolites, suppressed antioxidant enzyme activities and transcript levels of antioxidant system members were restored. Of note, combination treatment with TA could overcome doxorubicin-induced gene expressions markedly altered by DOX, suggesting that nephroprotection conferred by TA involved the remodeling of stress resistance, cell metabolism, inflammation, and apoptosis. Collectively, the present in vivo study suggests that TA could be used as a multitarget and effective agent for the mitigation of doxorubicin-induced nephrotoxicity without changing the therapeutic efficacy of the drug.
Collapse
|
16
|
Pan W, Chen H, Ni C, Zong G, Yuan C, Yang M. Sex-Specific Associations of Dietary Iron Intake with Brain Iron Deposition on Imaging and Incident Dementia: A Prospective Cohort Study. J Nutr Health Aging 2022; 26:954-961. [PMID: 36259584 DOI: 10.1007/s12603-022-1852-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
OBJECTIVES The study aimed to evaluate the association of dietary iron intake with incident dementia and brain iron deposition. DESIGN/SETTING/PARTICIPANTS We included dementia-free participants from the UK Biobank who completed at least one 24-hour dietary recall at study baseline (2009-2012) and were followed up to 2021. Incident dementia was determined through linkage to medical records and death registries. Brain MRI was conducted in a subgroup of participants since 2014, with T2* measurements being used as indicators of brain iron deposition. MEASUREMENTS Cox proportional hazard models were used to assess the associations of high (top quintile) and low (bottom quintile) versus medium (quintile 2 to 4) level of dietary iron intake with incident dementia, respectively. Linear regression was applied to assess the relations between dietary iron intake and brain T2* measurements. RESULTS During follow-up (mean = 9.5 years), a total of 1,454 participants (650 women and 804 men) developed dementia among 191,694 participants (55.0% female; mean age, 56.2 years). When adjusted for sociodemographic, lifestyle, and other dietary factors, participants with low dietary iron intake (< 10.05 mg/day) had a significantly higher dementia risk (hazard ratio [HR], 1.50, 95% confidence interval [CI], 1.19-1.89), while the relation for high intake (> 16.92 mg/day) was non-significant (HR, 1.16, 95% CI, 0.92-1.46). A significant gender difference (P-interaction < 0.001) was observed, with a U-shaped association in male participants (HR for low vs. medium, 1.56, 95% CI, 1.14-2.13; HR for high vs. medium, 1.39, 95% CI, 1.03 - 1.88; P-nonlinearity < 0.001) and no significant association in females, regardless of their menopause status. In general, dietary iron intake was not related to T2* measurements of iron deposition in most brain regions. CONCLUSION Our findings suggested a U-shape relationship between dietary iron intake and risk of dementia among males, but not females.
Collapse
Affiliation(s)
- W Pan
- Min Yang, School of Public Health, Zhejiang University School of Medicine, 866 Yu-hang-tang RD, Hangzhou, China, Tel: 13516852440, ; Changzheng Yuan, School of Public Health, Zhejiang University School of Medicine, 866 Yu-hang-tang RD, Hangzhou, China, Tel: 17326860291, E-mail:
| | | | | | | | | | | |
Collapse
|
17
|
Radical Scavenging Activity and Pharmacokinetic Properties of Coumarin-Hydroxybenzohydrazide Hybrids. Int J Mol Sci 2022; 23:ijms23010490. [PMID: 35008914 PMCID: PMC8745304 DOI: 10.3390/ijms23010490] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/21/2021] [Accepted: 12/28/2021] [Indexed: 11/29/2022] Open
Abstract
Free radicals often interact with vital proteins, violating their structure and inhibiting their activity. In previous studies, synthesis, characterisation, and the antioxidative properties of the five different coumarin derivatives have been investigated. In the tests of potential toxicity, all compounds exhibited low toxicity with significant antioxidative potential at the same time. In this paper, the radical scavenging activity of the abovementioned coumarin derivatives towards ten different radical species was investigated. It was found that all investigated compounds show good radical scavenging ability, with results that are in correlation with the results published in the previous study. Three additional mechanisms of radical scavenging activity were investigated. It was found that all three mechanisms are thermodynamically plausible and in competition. Interestingly, it was found that products of the Double Hydrogen Atom Transfer (DHAT) mechanism, a biradical species in triplet spin state, are in some cases more stable than singlet spin state analogues. This unexpected trend can be explained by spin delocalisation over the hydrazide bridge and phenolic part of the molecule with a low probability of spin pairing. Besides radical-scavenging activity, the pharmacokinetic and drug-likeness of the coumarin hybrids were investigated. It was found that they exhibit good membrane and skin permeability and potential interactions with P-450 enzymes. Furthermore, it was found that investigated compounds satisfy all criteria of the drug-likeness tests, suggesting they possess a good preference for being used as potential drugs.
Collapse
|
18
|
Caglar S, Altay A, Kuzucu M, Caglar B. In Vitro Anticancer Activity of Novel Co(II) and Ni(II) Complexes of Non-steroidal Anti-inflammatory Drug Niflumic Acid Against Human Breast Adenocarcinoma MCF-7 Cells. Cell Biochem Biophys 2021; 79:729-746. [PMID: 33914261 DOI: 10.1007/s12013-021-00984-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2021] [Indexed: 12/16/2022]
Abstract
Herein, we report the synthesis, characterization and anticancer activity of six novel complexes of non-steroidal anti-inflammatory drug niflumic acid with Co(II) and Ni(II). In vitro cytotoxicity screening in MCF-7, HepG2 and HT-29 cancer cell lines showed that the complex 3 [Co(nif)2(met)(4-pic)] and complex 6 [Ni(nif)2(met)(4-pic)] among all the complexes exhibited the highest cytotoxicity against MCF-7 cells with IC50 values of 11.14 µM and, 41.47 µM, respectively. Besides, all the complexes exhibited significantly higher selectivity towards mouse fibroblast 3T3L1 cells. Further mechanistic studies with both complexes on MCF-7 cells revealed their cytotoxic action through the mitochondrial-dependent apoptotic pathway causing an increase oxidative/nitrosative stress, decrease in mitochondrial membrane potential (ΔΨm), inducing the multicaspase activation and arresting the cell cycle at S phase. q-PCR analysis resulted in an increase in the expression of the apoptotic marker proteins bax, p53 and caspase-3 and -8 in MCF-7 cells, but a decrease in the expression of antiapoptotic bcl-2 gene. Moreover, both complexes induced the apoptosis through the inhibition of PI3K/Akt signaling pathway by decreasing the expression of PI3K and increasing dephosphorylation form of Akt protein. These results provide a significant contribution to the explanation of the anticancer mechanisms of these complexes in MCF-7 cells.
Collapse
Affiliation(s)
- Sema Caglar
- Department of Chemistry, Faculty of Arts and Sciences, Erzincan Binali Yıldırım University, 24100, Erzincan, Turkey
| | - Ahmet Altay
- Department of Chemistry, Faculty of Arts and Sciences, Erzincan Binali Yıldırım University, 24100, Erzincan, Turkey.
| | - Mehmet Kuzucu
- Department of Biology, Faculty of Arts and Sciences, Erzincan Binali Yıldırım University, 24100, Erzincan, Turkey
| | - Bulent Caglar
- Department of Chemistry, Faculty of Arts and Sciences, Erzincan Binali Yıldırım University, 24100, Erzincan, Turkey
| |
Collapse
|
19
|
Tip60 might be a candidate for the acetylation of hepatic carbonic anhydrase I and III in mice. Mol Biol Rep 2021; 48:7397-7404. [PMID: 34651296 DOI: 10.1007/s11033-021-06753-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 09/07/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND Carbonic anhydrases (CAs) play a significant role in maintaining pH balance by catalyzing the conversion of carbon dioxide to bicarbonate. The regulation of pH is critical for all living organisms. Although there are many studies in the literature on the biochemical, functional, and structural features of CAs, there is not sufficient information about the epigenetic regulation of CAs. METHODS AND RESULTS The lysine acetyltransferase TIP60 (60 kDa Tat-interactive protein) was knocked out specifically in mouse liver using the Cre/loxP system, and knockout rate was shown as 83-88% by Southern blot analysis. The impact of Tip60 on the expression of Ca1, Ca3, and Ca7 was investigated at six Zeitgeber time (ZT) points in the control and liver-specific Tip60 knockout mice (mutant) groups by real-time PCR. In the control group, while Ca1 showed the highest expression at ZT8 and ZT12, the lowest expression profile was observed at ZT0 and ZT20. Hepatic Ca1 displayed robust circadian expression. However, hepatic Ca3 exhibited almost the same level of expression at all ZT points. The highest expression of Ca7 was observed at ZT12, and the lowest expression was determined at ZT4. Furthermore, hepatic Ca7 also showed robust circadian expression. The expression of Ca1 and Ca3 significantly decreased in mutant mice at all time periods, but the expression of Ca7 used as a negative control was not affected. CONCLUSIONS It was suggested for the first time that Tip60 might be considered a candidate protein in the regulation of the Ca1 and Ca3 genes, possibly by acetylation.
Collapse
|
20
|
Primožič J, Poljšak B, Jamnik P, Kovač V, Čanadi Jurešić G, Spalj S. Risk Assessment of Oxidative Stress Induced by Metal Ions Released from Fixed Orthodontic Appliances during Treatment and Indications for Supportive Antioxidant Therapy: A Narrative Review. Antioxidants (Basel) 2021; 10:1359. [PMID: 34572993 PMCID: PMC8471328 DOI: 10.3390/antiox10091359] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/13/2022] Open
Abstract
The treatment with fixed orthodontic appliances could have an important role in the induction of oxidative stress and associated negative consequences. Because of the simultaneous effects of corrosion, deformation, friction, and mechanical stress on fixed orthodontic appliances during treatment, degradation of orthodontic brackets and archwires occurs, causing higher concentrations of metal ions in the oral cavity. Corroded appliances cause the release of metal ions, which may lead to the increased values of reactive oxygen species (ROS) due to metal-catalyzed free radical reactions. Chromium, iron, nickel, cobalt, titanium, and molybdenum all belong to the group of transition metals that can be subjected to redox reactions to form ROS. The estimation of health risk due to the amount of heavy metals released and the level of selected parameters of oxidative stress generated for the time of treatment with fixed orthodontic appliances is presented. Approaches to avoid oxidative stress and recommendations for the preventive use of topical or systemic antioxidants during orthodontic treatment are discussed.
Collapse
Affiliation(s)
- Jasmina Primožič
- Department of Orthodontics and Jaw Orthopedics, Medical Faculty, University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana, Slovenia;
| | - Borut Poljšak
- Laboratory of Oxidative Stress Research, Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, SI-1000 Ljubljana, Slovenia;
| | - Polona Jamnik
- Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia;
| | - Vito Kovač
- Laboratory of Oxidative Stress Research, Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, SI-1000 Ljubljana, Slovenia;
| | - Gordana Čanadi Jurešić
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia;
| | - Stjepan Spalj
- Department of Orthodontics, Faculty of Dental Medicine, University of Rijeka, 51000 Rijeka, Croatia;
| |
Collapse
|
21
|
Integrated Bioinformatics Analysis to Identify Alternative Therapeutic Targets for Alzheimer's Disease: Insights from a Synaptic Machinery Perspective. J Mol Neurosci 2021; 72:273-286. [PMID: 34414562 DOI: 10.1007/s12031-021-01893-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/19/2021] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD), the most common type of dementia, is a serious neurodegenerative disease that has no cure yet, but whose symptoms can be alleviated with available medications. Therefore, early and accurate diagnosis of the disease and elucidation of the molecular mechanisms involved in the progression of pathogenesis are critically important. This study aimed to identify dysregulated miRNAs and their target mRNAs through the integrated analysis of miRNA and mRNA expression profiling in AD patients versus unaffected controls. Expression profiles in postmortem brain samples from AD patients and healthy individuals were extracted from the Gene Expression Omnibus database and were analyzed using bioinformatics approaches to identify gene ontologies, pathways, and networks. Finally, the module analysis of the PPI network and hub gene selection was carried out. A total of five differentially expressed miRNAs were extracted from the miRNA dataset, and 4312 differentially expressed mRNAs were obtained from the mRNA dataset. By comparing the DEGs and the putative targets of the altered miRNAs, 116 (3 upregulated and 113 downregulated) coordinated genes were determined. Also, six hub genes (SNAP25, GRIN2A, GRIN2B, DLG2, ATP2B2, and SCN2A) were identified by constructing a PPI network. The results of the present study provide insight into mechanisms such as synaptic machinery and neuronal communication underlying AD pathogenesis, specifically concerning miRNAs.
Collapse
|
22
|
Binuclear silver(I) complexes with the non-steroidal anti-inflammatory drug tolfenamic acid: Synthesis, characterization, cytotoxic activity and evaluation of cellular mechanism of action. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Zhang G, Zhang Y, Shen Y, Wang Y, Zhao M, Sun L. The Potential Role of Ferroptosis in Alzheimer's Disease. J Alzheimers Dis 2021; 80:907-925. [PMID: 33646161 DOI: 10.3233/jad-201369] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is the most prevalent cause of dementia, accounting for approximately 60%-80%of all cases. Although much effort has been made over the years, the precise mechanism of AD has not been completely elucidated. Recently, great attention has shifted to the roles of iron metabolism, lipid peroxidation, and oxidative stress in AD pathogenesis. We also note that these pathological events are the vital regulators of a novel regulatory cell death, termed ferroptosis-an iron-dependent, oxidative, non-apoptotic cell death. Ferroptosis differs from apoptosis, necrosis, and autophagy with respect to morphology, biochemistry, and genetics. Mounting evidence suggests that ferroptosis may be involved in neurological disorders, including AD. Here, we review the underlying mechanisms of ferroptosis; discuss the potential interaction between AD and ferroptosis in terms of iron metabolism, lipid peroxidation, and the glutathione/glutathione peroxidase 4 axis; and describe some associated studies that have explored the implication of ferroptosis in AD.
Collapse
Affiliation(s)
- Guimei Zhang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Yaru Zhang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China.,Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yanxin Shen
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Yongchun Wang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Meng Zhao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Li Sun
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| |
Collapse
|
24
|
Altun S, Budak H. The protective effect of the cardiac thioredoxin system on the heart in the case of iron overload in mice. J Trace Elem Med Biol 2021; 64:126704. [PMID: 33370714 DOI: 10.1016/j.jtemb.2020.126704] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/27/2020] [Accepted: 12/10/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND Iron, which is essential for many vital biological processes, causes significant clinical pathologies in the case of its deficiency or excess. Cardiovascular protective pathways are activated by iron therapy. However, determining the appropriate iron concentration is essential to protect heart tissue from iron-induced oxidative stress. The thioredoxin system is one of the antioxidant systems that protect cells against oxidative stress. Moreover, it allows the binding of many transcription factors for apoptosis, myocardial protection, the stimulation of cell proliferation, and angiogenesis processes, especially the regulation of the cardiovascular system. This study's goal was to understand how iron overload affects the gene and protein levels of the thioredoxin system in the mouse heart. METHODS BALB/c mice were randomly separated into two groups. The iron overload group was administered with intraperitoneal injections of an iron-dextran solution twice a week for three weeks. In parallel, the control group was intraperitoneally given Dextran 5 solution. The total iron content, the total GSH level, the reduced glutathione/oxidized glutathione (GSH/GSSG) ratio, and thioredoxin reductase 1 (TXNRD1) activity were demonstrated spectroscopically. Changes in the iron metabolism marker genes and thioredoxin system genes were examined by qPCR. The quantitative protein expression of TXNRD1 and thioredoxin-interacting protein (TXNIP) was examined by western blotting. RESULTS The iron content of the heart increased in the iron overload group. The expression of hepcidin (Hamp) and ferroportin (Fpn) increased with iron overload. However, decreased expression was observed for ferritin (Fth). No changes were revealed in the GSH level and GSH/GSSG ratio. The gene expression of thioredoxin 1 (Txn1), Txnrd1, and Txnip did not change. TXNRD1 activity and protein expression increased significantly, while the protein expression of TXNIP decreased significantly. CONCLUSION In the case of iron overload, the cardiac thioredoxin system is affected by the protein level rather than the gene level. The amount and duration of iron overload used in this study may be considered as a starting point for further studies to determine appropriate conditions for the iron therapy of cardiovascular diseases.
Collapse
Affiliation(s)
- Sevda Altun
- Science Faculty, Department of Molecular Biology and Genetics, Atatürk University, Erzurum, Turkey; Rafet Kayış Faculty of Engineering, Department of Genetic and Bioengineering, Alaaddin Keykubat University, Antalya, Turkey
| | - Harun Budak
- Science Faculty, Department of Molecular Biology and Genetics, Atatürk University, Erzurum, Turkey.
| |
Collapse
|
25
|
Soheili M, Karimian M, Hamidi G, Salami M. Alzheimer's disease treatment: The share of herbal medicines. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:123-135. [PMID: 33953850 PMCID: PMC8061323 DOI: 10.22038/ijbms.2020.50536.11512] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 11/07/2020] [Indexed: 11/25/2022]
Abstract
One of the most frequent forms of dementia in neurological disorders is Alzheimer's disease (AD). It is a chronic neurodegenerative disease characterized by impaired learning and memory. Pathological symptoms as extracellular amyloid-beta (Aβ) plaques and intracellular accumulation of neurofibrillary tangles occur in AD. Due to the aging of the population and increased prevalence of AD, discovery of new therapeutic agents with the highest effectiveness and fewer side effect seems to be necessary. Numerous synthetic medicines such as tacrine, donepezil, galantamine, rivastigmine, memantine, glutathione, ascorbic acid, ubiquinone, ibuprofen, and ladostigil are routinely used for reduction of the symptoms and prevention of disease progression. Nowadays, herbal medicines have attracted popular attention for numerous beneficial effects with little side effects. Lavandula angustifolia, Ginkgo biloba, Melissa officinalis, Crocus sativus, Ginseng, Salvia miltiorrhiza, and Magnolia officinalis have been widely used for relief of symptoms of some neurological disorders. This paper reviews the therapeutic effects of phytomedicines with prominent effects against various factors implicated in the emergence and progression of AD.
Collapse
Affiliation(s)
- Masoud Soheili
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Karimian
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| | - Gholamali Hamidi
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mahmoud Salami
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
26
|
Kasozi KI, Otim EO, Ninsiima HI, Zirintunda G, Tamale A, Ekou J, Musoke GH, Muyinda R, Matama K, Mujinya R, Matovu H, Ssempijja F, Eze ED, Atino M, Udechukwu B, Kayima R, Etiang P, Ayikobua ET, Kembabazi S, Usman IM, Sulaiman SO, Natabo PC, Kyeyune GN, Batiha GES, Otim O. An analysis of heavy metals contamination and estimating the daily intakes of vegetables from Uganda. TOXICOLOGY RESEARCH AND APPLICATION 2021. [DOI: 10.1177/2397847320985255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Background: Environmental contamination with elevated levels of copper (Cu), cobalt (Co), iron (Fe), zinc (Zn), lead (Pb), chromium (Cr6+), cadmium (Cd), and nickel (Ni)—all states of which are found in Uganda—raises health risk to the public. Pb, Cr6+, Cd, and Ni for instance are generally considered nonessential to cellular functions, notwithstanding the importance of the oxidative state of the metals in bioavailability. As such, we aimed in this study (i) to evaluate heavy metal concentrations in four vegetables from a typical open-air market in Uganda, (ii) to assess the safety of consuming these vegetables against the World Health Organization (WHO) recommended limits of heavy metals consumption, and (iii) to formulate a model of estimated daily intake (EDI) among consumers in the country. Methods: This was a cross-sectional study conducted in five georeferenced markets of Bushenyi district in January 2020. Amaranthus, cabbages, scarlet eggplants, and tomatoes were collected from open markets, processed, and analyzed by atomic absorption spectrometry. Modeled EDI, principal component (PCA) and cluster analysis (CA) were conducted to identify relationships in the samples. Results: The levels of essential elements in the four vegetables were found to fall from Co > Cu > Fe > Zn. Those of non-essential metals were significantly higher and followed the pattern Cd > Cr > Pb > Ni. The highest EDI values were those of Cu in scarlet eggplants, Zn in amaranthus, Fe in amaranthus, Co in amaranthus, Pb in cabbages, total Cr in scarlet eggplant, Cd in cabbages and tomatoes, and Ni in cabbages. In comparison to international limits, EDIs for Zn, Cu, Co and Fe were low while Ni in cabbages were high. PCA showed high variations in scarlet eggplant and amaranthus. The study vegetables were found to be related with each other, not according to the location of the markets from where they were obtained, but according to their species by CA. Conclusion: The presence of non-essential elements above WHO limits raises policy challenges for the consumption and marketing of vegetables in the study area. Furthermore, low EDIs of essential elements in the vegetables create demand for nutritious foods to promote healthy communities.
Collapse
Affiliation(s)
- Keneth Iceland Kasozi
- Faculty of Agriculture and Animal Sciences, Busitema University Arapai Campus, Soroti, Uganda
- School of Medicine, Kabale University, Kabale, Uganda
| | - Eric Oloya Otim
- College of Engineering and Sciences, Purdue University Northwest, Hammond, IN, USA
| | | | - Gerald Zirintunda
- Faculty of Agriculture and Animal Sciences, Busitema University Arapai Campus, Soroti, Uganda
| | - Andrew Tamale
- Department of Wildlife Resources, School of Veterinary Medicine, College of Veterinary Medicine and Biosecurity, Makerere University, Kampala, Uganda
| | - Justin Ekou
- Faculty of Agriculture and Animal Sciences, Busitema University Arapai Campus, Soroti, Uganda
| | - Grace Henry Musoke
- Faculty of Science and Technology, Cavendish University, Kampala, Uganda
| | - Robert Muyinda
- Faculty of Agriculture and Animal Sciences, Busitema University Arapai Campus, Soroti, Uganda
| | - Kevin Matama
- School of Pharmacy, Kampala International University Western Campus, Bushenyi, Uganda
| | - Regan Mujinya
- Faculty of Biomedical Sciences, Kampala International University Western Campus, Bushenyi, Uganda
| | - Henry Matovu
- Faculty of Agriculture and Animal Sciences, Busitema University Arapai Campus, Soroti, Uganda
| | - Fred Ssempijja
- Faculty of Biomedical Sciences, Kampala International University Western Campus, Bushenyi, Uganda
| | | | - Mauryn Atino
- School of Pharmacy, Kampala International University Western Campus, Bushenyi, Uganda
| | - Bede Udechukwu
- School of Pharmacy, Kampala International University Western Campus, Bushenyi, Uganda
| | - Ronald Kayima
- School of Pharmacy, Kampala International University Western Campus, Bushenyi, Uganda
| | - Patrick Etiang
- Faculty of Agriculture and Animal Sciences, Busitema University Arapai Campus, Soroti, Uganda
| | | | - Stellamaris Kembabazi
- Faculty of Biomedical Sciences, Kampala International University Western Campus, Bushenyi, Uganda
| | - Ibe Michael Usman
- Faculty of Biomedical Sciences, Kampala International University Western Campus, Bushenyi, Uganda
| | - Sheu Oluwadare Sulaiman
- Faculty of Biomedical Sciences, Kampala International University Western Campus, Bushenyi, Uganda
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Phyllis Candy Natabo
- Faculty of Biomedical Sciences, Kampala International University Western Campus, Bushenyi, Uganda
| | - Grace Nambatya Kyeyune
- Directorate of Research, Natural Chemotherapeutics Research Institute, Ministry of Health, Kampala, Uganda
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, AlBeheira, Egypt
| | - Ochan Otim
- Department of Humanities and Sciences, University of California – Los Angeles, CA, USA
- Department of Chemistry, Faculty of Science, Gulu University, Gulu, Uganda
| |
Collapse
|
27
|
Li B, Xia M, Zorec R, Parpura V, Verkhratsky A. Astrocytes in heavy metal neurotoxicity and neurodegeneration. Brain Res 2021; 1752:147234. [PMID: 33412145 DOI: 10.1016/j.brainres.2020.147234] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/15/2020] [Accepted: 12/07/2020] [Indexed: 12/14/2022]
Abstract
With the industrial development and progressive increase in environmental pollution, the mankind overexposure to heavy metals emerges as a pressing public health issue. Excessive intake of heavy metals, such as arsenic (As), manganese (Mn), mercury (Hg), aluminium (Al), lead (Pb), nickel (Ni), bismuth (Bi), cadmium (Cd), copper (Cu), zinc (Zn), and iron (Fe), is neurotoxic and it promotes neurodegeneration. Astrocytes are primary homeostatic cells in the central nervous system. They protect neurons against all types of insults, in particular by accumulating heavy metals. However, this makes astrocytes the main target for heavy metals neurotoxicity. Intake of heavy metals affects astroglial homeostatic and neuroprotective cascades including glutamate/GABA-glutamine shuttle, antioxidative machinery and energy metabolism. Deficits in these astroglial pathways facilitate or even instigate neurodegeneration. In this review, we provide a concise outlook on heavy metal-induced astrogliopathies and their association with major neurodegenerative disorders. In particular, we focus on astroglial mechanisms of iron-induced neurotoxicity. Iron deposits in the brain are detected in main neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis. Accumulation of iron in the brain is associated with motor and cognitive impairments and iron-induced histopathological manifestations may be considered as the potential diagnostic biomarker of neurodegenerative diseases. Effective management of heavy metal neurotoxicity can be regarded as a potential strategy to prevent or retard neurodegenerative pathologies.
Collapse
Affiliation(s)
- Baoman Li
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, Shenyang, People's Republic of China.
| | - Maosheng Xia
- Department of Orthopaedics, The First Hospital, China Medical University, Shenyang, People's Republic of China
| | - Robert Zorec
- Celica BIOMEDICAL, Tehnološki Park 24, 1000 Ljubljana, Slovenia; Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia
| | - Vladimir Parpura
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Alexei Verkhratsky
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, Shenyang, People's Republic of China; Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK; Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain.
| |
Collapse
|
28
|
Sönmez Aydın F, Hukkamlı B, Budak H. Coaction of hepatic thioredoxin and glutathione systems in iron overload-induced oxidative stress. J Biochem Mol Toxicol 2021; 35:e22704. [PMID: 33393188 DOI: 10.1002/jbt.22704] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 10/12/2020] [Accepted: 12/12/2020] [Indexed: 01/15/2023]
Abstract
In the present study, we demonstrate the coaction of thioredoxin and glutathione (GSH) systems in mouse liver against iron overload-induced oxidative stress (OS). Mice were injected intraperitoneally with an iron dextran solution twice a week for 3 weeks. Iron accumulation in mouse liver was demonstrated spectroscopically. To confirm the iron overload model in the liver, the increased gene expression levels of hepcidin (Hamp), ferroportin (Fpn1), and ferritin (Fth1), which regulate iron trafficking, were observed by a quantitative polymerase chain reaction. In the case of iron overload, the GSH level and the reduced glutathione/oxidized glutathione ratio, which represents a marker of OS, decreased significantly. An increase in the malondialdehyde level, one of the final products of the lipid peroxidation process, was observed. The gene expression of the thioredoxin system, including thioredoxin (Trx1) and thioredoxin reductase (TrxR1), was examined. Though TrxR1 expression decreased, no changes were observed in Trx1. The enzyme activity and semiquantitative protein expression of TRXR1 increased. The activity of GSH reductase and GSH peroxidase increased in the iron overload group. The gene and protein expressions of thioredoxininteracting protein, which is an indicator of the commitment of the cell to apoptosis, were elevated significantly. The increased protein expression of Bcl-2-related X protein and CASPASE-3, which is an indicator of apoptosis, increased significantly. In conclusion, excess iron accumulation in mouse liver tissue causes OS, which affects the redox state of the thioredoxin and GSH systems, inducing cell apoptosis and also ferroptosis due to increased lipid peroxidation and the depletion of GSH level.
Collapse
Affiliation(s)
- Feyza Sönmez Aydın
- Department of Molecular Biology and Genetics, Science Faculty, Atatürk University, Erzurum, Turkey
| | - Berna Hukkamlı
- Department of Molecular Biology and Genetics, Science Faculty, Atatürk University, Erzurum, Turkey.,Department of Chemical and Chemical Processing Technologies, Boyabat Vocational School, Sinop University, Sinop, Turkey
| | - Harun Budak
- Department of Molecular Biology and Genetics, Science Faculty, Atatürk University, Erzurum, Turkey
| |
Collapse
|