1
|
Yu R, Cai L, Cao Q, Liu P, Gong Y, Li K, Wu Q, Zhang Y, Li P, Yang X, Lu Q. Development and Validation of an MRI-Based Nomogram for Preoperative Detection of Muscle Invasion in VI-RADS 3. J Magn Reson Imaging 2024; 60:448-457. [PMID: 37902432 DOI: 10.1002/jmri.29103] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 10/31/2023] Open
Abstract
BACKGROUND The relationship between tumor and muscle layer in the vesical imaging-reporting and data system (VI-RADS) 3 is ambiguous, and there is a lack of preoperative and non-invasive procedures to detect muscle invasion in VI-RADS 3. PURPOSE To develop a nomogram based on MRI features for detecting muscle invasion in VI-RADS 3. STUDY TYPE Retrospective. POPULATION 235 cases (Age: 67.5 ± 11.5 years) with 11.9% females were randomly divided into a training cohort (n = 164) and a validation cohort (n = 71). FIELD STRENGTH/SEQUENCE 3T, T2-weighted imaging (turbo spin-echo), diffusion-weighted imaging (breathing-free spin echo), and dynamic contrast-enhanced imaging (gradient echo). ASSESSMENT 3 features were selected from the training cohort, including tumor contact length greater than maximum tumor diameter (TCL > Dmax), flat tumor morphology, and lower standard deviation of apparent diffusion coefficient (ADCSD). Three readers assessed VI-RADS scores and the tumor morphology. STATISTICAL TESTS Interobserver agreement was assessed by Kappa analysis. Features for final analysis were selected by logistic regression. The performance of the nomogram was evaluated by the receiver operating characteristic curve, decision curve analysis, and calibration curve. RESULTS TCL > Dmax, flat morphology, and lower ADCSD were the independent risk factors for muscle invasive in VI-RADS 3. The AUCs, accuracy, sensitivity, and specificity of the nomogram 1 composed of three features for detecting muscle invasion were 0.852 (95% CI: 0.793-0.912), 0.756, 0.917, and 0.663 in the training cohort, and 0.885 (95% CI: 0.801-0.969), 0.817, 0.900, and 0.784 in the validation cohort. The nomogram 2 without ADCSD has nearly the same performance as the nomogram 1. DATA CONCLUSION Nomogram can be an efficient tool for preoperative detection of muscle invasion in VI-RADS 3. LEVEL OF EVIDENCE 3 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Ruixi Yu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lingkai Cai
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Urology, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Qiang Cao
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Peikun Liu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuxi Gong
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Kai Li
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qikai Wu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yudong Zhang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Pengchao Li
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiao Yang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qiang Lu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
2
|
Shkolyar E, Zhou SR, Carlson CJ, Chang S, Laurie MA, Xing L, Bowden AK, Liao JC. Optimizing cystoscopy and TURBT: enhanced imaging and artificial intelligence. Nat Rev Urol 2024:10.1038/s41585-024-00904-9. [PMID: 38982304 DOI: 10.1038/s41585-024-00904-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2024] [Indexed: 07/11/2024]
Abstract
Diagnostic cystoscopy in combination with transurethral resection of the bladder tumour are the standard for the diagnosis, surgical treatment and surveillance of bladder cancer. The ability to inspect the bladder in its current form stems from a long chain of advances in imaging science and endoscopy. Despite these advances, bladder cancer recurrence and progression rates remain high after endoscopic resection. This stagnation is a result of the heterogeneity of cancer biology as well as limitations in surgical techniques and tools, as incomplete resection and provider-specific differences affect cancer persistence and early recurrence. An unmet clinical need remains for solutions that can improve tumour delineation and resection. Translational advances in enhanced cystoscopy technologies and artificial intelligence offer promising avenues to overcoming the progress plateau.
Collapse
Affiliation(s)
- Eugene Shkolyar
- Department of Urology, Stanford University School of Medicine, Stanford, CA, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Steve R Zhou
- Department of Urology, Stanford University School of Medicine, Stanford, CA, USA
| | - Camella J Carlson
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Shuang Chang
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Mark A Laurie
- Department of Urology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Lei Xing
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Audrey K Bowden
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
| | - Joseph C Liao
- Department of Urology, Stanford University School of Medicine, Stanford, CA, USA.
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.
| |
Collapse
|
3
|
Tyagi P, Hafron J, Kaufman J, Chancellor M. Enhancing Therapeutic Efficacy and Safety of Immune Checkpoint Inhibition for Bladder Cancer: A Comparative Analysis of Injectable vs. Intravesical Administration. Int J Mol Sci 2024; 25:4945. [PMID: 38732167 PMCID: PMC11084450 DOI: 10.3390/ijms25094945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
Bladder cancer (BC) presents a significant global health burden, characterized by high recurrence rates post-initial treatment. Gender differences in BC prevalence and response to therapy emphasize the importance of personalized treatment strategies. While Bacillus Calmette-Guérin (BCG) remains a cornerstone of BC therapy, resistance poses a challenge, necessitating alternative strategies. Immune checkpoint inhibitors (ICIs) have shown promise, yet systemic toxicity raises concern. Intravesical administration of ICIs offers a potential solution, with recent studies demonstrating the feasibility and efficacy of intravesical pembrolizumab. Although systemic toxicity remains a concern, its localized administration may mitigate adverse events. Additionally, liposomal delivery of ICIs exhibits promises in enhancing drug penetration and reducing toxicity. Novel imaging modalities compatible with Vesical Imaging-Reporting and Data System (VI-RADS) and capable of predicting high-grade bladder cancer can aid the pre-operative shared decision making of patient and surgeon. Future research should focus on refining treatment approaches, optimizing dosing regimens, and leveraging advanced imaging techniques to improve patient outcomes. In conclusion, intravesical immunotherapy presents a promising avenue for BC treatment, offering enhanced therapeutic effectiveness while minimizing systemic toxicity. Continued research efforts are essential to validate these findings and optimize intravesical immunotherapy's role in BC management, ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Pradeep Tyagi
- Departments of Urology, University of Pittsburgh, Pittsburgh, PA 15260, USA;
| | - Jason Hafron
- Michigan Institute of Urology, Troy, MI 48084, USA
| | | | | |
Collapse
|
4
|
Tyagi P, Tyagi S, Stewart L, Glickman S. SWOT and Root Cause Analyses of Antimicrobial Resistance to Oral Antimicrobial Treatment of Cystitis. Antibiotics (Basel) 2024; 13:328. [PMID: 38667004 PMCID: PMC11047466 DOI: 10.3390/antibiotics13040328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/29/2024] Open
Abstract
Nearly 150 million cases of urinary tract infections (UTIs) are reported each year, of which uncomplicated cystitis triggers > 25% of outpatient prescriptions of oral antimicrobial treatment (OAT). OAT aids immune cells infiltrating the urothelium in eliminating uropathogens capable of invading the urothelium and surviving hyperosmotic urine. This self-evident adaptability of uropathogens and the short interval between the introduction of Penicillin and the first report of antimicrobial resistance (AMR) implicate AMR as an evolutionary conserved heritable trait of mutant strains selected by the Darwinian principle to survive environmental threats through exponential proliferation. Therefore, AMR can only be countered by antimicrobial stewardship (AMS) following the principle of the five Ds-drug, dose, duration, drug route, and de-escalation. While convenient to administer, the onset of the minimum inhibitory concentration (MIC) for OAT in urine leaves a window of opportunity for uropathogens to survive the first contact with an antimicrobial and arm their descendant colonies with AMR for surviving subsequent higher urine antimicrobial levels. Meanwhile, the initial dose of intravesical antimicrobial treatment (IAT) may be well above the MIC. Therefore, the widespread clinical use of OAT for cystitis warrants an analysis of the strengths, weaknesses, opportunity, and threats (SWOTs) and a root cause analysis of the AMR associated with OAT and IAT.
Collapse
Affiliation(s)
- Pradeep Tyagi
- Department of Urology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Shachi Tyagi
- Division of Geriatric Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA;
| | | | | |
Collapse
|
5
|
Ongaro L, Rossin G, Biasatti A, Pacini M, Rizzo M, Traunero F, Piasentin A, Perotti A, Trombetta C, Bartoletti R, Zucchi A, Simonato A, Pavan N, Liguori G, Claps F. Fluorescence Confocal Microscopy in Urological Malignancies: Current Applications and Future Perspectives. Life (Basel) 2023; 13:2301. [PMID: 38137902 PMCID: PMC10744992 DOI: 10.3390/life13122301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 11/29/2023] [Accepted: 12/03/2023] [Indexed: 12/24/2023] Open
Abstract
Fluorescence confocal microscopy (FCM) represents a novel diagnostic technique able to provide real-time histological images from non-fixed specimens. As a consequence of its recent developments, FCM is gaining growing popularity in urological practice. Nevertheless, evidence is still sparse, and, at the moment, its applications are heterogeneous. We performed a narrative review of the current literature on this topic. Papers were selected from the Pubmed, Embase, and Medline archives. We focused on FCM applications in prostate cancer (PCa), urothelial carcinoma (UC), and renal cell carcinoma (RCC). Articles investigating both office and intraoperative settings were included. The review of the literature showed that FCM displays promising accuracy as compared to conventional histopathology. These results represent significant steps along the path of FCM's formal validation as an innovative ready-to-use diagnostic support in urological practice. Instant access to a reliable histological evaluation may indeed significantly influence physicians' decision-making process. In this regard, FCM addresses this still unmet clinical need and introduces intriguing perspectives into future diagnostic pathways. Further studies are required to thoroughly assess the whole potential of this technique.
Collapse
Affiliation(s)
- Luca Ongaro
- Urological Clinic, Department of Medicine, Surgery and Health Sciences, University of Trieste, 34149 Trieste, Italy; (L.O.); (G.R.); (A.B.); (M.R.); (F.T.); (A.P.); (C.T.); (G.L.)
| | - Giulio Rossin
- Urological Clinic, Department of Medicine, Surgery and Health Sciences, University of Trieste, 34149 Trieste, Italy; (L.O.); (G.R.); (A.B.); (M.R.); (F.T.); (A.P.); (C.T.); (G.L.)
| | - Arianna Biasatti
- Urological Clinic, Department of Medicine, Surgery and Health Sciences, University of Trieste, 34149 Trieste, Italy; (L.O.); (G.R.); (A.B.); (M.R.); (F.T.); (A.P.); (C.T.); (G.L.)
| | - Matteo Pacini
- Urology Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (M.P.); (A.P.); (R.B.); (A.Z.)
| | - Michele Rizzo
- Urological Clinic, Department of Medicine, Surgery and Health Sciences, University of Trieste, 34149 Trieste, Italy; (L.O.); (G.R.); (A.B.); (M.R.); (F.T.); (A.P.); (C.T.); (G.L.)
| | - Fabio Traunero
- Urological Clinic, Department of Medicine, Surgery and Health Sciences, University of Trieste, 34149 Trieste, Italy; (L.O.); (G.R.); (A.B.); (M.R.); (F.T.); (A.P.); (C.T.); (G.L.)
| | - Andrea Piasentin
- Urological Clinic, Department of Medicine, Surgery and Health Sciences, University of Trieste, 34149 Trieste, Italy; (L.O.); (G.R.); (A.B.); (M.R.); (F.T.); (A.P.); (C.T.); (G.L.)
| | - Alessandro Perotti
- Urology Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (M.P.); (A.P.); (R.B.); (A.Z.)
| | - Carlo Trombetta
- Urological Clinic, Department of Medicine, Surgery and Health Sciences, University of Trieste, 34149 Trieste, Italy; (L.O.); (G.R.); (A.B.); (M.R.); (F.T.); (A.P.); (C.T.); (G.L.)
| | - Riccardo Bartoletti
- Urology Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (M.P.); (A.P.); (R.B.); (A.Z.)
| | - Alessandro Zucchi
- Urology Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (M.P.); (A.P.); (R.B.); (A.Z.)
| | - Alchiede Simonato
- Urology Clinic, Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, 90127 Palermo, Italy; (A.S.); (N.P.)
| | - Nicola Pavan
- Urology Clinic, Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, 90127 Palermo, Italy; (A.S.); (N.P.)
| | - Giovanni Liguori
- Urological Clinic, Department of Medicine, Surgery and Health Sciences, University of Trieste, 34149 Trieste, Italy; (L.O.); (G.R.); (A.B.); (M.R.); (F.T.); (A.P.); (C.T.); (G.L.)
| | - Francesco Claps
- Urological Clinic, Department of Medicine, Surgery and Health Sciences, University of Trieste, 34149 Trieste, Italy; (L.O.); (G.R.); (A.B.); (M.R.); (F.T.); (A.P.); (C.T.); (G.L.)
- Urology Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (M.P.); (A.P.); (R.B.); (A.Z.)
| |
Collapse
|
6
|
Tyagi P, Moon CH, Connell M, Ganguly A, Cho KJ, Tarin T, Dhir R, Sholosh B, Maranchie J. Intravesical Contrast-Enhanced MRI: A Potential Tool for Bladder Cancer Surveillance and Staging. Curr Oncol 2023; 30:4632-4647. [PMID: 37232808 PMCID: PMC10217503 DOI: 10.3390/curroncol30050350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023] Open
Abstract
This review article gives an overview of the current state of the art of bladder cancer imaging and then discusses in depth the scientific and technical merit of a novel imaging approach, tracing its evolution from murine cancer models to cancer patients. While the poor resolution of soft tissue obtained by widely available imaging options such as abdominal sonography and radiation-based CT leaves them only suitable for measuring the gross tumor volume and bladder wall thickening, dynamic contrast-enhanced magnetic resolution imaging (DCE MRI) is demonstrably superior in resolving muscle invasion. However, major barriers still exist in its adoption. Instead of injection for DCE-MRI, intravesical contrast-enhanced MRI (ICE-MRI) instills Gadolinium chelate (Gadobutrol) together with trace amounts of superparamagnetic agents for measurement of tumor volume, depth, and aggressiveness. ICE-MRI leverages leaky tight junctions to accelerate passive paracellular diffusion of Gadobutrol (604.71 Daltons) by treading the paracellular ingress pathway of fluorescein sodium and of mitomycin (<400 Daltons) into bladder tumor. The soaring cost of diagnosis and care of bladder cancer could be mitigated by reducing the use of expensive operating room resources with a potential non-surgical imaging option for cancer surveillance, thereby reducing over-diagnosis and over-treatment and increasing organ preservation.
Collapse
Affiliation(s)
- Pradeep Tyagi
- Department of Urology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Ganguly A, Tyagi S, Chermansky C, Kanai A, Beckel J, Hashimoto M, Cho KJ, Chancellor M, Kaufman J, Yoshimura N, Tyagi P. Treating Lower Urinary Tract Symptoms in Older Adults: Intravesical Options. Drugs Aging 2023; 40:241-261. [PMID: 36879156 PMCID: PMC11167658 DOI: 10.1007/s40266-023-01009-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2023] [Indexed: 03/08/2023]
Abstract
This article provides an overview of the diagnosis and the treatment of lower urinary tract symptoms in older adults complicated by the neurodegenerative changes in the micturition reflex and further confounded by age-related decline in hepatic and renal clearance raising the propensity of adverse drug reactions. The first-line drug treatment for lower urinary tract symptoms, orally administered antimuscarinics, fails to reach the equilibrium dissociation constant of muscarinic receptors even at their maximum plasma concentration and tends to evoke a half-maximal response at a muscarinic receptor occupancy of just 0.206% in the bladder with a minimal difference from exocrine glands, which raises the adverse drug reaction risk. On the contrary, intravesical antimuscarinics are instilled at concentrations 1000-fold higher than the oral maximum plasma concentration and the equilibrium dissociation constant erects a downhill concentration gradient that drives passive diffusion and achieves a mucosal concentration around ten-fold lower than the instilled concentration for a long-lasting occupation of muscarinic receptors in mucosa and sensory nerves. A high local concentration of antimuscarinics in the bladder triggers alternative mechanisms of action and is supposed to engage retrograde transport to nerve cell bodies for neuroplastic changes that underlie a long-lasting therapeutic effect, while an intrinsically lower systemic uptake of the intravesical route lowers the muscarinic receptor occupancy of exocrine glands to lower the adverse drug reaction relative to the oral route. Thus, the traditional pharmacokinetics and pharmacodynamics of oral treatment are upended by intravesical antimuscarinics to generate a dramatic improvement (~ 76%) noted in a meta-analysis of studies enrolling children with neurogenic lower urinary tract symptoms on the primary endpoint of maximum cystometric bladder capacity as well as the secondary endpoints of filling compliance and uninhibited detrusor contractions. The therapeutic success of intravesical multidose oxybutynin solution or oxybutynin entrapped in the polymer for sustained release in the pediatric population bodes well for patients with lower urinary tract symptoms at the other extreme of the age spectrum. Though generally used to predict oral drug absorption, Lipinski's rule of five can also explain the ten-fold lower systemic uptake from the bladder of positively charged trospium over oxybutynin, a tertiary amine. Chemodenervation by an intradetrusor injection of onabotulinumtoxinA is merited for patients with idiopathic overactive bladder discontinuing oral treatment because of a lack of efficacy. However, age-related peripheral neurodegeneration potentiates the adverse drug reaction risk of urinary retention that motivates the quest of liquid instillation, delivering larger fraction of onabotulinumtoxinA to the mucosa as opposed to muscle by an intradetrusor injection can also probe the neurogenic and myogenic predominance of idiopathic overactive bladder. Overall, the treatment paradigm of lower urinary tract symptoms in older adults should be tailored to individual's overall health status and the risk tolerance for adverse drug reactions.
Collapse
Affiliation(s)
- Anirban Ganguly
- Department of Urology, E313 Montefiore Hospital, University of Pittsburgh, 3459 Fifth Ave, Pittsburgh, PA, 15213, USA
| | - Shachi Tyagi
- Department of Medicine, University of Pittsburgh, 3459 Fifth Ave, Pittsburgh, PA, 15213, USA
| | - Christopher Chermansky
- Department of Urology, E313 Montefiore Hospital, University of Pittsburgh, 3459 Fifth Ave, Pittsburgh, PA, 15213, USA
| | - Anthony Kanai
- Department of Medicine, University of Pittsburgh, 3459 Fifth Ave, Pittsburgh, PA, 15213, USA
| | - Jonathan Beckel
- Department of Pharmacology, University of Pittsburgh, 3459 Fifth Ave, Pittsburgh, PA, 15213, USA
| | - Mamoru Hashimoto
- Department of Urology, E313 Montefiore Hospital, University of Pittsburgh, 3459 Fifth Ave, Pittsburgh, PA, 15213, USA
| | - Kang Jun Cho
- Department of Urology, E313 Montefiore Hospital, University of Pittsburgh, 3459 Fifth Ave, Pittsburgh, PA, 15213, USA
| | | | | | - Naoki Yoshimura
- Department of Urology, E313 Montefiore Hospital, University of Pittsburgh, 3459 Fifth Ave, Pittsburgh, PA, 15213, USA
| | - Pradeep Tyagi
- Department of Urology, E313 Montefiore Hospital, University of Pittsburgh, 3459 Fifth Ave, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
8
|
Eadie M, Liao J, Ageeli W, Nabi G, Krstajić N. Fiber Bundle Image Reconstruction Using Convolutional Neural Networks and Bundle Rotation in Endomicroscopy. SENSORS (BASEL, SWITZERLAND) 2023; 23:2469. [PMID: 36904673 PMCID: PMC10007631 DOI: 10.3390/s23052469] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Fiber-bundle endomicroscopy has several recognized drawbacks, the most prominent being the honeycomb effect. We developed a multi-frame super-resolution algorithm exploiting bundle rotation to extract features and reconstruct underlying tissue. Simulated data was used with rotated fiber-bundle masks to create multi-frame stacks to train the model. Super-resolved images are numerically analyzed, which demonstrates that the algorithm can restore images with high quality. The mean structural similarity index measurement (SSIM) improved by a factor of 1.97 compared with linear interpolation. The model was trained using images taken from a single prostate slide, 1343 images were used for training, 336 for validation, and 420 for testing. The model had no prior information about the test images, adding to the robustness of the system. Image reconstruction was completed in 0.03 s for 256 × 256 images indicating future real-time performance is within reach. The combination of fiber bundle rotation and multi-frame image enhancement through machine learning has not been utilized before in an experimental setting but could provide a much-needed improvement to image resolution in practice.
Collapse
Affiliation(s)
- Matthew Eadie
- School of Science and Engineering, Centre for Medical Engineering and Technology, University of Dundee, Dundee DD1 4HN, UK
| | - Jinpeng Liao
- School of Science and Engineering, Centre for Medical Engineering and Technology, University of Dundee, Dundee DD1 4HN, UK
| | - Wael Ageeli
- School of Medicine, Centre for Medical Engineering and Technology, University of Dundee, Dundee DD1 9SY, UK
- Diagnostic Radiology Department, College of Applied Medical Sciences, Jazan University, Al Maarefah Rd, P.O. Box 114, Jazan 45142, Saudi Arabia
| | - Ghulam Nabi
- School of Medicine, Centre for Medical Engineering and Technology, University of Dundee, Dundee DD1 9SY, UK
| | - Nikola Krstajić
- School of Science and Engineering, Centre for Medical Engineering and Technology, University of Dundee, Dundee DD1 4HN, UK
| |
Collapse
|
9
|
Naya Y, Takaha N, Hayashi I, Mori M, Date S, Ukimura O. Preliminary study of the safety of acrinol in probe-based confocal laser endomicroscopy during transurethral resection of bladder tumors. Asian J Endosc Surg 2023; 16:143-146. [PMID: 35778988 DOI: 10.1111/ases.13103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/30/2022] [Accepted: 06/15/2022] [Indexed: 01/05/2023]
Abstract
We previously reported that probe-based confocal laser endomicroscopy using acrinol can depict cancerous nuclei. The objective of this study was to confirm the safety of acrinol in patients. For all seven patients, '50 ml' of a 0.1% acrinol and '1 ml' of 10% fluorescein in 99 ml of normal saline were introduced into the bladder. The laser probe adhered to the suspicious lesion from the working channel of the cystoscope. The patients underwent mucosal biopsy and transurethral resection after observation. Adverse events were noted during a valuation using common terminology criteria for adverse events version 4.0. Confocal laser endomicroscopy detected the nuclei of cancer cells in all seven patients. No adverse event was observed in any of the seven patients. Confocal laser endomicroscopy using acrinol as a novel dye can help visualize the cancerous nuclei of bladder urothelial carcinoma during cystoscopy without severe adverse events.
Collapse
Affiliation(s)
- Yoshio Naya
- Department of Urology, Meiji University of Integrative Medicine, Nantan, Japan.,Department of Urology, Nagahama City Kohoku Hospital, Nagahama, Japan.,Department of Urology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Natsuki Takaha
- Department of Urology, Meiji University of Integrative Medicine, Nantan, Japan
| | - Iseei Hayashi
- Department of Urology, Nagahama City Kohoku Hospital, Nagahama, Japan
| | - Masaru Mori
- Department of Urology, Nagahama City Kohoku Hospital, Nagahama, Japan
| | - Seiki Date
- Department of Urology, Nagahama City Kohoku Hospital, Nagahama, Japan
| | - Osamu Ukimura
- Department of Urology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
10
|
Martínek M, Ludvíková L, Šranková M, Navrátil R, Muchová L, Huzlík J, Vítek L, Klán P, Šebej P. Common xanthene fluorescent dyes are visible-light activatable CO-releasing molecules. Org Biomol Chem 2022; 21:93-97. [PMID: 36326159 DOI: 10.1039/d2ob01823c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Fluorescein, eosin Y, and rose bengal are dyes used in clinical medicine and considered (photo-)chemically stable. Upon extensive irradiation with visible light in aqueous solutions, we found that these compounds release carbon monoxide (CO) - a bioactive gasotransmitter - in 40-100% yields along with the production of low-mass secondary photoproducts, such as phthalic and formic acids, in a multistep degradation process. Such photochemistry should be considered in applications of these dyes, and they could also be utilized as visible-light activatable CO-releasing molecules (photoCORMs) with biological implications.
Collapse
Affiliation(s)
- Marek Martínek
- RECETOX, Faculty of Science, Masaryk University, Kamenice 735/5, D29, 625 00 Brno-Bohunice, Czech Republic. .,Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 735/5, A08, 625 00 Brno-Bohunice, Czech Republic
| | - Lucie Ludvíková
- RECETOX, Faculty of Science, Masaryk University, Kamenice 735/5, D29, 625 00 Brno-Bohunice, Czech Republic.
| | - Mária Šranková
- Institute of Medical Biochemistry and Laboratory Diagnostics, General University Hospital in Prague and 1st Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Praha 2, Czech Republic
| | - Rafael Navrátil
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 43, Prague, Czech Republic
| | - Lucie Muchová
- Institute of Medical Biochemistry and Laboratory Diagnostics, General University Hospital in Prague and 1st Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Praha 2, Czech Republic
| | - Jiří Huzlík
- Transport Research Centre (CDV), Líšeňská 33a, 636 00 Brno-Líšeň, Czech Republic
| | - Libor Vítek
- Institute of Medical Biochemistry and Laboratory Diagnostics, General University Hospital in Prague and 1st Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Praha 2, Czech Republic.,4th Department of Internal Medicine, General University Hospital in Prague and 1st Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Praha 2, Czech Republic
| | - Petr Klán
- RECETOX, Faculty of Science, Masaryk University, Kamenice 735/5, D29, 625 00 Brno-Bohunice, Czech Republic. .,Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 735/5, A08, 625 00 Brno-Bohunice, Czech Republic
| | - Peter Šebej
- RECETOX, Faculty of Science, Masaryk University, Kamenice 735/5, D29, 625 00 Brno-Bohunice, Czech Republic.
| |
Collapse
|
11
|
Development, Implementation and Application of Confocal Laser Endomicroscopy in Brain, Head and Neck Surgery—A Review. Diagnostics (Basel) 2022; 12:diagnostics12112697. [PMID: 36359540 PMCID: PMC9689276 DOI: 10.3390/diagnostics12112697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 11/09/2022] Open
Abstract
When we talk about visualization methods in surgery, it is important to mention that the diagnosis of tumors and how we define tumor borders intraoperatively in a correct way are two main things that would not be possible to achieve without this grand variety of visualization methods we have at our disposal nowadays. In addition, histopathology also plays a very important role, and its importance cannot be neglected either. Some biopsy specimens, e.g., frozen sections, are examined by a histopathologist and lead to tumor diagnosis and the definition of its borders. Furthermore, surgical resection is a very important point when it comes to prognosis and life survival. Confocal laser endomicroscopy (CLE) is an imaging technique that provides microscopic information on the tissue in real time. CLE of disorders, such as head, neck and brain tumors, has only recently been suggested to contribute to both immediate tumor characterization and detection. It can be used as an additional tool for surgical biopsies during biopsy or surgical procedures and for inspection of resection margins during surgery. In this review, we analyze the development, implementation, advantages and disadvantages as well as the future directions of this technique in neurosurgical and otorhinolaryngological disciplines.
Collapse
|
12
|
Hu X, Li G, Wu S. Advances in Diagnosis and Therapy for Bladder Cancer. Cancers (Basel) 2022; 14:3181. [PMID: 35804953 PMCID: PMC9265007 DOI: 10.3390/cancers14133181] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/19/2022] [Accepted: 06/24/2022] [Indexed: 02/04/2023] Open
Abstract
Bladder cancer (BCa) is one of the most common and expensive urinary system malignancies for its high recurrence and progression rate. In recent years, immense amounts of studies have been carried out to bring a more comprehensive cognition and numerous promising clinic approaches for BCa therapy. The development of innovative enhanced cystoscopy techniques (optical techniques, imaging systems) and tumor biomarkers-based non-invasive urine screening (DNA methylation-based urine test) would dramatically improve the accuracy of tumor detection, reducing the risk of recurrence and progression of BCa. Moreover, intravesical instillation and systemic therapeutic strategies (cocktail therapy, immunotherapy, vaccine therapy, targeted therapy) also provide plentiful measures to break the predicament of BCa. Several exploratory clinical studies, including novel surgical approaches, pharmaceutical compositions, and bladder preservation techniques, emerged continually, which are supposed to be promising candidates for BCa clinical treatment. Here, recent advances and prospects of diagnosis, intravesical or systemic treatment, and novel drug delivery systems for BCa therapy are reviewed in this paper.
Collapse
Affiliation(s)
- Xinzi Hu
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, Shenzhen 518000, China; (X.H.); (G.L.)
- Department of Urology, South China Hospital, Health Science Center, Shenzhen University, Shenzhen 518116, China
| | - Guangzhi Li
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, Shenzhen 518000, China; (X.H.); (G.L.)
- Department of Urology, South China Hospital, Health Science Center, Shenzhen University, Shenzhen 518116, China
| | - Song Wu
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, Shenzhen 518000, China; (X.H.); (G.L.)
- Department of Urology, South China Hospital, Health Science Center, Shenzhen University, Shenzhen 518116, China
| |
Collapse
|
13
|
The development and clinical application of microscopic endoscopy for in vivo optical biopsies: Endocytoscopy and confocal laser endomicroscopy. Photodiagnosis Photodyn Ther 2022; 38:102826. [PMID: 35337998 DOI: 10.1016/j.pdpdt.2022.102826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 03/21/2022] [Indexed: 12/20/2022]
Abstract
Endoscopies are crucial for detecting and diagnosing diseases in gastroenterology, pulmonology, urology, and other fields. To accurately diagnose diseases, sample biopsies are indispensable and are currently considered the gold standard. However, random 4-quadrant biopsies have sampling errors and time delays. To provide intraoperative real-time microscopic images of suspicious lesions, microscopic endoscopy for in vivo optical biopsy has been developed, including endocytoscopy and confocal laser endomicroscopy. This article reviews recent advances in technology and clinical applications, as well as their shortcomings and future directions.
Collapse
|
14
|
Šranková M, Dvořák A, Martínek M, Šebej P, Klán P, Vítek L, Muchová L. Antiproliferative and Cytotoxic Activities of Fluorescein-A Diagnostic Angiography Dye. Int J Mol Sci 2022; 23:1504. [PMID: 35163426 PMCID: PMC8836159 DOI: 10.3390/ijms23031504] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 01/20/2023] Open
Abstract
Fluorescein is a fluorescent dye used as a diagnostic tool in various fields of medicine. Although fluorescein itself possesses low toxicity, after photoactivation, it releases potentially toxic molecules, such as singlet oxygen (1O2) and, as we demonstrate in this work, also carbon monoxide (CO). As both of these molecules can affect physiological processes, the main aim of this study was to explore the potential biological impacts of fluorescein photochemistry. In our in vitro study in a human hepatoblastoma HepG2 cell line, we explored the possible effects on cell viability, cellular energy metabolism, and the cell cycle. We observed markedly lowered cell viability (≈30%, 75-2400 μM) upon irradiation of intracellular fluorescein and proved that this decrease in viability was dependent on the cellular oxygen concentration. We also detected a significantly decreased concentration of Krebs cycle metabolites (lactate and citrate < 30%; 2-hydroxyglutarate and 2-oxoglutarate < 10%) as well as cell cycle arrest (decrease in the G2 phase of 18%). These observations suggest that this photochemical reaction could have important biological consequences and may account for some adverse reactions observed in fluorescein-treated patients. Additionally, the biological activities of both 1O2 and CO might have considerable therapeutic potential, particularly in the treatment of cancer.
Collapse
Affiliation(s)
- Mária Šranková
- Institute of Medical Biochemistry and Laboratory Diagnostics, General University Hospital in Prague and 1st Faculty of Medicine, Charles University, Na Bojišti 3, 121 08 Praha, Czech Republic; (M.Š.); (A.D.)
| | - Aleš Dvořák
- Institute of Medical Biochemistry and Laboratory Diagnostics, General University Hospital in Prague and 1st Faculty of Medicine, Charles University, Na Bojišti 3, 121 08 Praha, Czech Republic; (M.Š.); (A.D.)
| | - Marek Martínek
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic; (M.M.); (P.Š.); (P.K.)
| | - Peter Šebej
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic; (M.M.); (P.Š.); (P.K.)
| | - Petr Klán
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic; (M.M.); (P.Š.); (P.K.)
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Libor Vítek
- Institute of Medical Biochemistry and Laboratory Diagnostics, General University Hospital in Prague and 1st Faculty of Medicine, Charles University, Na Bojišti 3, 121 08 Praha, Czech Republic; (M.Š.); (A.D.)
- 4th Department of Internal Medicine, General University Hospital in Prague and 1st Faculty of Medicine, Charles University, U Nemocnice 2, 128 08 Praha, Czech Republic
| | - Lucie Muchová
- Institute of Medical Biochemistry and Laboratory Diagnostics, General University Hospital in Prague and 1st Faculty of Medicine, Charles University, Na Bojišti 3, 121 08 Praha, Czech Republic; (M.Š.); (A.D.)
| |
Collapse
|
15
|
Diagnostic Accuracy of Confocal Laser Endomicroscopy for the Diagnosis of Oral Squamous Cell Carcinoma: A Systematic Review and Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182312390. [PMID: 34886116 PMCID: PMC8657406 DOI: 10.3390/ijerph182312390] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/18/2021] [Accepted: 11/18/2021] [Indexed: 01/22/2023]
Abstract
Background: Advances in treatment approaches for patients with oral squamous cell carcinoma (OSCC) have been unsuccessful in preventing frequent recurrences and distant metastases, leading to a poor prognosis. Early detection and prevention enable an improved 5-year survival and better prognosis. Confocal Laser Endomicroscopy (CLE) is a non-invasive imaging instrument that could enable an earlier diagnosis and possibly help in reducing unnecessary invasive surgical procedures. Objective: To present an up to date systematic review and meta-analysis assessing the diagnostic accuracy of CLE in diagnosing OSCC. Materials and Methods. PubMed, Scopus, and Web of Science databases were explored up to 30 June 2021, to collect articles concerning the diagnosis of OSCC through CLE. Screening: data extraction and appraisal was done by two reviewers. The quality of the methodology followed by the studies included in this review was assessed using the Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) tool. A random effects model was used for the meta-analysis. Results: Six studies were included, leading to a total number of 361 lesions in 213 patients. The pooled sensitivity and specificity were 95% (95% CI, 92–97%; I2 = 77.5%) and 93% (95% CI, 90–95%; I2 = 68.6%); the pooled positive likelihood ratios and negative likelihood ratios were 10.85 (95% CI, 5.4–21.7; I2 = 55.9%) and 0.08 (95% CI, 0.03–0.2; I2 = 83.5%); and the pooled diagnostic odds ratio was 174.45 (95% CI, 34.51–881.69; I2 = 73.6%). Although risk of bias and heterogeneity is observed, this study validates that CLE may have a noteworthy clinical influence on the diagnosis of OSCC, through its high sensitivity and specificity. Conclusions: This review indicates an exceptionally high sensitivity and specificity of CLE for diagnosing OSCC. Whilst it is a promising diagnostic instrument, the limited number of existing studies and potential risk of bias of included studies does not allow us to draw firm conclusions. A conclusive inference can be drawn when more studies, possibly with homogeneous methodological approach, are performed.
Collapse
|
16
|
Confocal Laser Endomicroscopy in Oncological Surgery. Diagnostics (Basel) 2021; 11:diagnostics11101813. [PMID: 34679511 PMCID: PMC8535042 DOI: 10.3390/diagnostics11101813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022] Open
Abstract
The therapy of choice in the treatment of abnormalities in the human body, is to attempt a personalized diagnosis and with minimal invasiveness, ideally resulting in total resection (surgery) or turning off (intervention) of the pathology with preservation of normal functional tissue, followed by additional treatments, e [...].
Collapse
|
17
|
Ping Z, Zhang T, Gong L, Zhang C, Zuo S. Miniature Flexible Instrument with Fibre Bragg Grating-Based Triaxial Force Sensing for Intraoperative Gastric Endomicroscopy. Ann Biomed Eng 2021; 49:2323-2336. [PMID: 33880633 DOI: 10.1007/s10439-021-02781-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 04/11/2021] [Indexed: 11/28/2022]
Abstract
Optical biopsy methods, such as probe-based endomicroscopy, can be used to identify early-stage gastric cancer in vivo. However, it is difficult to scan a large area of the gastric mucosa for mosaicking during endoscopy. In this work, we propose a miniaturised flexible instrument based on contact-aided compliant mechanisms and fibre Bragg grating (FBG) sensing for intraoperative gastric endomicroscopy. The instrument has a compact design with an outer diameter of 2.7 mm, incorporating a central channel with a diameter of 1.9 mm for the endomicroscopic probe to pass through. Experimental results show that the instrument can achieve raster trajectory scanning over a large tissue surface with a positioning accuracy of 0.5 mm. The tip force sensor provides a 4.6 mN resolution for the axial force and 2.8 mN for transverse forces. Validation with random samples shows that the force sensor can provide consistent and accurate three-axis force detection. Endomicroscopic imaging experiments were conducted, and the flexible instrument performed no gap scanning (mosaicking area more than 3 mm2) and contact force monitoring during scanning, demonstrating the potential of the system in clinical applications.
Collapse
Affiliation(s)
- Zhongyuan Ping
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin, 300072, China
| | - Tianci Zhang
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin, 300072, China
| | - Lun Gong
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin, 300072, China
| | - Chi Zhang
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin, 300072, China
| | - Siyang Zuo
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
18
|
[Enhanced imaging in urological endoscopy]. Urologe A 2020; 60:8-18. [PMID: 33301070 DOI: 10.1007/s00120-020-01400-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2020] [Indexed: 10/22/2022]
Abstract
White light cystoscopy and the concise documentation of pathological findings are standard diagnostic procedures in urology. Additional imaging modalities and technical innovations may support clinicians in the detection of bladder tumors. Modern endoscopy systems provide ultra-high-resolution imaging and the option of digital contrast enhancement. Photodynamic diagnostics and narrow band imaging are well-established in clinical routine and have shown significant benefits in the detection of bladder cancer. By means of multispectral imaging, different modalities can now be combined in real-time. Probe-based procedures such as optical coherence tomography (OCT) or Raman spectroscopy can further contribute to advanced imaging through an "optical biopsy" which may primarily improve diagnostics in the upper urinary tract. The aim of all techniques is to optimize the detection rate in order to achieve a more accurate diagnosis, resection and lower recurrence rates. Current research projects aim to digitalize the documentation of endoscopy and also make it more patient- and user-friendly. In the future, the use of image processing and artificial intelligence may automatically support the surgeon during endoscopy.
Collapse
|
19
|
Beji S, Wrist Lam G, Østergren PB, Toxvaerd A, Sønksen J, Fode M. Diagnostic value of probe-based confocal laser endomicroscopy versus conventional endoscopic biopsies of non-muscle invasive bladder tumors: a pilot study. Scand J Urol 2020; 55:36-40. [PMID: 33153363 DOI: 10.1080/21681805.2020.1841285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
PURPOSE The standard procedure for diagnostics and follow-up for non-muscle invasive bladder cancer (NMIBC) is cystoscopy in the outpatient clinic. Suspicious lesions are biopsied for histopathological assessment. This pilot study aimed to evaluate the ability of Confocal Laser Endomicroscopy (CLE) to rule out High Grade Urothelial Carcinoma (HGUC) to select patients for in-office fulguration. MATERIALS AND METHODS We performed a prospective non-randomized, single surgeon study. Intraoperative CLE was performed independently by the surgeon and a blinded on-site uropathologist. Following the procedure, a CLE evaluation was performed by another blinded urologist. Lesions were classified as normal/inflammatory, Low Grade Urothelial Carcinoma (LGUC) or HGUC. With the histological evaluations as the gold standard we calculated sensitivity, specificity, PPV and NPV for HGUC and the accuracy for each CLE assessor. The primary outcome was the NPV for HGUC for the surgeon. RESULTS Twelve patients with a total of 34 lesions were included. Six lesions were flat and 28 were exophytic. On histopathology, 25 lesions were classified as normal/inflammatory or LGUC, while nine were classified as HGUC. For the surgeon, the uropathologist and the second urologist, the sensitivity was 44%, 78% and 22%, respectively. Specificities for the three observers were 84%, 68% and 96%. This corresponded to PPVs for HGUC of 50%, 47% and 67% and NPV for HGUC of 81%, 89% and 77%. CONCLUSIONS In our hands the NPV of CLE is not high enough for it to be considered an alternative to histopathological assessment of bladder lesions.
Collapse
Affiliation(s)
- Sami Beji
- Herlev and Gentofte Hospital, Herlev, Denmark
| | | | | | | | | | - Mikkel Fode
- Herlev and Gentofte Hospital, Herlev, Denmark
| |
Collapse
|
20
|
Zherebtsov E, Zajnulina M, Kandurova K, Potapova E, Dremin V, Mamoshin A, Sokolovski S, Dunaev A, Rafailov EU. Machine Learning Aided Photonic Diagnostic System for Minimally Invasive Optically Guided Surgery in the Hepatoduodenal Area. Diagnostics (Basel) 2020; 10:E873. [PMID: 33121013 PMCID: PMC7693603 DOI: 10.3390/diagnostics10110873] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/19/2020] [Accepted: 10/24/2020] [Indexed: 12/29/2022] Open
Abstract
Abdominal cancer is a widely prevalent group of tumours with a high level of mortality if diagnosed at a late stage. Although the cancer death rates have in general declined over the past few decades, the mortality from tumours in the hepatoduodenal area has significantly increased in recent years. The broader use of minimal access surgery (MAS) for diagnostics and treatment can significantly improve the survival rate and quality of life of patients after surgery. This work aims to develop and characterise an appropriate technical implementation for tissue endogenous fluorescence (TEF) and assess the efficiency of machine learning methods for the real-time diagnosis of tumours in the hepatoduodenal area. In this paper, we present the results of the machine learning approach applied to the optically guided MAS. We have elaborated tissue fluorescence approach with a fibre-optic probe to record the TEF and blood perfusion parameters during MAS in patients with cancers in the hepatoduodenal area. The measurements from the laser Doppler flowmetry (LDF) channel were used as a sensor of the tissue vitality to reduce variability in TEF data. Also, we evaluated how the blood perfusion oscillations are changed in the tumour tissue. The evaluated amplitudes of the cardiac (0.6-1.6 Hz) and respiratory (0.2-0.6 Hz) oscillations was significantly higher in intact tissues (p < 0.001) compared to the cancerous ones, while the myogenic (0.2-0.06 Hz) oscillation did not demonstrate any statistically significant difference. Our results demonstrate that a fibre-optic TEF probe accompanied with ML algorithms such as k-Nearest Neighbours or AdaBoost is highly promising for the real-time in situ differentiation between cancerous and healthy tissues by detecting the information about the tissue type that is encoded in the fluorescence spectrum. Also, we show that the detection can be supplemented and enhanced by parallel collection and classification of blood perfusion oscillations.
Collapse
Affiliation(s)
- Evgeny Zherebtsov
- Research and Development Center of Biomedical Photonics, Orel State University, 302026 Orel, Russia; (K.K.); (E.P.); (V.D.); (A.M.); (A.D.)
- Faculty of Information Technology and Electrical Engineering, University of Oulu, Optoelectronics and Measurement Techniques Unit, 90570 Oulu, Finland
| | - Marina Zajnulina
- Aston Institute of Photonic Technologies, Aston University, Birmingham B4 7ET, UK; (M.Z.); (S.S.); (E.U.R.)
| | - Ksenia Kandurova
- Research and Development Center of Biomedical Photonics, Orel State University, 302026 Orel, Russia; (K.K.); (E.P.); (V.D.); (A.M.); (A.D.)
| | - Elena Potapova
- Research and Development Center of Biomedical Photonics, Orel State University, 302026 Orel, Russia; (K.K.); (E.P.); (V.D.); (A.M.); (A.D.)
| | - Viktor Dremin
- Research and Development Center of Biomedical Photonics, Orel State University, 302026 Orel, Russia; (K.K.); (E.P.); (V.D.); (A.M.); (A.D.)
- Aston Institute of Photonic Technologies, Aston University, Birmingham B4 7ET, UK; (M.Z.); (S.S.); (E.U.R.)
| | - Andrian Mamoshin
- Research and Development Center of Biomedical Photonics, Orel State University, 302026 Orel, Russia; (K.K.); (E.P.); (V.D.); (A.M.); (A.D.)
- Department of X-ray Surgical Methods of Diagnosis and Treatment, Orel Regional Clinical Hospital, 302028 Orel, Russia
| | - Sergei Sokolovski
- Aston Institute of Photonic Technologies, Aston University, Birmingham B4 7ET, UK; (M.Z.); (S.S.); (E.U.R.)
| | - Andrey Dunaev
- Research and Development Center of Biomedical Photonics, Orel State University, 302026 Orel, Russia; (K.K.); (E.P.); (V.D.); (A.M.); (A.D.)
| | - Edik U. Rafailov
- Aston Institute of Photonic Technologies, Aston University, Birmingham B4 7ET, UK; (M.Z.); (S.S.); (E.U.R.)
| |
Collapse
|
21
|
Hwang K, Seo YH, Kim DY, Ahn J, Lee S, Han KH, Lee KH, Jon S, Kim P, Yu KE, Kim H, Kang SH, Jeong KH. Handheld endomicroscope using a fiber-optic harmonograph enables real-time and in vivo confocal imaging of living cell morphology and capillary perfusion. MICROSYSTEMS & NANOENGINEERING 2020; 6:72. [PMID: 34567682 PMCID: PMC8433427 DOI: 10.1038/s41378-020-00182-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 03/04/2020] [Accepted: 05/14/2020] [Indexed: 06/13/2023]
Abstract
Confocal laser endomicroscopy provides high potential for noninvasive and in vivo optical biopsy at the cellular level. Here, we report a fully packaged handheld confocal endomicroscopic system for real-time, high-resolution, and in vivo cellular imaging using a Lissajous scanning fiber-optic harmonograph. The endomicroscopic system features an endomicroscopic probe with a fiber-optic harmonograph, a confocal microscope unit, and an image signal processor. The fiber-optic harmonograph contains a single mode fiber coupled with a quadrupole piezoelectric tube, which resonantly scans both axes at ~ 1 kHz to obtain a Lissajous pattern. The fiber-optic harmonograph was fully packaged into an endomicroscopic probe with an objective lens. The endomicroscopic probe was hygienically packaged for waterproofing and disinfection of medical instruments within a 2.6-mm outer diameter stainless tube capable of being inserted through the working channel of a clinical endoscope. The probe was further combined with the confocal microscope unit for indocyanine green imaging and the image signal processor for high frame rate and high density Lissajous scanning. The signal processing unit delivers driving signals for probe actuation and reconstructs confocal images using the auto phase matching process of Lissajous fiber scanners. The confocal endomicroscopic system was used to successfully obtain human in vitro fluorescent images and real-time ex vivo and in vivo fluorescent images of the living cell morphology and capillary perfusion inside a single mouse.
Collapse
Affiliation(s)
- Kyungmin Hwang
- Department of Bio and Brain Engineering, KAIST and KAIST Institute of Health Science and Technology, Daejeon, 34141 Republic of Korea
- VPIX Medical, Inc, Deajeon, 34141 Republic of Korea
| | - Yeong-Hyeon Seo
- Department of Bio and Brain Engineering, KAIST and KAIST Institute of Health Science and Technology, Daejeon, 34141 Republic of Korea
| | - Daniel Y. Kim
- Department of Bio and Brain Engineering, KAIST and KAIST Institute of Health Science and Technology, Daejeon, 34141 Republic of Korea
| | - Jinhyo Ahn
- Graduate School of Nanoscience and Technology, KAIST and KAIST Institute of Health Science and Technology, Daejeon, 34141 Republic of Korea
| | - Soyoung Lee
- Department of Biological Sciences, KAIST and KAIST Institute for the BioCentury, Daejeon, 34141 Republic of Korea
| | | | - Koun-Hee Lee
- VPIX Medical, Inc, Deajeon, 34141 Republic of Korea
| | - Sangyong Jon
- Department of Biological Sciences, KAIST and KAIST Institute for the BioCentury, Daejeon, 34141 Republic of Korea
| | - Pilhan Kim
- Graduate School of Nanoscience and Technology, KAIST and KAIST Institute of Health Science and Technology, Daejeon, 34141 Republic of Korea
- Graduate School of Medical Science and Engineering, Daejeon, 34141 Republic of Korea
| | - Kate E. Yu
- VPIX Medical, Inc, Deajeon, 34141 Republic of Korea
| | - Hyungsin Kim
- Department of Neurosurgery, Korea University Anam Hospital, Korea University Medicine, Seoul, 02842 Korea
| | - Shin-Hyuk Kang
- Department of Neurosurgery, Korea University Anam Hospital, Korea University Medicine, Seoul, 02842 Korea
| | - Ki-Hun Jeong
- Department of Bio and Brain Engineering, KAIST and KAIST Institute of Health Science and Technology, Daejeon, 34141 Republic of Korea
| |
Collapse
|
22
|
Wu J, Wang YC, Luo WJ, Dai B, Ye DW, Zhu YP. Diagnostic Performance of Confocal Laser Endomicroscopy for the Detection of Bladder Cancer: Systematic Review and Meta-Analysis. Urol Int 2020; 104:523-532. [PMID: 32554957 DOI: 10.1159/000508417] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 04/30/2020] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To systematically evaluate the diagnostic efficacy of confocal laser endomicroscopy (CLE) in detection of bladder cancer. METHODS A systematic literature search on CLE in diagnosing bladder cancer in PubMed, Embase, and the Cochrane Library databases was performed. A bivariate meta-regression model was used for meta-analysis to evaluate the pooled diagnostic value of CLE. RESULTS A total of 5 eligible studies involving 302 lesions were available for this meta-analysis. In a per-lesion analysis, pooled sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR), and summary receiver-operating curve (SROC) area under the curve (AUC) of CLE for malignant lesions were 0.90 (95% confidence interval [CI]: 0.85-0.94), 0.72 (95% CI: 0.59-0.82), 3.20 (95% CI: 2.14-4.79), 0.14 (95% CI: 0.09-0.21), 23.27 (95% CI: 11.71-46.25), and 0.91 (95% CI: 0.89-0.94), respectively. For low-grade urothelial carcinomas, pooled sensitivity, specificity, PLR, NLR, DOR, and AUC for CLE were 0.72 (95% CI: 0.57-0.84), 0.87 (95% CI: 0.77-0.93), 5.48 (95% CI: 3.12-9.62), 0.32 (95% CI: 0.20-0.50), 17.19 (95% CI: 8.01-36.89), and 0.85 (95% CI: 0.82-0.88), respectively. For high-grade urothelial carcinomas, pooled sensitivity, specificity, PLR, NLR, DOR, and AUC for CLE were 0.82 (95% CI: 0.62-0.92), 0.84 (95% CI: 0.73-0.91), 4.96 (95% CI: 2.58-9.54), 0.22 (95% CI: 0.09-0.52), 22.49 (95% CI: 5.33-94.85), and 0.89 (95% CI: 0.86-0.91), respectively. CONCLUSION CLE is a promising endoscopy technique for real-time tumor grading of bladder cancer.
Collapse
Affiliation(s)
- Jie Wu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yu-Chen Wang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wen-Jie Luo
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Bo Dai
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ding-Wei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi-Ping Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China, .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China,
| |
Collapse
|
23
|
Nie Z, Yeh SCA, LePalud M, Badr F, Tse F, Armstrong D, Liu LWC, Deen MJ, Fang Q. Optical Biopsy of the Upper GI Tract Using Fluorescence Lifetime and Spectra. Front Physiol 2020; 11:339. [PMID: 32477151 PMCID: PMC7237753 DOI: 10.3389/fphys.2020.00339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 03/24/2020] [Indexed: 12/11/2022] Open
Abstract
Screening and surveillance for gastrointestinal (GI) cancers by endoscope guided biopsy is invasive, time consuming, and has the potential for sampling error. Tissue endogenous fluorescence spectra contain biochemical and physiological information, which may enable real-time, objective diagnosis. We first briefly reviewed optical biopsy modalities for GI cancer diagnosis with a focus on fluorescence-based techniques. In an ex vivo pilot clinical study, we measured fluorescence spectra and lifetime on fresh biopsy specimens obtained during routine upper GI screening procedures. Our results demonstrated the feasibility of rapid acquisition of time-resolved fluorescence (TRF) spectra from fresh GI mucosal specimens. We also identified spectroscopic signatures that can differentiate between normal mucosal samples obtained from the esophagus, stomach, and duodenum.
Collapse
Affiliation(s)
- Zhaojun Nie
- School of Biomedical Engineering, Faculty of Engineering, McMaster University, Hamilton, ON, Canada
| | - Shu-Chi Allison Yeh
- Advanced Microscopy Program, Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Michelle LePalud
- School of Biomedical Engineering, Faculty of Engineering, McMaster University, Hamilton, ON, Canada
| | - Fares Badr
- School of Biomedical Engineering, Faculty of Engineering, McMaster University, Hamilton, ON, Canada
| | - Frances Tse
- Division of Gastroenterology and Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - David Armstrong
- Division of Gastroenterology and Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Louis W. C. Liu
- Division of Gastrointestinal Diseases, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - M. Jamal Deen
- School of Biomedical Engineering, Faculty of Engineering, McMaster University, Hamilton, ON, Canada
- Department of Electrical and Computer Engineering, Faculty of Engineering, McMaster University, Hamilton, ON, Canada
| | - Qiyin Fang
- School of Biomedical Engineering, Faculty of Engineering, McMaster University, Hamilton, ON, Canada
- Department of Engineering Physics, Faculty of Engineering, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
24
|
Perperidis A, Dhaliwal K, McLaughlin S, Vercauteren T. Image computing for fibre-bundle endomicroscopy: A review. Med Image Anal 2020; 62:101620. [PMID: 32279053 PMCID: PMC7611433 DOI: 10.1016/j.media.2019.101620] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/18/2019] [Indexed: 12/12/2022]
Abstract
Endomicroscopy is an emerging imaging modality, that facilitates the acquisition of in vivo, in situ optical biopsies, assisting diagnostic and potentially therapeutic interventions. While there is a diverse and constantly expanding range of commercial and experimental optical biopsy platforms available, fibre-bundle endomicroscopy is currently the most widely used platform and is approved for clinical use in a range of clinical indications. Miniaturised, flexible fibre-bundles, guided through the working channel of endoscopes, needles and catheters, enable high-resolution imaging across a variety of organ systems. Yet, the nature of image acquisition though a fibre-bundle gives rise to several inherent characteristics and limitations necessitating novel and effective image pre- and post-processing algorithms, ranging from image formation, enhancement and mosaicing to pathology detection and quantification. This paper introduces the underlying technology and most prevalent clinical applications of fibre-bundle endomicroscopy, and provides a comprehensive, up-to-date, review of relevant image reconstruction, analysis and understanding/inference methodologies. Furthermore, current limitations as well as future challenges and opportunities in fibre-bundle endomicroscopy computing are identified and discussed.
Collapse
Affiliation(s)
- Antonios Perperidis
- Institute of Sensors, Signals and Systems (ISSS), Heriot Watt University, EH14 4AS, UK; EPSRC IRC "Hub" in Optical Molecular Sensing & Imaging, MRC Centre for Inflammation Research, Queen's Medical Research Institute (QMRI), University of Edinburgh, EH16 4TJ, UK.
| | - Kevin Dhaliwal
- EPSRC IRC "Hub" in Optical Molecular Sensing & Imaging, MRC Centre for Inflammation Research, Queen's Medical Research Institute (QMRI), University of Edinburgh, EH16 4TJ, UK.
| | - Stephen McLaughlin
- Institute of Sensors, Signals and Systems (ISSS), Heriot Watt University, EH14 4AS, UK.
| | - Tom Vercauteren
- School of Biomedical Engineering and Imaging Sciences, King's College London, WC2R 2LS, UK.
| |
Collapse
|
25
|
Phung MC, Rouse AR, Pangilinan J, Bell RC, Bracamonte ER, Mashi S, Gmitro AF, Lee BR. Investigation of confocal microscopy for differentiation of renal cell carcinoma versus benign tissue. Can an optical biopsy be performed? Asian J Urol 2019; 7:363-368. [PMID: 32995282 PMCID: PMC7498942 DOI: 10.1016/j.ajur.2019.12.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 02/12/2019] [Accepted: 07/17/2019] [Indexed: 01/20/2023] Open
Abstract
Objective Novel optical imaging modalities are under development with the goal of obtaining an “optical biopsy” to efficiently provide pathologic details. One such modality is confocal microscopy which allows in situ visualization of cells within a layer of tissue and imaging of cellular-level structures. The goal of this study is to validate the ability of confocal microscopy to quickly and accurately differentiate between normal renal tissue and cancer. Methods Specimens were obtained from patients who underwent robotic partial nephrectomy for renal mass. Samples of suspected normal and tumor tissue were extracted from the excised portion of the kidney and stained with acridine orange. The stained samples were imaged on a Nikon E600 C1 Confocal Microscope. The samples were then submitted for hematoxylin and eosin processing and read by an expert pathologist to provide a gold-standard diagnosis that can later be compared to the confocal images. Results This study included 11 patients, 17 tissue samples, and 118 confocal images. Of the 17 tissue samples, 10 had a gold-standard diagnosis of cancer and seven were benign. Of 118 confocal images, 66 had a gold-standard diagnosis of cancer and 52 were benign. Six confocal images were used as a training set to train eight observers. The observers were asked to rate the test images on a six point scale and the results were analyzed using a web based receiver operating characteristic curve calculator. The average accuracy, sensitivity, specificity, and area under the empirical receiver operating characteristic curve for this study were 91%, 98%, 81%, and 0.94 respectively. Conclusion This preliminary study suggest that confocal microscopy can be used to distinguish cancer from normal tissue with high sensitivity and specificity. The observers in this study were trained quickly and on only six images. We expect even higher performance as observers become more familiar with the confocal images.
Collapse
Affiliation(s)
- Michael C Phung
- Department of Urology, University of Arizona College of Medicine, Arizona, USA
| | - Andrew R Rouse
- Department of Medical Imaging, University of Arizona College of Medicine, Arizona, USA
| | - Jayce Pangilinan
- Department of Pathology, University of Arizona College of Medicine, Arizona, USA
| | - Robert C Bell
- Department of Pathology, University of Arizona College of Medicine, Arizona, USA
| | - Erika R Bracamonte
- Department of Pathology, University of Arizona College of Medicine, Arizona, USA
| | - Sharfuddeen Mashi
- Ringgold Standard Institution, Aminu Kano Teaching Hospital, Kano, Nigeria
| | - Arthur F Gmitro
- Biomedical Engineering, University of Arizona College of Medicine, Arizona, USA
| | - Benjamin R Lee
- Department of Urology, University of Arizona College of Medicine, Arizona, USA
| |
Collapse
|
26
|
Shkolyar E, Laurie MA, Mach KE, Trivedi DR, Zlatev DV, Chang TC, Metzner TJ, Leppert JT, Kao CS, Liao JC. Optical biopsy of penile cancer with in vivo confocal laser endomicroscopy. Urol Oncol 2019; 37:809.e1-809.e8. [DOI: 10.1016/j.urolonc.2019.08.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/19/2019] [Accepted: 08/20/2019] [Indexed: 12/16/2022]
|
27
|
Abstract
White light cystoscopy (WL) is the gold standard for the detection of bladder cancer. It can be performed using a rigid or flexible urethrocystoscope. With the more recent introduction of high definition (HD) techniques, WL cystoscopy has been decisively improved. Supplementary optical techniques are also used to improve the detection of bladder cancer. Among these are photodynamic diagnosis (PDD), narrow-band imaging (NBI), S‑technologies of IMAGE1 S, optical coherence tomography (OCT), confocal laser endomicroscopy (CLE), and Raman spectroscopy. The aim of the present work is to introduce the techniques and to discuss their current role and future potential in the detection of bladder cancer.
Collapse
|
28
|
Charalampaki P, Nakamura M, Athanasopoulos D, Heimann A. Confocal-Assisted Multispectral Fluorescent Microscopy for Brain Tumor Surgery. Front Oncol 2019; 9:583. [PMID: 31380264 PMCID: PMC6657348 DOI: 10.3389/fonc.2019.00583] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 06/14/2019] [Indexed: 01/14/2023] Open
Abstract
Optimal surgical therapy for brain tumors is the combination of complete resection with minimal invasion and damage to the adjacent normal tissue. To achieve this goal, we need advanced imaging techniques on a scale from macro- to microscopic resolution. In the last decade, the development of fluorescence-guided surgery has been the most influential breakthrough, marginally improving outcomes in brain tumor surgery. Multispectral fluorescence microscopy (MFL) is a novel imaging technique that allows the overlapping of a fluorescent image and a white light image in real-time, with delivery of the merged image to the surgeon through the eyepieces of a surgical microscope. MFL permits the detection and characterization of brain tumors using fluorescent molecular markers such as 5-aminolevulinic acid (5-ALA) or indocyanine green (ICG), while simultaneously obtaining high definition white light images to create a pseudo-colored composite image in real-time. Limitations associated with the use of MFL include decreased light imaging intensity and decreased levels of magnification that may compromise maximal tumor resection on a cellular scale. Confocal laser endomicroscopy (CLE) is another novel advanced imaging technique that is based on miniaturization of the microscope imaging head in order to provide the possibility of in vivo microscopy at the cellular level. Clear visualization of the cellular cytoarchitecture can be achieved with 400-fold-1,000-fold magnification. CLE allows on the one hand the intra-operative detection and differentiation of single tumor cells (without the need for intra-operative histologic analysis of biopsy specimens) as well as the definition of borders between tumor and normal tissue at a cellular level, dramatically improving the accuracy of surgical resection. The application and implementation of CLE-assisted surgery in surgical oncology increases not only the number of options for real-time diagnostic imaging, but also the therapeutic options by extending the resection borders of cancer at a cellular level and, more importantly, by protecting the functionality of normal tissue in the adjacent areas of the human brain. In this article, we describe our experience using these new techniques of confocal-assisted fluorescent surgery including analysis on the technology, usability, indications, limitations, and further developments.
Collapse
Affiliation(s)
- Patra Charalampaki
- Department of Neurosurgery, Cologne Medical Center, University Witten-Herdecke, Witten, Germany
| | - Makoto Nakamura
- Department of Neurosurgery, Cologne Medical Center, University Witten-Herdecke, Witten, Germany
| | | | - Axel Heimann
- Institute of Neurosurgical Pathophysiology, Medical University Mainz, Mainz, Germany
| |
Collapse
|
29
|
Wu J, Wang YC, Dai B, Ye DW, Zhu YP. Optical biopsy of bladder cancer using confocal laser endomicroscopy. Int Urol Nephrol 2019; 51:1473-1479. [PMID: 31214952 DOI: 10.1007/s11255-019-02197-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 06/06/2019] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Confocal laser endomicroscopy (CLE) is an emerging endoscopic technique that can provide in vivo histopathologic information. It may improve the diagnostic criteria for benign and neoplastic lesions of the bladder. In this study, we reported our experience with utilizing CLE imaging when treating bladder neoplasms, and investigated its diagnostic value with respect to histologic diagnosis. MATERIALS AND METHODS Twenty-one patients scheduled for diagnostic cystoscopy or transurethral resection of the bladder tumor were enrolled prospectively. CLE was performed after intravesical fluorescein administration and confocal video sequences were reviewed and analyzed retrospectively. Histopathology served as reference standard for comparison. RESULTS Confocal laser endomicroscopy-based classification combined with white light cystoscopy (WLC) images was consistent with histopathology in 17 cases (81.0%). Consensus with histopathological results was found in six cases (85.7%) for low-grade urothelial carcinoma and eight cases (80.0%) for high-grade urothelial carcinoma. CONCLUSION Confocal laser endomicroscopy was proved to be a useful technique that could complement white light cystoscopy by providing real-time histopathological information of bladder lesions.
Collapse
Affiliation(s)
- Jie Wu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, No. 270 Dong an Road, Shanghai, 200032, People's Republic of China
| | - Yu-Chen Wang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, No. 270 Dong an Road, Shanghai, 200032, People's Republic of China
| | - Bo Dai
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, No. 270 Dong an Road, Shanghai, 200032, People's Republic of China
| | - Ding-Wei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, No. 270 Dong an Road, Shanghai, 200032, People's Republic of China
| | - Yi-Ping Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.
- Department of Oncology, Shanghai Medical College, Fudan University, No. 270 Dong an Road, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
30
|
Xiong YQ, Tan J, Liu YM, Li YZ, You FF, Zhang MY, Chen Q, Zou K, Sun X. Diagnostic accuracy of optical coherence tomography for bladder cancer: A systematic review and meta-analysis. Photodiagnosis Photodyn Ther 2019; 27:298-304. [PMID: 31185324 DOI: 10.1016/j.pdpdt.2019.06.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/29/2019] [Accepted: 06/07/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND Bladder cancer is the fourth most common malignancy in men and a considerable disease burden globally. Multiple studies have focused on the accuracy of optical coherence tomography for bladder cancer diagnosis; however, the findings are inconsistent. Here, we assessed the accuracy of optical coherence tomography for bladder cancer diagnosis. METHODS Embase, PubMed, Medline, Web of Science, and the Cochrane Library database were searched for relevant studies from the earliest date available through March 11, 2019. Studies evaluating the accuracy of optical coherence tomography bladder cancer diagnosis were included. Pooled sensitivity, specificity, and area under the curve values of weighted symmetric summary receiver operating curves, were calculated at the per-lesion level. RESULTS Eleven studies, with a total of 1933 lesions, were included in the final analysis. The pooled results indicated that optical coherence tomography can differentiate bladder cancer from benign lesions: sensitivity, 94.9% (95% confidence interval: 92.7%-96.6%); specificity, 84.6% (95% confidence interval: 82.6%-86.4%); area under the curve, 0.97. Moreover, compared with optical coherence tomography alone, combined optical coherence tomography and fluorescence cystoscopy increased the diagnostic accuracy (sensitivity, 94.3% vs. 87.3%; specificity, 89.2% vs. 73.9%). Cross-polarization optical coherence tomography could also distinguish bladder cancer from normal tissue: sensitivity, 92.0% (95% confidence interval: 87.0%-95.6%); specificity, 84.4% (95% confidence interval: 81.7%-86.9%); area under the curve, 0.95. CONCLUSIONS Optical coherence tomography can accurately differentiate malignant from benign bladder lesions, particularly when combined with fluorescence cystoscopy.
Collapse
Affiliation(s)
- Yi-Quan Xiong
- Chinese Evidence-based Medicine Center and CREAT Group, West China Hospital, Sichuan University, Chengdu, China; Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jing Tan
- Chinese Evidence-based Medicine Center and CREAT Group, West China Hospital, Sichuan University, Chengdu, China
| | - Yan-Mei Liu
- Chinese Evidence-based Medicine Center and CREAT Group, West China Hospital, Sichuan University, Chengdu, China
| | - Yong-Zhi Li
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Fang-Fei You
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Min-Yi Zhang
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Qing Chen
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Kang Zou
- Chinese Evidence-based Medicine Center and CREAT Group, West China Hospital, Sichuan University, Chengdu, China
| | - Xin Sun
- Chinese Evidence-based Medicine Center and CREAT Group, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
31
|
Bochenek K, Aebisher D, Międzybrodzka A, Cieślar G, Kawczyk-Krupka A. Methods for bladder cancer diagnosis - The role of autofluorescence and photodynamic diagnosis. Photodiagnosis Photodyn Ther 2019; 27:141-148. [PMID: 31152879 DOI: 10.1016/j.pdpdt.2019.05.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 05/26/2019] [Accepted: 05/28/2019] [Indexed: 11/19/2022]
Abstract
Bladder cancer is one of the most common Genito-urinary malignant tumors in humans. Improved diagnostic and therapeutic methods that aim to reduce rates of recurrence and progression of bladder cancer are needed. In current publications, one can find information on such methods as Raman spectroscopy, ultraviolet autofluorescence microscopy, confocal laser endoscopy, photoacoustic imaging, molecular imaging, multi-photon microscopy and many other new diagnostic techniques. These methods do not show significant adverse effects and are procedures well tolerated by patients as they use mostly physical phenomena that are neutral towards the human body. This review highlights the techniques of autofluorescence (AF) or laser induced fluorescence (LIF) and photodynamic diagnostics (PDD) which have been widely clinically studied for many years as a complement to cystoscopy. These methods can be performed during standard cystoscopy and they can be used in routine practice. This review shows that Autofluorescent and Photodynamic diagnostics are effective and have great potential in enhancing the diagnosis of bladder cancer. However, more research should be performed to help realize their full potential.
Collapse
Affiliation(s)
- Kamil Bochenek
- School of Medicine and Dentistry in Zabrze, Department of Internal Diseases, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, 15 Batory St., 41-902 Bytom, Poland; Urovita- Silesian Center of Urology, 11 Strzelców Bytomskich St., 41-500 Chorzów, Poland
| | - David Aebisher
- Department of Photomedicine and Physical Chemistry, Faculty of Medicine, University of Rzeszów, Tadeusza Rejtana Avenue 16 C, 35-310 Rzeszów, Poland
| | - Anna Międzybrodzka
- School of Medicine and Dentistry in Zabrze, Department of Internal Diseases, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, 15 Batory St., 41-902 Bytom, Poland; Non-Public Health Care Institution, Katowice Str. 3, 43-426 Dębowiec, Poland
| | - Grzegorz Cieślar
- School of Medicine and Dentistry in Zabrze, Department of Internal Diseases, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, 15 Batory St., 41-902 Bytom, Poland
| | - Aleksandra Kawczyk-Krupka
- School of Medicine and Dentistry in Zabrze, Department of Internal Diseases, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, 15 Batory St., 41-902 Bytom, Poland.
| |
Collapse
|
32
|
Li A, Hall G, Chen D, Liang W, Ning B, Guan H, Li X. A biopsy-needle compatible varifocal multiphoton rigid probe for depth-resolved optical biopsy. JOURNAL OF BIOPHOTONICS 2019; 12:e201800229. [PMID: 30117286 PMCID: PMC6325015 DOI: 10.1002/jbio.201800229] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 08/09/2018] [Indexed: 05/19/2023]
Abstract
In this work, we report a biopsy-needle compatible rigid probe, capable of performing three-dimensional (3D) two-photon optical biopsy. The probe has a small outer diameter of 1.75 mm and fits inside a gauge-14 biopsy needle to reach internal organs. A carefully designed focus scanning mechanism has been implemented in the rigid probe, which, along with a rapid two-dimensional MEMS scanner, enables 3D imaging. Fast image acquisition up to 10 frames per second is possible, dramatically reducing motion artifacts during in vivo imaging. Equipped with a high-numerical aperture micro-objective, the miniature rigid probe offers a high two-photon resolution (0.833 × 6.11 μm, lateral × axial), a lateral field of view of 120 μm, and an axial focus tuning range of 200 μm. In addition to imaging of mouse internal organs and subcutaneous tumor in vivo, first-of-its-kind depth-resolved two-photon optical biopsy of an internal organ has been successfully demonstrated on mouse kidney in vivo and in situ.
Collapse
Affiliation(s)
- Ang Li
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Gunnsteinn Hall
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Defu Chen
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Wenxuan Liang
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Bo Ning
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Honghua Guan
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Xingde Li
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
33
|
Wells WA, Thrall M, Sorokina A, Fine J, Krishnamurthy S, Haroon A, Rao B, Shevchuk MM, Wolfsen HC, Tearney GJ, Hariri LP. In Vivo and Ex Vivo Microscopy: Moving Toward the Integration of Optical Imaging Technologies Into Pathology Practice. Arch Pathol Lab Med 2018; 143:288-298. [PMID: 30525931 DOI: 10.5858/arpa.2018-0298-ra] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The traditional surgical pathology assessment requires tissue to be removed from the patient, then processed, sectioned, stained, and interpreted by a pathologist using a light microscope. Today, an array of alternate optical imaging technologies allow tissue to be viewed at high resolution, in real time, without the need for processing, fixation, freezing, or staining. Optical imaging can be done in living patients without tissue removal, termed in vivo microscopy, or also in freshly excised tissue, termed ex vivo microscopy. Both in vivo and ex vivo microscopy have tremendous potential for clinical impact in a wide variety of applications. However, in order for these technologies to enter mainstream clinical care, an expert will be required to assess and interpret the imaging data. The optical images generated from these imaging techniques are often similar to the light microscopic images that pathologists already have expertise in interpreting. Other clinical specialists do not have this same expertise in microscopy, therefore, pathologists are a logical choice to step into the developing role of microscopic imaging expert. Here, we review the emerging technologies of in vivo and ex vivo microscopy in terms of the technical aspects and potential clinical applications. We also discuss why pathologists are essential to the successful clinical adoption of such technologies and the educational resources available to help them step into this emerging role.
Collapse
Affiliation(s)
- Wendy A Wells
- From the Department of Pathology, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire (Dr Wells); the Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas (Dr Thrall); the Department of Pathology, University of Illinois at Chicago, Chicago (Dr Sorokina); the Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (Dr Fine); the Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Krishnamurthy); the Department of Dermatology, Rutgers-Robert Wood Johnson Medical School, Somerset, New Jersey (Drs Haroon and Rao); the Department of Pathology, Weill Cornell Medical College, New York, New York (Dr Shevchuk); the Division of Gastroenterology & Hepatology, Mayo Clinic, Jacksonville, Florida (Dr Wolfsen); and the Wellman Center for Photomedicine (Dr Tearney) and the Department of Pathology (Drs Tearney and Hariri), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Michael Thrall
- From the Department of Pathology, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire (Dr Wells); the Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas (Dr Thrall); the Department of Pathology, University of Illinois at Chicago, Chicago (Dr Sorokina); the Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (Dr Fine); the Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Krishnamurthy); the Department of Dermatology, Rutgers-Robert Wood Johnson Medical School, Somerset, New Jersey (Drs Haroon and Rao); the Department of Pathology, Weill Cornell Medical College, New York, New York (Dr Shevchuk); the Division of Gastroenterology & Hepatology, Mayo Clinic, Jacksonville, Florida (Dr Wolfsen); and the Wellman Center for Photomedicine (Dr Tearney) and the Department of Pathology (Drs Tearney and Hariri), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Anastasia Sorokina
- From the Department of Pathology, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire (Dr Wells); the Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas (Dr Thrall); the Department of Pathology, University of Illinois at Chicago, Chicago (Dr Sorokina); the Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (Dr Fine); the Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Krishnamurthy); the Department of Dermatology, Rutgers-Robert Wood Johnson Medical School, Somerset, New Jersey (Drs Haroon and Rao); the Department of Pathology, Weill Cornell Medical College, New York, New York (Dr Shevchuk); the Division of Gastroenterology & Hepatology, Mayo Clinic, Jacksonville, Florida (Dr Wolfsen); and the Wellman Center for Photomedicine (Dr Tearney) and the Department of Pathology (Drs Tearney and Hariri), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Jeffrey Fine
- From the Department of Pathology, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire (Dr Wells); the Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas (Dr Thrall); the Department of Pathology, University of Illinois at Chicago, Chicago (Dr Sorokina); the Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (Dr Fine); the Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Krishnamurthy); the Department of Dermatology, Rutgers-Robert Wood Johnson Medical School, Somerset, New Jersey (Drs Haroon and Rao); the Department of Pathology, Weill Cornell Medical College, New York, New York (Dr Shevchuk); the Division of Gastroenterology & Hepatology, Mayo Clinic, Jacksonville, Florida (Dr Wolfsen); and the Wellman Center for Photomedicine (Dr Tearney) and the Department of Pathology (Drs Tearney and Hariri), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Savitri Krishnamurthy
- From the Department of Pathology, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire (Dr Wells); the Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas (Dr Thrall); the Department of Pathology, University of Illinois at Chicago, Chicago (Dr Sorokina); the Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (Dr Fine); the Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Krishnamurthy); the Department of Dermatology, Rutgers-Robert Wood Johnson Medical School, Somerset, New Jersey (Drs Haroon and Rao); the Department of Pathology, Weill Cornell Medical College, New York, New York (Dr Shevchuk); the Division of Gastroenterology & Hepatology, Mayo Clinic, Jacksonville, Florida (Dr Wolfsen); and the Wellman Center for Photomedicine (Dr Tearney) and the Department of Pathology (Drs Tearney and Hariri), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Attiya Haroon
- From the Department of Pathology, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire (Dr Wells); the Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas (Dr Thrall); the Department of Pathology, University of Illinois at Chicago, Chicago (Dr Sorokina); the Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (Dr Fine); the Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Krishnamurthy); the Department of Dermatology, Rutgers-Robert Wood Johnson Medical School, Somerset, New Jersey (Drs Haroon and Rao); the Department of Pathology, Weill Cornell Medical College, New York, New York (Dr Shevchuk); the Division of Gastroenterology & Hepatology, Mayo Clinic, Jacksonville, Florida (Dr Wolfsen); and the Wellman Center for Photomedicine (Dr Tearney) and the Department of Pathology (Drs Tearney and Hariri), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Babar Rao
- From the Department of Pathology, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire (Dr Wells); the Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas (Dr Thrall); the Department of Pathology, University of Illinois at Chicago, Chicago (Dr Sorokina); the Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (Dr Fine); the Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Krishnamurthy); the Department of Dermatology, Rutgers-Robert Wood Johnson Medical School, Somerset, New Jersey (Drs Haroon and Rao); the Department of Pathology, Weill Cornell Medical College, New York, New York (Dr Shevchuk); the Division of Gastroenterology & Hepatology, Mayo Clinic, Jacksonville, Florida (Dr Wolfsen); and the Wellman Center for Photomedicine (Dr Tearney) and the Department of Pathology (Drs Tearney and Hariri), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Maria M Shevchuk
- From the Department of Pathology, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire (Dr Wells); the Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas (Dr Thrall); the Department of Pathology, University of Illinois at Chicago, Chicago (Dr Sorokina); the Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (Dr Fine); the Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Krishnamurthy); the Department of Dermatology, Rutgers-Robert Wood Johnson Medical School, Somerset, New Jersey (Drs Haroon and Rao); the Department of Pathology, Weill Cornell Medical College, New York, New York (Dr Shevchuk); the Division of Gastroenterology & Hepatology, Mayo Clinic, Jacksonville, Florida (Dr Wolfsen); and the Wellman Center for Photomedicine (Dr Tearney) and the Department of Pathology (Drs Tearney and Hariri), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Herbert C Wolfsen
- From the Department of Pathology, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire (Dr Wells); the Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas (Dr Thrall); the Department of Pathology, University of Illinois at Chicago, Chicago (Dr Sorokina); the Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (Dr Fine); the Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Krishnamurthy); the Department of Dermatology, Rutgers-Robert Wood Johnson Medical School, Somerset, New Jersey (Drs Haroon and Rao); the Department of Pathology, Weill Cornell Medical College, New York, New York (Dr Shevchuk); the Division of Gastroenterology & Hepatology, Mayo Clinic, Jacksonville, Florida (Dr Wolfsen); and the Wellman Center for Photomedicine (Dr Tearney) and the Department of Pathology (Drs Tearney and Hariri), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Guillermo J Tearney
- From the Department of Pathology, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire (Dr Wells); the Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas (Dr Thrall); the Department of Pathology, University of Illinois at Chicago, Chicago (Dr Sorokina); the Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (Dr Fine); the Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Krishnamurthy); the Department of Dermatology, Rutgers-Robert Wood Johnson Medical School, Somerset, New Jersey (Drs Haroon and Rao); the Department of Pathology, Weill Cornell Medical College, New York, New York (Dr Shevchuk); the Division of Gastroenterology & Hepatology, Mayo Clinic, Jacksonville, Florida (Dr Wolfsen); and the Wellman Center for Photomedicine (Dr Tearney) and the Department of Pathology (Drs Tearney and Hariri), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Lida P Hariri
- From the Department of Pathology, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire (Dr Wells); the Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas (Dr Thrall); the Department of Pathology, University of Illinois at Chicago, Chicago (Dr Sorokina); the Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (Dr Fine); the Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Krishnamurthy); the Department of Dermatology, Rutgers-Robert Wood Johnson Medical School, Somerset, New Jersey (Drs Haroon and Rao); the Department of Pathology, Weill Cornell Medical College, New York, New York (Dr Shevchuk); the Division of Gastroenterology & Hepatology, Mayo Clinic, Jacksonville, Florida (Dr Wolfsen); and the Wellman Center for Photomedicine (Dr Tearney) and the Department of Pathology (Drs Tearney and Hariri), Massachusetts General Hospital, Harvard Medical School, Boston
| |
Collapse
|
34
|
Correlation Between Confocal Laser Endomicroscopy (Cellvizio®) and Histological Grading of Upper Tract Urothelial Carcinoma: A Step Forward for a Better Selection of Patients Suitable for Conservative Management. Eur Urol Focus 2018; 4:954-959. [DOI: 10.1016/j.euf.2017.05.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 05/08/2017] [Accepted: 05/22/2017] [Indexed: 02/03/2023]
|
35
|
Novel real-time optical imaging modalities for the detection of neoplastic lesions in urology: a systematic review. Surg Endosc 2018; 33:1349-1367. [PMID: 30421080 PMCID: PMC6484817 DOI: 10.1007/s00464-018-6578-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 11/02/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Current optical diagnostic techniques for malignancies are limited in their diagnostic accuracy and lack the ability to further characterise disease, leading to the rapidly increasing development of novel imaging methods within urology. This systematic review critically appraises the literature for novel imagining modalities, in the detection and staging of urological cancer and assesses their effectiveness via their utility and accuracy. METHODS A systematic literature search utilising MEDLINE, EMBASE and Cochrane Library Database was conducted from 1970 to September 2018 by two independent reviewers. Studies were included if they assessed real-time imaging modalities not already approved in guidelines, in vivo and in humans. Outcome measures included diagnostic accuracy and utility parameters, including feasibility and cost. RESULTS Of 5475 articles identified from screening, a final 46 were included. Imaging modalities for bladder cancer included optical coherence tomography (OCT), confocal laser endomicroscopy, autofluorescence and spectroscopic techniques. OCT was the most widely investigated, with 12 studies demonstrating improvements in overall diagnostic accuracy (sensitivity 74.5-100% and specificity 60-98.5%). Upper urinary tract malignancy diagnosis was assessed using photodynamic diagnosis (PDD), narrow band imaging, optical coherence tomography and confocal laser endomicroscopy. Only PDD demonstrated consistent improvements in overall diagnostic accuracy in five trials (sensitivity 94-96% and specificity 96.6-100%). Limited evidence for optical coherence tomography in percutaneous renal biopsy was identified, with anecdotal evidence for any modality in penile cancer. CONCLUSIONS Evidence supporting the efficacy for identified novel imaging modalities remains limited at present. However, OCT for bladder cancer and PDD in upper tract malignancy demonstrate the best potential for improvement in overall diagnostic accuracy. OCT may additionally aid intraoperative decision making via real-time staging of disease. Both modalities require ongoing investigation through larger, well-conducted clinical trials to assess their diagnostic accuracy, use as an intraoperative staging aid and how to best utilise them within clinical practice.
Collapse
|
36
|
Ping Z, Wang H, Chen X, Wang S, Zuo S. Modular Robotic Scanning Device for Real-Time Gastric Endomicroscopy. Ann Biomed Eng 2018; 47:563-575. [PMID: 30362081 DOI: 10.1007/s10439-018-02156-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/13/2018] [Indexed: 01/15/2023]
Abstract
Optical biopsy methods, such as probe-based endomicroscopy, can be used for the identification of early mucosal dysplasia in various gastrointestinal conditions and have potential applications in the screening of early-stage gastric cancer in vivo. However, it is difficult to scan a large area of the gastric mucosa for mosaicing during standard endoscopy. This paper proposes a novel 'snap-on' robotic scanning device that can integrate distally with a commercial endoscope. A customized low-cost endomicroscopy system is used for obtaining micro imaging. The developed device could scan a large area of gastric tissue during standard endoscopy. The device achieves positioning accuracy that is less than 0.23 mm. Experimental results showed that the device could achieve large area mosaicing (15.8-18.6 mm2) and demonstrated the potential clinical value of the device for real-time gastric tissue identification and margin assessment. This approach presents an important alternative to current histology techniques for gastrointestinal tract diagnosis.
Collapse
Affiliation(s)
- Zhongyuan Ping
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin, 300072, China
| | - Haibo Wang
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin, 300072, China
| | - Xin Chen
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, 300070, China
| | - Shuxin Wang
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin, 300072, China
| | - Siyang Zuo
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
37
|
Raharja PAR, Hamid ARAH, Mochtar CA, Umbas R. Recent advances in optical imaging technologies for the detection of bladder cancer. Photodiagnosis Photodyn Ther 2018; 24:192-197. [PMID: 30315954 DOI: 10.1016/j.pdpdt.2018.10.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 10/02/2018] [Accepted: 10/09/2018] [Indexed: 12/27/2022]
Abstract
White-light cystoscopy (WLC) is the diagnostic standard for the detection of bladder cancer (BC). However, the detection of small papillary and subtle flat carcinoma in situ lesions is not always possible with WLC. Several adjunctive optical imaging technologies have been developed to improve BC detection and resection. Photodynamic diagnosis, which requires the administering of a photoactive substance, has a higher detection rate than WLC for the detection of BC. Narrow-band imaging provides better visualization of tumors by contrast enhancement between normal mucosa and well-vascularized lesions. A technology called confocal laser endomicroscopy can be used to obtain detailed images of tissue structure. Optical coherence tomography is a high-resolution imaging process that enables noninvasive, real-time, and high-quality tissue images. Several other optical imaging technologies are also being developed to assist with the detection of BC. In this review, we provide an overview of the strengths and weaknesses of these imaging technologies for the detection of BC.
Collapse
Affiliation(s)
- Putu Angga Risky Raharja
- Department of Urology, Faculty of Medicine, University of Indonesia, Cipto Mangunkusumo Hospital, Jakarta, 10430, Indonesia
| | - Agus Rizal A H Hamid
- Department of Urology, Faculty of Medicine, University of Indonesia, Cipto Mangunkusumo Hospital, Jakarta, 10430, Indonesia.
| | - Chaidir A Mochtar
- Department of Urology, Faculty of Medicine, University of Indonesia, Cipto Mangunkusumo Hospital, Jakarta, 10430, Indonesia
| | - Rainy Umbas
- Department of Urology, Faculty of Medicine, University of Indonesia, Cipto Mangunkusumo Hospital, Jakarta, 10430, Indonesia
| |
Collapse
|
38
|
Liem EIML, Freund JE, Savci-Heijink CD, de la Rosette JJMCH, Kamphuis GM, Baard J, Liao JC, van Leeuwen TG, de Reijke TM, de Bruin DM. Validation of Confocal Laser Endomicroscopy Features of Bladder Cancer: The Next Step Towards Real-time Histologic Grading. Eur Urol Focus 2018; 6:81-87. [PMID: 30033066 DOI: 10.1016/j.euf.2018.07.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 06/21/2018] [Accepted: 07/11/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND Cystoscopy enables the visualisation of suspicious bladder lesions but lacks the ability to provide real-time histopathologic information. Confocal laser endomicroscopy (CLE) is a probe-based optical technique that can provide real-time microscopic images. This high-resolution optical imaging technique may enable real-time tumour grading during cystoscopy. OBJECTIVE To validate and adapt CLE criteria for bladder cancer diagnosis and grading. DESIGN, SETTING, AND PARTICIPANTS Prospectively, 73 patients scheduled for transurethral resection of bladder tumour(s) were included. CLE imaging was performed intraoperatively prior to en bloc resection. Histopathology was the reference standard for comparison. INTERVENTION Cystoscopic CLE imaging. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS Three independent observers evaluated the CLE images to classify tumours as low- or high-grade urothelial carcinoma (UC), or benign lesions. Interobserver agreement was calculated with Fleiss kappa analysis and diagnostic accuracy with 2×2 tables. RESULTS AND LIMITATIONS Histopathology of 66 lesions (53 patients) revealed 25 low-grade UCs, 27 high-grade UCs, and 14 benign lesions. For low-grade UC, most common features were papillary configuration (100%), distinct cell borders (81%), presence of fibrovascular stalks (79%), cohesiveness of cells (77%), organised cell pattern (76%), and monomorphic cells (67%). A concordance between CLE-based classification and histopathology was found in 19 cases (76%). For high-grade UC, pleomorphic cells (77%), indistinct cell borders (77%), papillary configuration (67%), and disorganised cell pattern (60%) were the most common features. A concordance with histopathology was found in 19 cases (70%). In benign lesions, the most prevalent features were disorganised cell pattern (57%) and pleomorphic cells (52%), and a concordance with histopathology was found in four cases (29%). CONCLUSIONS The CLE criteria enable identification of UC. CLE features correlate to histopathologic features that may enable real-time tumour grading. However, flat lesions remain difficult to classify. PATIENT SUMMARY Confocal laser endomicroscopy may enable real-time cancer differentiation during cystoscopy, which is important for prognosis and disease management.
Collapse
Affiliation(s)
- Esmee I M L Liem
- Department of Urology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
| | - Jan Erik Freund
- Department of Urology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Jean J M C H de la Rosette
- Department of Urology, Istanbul Medipol University, Istanbul, Turkey; Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Guido M Kamphuis
- Department of Urology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Joyce Baard
- Department of Urology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Joseph C Liao
- Department of Urology, Stanford University School of Medicine, Stanford, California, USA
| | - Ton G van Leeuwen
- Department of Biomedical Engineering and Physics, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Theo M de Reijke
- Department of Urology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Daniel Martijn de Bruin
- Department of Urology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Department of Biomedical Engineering and Physics, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
39
|
Swaan A, Mannaerts CK, Scheltema MJ, Nieuwenhuijzen JA, Savci-Heijink CD, de la Rosette JJ, van Moorselaar RJA, van Leeuwen TG, de Reijke TM, de Bruin DM. Confocal Laser Endomicroscopy and Optical Coherence Tomography for the Diagnosis of Prostate Cancer: A Needle-Based, In Vivo Feasibility Study Protocol (IDEAL Phase 2A). JMIR Res Protoc 2018; 7:e132. [PMID: 29784633 PMCID: PMC5987046 DOI: 10.2196/resprot.9813] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/02/2018] [Accepted: 03/07/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Focal therapy for prostate cancer has been proposed as an alternative treatment to whole-gland therapies in selected men to diminish side effects in localized prostate cancer. As nowadays imaging cannot offer complete prostate cancer disease characterization, multicore systematic biopsies are recommended (transrectal or transperineal). Optical imaging techniques such as confocal laser endomicroscopy and optical coherence tomography allow in vivo, high-resolution imaging. Moreover, they can provide real-time visualization and analysis of tissue and have the potential to offer additive diagnostic information. OBJECTIVE This study has 2 separate primary objectives. The first is to assess the technical feasibility and safety of in vivo focal imaging with confocal laser endomicroscopy and optical coherence tomography. The second is to identify and define characteristics of prostate cancer and normal prostate tissue in confocal laser endomicroscopy and optical coherence tomography imaging by comparing these images with the corresponding histopathology. METHODS In this prospective, in vivo feasibility study, needle-based confocal laser endomicroscopy and optical coherence tomography imaging will be performed before transperineal template mapping biopsy or radical prostatectomy. First, confocal laser endomicroscopy and optical coherence tomography will be performed in 4 patients (2 for each imaging modality) undergoing transperineal template mapping biopsy to assess the feasibility and safety of confocal laser endomicroscopy and optical coherence tomography. If proven to be safe and feasible, confocal laser endomicroscopy and optical coherence tomography will be performed in 10 patients (5 for each imaging modality) undergoing radical prostatectomy. Confocal laser endomicroscopy and optical coherence tomography images will be analyzed by independent, blinded observers. Confocal laser endomicroscopy- and optical coherence tomography-based qualitative and quantitative characteristics and histopathology will be compared. The study complies with the IDEAL (Idea, Development, Exploration, Assessment, Long-term study) stage 2a recommendations. RESULTS At present, the study is enrolling patients and results and outcomes are expected in 2019. CONCLUSIONS Confocal laser endomicroscopy and optical coherence tomography are promising optical imaging techniques that can visualize and analyze tissue structure, possible tumor grade, and architecture in real time. They can potentially provide real-time, high-resolution microscopic imaging and tissue characteristics of prostate cancer in conjunction with magnetic resonance imaging or transrectal ultrasound fusion-guided biopsy procedures. This study will provide insight into the feasibility and tissue-specific characteristics of confocal laser endomicroscopy and optical coherence tomography for real-time optical analysis of prostate cancer. TRIAL REGISTRATION ClinicalTrials.gov NCT03253458; https://clinicaltrials.gov/ct2/show/NCT03253458 (Archived by WebCite at http://www.webcitation.org/6z9owM66B). REGISTERED REPORT IDENTIFIER RR1-10.2196/9813.
Collapse
Affiliation(s)
- Abel Swaan
- Department of Urology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Department of Biomedical Engineering and Physics, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Christophe K Mannaerts
- Department of Urology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Matthijs Jv Scheltema
- Department of Urology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Jakko A Nieuwenhuijzen
- Department of Urology, VU University Medical Center, VU University, Amsterdam, Netherlands
| | - C Dilara Savci-Heijink
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Jean Jmch de la Rosette
- Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Department of Urology, Istanbul Medipol University, Istanbul, Turkey
| | | | - Ton G van Leeuwen
- Department of Biomedical Engineering and Physics, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Theo M de Reijke
- Department of Urology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Daniel Martijn de Bruin
- Department of Urology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Department of Biomedical Engineering and Physics, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
40
|
Liem EI, Freund JE, Baard J, de Bruin DM, Laguna Pes MP, Savci-Heijink CD, van Leeuwen TG, de Reijke TM, de la Rosette JJ. Confocal Laser Endomicroscopy for the Diagnosis of Urothelial Carcinoma in the Bladder and the Upper Urinary Tract: Protocols for Two Prospective Explorative Studies. JMIR Res Protoc 2018; 7:e34. [PMID: 29415874 PMCID: PMC5822038 DOI: 10.2196/resprot.8862] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/08/2017] [Accepted: 11/13/2017] [Indexed: 12/23/2022] Open
Abstract
Background Visual confirmation of a suspicious lesion in the urinary tract is a major corner stone in diagnosing urothelial carcinoma. However, during cystoscopy (for bladder tumors) and ureterorenoscopy (for tumors of the upper urinary tract) no real-time histopathologic information can be obtained. Confocal laser endomicroscopy (CLE) is an optical imaging technique that allows for in vivo high-resolution imaging and may allow real-time tumor grading of urothelial lesions. Objective The primary objective of both studies is to develop descriptive criteria for in vivo CLE images of urothelial carcinoma (low-grade, high-grade, carcinoma in situ) and normal urothelium by comparing CLE images with corresponding histopathology. Methods In these two prospective clinical trials, CLE imaging will be performed of suspicious lesions and normal tissue in the urinary tract during surgery, prior to resection or biopsy. In the bladder study, CLE will be performed in 60 patients using the Cystoflex UHD-R probe. In the upper urinary tract study, CLE will be performed in 25 patients during ureterorenoscopy, who will undergo radical treatment (nephroureterectomy or segmental ureter resection) thereafter. All CLE images will be analyzed frame by frame by three independent, blinded observers. Histopathology and CLE-based diagnosis of the lesions will be evaluated. Both studies comply with the IDEAL stage 2b recommendations. Results Presently, recruitment of patients is ongoing in both studies. Results and outcomes are expected in 2018. Conclusions For development of CLE-based diagnosis of urothelial carcinoma in the bladder and the upper urinary tract, a structured conduct of research is required. This study will provide more insight in tissue-specific CLE criteria for real-time tumor grading of urothelial carcinoma. Trial Registration Confocal Laser Endomicroscopy: ClinicalTrials.gov NCT03013894; https://clinicaltrials.gov /ct2/show/NCT03013894?term=NCT03013894&rank=1 (Archived by WebCite at http://www.webcitation.org/6wiPZ378I); and Dutch Central Committee on Research Involving Human Subjects NL55537.018.15; https://www.toetsingonline.nl /to/ccmo_search.nsf/fABRpop?readform&unids=6B72AE6EB0FC3C2FC125821F001B45C6 (Archived by WebCite at http://www.webcitation.org/6wwJQvqWh). Confocal Laser Endomicroscopy in the upper urinary tract: ClinicalTrials.gov NCT03013920; https://clinicaltrials.gov/ct2/show/NCT03013920? term=NCT03013920&rank=1 (Archived by WebCite at http://www.webcitation.org/6wiPkjyt0); and Dutch Central Committee on Research Involving Human Subjects NL52989.018.16; https://www.toetsingonline.nl/to/ccmo_search.nsf/fABRpop?readform&unids=D27C9C3E5755CFECC12581690016779F (Archived by WebCite at http://www.webcitation.org/6wvy8R44C).
Collapse
Affiliation(s)
- Esmee Iml Liem
- Department of Urology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Jan Erik Freund
- Department of Urology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Joyce Baard
- Department of Urology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - D Martijn de Bruin
- Department of Urology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Department of Biomedical Engineering & Physics, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - M Pilar Laguna Pes
- Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - C Dilara Savci-Heijink
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Ton G van Leeuwen
- Department of Biomedical Engineering & Physics, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Theo M de Reijke
- Department of Urology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | | |
Collapse
|
41
|
Naya Y, Takaha N, Okubo T, Shiota K, Hayashi I, Mori M, Date S, Miki T, Ukimura O. Probe-Based Confocal Laser Endomicroscopy Using Acrinol as a Novel Dye Can Be Used to Observe Cancer Nuclei of Bladder Carcinoma In Situ. J Endourol Case Rep 2018; 4:25-27. [PMID: 29503871 PMCID: PMC5831980 DOI: 10.1089/cren.2017.0114] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: Cystoscopy using white light is a standard procedure for diagnosing bladder cancer; however, white light can result in missed lesions that are present, but not visible, such as in cases of carcinoma in situ (CIS). In this case report, we describe observing the nuclei of urothelial carcinoma cells in situ that were not visible with cystoscopy under white light using probe-based confocal laser endomicroscopy (pCLE) with acrinol and fluorescein during transurethral resection of a bladder tumor (TURBT). Case Presentation: A 59-year-old male with a medical history of neurogenic bladder dysfunction with multiple bladder diverticula was referred to the urology department for gross hematuria. TURBT was performed with the assistance of pCLE, using acrinol as a novel dye. Standard cystoscopy under white light could not detect any bladder tumor; however, pCLE using acrinol could detect the abnormal nuclei of bladder CIS. Subsequent histopathologic analysis of the specimen confirmed a diagnosis of bladder CIS. To our knowledge, this is the first reported case of bladder CIS diagnosed with the assistance of pCLE using acrinol in a patient undergoing a TURBT. Conclusion: pCLE using acrinol as a novel dye can help observe the cancerous nuclei of bladder CIS that cannot be detected using conventional cystoscopy under white light. Therefore, pCLE using acrinol is one possible modality for performing an optical biopsy during TURBT.
Collapse
Affiliation(s)
- Yoshio Naya
- Department of Urology, Meiji University of Integrative Medicine, Nantan, Japan.,Department of Urology, Nagahama City Kohoku Hospital, Nagahama, Japan
| | - Natsuki Takaha
- Department of Urology, Meiji University of Integrative Medicine, Nantan, Japan
| | - Takako Okubo
- Department of Pathology, Meiji University of Integrative Medicine, Nantan, Japan
| | - Koji Shiota
- Department of Urology, Nagahama City Kohoku Hospital, Nagahama, Japan
| | - Issei Hayashi
- Department of Urology, Nagahama City Kohoku Hospital, Nagahama, Japan
| | - Masaru Mori
- Department of Urology, Nagahama City Kohoku Hospital, Nagahama, Japan
| | - Seiki Date
- Department of Urology, Nagahama City Kohoku Hospital, Nagahama, Japan
| | - Tsuneharu Miki
- Department of Urology, Saiseikai Shiga Hospital, Ritto, Japan
| | - Osamu Ukimura
- Department of Urology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
42
|
Sanli O, Lotan Y. Current approaches for identifying high-risk non-muscle invasive bladder cancer. Expert Rev Anticancer Ther 2018; 18:223-235. [DOI: 10.1080/14737140.2018.1432358] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Oner Sanli
- Department of Urology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Yair Lotan
- Department of Urology, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
43
|
Pavlov V, Meyronet D, Meyer-Bisch V, Armoiry X, Pikul B, Dumot C, Beuriat PA, Signorelli F, Guyotat J. Intraoperative Probe-Based Confocal Laser Endomicroscopy in Surgery and Stereotactic Biopsy of Low-Grade and High-Grade Gliomas: A Feasibility Study in Humans. Neurosurgery 2017; 79:604-12. [PMID: 27643918 DOI: 10.1227/neu.0000000000001365] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The management of gliomas is based on precise histologic diagnosis. The tumor tissue can be obtained during open surgery or via stereotactic biopsy. Intraoperative tissue imaging could substantially improve biopsy precision and, ultimately, the extent of resection. OBJECTIVE To show the feasibility of intraoperative in vivo probe-based confocal laser endomicroscopy (pCLE) in surgery and biopsy of gliomas. METHODS In our prospective observational study, 9 adult patients were enrolled between September 2014 and January 2015. Two contrast agents were used: 5-aminolevulinic acid (3 cases) or intravenous fluorescein (6 cases). Intraoperative imaging was performed with the Cellvizio system (Mauna Kea Technologies, Paris). A 0.85-mm probe was used for stereotactic procedures, with the biopsy needle modified to have a distal opening. During open brain surgery, a 2.36-mm probe was used. Each series corresponds to a separate histologic fragment. RESULTS The diagnoses of the lesions were glioblastoma (4 cases), low-grade glioma (2), grade III oligoastrocytoma (2), and lymphoma (1). Autofluorescence of neurons in cortex was observed. Cellvizio images enabled differentiation of healthy "normal" tissue from pathological tissue in open surgery and stereotactic biopsy using fluorescein. 5-Aminolevulinic acid confocal patterns were difficult to establish. No intraoperative complications related to pCLE or to use of either contrast agent were observed. CONCLUSION We report the initial feasibility and safety of intraoperative pCLE during primary brain tumor resection and stereotactic biopsy procedures. Pending further investigation, pCLE of brain tissue could be utilized for intraoperative surgical guidance, improvement in brain biopsy yield, and optimization of glioma resection via analysis of tumor margins. ABBREVIATIONS 5-ALA, 5-aminolevulinic acidpCLE, probe-based confocal laser endomicroscopyPpIX, protoporphyrin IX.
Collapse
Affiliation(s)
- Vladislav Pavlov
- *Department of Neurosurgery, Hôpital Pierre Wertheimer, Hospices Civils de Lyon, Lyon, France;‡Centre de Pathologie et de Neuropathologie Est, Hospices Civils de Lyon, Lyon, France;§Innovation and Clinical Research Unit, Hospices Civils de Lyon, Lyon, France;¶Department of Neurosurgery, Kaiser Permanente Los Angeles Medical Center, Los Angeles, California
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Schubert T, Rausch S, Fahmy O, Gakis G, Stenzl A. Optical improvements in the diagnosis of bladder cancer: implications for clinical practice. Ther Adv Urol 2017; 9:251-260. [PMID: 29662543 DOI: 10.1177/1756287217720401] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 06/22/2017] [Indexed: 12/20/2022] Open
Abstract
Background For over 100 years white-light cystoscopy has remained the gold-standard technique for the detection of bladder cancer (BCa). Some limitations in the detection of flat lesions (CIS), the differentiation between inflammation and malignancy, the inaccurate determination of the tumor margin status as well as the tumor depth, have led to a variety of technological improvements. The aim of this review is to evaluate the impact of these improvements in the diagnosis of BCa and their effectiveness in clinical practice. Methods A systematic literature search was conducted according to the PRISMA statement to identify studies reporting on imaging modalities in the diagnosis of NMIBC between 2000 and 2017. A two-stage selection process was utilized to determine eligible studies. A total of 74 studies were considered for final analysis. Results Optical imaging technologies have emerged as an adjunct to white-light cystoscopy and can be classified according to their scope as macroscopic, microscopic and molecular. Macroscopic techniques including photodynamic diagnosis (PDD), narrow-band imaging (NBI) and the Storz Professional Image Enhancement System (IMAGE1 S, formerly known as SPIES) are similar to white-light cystoscopy, but are superior in the detection of bladder tumors by means of contrast enhancement. Especially the detection rate of very mute lesions in the bladder mucosa (CIS) could be significantly increased by the use of these methods. Microscopic imaging techniques like confocal laser endomicroscopy and optical coherence tomography permit a real-time high-resolution assessment of the bladder mucosa at a cellular and sub-cellular level with spatial resolutions similar to histology, enabling the surgeon to perform an 'optical biopsy'. Molecular techniques are based on the combination of optical imaging technologies with fluorescence labeling of cancer-specific molecular agents like antibodies. This labeling is intended to favor an optical distinction between benign and malignant tissue. Conclusions Optical improvements of the standard white-light cystoscopy have proven their benefit in the detection of BCa and have found their way into clinical practice. Especially the combination of macroscopic and microscopic techniques may improve diagnostic accuracy. Nevertheless, HAL-PDD guided cystoscopy is the only approach approved for routine use in the diagnosis of BCa by most urological associations in the EU and USA to date.
Collapse
Affiliation(s)
- Tina Schubert
- Department of Urology, University Hospital Tübingen, Tübingen, Germany
| | - Steffen Rausch
- Department of Urology, University Hospital Tübingen, Tübingen, Germany
| | - Omar Fahmy
- Department of Urology, University Putra Malaysia (UPM), Selangor, Malaysia
| | - Georgios Gakis
- Department of Urology, University Hospital Tübingen, Tübingen, Germany
| | - Arnulf Stenzl
- Department of Urology, University Hospital Tübingen, Hoppe-Seyler-Str. 3, Tübingen, 72076, Germany
| |
Collapse
|
45
|
Nguyen VP, Park S, Oh J, Wook Kang H. Biocompatible astaxanthin as novel contrast agent for biomedical imaging. JOURNAL OF BIOPHOTONICS 2017; 10:1053-1061. [PMID: 27618280 DOI: 10.1002/jbio.201600159] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 08/21/2016] [Accepted: 08/23/2016] [Indexed: 06/06/2023]
Abstract
Photoacoustic imaging (PAI) is a hybrid imaging modality with high resolution and sensitivity that can be beneficial for cancer staging. Due to insufficient endogenous photoacoustic (PA) contrast, the development of exogenous agents is critical in targeting cancerous tumors. The current study demonstrates the feasibility of marine-oriented material, astaxanthin, as a biocompatible PA contrast agent. Both silicon tubing phantoms and ex vivo bladder tissues are tested at various concentrations (up to 5 mg/ml) of astaxanthin to quantitatively explore variations in PA responses. A Q-switched Nd : YAG laser (λ = 532 nm) in conjunction with a 5 MHz ultrasound transducer is employed to generate and acquire PA signals from the samples. The phantom results presented that the PA signal amplitudes increase linearly with the astaxanthin concentrations (threshold detection = 0.31 mg/ml). The tissue injected with astaxanthin yields up to 16-fold higher PA signals, compared with that with saline. Due to distribution of the injected astaxanthin, PAI can image the margin of astaxanthin boles as well as quantify their volume in 3D reconstruction. Further investigations on selective tumor targeting are required to validate astaxanthin as a potential biocompatible contrast agent for PAI-assisted bladder cancer detection.
Collapse
Affiliation(s)
- Van Phuc Nguyen
- Interdisciplinary Program of Biomedical Mechanical & Electrical Engineering, Pukyong National University, Busan, 48513, South Korea
| | - Suhyun Park
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Junghwan Oh
- Interdisciplinary Program of Biomedical Mechanical & Electrical Engineering, Pukyong National University, Busan, 48513, South Korea
- Department of Biomedical Engineering and Center for Marine-Integrated Biomedical Technology (BK 21 Plus), Pukyong National University, Busan, 48513, South Korea
| | - Hyun Wook Kang
- Interdisciplinary Program of Biomedical Mechanical & Electrical Engineering, Pukyong National University, Busan, 48513, South Korea
- Department of Biomedical Engineering and Center for Marine-Integrated Biomedical Technology (BK 21 Plus), Pukyong National University, Busan, 48513, South Korea
| |
Collapse
|
46
|
Chang TC, Marcq G, Kiss B, Trivedi DR, Mach KE, Liao JC. Image-Guided Transurethral Resection of Bladder Tumors - Current Practice and Future Outlooks. Bladder Cancer 2017; 3:149-159. [PMID: 28824942 PMCID: PMC5545914 DOI: 10.3233/blc-170119] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Transurethral resection of bladder tumor (TURBT) under white light cystoscopy (WLC) is the cornerstone for the diagnosis, removal and local staging of non-muscle invasive bladder cancer (NMIBC). Despite technological improvements over the decades, significant shortcomings remain with WLC for tumor detection, thereby impacting the surgical quality and contributing to tumor recurrence and progression. Enhanced cystoscopy modalities such as blue light cystoscopy (BLC) and narrow band imaging (NBI) aid resections by highlighting tumors that might be missed on WLC. Optical biopsy technologies such as confocal laser endomicroscopy (CLE) and optical coherence tomography (OCT) characterize tissue in real-time to ensure a more thorough resection. New resection techniques, particularly en bloc resection, are actively under investigation to improve the overall quality of resections and aid pathologic interpretation. Moreover, new image processing computer algorithms may improve perioperative planning and longitudinal follow-up. Clinical translation of molecular imaging agents is also on the horizon to improve optical diagnosis of bladder cancer. This review focuses on emerging technologies that can impact the quality of TURBT to improve the overall management of NMIBC.
Collapse
Affiliation(s)
- Timothy C Chang
- Department of Urology, Stanford University School of Medicine, Stanford, CA, USA.,Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Gautier Marcq
- Department of Urology, Stanford University School of Medicine, Stanford, CA, USA.,Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Bernhard Kiss
- Department of Urology, Stanford University School of Medicine, Stanford, CA, USA.,Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Dharati R Trivedi
- Department of Urology, Stanford University School of Medicine, Stanford, CA, USA.,Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Kathleen E Mach
- Department of Urology, Stanford University School of Medicine, Stanford, CA, USA.,Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Joseph C Liao
- Department of Urology, Stanford University School of Medicine, Stanford, CA, USA.,Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| |
Collapse
|
47
|
Dynamic real-time in vivo confocal laser endomicroscopy of the fallopian tube during laparoscopy in the prevention of ovarian cancer. Eur J Obstet Gynecol Reprod Biol 2017; 216:18-23. [PMID: 28692889 DOI: 10.1016/j.ejogrb.2017.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 06/07/2017] [Accepted: 07/04/2017] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Recently it has been postulated that most ovarian cancers have a tubal origin. The identification of preinvasive tubal lesions would be of great interest in the early diagnosis of ovarian cancer. Optical biopsy has been developed and validated in the detection of precancerous lesions (such as Barrett's oesophagus). The first objective of this study was to assess the feasibility of optical biopsy in the study of fallopian tubes during laparoscopy. The second objective was to describe the images in benign premalignant and malignant tubes with a histopathological and immunohistochemical (p53 and Ki67 expressions) correlation. STUDY DESIGN In this prospective study, 40 patients undergoing laparoscopic salpingectomy for benign conditions (benign hysterectomy), prophylactic conditions (BRCA mutation) or in case of pelvic cancers were included after obtaining informed and signed consent prior to surgery. The optical biopsy was performed on the fimbria of each tube in and ex vivo. A correlation was made with the histopathological and immunohistochemical analysis. RESULTS The feasibility of optical biopsy was always confirmed during laparoscopy. The optical biopsy iconography revealed different images in benign tubal epithelium (well-defined black and grey structure), in adenomatoid tumour (tortuous architectural organization), in STIC precancerous lesion (enlarged, irregular and pleomorphic cells, dilated and distorted vessels) and in tubal metastasis of high grade serous ovarian cancer (dark neoplastic cells irregular in size and shape) CONCLUSIONS: Optical biopsy may be the first emerging mini-invasive technology that could detect tubal lesions and may be considered as a promising tool in the early detection of ovarian cancer.
Collapse
|
48
|
Matz G, Messerschmidt B, Göbel W, Filser S, Betz CS, Kirsch M, Uckermann O, Kunze M, Flämig S, Ehrhardt A, Irion KM, Haack M, Dorostkar MM, Herms J, Gross H. Chip-on-the-tip compact flexible endoscopic epifluorescence video-microscope for in-vivo imaging in medicine and biomedical research. BIOMEDICAL OPTICS EXPRESS 2017; 8:3329-3342. [PMID: 28717570 PMCID: PMC5508831 DOI: 10.1364/boe.8.003329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 06/15/2017] [Accepted: 06/15/2017] [Indexed: 05/17/2023]
Abstract
We demonstrate a 60 mg light video-endomicroscope with a cylindrical shape of the rigid tip of only 1.6 mm diameter and 6.7 mm length. A novel implementation method of the illumination unit in the endomicroscope is presented. It allows for the illumination of the biological sample with fiber-coupled LED light at 455 nm and the imaging of the red-shifted fluorescence light above 500 nm in epi-direction. A large numerical aperture of 0.7 leads to a sub-cellular resolution and yields to high-contrast images within a field of view of 160 μm. A miniaturized chip-on-the-tip CMOS image sensor with more than 150,000 pixels captures the multicolor images at 30 fps. Considering size, plug-and-play capability, optical performance, flexibility and weight, we hence present a probe which sets a new benchmark in the field of epifluorescence endomicroscopes. Several ex-vivo and in-vivo experiments in rodents and humans suggest future application in biomedical fields, especially in the neuroscience community, as well as in medical applications targeting optical biopsies or the detection of cellular anomalies.
Collapse
Affiliation(s)
- Gregor Matz
- GRINTECH GmbH, Schillerstrasse 1, 07743 Jena,
Germany
- Institute of Applied Physics, FSU Jena, Fürstengraben 1, 07737 Jena,
Germany
| | | | - Werner Göbel
- KARL STORZ GmbH & Co. KG, Mittelstrasse 8, 78532 Tuttlingen,
Germany
| | - Severin Filser
- LMU Munich, Geschwister-Scholl-Platz 1, 80539 Munich,
Germany
| | | | - Matthias Kirsch
- Neurosurgery, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307 Dresden,
Germany
| | - Ortrud Uckermann
- Neurosurgery, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307 Dresden,
Germany
| | - Marcel Kunze
- GRINTECH GmbH, Schillerstrasse 1, 07743 Jena,
Germany
| | - Sven Flämig
- GRINTECH GmbH, Schillerstrasse 1, 07743 Jena,
Germany
| | - André Ehrhardt
- KARL STORZ GmbH & Co. KG, Mittelstrasse 8, 78532 Tuttlingen,
Germany
| | | | - Mareike Haack
- Klinikum Großhadern, Marchioninistr. 13, 81377 Munich,
Germany
| | | | - Jochen Herms
- LMU Munich, Geschwister-Scholl-Platz 1, 80539 Munich,
Germany
| | - Herbert Gross
- Institute of Applied Physics, FSU Jena, Fürstengraben 1, 07737 Jena,
Germany
| |
Collapse
|
49
|
Abstract
Renal masses are diagnosed with an increasing frequency. However, a significant proportion of these masses are benign, and the majority of malignant tumors are biologically indolent. Furthermore, renal tumors are often harbored by the elderly and comorbid patients. As such, matching of renal tumor biology to appropriate treatment intensity is an urgent clinical need. Renal mass biopsy is currently a very useful clinical tool that can assist with critical clinical decision-making in patients with renal mass. Yet, renal mass biopsy is associated with limitations and, as such, may not be appropriate for all patients.
Collapse
|
50
|
Woldu SL, Şanli Ö, Lotan Y. Tackling non-muscle invasive bladder cancer in the clinic. Expert Rev Anticancer Ther 2017; 17:467-480. [PMID: 28359179 DOI: 10.1080/14737140.2017.1313119] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Non-muscle invasive bladder cancer (NMIBC) is a common disease process with a high propensity for recurrence and risk of progression to muscle-invasive or systemic disease. Optimal management of NMIBC depends on appropriate resection and staging, risk-based use of intravesical therapy and tailored surveillance. Current challenges include compliance with guideline recommendations and cancers which are refractory to standard therapies. Areas covered: This review summarizes the conventional management of NMIBC - which relies on strict cystoscopic surveillance and intravesical therapies with chemotherapy and/or immunotherapy in the form of bacillus Calmette-Guerin (BCG). As many patients will be resistant to conventional treatment, investigational therapies and novel prognostic models will also be discussed. Expert commentary: For decades, the management of NMIBC has been predicated on intravesical therapies, most often through the instillation of BCG which has proven clinical efficacy over transurethral resection alone. Despite this, many patients will recur or progress after BCG therapy. While radical cystectomy remains the standard for such patients, suitable alternatives are being actively investigated. An increased interest in immunotherapy for malignancy has reinvigorated this field and on-going advances in disease prognostication are likely to improve upon the existing treatment paradigms for NMIBC.
Collapse
Affiliation(s)
- Solomon L Woldu
- a Department of Urology , University of Texas Southwestern Medical Center , Dallas , TX , USA
| | - Öner Şanli
- a Department of Urology , University of Texas Southwestern Medical Center , Dallas , TX , USA.,b Department of Urology, Istanbul Faculty of Medicine , Istanbul University , Istanbul , Turkey
| | - Yair Lotan
- a Department of Urology , University of Texas Southwestern Medical Center , Dallas , TX , USA
| |
Collapse
|