1
|
Li X, Duan W, Du L, Chu D, Wang P, Yang Z, Qu X, Yang Z, Batinic-Haberle I, Spasojevic I, Warner DS, Crapo JD, Treggiari MM, Sheng H. Intracarotid Infusion of Redox-Active Manganese Porphyrin, MnTnBuOE-2-PyP 5+, following Reperfusion Improves Long-Term, 28-Day Post-Stroke Outcomes in Rats. Antioxidants (Basel) 2023; 12:1861. [PMID: 37891940 PMCID: PMC10603962 DOI: 10.3390/antiox12101861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/02/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
Endovascular mechanical thrombectomy, combined with a tissue plasminogen activator (t-PA), is efficacious as a standard care for qualifying ischemic stroke patients. However, > 50% of thrombectomy patients still have poor outcomes. Manganese porphyrins, commonly known as mimics of superoxide dismutases, are potent redox-active catalytic compounds that decrease oxidative/nitrosative stress and in turn decrease inflammatory responses, mitigating therefore the secondary injury of the ischemic brain. This study investigates the effect of intracarotid MnTnBuOE-2-PyP5+ (BMX-001) administration on long-term, 28-day post-stroke recovery in a clinically relevant setting. The 90 min of transient middle cerebral artery occlusion was performed in young, aged, male, female, and spontaneous hypertension rats. All physiological parameters, including blood pressure, blood gas, glucose, and temperature, were well controlled during ischemia. Either BMX-001 or a vehicle solution was infused through the carotid artery immediately after the removal of filament, mimicking endovascular thrombectomy, and was followed by 7 days of subcutaneous injection. Neurologic deficits and infarct volume were assessed at 28 days in a blinded manner. The effects of BMX-001 on the carotid arterial wall and blood-brain barrier permeability and its interaction with t-PA were assessed in normal rats. There were no intra-group differences in physiological variables. BMX-001-treated stroke rats regained body weight earlier, performed better in behavioral tests, and had smaller brain infarct size compared to the vehicle-treated group. No vascular wall damage and blood-brain barrier permeability changes were detected after the BMX-001 infusion. There was no drug interaction between BMX-001 and t-PA. Intracarotid BMX-001 infusion was safe, and it significantly improved stroke outcomes in rats. These findings indicate that BMX-001 is a candidate drug as an adjunct treatment for thrombectomy procedure to further improve the neurologic outcomes of thrombectomy patients. This study warrants further clinical investigation of BMX-001 as a new stroke therapy.
Collapse
Affiliation(s)
- Xuan Li
- Multidisciplinary Neuroprotection Laboratories, Center of Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA; (X.L.); (W.D.); (L.D.); (D.C.); (P.W.); (Z.Y.); (X.Q.); (D.S.W.); (M.M.T.)
| | - Weina Duan
- Multidisciplinary Neuroprotection Laboratories, Center of Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA; (X.L.); (W.D.); (L.D.); (D.C.); (P.W.); (Z.Y.); (X.Q.); (D.S.W.); (M.M.T.)
| | - Li Du
- Multidisciplinary Neuroprotection Laboratories, Center of Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA; (X.L.); (W.D.); (L.D.); (D.C.); (P.W.); (Z.Y.); (X.Q.); (D.S.W.); (M.M.T.)
| | - Dongmei Chu
- Multidisciplinary Neuroprotection Laboratories, Center of Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA; (X.L.); (W.D.); (L.D.); (D.C.); (P.W.); (Z.Y.); (X.Q.); (D.S.W.); (M.M.T.)
| | - Peng Wang
- Multidisciplinary Neuroprotection Laboratories, Center of Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA; (X.L.); (W.D.); (L.D.); (D.C.); (P.W.); (Z.Y.); (X.Q.); (D.S.W.); (M.M.T.)
| | - Zhong Yang
- Multidisciplinary Neuroprotection Laboratories, Center of Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA; (X.L.); (W.D.); (L.D.); (D.C.); (P.W.); (Z.Y.); (X.Q.); (D.S.W.); (M.M.T.)
| | - Xingguang Qu
- Multidisciplinary Neuroprotection Laboratories, Center of Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA; (X.L.); (W.D.); (L.D.); (D.C.); (P.W.); (Z.Y.); (X.Q.); (D.S.W.); (M.M.T.)
| | - Zhenxing Yang
- Department of Neurosurgery, Duke University Medical Center, Durham, NC 27710, USA;
| | - Ines Batinic-Haberle
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA;
| | - Ivan Spasojevic
- Pharmacokinetics and Pharmacodynamics Core, Duke Cancer Institute, and Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - David S. Warner
- Multidisciplinary Neuroprotection Laboratories, Center of Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA; (X.L.); (W.D.); (L.D.); (D.C.); (P.W.); (Z.Y.); (X.Q.); (D.S.W.); (M.M.T.)
- Department of Neurosurgery, Duke University Medical Center, Durham, NC 27710, USA;
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | | | - Miriam M. Treggiari
- Multidisciplinary Neuroprotection Laboratories, Center of Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA; (X.L.); (W.D.); (L.D.); (D.C.); (P.W.); (Z.Y.); (X.Q.); (D.S.W.); (M.M.T.)
| | - Huaxin Sheng
- Multidisciplinary Neuroprotection Laboratories, Center of Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA; (X.L.); (W.D.); (L.D.); (D.C.); (P.W.); (Z.Y.); (X.Q.); (D.S.W.); (M.M.T.)
| |
Collapse
|
2
|
Sharma S, Sharma P, Subedi U, Bhattarai S, Miller C, Manikandan S, Batinic-Haberle I, Spasojevic I, Sun H, Panchatcharam M, Miriyala S. Mn(III) Porphyrin, MnTnBuOE-2-PyP 5+, Commonly Known as a Mimic of Superoxide Dismutase Enzyme, Protects Cardiomyocytes from Hypoxia/Reoxygenation Induced Injury via Reducing Oxidative Stress. Int J Mol Sci 2023; 24:6159. [PMID: 37047131 PMCID: PMC10094288 DOI: 10.3390/ijms24076159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/15/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Myocardial ischemia-reperfusion injury (I/R) causes damage to cardiomyocytes through oxidative stress and apoptosis. We investigated the cardioprotective effects of MnTnBuOE-2-PyP5+ (BMX-001), a superoxide dismutase mimic, in an in vitro model of I/R injury in H9c2 cardiomyocytes. We found that BMX-001 protected against hypoxia/reoxygenation (H/R)-induced oxidative stress, as evident by a significant reduction in intracellular and mitochondrial superoxide levels. BMX-001 pre-treatment also reduced H/R-induced cardiomyocyte apoptosis, as marked by a reduction in TUNEL-positive cells. We further demonstrated that BMX-001 pre-treatment significantly improved mitochondrial function, particularly O2 consumption, in mouse adult cardiomyocytes subjected to H/R. BMX-001 treatment also attenuated cardiolipin peroxidation, 4-hydroxynonenal (4-HNE) level, and 4-HNE adducted proteins following H/R injury. Finally, the pre-treatment with BMX-001 improved cell viability and lactate dehydrogenase (LDH) activity in H9c2 cells following H/R injury. Our findings suggest that BMX-001 has therapeutic potential as a cardioprotective agent against oxidative stress-induced H/R damage in H9c2 cardiomyocytes.
Collapse
Affiliation(s)
- Sudha Sharma
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences-Shreveport, Shreveport, LA 71103, USA
| | - Papori Sharma
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences-Shreveport, Shreveport, LA 71103, USA
| | - Utsab Subedi
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences-Shreveport, Shreveport, LA 71103, USA
| | - Susmita Bhattarai
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences-Shreveport, Shreveport, LA 71103, USA
| | - Chloe Miller
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences-Shreveport, Shreveport, LA 71103, USA
| | - Shrivats Manikandan
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences-Shreveport, Shreveport, LA 71103, USA
| | - Ines Batinic-Haberle
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ivan Spasojevic
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
- Pharmacokinetics/Pharmacodynamics (PK/PD) Core Laboratory, Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Hong Sun
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences-Shreveport, Shreveport, LA 71103, USA
| | - Manikandan Panchatcharam
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences-Shreveport, Shreveport, LA 71103, USA
| | - Sumitra Miriyala
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences-Shreveport, Shreveport, LA 71103, USA
| |
Collapse
|
3
|
Wang F, Zhou L, Eliaz A, Hu C, Qiang X, Ke L, Chertow G, Eliaz I, Peng Z. The potential roles of galectin-3 in AKI and CKD. Front Physiol 2023; 14:1090724. [PMID: 36909244 PMCID: PMC9995706 DOI: 10.3389/fphys.2023.1090724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/09/2023] [Indexed: 02/25/2023] Open
Abstract
Acute kidney injury (AKI) is a common condition with high morbidity and mortality, and is associated with the development and progression of chronic kidney disease (CKD). The beta-galactoside binding protein galectin-3 (Gal3), with its proinflammatory and profibrotic properties, has been implicated in the development of both AKI and CKD. Serum Gal3 levels are elevated in patients with AKI and CKD, and elevated Gal3 is associated with progression of CKD. In addition, Gal3 is associated with the incidence of AKI among critically ill patients, and blocking Gal3 in murine models of sepsis and ischemia-reperfusion injury results in significantly lower AKI incidence and mortality. Here we review the role of Gal3 in the pathophysiology of AKI and CKD, as well as the therapeutic potential of targeting Gal3.
Collapse
Affiliation(s)
- Fengyun Wang
- Department of Critical Care Medicine, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Lixin Zhou
- Department of Critical Care Medicine, The First People's Hospital of Foshan, Foshan, China
| | - Amity Eliaz
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Chang Hu
- Department of Critical Care Medicine, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Xinhua Qiang
- Department of Critical Care Medicine, The First People's Hospital of Foshan, Foshan, China
| | - Li Ke
- Department of Critical Care Medicine, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Glenn Chertow
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Isaac Eliaz
- Amitabha Medical Center, Santa Rosa, CA, United States
| | - Zhiyong Peng
- Department of Critical Care Medicine, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China.,Center of Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| |
Collapse
|
4
|
Forman HJ, Zhang H. Targeting oxidative stress in disease: promise and limitations of antioxidant therapy. Nat Rev Drug Discov 2021; 20:689-709. [PMID: 34194012 PMCID: PMC8243062 DOI: 10.1038/s41573-021-00233-1] [Citation(s) in RCA: 1246] [Impact Index Per Article: 311.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2021] [Indexed: 02/06/2023]
Abstract
Oxidative stress is a component of many diseases, including atherosclerosis, chronic obstructive pulmonary disease, Alzheimer disease and cancer. Although numerous small molecules evaluated as antioxidants have exhibited therapeutic potential in preclinical studies, clinical trial results have been disappointing. A greater understanding of the mechanisms through which antioxidants act and where and when they are effective may provide a rational approach that leads to greater pharmacological success. Here, we review the relationships between oxidative stress, redox signalling and disease, the mechanisms through which oxidative stress can contribute to pathology, how antioxidant defences work, what limits their effectiveness and how antioxidant defences can be increased through physiological signalling, dietary components and potential pharmaceutical intervention.
Collapse
Affiliation(s)
- Henry Jay Forman
- University of California Merced, Merced, CA, USA.
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA.
| | - Hongqiao Zhang
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
5
|
Mn porphyrins as a novel treatment targeting sickle cell NOXs to reverse and prevent acute vaso-occlusion in vivo. Blood Adv 2021; 4:2372-2386. [PMID: 32479589 DOI: 10.1182/bloodadvances.2020001642] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/28/2020] [Indexed: 12/11/2022] Open
Abstract
In sickle cell disease (SCD), adhesion of sickle red blood cells (SSRBCs) and activated leukocytes in inflamed venules affects blood rheology, causing vaso-occlusive manifestations and vital reduction in microvascular blood flow. Recently, we found that NADPH oxidases (NOXs) create a vicious feedback loop within SSRBCs. This positive feedback loop mediates SSRBC adhesion to the endothelium. We show for the first time the therapeutic effectiveness of the redox-active manganese (Mn) porphyrins MnTnBuOE-2-PyP5+ (MnBuOE; BMX-001) and MnTE-2-PyP5+ (MnE; BMX-010, AEOL10113) to treat established vaso-occlusion in a humanized sickle mouse model of an acute vaso-occlusive crisis using intravital microscopy. These Mn porphyrins can suppress SSRBC NOX activity. Subcutaneous administration of only 1 dose of MnBuOE or MnE at 0.1 to 2 mg/kg after the inflammatory trigger of vaso-occlusion, or simultaneously, reversed and reduced leukocyte and SSRBC adhesion, diminished leukocyte rolling, restored blood flow, and increased survival rate. Furthermore, MnBuOE and MnE administered to sickle mice subcutaneously at 0.1 to 1 mg/kg for 28 days (except on weekends) did not exacerbate anemia, which seemed to be due to downregulation of both SSRBC reactive oxygen species production and exposure of the eryptotic marker phosphatidylserine. In addition, Mn porphyrins ameliorated leukocytosis, venous blood gases, endothelial activation, and organ oxidative damage. Our data suggest that Mn porphyrins, likely by repressing NOX-mediated adhesive function of SSRBCs and activated leukocytes, could represent a novel, safe therapeutic intervention to treat or prevent the establishment of acute pain crises. These NOX-targeted antioxidants merit further assessment in SCD clinical trials.
Collapse
|
6
|
Batinic-Haberle I, Tovmasyan A, Huang Z, Duan W, Du L, Siamakpour-Reihani S, Cao Z, Sheng H, Spasojevic I, Alvarez Secord A. H 2O 2-Driven Anticancer Activity of Mn Porphyrins and the Underlying Molecular Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6653790. [PMID: 33815656 PMCID: PMC7987459 DOI: 10.1155/2021/6653790] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023]
Abstract
Mn(III) ortho-N-alkyl- and N-alkoxyalkyl porphyrins (MnPs) were initially developed as superoxide dismutase (SOD) mimics. These compounds were later shown to react with numerous reactive species (such as ONOO-, H2O2, H2S, CO3 •-, ascorbate, and GSH). Moreover, the ability of MnPs to oxidatively modify activities of numerous proteins has emerged as their major mechanism of action both in normal and in cancer cells. Among those proteins are transcription factors (NF-κB and Nrf2), mitogen-activated protein kinases, MAPKs, antiapoptotic bcl-2, and endogenous antioxidative defenses. The lead Mn porphyrins, namely, MnTE-2-PyP5+ (BMX-010, AEOL10113), MnTnBuOE-2-PyP5+ (BMX-001), and MnTnHex-2-PyP5+, were tested in numerous injuries of normal tissue and cellular and animal cancer models. The wealth of the data led to the progression of MnTnBuOE-2-PyP5+ into four Phase II clinical trials on glioma, head and neck cancer, anal cancer, and multiple brain metastases, while MnTE-2-PyP5+ is in Phase II clinical trial on atopic dermatitis and itch.
Collapse
Affiliation(s)
- Ines Batinic-Haberle
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Artak Tovmasyan
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Zhiqing Huang
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Weina Duan
- Departments of Anesthesiology, Neurobiology, and Neurosurgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Li Du
- Departments of Anesthesiology, Neurobiology, and Neurosurgery, Duke University School of Medicine, Durham, NC 27710, USA
| | | | - Zhipeng Cao
- Departments of Anesthesiology, Neurobiology, and Neurosurgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Huaxin Sheng
- Departments of Anesthesiology, Neurobiology, and Neurosurgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ivan Spasojevic
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
- Pharmacokinetics/Pharmacodynamics (PK/PD) Core Laboratory, Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Angeles Alvarez Secord
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
7
|
Kitada M, Xu J, Ogura Y, Monno I, Koya D. Manganese Superoxide Dismutase Dysfunction and the Pathogenesis of Kidney Disease. Front Physiol 2020; 11:755. [PMID: 32760286 PMCID: PMC7373076 DOI: 10.3389/fphys.2020.00755] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 06/11/2020] [Indexed: 12/12/2022] Open
Abstract
The mitochondria are a major source of reactive oxygen species (ROS). Superoxide anion (O2•–) is produced by the process of oxidative phosphorylation associated with glucose, amino acid, and fatty acid metabolism, resulting in the production of adenosine triphosphate (ATP) in the mitochondria. Excess production of reactive oxidants in the mitochondria, including O2•–, and its by-product, peroxynitrite (ONOO–), which is generated by a reaction between O2•– with nitric oxide (NO•), alters cellular function via oxidative modification of proteins, lipids, and nucleic acids. Mitochondria maintain an antioxidant enzyme system that eliminates excess ROS; manganese superoxide dismutase (Mn-SOD) is one of the major components of this system, as it catalyzes the first step involved in scavenging ROS. Reduced expression and/or the activity of Mn-SOD results in diminished mitochondrial antioxidant capacity; this can impair the overall health of the cell by altering mitochondrial function and may lead to the development and progression of kidney disease. Targeted therapeutic agents may protect mitochondrial proteins, including Mn-SOD against oxidative stress-induced dysfunction, and this may consequently lead to the protection of renal function. Here, we describe the biological function and regulation of Mn-SOD and review the significance of mitochondrial oxidative stress concerning the pathogenesis of kidney diseases, including chronic kidney disease (CKD) and acute kidney injury (AKI), with a focus on Mn-SOD dysfunction.
Collapse
Affiliation(s)
- Munehiro Kitada
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Japan.,Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute, Kanazawa Medical University, Uchinada, Japan
| | - Jing Xu
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Japan
| | - Yoshio Ogura
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Japan
| | - Itaru Monno
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Japan
| | - Daisuke Koya
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Japan.,Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute, Kanazawa Medical University, Uchinada, Japan
| |
Collapse
|
8
|
Gu M, Mei X, Zhao Y. Galectins as potential pharmacological targets in renal injuries of diverse etiology. Eur J Pharmacol 2020; 881:173213. [PMID: 32450176 DOI: 10.1016/j.ejphar.2020.173213] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/14/2020] [Accepted: 05/19/2020] [Indexed: 02/07/2023]
Abstract
Galectins are carbohydrate-binding proteins, and their importance in renal diseases of diverse etiology has been documented. Amongst different galectins, the role of galectin-3 in the pathophysiology of renal diseases has been well documented. There is an increase in galectin-3 in the circulation as well as on the kidneys in chronic kidney disease patients. The increase in galectin-3 is negatively correlated with a decrease in renal function and overall survival rate. The preclinical studies also correlate the increase in galectin-3 levels with renal dysfunction. Accordingly, scientists have exploited galectin-3 as a potential pharmacological target to improve renal functions in different preclinical models of renal injury. Apart from galectin-3, there have been few studies documenting the role of galectin-1, 8, and 9 in renal diseases. The role of galectin-1 is not clearly identified, and there have been conflicting reports regarding its role in renal diseases. Galectin-8 and 9 impart renoprotective effects as per clinical and preclinical studies, respectively. The present review discusses the role of different galectins in renal diseases of diverse etiology.
Collapse
Affiliation(s)
- Ming Gu
- Department of Emergency and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, 130041, China.
| | - Xianglin Mei
- Department of Pathology, The Second Hospital of Jilin University, Changchun, 130041, China.
| | - Yanan Zhao
- Neurology Department, China-Japan Union Hospital of Jilin University, Changchun, 130000, China.
| |
Collapse
|
9
|
Shrishrimal S, Chatterjee A, Kosmacek EA, Davis PJ, McDonald JT, Oberley-Deegan RE. Manganese porphyrin, MnTE-2-PyP, treatment protects the prostate from radiation-induced fibrosis (RIF) by activating the NRF2 signaling pathway and enhancing SOD2 and sirtuin activity. Free Radic Biol Med 2020; 152:255-270. [PMID: 32222469 PMCID: PMC7276298 DOI: 10.1016/j.freeradbiomed.2020.03.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/20/2020] [Accepted: 03/21/2020] [Indexed: 12/13/2022]
Abstract
Radiation therapy is a frequently used treatment for prostate cancer patients. Manganese (III) meso-tetrakis (N-ethylpyridinium-2-yl) porphyrin (MnTE-2-PyP or T2E or BMX-010) and other similar manganese porphyrin compounds that scavenge superoxide molecules have been demonstrated to be effective radioprotectors and prevent the development of radiation-induced fibrosis (RIF). However, understanding the molecular pathway changes associated with these compounds remains limited for radioprotection. Recent RNA-sequencing data from our laboratory revealed that MnTE-2-PyP treatment activated the nuclear factor erythroid 2-related factor 2 (NRF2) signaling pathway. Therefore, we hypothesize that MnTE-2-PyP protects the prostate from RIF by activating the NRF2 signaling pathway. We identified that MnTE-2-PyP is a post-translational activator of NRF2 signaling in prostate fibroblast cells, which plays a major role in fibroblast activation and myofibroblast differentiation. The mechanism of NRF2 activation involves an increase in hydrogen peroxide and a corresponding decrease in kelch-like ECH-associated protein 1 (KEAP1) levels. Activation of NRF2 signaling leads to an increase in expression of NAD(P)H dehydrogenase [quinone] 1 (NQO1), nicotinamide adenine dinucleotide (NAD+) levels, sirtuin activity (nuclear and mitochondrial), and superoxide dismutase 2 (SOD2) expression/activity. Increase in mitochondrial sirtuin activity correlates with a decrease in SOD2 (K122) acetylation. This decrease in SOD2 K122 acetylation correlates with an increase in SOD2 activity and mitochondrial superoxide scavenging capacity. Further, in human primary prostate fibroblast cells, the NRF2 pathway plays a major role in the fibroblast to myofibroblast transformation, which is responsible for the fibrotic phenotype. In the context of radiation protection, MnTE-2-PyP fails to prevent fibroblast to myofibroblast transformation in the absence of NRF2 signaling. Collectively, our results indicate that the activation of the NRF2 signaling pathway by MnTE-2-PyP is at least a partial mechanism of radioprotection in prostate fibroblast cells.
Collapse
Affiliation(s)
- Shashank Shrishrimal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Arpita Chatterjee
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Elizabeth A Kosmacek
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | | | - J Tyson McDonald
- Department of Physics, Hampton University, Hampton, VA, 23668, USA
| | - Rebecca E Oberley-Deegan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
10
|
Superoxide Dismutase Mimic, MnTE-2-PyP Enhances Rectal Anastomotic Strength in Rats after Preoperative Chemoradiotherapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3509859. [PMID: 32351671 PMCID: PMC7178539 DOI: 10.1155/2020/3509859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/21/2020] [Accepted: 03/30/2020] [Indexed: 12/18/2022]
Abstract
Background Rectal cancer is one of the malignant diseases with high morbidity and mortality in the world. Currently, surgical resection is the main treatment method, and preoperative chemoradiotherapy (CRT) is widely used in clinical application to increase resectability and decrease the local recurrence rate. However, CRT increases the risk of colon anastomotic leak, and currently, there are no FDA approved treatments against this side effect. It is essential to develop new drugs to reduce postoperative anastomotic leak after preoperative CRT. Methods 90 rats underwent standard resection and intestine anastomosis treatment and were divided into six groups for different treatments. During the relaparotomy, bursting pressure of anastomosis was measured and intestinal segments were taken for histopathologic examination and biochemical analyses. RT-PCR and ELISA were applied to measure matrix metalloproteinase (MMP) mRNA and protein levels. Blood vessels were observed by immunohistochemistry, and collagen deposition was observed by Picrosirius Red staining. Results Preoperative CRT reduced the postoperative anastomotic strength. MnTE-2-PyP increased the bursting pressure and hydroxyproline levels of intestine anastomosis after CRT treatment. Mechanically, MnTE-2-PyP decreased the MMP levels and increased microvessel density (MVD) and collagen deposition. The MMP inhibitor doxycycline had a positive effect on anastomosis healing, but was inferior to MnTE-2-PyP. Conclusions MnTE-2-PyP enhanced intestine anastomotic strength in rats with preoperative CRT. Specifically, MnTE-2-PyP decreased MMP levels and increased MVD in anastomosis. Therefore, MnTE-2-PyP may be helpful in the prevention of anastomotic leak after preoperative CRT.
Collapse
|
11
|
Batinic-Haberle I, Spasojevic I. 25 years of development of Mn porphyrins — from mimics of superoxide dismutase enzymes to thiol signaling to clinical trials: The story of our life in the USA. J PORPHYR PHTHALOCYA 2020. [DOI: 10.1142/s1088424619300283] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We have developed Mn porphyrins (MnPs) initially as mimics of superoxide dismutase (SOD) enzymes based on structure–activity relationships. Several cationic Mn porphyrins, being substituted with cationic ortho [Formula: see text]-alkyl- or alkoxyalkylpyridyl groups in meso positions of the porphyrin ring, have been identified as potential therapeutics based on their high SOD-like activity and high bioavailability. Two of those [Mn(III) meso-tetrakis([Formula: see text]-ethylpyridinium-2-yl)porphyrin, MnTE-2-PyP[Formula: see text] (BMX-010, AEOL10113) and Mn(III) meso-tetrakis(Nn-butoxyethylpyridinium-2-yl)porphyrin, MnTnBuOE-2-PyP[Formula: see text] (BMX-001)] are now in five Phase II clinical trials. Studies of ours, and those of others, contributed to the understanding of the diverse activities of these compounds. With biologically compatible potentials and four biologically accessible oxidation states, Mn porphyrins interact with numerous reactive species, both as oxidants and reductants. Among those reactions, their abilities to (catalytically) oxidize [Formula: see text]-glutathionylate protein thiols may perhaps be their major in vivo mode of action. Via [Formula: see text]-glutathionylation, MnPs modulate actions of signaling proteins and, in turn, cellular apoptotic and proliferative pathways. During the major part of our stay in the USA, our lives have been dedicated to Mn porphyrins. Our families and especially our son and his three babies have been our inspiration not to give up on a life often burdened with hardship. It is thus our immense pleasure to see our compounds in clinical trials. Above all, we hope that our story will inspire future researchers to persevere — women in particular.
Collapse
Affiliation(s)
- Ines Batinic-Haberle
- Departments of Radiation Oncology and Pharmaceutical Research Shared Resource, Duke School of Medicine, Durham NC 27710, USA
| | - Ivan Spasojevic
- Departments of Medicine and Pharmaceutical Research Shared Resource, Duke School of Medicine, Durham NC 27710, USA
- PK/PD Core Laboratory, Pharmaceutical Research Shared Resource, Duke School of Medicine, Durham NC 27710, USA
| |
Collapse
|
12
|
Batinic-Haberle I, Tome ME. Thiol regulation by Mn porphyrins, commonly known as SOD mimics. Redox Biol 2019; 25:101139. [PMID: 31126869 PMCID: PMC6859569 DOI: 10.1016/j.redox.2019.101139] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/18/2019] [Accepted: 02/07/2019] [Indexed: 01/27/2023] Open
Abstract
Superoxide dismutases play an important role in human health and disease. Three decades of effort have gone into synthesizing SOD mimics for clinical use. The result is the Mn porphyrins which have SOD-like activity. Several clinical trials are underway to test the efficacy of these compounds in patients, particularly as radioprotectors of normal tissue during cancer treatment. However, aqueous chemistry data indicate that the Mn porphyrins react equally well with multiple redox active species in cells including H2O2, O2•-, ONOO-, thiols, and ascorbate among others. The redox potential of the Mn porphyrins is midway between the potentials for the oxidation and reduction of O2•-. This positions them to react equally well as oxidants and reductants in cells. The result of this unique chemistry is that: 1) the species the Mn porphyrins react with in vivo will depend on the relative concentrations of the reactive species and Mn porphyrins in the cell of interest, and 2) the Mn porphyrins will act as catalytic (redox cycling) agents in vivo. The ability of the Mn porphyrins to catalyze protein S-glutathionylation means that Mn porphyrins have the potential to globally modulate cellular redox regulatory signaling networks. The purpose of this review is to summarize the data that indicate the Mn porphyrins have diverse reactions in vivo that are the basis of the observed biological effects. The ability to catalyze multiple reactions in vivo expands the potential therapeutic use of the Mn porphyrins to disease models that are not SOD based.
Collapse
Affiliation(s)
- Ines Batinic-Haberle
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Margaret E Tome
- Departments of Pathology and Pharmacology, University of Arizona, Tucson, AZ 85724, USA.
| |
Collapse
|
13
|
Batinic-Haberle I, Tovmasyan A, Spasojevic I. Mn Porphyrin-Based Redox-Active Drugs: Differential Effects as Cancer Therapeutics and Protectors of Normal Tissue Against Oxidative Injury. Antioxid Redox Signal 2018; 29:1691-1724. [PMID: 29926755 PMCID: PMC6207162 DOI: 10.1089/ars.2017.7453] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
SIGNIFICANCE After approximatelty three decades of research, two Mn(III) porphyrins (MnPs), MnTE-2-PyP5+ (BMX-010, AEOL10113) and MnTnBuOE-2-PyP5+ (BMX-001), have progressed to five clinical trials. In parallel, another similarly potent metal-based superoxide dismutase (SOD) mimic-Mn(II)pentaaza macrocycle, GC4419-has been tested in clinical trial on application, identical to that of MnTnBuOE-2-PyP5+-radioprotection of normal tissue in head and neck cancer patients. This clearly indicates that Mn complexes that target cellular redox environment have reached sufficient maturity for clinical applications. Recent Advances: While originally developed as SOD mimics, MnPs undergo intricate interactions with numerous redox-sensitive pathways, such as those involving nuclear factor κB (NF-κB) and nuclear factor E2-related factor 2 (Nrf2), thereby impacting cellular transcriptional activity. An increasing amount of data support the notion that MnP/H2O2/glutathione (GSH)-driven catalysis of S-glutathionylation of protein cysteine, associated with modification of protein function, is a major action of MnPs on molecular level. CRITICAL ISSUES Differential effects of MnPs on normal versus tumor cells/tissues, which support their translation into clinic, arise from differences in their accumulation and redox environment of such tissues. This in turn results in different yields of MnP-driven modifications of proteins. Thus far, direct evidence for such modification of NF-κB, mitogen-activated protein kinases (MAPK), phosphatases, Nrf2, and endogenous antioxidative defenses was provided in tumor, while indirect evidence shows the modification of NF-κB and Nrf2 translational activities by MnPs in normal tissue. FUTURE DIRECTIONS Studies that simultaneously explore differential effects in same animal are lacking, while they are essential for understanding of extremely intricate interactions of metal-based drugs with complex cellular networks of normal and cancer cells/tissues.
Collapse
Affiliation(s)
- Ines Batinic-Haberle
- 1 Department of Radiation Oncology, Duke University School of Medicine , Durham, North Carolina
| | - Artak Tovmasyan
- 1 Department of Radiation Oncology, Duke University School of Medicine , Durham, North Carolina
| | - Ivan Spasojevic
- 2 Department of Medicine, Duke University School of Medicine , Durham, North Carolina.,3 PK/PD Core Laboratory, Pharmaceutical Research Shared Resource, Duke Cancer Institute , Durham, North Carolina
| |
Collapse
|
14
|
Tovmasyan A, Bueno-Janice JC, Jaramillo MC, Sampaio RS, Reboucas JS, Kyui N, Benov L, Deng B, Huang TT, Tome ME, Spasojevic I, Batinic-Haberle I. Radiation-Mediated Tumor Growth Inhibition Is Significantly Enhanced with Redox-Active Compounds That Cycle with Ascorbate. Antioxid Redox Signal 2018; 29:1196-1214. [PMID: 29390861 PMCID: PMC6157436 DOI: 10.1089/ars.2017.7218] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 01/12/2018] [Accepted: 02/01/2018] [Indexed: 12/24/2022]
Abstract
AIMS We aim here to demonstrate that radiation (RT) enhances tumor sensitization by only those Mn complexes that are redox active and cycle with ascorbate (Asc), thereby producing H2O2 and utilizing it subsequently in protein S-glutathionylation in a glutathione peroxidase (GPx)-like manner. In turn, such compounds affect cellular redox environment, described by glutathione disulfide (GSSG)/glutathione (GSH) ratio, and tumor growth. To achieve our goal, we tested several Mn complexes of different chemical and physical properties in cellular and animal flank models of 4T1 breast cancer cell. Four other cancer cell lines were used to substantiate key findings. RESULTS Joint administration of cationic Mn porphyrin (MnP)-based redox active compounds, MnTE-2-PyP5+ or MnTnBuOE-2-PyP5+ with RT and Asc contributes to high H2O2 production in cancer cells and tumor, which along with high MnP accumulation in cancer cells and tumor induces the largest suppression of cell viability and tumor growth, while increasing GSSG/GSH ratio and levels of total S-glutathionylated proteins. Redox-inert MnP, MnTBAP3- and two other different types of redox-active Mn complexes (EUK-8 and M40403) were neither efficacious in the cellular nor in the animal model. Such outcome is in accordance with their inability to catalyze Asc oxidation and mimic GPx. INNOVATION We provided here the first evidence how structure-activity relationship between the catalytic potency and the redox properties of Mn complexes controls their ability to impact cellular redox environment and thus enhance the radiation and ascorbate-mediated tumor suppression. CONCLUSIONS The interplay between the accumulation of cationic MnPs and their potency as catalysts for oxidation of Asc, protein cysteines, and GSH controls the magnitude of their anticancer therapeutic effects.
Collapse
Affiliation(s)
- Artak Tovmasyan
- Department of Radiation Oncology, Duke University School of Medicine, Durham, North Carolina
| | | | | | - Romulo S. Sampaio
- Department of Radiation Oncology, Duke University School of Medicine, Durham, North Carolina
| | - Julio S. Reboucas
- Departamento de Quimica, CCEN, Universidade Federal da Paraiba, Joao Pessoa, Brazil
| | - Natalia Kyui
- Canadian Economic Analysis Department, Bank of Canada, Ottawa, Canada
| | - Ludmil Benov
- Department of Biochemistry, Faculty of Medicine, Kuwait University, Kuwait, Kuwait
| | - Brian Deng
- Palo Alto Veterans Institute for Research, Palo Alto, California
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California
| | - Ting-Ting Huang
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California
- Geriatric Research. Education, and Clinical Center (GRECC), VA Palo Alto Health Care System, Palo Alto, California
| | - Margaret E. Tome
- Department of Pharmacology, University of Arizona, Tucson, Arizona
| | - Ivan Spasojevic
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina
- PK/PD Core Laboratory, Pharmaceutical Research Shared Resource, Duke Cancer Institute, Durham, North Carolina
| | - Ines Batinic-Haberle
- Department of Radiation Oncology, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
15
|
Weng XF, Li ST, Song Q, Zhu Q, Song DD, Qin ZH, Xie Y. Protective Effect of Nicotinamide Adenine Dinucleotide Phosphate on Renal Ischemia-Reperfusion Injury. Kidney Blood Press Res 2018; 43:651-663. [PMID: 29734167 DOI: 10.1159/000489620] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 04/26/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Renal ischemia-reperfusion injury (IRI) is a common consequence of acute kidney injury. Nicotinamide adenine dinucleotide phosphate (NADPH), which is derived from the pentose phosphate pathway, is essential for the proper functioning of essential redox and antioxidant defense systems. Previous studies have indicated that NADPH is responsible for protecting the brain from ischemic injury. The goal of this study was to analyze the protective function of NADPH in renal IRI. METHODS The IRI animal model was generated through a midline laparotomy surgery that clamped both sides of the renal pedicles for 40 min to induce renal ischemia. The in vitro model was generated by removing oxygen and glucose from human kidney epithelial cells (HK-2 cells), followed by reoxygenation to imitate IRI. Renal function and histopathological changes were observed and evaluated. Additionally, malondialdehyde and glutathione levels were determined in renal tissue homogenate as indicators of oxidative stress. ROS production in cells was determined by DHE staining. Protein biomarker expression was evaluated by western blot, apoptosis was analyzed by TUNEL staining, and p65 nuclear translocation was visualized by immunofluorescence. RESULTS Our data indicated that NADPH safeguarded the kidneys from histological and functional damage, and significantly reduce cell injury along with preventing potential increases in blood urea nitrogen and creatinine levels. Furthermore, we observed that NADPH increased glutathione levels, while reducing levels of malondialdehyde and reactive oxygen species. Additionally, our results suggested that NADPH treatment may alleviate IRI-induced apoptosis and inflammation. CONCLUSION NADPH treatment may protect against renal IRI and should be further developed as a new treatment for acute kidney injury.
Collapse
Affiliation(s)
- Xiao-Fen Weng
- The First Affiliated Hospital of Soochow University, Suzhou, China
- Suzhou Municipal Hospital, Suzhou, China
| | - Song-Tao Li
- People's Hospital of Huangjing, Suzhou, China
| | - Qi Song
- The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qi Zhu
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Soochow University School of Medicine, Suzhou, China
| | - Dan-Dan Song
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Soochow University School of Medicine, Suzhou, China
| | - Zheng-Hong Qin
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Soochow University School of Medicine, Suzhou, China
| | - Yan Xie
- The First Affiliated Hospital of Soochow University, Suzhou, China,
| |
Collapse
|
16
|
Cline JM, Dugan G, Bourland JD, Perry DL, Stitzel JD, Weaver AA, Jiang C, Tovmasyan A, Owzar K, Spasojevic I, Batinic-Haberle I, Vujaskovic Z. Post-Irradiation Treatment with a Superoxide Dismutase Mimic, MnTnHex-2-PyP 5+, Mitigates Radiation Injury in the Lungs of Non-Human Primates after Whole-Thorax Exposure to Ionizing Radiation. Antioxidants (Basel) 2018. [PMID: 29518913 PMCID: PMC5874526 DOI: 10.3390/antiox7030040] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Radiation injury to the lung is the result of acute and chronic free radical formation, and there are currently few effective means of mitigating such injury. Studies in rodents indicate that superoxide dismutase mimetics may be effective in this regard; however, studies in humans or large animals are lacking. We hypothesized that post-exposure treatment with the lipophilic mitochondrial superoxide dismutase mimetic, MnTnHex-2-PyP5+ (hexyl), would reduce radiation-induced pneumonitis and fibrosis in the lungs of nonhuman primates. Rhesus monkeys (Macaca mulatta) received 10 Gy whole thorax irradiation, 10 Gy + hexyl treatment, sham irradiation, or sham irradiation + hexyl. Hexyl was given twice daily, subcutaneously, at 0.05 mg/kg, for 2 months. Animals were monitored daily, and respiratory rates, pulse oximetry, hematology and serum chemistry panels were performed weekly. Computed tomography scans were performed at 0, 2, and 4 months after irradiation. Supportive fluid therapy, corticosteroids, analgesics, and antibiotics were given as needed. All animals were humanely euthanized 4.5 months after irradiation, and pathologic assessments were made. Multifocal, progressive lung lesions were seen at 2 and 4 months in both irradiated groups. Hexyl treatment delayed the onset of radiation-induced lung lesions, reduced elevations of respiratory rate, and reduced pathologic increases in lung weight. No adverse effects of hexyl treatment were found. These results demonstrate (1) development of a nonhuman primate model of radiation-induced lung injury, (2) a significant mitigating effect of hexyl treatment on lung pathology in this model, and (3) no evidence for toxicity of hexyl at the dose studied.
Collapse
Affiliation(s)
- John Mark Cline
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1040, USA.
| | - Greg Dugan
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1040, USA.
| | - John Daniel Bourland
- Department of Radiation Oncology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1040, USA.
| | - Donna L Perry
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1040, USA.
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Frederick, MD 21702, USA.
| | - Joel D Stitzel
- Department of Biomedical Engineering, Wake Forest University School of Medicine, Biotech Place, 575 N. Patterson Ave., Winston-Salem, NC 21701, USA.
| | - Ashley A Weaver
- Department of Biomedical Engineering, Wake Forest University School of Medicine, Biotech Place, 575 N. Patterson Ave., Winston-Salem, NC 21701, USA.
| | - Chen Jiang
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC 27708, USA.
| | - Artak Tovmasyan
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27708, USA.
| | - Kouros Owzar
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC 27708, USA.
| | - Ivan Spasojevic
- Department of Medicine Duke University Medical Center, Durham, NC 27708, USA.
- Duke Cancer Institute, Pharmaceutical Research Shared Resource, PK/PD Core Laboratory, Duke University Medical Center, Durham, NC 27708, USA.
| | - Ines Batinic-Haberle
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27708, USA.
| | - Zeljko Vujaskovic
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27708, USA.
- Department of Radiation Oncology, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD 21201, USA.
| |
Collapse
|
17
|
Shin SW, Choi C, Lee GH, Son A, Kim SH, Park HC, Batinic-Haberle I, Park W. Mechanism of the Antitumor and Radiosensitizing Effects of a Manganese Porphyrin, MnHex-2-PyP. Antioxid Redox Signal 2017; 27:1067-1082. [PMID: 28358581 DOI: 10.1089/ars.2016.6889] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
AIMS Cationic manganese (Mn)-substituted N-pyridylporphyrin-based potent mimics of the family of superoxide dismutases (SODs) protect normal tissues from injury related to ionizing radiation (IR) by reducing levels of reactive oxygen and nitrogen species (ROS/RNS). Furthermore, Mn-porphyrins have demonstrated antitumor and radiosensitizing effects on cancer cells by promoting IR-induced tumor vasculature damage and apoptotic processes. In this study, we explored the underlying mechanisms of Mn-porphyrin-mediated tumor radiosensitization using murine mammary carcinoma 4T1 and melanoma B16 cells in vitro and in vivo. RESULTS Combination treatment with MnTnHex-2-PyP and IR substantially reduced cell viability, clonogenic cell survival, and DNA damage repair and synergistically increased IR-induced apoptosis of 4T1 and B16 cells. MnTnHex-2-PyP in combination with IR caused a significant delay in growth of 4T1 and B16 xenograft tumors. MnTnHex-2-PyP dose-dependently enhanced IR-mediated production of H2O2-derived species, but not superoxide. Catalase overexpression reversed MnTnHex-2-PyP-enhanced ROS production and apoptosis. Demonstrated suppression of phosphorylation of several mitogen-activated protein (MAP) kinases and activation of NF-κB by MnTnHex-2-PyP/IR, which presumably inhibited activation of the antiapoptotic pathway, are in agreement with our other data on the apoptosis of cancer cells. Innovation and Conclusions: MnTnHex-2-PyP exerted a radiosensitizing effect on 4T1 and B16 tumor models in vitro and in vivo via pro-oxidative actions and therefore bears a large therapeutic potential. When combined with IR, it attenuated DNA damage repair and triggered a shift from prosurvival pathways to apoptotic cell death, likely due to increased ROS production and disturbed cellular redox balance, acting at the level of nuclear factor κB (NF-κB). Antioxid. Redox Signal. 27, 1067-1082.
Collapse
Affiliation(s)
- Sung-Won Shin
- 1 Department of Radiation Oncology, Samsung Medical Center , Seoul, Republic of Korea.,2 Sungkyunkwan University School of Medicine , Seoul, Republic of Korea
| | - Changhoon Choi
- 1 Department of Radiation Oncology, Samsung Medical Center , Seoul, Republic of Korea
| | - Ga-Haeng Lee
- 1 Department of Radiation Oncology, Samsung Medical Center , Seoul, Republic of Korea
| | - Arang Son
- 1 Department of Radiation Oncology, Samsung Medical Center , Seoul, Republic of Korea
| | - Su-Hyeon Kim
- 1 Department of Radiation Oncology, Samsung Medical Center , Seoul, Republic of Korea
| | - Hee Chul Park
- 1 Department of Radiation Oncology, Samsung Medical Center , Seoul, Republic of Korea.,2 Sungkyunkwan University School of Medicine , Seoul, Republic of Korea
| | - Ines Batinic-Haberle
- 3 Department of Radiation Oncology, Duke University School of Medicine , Durham, North Carolina
| | - Won Park
- 1 Department of Radiation Oncology, Samsung Medical Center , Seoul, Republic of Korea.,2 Sungkyunkwan University School of Medicine , Seoul, Republic of Korea
| |
Collapse
|
18
|
Medeiros VDFLP, Azevedo ÍM, Carvalho MDF, Oliveira CN, Egito ESTD, Medeiros AC. The renoprotective effect of oral Tadalafil pretreatment on ischemia/reperfusion injury in rats. Acta Cir Bras 2017; 32:90-97. [DOI: 10.1590/s0102-865020170201] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 01/20/2017] [Indexed: 01/08/2023] Open
|
19
|
Martín-Solé O, Rodó J, García-Aparicio L, Blanch J, Cusí V, Albert A. Effects of Platelet-Rich Plasma (PRP) on a Model of Renal Ischemia-Reperfusion in Rats. PLoS One 2016; 11:e0160703. [PMID: 27551718 PMCID: PMC4994962 DOI: 10.1371/journal.pone.0160703] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 07/22/2016] [Indexed: 12/29/2022] Open
Abstract
Renal ischemia-reperfusion injury is a major cause of acute renal failure, causing renal cell death, a permanent decrease of renal blood flow, organ dysfunction and chronic kidney disease. Platelet-rich plasma (PRP) is an autologous product rich in growth factors, and therefore able to promote tissue regeneration and angiogenesis. This product has proven its efficacy in multiple studies, but has not yet been tested on kidney tissue. The aim of this work is to evaluate whether the application of PRP to rat kidneys undergoing ischemia-reperfusion reduces mid-term kidney damage. A total of 30 monorrenal Sprague-Dawley male rats underwent renal ischemia-reperfusion for 45 minutes. During ischemia, PRP (PRP Group, n = 15) or saline solution (SALINE Group, n = 15) was administered by subcapsular renal injection. Control kidneys were the contralateral organs removed immediately before the start of ischemia in the remaining kidneys. Survival, body weight, renal blood flow on Doppler ultrasound, kidney weight, kidney volume, blood biochemistry and histopathology were determined for all subjects and kidneys, as applicable. Correlations between these variables were searched for. The PRP Group showed significantly worse kidney blood flow (p = 0.045) and more histopathological damage (p<0.0001). Correlations were found between body weight, kidney volume, kidney weight, renal blood flow, histology, and serum levels of creatinine and urea. Our study provides the first evidence that treatment with PRP results in the deterioration of the kidney’s response to ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Oriol Martín-Solé
- Unit of Pediatric Urology, Department of Pediatric Surgery, Hospital Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain
- * E-mail:
| | - Joan Rodó
- Unit of Pediatric Urology, Department of Pediatric Surgery, Hospital Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain
| | - Lluís García-Aparicio
- Unit of Pediatric Urology, Department of Pediatric Surgery, Hospital Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain
| | - Josep Blanch
- Department of Pediatric Radiology, Hospital Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain
| | - Victoria Cusí
- Department of Pathology, Hospital Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain
| | - Asteria Albert
- Department of Pediatric Surgery, Hospital Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
20
|
Weitzel DH, Tovmasyan A, Ashcraft KA, Boico A, Birer SR, Roy Choudhury K, Herndon J, Rodriguiz RM, Wetsel WC, Peters KB, Spasojevic I, Batinic-Haberle I, Dewhirst MW. Neurobehavioral radiation mitigation to standard brain cancer therapy regimens by Mn(III) n-butoxyethylpyridylporphyrin-based redox modifier. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2016; 57:372-381. [PMID: 27224425 DOI: 10.1002/em.22021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 04/21/2016] [Indexed: 06/05/2023]
Abstract
Combinations of radiotherapy (RT) and chemotherapy have shown efficacy toward brain tumors. However, therapy-induced oxidative stress can damage normal brain tissue, resulting in both progressive neurocognitive loss and diminished quality of life. We have recently shown that MnTnBuOE-2-PyP(5+) (Mn(III)meso-tetrakis(N-n-butoxyethylpyridinium -2-yl)porphyrin) rescued RT-induced white matter damage in cranially-irradiated mice. Radiotherapy is not used in isolation for treatment of brain tumors; temozolomide is the standard-of-care for adult glioblastoma, whereas cisplatin is often used for treatment of pediatric brain tumors. Therefore, we evaluated the brain radiation mitigation ability of MnTnBuOE-2-PyP(5+) after either temozolomide or cisplatin was used singly or in combination with 10 Gy RT. MnTnBuOE-2-PyP(5+) accumulated in brains at low nanomolar levels. Histological and neurobehavioral testing showed a drastic decrease (1) of axon density in the corpus callosum and (2) rotorod and running wheel performance in the RT only treatment group, respectively. MnTnBuOE-2-PyP(5+) completely rescued this phenotype in irradiated animals. In the temozolomide groups, temozolomide/ RT treatment resulted in further decreased rotorod responses over RT alone. Again, MnTnBuOE-2-PyP(5+) treatment rescued the negative effects of both temozolomide ± RT on rotorod performance. While the cisplatin-treated groups did not give similar results as the temozolomide groups, inclusion of MnTnBuOE-2-PyP(5+) did not negatively affect rotorod performance. Additionally, MnTnBuOE-2-PyP(5+) sensitized glioblastomas to either RT ± temozolomide in flank tumor models. Mice treated with both MnTnBuOE-2-PyP(5+) and radio-/chemo-therapy herein demonstrated brain radiation mitigation. MnTnBuOE-2-PyP(5+) may well serve as a normal tissue radio-/chemo-mitigator adjuvant therapy to standard brain cancer treatment regimens. Environ. Mol. Mutagen. 57:372-381, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Douglas H Weitzel
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Artak Tovmasyan
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Kathleen A Ashcraft
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Alina Boico
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Samuel R Birer
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Kingshuk Roy Choudhury
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, North Carolina
| | - James Herndon
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, North Carolina
| | - Ramona M Rodriguiz
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina
- Department of Mouse Behavioral and Neuroendocrine Analysis Core Facility, Duke University Medical Center, Durham, North Carolina
| | - William C Wetsel
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina
- Department of Mouse Behavioral and Neuroendocrine Analysis Core Facility, Duke University Medical Center, Durham, North Carolina
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina
| | - Katherine B Peters
- Medicine and Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina
| | - Ivan Spasojevic
- PK/PD BioAnalytical DCI Shared Resource, Duke University Medical Center, Durham, North Carolina
| | - Ines Batinic-Haberle
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Mark W Dewhirst
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
- Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
21
|
Mitochondria-Targeted Antioxidants: Future Perspectives in Kidney Ischemia Reperfusion Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:2950503. [PMID: 27313826 PMCID: PMC4894993 DOI: 10.1155/2016/2950503] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 04/28/2016] [Indexed: 02/03/2023]
Abstract
Kidney ischemia/reperfusion injury emerges in various clinical settings as a great problem complicating the course and outcome. Ischemia/reperfusion injury is still an unsolved puzzle with a great diversity of investigational approaches, putting the focus on oxidative stress and mitochondria. Mitochondria are both sources and targets of ROS. They participate in initiation and progression of kidney ischemia/reperfusion injury linking oxidative stress, inflammation, and cell death. The dependence of kidney proximal tubule cells on oxidative mitochondrial metabolism makes them particularly prone to harmful effects of mitochondrial damage. The administration of antioxidants has been used as a way to prevent and treat kidney ischemia/reperfusion injury for a long time. Recently a new method based on mitochondria-targeted antioxidants has become the focus of interest. Here we review the current status of results achieved in numerous studies investigating these novel compounds in ischemia/reperfusion injury which specifically target mitochondria such as MitoQ, Szeto-Schiller (SS) peptides (Bendavia), SkQ1 and SkQR1, and superoxide dismutase mimics. Based on the favorable results obtained in the studies that have examined myocardial ischemia/reperfusion injury, ongoing clinical trials investigate the efficacy of some novel therapeutics in preventing myocardial infarct. This also implies future strategies in preventing kidney ischemia/reperfusion injury.
Collapse
|
22
|
Affiliation(s)
- Ines Batinic-Haberle
- 1 Department of Radiation Oncology, Duke University School of Medicine , Durham, North Carolina
| | - Artak Tovmasyan
- 1 Department of Radiation Oncology, Duke University School of Medicine , Durham, North Carolina
| | - Ivan Spasojevic
- 2 Department of Medicine, Duke University School of Medicine , Durham, North Carolina.,3 Department of PK/PD Core Laboratory, Pharmaceutical Research Shared Resource, Duke Cancer Institute, Duke University School of Medicine , Durham, North Carolina
| |
Collapse
|
23
|
Mn Porphyrin-Based Redox-Active Therapeutics. OXIDATIVE STRESS IN APPLIED BASIC RESEARCH AND CLINICAL PRACTICE 2016. [DOI: 10.1007/978-3-319-30705-3_8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
24
|
Batinic-Haberle I, Tovmasyan A, Spasojevic I. An educational overview of the chemistry, biochemistry and therapeutic aspects of Mn porphyrins--From superoxide dismutation to H2O2-driven pathways. Redox Biol 2015; 5:43-65. [PMID: 25827425 PMCID: PMC4392060 DOI: 10.1016/j.redox.2015.01.017] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 01/27/2015] [Accepted: 01/30/2015] [Indexed: 12/18/2022] Open
Abstract
Most of the SOD mimics thus far developed belong to the classes of Mn-(MnPs) and Fe porphyrins(FePs), Mn(III) salens, Mn(II) cyclic polyamines and metal salts. Due to their remarkable stability we have predominantly explored Mn porphyrins, aiming initially at mimicking kinetics and thermodynamics of the catalysis of O2(-) dismutation by SOD enzymes. Several MnPs are of potency similar to SOD enzymes. The in vivo bioavailability and toxicity of MnPs have been addressed also. Numerous in vitro and in vivo studies indicate their impressive therapeutic efficacy. Increasing insight into complex cellular redox biology has been accompanied by increasing awareness of complex redox chemistry of MnPs. During O2(-) dismutation process, the most powerful Mn porphyrin-based SOD mimics reduce and oxidize O2(-) with close to identical rate constants. MnPs reduce and oxidize other reactive species also (none of them specific to MnPs), acting as reductants (antioxidant) and pro-oxidants. Distinction must be made between the type of reactions of MnPs and the favorable therapeutic effects we observe; the latter may be of either anti- or pro-oxidative nature. H2O2/MnP mediated oxidation of protein thiols and its impact on cellular transcription seems to dominate redox biology of MnPs. It has been thus far demonstrated that the ability of MnPs to catalyze O2(-) dismutation parallels all other reactivities (such as ONOO(-) reduction) and in turn their therapeutic efficacies. Assuming that all diseases have in common the perturbation of cellular redox environment, developing SOD mimics still seems to be the appropriate strategy for the design of potent redox-active therapeutics.
Collapse
Affiliation(s)
- Ines Batinic-Haberle
- Department of Radiation Oncology, School of Medicine, Duke University, Durham, NC 27710, USA.
| | - Artak Tovmasyan
- Department of Radiation Oncology, School of Medicine, Duke University, Durham, NC 27710, USA
| | - Ivan Spasojevic
- Department of Medicine, School of Medicine, Duke University, Durham, NC 27710, USA; PK/PD BioAnalytical Duke Cancer Institute Shared Resource, School of Medicine, Duke University, Durham, NC 27710, USA
| |
Collapse
|
25
|
Ashcraft KA, Boss MK, Tovmasyan A, Roy Choudhury K, Fontanella AN, Young KH, Palmer GM, Birer SR, Landon CD, Park W, Das SK, Weitner T, Sheng H, Warner DS, Brizel DM, Spasojevic I, Batinic-Haberle I, Dewhirst MW. Novel Manganese-Porphyrin Superoxide Dismutase-Mimetic Widens the Therapeutic Margin in a Preclinical Head and Neck Cancer Model. Int J Radiat Oncol Biol Phys 2015; 93:892-900. [PMID: 26530759 DOI: 10.1016/j.ijrobp.2015.07.2283] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 07/20/2015] [Accepted: 07/24/2015] [Indexed: 11/29/2022]
Abstract
PURPOSE To test the effects of a novel Mn porphyrin oxidative stress modifier, Mn(III) meso-tetrakis(N-n-butoxyethylpyridinium-2-yl)porphyrin (MnBuOE), for its radioprotective and radiosensitizing properties in normal tissue versus tumor, respectively. METHODS AND MATERIALS Murine oral mucosa and salivary glands were treated with a range of radiation doses with or without MnBuOE to establish the dose-effect curves for mucositis and xerostomia. Radiation injury was quantified by intravital near-infrared imaging of cathepsin activity, assessment of salivation, and histologic analysis. To evaluate effects of MnBuOE on the tumor radiation response, we administered the drug as an adjuvant to fractionated radiation of FaDu xenografts. Again, a range of radiation therapy (RT) doses was administered to establish the radiation dose-effect curve. The 50% tumor control dose values with or without MnBuOE and dose-modifying factor were determined. RESULTS MnBuOE protected normal tissue by reducing RT-mediated mucositis, xerostomia, and fibrosis. The dose-modifying factor for protection against xerostomia was 0.77. In contrast, MnBuOE increased tumor local control rates compared with controls. The dose-modifying factor, based on the ratio of 50% tumor control dose values, was 1.3. Immunohistochemistry showed that MnBuOE-treated tumors exhibited a significant influx of M1 tumor-associated macrophages, which provides mechanistic insight into its radiosensitizing effects in tumors. CONCLUSIONS MnBuOE widens the therapeutic margin by decreasing the dose of radiation required to control tumor, while increasing normal tissue resistance to RT-mediated injury. This is the first study to quantitatively demonstrate the magnitude of a single drug's ability to radioprotect normal tissue while radiosensitizing tumor.
Collapse
Affiliation(s)
- Kathleen A Ashcraft
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Mary-Keara Boss
- Department of Molecular Biomedical Sciences, North Carolina State College of Veterinary Medicine, Raleigh, North Carolina
| | - Artak Tovmasyan
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | | | - Andrew N Fontanella
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - Kenneth H Young
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Gregory M Palmer
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Samuel R Birer
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Chelsea D Landon
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Won Park
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Shiva K Das
- Physics and Computing Division, Department of Radiation Oncology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Tin Weitner
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Huaxin Sheng
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina
| | - David S Warner
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina
| | - David M Brizel
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina; Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - Ivan Spasojevic
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Ines Batinic-Haberle
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Mark W Dewhirst
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina; Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina.
| |
Collapse
|
26
|
Jiang G, Wang M, Wang L, Chen H, Chen Z, Guo J, Weng X, Liu X. The protective effect of nesfatin-1 against renal ischemia–reperfusion injury in rats. Ren Fail 2015; 37:882-9. [DOI: 10.3109/0886022x.2015.1015426] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
27
|
Celic T, Španjol J, Bobinac M, Tovmasyan A, Vukelic I, Reboucas JS, Batinic-Haberle I, Bobinac D. Mn porphyrin-based SOD mimic, MnTnHex-2-PyP(5+), and non-SOD mimic, MnTBAP(3-), suppressed rat spinal cord ischemia/reperfusion injury via NF-κB pathways. Free Radic Res 2014; 48:1426-42. [PMID: 25185063 DOI: 10.3109/10715762.2014.960865] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Herein we have demonstrated that both superoxide dismutase (SOD) mimic, cationic Mn(III) meso-tetrakis(N-n-hexylpyridinium-2-yl)porphyrin (MnTnHex-2-PyP(5+)), and non-SOD mimic, anionic Mn(III) meso-tetrakis(4-carboxylatophenyl)porphyrin (MnTBAP(3-)), protect against oxidative stress caused by spinal cord ischemia/reperfusion via suppression of nuclear factor kappa B (NF-κB) pro-inflammatory pathways. Earlier reports showed that Mn(III) N-alkylpyridylporphyrins were able to prevent the DNA binding of NF-κB in an aqueous system, whereas MnTBAP(3-) was not. Here, for the first time, in a complex in vivo system-animal model of spinal cord injury-a similar impact of MnTBAP(3-), at a dose identical to that of MnTnHex-2-PyP(5+), was demonstrated in NF-κB downregulation. Rats were treated subcutaneously at 1.5 mg/kg starting at 30 min before ischemia/reperfusion, and then every 12 h afterward for either 48 h or 7 days. The anti-inflammatory effects of both Mn porphyrins (MnPs) were demonstrated in the spinal cord tissue at both 48 h and 7 days. The downregulation of NF-κB, a major pro-inflammatory signaling protein regulating astrocyte activation, was detected and found to correlate well with the suppression of astrogliosis (as glial fibrillary acidic protein) by both MnPs. The markers of oxidative stress, lipid peroxidation and protein carbonyl formation, were significantly reduced by MnPs. The favorable impact of both MnPs on motor neurons (Tarlov score and inclined plane test) was assessed. No major changes in glutathione peroxidase- and SOD-like activities were demonstrated, which implies that none of the MnPs acted as SOD mimic. Increasing amount of data on the reactivity of MnTBAP(3-) with reactive nitrogen species (RNS) (.NO/HNO/ONOO(-)) suggests that RNS/MnTBAP(3-)-driven modification of NF-κB protein cysteines may be involved in its therapeutic effects. This differs from the therapeutic efficacy of MnTnHex-2-PyP(5+) which presumably occurs via reactive oxygen species and relates to NF-κB thiol oxidation; the role of RNS cannot be excluded.
Collapse
Affiliation(s)
- T Celic
- Department of Anatomy, Faculty of Medicine, University of Rijeka , Rijeka , Croatia
| | | | | | | | | | | | | | | |
Collapse
|
28
|
McCullough PA, Kellum JA, Haase M, Müller C, Damman K, Murray PT, Cruz D, House AA, Schmidt-Ott KM, Vescovo G, Bagshaw SM, Hoste EA, Briguori C, Braam B, Chawla LS, Costanzo MR, Tumlin JA, Herzog CA, Mehta RL, Rabb H, Shaw AD, Singbartl K, Ronco C. Pathophysiology of the Cardiorenal Syndromes: Executive Summary from the Eleventh Consensus Conference of the Acute Dialysis Quality Initiative (ADQI). Blood Purif 2014. [DOI: 10.1159/000361059] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
29
|
Batinic-Haberle I, Tovmasyan A, Roberts ERH, Vujaskovic Z, Leong KW, Spasojevic I. SOD therapeutics: latest insights into their structure-activity relationships and impact on the cellular redox-based signaling pathways. Antioxid Redox Signal 2014; 20:2372-415. [PMID: 23875805 PMCID: PMC4005498 DOI: 10.1089/ars.2012.5147] [Citation(s) in RCA: 169] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 06/30/2013] [Accepted: 07/22/2013] [Indexed: 01/23/2023]
Abstract
SIGNIFICANCE Superoxide dismutase (SOD) enzymes are indispensable and ubiquitous antioxidant defenses maintaining the steady-state levels of O2·(-); no wonder, thus, that their mimics are remarkably efficacious in essentially any animal model of oxidative stress injuries thus far explored. RECENT ADVANCES Structure-activity relationship (half-wave reduction potential [E1/2] versus log kcat), originally reported for Mn porphyrins (MnPs), is valid for any other class of SOD mimics, as it is dominated by the superoxide reduction and oxidation potential. The biocompatible E1/2 of ∼+300 mV versus normal hydrogen electrode (NHE) allows powerful SOD mimics as mild oxidants and antioxidants (alike O2·(-)) to readily traffic electrons among reactive species and signaling proteins, serving as fine mediators of redox-based signaling pathways. Based on similar thermodynamics, both SOD enzymes and their mimics undergo similar reactions, however, due to vastly different sterics, with different rate constants. CRITICAL ISSUES Although log kcat(O2·(-)) is a good measure of therapeutic potential of SOD mimics, discussions of their in vivo mechanisms of actions remain mostly of speculative character. Most recently, the therapeutic and mechanistic relevance of oxidation of ascorbate and glutathionylation and oxidation of protein thiols by MnP-based SOD mimics and subsequent inactivation of nuclear factor κB has been substantiated in rescuing normal and killing cancer cells. Interaction of MnPs with thiols seems to be, at least in part, involved in up-regulation of endogenous antioxidative defenses, leading to the healing of diseased cells. FUTURE DIRECTIONS Mechanistic explorations of single and combined therapeutic strategies, along with studies of bioavailability and translational aspects, will comprise future work in optimizing redox-active drugs.
Collapse
Affiliation(s)
- Ines Batinic-Haberle
- Department of Radiation Oncology, Duke University Medical School, Durham, North Carolina
| | - Artak Tovmasyan
- Department of Radiation Oncology, Duke University Medical School, Durham, North Carolina
| | - Emily R. H. Roberts
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - Zeljko Vujaskovic
- Department of Radiation Oncology, Duke University Medical School, Durham, North Carolina
| | - Kam W. Leong
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
- King Abdulaziz University, Jeddah, Saudi Arabia Kingdom
| | - Ivan Spasojevic
- Department of Medicine, Duke University Medical School, Durham, North Carolina
| |
Collapse
|
30
|
Ali DK, Oriowo M, Tovmasyan A, Batinic-Haberle I, Benov L. Late administration of Mn porphyrin-based SOD mimic enhances diabetic complications. Redox Biol 2013; 1:457-66. [PMID: 24191241 PMCID: PMC3815015 DOI: 10.1016/j.redox.2013.09.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 09/11/2013] [Accepted: 09/12/2013] [Indexed: 01/12/2023] Open
Abstract
Mn(III) N-alkylpyridylporphyrins (MnPs) have demonstrated protection in various conditions where increased production of reactive oxygen/reactive nitrogen species (ROS/RNS), is a key pathological factors. MnPs can produce both pro-oxidative and antioxidative effects depending upon the cellular redox environment that they encounter. Previously we reported (Free Radic. Res. 39: 81–8, 2005) that when the treatment started at the onset of diabetes, Mn(III) meso-tetrakis(N-methylpyridinium-2-yl)porphyrin, MnTM-2-PyP5+ suppressed diabetes-induced oxidative stress. Diabetes, however, is rarely diagnosed at its onset. The aim of this study was to investigate if MnTM-2-PyP5+ can suppress oxidative damage and prevent diabetic complications when administered more than a week after the onset of diabetes. Diabetes was induced by streptozotocin. The MnP-based treatment started 8 days after the onset of diabetes and continued for 2 months. The effect of the treatment on activities of glutathione peroxidase, superoxide dismutase, catalase, glutathione reductase, glucose-6-phosphate dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase, and glyoxalases I and II as well as malondialdehyde and GSH/GSSG ratio were determined in kidneys. Kidney function was assessed by measuring lysozyme and total protein in urine and blood urea nitrogen. Vascular damage was evaluated by assessing vascular reactivity. Our data showed that delayed administration of MnTM-2-PyP5+ did not protect against oxidative damage and did not prevent diabetic complications. Moreover, MnTM-2-PyP5+ contributed to the kidney damage, which seems to be a consequence of its pro-oxidative action. Such outcome can be explained by advanced oxidative damage which already existed at the moment the therapy with MnP started. The data support the concept that the overall biological effect of a redox-active MnP is determined by (i) the relative concentrations of oxidants and reductants, i.e. the cellular redox environment and (ii) MnP biodistribution. Mn porphyrins (MnP) are among the most potent SOD mimics. MnP suppressed diabetes-induced oxidative stress if applied at the onset of diabetes. Delayed administration of MnP augmented oxidative stress and diabetic complications. The overall in vivo effect of MnP depends on its redox environment.
Collapse
Affiliation(s)
- Dana K. Ali
- Department of Biochemistry, Faculty of Medicine, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait
| | - Mabayoje Oriowo
- Department of Pharmacology, Faculty of Medicine, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait
| | - Artak Tovmasyan
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
| | - Ines Batinic-Haberle
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
- Correspondence to: Department of Radiation Oncology, Duke University Medical Center, Research Drive, 281b/285, MSRB I, Box 3455, Durham, NC 27710, USA. Tel.: +1 919 684 2101; fax: +1 919 684 8718.
| | - Ludmil Benov
- Department of Biochemistry, Faculty of Medicine, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait
- Corresponding author. Tel.: +965 2531 9489; fax: +965 2533 8908.
| |
Collapse
|
31
|
Rawal M, Schroeder SR, Wagner BA, Cushing CM, Welsh JL, Button AM, Du J, Sibenaller ZA, Buettner GR, Cullen JJ. Manganoporphyrins increase ascorbate-induced cytotoxicity by enhancing H2O2 generation. Cancer Res 2013; 73:5232-41. [PMID: 23764544 DOI: 10.1158/0008-5472.can-13-0470] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Renewed interest in using pharmacological ascorbate (AscH-) to treat cancer has prompted interest in leveraging its cytotoxic mechanism of action. A central feature of AscH- action in cancer cells is its ability to act as an electron donor to O2 for generating H2O2. We hypothesized that catalytic manganoporphyrins (MnP) would increase AscH- oxidation rates, thereby increasing H2O2 fluxes and cytotoxicity. Three different MnPs were tested (MnTBAP, MnT2EPyP, and MnT4MPyP), exhibiting a range of physicochemical and thermodynamic properties. Of the MnPs tested, MnT4MPyP exerted the greatest effect on increasing the rate of AscH- oxidation as determined by the concentration of ascorbate radical [Asc•-] and the rate of oxygen consumption. At concentrations that had minimal effects alone, combining MnPs and AscH- synergized to decrease clonogenic survival in human pancreatic cancer cells. This cytotoxic effect was reversed by catalase, but not superoxide dismutase, consistent with a mechanism mediated by H2O2. MnPs increased steady-state concentrations of Asc•- upon ex vivo addition to whole blood obtained either from mice infused with AscH- or patients treated with pharmacologic AscH-. Finally, tumor growth in vivo was inhibited more effectively by combining MnT4MPyP with AscH-. We concluded that MnPs increase the rate of oxidation of AscH- to leverage H2O2 flux and ascorbate-induced cytotoxicity.
Collapse
Affiliation(s)
- Malvika Rawal
- Department of Radiation Oncology, The University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Cohen J, Dorai T, Ding C, Batinic-Haberle I, Grasso M. The Administration of Renoprotective Agents Extends Warm Ischemia in a Rat Model. J Endourol 2013; 27:343-8. [DOI: 10.1089/end.2012.0194] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- Jacob Cohen
- Department of Urology, New York Medical College, New York, New York
| | - Thambi Dorai
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York
| | - Cheng Ding
- Department of Pathology, St. Luke's Roosevelt Hospital, New York, New York
| | | | - Michael Grasso
- Department of Urology, New York Medical College, New York, New York
| |
Collapse
|
33
|
Zheng Y, Lu M, Ma L, Zhang S, Qiu M, Wang Y. Osthole ameliorates renal ischemia-reperfusion injury in rats. J Surg Res 2013; 183:347-54. [PMID: 23391166 DOI: 10.1016/j.jss.2013.01.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 12/29/2012] [Accepted: 01/03/2013] [Indexed: 11/16/2022]
Abstract
BACKGROUND Renal ischemia-reperfusion (I/R) injury is a major cause of acute kidney injury. The pathogenetic mechanisms underlying I/R injury involve oxidative stress and apoptosis. Osthole, a natural coumarin derivative, has been reported to possess antioxidant and antiapoptotic activities. This study aimed to investigate the potential effects of osthole on renal I/R injury in an in vivo rat model. MATERIALS AND METHODS We induced renal I/R injury by clamping the left renal artery for 45 min followed by reperfusion, along with a contralateral nephrectomy. We randomly assigned 54 rats to three groups (18 rats/group): sham-operated, vehicle-treated I/R, and osthole-treated I/R. We treated rats intraperitoneally with osthole (40 mg/kg) or vehicle (40 mg/kg) 30 min before renal ischemia. We harvested serum and kidneys at 1, 6, and 24 h after reperfusion. Renal function and histological changes were assessed. We also determined markers of oxidative stress and cell apoptosis in kidneys. RESULTS Osthole treatment significantly attenuated renal dysfunction and histologic damage induced by I/R injury. The I/R-induced elevation in kidney malondialdehyde level decreased, whereas reduced kidney superoxide dismutase and catalase activities were markedly increased. Moreover, osthole-treated rats had a dramatic decrease in apoptotic tubular cells, along with a decrease in caspase-3 and an increase in the Bcl-2/Bax ratio. CONCLUSIONS Osthole treatment protects murine kidney from renal I/R injury by suppressing oxidative stress and cell apoptosis. Thus, osthole may represent a novel practical strategy to prevent renal I/R injury.
Collapse
Affiliation(s)
- Yi Zheng
- Department of Urology, Peking University Third Hospital, Beijing, China
| | | | | | | | | | | |
Collapse
|
34
|
Protective effect of Urtica dioica L. on renal ischemia/reperfusion injury in rat. J Mol Histol 2012; 43:691-8. [DOI: 10.1007/s10735-012-9436-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 06/21/2012] [Indexed: 10/28/2022]
|
35
|
Miriyala S, Spasojevic I, Tovmasyan A, Salvemini D, Vujaskovic Z, St. Clair D, Batinic-Haberle I. Manganese superoxide dismutase, MnSOD and its mimics. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1822:794-814. [PMID: 22198225 PMCID: PMC3304004 DOI: 10.1016/j.bbadis.2011.12.002] [Citation(s) in RCA: 294] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 12/02/2011] [Accepted: 12/02/2011] [Indexed: 12/20/2022]
Abstract
Increased understanding of the role of mitochondria under physiological and pathological conditions parallels increased exploration of synthetic and natural compounds able to mimic MnSOD - endogenous mitochondrial antioxidant defense essential for the existence of virtually all aerobic organisms from bacteria to humans. This review describes most successful mitochondrially-targeted redox-active compounds, Mn porphyrins and MitoQ(10) in detail, and briefly addresses several other compounds that are either catalysts of O(2)(-) dismutation, or its non-catalytic scavengers, and that reportedly attenuate mitochondrial dysfunction. While not a true catalyst (SOD mimic) of O(2)(-) dismutation, MitoQ(10) oxidizes O(2)(-) to O(2) with a high rate constant. In vivo it is readily reduced to quinol, MitoQH(2), which in turn reduces ONOO(-) to NO(2), producing semiquinone radical that subsequently dismutes to MitoQ(10) and MitoQH(2), completing the "catalytic" cycle. In MitoQ(10), the redox-active unit was coupled via 10-carbon atom alkyl chain to monocationic triphenylphosphonium ion in order to reach the mitochondria. Mn porphyrin-based SOD mimics, however, were designed so that their multiple cationic charge and alkyl chains determine both their remarkable SOD potency and carry them into the mitochondria. Several animal efficacy studies such as skin carcinogenesis and UVB-mediated mtDNA damage, and subcellular distribution studies of Saccharomyces cerevisiae and mouse heart provided unambiguous evidence that Mn porphyrins mimic the site and action of MnSOD, which in turn contributes to their efficacy in numerous in vitro and in vivo models of oxidative stress. Within a class of Mn porphyrins, lipophilic analogs are particularly effective for treating central nervous system injuries where mitochondria play key role. This article is part of a Special Issue entitled: Antioxidants and Antioxidant Treatment in Disease.
Collapse
Affiliation(s)
- Sumitra Miriyala
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY, 40536
| | - Ivan Spasojevic
- Department of Medicine, Duke University Medical Center, Durham, NC 27710
| | - Artak Tovmasyan
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710
| | - Daniela Salvemini
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, 1402 South Grand Blvd, St. Louis, MO 63104
| | - Zeljko Vujaskovic
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710
| | - Daret St. Clair
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY, 40536
| | - Ines Batinic-Haberle
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
36
|
Ye X, Fels D, Tovmasyan A, Aird KM, Dedeugd C, Allensworth JL, Kos I, Park W, Spasojevic I, Devi GR, Dewhirst MW, Leong KW, Batinic-Haberle I. Cytotoxic effects of Mn(III) N-alkylpyridylporphyrins in the presence of cellular reductant, ascorbate. Free Radic Res 2011; 45:1289-306. [PMID: 21859376 DOI: 10.3109/10715762.2011.616199] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Due to the ability to easily accept and donate electrons Mn(III)N-alkylpyridylporphyrins (MnPs) can dismute O(2)(·-), reduce peroxynitrite, but also generate reactive species and behave as pro-oxidants if conditions favour such action. Herein two ortho isomers, MnTE-2-PyP(5+), MnTnHex-2-PyP(5+), and a meta isomer MnTnHex-3-PyP(5+), which differ greatly with regard to their metal-centered reduction potential, E(1/2) (Mn(III)P/Mn(II)P) and lipophilicity, were explored. Employing Mn(III)P/Mn(II)P redox system for coupling with ascorbate, these MnPs catalyze ascorbate oxidation and thus peroxide production. Consequently, cancer oxidative burden may be enhanced, which in turn would suppress its growth. Cytotoxic effects on Caco-2, Hela, 4T1, HCT116 and SUM149 were studied. When combined with ascorbate, MnPs killed cancer cells via peroxide produced outside of the cell. MnTE-2-PyP(5+) was the most efficacious catalyst for peroxide production, while MnTnHex-3-PyP(5+) is most prone to oxidative degradation with H(2) , and thus the least efficacious. A 4T1 breast cancer mouse study of limited scope and success was conducted. The tumour oxidative stress was enhanced and its microvessel density reduced when mice were treated either with ascorbate or MnP/ascorbate; the trend towards tumour growth suppression was detected.
Collapse
Affiliation(s)
- Xiaodong Ye
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|