1
|
Le Pennec J, Picart C, Vivès RR, Migliorini E. Sweet but Challenging: Tackling the Complexity of GAGs with Engineered Tailor-Made Biomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312154. [PMID: 38011916 DOI: 10.1002/adma.202312154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Indexed: 11/29/2023]
Abstract
Glycosaminoglycans (GAGs) play a crucial role in tissue homeostasis by regulating the activity and diffusion of bioactive molecules. Incorporating GAGs into biomaterials has emerged as a widely adopted strategy in medical applications, owing to their biocompatibility and ability to control the release of bioactive molecules. Nevertheless, immobilized GAGs on biomaterials can elicit distinct cellular responses compared to their soluble forms, underscoring the need to understand the interactions between GAG and bioactive molecules within engineered functional biomaterials. By controlling critical parameters such as GAG type, density, and sulfation, it becomes possible to precisely delineate GAG functions within a biomaterial context and to better mimic specific tissue properties, enabling tailored design of GAG-based biomaterials for specific medical applications. However, this requires access to pure and well-characterized GAG compounds, which remains challenging. This review focuses on different strategies for producing well-defined GAGs and explores high-throughput approaches employed to investigate GAG-growth factor interactions and to quantify cellular responses on GAG-based biomaterials. These automated methods hold considerable promise for improving the understanding of the diverse functions of GAGs. In perspective, the scientific community is encouraged to adopt a rational approach in designing GAG-based biomaterials, taking into account the in vivo properties of the targeted tissue for medical applications.
Collapse
Affiliation(s)
- Jean Le Pennec
- U1292 Biosanté, INSERM, CEA, Univ. Grenoble Alpes, CNRS EMR 5000 Biomimetism and Regenerative Medicine, Grenoble, F-38054, France
| | - Catherine Picart
- U1292 Biosanté, INSERM, CEA, Univ. Grenoble Alpes, CNRS EMR 5000 Biomimetism and Regenerative Medicine, Grenoble, F-38054, France
| | | | - Elisa Migliorini
- U1292 Biosanté, INSERM, CEA, Univ. Grenoble Alpes, CNRS EMR 5000 Biomimetism and Regenerative Medicine, Grenoble, F-38054, France
| |
Collapse
|
2
|
Hamilton NJI, Tait A, Weil B, Daniels J. The Use of a Dehydrated Cellularized Collagen Matrix to Replace Fibrotic Vocal Fold Mucosa. Laryngoscope 2024; 134:882-893. [PMID: 37681762 DOI: 10.1002/lary.31034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 09/09/2023]
Abstract
OBJECTIVES Fibrosis of the vocal fold lamina propria reduces vocal cord vibration resulting in a chronically hoarse voice. We describe a novel approach using umbilical cord-derived mesenchymal stem cells in a dehydrated collagen matrix (cellogen) to reconstruct the delicate balance of extracellular matrix within the vocal fold lamina propria whilst limiting the host inflammatory response to the implant. METHODS Human umbilical cord-derived mesenchymal stem-cells were embedded in bovine type I collagen hydrogel and dehydrated using the RAFT™ 3D culture system. The extracellular matrix, cellular viability and composition, paracrine profile, and genomic profile were assessed and the scaffold engrafted onto the hind muscle of NUDE mice. RESULTS The cells retained stem-cell markers following fabrication and secreted collagen III, fibronectin, and glycosaminoglycans within the scaffold. Electron microscopy showed the scaffold consisted of single strands of protein with interspersed bundles of a similar size to native vocal fold lamina propria. The use of the dehydration step improved cell viability and upregulated the expression of genes important in wound healing and matrix organization compared with unmodified collagen hydrogel carriers. The cells were shown to secrete exosomes and cytokines and, following engraftment within an immunocompromised mouse model, appeared to modulate the host inflammatory response compared with controls. CONCLUSION This article provides a scalable cell-protein scaffold that with further modifications could provide a replacement for lost or damaged vocal fold mucosa. Further investigations are required to assess the mechanical properties of the scaffold and inhibit the differentiation of the umbilical cord-derived stem-cells following implantation. Laryngoscope, 134:882-893, 2024.
Collapse
Affiliation(s)
- Nick J I Hamilton
- Head & Neck Academic Centre, UCL Division of Surgery and Interventional Sciences, University College London, London, UK
- Royal National Ear Nose & Throat Hospital, University College London Hospitals NHS Trust, London, UK
| | - Angela Tait
- Centre for Cell, Gene & Tissue Therapy, Royal Free London NHS Foundation Trust, London, UK
| | - Ben Weil
- Centre for Cell, Gene & Tissue Therapy, Royal Free London NHS Foundation Trust, London, UK
| | - Julie Daniels
- Cells for Sight, Institute of Ophthalmology, University College London, London, UK
| |
Collapse
|
3
|
Kumari J, Hammink R, Baaij J, Wagener FADTG, Kouwer PHJ. Antifibrotic properties of hyaluronic acid crosslinked polyisocyanide hydrogels. BIOMATERIALS ADVANCES 2024; 156:213705. [PMID: 38006784 DOI: 10.1016/j.bioadv.2023.213705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 11/27/2023]
Abstract
Fibrosis is characterized by the formation of fibrous connective tissue in response to primary injury. As a result, an affected organ may lose part of its functionality due to chronic, organ-specific tissue damage. Since fibrosis is a leading cause of death worldwide, targeting fibrotic diseases with antifibrotic hydrogels can be a lifesaving therapeutic strategy. This study developed a novel hybrid antifibrotic hydrogel by combining the synthetic polyisocyanide (PIC) with hyaluronic acid (HA). Gels of PIC are highly tailorable, thermosensitive, and strongly biomimetic in architecture and mechanical properties, whereas HA is known to promote non-fibrotic fetal wound healing and inhibits inflammatory signaling. The developed HA-PIC hybrids were biocompatible with physical properties comparable to those of the PIC gels. The antifibrotic nature of the gels was assessed by 3D cultures of human foreskin fibroblasts in the presence (or absence as control) of TGFβ1 that promotes differentiation into myofibroblasts, a critical step in fibrosis. Proliferation and macroscopic contraction assays and studies on the formation of stress fibers and characteristic fibrosis markers all indicate a strong antifibrotic nature of HA-PIC hydrogel. We showed that these effects originate from both the lightly crosslinked architecture and the presence of HA itself. The hybrid displaying both these effects shows the strongest antifibrotic nature and is a promising candidate for use as in vivo treatment for skin fibrosis.
Collapse
Affiliation(s)
- Jyoti Kumari
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands; Department of Dentistry - Orthodontics and Craniofacial Biology, Radboud University Medical Centre, 6525 EX Nijmegen, the Netherlands
| | - Roel Hammink
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands; Division of Immunotherapy, Oncode Institute, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Jochem Baaij
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
| | - Frank A D T G Wagener
- Department of Dentistry - Orthodontics and Craniofacial Biology, Radboud University Medical Centre, 6525 EX Nijmegen, the Netherlands.
| | - Paul H J Kouwer
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands.
| |
Collapse
|
4
|
Bouhabel S, Park S, Kolosova K, Latifi N, Kost K, Li-Jessen NYK, Mongeau L. Functional Analysis of Injectable Substance Treatment on Surgically Injured Rabbit Vocal Folds. J Voice 2023; 37:829-839. [PMID: 34353684 PMCID: PMC8807745 DOI: 10.1016/j.jvoice.2021.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 02/04/2023]
Abstract
OBJECTIVES The objective of this study was to evaluate the efficacy of immediate injection treatments of dexamethasone, hyaluronic acid (HA)/gelatin (Ge) hydrogel and glycol-chitosan solution on the phonatory function of rabbit larynges at 42 days after surgical injury of the vocal folds, piloting a novel ex vivo phonatory functional analysis protocol. METHODS A modified microflap procedure was performed on the left vocal fold of 12 rabbits to induce an acute injury. Animals were randomized into one of four treatment groups with 0.1 mL injections of dexamethasone, HA/Ge hydrogel, glycol-chitosan or saline as control. The left mid vocal fold lamina propria was injected immediately following injury. The right vocal fold served as an uninjured control. Larynges were harvested at Day 42 after injection, then were subjected to airflow-bench evaluation. Acoustic, aerodynamic and laryngeal high-speed videoendoscopy (HSV) analyses were performed. HSV segments of the vibrating vocal folds were rated by three expert laryngologists. Six parameters related to vocal fold vibratory characteristics were evaluated on a Likert scale. RESULTS The fundamental frequency, one possible surrogate of vocal fold stiffness and scarring, was lower in the dexamethasone and HA/Ge hydrogel treatment groups compared to that of the saline control (411.52±11.63 Hz). The lowest fundamental frequency value was observed in the dexamethasone group (348.79±14.99 Hz). Expert visual ratings of the HSV segments indicated an overall positive outcome in the dexamethasone treatment group, though the impacts were below statistical significance. CONCLUSION Dexamethasone injections might be used as an adjunctive option for iatrogenic vocal fold scarring. An increased sample size, histological correlate, and experimental method improvements will be needed to confirm this finding. Results suggested a promising use of HSV and acoustic analysis techniques to identify and monitor post-surgical vocal fold repair and scarring, providing a useful tool for future studies of vocal fold scar treatments.
Collapse
Affiliation(s)
- Sarah Bouhabel
- Department of Otolaryngology - Head and Neck Surgery, McGill University, Montreal, Quebec, Canada.
| | - Scott Park
- Department of Mechanical Engineering, McGill University, Montreal, Quebec, Canada
| | - Ksenia Kolosova
- Department of Physics, McGill University, Montreal, Quebec, Canada
| | - Neda Latifi
- Department of Mechanical Engineering, McGill University, Montreal, Quebec, Canada
| | - Karen Kost
- Department of Otolaryngology - Head and Neck Surgery, McGill University, Montreal, Quebec, Canada
| | - Nicole Y K Li-Jessen
- Department of Otolaryngology - Head and Neck Surgery, McGill University, Montreal, Quebec, Canada; School of Communication Sciences and Disorders, McGill University, Montreal, Quebec, Canada
| | - Luc Mongeau
- Department of Otolaryngology - Head and Neck Surgery, McGill University, Montreal, Quebec, Canada; Department of Mechanical Engineering, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
5
|
Kang HT, Park KN, Lee SW. Regenerative Effect of a 532-nm Diode Laser on Vocal Fold Scar in a Rabbit Model. J Voice 2023:S0892-1997(23)00278-3. [PMID: 37903688 DOI: 10.1016/j.jvoice.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/03/2023] [Accepted: 09/05/2023] [Indexed: 11/01/2023]
Abstract
OBJECTIVES We evaluated the regenerative effect of a 532-nm diode laser in a rabbit model of vocal fold scarring. METHODS This study included 40 male New Zealand white rabbits: 20 underwent vocal fold scar surgery only (control group) and 20 underwent 532-nm diode laser glottoplasty 1 month after vocal fold scar surgery (glottoplasty group). Histological and high-speed video analyses of vocal fold vibration were performed 1 month after vocal fold scar surgery and laser glottoplasty. The maximum amplitude of vocal fold vibration and dynamic glottal gap was measured. Real-time polymerase chain reaction (PCR) was also performed to evaluate scar regeneration and wound remodeling. Transforming growth factor (TGF)-ß1, interleukin (IL)-6, procollagen-1, matrix metalloproteinase (MMP)-2, MMP-9, hyaluronan synthase (HAS)-2, and HAS-3 levels were measured. RESULTS The maximum difference in amplitude of vocal fold vibration and the dynamic glottal gap was significantly greater in the glottoplasty than in the control group. Real-time PCR revealed significantly higher MMP-2, MMP-9, HAS-2, and HAS-3 levels, and lower TGF-ß1, IL-6, and procollagen-1 level, in the glottoplasty than control group. The histological findings showed that the lamina propria (LP) ratio (LP pixels/total vocal fold pixels) was not significantly different between the two groups. CONCLUSIONS Based on the vocal fold vibration and real-time PCR results, the 532-nm diode laser improved vocal fold vibration in a rabbit model of vocal fold scarring.
Collapse
Affiliation(s)
- Hyun Tag Kang
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Soonchunhyang University, Bucheon, Gyeonggi-do, South Korea
| | - Ki Nam Park
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Soonchunhyang University, Bucheon, Gyeonggi-do, South Korea
| | - Seung Won Lee
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Soonchunhyang University, Bucheon, Gyeonggi-do, South Korea.
| |
Collapse
|
6
|
Zhang C, Pang W, Gong T, Jiang JJ, Silverman M, Li G. 5-Aminolevulinic Acid-Mediated Photodynamic Therapy Improves Vocal Fold Wound Healing in Rats. Laryngoscope 2023; 133:1943-1951. [PMID: 36278803 DOI: 10.1002/lary.30427] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/14/2022] [Accepted: 09/22/2022] [Indexed: 07/20/2023]
Abstract
OBJECTIVE Studies showed that photodynamic therapy (PDT) might be able to prevent vocal fold scar formation when treating laryngeal lesions. We aim to investigate if PDT improves vocal wound healing and reduces scar formation in both prophylactic and remodeling procedures performed in vivo. STUDY DESIGN In vivo. METHODS Vocal fold stripping was performed in Sprague-Dawley rats. PDT was performed with intraperitoneal injection of 100 mg/kg 5-Aminolevulinic Acid (5-ALA) and 635 nm laser irradiation of 20, 40, and 60 J/cm2 . PDT was performed immediately after surgery to study the prophylactic effect and 4 weeks after surgery to study the remodeling effect. Gene expression was evaluated with real-time PCR at 1 week after PDT. Histologic evaluations were performed 12 weeks after PDT, including hematoxylin-eosin, Masson, Alcian blue staining, and immunohistochemical staining of collagen I and III. RESULTS PDT induced similar effects on the vocal fold wound healing outcomes in both prophylactic and remodeling procedures. Expression of MMP8, MMP13, HAS2, and TGFβ1 was significantly elevated. Histologic evaluation revealed significantly increased thickness, decreased density of collagen, and increased deposition of hyaluronic acid in the lamina propria. Immunohistochemistry also revealed better distribution and reduced density of collagen I and III. The most obvious changes were seen in the 60 J/cm2 PDT group. CONCLUSION PDT could significantly improve vocal wound healing by providing both prophylactic effects and remodeling effects. It may be a minimally invasive treatment for vocal fold lesions with slight vocal scarring, and may be used to treat acute or chronic vocal injury to reduce vocal scarring. LEVEL OF EVIDENCE N/A Laryngoscope, 133:1943-1951, 2023.
Collapse
Affiliation(s)
- Chi Zhang
- From the Department of Otolaryngology-Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
- The Department of Otolaryngology-Head and Neck Surgery, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, People's Republic of China
| | - Wenting Pang
- From the Department of Otolaryngology-Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Ting Gong
- The Department of Otolaryngology-Head and Neck Surgery, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, People's Republic of China
| | - Jack J Jiang
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Matthew Silverman
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Gelin Li
- From the Department of Otolaryngology-Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
7
|
Duan C, Jimenez JM, Goergen C, Cox A, Sivasankar PM, Calve S. Hydration State and Hyaluronidase Treatment Significantly Affect Porcine Vocal Fold Biomechanics. J Voice 2023; 37:348-354. [PMID: 33541766 PMCID: PMC8325720 DOI: 10.1016/j.jvoice.2021.01.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 12/30/2020] [Accepted: 01/07/2021] [Indexed: 10/22/2022]
Abstract
OBJECTIVES The understanding of vocal fold hydration state, including dehydrated, euhydrated, rehydrated tissue, and how hydration affects vocal fold biomechanical properties is still evolving. Although clinical observations support the benefits of increasing vocal fold hydration after dehydrating events, more mechanistic information on the effects of vocal fold dehydration and the beneficial effects of rehydration are needed. Alterations to hyaluronic acid (HA), an important component of the vocal fold extracellular matrix, are likely to influence the biomechanical properties of vocal folds. In this study, we investigated the influence of hydration state and HA on vocal fold tissue stiffness via biomechanical testing. STUDY DESIGN Prospective, ex vivo study design. METHODS Fresh porcine vocal folds (N = 18) were examined following sequential immersion in hypertonic (dehydration) and isotonic solutions (rehydration). In a separate experiment, vocal folds were incubated in hyaluronidase (Hyal) to remove HA. Control tissues were not exposed to any challenges. A custom micromechanical system with a microforce sensing probe was used to measure the force-displacement response. Optical strain was calculated, and ultrasound imaging was used to measure tissue cross-sectional area to obtain stress-strain curves. RESULTS Significant increases (P ≤ 0.05) were found in tangent moduli between dehydrated and rehydrated vocal folds at strains of ε = 0.15. The tangent moduli of Hyal-digested tissues significantly increased at both ε = 0.15 and 0.3 (P ≤ 0.05). CONCLUSION Vocal fold dehydration increased tissue stiffness and rehydration reduced the stiffness. Loss of HA increased vocal fold stiffness, suggesting a potential mechanical role for HA in euhydrated vocal folds.
Collapse
Affiliation(s)
- Chenwei Duan
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana; Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, Indiana
| | - Julian M Jimenez
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana; Department of Mechanical Engineering, University of Colorado-Boulder, Boulder, Colorado
| | - Craig Goergen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
| | - Abigail Cox
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana
| | - Preeti M Sivasankar
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana; Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, Indiana
| | - Sarah Calve
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana; Department of Mechanical Engineering, University of Colorado-Boulder, Boulder, Colorado.
| |
Collapse
|
8
|
Hu JJ, Zou CY, Wang R, Lei XX, Chen MJ, Xiong M, Jiang YL, Li-Ling J, Xie HQ, Yang H. An Acquired Anterior Glottic Web Model by Heat Injury with a Laryngoscopic Approach in a Rabbit. Tissue Eng Part C Methods 2023; 29:11-19. [PMID: 36463426 DOI: 10.1089/ten.tec.2022.0161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
Acquired anterior glottic webs (AGW) can lead to abnormally elevated phonatory pitch, dysphonia, and airway obstruction requiring urgent intervention. In this study, we construct a novel AGW rabbit model using heat injury by a laryngoscopic way. A primary study was conducted to identify the injury depth in rabbits' vocal folds (VFs) by graded heat energy, and the heat energy for the incurrence of epithelial layer, lamina propria, and muscular layer (ML) injury was 25, 30 and 35 W, respectively. Then, four different models were designed based on the depth and degree of the injury to determine the optimal procedure for AGW formation. Morphological features, vibratory capacity, and histopathologic features of the AGW were correspondingly evaluated. The procedure for conferring the heat injury to the depth of ML and the extent of anterior commissure and middle part of bilateral VFs showed the highest success rate of AGW formation (95%, 19/20). For its low cost, effectiveness, and stability for AGW formation, the heat injury rabbit model with a laryngoscopic approach may provide a new platform for testing novel anti-adhesion materials and bioengineered therapies. Impact Statement Tissue engineering based on biomaterials has been a very hot research field and may be introduced to prevent the acquired anterior glottic web (AGW) formation. However, lacking a widely recognized animal model for AGW has limited the trial of anti-adhesion materials in the larynx. In this study, we have developed a novel rabbit model for AGW formation by conferring a heat injury under a laryngoscope; this model is cheap, effective, and stable for the anti-adhesion materials and bioengineered therapies. Thus, this research would arouse crucial interest and be widely employed.
Collapse
Affiliation(s)
- Juan-Juan Hu
- Department of Otorhinolaryngology, Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, P.R. China.,Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Chen-Yu Zou
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Rui Wang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Xiong-Xin Lei
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Mao-Jia Chen
- Animal Experiment Center, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Ming Xiong
- Department of Otorhinolaryngology, Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, P.R. China.,Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Yan-Lin Jiang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Jesse Li-Ling
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, P.R. China.,Department of Medical Genetics, West China Second Hospital, Sichuan University, Chengdu, P.R. China
| | - Hui-Qi Xie
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Hui Yang
- Department of Otorhinolaryngology, Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, P.R. China
| |
Collapse
|
9
|
Elghouche AN, Nwosu OI, Jones AJ, Shin TJ, Matt BH, Anthony BP. Inflammatory Reactions to Laryngeal Injection of Hyaluronic Acid Derivatives. J Voice 2022:S0892-1997(22)00206-5. [PMID: 35945097 DOI: 10.1016/j.jvoice.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/05/2022] [Indexed: 10/16/2022]
Abstract
OBJECTIVES/HYPOTHESIS To report the rate and describe the characteristics and management of inflammatory reactions following injection laryngoplasty with hyaluronic acid derivatives. STUDY DESIGN Single institution, retrospective review. METHODS Adult and pediatric patients who underwent injection laryngoplasty with hyaluronic acid derivatives from 2013 to 2020 were identified. Demographics, indication for injection, type and volume of injected material, and use of general anesthesia were obtained. When a postoperative inflammatory response occurred, information regarding clinical presentation, timing, and subsequent management was collected. RESULTS A total of 464 patients who underwent 536 laryngeal injections with hyaluronic acid derivatives were included. There were 365 adult patients (median age 62 years) who underwent 431 injections and 99 pediatric patients (median age 2 years) who underwent 105 injections. The most common indications for injection were abnormal vocal fold mobility (70.3%) and aspiration (83.8%) for adult and pediatric patients, respectively. Juvéderm® was used in 449 cases (79.8% adult, 100% pediatric), and Restylane® was used in the remaining adult cases (20.2%). Procedures were mostly performed under general anesthesia (67.7% adult, 100% pediatric) with median injection volumes of 0.6 mL for adult and 0.3 mL for pediatric patients. An inflammatory reaction occurred following 3 of 536 injections (0.6%), all utilizing Juvéderm®. All three patients presented with stridor, dyspnea, and laryngeal edema within two days of injection. Each patient was admitted for observation and successfully treated with intravenous steroids and inhaled racemic epinephrine. One patient with comorbid pneumonia was intubated and required concomitant treatment with broad-spectrum antibiotics. CONCLUSIONS Inflammatory reactions to hyaluronic acid derivatives used in injection laryngoplasty are rare but represent significant patient morbidity and can be managed with anti-inflammatory and airway stabilizing measures. Patients should be counseled appropriately regarding the risks of injection laryngoplasty with hyaluronic acid derivatives.
Collapse
Affiliation(s)
- Alhasan N Elghouche
- Indiana University School of Medicine, Department of Otolaryngology - Head and Neck Surgery, Indianapolis, Indiana
| | - Obinna I Nwosu
- Harvard Medical School, Department of Otolaryngology - Head & Neck Surgery, Boston, Massachusetts
| | - Alexander J Jones
- Indiana University School of Medicine, Department of Otolaryngology - Head and Neck Surgery, Indianapolis, Indiana.
| | - Timothy J Shin
- Indiana University School of Medicine, Department of Otolaryngology - Head and Neck Surgery, Indianapolis, Indiana
| | - Bruce H Matt
- Indiana University School of Medicine, Department of Otolaryngology - Head and Neck Surgery, Indianapolis, Indiana
| | - Benjamin P Anthony
- Indiana University School of Medicine, Department of Otolaryngology - Head and Neck Surgery, Indianapolis, Indiana
| |
Collapse
|
10
|
Enver N, Azizli E, Akbulut S, Çadallı Tatar E, Yelken MK, Öztürk K, Coşkun H, Birkent AH, Büyükatalay ZÇ, Özgürsoy OB, Oğuz H. Inflammatory complications of vocal fold injection with hyaluronic acid: a multiinstitutional study. Turk J Med Sci 2021; 51:819-825. [PMID: 33350297 PMCID: PMC8203174 DOI: 10.3906/sag-2008-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/21/2020] [Indexed: 11/09/2022] Open
Abstract
Background/aim This study aimed to assess the inflammatory adverse reactions of vocal fold injection laryngoplasty with hyaluronic acid. Materials and methods This study was a retrospective chart review of patients who underwent vocal fold injection augmentation with HA injection from January 2005 to September 2016 in nine different institutions. Demographic data, indication for injection, injection techniques, types of injection material, settings of procedure, and complications were reviewed. The types of complication, onset time, and management of complications were also noted. Results In all, 467 patients were identified. The majority of patients had been injected under general anesthesia (n = 382, 84.7%). For injection material, two different types of hyaluronic acid were used: hyaluronic acid alone or hyaluronic acid with dextranomer. Complications occurred in nine patients (1.9%). The majority of complications were inflammatory reactions (n = 7, 1.47%). Main symptoms were dysphonia and/or dyspnea with an onset of 0 h to 3 weeks after the hyaluronic acid injection. Three patients were hospitalized, one of which was also intubated and observed in the intensive care unit for 24 h. Systemic steroids and antibiotics were the main medical treatment in the majority of cases. There was no statistical difference in complication rates between patients who received hyaluronic acid and those who received hyaluronic acid with dextranomer (P = 0.220). Conclusion Hyaluronic acid can be considered as a safe substance for the injection of vocal folds with a low risk of inflammatory reaction.
Collapse
Affiliation(s)
- Necati Enver
- Department of Otolaryngology, Pendik Training and Research Hospital, Marmara University, İstanbul, Turkey
| | - Elad Azizli
- Department of Otolaryngology, Private Practise, İstanbul, Turkey
| | - Sevtap Akbulut
- Department of Otolaryngology, Faculty of Medicine, Yeditepe University, İstanbul, Turkey
| | - Emel Çadallı Tatar
- Department of Otolaryngology, Dışkapı Yıldırım Beyazıt Research and Training Hospital, University of Health Sciences, Ankara,Turkey
| | | | - Kayhan Öztürk
- Department of Otorhinolaryngology, Medicana Konya Hospital, Faculty of Medicine, KTO Karatay University, Konya, Turkey
| | - Hakan Coşkun
- Department of Otolaryngology, Faculty of Medicine, Bursa Uludağ University, Turkey
| | | | - Zahide Çiler Büyükatalay
- Department of Otorhinolaryngology Head and Neck Surgery, Faculty of Medicine, Ankara University Ankara, Turkey
| | - Ozan Bağış Özgürsoy
- Department of Otorhinolaryngology Head and Neck Surgery, Faculty of Medicine, Ankara University Ankara, Turkey
| | - Haldun Oğuz
- Department of Otolaryngology, Fonomer, Ankara, Turkey
| |
Collapse
|
11
|
Gracioso Martins AM, Wilkins MD, Ligler FS, Daniele MA, Freytes DO. Microphysiological System for High-Throughput Computer Vision Measurement of Microtissue Contraction. ACS Sens 2021; 6:985-994. [PMID: 33656335 DOI: 10.1021/acssensors.0c02172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The ability to measure microtissue contraction in vitro can provide important information when modeling cardiac, cardiovascular, respiratory, digestive, dermal, and skeletal tissues. However, measuring tissue contraction in vitro often requires the use of high number of cells per tissue construct along with time-consuming microscopy and image analysis. Here, we present an inexpensive, versatile, high-throughput platform to measure microtissue contraction in a 96-well plate configuration using one-step batch imaging. More specifically, optical fiber microprobes are embedded in microtissues, and contraction is measured as a function of the deflection of optical signals emitted from the end of the fibers. Signals can be measured from all the filled wells on the plate simultaneously using a digital camera. An algorithm uses pixel-based image analysis and computer vision techniques for the accurate multiwell quantification of positional changes in the optical microprobes caused by the contraction of the microtissues. Microtissue constructs containing 20,000-100,000 human ventricular cardiac fibroblasts (NHCF-V) in 6 mg/mL collagen type I showed contractile displacements ranging from 20-200 μm. This highly sensitive and versatile platform can be used for the high-throughput screening of microtissues in disease modeling, drug screening for therapeutics, physiology research, and safety pharmacology.
Collapse
Affiliation(s)
- Ana Maria Gracioso Martins
- Joint Department of Biomedical Engineering, University of North Carolina-Chapel Hill/North Carolina State University, Raleigh 27695, North Carolina, United States
- Comparative Medicine Institute, North Carolina State University, Raleigh 27695, North Carolina, United States
| | - Michael D. Wilkins
- Comparative Medicine Institute, North Carolina State University, Raleigh 27695, North Carolina, United States
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh 27695, North Carolina, United States
| | - Frances S. Ligler
- Joint Department of Biomedical Engineering, University of North Carolina-Chapel Hill/North Carolina State University, Raleigh 27695, North Carolina, United States
- Comparative Medicine Institute, North Carolina State University, Raleigh 27695, North Carolina, United States
| | - Michael A. Daniele
- Joint Department of Biomedical Engineering, University of North Carolina-Chapel Hill/North Carolina State University, Raleigh 27695, North Carolina, United States
- Comparative Medicine Institute, North Carolina State University, Raleigh 27695, North Carolina, United States
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh 27695, North Carolina, United States
| | - Donald O. Freytes
- Joint Department of Biomedical Engineering, University of North Carolina-Chapel Hill/North Carolina State University, Raleigh 27695, North Carolina, United States
- Comparative Medicine Institute, North Carolina State University, Raleigh 27695, North Carolina, United States
| |
Collapse
|
12
|
Wu L, Magaz A, Huo S, Darbyshire A, Loizidou M, Emberton M, Birchall M, Song W. Human airway-like multilayered tissue on 3D-TIPS printed thermoresponsive elastomer/collagen hybrid scaffolds. Acta Biomater 2020; 113:177-195. [PMID: 32663664 DOI: 10.1016/j.actbio.2020.07.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/21/2020] [Accepted: 07/07/2020] [Indexed: 01/13/2023]
Abstract
Developing a biologically representative complex tissue of the respiratory airway is challenging, however, beneficial for treatment of respiratory diseases, a common medical condition representing a leading cause of death in the world. This in vitro study reports a successful development of synthetic human tracheobronchial epithelium based on interpenetrated hierarchical networks composed of a reversely 3D printed porous structure of a thermoresponsive stiffness-softening elastomer nanohybrid impregnated with collagen nanofibrous hydrogel. Human bronchial epithelial cells (hBEpiCs) were able to attach and grow into an epithelial monolayer on the hybrid scaffolds co-cultured with either human bronchial fibroblasts (hBFs) or human bone-marrow derived mesenchymal stem cells (hBM-MSCs), with substantial enhancement of mucin expression, ciliation, well-constructed intercellular tight junctions and adherens junctions. The multi-layered co-culture 3D scaffolds consisting of a top monolayer of differentiated epithelium, with either hBFs or hBM-MSCs proliferating within the hyperelastic nanohybrid scaffold underneath, created a tissue analogue of the upper respiratory tract, validating these 3D printed guided scaffolds as a platform to support co-culture and cellular organization. In particular, hBM-MSCs in the co-culture system promoted an overall matured physiological tissue analogue of the respiratory system, a promising synthetic tissue for drug discovery, tracheal repair and reconstruction. STATEMENT OF SIGNIFICANCE: Respiratory diseases are a common medical condition and represent a leading cause of death in the world. However, the epithelium is one of the most challenging tissues to culture in vitro, and suitable tracheobronchial models, physiologically representative of the innate airway, remain largely elusive. This study presents, for the first time, a systematic approach for the development of functional multilayered epithelial synthetic tissue in vitro via co-culture on a 3D-printed thermoresponsive elastomer interpenetrated with a collagen hydrogel network. The viscoelastic nature of the scaffold with stiffness softening at body temperature provide a promising matrix for soft tissue engineering. The results presented here provide new insights about the epithelium at different surfaces and interfaces of co-culture, and pave the way to offer a customizable reproducible technology to generate physiologically relevant 3D biomimetic systems to advance our understanding of airway tissue regeneration.
Collapse
|
13
|
Kolosova K, Gao Q, Tuznik M, Bouhabel S, Kost KM, Wang H, Li-Jessen NYK, Mongeau L, Wiseman PW. Characterizing Vocal Fold Injury Recovery in a Rabbit Model With Three-Dimensional Virtual Histology. Laryngoscope 2020; 131:1578-1587. [PMID: 32809236 DOI: 10.1002/lary.29028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/22/2020] [Accepted: 07/28/2020] [Indexed: 12/31/2022]
Abstract
OBJECTIVES/HYPOTHESIS In animal studies of vocal fold scarring and treatment, imaging-based evaluation is most often conducted by tissue slicing and histological staining. Given variation in anatomy, injury type, severity, and sacrifice timepoints, planar histological sections provide limited spatiotemporal details of tissue repair. Three-dimensional (3D) virtual histology may provide additional contextual spatial information, enhancing objective interpretation. The study's aim was to evaluate the suitability of magnetic resonance imaging (MRI), microscale computed tomography (CT), and nonlinear laser-scanning microscopy (NM) as virtual histology approaches for rabbit studies of vocal fold scarring. METHODS A unilateral injury was created using microcup forceps in the left vocal fold of three New Zealand White rabbits. Animals were sacrificed at 3, 10, and 39 days postinjury. ex vivo imaging of excised larynges was performed with MRI, CT, and NM modalities. RESULTS The MRI modality allowed visualization of injury location and morphological internal features with 100-μm spatial resolution. The CT modality provided a view of the injury defect surface with 12-μm spatial resolution. The NM modality with optical clearing resolved second-harmonic generation signal of collagen fibers and two-photon autofluorescence in vocal fold lamina propria, muscle, and surrounding cartilage structures at submicrometer spatial scales. CONCLUSIONS Features of vocal fold injury and wound healing were observed with MRI, CT, and NM. The MRI and CT modalities provided contextual spatial information and dissection guidance, whereas NM resolved extracellular matrix structure. The results serve as a proof of concept to motivate incorporation of 3D virtual histology techniques in future vocal fold injury animal studies. LEVEL OF EVIDENCE NA Laryngoscope, 131:1578-1587, 2021.
Collapse
Affiliation(s)
- Ksenia Kolosova
- Department of Physics, McGill University, Montreal, Quebec, Canada
| | - Qiman Gao
- Faculty of Dentistry, McGill University, Montreal, Quebec, Canada
| | - Marius Tuznik
- Small Animal Imaging Laboratory of the McConnell Brain Imaging Centre at the Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Sarah Bouhabel
- Department of Otolaryngology-Head and Neck Surgery, McGill University, Montreal, Quebec, Canada
| | - Karen M Kost
- Department of Otolaryngology-Head and Neck Surgery, McGill University, Montreal, Quebec, Canada
| | - Huijie Wang
- Department of Mechanical Engineering, McGill University, Montreal, Quebec, Canada
| | - Nicole Y K Li-Jessen
- Department of Otolaryngology-Head and Neck Surgery, McGill University, Montreal, Quebec, Canada.,Department of Biomedical Engineering, McGill University, Montreal, Quebec, Canada.,School of Communication Sciences and Disorders, McGill University, Montreal, Quebec, Canada
| | - Luc Mongeau
- Department of Otolaryngology-Head and Neck Surgery, McGill University, Montreal, Quebec, Canada.,Department of Mechanical Engineering, McGill University, Montreal, Quebec, Canada.,Department of Biomedical Engineering, McGill University, Montreal, Quebec, Canada
| | - Paul W Wiseman
- Department of Physics, McGill University, Montreal, Quebec, Canada.,Department of Chemistry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
14
|
Imaizumi M, Nakamura R, Nakaegawa Y, Dirja BT, Tada Y, Tani A, Sugino T, Tabata Y, Omori K. Regenerative potential of basic fibroblast growth factor contained in biodegradable gelatin hydrogel microspheres applied following vocal fold injury: Early effect on tissue repair in a rabbit model. Braz J Otorhinolaryngol 2019; 87:274-282. [PMID: 31711791 PMCID: PMC9422641 DOI: 10.1016/j.bjorl.2019.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/19/2019] [Accepted: 09/04/2019] [Indexed: 11/18/2022] Open
Abstract
Introduction Postoperative dysphonia is mostly caused by vocal fold scarring, and careful management of vocal fold surgery has been reported to reduce the risk of scar formation. However, depending on the vocal fold injury, treatment of postoperative dysphonia can be challenging. Objective The goal of the current study was to develop a novel prophylactic regenerative approach for the treatment of injured vocal folds after surgery, using biodegradable gelatin hydrogel microspheres as a drug delivery system for basic fibroblast growth factor. Methods Videoendoscopic laryngeal surgery was performed to create vocal fold injury in 14 rabbits. Immediately following this procedure, biodegradable gelatin hydrogel microspheres with basic fibroblast growth factor were injected in the vocal fold. Two weeks after injection, larynges were excised for evaluation of vocal fold histology and mucosal movement. Results The presence of poor vibratory function was confirmed in the injured vocal folds. Histology and digital image analysis demonstrated that the injured vocal folds injected with gelatin hydrogel microspheres with basic fibroblast growth factor showed less scar formation, compared to the injured vocal folds injected with gelatin hydrogel microspheres only, or those without any injection. Conclusion A prophylactic injection of basic fibroblast growth factor -containing biodegradable gelatin hydrogel microspheres demonstrates a regenerative potential for injured vocal folds in a rabbit model.
Collapse
Affiliation(s)
- Mitsuyoshi Imaizumi
- Fukushima Medical University, School of Medicine, Department of Otolaryngology, Fukushima, Japan.
| | | | - Yuta Nakaegawa
- Fukushima Medical University, School of Medicine, Department of Otolaryngology, Fukushima, Japan
| | - Bayu Tirta Dirja
- Fukushima Medical University, School of Medicine, Department of Otolaryngology, Fukushima, Japan
| | - Yasuhiro Tada
- Fukushima Medical University, School of Medicine, Department of Otolaryngology, Fukushima, Japan
| | - Akiko Tani
- Fukushima Medical University, School of Medicine, Department of Otolaryngology, Fukushima, Japan
| | - Takashi Sugino
- Shizuoka Cancer Center, Division of Pathology, Shizuoka, Japan
| | - Yasuhiko Tabata
- Kyoto University, Institute for Frontier Life and Medical Sciences, Department of Regeneration Science and Engineering, Laboratory of Biomaterials, Kyoto, Japan
| | - Koichi Omori
- Kyoto University, Department of Otolaryngology, Kyoto, Japan
| |
Collapse
|
15
|
Hertegård S, Nagubothu SR, Malmström E, Ström CE, Tolf A, Davies LC, Le Blanc K. Hyaluronan Hydrogels for the Local Delivery of Mesenchymal Stromal Cells to the Injured Vocal Fold. Stem Cells Dev 2019; 28:1177-1190. [PMID: 31244387 DOI: 10.1089/scd.2019.0102] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) promote wound healing by expediting the inflammatory phase. Local injection of MSCs into injured vocal folds (VFs) is effective in animal models, suggesting suitability for clinical translation. Despite their therapeutic potential, MSCs do not persist within the VF. This study evaluates whether hyaluronan (HA) hydrogels offer a safe delivery vehicle for local injection of MSCs into VFs, and increase longevity of the cells within the injured tissue. MSCs ± HA hydrogel were exposed to interleukin (IL)1β, IL8, and chemokine (C-C motif) ligand 4, and evaluated for mRNA expression of matrix remodeling genes and secretion of immunomodulatory/prohealing factors. Chemotaxis/invasion in response to inflammation was evaluated. A lapin model of VF injury evaluated in vivo effects of MSCs ± HA hydrogel on enhancing VF healing. Histological evaluation of inflammation, type I collagen expression, HA hydrogel resorption, and MSC persistence was evaluated at 3 and 25 days after injury. MSCs within HA hydrogel were responsive to their extracellular environment, upregulating immunomodulatory factors when exposed to inflammation. Despite delayed migration out of the gel in vitro, the MSCs did not persist longer within the injured tissue in vivo. MSCs ± HA hydrogel exerted equivalent dampening of inflammation in vivo. The gel was resorbed within 25 days and no edema was evident. HA hydrogels can be safely used in the delivery of MSCs to injured VFs, minimizing leakage of administered cells. MSCs within the HA hydrogel did not persist longer than those in suspension, but did exert comparable therapeutic effects.
Collapse
Affiliation(s)
- Stellan Hertegård
- Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm. Sweden.,Department of Otorhinolaryngology, Karolinska University Hospital Huddinge, Stockholm. Sweden
| | | | - Emma Malmström
- Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm. Sweden.,Department of Otorhinolaryngology, Karolinska University Hospital Huddinge, Stockholm. Sweden
| | - Cecilia E Ström
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anna Tolf
- Department of Pathology, Akademiska University Hospital, Uppsala, Sweden
| | - Lindsay C Davies
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Katarina Le Blanc
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
16
|
Silva CR, Babo PS, Mithieux S, Domingues RM, Reis R, Gomes ME, Weiss A. Tuneable cellulose nanocrystal and tropoelastin-laden hyaluronic acid hydrogels. J Biomater Appl 2019; 34:560-572. [PMID: 31284811 DOI: 10.1177/0885328219859830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Cristiana R Silva
- 1 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Guimarães, Portugal.,2 ICVS/3B's - PT Government Associate Laboratory, Guimarães, Portugal
| | - Pedro S Babo
- 1 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Guimarães, Portugal.,2 ICVS/3B's - PT Government Associate Laboratory, Guimarães, Portugal
| | - Suzanne Mithieux
- 3 Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia.,4 School of Molecular Bioscience, The University of Sydney, Sydney, New South Wales, Australia
| | - Rui Ma Domingues
- 1 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Guimarães, Portugal.,2 ICVS/3B's - PT Government Associate Laboratory, Guimarães, Portugal.,5 The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Guimarães, Portugal
| | - Rui Reis
- 1 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Guimarães, Portugal.,2 ICVS/3B's - PT Government Associate Laboratory, Guimarães, Portugal.,5 The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Guimarães, Portugal
| | - Manuela E Gomes
- 1 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Guimarães, Portugal.,2 ICVS/3B's - PT Government Associate Laboratory, Guimarães, Portugal.,5 The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Guimarães, Portugal
| | - Anthony Weiss
- 3 Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia.,4 School of Molecular Bioscience, The University of Sydney, Sydney, New South Wales, Australia.,6 Bosch Institute, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
17
|
Ravanbakhsh H, Bao G, Latifi N, Mongeau LG. Carbon nanotube composite hydrogels for vocal fold tissue engineering: Biocompatibility, rheology, and porosity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109861. [PMID: 31349421 DOI: 10.1016/j.msec.2019.109861] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 06/01/2019] [Accepted: 06/03/2019] [Indexed: 01/28/2023]
Abstract
Porous composite hydrogels were prepared using glycol chitosan as the matrix, glyoxal as the chemical crosslinker, and carbon nanotubes (CNTs) as the fibers. Both carboxylic and hydroxylic functionalized CNTs were used. The homogeneity of CNTs dispersion was evaluated using scanning electron microscopy. Human vocal fold fibroblasts were cultured and encapsulated in the composite hydrogels with different CNT concentrations to quantify cell viability. Rheological tests were performed to determine the gelation time and the storage modulus as a function of CNT concentration. The gelation time tended to decrease for low concentrations and increase at higher concentrations, reaching a local minimum value. The storage modulus obeyed different trends depending on the functional group. The porosity of the hydrogels was found to increase by 120% when higher concentrations of carboxylic CNTs were used. A high porosity may promote cell adhesion, migration, and recruitment from the surrounding native tissue, which will be investigated in a future work aiming at applying this injectable biomaterial for vocal fold tissue regeneration.
Collapse
Affiliation(s)
- Hossein Ravanbakhsh
- Department of Mechanical Engineering, McGill University, Montreal, QC H3A 0C3, Canada
| | - Guangyu Bao
- Department of Mechanical Engineering, McGill University, Montreal, QC H3A 0C3, Canada
| | - Neda Latifi
- Department of Mechanical Engineering, McGill University, Montreal, QC H3A 0C3, Canada
| | - Luc G Mongeau
- Department of Mechanical Engineering, McGill University, Montreal, QC H3A 0C3, Canada.
| |
Collapse
|
18
|
King RE, Lau HK, Zhang H, Sidhu I, Christensen MB, Fowler EW, Li L, Jia X, Kiick KL, Thibeault SL. Biocompatibility and Viscoelastic Properties of Injectable Resilin-Like Polypeptide and Hyaluronan Hybrid Hydrogels in Rabbit Vocal Folds. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2019; 5:373-386. [DOI: 10.1007/s40883-019-00094-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Zeitels SM, Lombardo PJ, Chaves JL, Faquin WC, Hillman RE, Heaton JT, Kobler JB. Vocal Fold Injection of Absorbable Materials: A Histologic Analysis With Clinical Ramifications. Ann Otol Rhinol Laryngol 2019; 128:71S-81S. [DOI: 10.1177/0003489418805503] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objectives: Gels composed of carboxymethylcellulose (CMC) and cross-linked hyaluronic acid are commonly used as temporary or resorbable injectable materials for vocal fold medialization. However, there is limited information about tissue injection patterns, soft tissue reaction, degradation, and residence time, particularly for the newer CMC gels. Study Design: Prospective, laboratory. Methods: Ten canines underwent paraglottic (deep to the vocal ligament) microlaryngoscopic injection with about 100 µL (0.1 mL) of cross-linked hyaluronic acid (Restylane) in the right vocal fold and about 100 µl (0.1 mL) of CMC gel in the left vocal fold. Two commercial CMC gels of similar formulation (Prolaryn Gel and Renú Gel) were used in 5 animals each. Two subjects were sacrificed for histologic analysis at 3, 13, 29, 42, and 55 days. Results: Histology showed that injected Restylane formed cohesive ovoid-shaped aggregated implants with minimal dispersion, inflammation, or cellular invasion in all subjects. Approximately 86% of Restylane injected remained at 8 weeks, as estimated from postmortem, high-resolution magnetic resonance imaging scans. In contrast, histology showed that both CMC gels dispersed widely through fascial planes during and after injection within and outside the thyroarytenoid muscle fascicles. There was a robust macrophage and histiocyte phagocytic response, with moderate to severe inflammation noted around residual CMC gel at early time points, and at 6 to 8 weeks, very little free gel was observed. Conclusions: None of the studied materials induced a clinical inflammatory reaction on laryngoscopy such that they would be considered problematic or dangerous. Restylane demonstrated superior injection localization, tissue compatibility, and residence time. Both CMC gels did not localize well in the paraglottic region, and there was a robust inflammatory response, with clearance by macrophages and short residence time. These results suggest that CMC gels may have a more limited application than previously thought for vocal fold medialization in patients in whom the injection is being used to achieve voice enhancement while awaiting reinnervation. Level of Evidence: NA
Collapse
Affiliation(s)
- Steven M. Zeitels
- Department of Surgery, Harvard Medical School, Boston, MA, USA
- Division of Laryngeal Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Patrick J. Lombardo
- Division of Laryngeal Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Jaime L. Chaves
- Division of Laryngeal Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - William C. Faquin
- Department of Pathology, Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA
| | - Robert E. Hillman
- Department of Surgery, Harvard Medical School, Boston, MA, USA
- Division of Laryngeal Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - James T. Heaton
- Department of Surgery, Harvard Medical School, Boston, MA, USA
- Division of Laryngeal Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - James B. Kobler
- Department of Surgery, Harvard Medical School, Boston, MA, USA
- Division of Laryngeal Surgery, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
20
|
Paired versus two-group experimental design for rheological studies of vocal fold tissues. J Biomech 2019; 83:150-156. [PMID: 30579579 DOI: 10.1016/j.jbiomech.2018.11.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 11/22/2018] [Accepted: 11/23/2018] [Indexed: 11/20/2022]
Abstract
Vibratory function of the vocal folds is largely determined by the rheological properties or viscoelastic shear properties of the vocal fold lamina propria. To date, investigation of the sample size estimation and statistical experimental design for vocal fold rheological studies is nonexistent. The current work provides the closed-form sample size formulas for two major study designs (i.e. paired and two-group designs) in vocal fold research. Our results demonstrated that the paired design could greatly increase the statistical power compared to the two-group design. By comparing the variance of estimated treatment effect, this study also confirms that ignoring within-subject and within-vocal fold correlations during rheological data analysis will likely increase type I errors. Finally, viscoelastic shear properties of intact and scarred rabbit vocal fold lamina propria were measured and used to illustrate theoretical findings in a realistic scenario and project sample size requirement for future studies.
Collapse
|
21
|
Lee SS, Kim HD, Kim SHL, Kim I, Kim IG, Choi JS, Jeong J, Kim JH, Kwon SK, Hwang NS. Self-Healing and Adhesive Artificial Tissue Implant for Voice Recovery. ACS APPLIED BIO MATERIALS 2018; 1:1134-1146. [DOI: 10.1021/acsabm.8b00349] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Seunghun S. Lee
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Hwan D. Kim
- School of Chemical and Biological Engineering, The Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Seung Hyun L. Kim
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Inseon Kim
- School of Chemical and Biological Engineering, The Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - In Gul Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Ji Suk Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Jiwoon Jeong
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Jung Hun Kim
- School of Chemical and Biological Engineering, The Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Seong Keun Kwon
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Nathaniel S. Hwang
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, The Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- BioMAX/N-Bio Institute, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
22
|
Silva CR, Babo PS, Gulino M, Costa L, Oliveira JM, Silva-Correia J, Domingues RM, Reis RL, Gomes ME. Injectable and tunable hyaluronic acid hydrogels releasing chemotactic and angiogenic growth factors for endodontic regeneration. Acta Biomater 2018; 77:155-171. [PMID: 30031163 DOI: 10.1016/j.actbio.2018.07.035] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 07/13/2018] [Accepted: 07/17/2018] [Indexed: 12/25/2022]
Abstract
Bioengineered soft tissues on any meaningful scale or complexity must incorporate aspects of the functional tissue, namely a vasculature, providing cells oxygen and nutrients critical for their survival. However, the ability of tissue engineering strategies to promote a fast revascularization is critically limited. Particularly in endodontic regenerative therapies, the complicated anatomy of the root canal system, and the narrow apical access limit the supply of new blood vessels and pulp tissue ingrowth. Here we characterize the viscoelastic and microstructural properties of a class of injectable hyaluronic acid (HA) hydrogels formed in situ, reinforced with cellulose nanocrystals (CNCs) and enriched with platelet lysate (PL), and test its ability to promote cells recruitment and proangiogenic activity in vitro. The incorporation of CNCs enhanced the stability of the materials against hydrolytic and enzymatic degradation. Moreover, the release of the chemotactic and pro-angiogenic growth factors (GFs) (PDGF and VEGF) from the PL-laden hydrogels showed an improved sustained profile proportional to the amount of incorporated CNCs. The PL-laden hydrogels exhibited preferential supportive properties of encapsulated human dental pulp cells (hDPCs) in in vitro culture conditions. Finally, PL-laden hydrogels stimulated chemotactic and pro-angiogenic activity by promoting hDPCs recruitment and cell sprouting in hDPCs/human umbilical vein endothelial cell co-cultures in vitro, and in an ex vivo model. These results support the use of the combined system as a scaffold for GFs delivery and cells recruitment, thereby exhibiting great clinical potential in treating injuries in vascularized tissues. STATEMENT OF SIGNIFICANCE Innovative strategies for improved chemotactic and pro-angiogenic features of TE constructs are needed. In this study, we developed an injectable HA/CNC/PL hydrogel with improved structural and biologic properties, that not only provide a sustained release of chemotactic and proangiogenic GFs from PL but also enhance the cells' viability and angiogenic activity. As a result of their unique traits, the developed hydrogels are ideally suited to simultaneously act as a GFs controlled delivery system and as a supportive matrix for cell culture, recruitment, and revascularization induction, holding great potential for the regeneration of vascularized soft tissues, such as the dentin-pulp complex.
Collapse
|
23
|
Xu CC, Gao A, Zhang S. An investigation of left-right vocal fold symmetry in rheological and histological properties. Laryngoscope 2018; 128:E359-E364. [PMID: 30098041 DOI: 10.1002/lary.27271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/01/2018] [Accepted: 04/09/2018] [Indexed: 01/16/2023]
Abstract
OBJECTIVES The primary objective was to investigate the left-right vocal fold symmetry in rheological and histological properties using a rabbit model. The other objective was to develop statistical models for the comparison of rheological properties between paired vocal folds. METHODS Viscoelastic shear properties of six pairs of vocal fold lamina propria specimens were measured over a frequency range of 1 to 250 Hz by a linear, controlled-strain, simple-shear rheometer. The rheological data of the left and right vocal folds was statistically compared using the mixed-effects model approach. Six additional rabbit larynges were histologically analyzed for left-right symmetry in distribution patterns and relative densities of major extracellular matrix constituents. RESULTS There were no significant differences in elastic shear modulus (P = 0.1069) and dynamic viscosity (P = 0.944) of the lamina propria between the two vocal folds of the same larynx. Left-right vocal fold symmetry in densities and distribution patterns of the key molecular constituents was also demonstrated in histological results. CONCLUSION By showing that the left and right vocal folds were rheologically and histologically symmetrical in rabbit, this study validated an underlying assumption made in many previous reports. Statistical models for the analysis of hierarchically correlated left-right vocal fold rheological data were also presented. LEVEL OF EVIDENCE NA. Laryngoscope, 128:E359-E364, 2018.
Collapse
Affiliation(s)
- Chet C Xu
- Department of Otolaryngology-Head and Neck Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, U.S.A.,Graduate Program in Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas, Texas, U.S.A
| | - Ang Gao
- Graduate Program in Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas, Texas, U.S.A
| | - Song Zhang
- Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas, U.S.A
| |
Collapse
|
24
|
Woo P. Hyaluronidase Injection in the Vocal Folds for Vocal Hemorrhage, Reinke Edema, and Hyaluronic Acid Overinjection: A Novel Application in the Larynx. J Voice 2018; 32:492-498. [DOI: 10.1016/j.jvoice.2017.07.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 07/02/2017] [Accepted: 07/05/2017] [Indexed: 11/30/2022]
|
25
|
Griesser J, Hetényi G, Bernkop-Schnürch A. Thiolated Hyaluronic Acid as Versatile Mucoadhesive Polymer: From the Chemistry Behind to Product Developments-What Are the Capabilities? Polymers (Basel) 2018; 10:polym10030243. [PMID: 30966278 PMCID: PMC6414859 DOI: 10.3390/polym10030243] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/07/2018] [Accepted: 02/24/2018] [Indexed: 01/09/2023] Open
Abstract
Within the last decade, intensive research work has been conducted on thiolated hyaluronic acids (HA-SH). By attaching sulfhydryl ligands onto naturally occurring hyaluronic acid various types of HA-SH can be designed. Due the ability of disulfide bond formation within the polymer itself as well as with biological materials, certain properties such as mucoadhesive, gelling, enzyme inhibitory, permeation enhancing and release controlling properties are improved. Besides the application in the field of drug delivery, HA-SH has been investigated as auxiliary material for wound healing. Within this review, the characteristics of novel drug delivery systems based on HA-SH are summarized and the versatility of this polymer for further applications is described by introducing numerous relevant studies in this field.
Collapse
Affiliation(s)
- Janine Griesser
- Thiomatrix Forschungs-und Beratungs GmbH, Trientlgasse 65, 6020 Innsbruck, Austria.
| | - Gergely Hetényi
- Thiomatrix Forschungs-und Beratungs GmbH, Trientlgasse 65, 6020 Innsbruck, Austria.
| | - Andreas Bernkop-Schnürch
- Thiomatrix Forschungs-und Beratungs GmbH, Trientlgasse 65, 6020 Innsbruck, Austria.
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| |
Collapse
|
26
|
Wang Z, Qiu Y, Hou C, Wang D, Sun F, Li X, Wang F, Yi H, Mu H, Duan J. Synthesis of hyaluronan-amikacin conjugate and its bactericidal activity against intracellular bacteria in vitro and in vivo. Carbohydr Polym 2018; 181:132-140. [DOI: 10.1016/j.carbpol.2017.10.061] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/05/2017] [Accepted: 10/17/2017] [Indexed: 11/26/2022]
|
27
|
Chen X, Foote A, Thibeault SL. Cell density, dimethylsulfoxide concentration and needle gauge affect hydrogel-induced bone marrow mesenchymal stromal cell viability. Cytotherapy 2017; 19:1522-1528. [PMID: 28986174 PMCID: PMC5723234 DOI: 10.1016/j.jcyt.2017.08.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/24/2017] [Accepted: 08/23/2017] [Indexed: 12/16/2022]
Abstract
Mesenchymal stromal cells (MSCs) have shown potential therapeutic benefits for a range of medical disorders and continue to be a focus of intense scientific investigation. Transplantation of MSCs into injured tissue can improve wound healing, tissue regeneration and functional recovery. However, implanted cells rapidly lose their viability or fail to integrate into host tissue. Hydrogel-seeded bone marrow (BM)-MSCs offer improved viability in response to mechanical forces caused by syringe needles, cell density and dimethylsulfoxide (DMSO) concentration, which in turn, will help to clarify which factors are important for enhancing biomaterial-induced cell transplantation efficiency and provide much needed guidance for clinical trials. In this study, under the control of cell density (<2 × 107 cells/mL) and final DMSO concentration (<0.5%), hydrogel-induced BM-MSC viability remained >82% following syringe needle passage by 25- or 27-gauge needles, providing improved cell therapeutic approaches for regenerative medicine.
Collapse
Affiliation(s)
- Xia Chen
- Division of Otolaryngology – Head and Neck Surgery, University of Wisconsin – Madison, 5105 WIMR, 1111 Highland Ave, Madison, Wisconsin 53705-2275, Phone 6082654316,
| | - Alexander Foote
- Division of Otolaryngology – Head and Neck Surgery, University of Wisconsin -- Madison, 5118 WIMR, 1111 Highland Ave, Madison, Wisconsin 53705-2275,
| | - Susan L. Thibeault
- Division of Otolaryngology – Head and Neck Surgery, University of Wisconsin -- Madison, 5107 WIMR, 1111 Highland Ave, Madison, Wisconsin 53705-2275, Phone 6082636751,
| |
Collapse
|
28
|
Bartlett RS, Guille JT, Chen X, Christensen MB, Wang SF, Thibeault SL. Mesenchymal stromal cell injection promotes vocal fold scar repair without long-term engraftment. Cytotherapy 2017; 18:1284-96. [PMID: 27637759 DOI: 10.1016/j.jcyt.2016.07.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 07/18/2016] [Accepted: 07/24/2016] [Indexed: 01/01/2023]
Abstract
BACKGROUND Regenerative medicine holds promise for restoring voice in patients with vocal fold scarring. As experimental treatments approach clinical translation, several considerations remain. Our objective was to evaluate efficacy and biocompatibility of four bone marrow mesenchymal stromal cell (BM-MSC) and tunable hyaluronic acid based hydrogel (HyStem-VF) treatments for vocal fold scar using clinically acceptable materials, a preclinical sample size and a dosing comparison. METHODS Vocal folds of 84 rabbits were injured and injected with four treatment variations (BM-MSC, HyStem-VF, and BM-MSC in HyStem-VF at two concentrations) 6 weeks later. Efficacy was assessed with rheometry, real-time polymerase chain reaction (RT-PCR) and histology at 2, 4 and 10 weeks following treatment. Lung, liver, kidney, spleen and vocal folds were screened for biocompatibility by a pathologist. RESULTS AND DISCUSSION Persistent inflammation was identified in all hydrogel-injected groups. The BM-MSC alone treatment appeared to be the most efficacious and safe, providing an early resolution of viscoelasticity, gene expression consistent with desirable extracellular matrix remodeling (less fibronectin, collagen 1α2, collagen 3, procollagen, transforming growth factor [TGF]β1, alpha smooth muscle actin, interleukin-1β, interleukin-17β and tumor necrosis factor [TNF] than injured controls) and minimal inflammation. Human beta actin expression in BM-MSC-treated vocal folds was minimal after 2 weeks, suggesting that paracrine signaling from the BM-MSCs may have facilitated tissue repair.
Collapse
Affiliation(s)
- R S Bartlett
- Department of Surgery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - J T Guille
- Department of ENT and Head and Neck Surgery, University Hospital of Pointe à Pitre, Guadeloupe, French West Indies
| | - X Chen
- Department of Surgery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - M B Christensen
- National Center for Voice and Speech, University of Utah, Salt Lake City, Utah, USA
| | - S F Wang
- Department of Surgery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - S L Thibeault
- Department of Surgery, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| |
Collapse
|
29
|
Köwitsch A, Zhou G, Groth T. Medical application of glycosaminoglycans: a review. J Tissue Eng Regen Med 2017; 12:e23-e41. [DOI: 10.1002/term.2398] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 10/08/2016] [Accepted: 01/09/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Alexander Köwitsch
- Biomedical Materials Group, Institute of Pharmacy; Martin Luther University Halle-Wittenberg; Halle Germany
| | - Guoying Zhou
- Biomedical Materials Group, Institute of Pharmacy; Martin Luther University Halle-Wittenberg; Halle Germany
| | - Thomas Groth
- Biomedical Materials Group, Institute of Pharmacy; Martin Luther University Halle-Wittenberg; Halle Germany
| |
Collapse
|
30
|
King SN, Woo JH, Tang S, Thibeault SL. Macrophage Response to Allogeneic Adipose Tissue-Derived Stromal Cells in Hyaluronan-Based Hydrogel in a Porcine Vocal Fold Injury Model. Ann Otol Rhinol Laryngol 2017; 126:463-477. [PMID: 28385042 DOI: 10.1177/0003489417702923] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Adipose tissue-derived stromal cells (ASC) embedded in hyaluronan scaffold is a beneficial prophylactic treatment for vocal fold (VF) surgical scar. Here, we investigated the macrophage inflammatory response to allogeneic ASC-constructs and identified changes in lamina propria extracellular matrix. METHOD Pig ASC were characterized and transfected with GFP+ lentivirus. Thirty-three pigs underwent VF biopsies, and after 3 days, gel alone, gel+pASC, placebo, or pASC alone was injected into wound bed. Animals were sacrificed 3, 7, or 26 days post-injection. Flow cytometry; qPCR for NF-α, TGFβ, IL-10, IL-4, IFNγ, IL-12, FGF2, Col1A1, and HGF; and immunohistochemistry for collagen, elastin, HA, and fibronectin were performed to characterize macrophage phenotype, quantify cytokine transcription, analyze extracellular matrix remodeling, and track GFP+ cells. RESULTS No significant differences were found in SWC3+/SWC9+ phenotype or mRNA expression between cells+gel, gel, or placebo. The ASC alone exhibited significantly greater collagen, gel alone resulted in significantly less hyaluronan, and gel+pASC significantly more fibronectin (all P < .05). The pASC-GFP+ were detected 26 days post-injection. CONCLUSIONS The ASC-constructs were biocompatible; they did not influence the macrophage inflammatory response or provoke increases in collagen expression. Long-term engraftment was confirmed.
Collapse
Affiliation(s)
- Suzanne N King
- 1 Department of Otolaryngology-Head and Neck Surgery and Communicative Disorders, University of Louisville, Louisville, Kentucky, USA
| | - Joo Hyun Woo
- 2 Department of Otorhinolaryngology-Head and Neck Surgery, Gil Medical Center, Gachon University, Seongnam, South Korea
| | - Sharon Tang
- 3 Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Susan L Thibeault
- 3 Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
31
|
Hamilton NJI, Birchall MA. Tissue-Engineered Larynx: Future Applications in Laryngeal Cancer. CURRENT OTORHINOLARYNGOLOGY REPORTS 2017; 5:42-48. [PMID: 28367360 PMCID: PMC5357481 DOI: 10.1007/s40136-017-0144-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Purpose of Review This article reviews the latest developments in tissue engineering for the larynx with a specific focus on the treatment of laryngeal cancer. Recent Findings Challenges in tissue engineering a total larynx can be divided into scaffold design, methods of re-mucosalization, and how to restore laryngeal function. The literature described a range of methods to deliver a laryngeal scaffold including examples of synthetic, biomimetic, and biological scaffolds. Methods to regenerate laryngeal mucosa can be divided into examples that use a biological dressing and those that engineer a new mucosal layer de novo. Studies aiming to restore laryngeal function have been reported, but to date, the optimum method for achieving this as part of a total laryngeal transplant is yet to be determined. Summary There is great potential for tissue engineering to improve the treatments available for laryngeal cancer within the next 10 years. A number of challenges exist however and advances in restoring function must keep pace with developments in scaffold design.
Collapse
|
32
|
Walimbe T, Panitch A, Sivasankar PM. A Review of Hyaluronic Acid and Hyaluronic Acid-based Hydrogels for Vocal Fold Tissue Engineering. J Voice 2017; 31:416-423. [PMID: 28262503 DOI: 10.1016/j.jvoice.2016.11.014] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 11/11/2016] [Accepted: 11/15/2016] [Indexed: 11/30/2022]
Abstract
Vocal fold scarring is a common cause of dysphonia. Current treatments involving vocal fold augmentation do not yield satisfactory outcomes in the long term. Tissue engineering and regenerative medicine offer an attractive treatment option for vocal fold scarring, with the aim to restore the native extracellular matrix microenvironment and biomechanical properties of the vocal folds by inhibiting progression of scarring and thus leading to restoration of normal vocal function. Hyaluronic acid is a bioactive glycosaminoglycan responsible for maintaining optimum viscoelastic properties of the vocal folds and hence is widely targeted in tissue engineering applications. This review covers advances in hyaluronic acid-based vocal fold tissue engineering and regeneration strategies.
Collapse
Affiliation(s)
- Tanaya Walimbe
- Weldon School of Biomedical Engineering, West Lafayette, Indiana
| | - Alyssa Panitch
- Weldon School of Biomedical Engineering, West Lafayette, Indiana; Department of Biomedical Engineering, University of California, Davis, California
| | - Preeti M Sivasankar
- Weldon School of Biomedical Engineering, West Lafayette, Indiana; Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, Indiana.
| |
Collapse
|
33
|
Imaizumi M, Li-Jessen NY, Sato Y, Yang DT, Thibeault SL. Retention of Human-Induced Pluripotent Stem Cells (hiPS) With Injectable HA Hydrogels for Vocal Fold Engineering. Ann Otol Rhinol Laryngol 2017; 126:304-314. [DOI: 10.1177/0003489417691296] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Objective: One prospective treatment option for vocal fold scarring is regeneration with an engineered scaffold containing induced pluripotent stem cells (iPS). In the present study, we investigated the feasibility of utilizing an injectable hyaluronic acid (HA) scaffold encapsulated with human-iPS cell (hiPS) for regeneration of vocal folds. Methods: Thirty athymic nude rats underwent unilateral vocal fold injury. Contralateral vocal folds served as uninjured controls. Hyaluronic acid hydrogel scaffold, HA hydrogel scaffold containing hiPS, and HA hydrogel scaffold containing hiPS with epidermal growth factor (EGF) were injected in both vocal folds immediately after surgery. One and 2 weeks after injection, larynges were excised for histology, immunohistochemistry, and fluorescence in situ hybridization (FISH). Results: Presence of HA hydrogel was confirmed in vocal folds 1 and 2 weeks post injection. The FISH analysis confirmed the presence and viability of hiPS in the injected vocal folds. Histological results demonstrated that vocal folds injected with HA hydrogel scaffold containing EGF demonstrated less fibrosis than those with HA hydrogel only. Conclusions: Human-iPS survived in injured rat vocal folds. The HA hydrogel with hiPS and EGF ameliorated the fibrotic response. Additional work is necessary to optimize hiPS differentiation and further confirm the safety of hiPS for clinical applications.
Collapse
Affiliation(s)
- Mitsuyoshi Imaizumi
- Department of Otolaryngology, School of Medicine, Fukushima Medical University, Fukushima City, Japan
| | - Nicole Y.K. Li-Jessen
- School of Communication Sciences and Disorders, McGill University, Montreal, QC, Canada
| | - Yuka Sato
- Department of Otolaryngology, School of Medicine, Fukushima Medical University, Fukushima City, Japan
| | - David T. Yang
- Department of Pathology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Susan L. Thibeault
- Division of Otolaryngology-Head and Neck Surgery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
34
|
Rahimnejad M, Derakhshanfar S, Zhong W. Biomaterials and tissue engineering for scar management in wound care. BURNS & TRAUMA 2017; 5:4. [PMID: 28127573 PMCID: PMC5251275 DOI: 10.1186/s41038-017-0069-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 01/12/2017] [Indexed: 04/24/2023]
Abstract
Scars are a natural and unavoidable result from most wound repair procedures and the body's physiological healing response. However, they scars can cause considerable functional impairment and emotional and social distress. There are different forms of treatments that have been adopted to manage or eliminate scar formation. This review covers the latest research in the past decade on using either natural agents or synthetic biomaterials in treatments for scar reduction.
Collapse
Affiliation(s)
| | | | - Wen Zhong
- University of Manitoba, Winnipeg, MB Canada
| |
Collapse
|
35
|
Allen J. Response of an ovine laryngeal injury model to a novel fibrosis inhibitor. ANZ J Surg 2016; 87:266-270. [PMID: 27878913 DOI: 10.1111/ans.13852] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 09/25/2016] [Accepted: 10/16/2016] [Indexed: 11/29/2022]
Abstract
BACKGROUND Vocal fold injury results in severe voice alteration that limits occupational function and social interaction. An ovine model of laryngeal injury has been developed, validated and utilized to examine laryngeal wound healing and the effect of a novel collagen inhibitor (halofuginone) on surgical wound healing. The study design includes basic research and animal model. METHODS An ovine laryngeal model was utilized to study controlled vocal fold injury and healing. Twenty-five sheep were divided into five groups. Sheep underwent right vocal fold injury preceded or followed by administration of halofuginone orally, topically or intralesionally. Biopsies were taken at commencement, 1 month and larynges explanted at 3 months. Specimens were examined for elastin and collagen density and epithelial changes. Pearson correlation statistics and Student's t-tests were used to assess inter-relationships. RESULTS All sheep tolerated halofuginone. One sheep death occurred in an untreated sheep. Vocal fold tissue demonstrated a predictable histological response to injury. Elastin was significantly reduced post-injury in the glottis. Halofuginone administered orally for 10 weeks prevented elastin loss and demonstrated a trend of reducing collagen density post-injury. CONCLUSION In an ovine laryngeal injury model, administration of a fibrosis inhibitor resulted in altered elastin and collagen deposition after injury in the glottis. Further investigation is warranted to examine whether these tissue changes affect vocal fold dynamics.
Collapse
Affiliation(s)
- Jacqueline Allen
- Faculty of Medical and Health Science, Department of Surgery, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
36
|
Li L, Stiadle JM, Lau HK, Zerdoum AB, Jia X, Thibeault SL, Kiick KL. Tissue engineering-based therapeutic strategies for vocal fold repair and regeneration. Biomaterials 2016; 108:91-110. [PMID: 27619243 PMCID: PMC5035639 DOI: 10.1016/j.biomaterials.2016.08.054] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/29/2016] [Accepted: 08/31/2016] [Indexed: 01/01/2023]
Abstract
Vocal folds are soft laryngeal connective tissues with distinct layered structures and complex multicomponent matrix compositions that endow phonatory and respiratory functions. This delicate tissue is easily damaged by various environmental factors and pathological conditions, altering vocal biomechanics and causing debilitating vocal disorders that detrimentally affect the daily lives of suffering individuals. Modern techniques and advanced knowledge of regenerative medicine have led to a deeper understanding of the microstructure, microphysiology, and micropathophysiology of vocal fold tissues. State-of-the-art materials ranging from extracecullar-matrix (ECM)-derived biomaterials to synthetic polymer scaffolds have been proposed for the prevention and treatment of voice disorders including vocal fold scarring and fibrosis. This review intends to provide a thorough overview of current achievements in the field of vocal fold tissue engineering, including the fabrication of injectable biomaterials to mimic in vitro cell microenvironments, novel designs of bioreactors that capture in vivo tissue biomechanics, and establishment of various animal models to characterize the in vivo biocompatibility of these materials. The combination of polymeric scaffolds, cell transplantation, biomechanical stimulation, and delivery of antifibrotic growth factors will lead to successful restoration of functional vocal folds and improved vocal recovery in animal models, facilitating the application of these materials and related methodologies in clinical practice.
Collapse
Affiliation(s)
- Linqing Li
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Jeanna M Stiadle
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Wisconsin-Madison, Madison, WI 53792, USA; Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Hang K Lau
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Aidan B Zerdoum
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA
| | - Xinqiao Jia
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA; Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA; Delaware Biotechnology Institute, 15 Innovation Way, Newark, DE 19711, USA
| | - Susan L Thibeault
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Wisconsin-Madison, Madison, WI 53792, USA; Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, WI 53792, USA.
| | - Kristi L Kiick
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA; Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA; Delaware Biotechnology Institute, 15 Innovation Way, Newark, DE 19711, USA.
| |
Collapse
|
37
|
Traboulsi H, El Natout T, Skaff G, Hamdan AL. Adverse Reaction to Hyaluronic Acid Injection Laryngoplasty: A Case Report. J Voice 2016; 31:245.e1-245.e2. [PMID: 27777060 DOI: 10.1016/j.jvoice.2016.08.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 08/16/2016] [Accepted: 08/18/2016] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Injection laryngoplasty using hyaluronic acid is a safe procedure commonly performed on patients with glottic insufficiency. STUDY DESIGN This is a descriptive study of a case of adverse reaction to hyaluronic acid in a patient who underwent injection laryngoplasty for the treatment of unilateral vocal cord paralysis. DISCUSSION The patient was treated with antibiotics and corticosteroids and had a full recovery. The authors recommend close observation following injection laryngoplasty using hyaluronic acid and diligent investigation of persistent postoperative laryngopharyngeal symptoms.
Collapse
Affiliation(s)
- Henri Traboulsi
- Department of Otolaryngology-Head & Neck Surgery, American University of Beirut Medical Center, Lebanon
| | | | - Ghassan Skaff
- Department of Surgery, American University of Beirut Medical Center, Lebanon
| | - Abdul-Latif Hamdan
- Department of Otolaryngology-Head & Neck Surgery, American University of Beirut Medical Center, Lebanon.
| |
Collapse
|
38
|
Li L, Mahara A, Tong Z, Levenson EA, McGann CL, Jia X, Yamaoka T, Kiick KL. Recombinant Resilin-Based Bioelastomers for Regenerative Medicine Applications. Adv Healthc Mater 2016; 5:266-75. [PMID: 26632334 PMCID: PMC4754112 DOI: 10.1002/adhm.201500411] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 09/15/2015] [Indexed: 12/22/2022]
Abstract
The outstanding elasticity, excellent resilience at high-frequency, and hydrophilic capacity of natural resilin have motivated investigations of recombinant resilin-based biomaterials as a new class of bio-elastomers in the engineering of mechanically active tissues. Accordingly, here the comprehensive characterization of modular resilin-like polypeptide (RLP) hydrogels is presented and their suitability as a novel biomaterial for in vivo applications is introduced. Oscillatory rheology confirmed that a full suite of the RLPs can be rapidly cross-linked upon addition of the tris(hydroxymethyl phosphine) cross-linker, achieving similar in situ shear storage moduli (20 k ± 3.5 Pa) across various material compositions. Uniaxial stress relaxation tensile testing of hydrated RLP hydrogels under cyclic loading and unloading showed negligible stress reduction and hysteresis, superior reversible extensibility, and high resilience with Young's moduli of 30 ± 7.4 kPa. RLP hydrogels containing MMP-sensitive domains are susceptible to enzymatic degradation by matrix metalloproteinase-1 (MMP-1). Cell culture studies revealed that RLP-based hydrogels supported the attachment and spreading (2D) of human mesenchymal stem cells and did not activate cultured macrophages. Subcutaneous transplantation of RLP hydrogels in a rat model, which to our knowledge is the first such reported in vivo analysis of RLP-based hydrogels, illustrated that these materials do not elicit a significant inflammatory response, suggesting their potential as materials for tissue engineering applications with targets of mechanically demanding tissues such as vocal fold and cardiovascular tissues.
Collapse
Affiliation(s)
- Linqing Li
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Atsushi Mahara
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center Research Institute, Fujishiro-dai Suita, Osaka, 565-8565, Japan
| | - Zhixiang Tong
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Eric A Levenson
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Christopher L McGann
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Xinqiao Jia
- Department of Materials Science and Engineering, Department of Biomedical Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Tetsuji Yamaoka
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center Research Institute, Fujishiro-dai Suita, Osaka, 565-8565, Japan
| | - Kristi L Kiick
- Department of Materials Science and Engineering, Department of Biomedical Engineering, University of Delaware, Newark, DE, 19716, USA
| |
Collapse
|
39
|
Fishman JM, Long J, Gugatschka M, De Coppi P, Hirano S, Hertegard S, Thibeault SL, Birchall MA. Stem cell approaches for vocal fold regeneration. Laryngoscope 2016; 126:1865-70. [PMID: 26774977 DOI: 10.1002/lary.25820] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 10/20/2015] [Accepted: 11/13/2015] [Indexed: 12/31/2022]
Abstract
OBJECTIVES/HYPOTHESIS Current interventions in the management of vocal fold (VF) dysfunction focus on conservative and surgical approaches. However, the complex structure and precise biomechanical properties of the human VF mean that these strategies have their limitations in clinical practice and in some cases offer inadequate levels of success. Regenerative medicine is an exciting development in this field and has the potential to further enhance VF recovery beyond conventional treatments. Our aim in this review is to discuss advances in the field of regenerative medicine; that is, advances in the process of replacing, engineering, or regenerating the VF through utilization of stem cells, with the intention of restoring normal VF structure and function. DATA SOURCES English literature (1946-2015) review. METHODS We conducted a systematic review of MEDLINE for cases and studies of VF tissue engineering utilizing stem cells. RESULTS The three main approaches by which regenerative medicine is currently applied to VF regeneration include cell therapy, scaffold development, and utilization of growth factors. CONCLUSION Exciting advances have been made in stem cell biology in recent years, including use of induced pluripotent stem cells. We expect such advances to be translated into the field in the forthcoming years. Laryngoscope, 126:1865-1870, 2016.
Collapse
Affiliation(s)
- Jonathan M Fishman
- UCL Institute of Child Health, London, United Kingdom.,UCL Ear Institute and Royal National Throat, Nose and Ear Hospital and, London, United Kingdom
| | - Jenny Long
- UCL Institute of Child Health, London, United Kingdom
| | - Markus Gugatschka
- Department of Phoniatrics, ENT University Hospital Graz, Medical University Graz, Graz, Austria
| | | | - Shigeru Hirano
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Stellan Hertegard
- Department of Otorhinolaryngology, Karolinska Institutet Clintec, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Susan L Thibeault
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Wisconsin-Madison, Wisconsin Institutes for Medical Research, Madison, Wisconsin, U.S.A
| | - Martin A Birchall
- UCL Ear Institute and Royal National Throat, Nose and Ear Hospital and, London, United Kingdom
| |
Collapse
|
40
|
Chen X, Thibeault S. Effect of DMSO concentration, cell density and needle gauge on the viability of cryopreserved cells in three dimensional hyaluronan hydrogel. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2013:6228-31. [PMID: 24111163 DOI: 10.1109/embc.2013.6610976] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
For cells seeded in scaffolds, transplanted cell survival rate plays an important role for cell transplantation efficiency, and is essential for successful cell transplantation. Fibroblast viability in HyStem-C was examined by a double staining Live/Dead Viability/Cytotoxicity assay, and cell images were analyzed using MetaMorph software for calculating live cell percentage for fresh and cryopreserved cells at different incubation time points, delivery methods, differing DMSO and cell concentrations. The results of this research demonstrated that in HyStem-C, the viability of cryopreserved cells (85%) was significantly lower than fresh collected cells (96.7%). In addition, the physical force from a 27 gauge needle significantly decreased frozen cell survival rates to 83-85% compared to pipette delivered cells. Higher DMSO concentration (1.0%) and higher cell density (2 × 10(7) per milliliter) also significantly decreased cell survival to 73%. Cryopreserved cell viability in three dimensional scaffolding can be maintained over 80% with cell density of 1 × 10(7) per milliliter, total DMSO concentration of 0.5%, and passed through a 27-gauge needle. These results demonstrate the viability of cells seeded in hyaluronan hydrogel with commonly used storage and delivery methods can bring rather satisfactory cell transplantation efficiency.
Collapse
|
41
|
Ribeiro L, Castro E, Ferreira M, Helena D, Robles R, Faria e Almeida A, Condé A. The Concepts and Applications of Tissue Engineering in Otorhinolaryngology. ACTA OTORRINOLARINGOLOGICA ESPANOLA 2015. [DOI: 10.1016/j.otoeng.2013.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
42
|
Ribeiro L, Castro E, Ferreira M, Helena D, Robles R, Faria e Almeida A, Condé A. Conceptos y aplicaciones de la ingeniería tisular en Otorrinolaringología. ACTA OTORRINOLARINGOLOGICA ESPANOLA 2015; 66:43-8. [DOI: 10.1016/j.otorri.2014.03.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 03/08/2014] [Accepted: 03/10/2014] [Indexed: 10/24/2022]
|
43
|
Hiwatashi N, Hirano S, Mizuta M, Tateya I, Kanemaru SI, Nakamura T, Ito J, Kawai K, Suzuki S. Biocompatibility and efficacy of collagen/gelatin sponge scaffold with sustained release of basic fibroblast growth factor on vocal fold fibroblasts in 3-dimensional culture. Ann Otol Rhinol Laryngol 2014; 124:116-25. [PMID: 25115594 DOI: 10.1177/0003489414546396] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Treatment of vocal fold scarring remains challenging. We have previously reported the therapeutic effects of local injection of basic fibroblast growth factor (bFGF) in animal models and humans. A novel collagen/gelatin sponge (CGS) is capable of sustained release of bFGF, which compensates for its quick absorption in vivo, avoiding multiple injections. This study aimed to evaluate the biocompatibility and efficacy of the CGS in rat vocal fold fibroblasts prior to human trials. METHODS Fibroblasts extracted from Sprague-Dawley rat vocal folds were seeded onto a CGS and then cultivated with bFGF at concentrations of 0, 10, and 100 ng/mL. Vocal fold fibroblast morphology, adhesion, proliferation, and gene expression were measured under these 3-dimensional conditions. RESULTS Cells adhered to the CGS from day 1. Although no significant differences in cell morphology were detected, cell proliferation was accelerated by bFGF administration. Expression of endogenous bFGF and hepatocyte growth factor was significantly up-regulated at 10 ng/mL bFGF. The expression of procollagen I and procollagen III was significantly suppressed, whereas HAS-1 and HAS-2 were up-regulated at 10 and 100 ng/mL bFGF. CONCLUSION The collagen/gelatin sponge is biocompatible with vocal fold fibroblasts and may be useful as a bFGF drug delivery system for the treatment of scarred vocal folds.
Collapse
Affiliation(s)
- Nao Hiwatashi
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shigeru Hirano
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masanobu Mizuta
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ichiro Tateya
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shin-Ichi Kanemaru
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan Department of Otolaryngology-Head and Neck Surgery, Kitano Hospital, Tazuke Kofukai Medical Research Institute, Osaka, Japan
| | - Tatsuo Nakamura
- Department of Bioartificial Organs, Institute for Frontier Medical Science, Kyoto University, Kyoto, Japan
| | - Juichi Ito
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Katsuya Kawai
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shigehiko Suzuki
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
44
|
Imaizumi M, Thibeault SL, Leydon C. Classification for animal vocal fold surgery: resection margins impact histological outcomes of vocal fold injury. Laryngoscope 2014; 124:E437-44. [PMID: 24965969 DOI: 10.1002/lary.24799] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 04/16/2014] [Accepted: 05/20/2014] [Indexed: 01/01/2023]
Abstract
OBJECTIVES/HYPOTHESIS Extent of vocal fold injury impacts the nature and timing of wound healing and voice outcomes. However, depth and extent of the lesion created to study wound healing in animal models vary across studies, likely contributing to different outcomes. Our goal was to create a surgery classification system to enable comparison of postoperative outcomes across animal vocal fold wound-healing studies. STUDY DESIGN Prospective, controlled animal study. METHODS Rats underwent one of three types of unilateral vocal fold surgeries classified by depth and length of resection. The surgeries were: for subepithelial injury, resection of epithelium and superficial layer of the lamina propria at the midmembranous portion of the vocal fold; for transmucosal injury, resection of epithelium and lamina propria; and for transmuscular injury, resection of epithelium, lamina propria, and superficial portion of the vocalis muscle. Wound healing was evaluated histologically at various time points up to 35 days postinjury. RESULTS Complete healing occurred by 14 days postsurgery for subepithelial injury, and by day 35 for transmucosal injury. Injury remained present at day 35 for transmuscular injury. CONCLUSIONS Timing and completeness of healing varied by extent and depth of resection. Scarless healing occurred rapidly following subepithelial injury, whereas scarring was observed at 5 weeks after transmuscular injury. The proposed classification system may facilitate comparison of surgical outcomes across vocal fold wound-healing studies. LEVELS OF EVIDENCE N/A.
Collapse
Affiliation(s)
- Mitsuyoshi Imaizumi
- Department of Otolaryngology, School of Medicine, Fukushima Medical University, Fukushima City, Japan
| | | | | |
Collapse
|
45
|
Mau T, Du M, Xu CC. A rabbit vocal fold laser scarring model for testing lamina propria tissue-engineering therapies. Laryngoscope 2014; 124:2321-6. [PMID: 24715695 DOI: 10.1002/lary.24707] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 03/24/2014] [Indexed: 11/06/2022]
Abstract
OBJECTIVES/HYPOTHESIS To develop a vocal fold scarring model using an ablative laser in the rabbit as a platform for testing bioengineered therapies for missing or damaged lamina propria. STUDY DESIGN Prospective controlled animal study. METHODS An optimal laser energy level was first determined by assessing the depths of vocal fold injury created by a Holmium:YAG laser at various energy levels on fresh cadaveric rabbit larynges. The selected energy level was then used to create controlled unilateral injuries in vocal folds of New Zealand white rabbits, with the contralateral folds serving as uninjured controls. After 4 weeks, the larynges were harvested and subjected to excised-larynx phonation with high-speed imaging and immunohistochemical staining for collagen types I and III, elastin, and hyaluronic acid (HA) with quantitative histological analysis. RESULTS A total of 1.8 joules produced full-thickness injury of the lamina propria without extensive muscle injury. After 4 weeks, the injured vocal folds vibrated with reduced amplitude (P = 0.036) in excised-larynx phonation compared to normal vocal folds. The injured vocal folds contained a higher relative density of collagen type I (P = 0.004), higher elastin (P = 0.022), and lower HA (P = 0.030) compared to normal controls. Collagen type III was unchanged. CONCLUSIONS With its potential for higher precision of injury, this laser vocal fold scarring model may serve as an alternative to scarring produced by cold instruments for studying the effects of vocal fold lamina propria bioengineered therapies.
Collapse
Affiliation(s)
- Ted Mau
- Department of Otolaryngology-Head and Neck Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, U.S.A
| | | | | |
Collapse
|
46
|
Li L, Kiick KL. Transient dynamic mechanical properties of resilin-based elastomeric hydrogels. Front Chem 2014; 2:21. [PMID: 24809044 PMCID: PMC4009447 DOI: 10.3389/fchem.2014.00021] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 04/07/2014] [Indexed: 11/13/2022] Open
Abstract
The outstanding high-frequency properties of emerging resilin-like polypeptides (RLPs) have motivated their development for vocal fold tissue regeneration and other applications. Recombinant RLP hydrogels show efficient gelation, tunable mechanical properties, and display excellent extensibility, but little has been reported about their transient mechanical properties. In this manuscript, we describe the transient mechanical behavior of new RLP hydrogels investigated via both sinusoidal oscillatory shear deformation and uniaxial tensile testing. Oscillatory stress relaxation and creep experiments confirm that RLP-based hydrogels display significantly reduced stress relaxation and improved strain recovery compared to PEG-based control hydrogels. Uniaxial tensile testing confirms the negligible hysteresis, reversible elasticity and superior resilience (up to 98%) of hydrated RLP hydrogels, with Young's modulus values that compare favorably with those previously reported for resilin and that mimic the tensile properties of the vocal fold ligament at low strain (<15%). These studies expand our understanding of the properties of these RLP materials under a variety of conditions, and confirm the unique applicability, for mechanically demanding tissue engineering applications, of a range of RLP hydrogels.
Collapse
Affiliation(s)
- Linqing Li
- Department of Materials Science and Engineering, University of Delaware Newark, DE, USA
| | - Kristi L Kiick
- Department of Materials Science and Engineering, University of Delaware Newark, DE, USA ; Biomedical Engineering, University of Delaware Newark, DE, USA ; Delaware Biotechnology Institute Newark, DE, USA
| |
Collapse
|
47
|
Kazemirad S, Bakhshaee H, Mongeau L, Kost K. Non-invasive in vivo measurement of the shear modulus of human vocal fold tissue. J Biomech 2013; 47:1173-9. [PMID: 24433668 DOI: 10.1016/j.jbiomech.2013.11.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 11/21/2013] [Indexed: 11/30/2022]
Abstract
Voice is the essential part of singing and speech communication. Voice disorders significantly affect the quality of life. The viscoelastic mechanical properties of the vocal fold mucosa determine the characteristics of the vocal folds oscillations, and thereby voice quality. In the present study, a non-invasive method was developed to determine the shear modulus of human vocal fold tissue in vivo via measurements of the mucosal wave propagation speed during phonation. Images of four human subjects' vocal folds were captured using high speed digital imaging (HSDI) and magnetic resonance imaging (MRI) for different phonation pitches, specifically fundamental frequencies between 110 and 440 Hz. The MRI images were used to obtain the morphometric dimensions of each subject's vocal folds in order to determine the pixel size in the high-speed images. The mucosal wave propagation speed was determined for each subject and at each pitch value using an automated image processing algorithm. The transverse shear modulus of the vocal fold mucosa was then calculated from a surface (Rayleigh) wave propagation dispersion equation using the measured wave speeds. It was found that the mucosal wave propagation speed and therefore the shear modulus of the vocal fold tissue were generally greater at higher pitches. The results were in good agreement with those from other studies obtained via in vitro measurements, thereby supporting the validity of the proposed measurement method. This method offers the potential for in vivo clinical assessments of vocal folds viscoelasticity from HSDI.
Collapse
Affiliation(s)
- Siavash Kazemirad
- Biomechanics Research Laboratory, Department of Mechanical Engineering, McGill University, Montreal, Quebec, Canada H3A 0C3.
| | - Hani Bakhshaee
- Biomechanics Research Laboratory, Department of Mechanical Engineering, McGill University, Montreal, Quebec, Canada H3A 0C3
| | - Luc Mongeau
- Biomechanics Research Laboratory, Department of Mechanical Engineering, McGill University, Montreal, Quebec, Canada H3A 0C3
| | - Karen Kost
- Department of Laryngology, McGill University, Montreal, Quebec, Canada H3A 1A1
| |
Collapse
|
48
|
King SN, Hanson SE, Chen X, Kim J, Hematti P, Thibeault SL. In vitro characterization of macrophage interaction with mesenchymal stromal cell-hyaluronan hydrogel constructs. J Biomed Mater Res A 2013; 102:890-902. [PMID: 23564555 DOI: 10.1002/jbm.a.34746] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 03/22/2013] [Accepted: 03/28/2013] [Indexed: 11/12/2022]
Abstract
Macrophages play a critical role in mediating not only normal tissue healing, but also the host reaction against biomaterial scaffolds. There is increasing interest in regenerative medicine to combine mesenchymal stromal/stem cells (MSCs) with biomaterial scaffolds to modulate inflammatory response while restoring tissue architecture. The objective of the current study was to investigate the interaction between MSCs (derived from bone marrow, adipose or vocal fold tissue) encapsulated in hyaluronan-based hydrogel and differentiating macrophages as measured by extracellular matrix (ECM) gene expression and cytokine, chemokine, and growth factor concentrations. Gene expression was analyzed using real-time polymerase chain reaction from MSCs embedded in Carbylan-GSX after 7 days of coculture with or without CD14+ cells. Protein concentrations were measured using a Bio-plex assay from cell culture supernatants on days 3 and 7 for all conditions. Following 7 days, we identified upregulation of collagen-I, collagen-III, procollagen, and matrix metalloproteinase-9 genes compared to control conditions. We demonstrate increased concentrations of immunoregulatory cytokines [interleukin (IL)-1β, tumor necrosis factor-α, macrophage inflammatory protein-1α, IFN-γ, IL-12, and IL-10] and remodeling growth factors (vascular endothelial growth factor, hepatocyte growth factor) in MSC-3D constructs cocultured with macrophages compared to control conditions, with some temporal variation. Our results indicate an alteration of expression of ECM proteins important to tissue regeneration and cytokines critical to the inflammatory cascade when 3D constructs were cultured with differentiating macrophages.
Collapse
Affiliation(s)
- Suzanne N King
- Division of Otolaryngology - Head and Neck Surgery, University of Wisconsin-Madison, Madison, Wisconsin
| | | | | | | | | | | |
Collapse
|
49
|
Page JM, Harmata AJ, Guelcher SA. Design and development of reactive injectable and settable polymeric biomaterials. J Biomed Mater Res A 2013; 101:3630-45. [DOI: 10.1002/jbm.a.34665] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 02/05/2013] [Accepted: 02/14/2013] [Indexed: 12/21/2022]
Affiliation(s)
- Jonathan M. Page
- Department of Chemical and Biomolecular Engineering; Vanderbilt University; Nashville Tennessee
- Center for Bone Biology; Department of Medicine; Vanderbilt University Medical Center; Nashville Tennessee
| | - Andrew J. Harmata
- Department of Chemical and Biomolecular Engineering; Vanderbilt University; Nashville Tennessee
- Center for Bone Biology; Department of Medicine; Vanderbilt University Medical Center; Nashville Tennessee
| | - Scott A. Guelcher
- Department of Chemical and Biomolecular Engineering; Vanderbilt University; Nashville Tennessee
- Center for Bone Biology; Department of Medicine; Vanderbilt University Medical Center; Nashville Tennessee
- Department of Biomedical Engineering; Vanderbilt University; Nashville Tennessee
| |
Collapse
|
50
|
Chen X, Thibeault SL. Cell-cell interaction between vocal fold fibroblasts and bone marrow mesenchymal stromal cells in three-dimensional hyaluronan hydrogel. J Tissue Eng Regen Med 2013; 10:437-46. [PMID: 23653427 DOI: 10.1002/term.1757] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 03/07/2013] [Accepted: 03/25/2013] [Indexed: 01/18/2023]
Abstract
Mesenchymal stromal cells (MSCs) are multipotential adult cells present in all tissues. Paracrine effects and differentiating ability make MSCs an ideal cell source for tissue regeneration. However, little is known about how interactions between implanted MSCs and native cells influence cellular growth, proliferation, and behaviour. By using an in vitro three-dimensional (3D) co-culture assay of normal or scarred human vocal fold fibroblasts (VFFs) and bone marrow-derived MSCs (BM-MSCs) in a uniquely suited hyaluronan hydrogel (HyStem-VF), we investigated cell morphology, survival rate, proliferation and protein and gene expression of VFFs and BM-MSCs. BM-MSCs inhibited cell proliferation of both normal and scarred VFFs without changes in VFF morphology or viability. BM-MSCs demonstrated decreased proliferation and survival rate after 7 days of co-culture with VFFs. Interactions between BM-MSCs and VFFs led to a significant increase in protein secretion of collagen I and hepatocyte growth factor (HGF) and a decrease of vascular endothelial growth factor (VEGF), monocyte chemotactic protein-1 (MCP-1) and interleukin-6 (IL-6). In particular, BM-MSCs significantly upregulated matrix metalloproteinase 1 (MMP1) and HGF gene expression for scarred VFFs compared to normal VFFs, indicating the potential for increases in extracellular matrix remodelling and tissue regeneration. Application of BM-MSCs-hydrogels may play a significant role in tissue regeneration, providing a therapeutic approach for vocal fold scarring. Copyright © 2013 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Xia Chen
- Department of Surgery, University of Wisconsin at Madison, WI, USA
| | | |
Collapse
|