1
|
Vivarelli M, Barratt J, Beck LH, Fakhouri F, Gale DP, Goicoechea de Jorge E, Mosca M, Noris M, Pickering MC, Susztak K, Thurman JM, Cheung M, King JM, Jadoul M, Winkelmayer WC, Smith RJH. The role of complement in kidney disease: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int 2024; 106:369-391. [PMID: 38844295 DOI: 10.1016/j.kint.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/25/2024] [Accepted: 05/22/2024] [Indexed: 06/22/2024]
Abstract
Uncontrolled complement activation can cause or contribute to glomerular injury in multiple kidney diseases. Although complement activation plays a causal role in atypical hemolytic uremic syndrome and C3 glomerulopathy, over the past decade, a rapidly accumulating body of evidence has shown a role for complement activation in multiple other kidney diseases, including diabetic nephropathy and several glomerulonephritides. The number of available complement inhibitor therapies has also increased during the same period. In 2022, Kidney Diseases: Improving Global Outcomes (KDIGO) convened a Controversies Conference, "The Role of Complement in Kidney Disease," to address the expanding role of complement dysregulation in the pathophysiology, diagnosis, and management of various glomerular diseases, diabetic nephropathy, and other forms of hemolytic uremic syndrome. Conference participants reviewed the evidence for complement playing a primary causal or secondary role in progression for several disease states and considered how evidence of complement involvement might inform management. Participating patients with various complement-mediated diseases and caregivers described concerns related to life planning, implications surrounding genetic testing, and the need for inclusive implementation of effective novel therapies into clinical practice. The value of biomarkers in monitoring disease course and the role of the glomerular microenvironment in complement response were examined, and key gaps in knowledge and research priorities were identified.
Collapse
Affiliation(s)
- Marina Vivarelli
- Laboratory of Nephrology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| | - Jonathan Barratt
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Laurence H Beck
- Section of Nephrology, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine and Boston Medical Center, Boston, Massachusetts, USA
| | - Fadi Fakhouri
- Department of Nephrology, Centre Hospitalier Universitaire, Nantes, France; INSERM UMR S1064, Nantes, France
| | - Daniel P Gale
- Centre for Kidney and Bladder Health, University College London, UK
| | - Elena Goicoechea de Jorge
- Department of Immunology, Ophthalmology and ORL, Complutense University, Madrid, Spain; Area of Chronic Diseases and Transplantation, Research Institute Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Marta Mosca
- Department of Clinical and Experimental Medicine-Rheumatology Unit, University of Pisa, Pisa, Italy
| | - Marina Noris
- Clinical Research Center for Rare Diseases Aldo e Cele Daccò, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Ranica, Italy
| | - Matthew C Pickering
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College, Hammersmith Campus, London, UK
| | - Katalin Susztak
- Division of Nephrology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Joshua M Thurman
- Division of Nephrology and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | | | | | - Michel Jadoul
- Cliniques Universitaires Saint Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Wolfgang C Winkelmayer
- Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Richard J H Smith
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA; Department of Internal Medicine, Division of Nephrology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA; Department of Pediatrics, Division of Nephrology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.
| |
Collapse
|
2
|
Zhang Y, Zhang H. Current understanding and new insights in the treatment of IgA nephropathy. Nephrology (Carlton) 2024; 29 Suppl 2:75-79. [PMID: 38958055 DOI: 10.1111/nep.14340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
IgA nephropathy (IgAN) is the most common primary glomerulonephritis worldwide, and almost all patients are at risk of progression to end-stage kidney disease within their lifetime. The mechanisms responsible for the presentation and development of IgAN are required for the development of highly targeted therapies for this disease. In this review, we first demonstrate the current treatment strategy of IgAN recommended by the 2021 KDIGO guideline. Then, we update the new insights into disease pathogenesis based on the well acknowledged 'multiple-hit hypothesis' and provide the potential therapeutic targets involved in the upstream production of pathogenic IgA1 and the downstream complement activation. Finally, the recent large randomized controlled trials focusing on these novel targets have been summarized, among which Nefecon and Sparsentan have received approval and Telitacicept have been used off-label for IgAN. In the future, emerging treatment approaches for IgAN is likely to evolve, which will signify a shift in the management of the IgAN from traditional immunosuppressive approaches to an era of targeted treatment based on the understanding of the pathogenic mechanisms.
Collapse
Affiliation(s)
- Yuemiao Zhang
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Peking University, Ministry of Education, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Hong Zhang
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Peking University, Ministry of Education, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Suzuki H, Novak J. IgA Nephropathy: Significance of IgA1-Containing Immune Complexes in Clinical Settings. J Clin Med 2024; 13:4495. [PMID: 39124764 PMCID: PMC11313413 DOI: 10.3390/jcm13154495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 08/12/2024] Open
Abstract
IgA nephropathy (IgAN) is considered to be an autoimmune disease characterized by the formation of IgA1-containing immune complexes in the circulation and glomerular immunodeposits. Extensive research has identified multiple genetic, immunological, and environmental factors contributing to disease development and progression. The pathogenesis of IgAN is considered a multifactorial process involving the formation of immune complexes wherein aberrantly O-glycosylated IgA1 is recognized as an autoantigen. Consequently, the clinical presentation of IgAN is highly variable, with a wide spectrum of manifestations ranging from isolated microscopic hematuria or episodic macroscopic hematuria to nephrotic-range proteinuria. Whereas some patients may exhibit a slowly progressive form of IgAN, others may present with a rapidly progressive glomerulonephritis leading to kidney failure. Development of the treatment for IgAN requires an understanding of the characteristics of the pathogenic IgA1-containing immune complexes that enter the glomerular mesangium and induce kidney injury. However, not all details of the mechanisms involved in the production of galactose-deficient IgA1 and immune-complex formation are fully understood. Here, we review what we have learned about the characteristics of nephritogenic IgA1 in the half-century since the first description of IgAN in 1968.
Collapse
Affiliation(s)
- Hitoshi Suzuki
- Department of Nephrology, Juntendo University Urayasu Hospital, 2-1-1 Tomioka, Urayasu 279-0021, Chiba, Japan
| | - Jan Novak
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
4
|
Duan ZY, Zhang C, Chen XM, Cai GY. Blood and urine biomarkers of disease progression in IgA nephropathy. Biomark Res 2024; 12:72. [PMID: 39075557 PMCID: PMC11287988 DOI: 10.1186/s40364-024-00619-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/12/2024] [Indexed: 07/31/2024] Open
Abstract
The prognosis of patients with IgA nephropathy (IgAN) is variable but overall not good. Almost all patients with IgAN are at risk of developing end-stage renal disease within their expected lifetime. The models presently available for prediction of the risk of progression of IgAN, including the International IgA Nephropathy Prediction Tool, consist of traditional clinical, pathological, and therapeutic indicators. Finding biomarkers to improve the existing risk prediction models or replace pathological indicators is important for clinical practice. Many studies have attempted to identify biomarkers for prediction of progression of IgAN, such as galactose-deficient IgA1, complement, a spectrum of protein biomarkers, non-coding RNA, and shedding cells. This article reviews the biomarkers of progression of IgAN identified in recent years, with a focus on those with clinical value, in particular the combination of multiple biomarkers into a biomarker spectrum. Future research should focus on establishing a model based primarily on biomarkers that can predict progression of IgAN and testing it in various patient cohorts.
Collapse
Affiliation(s)
- Zhi-Yu Duan
- Department of Nephrology, State Key Laboratory of Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, First Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Kidney Diseases, Beijing, 100853, China
| | - Chun Zhang
- Department of Nephrology, State Key Laboratory of Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, First Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Kidney Diseases, Beijing, 100853, China
| | - Xiang-Mei Chen
- Department of Nephrology, State Key Laboratory of Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, First Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Kidney Diseases, Beijing, 100853, China
| | - Guang-Yan Cai
- Department of Nephrology, State Key Laboratory of Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, First Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Kidney Diseases, Beijing, 100853, China.
| |
Collapse
|
5
|
Shajari A, Zare Ahmadabadi A, Ashrafi MM, Mahdavi T, Mirzaee M, Mohkam M, Sharafian S, Tamiji M, Jamee M. Inborn errors of immunity with kidney and urinary tract disorders: a review. Int Urol Nephrol 2024; 56:1965-1972. [PMID: 38198013 PMCID: PMC11090940 DOI: 10.1007/s11255-023-03907-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 12/02/2023] [Indexed: 01/11/2024]
Abstract
Human inborn errors of immunity (IEIs), previously referred to as primary immunodeficiency disorders (PIDs), are a heterogeneous spectrum of inherited abnormalities of the immune system with different organ involvement. The number of identified IEIs is rapidly increasing, highlighting the non-negligible role of an interdisciplinary approach in clinical diagnosis. Kidney disorders are one of the important comorbidities in some of the affected patients and play a significant role in the diagnosis and course of disease. According to recent studies, 22 types of human IEI with renal manifestations have been identified so far, including immunodeficiency with congenital thrombocytopenia, thymic defects with additional congenital anomalies, complement deficiencies, type 1 interferonopathies, immunity related to non-hematopoietic tissues, congenital neutropenia's, common variable immunodeficiency disorder (CVID) phenotype and immuno-osseous dysplasia. Based on this classification, we herein review IEIs with renal features and explain the genetic defect, inheritance, and type of renal manifestations.
Collapse
Affiliation(s)
- Ahmad Shajari
- Department of Pediatric Nephrology, Islamic Azad University of Yazd, Yazd, Iran
| | - Atefe Zare Ahmadabadi
- Immunology and Allergy Department, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Moein Ashrafi
- Immunology and Allergy Department, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tolue Mahdavi
- Department of Allergy and Clinical Immunology, Rasool E Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mahbubeh Mirzaee
- Pediatric Nephrology Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Mohkam
- Pediatric Nephrology Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samin Sharafian
- Immunology and Allergy Department, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrdad Tamiji
- Department of Computer Science, Rice University, Houston, TX, USA
| | - Mahnaz Jamee
- Laboratory for Pediatric Immunology, Department of Pediatrics, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, Netherlands.
| |
Collapse
|
6
|
Guo WY, Wang GQ, Kong LQ, Sun LJ, Xu XY, Cheng WR, Dong HR, Cheng H. Complement system is overactivated in patients with IgA nephropathy after COVID-19. Clin Immunol 2024; 263:110232. [PMID: 38701960 DOI: 10.1016/j.clim.2024.110232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
IgA nephropathy (IgAN), which has been confirmed as a complement mediated autoimmune disease, is also one form of glomerulonephritis associated with COVID-19. Here, we aim to investigate the clinical and immunological characteristics of patients with IgAN after COVID-19. The level of plasma level of C5a (p < 0.001), soluble C5b-9 (p = 0.018), FHR5 (p < 0.001) were all significantly higher in Group CoV (33 patients with renal biopsy-proven IgAN experienced COVID-19) compared with Group non-CoV (44 patients with IgAN without COVID-19), respectively. Compared with Group non-CoV, the intensity of glomerular C4d (p = 0.017) and MAC deposition (p < 0.001) and Gd-IgA1 deposition (p = 0.005) were much stronger in Group CoV. Our finding revealed that for IgAN after COVID-19, mucosal immune responses to SARS-CoV-2 infection may result in the overactivation of systemic and renal local complement system, and increased glomerular deposition of Gd-IgA1, which may lead to renal dysfunction and promote renal progression in IgAN patients.
Collapse
Affiliation(s)
- Wei-Yi Guo
- Renal Division, Department of Medicine, Beijing Anzhen Hospital, Capital Medical University, China
| | - Guo-Qin Wang
- Renal Division, Department of Medicine, Beijing Anzhen Hospital, Capital Medical University, China
| | - Ling-Qiang Kong
- Renal Division, Department of Medicine, Beijing Anzhen Hospital, Capital Medical University, China
| | - Li-Jun Sun
- Renal Division, Department of Medicine, Beijing Anzhen Hospital, Capital Medical University, China
| | - Xiao-Yi Xu
- Renal Division, Department of Medicine, Beijing Anzhen Hospital, Capital Medical University, China
| | - Wen-Rong Cheng
- Renal Division, Department of Medicine, Beijing Anzhen Hospital, Capital Medical University, China
| | - Hong-Rui Dong
- Renal Division, Department of Medicine, Beijing Anzhen Hospital, Capital Medical University, China
| | - Hong Cheng
- Renal Division, Department of Medicine, Beijing Anzhen Hospital, Capital Medical University, China.
| |
Collapse
|
7
|
Li J, Dong Y, Chen F, Yang H, Chen P, Li H, Shi S, Zhou X, Zhu L, Zhang Y, Liu L, Xie X, Yu F, Jin J, Lv J, Zhang H. Heterozygous mutations in factor H aggravate pathological damage in a stable IgA deposition model induced by Lactobacillus casei cell wall extract. Front Immunol 2024; 15:1368322. [PMID: 38558821 PMCID: PMC10978756 DOI: 10.3389/fimmu.2024.1368322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/27/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction Activation of complement through the alternative pathway (AP) has a key role in the pathogenesis of IgA nephropathy (IgAN). We previously showed, by intraperitoneal injection of Lactobacillus casei cell wall extract (LCWE), C57BL/6 mice develop mild kidney damage in association with glomerular IgA deposition. To further address complement activity in causing glomerular histological alterations as suggested in the pathogenesis of IgAN, here we used mice with factor H mutation (FHW/R) to render AP overactivation in conjunction with LCWE injection to stimulate intestinal production of IgA. Methods Dose response to LCWE were examined between two groups of FHW/R mice. Wild type (FHW/W) mice stimulated with LCWE were used as model control. Results The FHW/R mice primed with high dose LCWE showed elevated IgA and IgA-IgG complex levels in serum. In addition to 100% positive rate of IgA and C3, they display elevated biomarkers of kidney dysfunction, coincided with severe pathological lesions, resembling those of IgAN. As compared to wild type controls stimulated by the same high dose LCWE, these FHW/R mice exhibited stronger complement activation in the kidney and in circulation. Discussion The new mouse model shares many disease features with IgAN. The severity of glomerular lesions and the decline of kidney functions are further aggravated through complement overactivation. The model may be a useful tool for preclinical evaluation of treatment response to complement-inhibitors.
Collapse
Affiliation(s)
- Jingyi Li
- Renal Division, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Yaping Dong
- Renal Division, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Feifei Chen
- Renal Division, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Hongyu Yang
- Renal Division, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Pei Chen
- Renal Division, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Hongyu Li
- Renal Division, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Sufang Shi
- Renal Division, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Xujie Zhou
- Renal Division, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Li Zhu
- Renal Division, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Yuemiao Zhang
- Renal Division, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Lijun Liu
- Renal Division, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Xinfang Xie
- Department of Nephrology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi'an, China
| | - Feng Yu
- Department of Nephrology, Peking University International Hospital, Beijing, China
| | - Jing Jin
- Northwestern University Feinberg School of Medicine, Division of Nephrology, Chicago, IL, United States
| | - Jicheng Lv
- Renal Division, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Hong Zhang
- Renal Division, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| |
Collapse
|
8
|
Dong L, Hu Y, Yang D, Liu L, Li Y, Ge S, Yao Y. Microangiopathy associated with poor outcome of immunoglobulin A nephropathy: a cohort study and meta-analysis. Clin Kidney J 2024; 17:sfae012. [PMID: 38333627 PMCID: PMC10851670 DOI: 10.1093/ckj/sfae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Indexed: 02/10/2024] Open
Abstract
Background Microangiopathy (MA) lesions are not rare in immunoglobulin A nephropathy (IgAN) and have been suggested to have a potential role in increasing risk in renal function decline. However, this suggestion has not been universally accepted. We aimed to investigate its role in our cohort and in multiple studies through a systematic meta-analysis. Methods This cohort study included 450 IgAN patients, confirmed by renal biopsy, at Tongji Hospital, China, from January 2012 to December 2016. Clinical data were collected and analysed. We systematically searched PubMed and Web of Science for studies investigating the association between MA lesions and IgAN. Results In our cohort, IgAN patients with MA were significantly older and had higher blood pressure, more proteinuria, worse kidney function and increased uric acid levels compared with patients without MA. When comparing pathological features with the non-MA group, the MA group exhibited more global glomerulosclerosis and interstitial fibrosis/tubular atrophy. MA lesions were independently associated with a composite kidney outcome in IgAN patients {adjusted hazard ratio 2.115 [95% confidence interval (CI) 1.035-4.320], P = .040}. Furthermore, this relationship was validated in a meta-analysis involving 2098 individuals from five independent cohorts. The combined data showed a 187% adjusted risk of poor renal outcome in IgAN patients with MA compared with patients without MA [adjusted risk ratio 2.87 (95% CI 2.05-4.02; I2 = 53%). Conclusion MA lesions could serve as a valuable predictor for disease progression in patients with IgAN, extending beyond the widely recognized Oxford MEST-C score.
Collapse
Affiliation(s)
- Lei Dong
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuncan Hu
- Division of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Dan Yang
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liu Liu
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yueqiang Li
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuwang Ge
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Yao
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
El Karoui K, Fervenza FC, De Vriese AS. Treatment of IgA Nephropathy: A Rapidly Evolving Field. J Am Soc Nephrol 2024; 35:103-116. [PMID: 37772889 PMCID: PMC10786616 DOI: 10.1681/asn.0000000000000242] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 09/19/2023] [Indexed: 09/30/2023] Open
Abstract
The pivotal event in the pathophysiology of IgA nephropathy is the binding of circulating IgA-containing immune complexes to mesangial cells, with secondary glomerular and tubulointerstitial inflammation and fibrosis. The paramount difficulty in the management of IgA nephropathy is the heterogeneity in its clinical presentation and prognosis, requiring an individualized treatment approach. Goal-directed supportive care remains the bedrock of therapy for all patients, regardless of risk of progression. Sodium-glucose transporter 2 inhibitors and sparsentan should be integral to contemporary supportive care, particularly in patients with chronic kidney damage. Pending the development of reliable biomarkers, it remains a challenge to identify patients prone to progression due to active disease and most likely to derive a net benefit from immunosuppression. The use of clinical parameters, including the degree of proteinuria, the presence of persistent microscopic hematuria, and the rate of eGFR loss, combined with the mesangial hypercellularity, endocapillary hypercellularity, segmental glomerulosclerosis, tubular atrophy/interstitial fibrosis, crescents score, is currently the best approach. Systemic glucocorticoids are indicated in high-risk patients, but the beneficial effects wane after withdrawal and come at the price of substantial treatment-associated toxicity. Therapies with direct effect on disease pathogenesis are increasingly becoming available. While targeted-release budesonide has garnered the most attention, anti-B-cell strategies and selective complement inhibition will most likely prove their added value. We propose a comprehensive approach that tackles the different targets in the pathophysiology of IgA nephropathy according to their relevance in the individual patient.
Collapse
Affiliation(s)
- Khalil El Karoui
- Department of Nephrology, Hôpital Tenon, Sorbonne Université, Paris, France
| | | | - An S. De Vriese
- Division of Nephrology and Infectious Diseases, AZ Sint-Jan Brugge, Brugge, Belgium
- Department of Internal Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
10
|
Rajasekaran A, Green TJ, Renfrow MB, Julian BA, Novak J, Rizk DV. Current Understanding of Complement Proteins as Therapeutic Targets for the Treatment of Immunoglobulin A Nephropathy. Drugs 2023; 83:1475-1499. [PMID: 37747686 PMCID: PMC10807511 DOI: 10.1007/s40265-023-01940-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2023] [Indexed: 09/26/2023]
Abstract
Immunoglobulin A nephropathy (IgAN) is the most common primary glomerulonephritis worldwide and a frequent cause of kidney failure. Currently, the diagnosis necessitates a kidney biopsy, with routine immunofluorescence microscopy revealing IgA as the dominant or co-dominant immunoglobulin in the glomerular immuno-deposits, often with IgG and sometimes IgM or both. Complement protein C3 is observed in most cases. IgAN leads to kidney failure in 20-40% of patients within 20 years of diagnosis and reduces average life expectancy by about 10 years. There is increasing clinical, biochemical, and genetic evidence that the complement system plays a paramount role in the pathogenesis of IgAN. The presence of C3 in the kidney immuno-deposits differentiates the diagnosis of IgAN from subclinical glomerular mesangial IgA deposition. Markers of complement activation via the lectin and alternative pathways in kidney-biopsy specimens are associated with disease activity and are predictive of poor outcome. Levels of select complement proteins in the circulation have also been assessed in patients with IgAN and found to be of prognostic value. Ongoing genetic studies have identified at least 30 loci associated with IgAN. Genes within some of these loci encode complement-system regulating proteins that can interact with immune complexes. The growing appreciation for the central role of complement components in IgAN pathogenesis highlighted these pathways as potential treatment targets and sparked great interest in pharmacological agents targeting the complement cascade for the treatment of IgAN, as evidenced by the plethora of ongoing clinical trials.
Collapse
Affiliation(s)
- Arun Rajasekaran
- Division of Nephrology, Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Todd J Green
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Matthew B Renfrow
- Department of Biochemistry and Molecular Genetics, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Bruce A Julian
- Division of Nephrology, Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jan Novak
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Dana V Rizk
- Division of Nephrology, Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
11
|
Guo Y, Zhang H, Yu X. A bibliometric analysis of complement in IgA nephropathy from 1991 to 2022. Front Pharmacol 2023; 14:1200193. [PMID: 37576817 PMCID: PMC10414182 DOI: 10.3389/fphar.2023.1200193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/17/2023] [Indexed: 08/15/2023] Open
Abstract
Introduction: IgA nephropathy is a common glomerular disease on a global scale, which has resulted in significant economic burdens. The complement system plays a vital role in enhancing the efficacy of antibodies and phagocytic cells in eliminating microbes and damaged cells, and promoting inflammation. Complement activation has been found to contribute to the progression of various renal diseases, including IgA nephropathy. Methods: In this study, a thorough analysis was conducted on publications related to complement in IgAN from 1991 to 2022, retrieved from the Web of Science Core Collection and Scopus database. The analysis focused on various aspects such as annual publications, country, institution, author, journal, keywords, and co-cited references, utilizing Citespace and Vosviewer. Results: A total of 819 publications were obtained, and while there were slight fluctuations in annual publications, an overall upward trend was observed. China, Japan and the United States were the leading countries in terms of publications, with China having the highest number of publications (201). Collaborative network analysis revealed that England, University of Alabama Birmingham, and Robert J Wyatt were the most influential country, institution, and author, respectively, in this field of research. Furthermore, the analysis of references and keywords indicated that complement activation contributes to IgAN, and immunosuppression in IgAN are a hot topic of research. Discussion: This study identifies current research hotspots and advanced tendencies in the study of complement in IgAN, providing scholars with crucial directions in this research area.
Collapse
Affiliation(s)
- Yun Guo
- The First Clinical Medical College, Guangdong Medical University, Zhanjiang, China
- Department of Nephrology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | | | - Xueqing Yu
- The First Clinical Medical College, Guangdong Medical University, Zhanjiang, China
- Department of Nephrology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangzhou, China
| |
Collapse
|
12
|
Wang D, Wu C, Chen S, Li Y, Wang L, Zhang Y, Li G. Urinary complement profile in IgA nephropathy and its correlation with the clinical and pathological characteristics. Front Immunol 2023; 14:1117995. [PMID: 37020564 PMCID: PMC10068869 DOI: 10.3389/fimmu.2023.1117995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/03/2023] [Indexed: 03/22/2023] Open
Abstract
Background and objectivesThe activated complement profile in IgA nephropathy (IgAN) is still unclear. Our study investigated the profile of urinary complements in IgAN patients and its correlations with clinical and pathological characteristics.MethodsUrinary protein abundance was detected by liquid chromatography-tandem mass spectrometry (LC–MS/MS) in 50 IgAN, 50 membranous nephropathy (MN), and 68 healthy controls (HC). Then, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to identify differentially expressed proteins in IgAN patients. The differentially expressed complement proteins were screened in IgAN patients, and their correlations with laboratory or pathological parameters were analyzed. Thereafter, 7 complement components were validated by enzyme-linked immunosorbent assay (ELISA) in the urine samples of 45 IgAN patients.ResultsThere were 786 differentially expressed proteins between IgAN and HC. KEGG analysis showed that differentially expressed urinary proteins in IgAN were enriched with complement. Of these, 67% of urinary complement protein abundance was associated with the estimated glomerular filtration rate. The urinary complement-related protein collectin12 (colec12), complement H factor (CFH), complement H factor-related protein 2 (CFHR2), and complement B factor (CFB) were positively correlated with serum creatinine; colec12, CFHR2, CFB, and C8g were positively correlated with glomerulosclerosis; CFH, CFHR2, C8g, and C9 were positively correlated with tubular atrophy/interstitial fibrosis.ConclusionAbnormally increased components of complement pathways significantly correlate with reduced renal function, proteinuria, and renal histological damage in IgAN. It could provide a potential biomarker panel for monitoring IgAN and provide clues for therapeutic choice targeting complement system of IgAN patients.
Collapse
Affiliation(s)
- Dongqing Wang
- Renal Department and Nephrology Institute, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Changwei Wu
- Renal Department and Nephrology Institute, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Sipei Chen
- Renal Department and Nephrology Institute, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yi Li
- Renal Department and Nephrology Institute, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Li Wang
- Renal Department and Nephrology Institute, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yong Zhang
- Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Guisen Li, ; Yong Zhang,
| | - Guisen Li
- Renal Department and Nephrology Institute, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- *Correspondence: Guisen Li, ; Yong Zhang,
| |
Collapse
|
13
|
Lucientes-Continente L, Márquez-Tirado B, Goicoechea de Jorge E. The Factor H protein family: The switchers of the complement alternative pathway. Immunol Rev 2023; 313:25-45. [PMID: 36382387 PMCID: PMC10099856 DOI: 10.1111/imr.13166] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The factor H (FH) protein family is emerging as a complex network of proteins controlling the fate of the complement alternative pathway (AP) and dictating susceptibility to a wide range of diseases including infectious, inflammatory, autoimmune, and degenerative diseases and cancer. Composed, in man, of seven highly related proteins, FH, factor H-like 1, and 5 factor H-related proteins, some of the FH family proteins are devoted to down-regulating the AP, while others exert an opposite function by promoting AP activation. Recent findings have provided insights into the molecular mechanisms defining their biological roles and their pathogenicity, illustrating the relevance that the balance between the regulators and the activators within this protein family has in defining the outcome of complement activation on cell surfaces. In this review we will discuss the emerging roles of the factor H protein family, their impact in the complement cascade, and their involvement in the pathogenesis of complement-mediated diseases associated with the AP dysregulation.
Collapse
Affiliation(s)
- Laura Lucientes-Continente
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University and Research Institute Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Bárbara Márquez-Tirado
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University and Research Institute Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Elena Goicoechea de Jorge
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University and Research Institute Hospital 12 de Octubre (imas12), Madrid, Spain
| |
Collapse
|
14
|
Niu X, Zhang S, Shao C, Guo Z, Wu J, Tao J, Zheng K, Ye W, Cai G, Sun W, Li M. Urinary complement proteins in IgA nephropathy progression from a relative quantitative proteomic analysis. PeerJ 2023; 11:e15125. [PMID: 37065697 PMCID: PMC10103701 DOI: 10.7717/peerj.15125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/03/2023] [Indexed: 04/18/2023] Open
Abstract
Aim IgA nephropathy (IgAN) is one of the leading causes of end-stage renal disease (ESRD). Urine testing is a non-invasive way to track the biomarkers used for measuring renal injury. This study aimed to analyse urinary complement proteins during IgAN progression using quantitative proteomics. Methods In the discovery phase, we analysed 22 IgAN patients who were divided into three groups (IgAN 1-3) according to their estimated glomerular filtration rate (eGFR). Eight patients with primary membranous nephropathy (pMN) were used as controls. Isobaric tags for relative and absolute quantitation (iTRAQ) labelling, coupled with liquid chromatography-tandem mass spectrometry, was used to analyse global urinary protein expression. In the validation phase, western blotting and parallel reaction monitoring (PRM) were used to verify the iTRAQ results in an independent cohort (N = 64). Results In the discovery phase, 747 proteins were identified in the urine of IgAN and pMN patients. There were different urine protein profiles in IgAN and pMN patients, and the bioinformatics analysis revealed that the complement and coagulation pathways were most activated. We identified a total of 27 urinary complement proteins related to IgAN. The relative abundance of C3, the membrane attack complex (MAC), the complement regulatory proteins of the alternative pathway (AP), and MBL (mannose-binding lectin) and MASP1 (MBL associated serine protease 2) in the lectin pathway (LP) increased during IgAN progression. This was especially true for MAC, which was found to be involved prominently in disease progression. Alpha-N-acetylglucosaminidase (NAGLU) and α-galactosidase A (GLA) were validated by western blot and the results were consistent with the iTRAQ results. Ten proteins were validated in a PRM analysis, and these results were also consistent with the iTRAQ results. Complement factor B (CFB) and complement component C8 alpha chain (C8A) both increased with the progression of IgAN. The combination of CFB and mucosal addressin cell adhesion molecule-1 (MAdCAM-1) also showed potential as a urinary biomarker for monitoring IgAN development. Conclusion There were abundant complement components in the urine of IgAN patients, indicating that the activation of AP and LP is involved in IgAN progression. Urinary complement proteins may be used as biomarkers for evaluating IgAN progression in the future.
Collapse
Affiliation(s)
- Xia Niu
- Core Facility of Instruments, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Shuyu Zhang
- Department of Nephrology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Chen Shao
- Core Facility of Instruments, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Zhengguang Guo
- Core Facility of Instruments, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Jianqiang Wu
- Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianling Tao
- Department of Nephrology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Ke Zheng
- Department of Nephrology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Wenling Ye
- Department of Nephrology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Guangyan Cai
- Department of Nephrology, The First Medical Centre, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Wei Sun
- Core Facility of Instruments, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Mingxi Li
- Department of Nephrology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
15
|
Abstract
Dysregulation and accelerated activation of the alternative pathway (AP) of complement is known to cause or accentuate several pathologic conditions in which kidney injury leads to the appearance of hematuria and proteinuria and ultimately to the development of chronic renal failure. Multiple genetic and acquired defects involving plasma- and membrane-associated proteins are probably necessary to impair the protection of host tissues and to confer a significant predisposition to AP-mediated kidney diseases. This review aims to explore how our current understanding will make it possible to identify the mechanisms that underlie AP-mediated kidney diseases and to discuss the available clinical evidence that supports complement-directed therapies. Although the value of limiting uncontrolled complement activation has long been recognized, incorporating complement-targeted treatments into clinical use has proved challenging. Availability of anti-complement therapy has dramatically transformed the outcome of atypical hemolytic uremic syndrome, one of the most severe kidney diseases. Innovative drugs that directly counteract AP dysregulation have also opened new perspectives for the management of other kidney diseases in which complement activation is involved. However, gained experience indicates that the choice of drug should be tailored to each patient's characteristics, including clinical, histologic, genetic, and biochemical parameters. Successfully treating patients requires further research in the field and close collaboration between clinicians and researchers who have special expertise in the complement system.
Collapse
Affiliation(s)
- Erica Daina
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Monica Cortinovis
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Giuseppe Remuzzi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| |
Collapse
|
16
|
Evaluating the clinical utility of measuring levels of factor H and the related proteins. Mol Immunol 2022; 151:166-182. [PMID: 36162225 DOI: 10.1016/j.molimm.2022.08.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/04/2022] [Accepted: 08/15/2022] [Indexed: 11/21/2022]
Abstract
After years of disappointing clinical results, the tide has finally changed and complement targeted-therapies have become a validated and accepted treatment option for several diseases. These accomplishments have revitalized the field and brought renewed attention to the prospects that complement therapeutics can offer. Streamlining diagnostics and therapeutics is imperative in this new era of clinical use of complement therapeutics. However, the incredible success in therapeutics has not been accompanied by the development of novel standardized tools for complement testing. Complement biomarkers can assist in the risk assessment and diagnosis of diseases as well as the prediction of disease progression and treatment response. Recently, a group of complement proteins has been suggested to be highly relevant in various complement-associated disorders, namely the human factor H (FH) protein family. This family of closely related proteins consists of FH, FH-like protein 1, and five factor H-related proteins, and they have been linked to eye, kidney, infectious, vascular, and autoimmune diseases as well as cancer. The goal of this review is to provide a comprehensive overview of the available data on circulating levels of FH and its related proteins in different pathologies. In addition, we examined the current literature to determine the clinical utility of measuring levels of the FH protein family in health and disease. Finally, we discuss future steps that are needed to make their clinical translation a reality.
Collapse
|
17
|
Guo WY, An XP, Sun LJ, Dong HR, Cheng WR, Ye N, Wang GQ, Xu XY, Zhao ZR, Cheng H. Overactivation of the complement system may be involved in intrarenal arteriolar lesions in IgA nephropathy. Front Med (Lausanne) 2022; 9:945913. [PMID: 35991640 PMCID: PMC9381866 DOI: 10.3389/fmed.2022.945913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction IgA nephropathy (IgAN) encompasses a wide range of clinical and histology features. Some patients present without hematuria, with or without hypertension, still rapidly progress in renal function. Renal pathology of this part of patients were predominant intrarenal arteriolar lesions, rarely presented glomerular proliferative lesions. We aim to investigate the clinical and pathological characteristics and prognosis of these IgAN patients and initially explore whether the abnormal activation of complement is involved in the intrarenal arteriolar lesions of IgAN. Methods A total of 866 patients with renal biopsy-proven IgAN diagnosed at Beijing Anzhen Hospital were recruited. IgAN patients without intrarenal arteriolar lesions and proliferative lesions were excluded (n = 115), the rest were divided into arteriolar lesions group (n = 202) and proliferative lesions group (n = 549). Among them, 255 patients were regularly followed up for at least 1 year. Renal biopsy tissues of 104 IgAN patients were stained for complement components by immunohistochemistry and immunofluorescence. Results Compared with proliferative lesions group, the arteriolar lesions group experienced high percentage of hypertension (p = 0.004), low percentage of gross hematuria (p = 0.001), microscopic hematuria (p < 0.001) and less initial proteinuria (p = 0.033). Renal survival between the two groups was not significantly different (p = 0.133). MBL, C4d, FH and FHR5, C3c, and MAC deposited on intrarenal arteriole in arteriolar lesions group. Compare with the proliferative lesion group, the arteriolar lesions group exhibited a higher intensity of C3c deposition on the intrarenal arterioles (p = 0.048). C3c and CD31 co-deposited on intrarenal arterioles area in patients with intrarenal arteriolar lesions. Conclusion Renal survival of the IgAN patients in arteriolar lesions group was not better than those in proliferative lesions group. Abnormal activation of complement may be involved in the pathogenesis of arteriolar damage through the injury of endothelial cells in this clinical phenotype of IgAN.
Collapse
|
18
|
Wen L, Zhao Z, Li F, Ji F, Wen J. ICAM-1 related long noncoding RNA is associated with progression of IgA nephropathy and fibrotic changes in proximal tubular cells. Sci Rep 2022; 12:9645. [PMID: 35688937 PMCID: PMC9187724 DOI: 10.1038/s41598-022-13521-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 05/25/2022] [Indexed: 11/09/2022] Open
Abstract
Intercellular adhesion molecule 1 (ICAM-1) related long noncoding RNA (ICR) is on the antisense strand of ICAM-1 and regulates ICAM-1 expression. ICAM-1 is involved in renal tubulointerstitial injury; however, the expression and clinical implication of ICR are not determined in IgA nephropathy (IgAN). We compared renal ICR levels in 337 IgAN patients with those of 89 biopsy controls, and a markedly increased ICR level was observed in IgAN patients. By Cox proportional hazards models, higher levels of renal ICR were independently associated with disease progression event defined as end-stage renal disease or ≥ 40% decline in estimated glomerular filtration rate. Patients in the highest tertile of renal ICR had a 3.5-fold higher risk for disease progression compared with those in the lowest tertile. The addition of renal ICR to a model with traditional risk factors improved risk prediction of disease progression (net reclassification index: 0.31 [95% CI 0.01–0.50]; integrated discrimination index: 0.10 [95% CI 0.04–0.16]). Inhibition of ICR by transfection with plasmids containing ICR shRNA significantly reduced expression of collagen I and α-SMA, and phosphorylation of Akt and mTOR in TGF-β1- treated HK-2 cells. Our findings suggest that renal ICR might be an independent predictor of IgAN progression and contribute to renal fibrosis.
Collapse
Affiliation(s)
- Lu Wen
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Zhanzheng Zhao
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Fanghua Li
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Fengping Ji
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jianguo Wen
- Henan Joint International Pediatric Urodynamic Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
19
|
Fakhouri F, Schwotzer N, Golshayan D, Frémeaux-Bacchi V. The Rational Use of Complement Inhibitors in Kidney Diseases. Kidney Int Rep 2022; 7:1165-1178. [PMID: 35685323 PMCID: PMC9171628 DOI: 10.1016/j.ekir.2022.02.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/15/2022] [Accepted: 02/21/2022] [Indexed: 12/14/2022] Open
Abstract
The development of complement inhibitors represented one of the major breakthroughs in clinical nephrology in the last decade. Complement inhibition has dramatically transformed the outcome of one of the most severe kidney diseases, the atypical hemolytic uremic syndrome (aHUS), a prototypic complement-mediated disorder. The availability of complement inhibitors has also opened new promising perspectives for the management of several other kidney diseases in which complement activation is involved to a variable extent. With the rapidly growing number of complement inhibitors tested in a rapidly increasing number of indications, a rational use of this innovative and expensive new therapeutic class has become crucial. The present review aims to summarize what we know, and what we still ignore, regarding complement activation and therapeutic inhibition in kidney diseases. It also provides some clues and elements of thoughts for a rational approach of complement modulation in kidney diseases.
Collapse
Affiliation(s)
- Fadi Fakhouri
- Service de Néphrologie et d'hypertension, Département de Médecine, Centre Hospitalier Universitaire Vaudois (CHUV), Université de Lausanne, Lausanne, Switzerland
| | - Nora Schwotzer
- Service de Néphrologie et d'hypertension, Département de Médecine, Centre Hospitalier Universitaire Vaudois (CHUV), Université de Lausanne, Lausanne, Switzerland
| | - Déla Golshayan
- Centre de Transplantation d'organes, Département de Médecine, Centre Hospitalier Universitaire Vaudois (CHUV), Université de Lausanne, Lausanne, Switzerland
| | - Véronique Frémeaux-Bacchi
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service d'Immunologie, Paris University, Paris, France
| |
Collapse
|
20
|
Gómez Delgado I, Sánchez-Corral P. Contribution of functional and quantitative genetic variants of Complement Factor H and Factor H-Related (FHR) proteins on renal pathology. Nefrologia 2022; 42:280-289. [PMID: 36154806 DOI: 10.1016/j.nefroe.2022.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/12/2021] [Indexed: 06/16/2023] Open
Abstract
The complement system is a first line of defence against infectious, tumoral or autoimmune processes, and it is constitutively regulated to avoid excessive or unspecific activation. Factor H (FH), a most relevant complement regulator, controls complement activation in plasma and on the cellular surfaces of autologous tissues. FH shares evolutionary origin and structural features with a group of plasma proteins known as FH-Related Proteins (FHRs), which could act as FH functional antagonists. Studies in patient cohorts of atypical Haemolytic-Uraemic Syndrome (aHUS), C3 Glomerulopathy (C3G), and IgA nephropathy (IgAN), have identified rare genetic variants that give rise to severe FH and FHRs dysfunctions, and are major genetic predisposing factors. These patients also have a higher frequency of a few polymorphisms whose relevance as disease risk factors is incompletely understood. In the last years, the availability of specific reagents has allowed a more precise quantitation of FH and FHRs in plasma samples from patients and controls. These studies have revealed that some aHUS, C3G or IgAN risk polymorphisms determine mild changes in FH or FHRs levels that could somehow perturb complement regulation and favour disease pathogenesis.
Collapse
Affiliation(s)
- Irene Gómez Delgado
- Grupo de Investigación en Complemento, Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - Pilar Sánchez-Corral
- Grupo de Investigación en Complemento, Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), Madrid, Spain; Centro de Investigación en Red de Enfermedades Raras (CIBERER), Madrid, Spain.
| |
Collapse
|
21
|
Poppelaars F, Faria B, Schwaeble W, Daha MR. The Contribution of Complement to the Pathogenesis of IgA Nephropathy: Are Complement-Targeted Therapies Moving from Rare Disorders to More Common Diseases? J Clin Med 2021; 10:4715. [PMID: 34682837 PMCID: PMC8539100 DOI: 10.3390/jcm10204715] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/29/2022] Open
Abstract
Primary IgA nephropathy (IgAN) is a leading cause of chronic kidney disease and kidney failure for which there is no disease-specific treatment. However, this could change, since novel therapeutic approaches are currently being assessed in clinical trials, including complement-targeting therapies. An improved understanding of the role of the lectin and the alternative pathway of complement in the pathophysiology of IgAN has led to the development of these treatment strategies. Recently, in a phase 2 trial, treatment with a blocking antibody against mannose-binding protein-associated serine protease 2 (MASP-2, a crucial enzyme of the lectin pathway) was suggested to have a potential benefit for IgAN. Now in a phase 3 study, this MASP-2 inhibitor for the treatment of IgAN could mark the start of a new era of complement therapeutics where common diseases can be treated with these drugs. The clinical development of complement inhibitors requires a better understanding by physicians of the biology of complement, the pathogenic role of complement in IgAN, and complement-targeted therapies. The purpose of this review is to provide an overview of the role of complement in IgAN, including the recent discovery of new mechanisms of complement activation and opportunities for complement inhibitors as the treatment of IgAN.
Collapse
Affiliation(s)
- Felix Poppelaars
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, 9700 AD Groningen, The Netherlands; (B.F.); (M.R.D.)
| | - Bernardo Faria
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, 9700 AD Groningen, The Netherlands; (B.F.); (M.R.D.)
- Nephrology and Infectious Disease R&D Group, INEB, Institute of Investigation and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
| | - Wilhelm Schwaeble
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK;
| | - Mohamed R. Daha
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, 9700 AD Groningen, The Netherlands; (B.F.); (M.R.D.)
- Department of Nephrology, Leiden University Medical Center, University of Leiden, 2300 RC Leiden, The Netherlands
| |
Collapse
|
22
|
Zhang Z, Zhang Y, Zhang H. IgA Nephropathy: A Chinese Perspective. GLOMERULAR DISEASES 2021; 2:30-41. [PMID: 36751266 PMCID: PMC9677733 DOI: 10.1159/000520039] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 10/01/2021] [Indexed: 11/19/2022]
Abstract
Background IgA nephropathy (IgAN) is the most common primary glomerular disease worldwide and remains a leading cause of chronic kidney disease and end-stage renal disease. The disease prevalence, clinical and pathological phenotypes, the underlying pathogenic molecular mechanisms, and the response to treatments are highly heterogeneous in different ethnic populations, which raise the concern that IgAN may differ across different parts of the world. Summary From a Chinese perspective, we stated the disease burden of IgAN, summarized genome-wide association studies and research into pathological molecules, and compared them with findings based on other populations. The emerging biomarkers, indigenous clinical trials, and major challenges for Chinese researchers and nephrologists in studying IgAN are also discussed. Key Messages In this review, we described a higher risk of major susceptible loci in mucosal immunity, IgA production, and complement activation pathways in Chinese patients with IgAN. With our understanding of the pathogenesis of IgAN, novel biomarkers are emerging. Although there are challenges for conducting high-quality clinical trials in China, it is still feasible to conduct innovative and well-designed studies of IgAN. In the future, international collaborations on research infrastructure would be helpful to advance clinical and basic research in China.
Collapse
Affiliation(s)
- Zhao Zhang
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China,Institute of Nephrology, Peking University, Beijing, China,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China,Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Peking University, Ministry of Education, Beijing, China
| | - Yuemiao Zhang
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China,Institute of Nephrology, Peking University, Beijing, China,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China,Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Peking University, Ministry of Education, Beijing, China
| | - Hong Zhang
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China,Institute of Nephrology, Peking University, Beijing, China,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China,Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Peking University, Ministry of Education, Beijing, China,*Hong Zhang,
| |
Collapse
|
23
|
Abstract
Complement is an evolutionarily conserved system which is important in the defense against microorganisms and also in the elimination of modified or necrotic elements of the body. Complement is activated in a cascade type manner and activation and all steps of cascade progression are tightly controlled and regulatory interleaved with many processes of inflammatory machinery. Overshooting of the complement system due to dysregulation can result in the two prototypes of primary complement mediated renal diseases: C3 glomerulopathy and thrombotic microangiopathy. Apart from these, complement also is highly activated in many other inflammatory native kidney diseases, such as membranous nephropathy, ANCA-associated necrotizing glomerulonephritis, and IgA nephropathy. Moreover, it likely plays an important role also in the transplant setting, such as in antibody-mediated rejection or in hematopoietic stem cell transplant associated thrombotic microangiopathy. In this review, these glomerular disorders are discussed with regard to the role of complement in their pathogenesis. The consequential, respective clinical trials for complement inhibitory therapy strategies for these diseases are described.
Collapse
|
24
|
Is complement the main accomplice in IgA nephropathy? From initial observations to potential complement-targeted therapies. Mol Immunol 2021; 140:1-11. [PMID: 34601376 DOI: 10.1016/j.molimm.2021.09.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/01/2021] [Accepted: 09/17/2021] [Indexed: 12/22/2022]
Abstract
IgA Nephropathy (IgAN) is the main cause of primary glomerulonephritis, globally. This disease is associated with a wide range of clinical presentations, variable prognosis and a spectrum of histological findings. More than fifty years after its first description, this heterogeneity continues to complicate efforts to understand the pathogenesis. Nevertheless, involvement of the complement system in IgAN was identified early on. Dysfunction of the immunoglobulin A (IgA) system, the principal offender in this disease, including modification of isoforms and glycoforms of IgA1, the nature of immune complexes and autoantibodies to galactose deficient IgA1 might all be responsible for complement activation in IgAN. However, the specific mechanisms engaging complement are still under examination. Research in this domain should allow for identification of patients that may benefit from complement-targeted therapy, in the foreseeable future.
Collapse
|
25
|
Garam N, Cserhalmi M, Prohászka Z, Szilágyi Á, Veszeli N, Szabó E, Uzonyi B, Iliás A, Aigner C, Schmidt A, Gaggl M, Sunder-Plassmann G, Bajcsi D, Brunner J, Dumfarth A, Cejka D, Flaschberger S, Flögelova H, Haris Á, Hartmann Á, Heilos A, Mueller T, Rusai K, Arbeiter K, Hofer J, Jakab D, Sinkó M, Szigeti E, Bereczki C, Janko V, Kelen K, Reusz GS, Szabó AJ, Klenk N, Kóbor K, Kojc N, Knechtelsdorfer M, Laganovic M, Lungu AC, Meglic A, Rus R, Kersnik Levart T, Macioniene E, Miglinas M, Pawłowska A, Stompór T, Podracka L, Rudnicki M, Mayer G, Rysava R, Reiterova J, Saraga M, Seeman T, Zieg J, Sládková E, Stajic N, Szabó T, Capitanescu A, Stancu S, Tisljar M, Galesic K, Tislér A, Vainumäe I, Windpessl M, Zaoral T, Zlatanova G, Józsi M, Csuka D. FHR-5 Serum Levels and CFHR5 Genetic Variations in Patients With Immune Complex-Mediated Membranoproliferative Glomerulonephritis and C3-Glomerulopathy. Front Immunol 2021; 12:720183. [PMID: 34566977 PMCID: PMC8461307 DOI: 10.3389/fimmu.2021.720183] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/11/2021] [Indexed: 12/12/2022] Open
Abstract
Background Factor H-related protein 5 (FHR-5) is a member of the complement Factor H protein family. Due to the homology to Factor H, the main complement regulator of the alternative pathway, it may also be implicated in the pathomechanism of kidney diseases where Factor H and alternative pathway dysregulation play a role. Here, we report the first observational study on CFHR5 variations along with serum FHR-5 levels in immune complex-mediated membranoproliferative glomerulonephritis (IC-MPGN) and C3 glomerulopathy (C3G) patients together with the clinical, genetic, complement, and follow-up data. Methods A total of 120 patients with a histologically proven diagnosis of IC-MPGN/C3G were enrolled in the study. FHR-5 serum levels were measured in ELISA, the CFHR5 gene was analyzed by Sanger sequencing, and selected variants were studied as recombinant proteins in ELISA and surface plasmon resonance (SPR). Results Eight exonic CFHR5 variations in 14 patients (12.6%) were observed. Serum FHR-5 levels were lower in patients compared to controls. Low serum FHR-5 concentration at presentation associated with better renal survival during the follow-up period; furthermore, it showed clear association with signs of complement overactivation and clinically meaningful clusters. Conclusions Our observations raise the possibility that the FHR-5 protein plays a fine-tuning role in the pathogenesis of IC-MPGN/C3G.
Collapse
Affiliation(s)
- Nóra Garam
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary
| | - Marcell Cserhalmi
- MTA-ELTE Complement Research Group, Eötvös Loránd Research Network (ELKH), Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Zoltán Prohászka
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary.,Research Group for Immunology and Haematology, Semmelweis University-Eötvös Loránd Research Network (Office for Supported Research Groups), Budapest, Hungary
| | - Ágnes Szilágyi
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary
| | - Nóra Veszeli
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary.,Research Group for Immunology and Haematology, Semmelweis University-Eötvös Loránd Research Network (Office for Supported Research Groups), Budapest, Hungary
| | - Edina Szabó
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary
| | - Barbara Uzonyi
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Attila Iliás
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Christof Aigner
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Alice Schmidt
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Martina Gaggl
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Gere Sunder-Plassmann
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Dóra Bajcsi
- 1st Department of Internal Medicine, University of Szeged, Szeged, Hungary
| | - Jürgen Brunner
- Department of Pediatrics, Medical University of Innsbruck, Innsbruck, Austria
| | - Alexandra Dumfarth
- Department of Medicine III: Nephrology, Transplant Medicine and Rheumatology, Geriatric Department, Ordensklinikum Linz-Elisabethinen, Linz, Austria
| | - Daniel Cejka
- Department of Medicine III: Nephrology, Transplant Medicine and Rheumatology, Geriatric Department, Ordensklinikum Linz-Elisabethinen, Linz, Austria
| | | | - Hana Flögelova
- Division of Nephrology, Department of Pediatrics, Faculty of Medicine, Palacky University and Faculty Hospital in Olomouc, Olomouc, Czechia
| | - Ágnes Haris
- Department of Nephrology, Péterfy Hospital, Budapest, Hungary
| | - Ágnes Hartmann
- Department of Pediatrics, University of Pécs, Pécs, Hungary
| | - Andreas Heilos
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Nephrology and Gastroenterology, Medical University of Vienna, Vienna, Austria
| | - Thomas Mueller
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Nephrology and Gastroenterology, Medical University of Vienna, Vienna, Austria
| | - Krisztina Rusai
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Nephrology and Gastroenterology, Medical University of Vienna, Vienna, Austria
| | - Klaus Arbeiter
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Nephrology and Gastroenterology, Medical University of Vienna, Vienna, Austria
| | - Johannes Hofer
- Department of Pediatrics, Medical University of Innsbruck, Innsbruck, Austria.,Institute of Neurology of Senses and Language, Hospital of St John of God, Linz, Austria.,Research Institute for Developmental Medicine, Johannes Kepler University Linz, Linz, Austria
| | - Dániel Jakab
- Department of Pediatrics, University of Szeged, Szeged, Hungary
| | - Mária Sinkó
- Department of Pediatrics, University of Szeged, Szeged, Hungary
| | - Erika Szigeti
- Department of Pediatrics, University of Szeged, Szeged, Hungary
| | - Csaba Bereczki
- Department of Pediatrics, University of Szeged, Szeged, Hungary
| | | | - Kata Kelen
- 1st Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - György S Reusz
- 1st Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Attila J Szabó
- 1st Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Nóra Klenk
- Fresenius Medical Care (FMC) Center of Dialysis, Miskolc, Hungary
| | - Krisztina Kóbor
- Fresenius Medical Care (FMC) Center of Dialysis, Miskolc, Hungary
| | - Nika Kojc
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | | | - Mario Laganovic
- Department of Nephrology, Arterial Hypertension, Dialysis and Transplantation, University Hospital Center Zagreb, School of Medicine, University of Zagreb, Zagreb, Croatia
| | | | - Anamarija Meglic
- Department of Pediatric Nephrology, Division of Pediatrics, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Rina Rus
- Department of Pediatric Nephrology, Division of Pediatrics, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Tanja Kersnik Levart
- Department of Pediatric Nephrology, Division of Pediatrics, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Ernesta Macioniene
- Nephrology Center, Santaros Klinikos, Medical Faculty, Vilnius University, Vilnius, Lithuania
| | - Marius Miglinas
- Nephrology Center, Santaros Klinikos, Medical Faculty, Vilnius University, Vilnius, Lithuania
| | - Anna Pawłowska
- Department of Nephrology, Hypertension and Internal Medicine, School of Medicine, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland
| | - Tomasz Stompór
- Department of Nephrology, Hypertension and Internal Medicine, School of Medicine, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland
| | - Ludmila Podracka
- Department of Pediatrics, Comenius University, Bratislava, Slovakia
| | - Michael Rudnicki
- Department of Internal Medicine IV-Nephrology and Hypertension, Medical University Innsbruck, Innsbruck, Austria
| | - Gert Mayer
- Department of Internal Medicine IV-Nephrology and Hypertension, Medical University Innsbruck, Innsbruck, Austria
| | - Romana Rysava
- Nephrology Clinic, 1st Faculty of Medicine, Charles University, Prague, Czechia
| | - Jana Reiterova
- Nephrology Clinic, 1st Faculty of Medicine, Charles University, Prague, Czechia
| | - Marijan Saraga
- Department of Pediatrics, University Hospital Split, Split, Croatia.,School of Medicine, University of Split, Split, Croatia
| | - Tomáš Seeman
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University Prague, University Hospital Motol, Pragu, Czechia
| | - Jakub Zieg
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University Prague, University Hospital Motol, Pragu, Czechia
| | - Eva Sládková
- Department of Pediatrics, Faculty of Medicine in Pilsen, Charles University in Prague, Pilsen, Czechia
| | - Natasa Stajic
- Institute of Mother and Childhealth Care of Serbia "Dr Vukan Čupić", Belgrade, Serbia
| | - Tamás Szabó
- Department of Pediatrics, Faculty of Medicine, Debrecen University, Debrecen, Hungary
| | | | - Simona Stancu
- Carol Davila Nephrology Hospital, Bucharest, Romania
| | - Miroslav Tisljar
- Department of Nephrology, University Hospital Dubrava Zagreb, Zagreb, Croatia
| | - Kresimir Galesic
- Department of Nephrology, University Hospital Dubrava Zagreb, Zagreb, Croatia
| | - András Tislér
- Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary
| | - Inga Vainumäe
- Department of Pathology, Tartu University Hospital, Tartu, Estonia
| | - Martin Windpessl
- Internal Medicine IV, Section of Nephrology, Klinikum Wels-Grieskirchen, Wels, Austria
| | - Tomas Zaoral
- Department of Pediatrics, University Hospital and Faculty of Medicine, Ostrava, Czechia
| | - Galia Zlatanova
- University Children's Hospital, Medical University, Sofia, Bulgaria
| | - Mihály Józsi
- MTA-ELTE Complement Research Group, Eötvös Loránd Research Network (ELKH), Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary.,Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Dorottya Csuka
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary.,Research Group for Immunology and Haematology, Semmelweis University-Eötvös Loránd Research Network (Office for Supported Research Groups), Budapest, Hungary
| |
Collapse
|
26
|
Zhang H, Barratt J. Is IgA nephropathy the same disease in different parts of the world? Semin Immunopathol 2021; 43:707-715. [PMID: 34417628 DOI: 10.1007/s00281-021-00884-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 07/29/2021] [Indexed: 12/30/2022]
Abstract
Since it was first described in 1968, immunoglobulin A nephropathy (IgAN) is understood to be the most common form of glomerulonephritis worldwide. The diagnosis of IgAN depends on the presence of dominant mesangial IgA1 deposition by renal biopsy. To date, a wide spectrum of clinical and pathologic features of IgAN have been observed, implying that IgAN might not be the same disease across the world. Here, we review the characteristics of IgAN from perspectives of epidemiology, clinical-pathological patterns, disease pathogenesis, and treatment response across different ethnic populations. Overall, IgAN is most prevalent in Asians, followed by Caucasians, and relatively rare in Africans. More severe clinical presentation and higher risk of disease progression have been reported in Asians than Europeans. Moreover, active lesions, such as endocapillary hypercellularity and crescents, are more commonly reported in Asians than Europeans. Response to corticosteroid/immunosuppression therapy is variably reported, with greater apparent efficacy reported in Asian than European studies. Although a multi-hit hypothesis has been suggested for IgAN, the relative importance of each "hit" may vary in different ethnic populations and this variation underlies the differences in presentation of IgAN. In the future, a better understanding of pathogenic pathways operating in different ethnic populations may help provide better biomarkers of disease and more precise targeting of treatment strategies for IgAN.
Collapse
Affiliation(s)
- Hong Zhang
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China.
- Institute of Nephrology, Peking University, Beijing, China.
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China.
| | - Jonathan Barratt
- Department of Cardiovascular Sciences, University of Leicester and Leicester General Hospital, Leicester, UK.
| |
Collapse
|
27
|
Gómez Delgado I, Sánchez-Corral P. Contribution of functional and quantitative genetic variants of Complement Factor H and Factor H-Related (FHR) proteins on renal pathology. Nefrologia 2021; 42:S0211-6995(21)00146-6. [PMID: 34412931 DOI: 10.1016/j.nefro.2021.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/06/2021] [Accepted: 07/12/2021] [Indexed: 10/20/2022] Open
Abstract
The complement system is a first line of defence against infectious, tumoral or autoimmune processes, and it is constitutively regulated to avoid excessive or unspecific activation. Factor H (FH), a most relevant complement regulator, controls complement activation in plasma and on the cellular surfaces of autologous tissues. FH shares evolutionary origin and structural features with a group of plasma proteins known as FH-Related Proteins (FHRs), which could act as FH functional antagonists. Studies in patient cohorts of atypical Haemolytic-Uraemic Syndrome (aHUS), C3 Glomerulopathy (C3G), and IgA nephropathy (IgAN), have identified rare genetic variants that give rise to severe FH and FHRs dysfunctions, and are major genetic predisposing factors. These patients also have a higher frequency of a few polymorphisms whose relevance as disease risk factors is incompletely understood. In the last years, the availability of specific reagents has allowed a more precise quantitation of FH and FHRs in plasma samples from patients and controls. These studies have revealed that some aHUS, C3G or IgAN risk polymorphisms determine mild changes in FH or FHRs levels that could somehow perturb complement regulation and favour disease pathogenesis.
Collapse
Affiliation(s)
- Irene Gómez Delgado
- Grupo de Investigación en Complemento, Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), Madrid, España
| | - Pilar Sánchez-Corral
- Grupo de Investigación en Complemento, Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), Madrid, España; Centro de Investigación en Red de Enfermedades Raras (CIBERER), Madrid, España.
| |
Collapse
|
28
|
Medjeral-Thomas NR, Cook HT, Pickering MC. Complement activation in IgA nephropathy. Semin Immunopathol 2021; 43:679-690. [PMID: 34379175 PMCID: PMC8551128 DOI: 10.1007/s00281-021-00882-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 07/23/2021] [Indexed: 11/25/2022]
Abstract
IgA nephropathy pathogenesis is incompletely understood, and this limits the development of disease-specific biomarkers and effective therapies. Evidence of complement activity in IgA nephropathy is well established. However, a growing body of research indicates complement activity is an important contributor to IgA nephropathy pathology. In particular, multiple associations have been identified between complement alternative, lectin and terminal pathway proteins and IgA nephropathy severity. Recently, we have also gained insight into possible mechanisms that could link glomerular IgA deposition, complement activity, glomerular inflammation and disease severity. Ongoing clinical trials of therapeutic complement inhibitors will provide insight into the importance of complement activity to IgA nephropathy pathogenesis. Further research into mechanisms of complement activity is essential to improving our understanding and management of patients with IgA nephropathy.
Collapse
Affiliation(s)
- Nicholas R Medjeral-Thomas
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, London, W12 0NN, UK.
| | - H Terence Cook
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, London, W12 0NN, UK
| | - Matthew C Pickering
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, London, W12 0NN, UK
| |
Collapse
|
29
|
Gyapon-Quast F, Goicoechea de Jorge E, Malik T, Wu N, Yu J, Chai W, Feizi T, Liu Y, Pickering MC. Defining the Glycosaminoglycan Interactions of Complement Factor H-Related Protein 5. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:534-541. [PMID: 34193601 PMCID: PMC8313009 DOI: 10.4049/jimmunol.2000072] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 05/06/2021] [Indexed: 01/09/2023]
Abstract
Complement activation is an important mediator of kidney injury in glomerulonephritis. Complement factor H (FH) and FH-related protein 5 (FHR-5) influence complement activation in C3 glomerulopathy and IgA nephropathy by differentially regulating glomerular complement. FH is a negative regulator of complement C3 activation. Conversely, FHR-5 in vitro promotes C3 activation either directly or by competing with FH for binding to complement C3b. The FH-C3b interaction is enhanced by surface glycosaminoglycans (GAGs) and the FH-GAG interaction is well-characterized. In contrast, the contributions of carbohydrates to the interaction of FHR-5 and C3b are unknown. Using plate-based and microarray technologies we demonstrate that FHR-5 interacts with sulfated GAGs and that this interaction is influenced by the pattern and degree of GAG sulfation. The FHR-5-GAG interaction that we identified has functional relevance as we could show that the ability of FHR-5 to prevent binding of FH to surface C3b is enhanced by surface kidney heparan sulfate. Our findings are important in understanding the molecular basis of the binding of FHR-5 to glomerular complement and the role of FHR-5 in complement-mediated glomerular disease.
Collapse
Affiliation(s)
- Frederick Gyapon-Quast
- Glycosciences Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom;,Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, London, United Kingdom; and
| | - Elena Goicoechea de Jorge
- Department of Immunology, Complutense University and Research Institute Hospital 12 de Octubre, Madrid, Spain
| | - Talat Malik
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, London, United Kingdom; and
| | - Nian Wu
- Glycosciences Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Jin Yu
- Glycosciences Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Wengang Chai
- Glycosciences Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Ten Feizi
- Glycosciences Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Yan Liu
- Glycosciences Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Matthew C. Pickering
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, London, United Kingdom; and
| |
Collapse
|
30
|
Seikrit C, Rauen T, Stamellou E, Floege J. Precision medicine in immunoglobulin A nephropathy: still a journey ahead. Nephrol Dial Transplant 2021; 36:24-30. [PMID: 34153983 DOI: 10.1093/ndt/gfab032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Indexed: 11/12/2022] Open
Abstract
Immunoglobulin A nephropathy (IgAN) is the most common primary glomerular disease worldwide and since its first description extensive research has identified a number of key central pathogenetic contributors, including genetic, immunological and environmental factors. Along with its multifaceted pathophysiology, the clinical presentation of IgAN varies, ranging from mild forms with only minor urinary findings and preserved renal function to cases that rapidly progress to end-stage renal disease. Because of this, early identification of patients at risk for a progressive course is urgently needed. The search for valid and easily accessible biomarkers showed urinary Dickkopf-3 as a promising candidate to predict the course of kidney function. In addition, a recently established IgAN risk prediction tool derived from an international cohort of IgAN patients allows estimation of the risk of a 50% loss of kidney function over several years upon diagnosis. This might serve as a significant tool to individually predict the course of renal function by combining biometric, clinical, histological and treatment information at the time of diagnosis. Today there is no doubt that a comprehensive supportive treatment regimen is the main pillar for all IgAN patients. The value of an additional immunosuppressive treatment in IgAN patients at risk for disease progression is less clear. Early risk stratification and individualized therapies would be desirable for IgAN patients to facilitate the choice of treatment strategies, which is still a matter of ongoing discussion.
Collapse
Affiliation(s)
- Claudia Seikrit
- Division of Nephrology and Clinical Immunology, RWTH Aachen University Hospital, Aachen, Germany
| | - Thomas Rauen
- Division of Nephrology and Clinical Immunology, RWTH Aachen University Hospital, Aachen, Germany
| | - Eleni Stamellou
- Division of Nephrology and Clinical Immunology, RWTH Aachen University Hospital, Aachen, Germany
| | - Jürgen Floege
- Division of Nephrology and Clinical Immunology, RWTH Aachen University Hospital, Aachen, Germany
| |
Collapse
|
31
|
Guzzo G, Sadallah S, Fodstad H, Venetz JP, Rotman S, Teta D, Gauthier T, Pantaleo G, Superti-Furga A, Pascual M. Case Report: A Rare Truncating Variant of the CFHR5 Gene in IgA Nephropathy. Front Genet 2021; 12:529236. [PMID: 34220921 PMCID: PMC8244589 DOI: 10.3389/fgene.2021.529236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 04/22/2021] [Indexed: 11/13/2022] Open
Abstract
IgA nephropathy (IgAN) is the most common primary glomerulonephritis worldwide. Despite appropriate therapy, 20–40% of affected-patients evolve toward end-stage kidney disease (ESKD). Mesangial IgA deposits are the hallmark of IgAN, and complement deposition (C3) seems to differentiate latent IgA mesangial deposits from active IgAN. Atypical hemolytic uremic syndrome (aHUS), another disease in which complement plays an important role, is caused by inherited or acquired deregulation of the alternative pathway (AP) of complement. A subgroup of IgAN shows thrombotic microangiopathy (TMA) lesions in kidney biopsies, the histological characteristic of aHUS. Genetic variants of complement Factor H (CFH), known to be present in aHUS, have been associated with rapidly progressive forms of IgAN and a clinical pattern of aHUS. Genome-wide association studies (GWAS) have confirmed that the 1q32 region, encoding for CFH and its related proteins, is an IgAN susceptibility locus. A 30 year-old man was admitted for seizures and malignant hypertension. The kidney biopsy showed IgAN associated with features of TMA. Despite five plasma exchanges, the patient remained dialysis-dependent, and ESKD was diagnosed. Functional and genetic complement analysis were performed. A monoallelic protein-truncating, likely loss-of-function variant was identified in the CFHR5 gene. Eculizumab is the treatment of aHUS. As it has been successfully used in a few cases of rapidly progressive IgAN, it was decided to administer eculizumab over a period of 12 months in addition to the usual immunosuppression for renal transplantation. After a follow-up of 3 years, there was no clinical disease recurrence. Systematic biologic and genetic screening of complement in individuals with IgAN might be useful to better delineate the role of the AP of complement in renal disease progression, and this may have therapeutic implications.
Collapse
Affiliation(s)
- Gabriella Guzzo
- Organ Transplant Center, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland.,Service of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland.,Service of Nephrology, Valais Hospital, Sion, Switzerland
| | - Salima Sadallah
- Service of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Heidi Fodstad
- Division of Genetic Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Jean-Pierre Venetz
- Organ Transplant Center, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Samuel Rotman
- Service of Clinical Pathology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Daniel Teta
- Service of Nephrology, Valais Hospital, Sion, Switzerland
| | | | - Giuseppe Pantaleo
- Service of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Andrea Superti-Furga
- Division of Genetic Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Manuel Pascual
- Organ Transplant Center, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
32
|
LncRNA MIAT enhances systemic lupus erythematosus by upregulating CFHR5 expression via miR-222 degradation. Cent Eur J Immunol 2021; 46:17-26. [PMID: 33897280 PMCID: PMC8056357 DOI: 10.5114/ceji.2021.105242] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 03/02/2020] [Indexed: 11/17/2022] Open
Abstract
Systemic lupus erythematosus (SLE), a complex polygenic autoimmune disease, is associated with increased complement activation. Complement factor H related protein 5 (CFHR5) may contribute to dysfunctional complement activation, thus predisposing to SLE. The expression levels of anti-dsDNA, C3 and CFHR5 in blood samples from 50 SLE patients and 50 healthy individuals were evaluated, and also their expression levels were measured in an MRL/lpr mouse model and control MRL/MPJ mice. The results showed that CFHR5 expression increased in SLE patients together with the increase of anti-dsDNA in comparison with the healthy control. Furthermore, CFHR5 expression was inversely correlated with C3, down-regulation of which was associated with worse SLE. Previous studies indicated that long noncoding RNA (lncRNA) regulates mRNA synthesis via microRNA (miRNA) inhibition. The present bioinformatics analysis revealed that the target miRNA (miR-222) was combined with both lncRNA MIAT and mRNA CFHR5. H&E staining of the kidney tissues of the MRL/lpr mice revealed that lncRNA MIAT, as a competitive inhibitor of miR-222, enhanced SLE by upregulating CFHR5 expression through the degradation of miR-222 in vivo. Thus, our study revealed for the first time the role of lncRNA MIAT in regulating CFHR5 expression in SLE in vivo and provided new insights into the role of lncRNA in regulation and complement function of SLE pathogenesis.
Collapse
|
33
|
Malik TH, Gitterman DP, Lavin DP, Lomax-Browne HJ, Hiemeyer EC, Moran LB, Boroviak K, Cook HT, Gilmore AC, Mandwie M, Ahmad A, Alexander IE, Logan GJ, Marchbank KJ, Bradley A, Pickering MC. Gain-of-function factor H-related 5 protein impairs glomerular complement regulation resulting in kidney damage. Proc Natl Acad Sci U S A 2021; 118:e2022722118. [PMID: 33753502 PMCID: PMC8020653 DOI: 10.1073/pnas.2022722118] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Genetic variation within the factor H-related (FHR) genes is associated with the complement-mediated kidney disease, C3 glomerulopathy (C3G). There is no definitive treatment for C3G, and a significant proportion of patients develop end-stage renal disease. The prototypical example is CFHR5 nephropathy, through which an internal duplication within a single CFHR5 gene generates a mutant FHR5 protein (FHR5mut) that leads to accumulation of complement C3 within glomeruli. To elucidate how abnormal FHR proteins cause C3G, we modeled CFHR5 nephropathy in mice. Animals lacking the murine factor H (FH) and FHR proteins, but coexpressing human FH and FHR5mut (hFH-FHR5mut), developed glomerular C3 deposition, whereas mice coexpressing human FH with the normal FHR5 protein (hFH-FHR5) did not. Like in patients, the FHR5mut had a dominant gain-of-function effect, and when administered in hFH-FHR5 mice, it triggered C3 deposition. Importantly, adeno-associated virus vector-delivered homodimeric mini-FH, a molecule with superior surface C3 binding compared to FH, reduced glomerular C3 deposition in the presence of the FHR5mut. Our data demonstrate that FHR5mut causes C3G by disrupting the homeostatic regulation of complement within the kidney and is directly pathogenic in C3G. These results support the use of FH-derived molecules with enhanced C3 binding for treating C3G associated with abnormal FHR proteins. They also suggest that targeting FHR5 represents a way to treat complement-mediated kidney injury.
Collapse
Affiliation(s)
- Talat H Malik
- Centre for Inflammatory Disease, Imperial College London, London W12 0NN, United Kingdom
| | - Daniel P Gitterman
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Deborah P Lavin
- Centre for Inflammatory Disease, Imperial College London, London W12 0NN, United Kingdom
| | - Hannah J Lomax-Browne
- Centre for Inflammatory Disease, Imperial College London, London W12 0NN, United Kingdom
| | - E Christina Hiemeyer
- Centre for Inflammatory Disease, Imperial College London, London W12 0NN, United Kingdom
| | - Linda B Moran
- North West London Pathology, Imperial College Healthcare National Health Service Trust, London W6 8RF, United Kingdom
| | - Katharina Boroviak
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - H Terence Cook
- Centre for Inflammatory Disease, Imperial College London, London W12 0NN, United Kingdom
| | - Alyssa C Gilmore
- Centre for Inflammatory Disease, Imperial College London, London W12 0NN, United Kingdom
| | - Mawj Mandwie
- Gene Therapy Research Unit, Children's Medical Research Institute and Sydney Children's Hospitals Network, The University of Sydney, NSW 2145 Westmead, Australia
| | - Amina Ahmad
- Gene Therapy Research Unit, Children's Medical Research Institute and Sydney Children's Hospitals Network, The University of Sydney, NSW 2145 Westmead, Australia
| | - Ian E Alexander
- Gene Therapy Research Unit, Children's Medical Research Institute and Sydney Children's Hospitals Network, The University of Sydney, NSW 2145 Westmead, Australia
- Discipline of Child and Adolescent Health, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, NSW 2145 Westmead, Australia
| | - Grant J Logan
- Gene Therapy Research Unit, Children's Medical Research Institute and Sydney Children's Hospitals Network, The University of Sydney, NSW 2145 Westmead, Australia
| | - Kevin J Marchbank
- Translational and Clinical Research Institute, The Medical School, Newcastle University, Framlington Place, Newcastle-upon-Tyne NE2 4HH, United Kingdom
- National Renal Complement Therapeutics Centre, Newcastle-upon-Tyne NE1 4LP, United Kingdom
| | - Allan Bradley
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Matthew C Pickering
- Centre for Inflammatory Disease, Imperial College London, London W12 0NN, United Kingdom;
| |
Collapse
|
34
|
Poppelaars F, Goicoechea de Jorge E, Jongerius I, Baeumner AJ, Steiner MS, Józsi M, Toonen EJM, Pauly D. A Family Affair: Addressing the Challenges of Factor H and the Related Proteins. Front Immunol 2021; 12:660194. [PMID: 33868311 PMCID: PMC8044877 DOI: 10.3389/fimmu.2021.660194] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/08/2021] [Indexed: 12/19/2022] Open
Abstract
Inflammation is a common denominator of diseases. The complement system, an intrinsic part of the innate immune system, is a key driver of inflammation in numerous disorders. Recently, a family of proteins has been suggested to be of vital importance in conditions characterized by complement dysregulation: the human Factor H (FH) family. This group of proteins consists of FH, Factor H-like protein 1 and five Factor H-related proteins. The FH family has been linked to infectious, vascular, eye, kidney and autoimmune diseases. In contrast to FH, the functions of the other highly homologous proteins are largely unknown and, hence, their role in the different disease-specific pathogenic mechanisms remains elusive. In this perspective review, we address the major challenges ahead in this emerging area, including 1) the controversies about the functional roles of the FH protein family, 2) the discrepancies in quantification of the FH protein family, 3) the unmet needs for validated tools and 4) limitations of animal models. Next, we also discuss the opportunities that exist for the immunology community. A strong multidisciplinary approach is required to solve these obstacles and is only possible through interdisciplinary collaboration between biologists, chemists, geneticists and physicians. We position this review in light of our own perspective, as principal investigators of the SciFiMed Consortium, a consortium aiming to create a comprehensive analytical system for the quantitative and functional assessment of the entire FH protein family.
Collapse
Affiliation(s)
- Felix Poppelaars
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Elena Goicoechea de Jorge
- Department of Immunology, Faculty of Medicine, Complutense University and Research Institute Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Ilse Jongerius
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory of the Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
- Department of Pediatric Immunology, Rheumatology, and Infectious Diseases, Emma Children’s Hospital, Amsterdam University Medical Centre, Amsterdam, Netherlands
| | - Antje J. Baeumner
- Institute of Analytical Chemistry, Chemo-and Biosensors, Faculty of Chemistry and Pharmacy, University of Regensburg, Regensburg, Germany
| | | | - Mihály Józsi
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
- MTA-ELTE Complement Research Group, Eötvös Loránd Research Network (ELKH), Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | | | - Diana Pauly
- Department of Ophthalmology, University Hospital Regensburg, Regensburg, Germany
- Experimental Ophthalmology, University Marburg, Marburg, Germany
| | | |
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW In this review, we discuss recent studies showing the importance of the complement pathway in kidney disease. RECENT FINDINGS Recent findings in C3 glomerulopathy (C3G) include: acute postinfectious glomerulonephritis is characterised by the presence of antifactor B antibodies; human leukocyte antigen type, but not rare complement gene variation, is associated with primary immunoglobulin-associated membranoproliferative GN and C3G. Immunohistochemistry in C3G shows that factor H related protein 5 (FHR5) is the most prevalent complement protein and correlates with kidney function. A multicentre study supported the use of mycophenolate mofetil (MMF) in C3G even after a propensity matching analysis. In immunoglobulin A nephropathy (IgAN) several studies have emphasised the importance of complement. Imbalances of circulating FH and FHR1 and FHR5, which interfere with the regulatory functions of FH, associate with IgAN. Immunohistochemistry has shown associations between glomerular FHR5 deposition and C3 activation; glomerular FHR5 associated with clinical markers of IgAN severity. Data also suggest the lectin complement pathway contributes to IgAN severity. We also discuss complement activation in thrombotic microangiopathy and other kidney diseases. SUMMARY Complement activity can be detected in a wide range of kidney diseases and this provides pathogenic insight and potential for therapy with the ongoing development of several drugs directed at complement activation.
Collapse
|
36
|
Wu D, Li X, Yao X, Zhang N, Lei L, Zhang H, Tang M, Ni J, Ling C, Chen Z, Chen X, Liu X. Mesangial C3 deposition and serum C3 levels predict renal outcome in IgA nephropathy. Clin Exp Nephrol 2021; 25:641-651. [PMID: 33620604 DOI: 10.1007/s10157-021-02034-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 02/12/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND Complement activation plays an important role in the pathogenesis of IgA nephropathy (IgAN). We aimed to evaluate the relationship between mesangial C3 deposition and histologic lesions and to investigate the role of mesangial C3 deposition and serum C3 reduction in predicting renal outcome in IgAN children. METHODS We performed a retrospective cohort study in children with biopsy-proven IgAN. Mesangial C3 deposition (< 2+ vs. ≥ 2+) was detected by the immunofluorescence. Histopathologic kidney grades were determined by the Oxford classification. A decreased serum C3 concentration (hypoC3) was defined when C3 < 90 mg/dl. The endpoint was composite kidney outcome with either a 30% decline in glomerular filtration rates from baseline or kidney failure during the follow-up period. RESULTS A total of 98 children were analyzed. Mesangial hypercellularity (M) was an independent factor associated with mesangial C3 deposition (HR 3.267; 95% CI 1.028-10.389; P = 0.045). After a median follow-up period of 25 months (interquartile range 18-36 months), 6 (6.1%) children reached the endpoint. Compared with other children, a significantly higher proportion of children with composite kidney outcomes had mesangial C3 deposition ≥ 2+ and hypoC3 (3.4% versus 27.3%, P = 0.002). After adjustment for clinicopathologic risk factors, mesangial C3 deposition ≥ 2+ and hypoC3 were associated with renal outcome (HR 9.772; 95% CI 1.264-75.518; P = 0.029). CONCLUSION Mesangial C3 deposition was associated with M in IgAN. Mesangial C3 deposition and hypoC3 were risk factors for renal outcome in children with IgAN.
Collapse
Affiliation(s)
- Dan Wu
- Department of Nephrology, Beijing Children's Hospital, Capital Medical University, Beijing, 100045, China
| | - Xueqian Li
- Department of Nephrology, Beijing Children's Hospital, Capital Medical University, Beijing, 100045, China
| | - Xingfeng Yao
- Department of Pathology, Beijing Children's Hospital, Capital Medical University, Beijing, 100045, China
| | - Nan Zhang
- Department of Pathology, Beijing Children's Hospital, Capital Medical University, Beijing, 100045, China
| | - Lei Lei
- Department of Nephrology, Beijing Children's Hospital, Capital Medical University, Beijing, 100045, China
| | - Hejia Zhang
- Department of Nephrology, Beijing Children's Hospital, Capital Medical University, Beijing, 100045, China
| | - Mengmeng Tang
- Department of Nephrology, Beijing Children's Hospital, Capital Medical University, Beijing, 100045, China
| | - Jie Ni
- Department of Nephrology, Beijing Children's Hospital, Capital Medical University, Beijing, 100045, China
| | - Chen Ling
- Department of Nephrology, Beijing Children's Hospital, Capital Medical University, Beijing, 100045, China
| | - Zhi Chen
- Department of Nephrology, Beijing Children's Hospital, Capital Medical University, Beijing, 100045, China
| | - Xiangmei Chen
- Department of Nephrology, State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, National Clinical Research Center for Kidney Diseases, 28th Fuxing Road, Beijing, 100853, China
| | - Xiaorong Liu
- Department of Nephrology, Beijing Children's Hospital, Capital Medical University, Beijing, 100045, China.
| |
Collapse
|
37
|
Zhou C, Song C, Huang X, Chen S, Long Y, Zeng S, Yang H, Jiang M. Early Prediction Model of Gestational Hypertension by Multi-Biomarkers Before 20 Weeks Gestation. Diabetes Metab Syndr Obes 2021; 14:2441-2451. [PMID: 34103953 PMCID: PMC8178612 DOI: 10.2147/dmso.s309725] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/28/2021] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Gestational hypertension (GH), a hypertensive disorder of pregnancy (HDP), is a leading cause of maternal and fetal mortality due to the lack of clarity on its exact etiology and clinically feasible prediction models. This study was performed to discover novel biomarkers before 20 weeks gestation and thereby construct an early GH prediction model. METHODS This study was designed based on differentially expressed protein screening followed by clinical validation. In the screening phase, a nested case-controlled study was conducted by plasma proteomic analyses using label-free LC-MS/MS and plasma samples from seven pre-GH cases before 20-week gestation and seven age- and gestational week-matched controls. In the validation phase, 10 proteins with differential expression in the screening phase were validated by ELISA or electrochemiluminescence in an independent study consisting of 29 pre-GH cases before 20-week gestation and 29 matched controls. RESULTS In the screening phase, 149 proteins were found to be differentially expressed between the two groups and were predominantly involved in complement and coagulation cascades, platelet degranulation and positive regulation of cell motility. Further validation showed that serpin family C member 1 (SERPINC1), serpin family A member 5 (SERPINA5), complement factor H-related protein 5 (CFHR5), clusterin, cytokeratin 18 (CK18) and histidine-rich glycoprotein (HRG) levels were significantly higher in women who later developed GH compared to women with uncomplicated pregnancies (P<0.05). Binary logistic regression analysis was used to determine the combination efficacy of models for early prediction of GH. The model with a combination of SERPINC1, CK18 and HRG had a significantly better discriminatory power (AUC = 0.91, 95% CI 0.83-0.98) compared to the models with those proteins alone as independent predictors of GH. CONCLUSION Plasma levels of SERPINC1, SERPINA5, CFHR5, clusterin, CK18 and HRG are potential novel predictive biomarkers of GH, and a prediction model using a combination of SERPINC1, CK18 and HRG has good discriminatory performance for GH before 20 weeks gestation.
Collapse
Affiliation(s)
- Cheng Zhou
- Laboratory of Molecular Diagnostics, Southern Medical University Affiliated Maternal & Child Health Hospital of Foshan, Foshan, 528000, People’s Republic of China
| | - Chunlin Song
- Laboratory of Molecular Diagnostics, Southern Medical University Affiliated Maternal & Child Health Hospital of Foshan, Foshan, 528000, People’s Republic of China
| | - Xiang Huang
- Laboratory of Molecular Diagnostics, Southern Medical University Affiliated Maternal & Child Health Hospital of Foshan, Foshan, 528000, People’s Republic of China
| | - Shufen Chen
- Laboratory of Molecular Diagnostics, Southern Medical University Affiliated Maternal & Child Health Hospital of Foshan, Foshan, 528000, People’s Republic of China
| | - Yan Long
- Department of Laboratory, Guangzhou Women and Children’s Medical Centre, Guangzhou Medical University, Guangzhou, 510623, People’s Republic of China
| | - Shanshui Zeng
- Department of Laboratory, Guangzhou Women and Children’s Medical Centre, Guangzhou Medical University, Guangzhou, 510623, People’s Republic of China
| | - Hongling Yang
- Department of Laboratory, Guangzhou Women and Children’s Medical Centre, Guangzhou Medical University, Guangzhou, 510623, People’s Republic of China
- Correspondence: Hongling Yang; Min Jiang Department of Laboratory, Guangzhou Women and Children’s Medical Centre, Guangzhou Medical University, No. 9, Jinsui Road, Guangzhou, 510623, People’s Republic of ChinaTel +86-20-38857723; +86-20-38076256 Email ;
| | - Min Jiang
- Department of Laboratory, Guangzhou Women and Children’s Medical Centre, Guangzhou Medical University, Guangzhou, 510623, People’s Republic of China
| |
Collapse
|
38
|
Guo WY, Sun LJ, Dong HR, Wang GQ, Xu XY, Zhao ZR, Cheng H. Glomerular Complement Factor H-Related Protein 5 is Associated with Histologic Injury in Immunoglobulin A Nephropathy. Kidney Int Rep 2020; 6:404-413. [PMID: 33615066 PMCID: PMC7879122 DOI: 10.1016/j.ekir.2020.11.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 10/07/2020] [Accepted: 11/17/2020] [Indexed: 11/02/2022] Open
Abstract
Introduction Immunoglobulin A nephrology (IgAN), characterized by co-deposition of IgA and complement components, is an activation of complement system involved disease. Factor H-related protein 5 (FHR-5) antagonized the ability of factor H to negatively regulate C3 activation, which leads to overactivation of the alternative pathway. Here we explore the relationship of intensity of glomerular FHR-5 deposition and severity of IgAN. Methods Renal staining of FHR-5 was detected by immunofluorescence, and plasma FHR-5 was detected by enzyme-linked immunosorbent assay in 56 patients with IgAN. The relationship of intensity of glomerular FHR-5 and clinical and pathologic features of these patients were further analyzed. Results Glomerular staining for FHR-5 was observed in a predominantly mesangial pattern in 32 biopsy specimens (57.1%). FHR-5 co-deposited with IgA and C3c in glomerular mesangial and capillary area in patients with IgAN. Patients with IgAN with Oxford endocapillary hypercellularity (P = 0.007) and segmental glomerulosclerosis (P = 0.049) presented with greater intensity of FHR-5 deposition. There were more cases with 2+ and 3+ FHR-5 staining in cohorts of 2+ and 3-4+ mesangial C3 deposition (P = 0.034) and IgA deposition (P = 0.019). Interestingly, the glomerular FHR-5 depositions were more abundant in male versus female in patients with IgAN (P = 0.002). Besides, circulating FHR-5 levels were elevated in patients with IgAN compared with healthy control subjects. Plasma FHR-5 levels were significantly higher in patients with mesangial hypercellularity at diagnosis than those with nonmesangial hypercellularity. Conclusions We found that glomerular intensity of FHR-5 deposition could indicate the severity of histologic lesions of IgAN.
Collapse
Affiliation(s)
- Wei-Yi Guo
- Renal Division, Department of Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Li-Jun Sun
- Renal Division, Department of Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Hong-Rui Dong
- Renal Division, Department of Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Guo-Qin Wang
- Renal Division, Department of Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xiao-Yi Xu
- Renal Division, Department of Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Zhi-Rui Zhao
- Renal Division, Department of Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Hong Cheng
- Renal Division, Department of Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
39
|
Gutiérrez E, Carvaca-Fontán F, Luzardo L, Morales E, Alonso M, Praga M. A Personalized Update on IgA Nephropathy: A New Vision and New Future Challenges. Nephron Clin Pract 2020; 144:555-571. [PMID: 32818944 DOI: 10.1159/000509997] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 07/08/2020] [Indexed: 11/19/2022] Open
Abstract
IgA nephropathy (IgAN) is the most common primary glomerulonephritis in the world among patients undergoing renal biopsy. Approximately 30% of patients with IgAN develop end-stage kidney disease 20 years after renal biopsy. It is a glomerulopathy with a very broad clinical presentation, making it difficult to stratify and treat. IgAN is characterized by dysregulation of the immune system, which causes an abnormal synthesis of IgA1 that is deglycosylated causing its mesangial deposition. IgAN pathogenesis is incompletely understood; the current multi-hit hypothesis of IgAN pathogenesis does not explain the range of glomerular inflammation and renal injury associated with mesangial IgA deposition. Although associations between IgAN and glomerular and circulating markers of complement activation are established, the mechanism of complement activation and contribution to glomerular inflammation and injury are not defined. On the other hand, the renal-gut connection can also play an important role in the pathogenesis of IgAN with possible therapeutic implications. In order to standardize the histological findings, the Oxford Classification has allowed clarifying renal lesions that confer potential risk of progression. Currently, except for the blockade of the renin-angiotensin-aldosterone system, no other therapies are available in clinical setting for the treatment of IgAN, although the range of new drugs under investigation is extensive. The incorporation in the next trials of clinical parameters such as the amount of hematuria and histological lesions may allow more personalized therapeutic approaches. To summarize, in recent years, several important efforts have taken place in the understanding of IgAN, but still, further studies are warranted to elucidate the best therapeutic strategies according to the risk to improve the prognosis of this entity.
Collapse
Affiliation(s)
- Eduardo Gutiérrez
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain, .,Department of Nephrology, Hospital Universitario 12 de Octubre, Madrid, Spain,
| | - Fernando Carvaca-Fontán
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain.,Department of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Leonella Luzardo
- Department of Nephrology and Pathophysiology, School of Medicine, Universidad de la República, Montevideo, Uruguay
| | - Enrique Morales
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain.,Department of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Marina Alonso
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain.,Department of Pathological Anatomy, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Manuel Praga
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain.,Department of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
40
|
Coppo R. Towards a personalized treatment for IgA nephropathy considering pathology and pathogenesis. Nephrol Dial Transplant 2020; 34:1832-1838. [PMID: 30476257 DOI: 10.1093/ndt/gfy338] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 10/01/2018] [Indexed: 01/10/2023] Open
Abstract
The search of personalized treatment for a subject with immunoglobulin A nephropathy (IgAN) is appealing since the individual long-term outcome is highly variable in spite of common mild clinical signs such as microscopic haematuria, moderate proteinuria and slightly reduced glomerular filtration rate (GFR). The only risk factor considered by the Kidney Disease: Improving Global Outcomes (KDIGO) guidelines to target corticosteroid/immunosuppressive treatment in IgAN is proteinuria persistently >1 g/day despite 3-6 months of optimized supportive care. However, proteinuria in IgAN may result not only from active lesions but also from sclerotic glomerular lesions with hyperfiltration and tubular damage. The Oxford classification study and subsequent investigations have indicated the value of pathology risk factors for progression independent of proteinuria, blood pressure and GFR at renal biopsy. Meanwhile new studies have provided an improved understanding of the pathogenetic mechanisms operating in IgAN leading to kidney tissue damage. These findings suggest the possibility for the individual patient with IgAN of using a pathology-based therapy, taking into consideration the pathogenetic mechanisms operating at the time of renal biopsy. This review is largely opinion based, since evidence-based reports are mostly incomplete: hypotheses are suggested based on interesting published investigations. The clinician faces a daily challenge: find the best management for his/her patient, modelling a rather general indication as obtained by the guidelines to the needs of the patient. This review offers some considerations that hopefully will be useful in this difficult choice.
Collapse
Affiliation(s)
- Rosanna Coppo
- Fondazione Ricerca Molinette, Regina Margherita Hospital, Turin, Italy
| |
Collapse
|
41
|
Chang S, Li XK. The Role of Immune Modulation in Pathogenesis of IgA Nephropathy. Front Med (Lausanne) 2020; 7:92. [PMID: 32266276 PMCID: PMC7105732 DOI: 10.3389/fmed.2020.00092] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/03/2020] [Indexed: 01/10/2023] Open
Abstract
IgA nephropathy (IgAN) is the most prevalent primary glomerulonephritis worldwide, with diverse clinical manifestations characterized by recurrent gross hematuria or microscopic hematuria, and pathological changes featuring poorly O-galactosylated IgA1 deposition in the glomerular mesangium. Pathogenesis has always been the focus of IgAN studies. After 50 years of research, most scholars agree that IgAN is a group of clinicopathological syndromes with certain common immunopathological characteristics, and multiple mechanisms are involved in its pathogenesis, including immunology, genetics, and environmental or nutritional factors. However, the precise pathogenetic mechanisms have not been fully determined. One hypothesis about the pathogenesis of IgAN suggests that immunological factors are engaged in all aspects of IgAN development and play a critical role. A variety of immune cells (e.g., dendritic cells, NK cells, macrophages, T-lymphocyte subsets, and B-lymphocytes, etc.) and molecules (e.g., IgA receptors, Toll-like receptors, complements, etc.) in innate and adaptive immunity are involved in the pathogenesis of IgAN. Moreover, the abnormality of mucosal immune regulation is the core of IgAN immunopathogenesis. The roles of tonsil immunity or intestinal mucosal immunity, which have received more attention in recent years, are supported by mounting evidence. In this review, we will explore the latest research insights on the role of immune modulation in the pathogenesis of IgAN. With a better understanding of immunopathogenesis of IgAN, emerging therapies will soon become realized.
Collapse
Affiliation(s)
- Sheng Chang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation, Ministry of Education NHC Key Laboratory of Organ Transplantation Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.,Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Xiao-Kang Li
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan.,Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
42
|
Medjeral-Thomas NR, O'Shaughnessy MM. Complement in IgA Nephropathy: The Role of Complement in the Pathogenesis, Diagnosis, and Future Management of IgA Nephropathy. Adv Chronic Kidney Dis 2020; 27:111-119. [PMID: 32553243 DOI: 10.1053/j.ackd.2019.12.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 12/12/2022]
Abstract
Immunoglobulin A (IgA) nephropathy (IgAN) is an important cause of chronic and end-stage kidney disease. IgAN pathogenesis is incompletely understood. In particular, we cannot adequately explain the heterogeneity in clinical and histologic features and severities that characterizes IgAN. This limits patient stratification to appropriate and effective treatments and the development of disease-targeted therapies. Studies of the role of the alternative, lectin, and terminal complement pathways in IgAN have enhanced our understanding of disease pathogenesis and inform the development of novel diagnostic and therapeutic strategies. For example, recent genetic, serologic, and immunohistologic evidence suggests that imbalances between the main alternative complement pathway regulator protein (factor H) and competitor proteins that deregulate complement activity (factor H-related proteins 1 and 5, FHR1, and FHR5) associate with IgAN severity: a relative abundance of FHR1 and FHR5 amplifies complement-dependent inflammation and exacerbates kidney injury. Ongoing characterization of the mechanisms by which complement activity contributes to IgAN pathogenesis will facilitate the development of complement-based diagnostic techniques, biomarkers of disease activity and severity, and novel targeted therapies.
Collapse
|
43
|
Zipfel PF, Wiech T, Stea ED, Skerka C. CFHR Gene Variations Provide Insights in the Pathogenesis of the Kidney Diseases Atypical Hemolytic Uremic Syndrome and C3 Glomerulopathy. J Am Soc Nephrol 2020; 31:241-256. [PMID: 31980588 PMCID: PMC7003313 DOI: 10.1681/asn.2019050515] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Sequence and copy number variations in the human CFHR-Factor H gene cluster comprising the complement genes CFHR1, CFHR2, CFHR3, CFHR4, CFHR5, and Factor H are linked to the human kidney diseases atypical hemolytic uremic syndrome (aHUS) and C3 glomerulopathy. Distinct genetic and chromosomal alterations, deletions, or duplications generate hybrid or mutant CFHR genes, as well as hybrid CFHR-Factor H genes, and alter the FHR and Factor H plasma repertoire. A clear association between the genetic modifications and the pathologic outcome is emerging: CFHR1, CFHR3, and Factor H gene alterations combined with intact CFHR2, CFHR4, and CFHR5 genes are reported in atypical hemolytic uremic syndrome. But alterations in each of the five CFHR genes in the context of an intact Factor H gene are described in C3 glomerulopathy. These genetic modifications influence complement function and the interplay of the five FHR proteins with each other and with Factor H. Understanding how mutant or hybrid FHR proteins, Factor H::FHR hybrid proteins, and altered Factor H, FHR plasma profiles cause pathology is of high interest for diagnosis and therapy.
Collapse
Affiliation(s)
- Peter F Zipfel
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany;
- Institute of Microbiology, Friedrich-Schiller-University, Jena, Germany; and
| | - Thorsten Wiech
- Section of Nephropathology, Institute of Pathology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Emma D Stea
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Christine Skerka
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| |
Collapse
|
44
|
Predictive value of mesangial C3 and C4d deposition in IgA nephropathy. Clin Immunol 2019; 211:108331. [PMID: 31899330 DOI: 10.1016/j.clim.2019.108331] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 12/24/2019] [Accepted: 12/30/2019] [Indexed: 12/22/2022]
Abstract
We aimed to determine the relative contribution of each complement (C3 and C4d) deposition to the progression of IgA nephropathy (IgAN). We enrolled a total of 380 patients with biopsy-confirmed IgAN. Mesangial deposition of C3(<2+ vs. ≥2+) and C4d(positive vs. negative) was evaluated by immunofluorescence staining and immunohistochemistry, respectively. Study endpoint was the composite of a 30% decline in eGFR or ESRD. The risk of reaching the primary outcome was significantly higher in patients having C3 ≥ 2+ and C4d(+) than in corresponding counterparts. Adding C3 deposition to clinical data acquired at kidney biopsy modestly increased the area under the receiver-operating characteristic curve, net reclassification improvement, and integrated discrimination improvement (IDI); adding C4d increased IDI only. In conclusion, mesangial C3 and C4d deposition was an independent risk factor for progression of IgAN. C3 showed better predictability than C4d, suggesting that lectin pathway alone has limited clinical prognostic value.
Collapse
|
45
|
Andrighetto S, Leventhal J, Zaza G, Cravedi P. Complement and Complement Targeting Therapies in Glomerular Diseases. Int J Mol Sci 2019; 20:ijms20246336. [PMID: 31888179 PMCID: PMC6940904 DOI: 10.3390/ijms20246336] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 12/10/2019] [Indexed: 01/02/2023] Open
Abstract
The complement cascade is part of the innate immune system whose actions protect hosts from pathogens. Recent research shows complement involvement in a wide spectrum of renal disease pathogenesis including antibody-related glomerulopathies and non-antibody-mediated kidney diseases, such as C3 glomerular disease, atypical hemolytic uremic syndrome, and focal segmental glomerulosclerosis. A pivotal role in renal pathogenesis makes targeting complement activation an attractive therapeutic strategy. Over the last decade, a growing number of anti-complement agents have been developed; some are approved for clinical use and many others are in the pipeline. Herein, we review the pathways of complement activation and regulation, illustrate its role instigating or amplifying glomerular injury, and discuss the most promising novel complement-targeting therapies.
Collapse
Affiliation(s)
- Sofia Andrighetto
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, 1 Levy Place, New York, NY 10029, USA; (S.A.); (J.L.)
- Renal Unit, Department of Medicine, University/Hospital of Verona, 37126 Verona, Italy;
| | - Jeremy Leventhal
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, 1 Levy Place, New York, NY 10029, USA; (S.A.); (J.L.)
| | - Gianluigi Zaza
- Renal Unit, Department of Medicine, University/Hospital of Verona, 37126 Verona, Italy;
| | - Paolo Cravedi
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, 1 Levy Place, New York, NY 10029, USA; (S.A.); (J.L.)
- Correspondence: ; Tel.: +1-212-241-3349; Fax: +1-212-987-0389
| |
Collapse
|
46
|
Zipfel PF, Wiech T, Rudnick R, Afonso S, Person F, Skerka C. Complement Inhibitors in Clinical Trials for Glomerular Diseases. Front Immunol 2019; 10:2166. [PMID: 31611870 PMCID: PMC6776600 DOI: 10.3389/fimmu.2019.02166] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 08/28/2019] [Indexed: 01/16/2023] Open
Abstract
Defective complement action is a cause of several human glomerular diseases including atypical hemolytic uremic syndrome (aHUS), anti-neutrophil cytoplasmic antibody mediated vasculitis (ANCA), C3 glomerulopathy, IgA nephropathy, immune complex membranoproliferative glomerulonephritis, ischemic reperfusion injury, lupus nephritis, membranous nephropathy, and chronic transplant mediated glomerulopathy. Here we summarize ongoing clinical trials of complement inhibitors in nine glomerular diseases and show which inhibitors are used in trials for these renal disorders (http://clinicaltrials.gov).
Collapse
Affiliation(s)
- Peter F Zipfel
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany.,Friedrich-Schiller-University, Jena, Germany
| | - Thorsten Wiech
- Institute of Pathology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Ramona Rudnick
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Sara Afonso
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Fermin Person
- Institute of Pathology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Christine Skerka
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| |
Collapse
|
47
|
Complement Activation in Progression of Chronic Kidney Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1165:423-441. [PMID: 31399977 DOI: 10.1007/978-981-13-8871-2_20] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Chronic kidney disease (CKD) is a public health problem worldwide, with increasing incidence and prevalence. The mechanisms underlying the progression to end-stage renal disease (ESRD) is not fully understood. The complement system was traditionally regarded as an important part of innate immunity required for host protection against infection and for maintaining host hemostasis. However, compelling evidence from both clinical and experimental studies has strongly incriminated complement activation as a pivotal pathogenic mediator of the development of multiple renal diseases and progressive replacement of functioning nephrons by fibrosis. Both anaphylatoxins, i.e., C3a and C5a, and membrane attack complex (MAC) contribute to the damage that occurs during chronic renal progression through various mechanisms including direct proinflammatory and fibrogenic activity, chemotactic effect, activation of the renal renin-angiotensin system, and enhancement of T-cell immunity. Evolving understanding of the mechanisms of complement-mediated renal injury has led to the emergence of complement-targeting therapeutics. A variety of specific antibodies and inhibitors targeting complement components have shown efficacy in reducing disease in animal models. Moreover, building on these advances, targeting complement has gained encouraging success in treating patients with renal diseases such as atypical hemolytic uremic syndrome (aHUS). Nevertheless, it still requires a great deal of effort to develop inhibitors that can be applied to treat more patients effectively in routine clinical practice.
Collapse
|
48
|
Tortajada A, Gutierrez E, Pickering MC, Praga Terente M, Medjeral-Thomas N. The role of complement in IgA nephropathy. Mol Immunol 2019; 114:123-132. [PMID: 31351413 DOI: 10.1016/j.molimm.2019.07.017] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/16/2019] [Accepted: 07/16/2019] [Indexed: 12/22/2022]
Abstract
IgA nephropathy (IgAN) is common and often progresses to end stage renal disease. IgAN encompasses a wide range of histology and clinical features. IgAN pathogenesis is incompletely understood; the current multi-hit hypothesis of IgAN pathogenesis does not explain the range of glomerular inflammation and renal injury associated with mesangial IgA deposition. Although associations between IgAN and glomerular and circulating markers of complement activation are established, the mechanism of complement activation and contribution to glomerular inflammation and injury are not defined. Recent identification of specific complement pathways and proteins in severe IgAN cases had advanced our understanding of complement in IgAN pathogenesis. In particular, a growing body of evidence implicates the complement factor H related proteins 1 and 5 and lectin pathway as pathogenic in a subset of patients with severe disease. These data suggest complement deregulation and activity may be dominant drivers of renal injury in IgAN. Thereby, markers of complement activation may identify IgAN patients likely to progress to significant renal impairment and complement inhibition may emerge as an effective method of preventing and reducing glomerular injury in IgAN.
Collapse
Affiliation(s)
- Agustin Tortajada
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine and 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Eduardo Gutierrez
- Department of Nephrology, Research Institute Universitary Hospital 12 de Octubre (imas12), Madrid, Spain
| | | | - Manuel Praga Terente
- Department of Nephrology, Research Institute Universitary Hospital 12 de Octubre (imas12), Madrid, Spain
| | | |
Collapse
|
49
|
Complement-mediated microangiopathy in IgA nephropathy and IgA vasculitis with nephritis. Mod Pathol 2019; 32:1147-1157. [PMID: 30936425 DOI: 10.1038/s41379-019-0259-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/18/2019] [Accepted: 02/18/2019] [Indexed: 12/20/2022]
Abstract
Complement factor C4d was recently observed in renal biopsies from patients who had IgA nephropathy and a poor prognosis. We previously reported that C4d is a common denominator in microangiopathies. In this retrospective cohort study, we investigated whether C4d is a marker of microangiopathy in both IgA nephropathy and IgA vasculitis with nephritis, and whether patients with C4d and microangiopathy have poor renal outcome. We examined 128 renal biopsies from adult and pediatric patients, including normotensive and hypertensive patients, who presented with IgA nephropathy or IgA vasculitis with nephritis. Biopsies were re-evaluated in accordance with the Oxford classification, scored for additional lesions, and stained for complement proteins using immunohistochemistry, including C4d and C5b-9. Clinical data were collected with a mean (±SD) follow-up period of 51 ± 39 months. Changes in estimated glomerular filtration rate over time were compared using linear mixed-effects models. Renal survival was analyzed using multivariable Cox regression. Microangiopathic lesions were present in 20% of all biopsies (23% and 9% of patients with IgA nephropathy and IgA vasculitis with nephritis, respectively). Microangiopathy was associated with C4d and C5b-9 deposits, a higher number of chronic lesions, and hypertension (all p < 0.05). Patients with C4d and microangiopathic lesions had significantly poorer renal survival than patients without these findings, corrected for hypertension (p < 0.01). In conclusion, patients with IgA nephropathy or IgA vasculitis with nephritis with a combination of C4d positivity and microangiopathy comprise a clinical subgroup with an increased number of chronic lesions, lower estimated glomerular filtration rate, and poorer renal survival, even when corrected for hypertension. These data suggest that complement activation is involved in the development of microangiopathy in patients with IgA nephropathy and IgA vasculitis with nephritis, and that complement-mediated microangiopathy contributes to disease progression.
Collapse
|
50
|
Medjeral-Thomas NR, Moffitt H, Lomax-Browne HJ, Constantinou N, Cairns T, Cook HT, Pickering MC. Glomerular Complement Factor H-Related Protein 5 (FHR5) Is Highly Prevalent in C3 Glomerulopathy and Associated With Renal Impairment. Kidney Int Rep 2019; 4:1387-1400. [PMID: 31701048 PMCID: PMC6829196 DOI: 10.1016/j.ekir.2019.06.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/30/2019] [Accepted: 06/10/2019] [Indexed: 12/19/2022] Open
Abstract
Introduction Therapeutic agents that target complement are increasingly available for glomerular diseases. However, the mechanisms linking glomerular complement deposition with inflammation and damage are incompletely understood. Complement factor H-related protein 5 (FHR5) interacts with complement C3 and is considered to promote activation. Circulating and glomerular FHR5 associates with IgA nephropathy and abnormal FHR5 associates with familial C3 glomerulopathy (C3G). We characterized glomerular FHR5 staining in C3G and assessed its relationships with histological features of glomerular injury and clinical outcome. Methods We developed FHR5 staining protocols for formalin-fixed paraffin-embedded (FFPE) renal tissue and applied them to surplus biopsy sections from a C3G cohort. Results Glomerular FHR5 was highly prevalent in native and transplant C3G and correlated with glomerular C3 and C5b-9 staining. Glomerular FHR5 staining correlated negatively with estimated glomerular filtration rate (eGFR) (P = 0.04, difference of medians 19.7 ml/min per 1.73 m2; 95% confidence interval [CI] 1.1-43.0) and positively with a membranoproliferative glomerulonephritis pattern at diagnostic biopsy (odds ratio 18; 95% CI 1.6-201; P = 0.049). Glomerular FHR5 staining intensity positively correlated with glomerular complement C3b/iC3b/C3c (Pearson's correlation coefficient [R] = 0.59; P = 0.0008), C3dg (R = 0.47; P = 0.02) and C5b9 (R = 0.44, P = 0.02). Conclusions Glomerular FHR5 is highly prevalent in C3G, interacts with glomerular C3, and is associated with markers of disease severity. Glomerular FHR5 likely exacerbates complement-mediated glomerular damage in C3G and its interaction with glomerular complement might be exploited to target complement therapeutic agents.
Collapse
Affiliation(s)
- Nicholas R Medjeral-Thomas
- Centre for Inflammatory Disease, Division of Immunology and Inflammation, Department of Medicine, Imperial College London, UK
| | - Hilary Moffitt
- Centre for Inflammatory Disease, Division of Immunology and Inflammation, Department of Medicine, Imperial College London, UK
| | - Hannah J Lomax-Browne
- Centre for Inflammatory Disease, Division of Immunology and Inflammation, Department of Medicine, Imperial College London, UK
| | - Nicholas Constantinou
- Centre for Inflammatory Disease, Division of Immunology and Inflammation, Department of Medicine, Imperial College London, UK
| | - Tom Cairns
- Renal and Transplant Centre, Imperial College Healthcare NHS Trust, UK
| | - H Terence Cook
- Centre for Inflammatory Disease, Division of Immunology and Inflammation, Department of Medicine, Imperial College London, UK
| | - Matthew C Pickering
- Centre for Inflammatory Disease, Division of Immunology and Inflammation, Department of Medicine, Imperial College London, UK
| |
Collapse
|