1
|
Feger M, Hammerschmidt K, Liesche I, Rausch S, Alber J, Föller M. Prostaglandin E 2 signaling through prostaglandin E receptor subtype 2 and Nurr1 induces fibroblast growth factor 23 production. Biomed Pharmacother 2024; 180:117475. [PMID: 39332190 DOI: 10.1016/j.biopha.2024.117475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 09/29/2024] Open
Abstract
Bone cells produce fibroblast growth factor 23 (FGF23), a hormone regulating renal phosphate and vitamin D homeostasis, and a paracrine factor produced in further tissues. Chronic kidney disease and cardiovascular disorders are associated with early elevations of plasma FGF23 levels associated with clinical outcomes. FGF23 production is dependent on many conditions including inflammation. Prostaglandin E2 (PGE2) is a major eicosanoid with a broad role in pain, inflammation, and fever. Moreover, it regulates renal blood flow, renin secretion, natriuresis as well as bone formation through prostaglandin E receptor 2 (EP2). Here, we studied the role of PGE2 and its signaling for the production of FGF23. Osteoblast-like UMR-106 cells were exposed to EP receptor agonists, antagonists or RNAi. Wild type and EP2 knockout mice were treated with stable EP2 agonist misoprostol. Fgf23 or Nurr1 gene expression was determined by quantitative real-time PCR, hormone and further blood parameters by enzyme-linked immunosorbent assay and colorimetric methods. PGE2 and EP2 agonists misoprostol and butaprost enhanced FGF23 production in UMR-106 cells, effects mediated by EP2 and transcription factor Nurr1. A single dose of misoprostol up-regulated bone Fgf23 expression and FGF23 serum levels in wild type mice with subtle effects on parameters of mineral metabolism only. Compared to wild type mice, the FGF23 effect of misoprostol was significantly lower in EP2-deficient mice. To conclude, PGE2 signaling through EP2 and Nurr1 induces FGF23 production. Given the broad physiological and pathophysiological implications of PGE2 signaling, this effect is likely of clinical relevance.
Collapse
Affiliation(s)
- Martina Feger
- University of Hohenheim, Department of Physiology, 70599 Stuttgart, Germany
| | | | - Ilona Liesche
- University of Hohenheim, Department of Physiology, 70599 Stuttgart, Germany
| | - Steffen Rausch
- University of Hohenheim, Department of Physiology, 70599 Stuttgart, Germany
| | - Jana Alber
- University of Hohenheim, Department of Physiology, 70599 Stuttgart, Germany
| | - Michael Föller
- University of Hohenheim, Department of Physiology, 70599 Stuttgart, Germany.
| |
Collapse
|
2
|
El-Damanawi R, Stanley IK, Staatz C, Pascoe EM, Craig JC, Johnson DW, Mallett AJ, Hawley CM, Milanzi E, Hiemstra TF, Viecelli AK. Metformin for preventing the progression of chronic kidney disease. Cochrane Database Syst Rev 2024; 6:CD013414. [PMID: 38837240 PMCID: PMC11152183 DOI: 10.1002/14651858.cd013414.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
BACKGROUND Metformin has been used in the management of diabetes for decades. It is an effective, low-cost intervention with a well-established safety profile. Emerging evidence suggests that metformin targets a number of pathways that lead to chronic kidney damage, and long-term use may, therefore, slow the rate of kidney function decline and chronic kidney disease (CKD) progression. OBJECTIVES To evaluate the effect of metformin therapy on kidney function decline in patients with CKD with or without diabetes mellitus and assess the safety and dose tolerability in this population. SEARCH METHODS We searched the Cochrane Kidney and Transplant Register of Studies up to 19 July 2023 with assistance from an Information Specialist using search terms relevant to this review. Studies in the Register are identified through searches of CENTRAL, MEDLINE, and EMBASE, conference proceedings, the International Clinical Trials Registry Platform (ICTRP) Search Portal and ClinicalTrials.gov. SELECTION CRITERIA We included randomised controlled trials (RCTs) that reported kidney-related outcomes with a minimum duration of 12 months delivery of the metformin intervention and whose eligibility criteria included adult participants with either i) a diagnosis of CKD of any aetiology and/or ii) those with a diagnosis of diabetes mellitus. Comparisons included placebo, no intervention, non-pharmacological interventions, other antidiabetic medications or any other active control. Studies that included patients on any modality of kidney replacement therapy were excluded. DATA COLLECTION AND ANALYSIS Two authors independently carried out data extraction using a standard data extraction form. The methodological quality of the included studies was assessed using the Cochrane risk of bias tool. Summary estimates of effect were obtained using a random-effects model, and results were expressed as risk ratios (RR) and their 95% confidence intervals (CI) for dichotomous outcomes and mean difference (MD) and 95% CI for continuous outcomes. Confidence in the evidence was assessed using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach. MAIN RESULTS This review included 11 studies reporting on 8449 randomised participants. Studies were conducted in patient populations with Autosomal Dominant Polycystic Kidney Disease (ADPKD) (four studies) or diabetes mellitus (seven studies). Six studies compared metformin with no active control, four studies compared metformin with active controls (rosiglitazone, glyburide, pioglitazone, or glipizide), and one study included treatment arms that randomised to either metformin, diet and lifestyle modifications, or other antidiabetic therapies. The risk of bias in included studies varied; two studies were abstract-only publications and were judged to have a high risk of bias in most domains. Other included publications were judged to have a low risk of bias in most domains. Across comparisons, GRADE evaluations for most outcomes were judged as low or very low certainty, except for those relating to side effects, tolerance, and withdrawals, which were judged as moderate certainty. The evidence suggests that compared to placebo, metformin may result in i) a slightly smaller decline in kidney function (3 studies, 505 participants: MD 1.92 mL/min, 95% CI 0.33 to 3.51; I2 = 0%; low certainty), ii) very uncertain effects on the incidence of kidney failure (1 study, 753 participants: RR 1.20, 95% CI 0.17 to 8.49), iii) little or no effect on death (3 studies, 865 participants: RR 1.00, 95% CI 0.76 to 1.32; I2 = 0%; moderate certainty), iv) little or no effect on the incidence of serious adverse events (3 studies, 576 participants: RR 1.15, 95% CI 0.76 to 1.72; I2 = 0%; moderate certainty), and v) likely higher incidence of intolerance leading to study withdrawal than placebo (4 studies, 646 participants: RR 2.19, 95% CI 1.46 to 3.27; I2 = 0%; moderate certainty). The certainty of the evidence for proteinuria was very uncertain. Compared to other active controls (rosiglitazone, glyburide, pioglitazone, or glipizide), metformin i) demonstrated very uncertain effects on kidney function decline, ii) may result in little or no difference in death (3 studies, 5608 participants: RR 0.95 95% CI 0.63 to 1.43; I2 = 0%; low certainty), iii) probably results in little or no difference in intolerance leading to study withdrawal (3 studies, 5593 participants: RR 0.92, 95% CI, 0.79 to 1.08; I2 = 0%; moderate certainty), iv) probably results in little or no difference in the incidence of serious adverse events (2 studies, 5545 participants: RR 1.16, 95% CI 0.79 to 1.71; I2 = 0%; moderate certainty), and v) may increase the urinary albumin-creatinine ratio (2 studies, 3836 participants: MD 14.61, 95% CI 8.17 to 21.05; I2 = 0%; low certainty). No studies reported the incidence of kidney failure. AUTHORS' CONCLUSIONS This review highlights the lack of RCTs reporting on the effects of metformin on kidney function, particularly in patients with CKD. Future research in this field requires adequately powered RCTs comparing metformin to placebo or standard care in those with CKD. Seven ongoing studies were identified in this review, and future updates, including their findings, may further inform the results of this review.
Collapse
Affiliation(s)
| | | | - Christine Staatz
- School of Pharmacy, The University of Queensland, Brisbane, Australia
| | - Elaine M Pascoe
- Centre for Health Services Research, The University of Queensland, Brisbane, Australia
| | - Jonathan C Craig
- Cochrane Kidney and Transplant, Centre for Kidney Research, The Children's Hospital at Westmead, Westmead, Australia
- College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - David W Johnson
- Department of Kidney and Transplant Services, Princess Alexandra Hospital, Brisbane, Australia
- Australasian Kidney Trials Network, The University of Queensland, Herston, Australia
- Translational Research Institute, Brisbane, Australia
| | - Andrew J Mallett
- Australasian Kidney Trials Network, The University of Queensland, Herston, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
- College of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia
- Department of Renal Medicine, Townsville Hospital & Health Service, Townsville, Australia
| | - Carmel M Hawley
- Department of Kidney and Transplant Services, Princess Alexandra Hospital, Brisbane, Australia
- Australasian Kidney Trials Network, The University of Queensland, Herston, Australia
- Translational Research Institute, Brisbane, Australia
| | - Elasma Milanzi
- School of Population and Global Health, University of Melbourne, Melbourne, Australia
| | - Thomas F Hiemstra
- Cambridge Clinical Trials Unit, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Andrea K Viecelli
- Department of Kidney and Transplant Services, Princess Alexandra Hospital, Brisbane, Australia
- Australasian Kidney Trials Network, The University of Queensland, Herston, Australia
| |
Collapse
|
3
|
Rausch S, Hammerschmidt K, Feger M, Vítek L, Föller M. Bilirubin Down-Regulates Oxidative Stress and Fibroblast Growth Factor 23 Expression in UMR106 Osteoblast-Like Cells. Exp Clin Endocrinol Diabetes 2024; 132:91-97. [PMID: 38373702 DOI: 10.1055/a-2237-8863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
INTRODUCTION Fibroblast growth factor 23 (FGF23) is a major regulator of phosphate and vitamin D metabolism in the kidney, and its higher levels in plasma are associated with poorer outcomes in kidney and cardiovascular diseases. It is produced by bone cells upon enhanced oxidative stress and inhibits renal phosphate reabsorption and calcitriol (active form of vitamin D) production. Bilirubin, the final product of the heme catabolic pathway in the vascular bed, has versatile biological functions, including antioxidant and anti-inflammatory effects. This study explored whether bilirubin alters FGF23 production. METHODS Experiments were performed using UMR106 osteoblast-like cells. Fgf23 transcript levels were determined by quantitative real-time polymerase chain reaction, C-terminal and intact FGF23 protein levels were determined by enzyme-linked immunosorbent assay, and cellular oxidative stress was assessed by CellROX assay. RESULTS Unconjugated bilirubin down-regulated Fgf23 gene transcription and FGF23 protein abundance; these effects were paralleled by lower cellular oxidative stress levels. Also, conjugated bilirubin reduced Fgf23 mRNA abundance. CONCLUSION Bilirubin down-regulates FGF23 production in UMR106 cells, an effect likely to be dependent on the reduction of cellular oxidative stress.
Collapse
Affiliation(s)
- Steffen Rausch
- University of Hohenheim, Department of Physiology, Stuttgart, Germany
| | | | - Martina Feger
- University of Hohenheim, Department of Physiology, Stuttgart, Germany
| | - Libor Vítek
- Fourth Department of Internal Medicine and Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Michael Föller
- University of Hohenheim, Department of Physiology, Stuttgart, Germany
| |
Collapse
|
4
|
Norman K, Hemmings KE, Shawer H, Appleby HL, Burnett AJ, Hamzah N, Gosain R, Woodhouse EM, Beech DJ, Foster R, Bailey MA. Side-by-side comparison of published small molecule inhibitors against thapsigargin-induced store-operated Ca2+ entry in HEK293 cells. PLoS One 2024; 19:e0296065. [PMID: 38261554 PMCID: PMC10805320 DOI: 10.1371/journal.pone.0296065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 12/05/2023] [Indexed: 01/25/2024] Open
Abstract
Calcium (Ca2+) is a key second messenger in eukaryotes, with store-operated Ca2+ entry (SOCE) being the main source of Ca2+ influx into non-excitable cells. ORAI1 is a highly Ca2+-selective plasma membrane channel that encodes SOCE. It is ubiquitously expressed in mammals and has been implicated in numerous diseases, including cardiovascular disease and cancer. A number of small molecules have been identified as inhibitors of SOCE with a variety of potential therapeutic uses proposed and validated in vitro and in vivo. These encompass both nonselective Ca2+ channel inhibitors and targeted selective inhibitors of SOCE. Inhibition of SOCE can be quantified both directly and indirectly with a variety of assay setups, making an accurate comparison of the activity of different SOCE inhibitors challenging. We have used a fluorescence based Ca2+ addback assay in native HEK293 cells to generate dose-response data for many published SOCE inhibitors. We were able to directly compare potency. Most compounds were validated with only minor and expected variations in potency, but some were not. This could be due to differences in assay setup relating to the mechanism of action of the inhibitors and highlights the value of a singular approach to compare these compounds, as well as the general need for biorthogonal validation of novel bioactive compounds. The compounds observed to be the most potent against SOCE in our study were: 7-azaindole 14d (12), JPIII (17), Synta-66 (6), Pyr 3 (5), GSK5503A (8), CM4620 (14) and RO2959 (7). These represent the most promising candidates for future development of SOCE inhibitors for therapeutic use.
Collapse
Affiliation(s)
- Katherine Norman
- School of Chemistry, University of Leeds, Leeds, West Yorkshire, United Kingdom
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, West Yorkshire, United Kingdom
| | - Karen E. Hemmings
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, West Yorkshire, United Kingdom
| | - Heba Shawer
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, West Yorkshire, United Kingdom
| | - Hollie L. Appleby
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, West Yorkshire, United Kingdom
| | - Alan J. Burnett
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, West Yorkshire, United Kingdom
| | - Nurasyikin Hamzah
- School of Chemistry, University of Leeds, Leeds, West Yorkshire, United Kingdom
| | - Rajendra Gosain
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, West Yorkshire, United Kingdom
| | - Emily M. Woodhouse
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, West Yorkshire, United Kingdom
| | - David J. Beech
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, West Yorkshire, United Kingdom
| | - Richard Foster
- School of Chemistry, University of Leeds, Leeds, West Yorkshire, United Kingdom
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, West Yorkshire, United Kingdom
| | - Marc A. Bailey
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, West Yorkshire, United Kingdom
| |
Collapse
|
5
|
Zangerolamo L, Carvalho M, Velloso LA, Barbosa HCL. Endocrine FGFs and their signaling in the brain: Relevance for energy homeostasis. Eur J Pharmacol 2024; 963:176248. [PMID: 38056616 DOI: 10.1016/j.ejphar.2023.176248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/10/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023]
Abstract
Since their discovery in 2000, there has been a continuous expansion of studies investigating the physiology, biochemistry, and pharmacology of endocrine fibroblast growth factors (FGFs). FGF19, FGF21, and FGF23 comprise a subfamily with attributes that distinguish them from typical FGFs, as they can act as hormones and are, therefore, referred to as endocrine FGFs. As they participate in a broad cross-organ endocrine signaling axis, endocrine FGFs are crucial lipidic, glycemic, and energetic metabolism regulators during energy availability fluctuations. They function as powerful metabolic signals in physiological responses induced by metabolic diseases, like type 2 diabetes and obesity. Pharmacologically, FGF19 and FGF21 cause body weight loss and ameliorate glucose homeostasis and energy expenditure in rodents and humans. In contrast, FGF23 expression in mice and humans has been linked with insulin resistance and obesity. Here, we discuss emerging concepts in endocrine FGF signaling in the brain and critically assess their putative role as therapeutic targets for treating metabolic disorders.
Collapse
Affiliation(s)
- Lucas Zangerolamo
- Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas, Sao Paulo, Brazil
| | - Marina Carvalho
- Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas, Sao Paulo, Brazil
| | - Licio A Velloso
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas, Sao Paulo, Brazil
| | - Helena C L Barbosa
- Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas, Sao Paulo, Brazil.
| |
Collapse
|
6
|
Watanabe K, Fujii H, Okamoto K, Kono K, Goto S, Nishi S. Exploring the implications of blocking renin-angiotensin-aldosterone system and fibroblast growth factor 23 in early left ventricular hypertrophy without chronic kidney disease. Front Endocrinol (Lausanne) 2023; 14:1276664. [PMID: 38174329 PMCID: PMC10762797 DOI: 10.3389/fendo.2023.1276664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
Background Whether fibroblast growth factor 23 (FGF23) directly induces left ventricular hypertrophy (LVH) remains controversial. Recent studies showed an association between FGF23 and the renin-angiotensin-aldosterone system (RAAS). The aim of this study was to investigate changes in FGF23 levels and RAAS parameters and their influences on LVH. Methods In the first experiment, male C57BL/6J mice were divided into sham and transverse aortic constriction (TAC) groups. The TAC group underwent TAC at 8 weeks of age. At 1, 2, 3, and 4 weeks after TAC, the mice were sacrificed, and blood and urine samples were obtained. Cardiac expressions of FGF23 and RAAS-related factors were evaluated, and cardiac histological analyses were performed. In the second experiment, the sham and TAC groups were treated with vehicle, angiotensin-converting enzyme (ACE) inhibitor, or FGF receptor 4 (FGFR4) inhibitor and then evaluated in the same way as in the first experiment. Results In the early stage of LVH without chronic kidney disease, serum FGF23 levels did not change but cardiac FGF23 expression significantly increased along with LVH progression. Moreover, serum aldosterone and cardiac ACE levels were significantly elevated, and cardiac ACE2 levels were significantly decreased. ACE inhibitor did not change serum FGF23 levels but significantly decreased cardiac FGF23 levels with improvements in LVH and RAAS-related factors, while FGFR4 inhibitor did not change the values. Conclusions Not serum FGF23 but cardiac FGF23 levels and RAAS parameters significantly changed in the early stage of LVH without chronic kidney disease. RAAS blockade might be more crucial than FGF23 blockade for preventing LVH progression in this condition.
Collapse
Affiliation(s)
| | - Hideki Fujii
- Division of Nephrology and Kidney Center, Kobe University Graduate School of Medicine, Kobe, Japan
| | | | | | | | | |
Collapse
|
7
|
Feger M, Alber J, Strotmann J, Grund A, Leifheit-Nestler M, Haffner D, Föller M. Short-term fasting of mice elevates circulating fibroblast growth factor 23 (FGF23). Acta Physiol (Oxf) 2023; 239:e14049. [PMID: 37746883 DOI: 10.1111/apha.14049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 08/24/2023] [Accepted: 09/04/2023] [Indexed: 09/26/2023]
Abstract
AIMS Phosphate and vitamin D homeostasis are controlled by fibroblast growth factor 23 (FGF23) from bone suppressing renal phosphate transport and enhancing 24-hydroxylase (Cyp24a1), thereby inactivating 1,25(OH)2 D3 . Serum FGF23 is correlated with outcomes in several diseases. Fasting stimulates the production of ketone bodies. We hypothesized that fasting can induce FGF23 synthesis through the production of ketone bodies. METHODS UMR106 cells and isolated neonatal rat ventricular myocytes (NRVM) were treated with ketone body β-hydroxybutyrate. Mice were fasted overnight, fed ad libitum, or treated with β-hydroxybutyrate. Proteins and further blood parameters were determined by enzyme-linked immunoassay (ELISA), western blotting, immunohistochemistry, fluorometric or colorimetric methods, and gene expression by quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS β-Hydroxybutyrate stimulated FGF23 production in UMR106 cells in a nuclear factor kappa-light-chain enhancer of activated B-cells (NFκB)-dependent manner, and in NRVMs. Compared to fed animals, fasted mice exhibited higher β-hydroxybutyrate and FGF23 serum levels (based on assays either detecting C-terminal or intact, biologically active FGF23 only), cardiac, pancreatic, and thymic Fgf23 and renal Cyp24a1 expression, and lower 1,25(OH)2 D3 serum concentration as well as renal Slc34a1 and αKlotho (Kl) expression. In contrast, Fgf23 expression in bone and serum phosphate, calcium, plasma parathyroid hormone (PTH) concentration, and renal Cyp27b1 expression were not significantly affected by fasting. CONCLUSION Short-term fasting increased FGF23 production, as did administration of β-hydroxybutyrate, effects possibly of clinical relevance in view of the increasing use of FGF23 as a surrogate parameter in clinical monitoring of diseases. The fasting state of patients might therefore affect FGF23 tests.
Collapse
Affiliation(s)
- Martina Feger
- Department of Physiology, University of Hohenheim, Stuttgart, Germany
| | - Jana Alber
- Department of Physiology, University of Hohenheim, Stuttgart, Germany
| | - Jörg Strotmann
- Department of Physiology, University of Hohenheim, Stuttgart, Germany
| | - Andrea Grund
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Pediatric Research Center, Hannover Medical School, Hannover, Germany
| | - Maren Leifheit-Nestler
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Pediatric Research Center, Hannover Medical School, Hannover, Germany
| | - Dieter Haffner
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Pediatric Research Center, Hannover Medical School, Hannover, Germany
| | - Michael Föller
- Department of Physiology, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
8
|
Molinari P, Regalia A, Leoni A, Campise M, Cresseri D, Cicero E, Vettoretti S, Nardelli L, Brigati E, Favi E, Messa P, Castellano G, Alfieri CM. Impact of hyperparathyroidism and its different subtypes on long term graft outcome: a single Transplant Center cohort study. Front Med (Lausanne) 2023; 10:1221086. [PMID: 37636567 PMCID: PMC10449540 DOI: 10.3389/fmed.2023.1221086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/20/2023] [Indexed: 08/29/2023] Open
Abstract
Purpose We studied the association between parathormone (PTH) levels and long-term graft loss in RTx patients (RTx-p). Methods We retrospectively evaluated 871 RTx-p, transplanted in our unit from Jan-2004 to Dec-2020 assessing renal function and mineral metabolism parameters at 1, 6, and 12 months after RTx. Graft loss and death with functioning graft during follow-up (FU, 8.3[5.4-11.4] years) were checked. Results At month-1, 79% had HPT, of which 63% with secondary HPT (SHPT) and 16% tertiary HPT (THPT); at month-6, HPT prevalence was 80% of which SHPT 64% and THPT 16%; at month-12 HPT prevalence was 77% of which SHPT 62% and THPT 15%. A strong significant correlation was found between HPT type, PTH levels and graft loss at every time point. Mean PTH exposure remained strongly and independently associated to long term graft loss (OR 3.1 [1.4-7.1], p = 0.008). THPT was independently associated with graft loss at month-1 when compared to HPT absence and at every time point when compared to SHPT. No correlation was found with RTx-p death. Discriminatory analyses identified the best mean PTH cut-off to predict long-term graft loss to be between 88.6 and 89.9 pg/mL (AUC = 0.658). Cox regression analyses highlighted that THPT was strongly associated with shorter long-term graft survival at every time-point considered. Conclusion High PTH levels during 1st year of RTx seem to be associated with long term graft loss.
Collapse
Affiliation(s)
- Paolo Molinari
- Unit of Nephrology, Dialysis and Kidney Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy
- Post-Graduate School of Specialization in Nephrology, University of Milano, Milan, Italy
| | - Anna Regalia
- Unit of Nephrology, Dialysis and Kidney Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy
| | - Alessandro Leoni
- Unit of Nephrology, Dialysis and Kidney Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy
| | - Mariarosaria Campise
- Unit of Nephrology, Dialysis and Kidney Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy
| | - Donata Cresseri
- Unit of Nephrology, Dialysis and Kidney Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy
| | - Elisa Cicero
- Unit of Nephrology, Dialysis and Kidney Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy
- Post-Graduate School of Specialization in Nephrology, University of Milano, Milan, Italy
| | - Simone Vettoretti
- Unit of Nephrology, Dialysis and Kidney Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy
| | - Luca Nardelli
- Unit of Nephrology, Dialysis and Kidney Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy
| | - Emilietta Brigati
- Unit of Nephrology, Dialysis and Kidney Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy
| | - Evaldo Favi
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
- General Surgery and Kidney Transplantation, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Piergiorgio Messa
- Department of Nephrology, Dialysis and Kidney Transplants, IRCCS Ca’ Granda Foundation Maggiore Policlinico Hospital, Milan, Italy
| | - Giuseppe Castellano
- Unit of Nephrology, Dialysis and Kidney Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Carlo M. Alfieri
- Unit of Nephrology, Dialysis and Kidney Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
9
|
Di W, Jin Z, Lei W, Liu Q, Yang W, Zhang S, Lu C, Xu X, Yang Y, Zhao H. Protection of melatonin treatment and combination with traditional antibiotics against septic myocardial injury. Cell Mol Biol Lett 2023; 28:35. [PMID: 37101253 PMCID: PMC10134561 DOI: 10.1186/s11658-022-00415-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 12/23/2022] [Indexed: 04/28/2023] Open
Abstract
BACKGROUND Heart failure is a common complication of sepsis with a high mortality rate. It has been reported that melatonin can attenuate septic injury due to various properties. On the basis of previous reports, this study will further explore the effects and mechanisms of melatonin pretreatment, posttreatment, and combination with antibiotics in the treatment of sepsis and septic myocardial injury. METHODS AND RESULTS Our results showed that melatonin pretreatment showed an obvious protective effect on sepsis and septic myocardial injury, which was related to the attenuation of inflammation and oxidative stress, the improvement of mitochondrial function, the regulation of endoplasmic reticulum stress (ERS), and the activation of the AMPK signaling pathway. In particular, AMPK serves as a key effector for melatonin-initiated myocardial benefits. In addition, melatonin posttreatment also had a certain degree of protection, while its effect was not as remarkable as that of pretreatment. The combination of melatonin and classical antibiotics had a slight but limited effect. RNA-seq detection clarified the cardioprotective mechanism of melatonin. CONCLUSION Altogether, this study provides a theoretical basis for the application strategy and combination of melatonin in septic myocardial injury.
Collapse
Affiliation(s)
- Wencheng Di
- Department of Cardiovascular Medicine, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, 29 Bulan Road, Shenzhen, Guangdong Province, China
| | - Zhenxiao Jin
- Department of Cardiovascular Surgery, Xijing Hospital, The Airforce Military Medical University, 127 Changle West Road, Xi'an, China
| | - Wangrui Lei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, 229 Taibai North Road, Xi'an, China
- Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, China
| | - Qiong Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, 229 Taibai North Road, Xi'an, China
- Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, China
| | - Wenwen Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, 229 Taibai North Road, Xi'an, China
- Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, China
| | - Shaofei Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, 229 Taibai North Road, Xi'an, China
- Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, China
| | - Chenxi Lu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, 229 Taibai North Road, Xi'an, China
- Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, China
| | - Xiaoling Xu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, 229 Taibai North Road, Xi'an, China
- Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, China
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, 229 Taibai North Road, Xi'an, China.
- Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, China.
| | - Huadong Zhao
- Department of General Surgery, Tangdu Hospital, The Airforce Military Medical University, 1 Xinsi Road, Xi'an, China.
| |
Collapse
|
10
|
Nemeth Z, Patonai A, Simon-Szabó L, Takács I. Interplay of Vitamin D and SIRT1 in Tissue-Specific Metabolism-Potential Roles in Prevention and Treatment of Non-Communicable Diseases Including Cancer. Int J Mol Sci 2023; 24:ijms24076154. [PMID: 37047134 PMCID: PMC10094444 DOI: 10.3390/ijms24076154] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 04/14/2023] Open
Abstract
The importance of the prevention and control of non-communicable diseases, including obesity, metabolic syndrome, type 2 diabetes, cardiovascular diseases, and cancer, is increasing as a requirement of the aging population in developed countries and the sustainability of healthcare. Similarly, the 2013-2030 action plan of the WHO for the prevention and control of non-communicable diseases seeks these achievements. Adequate lifestyle changes, alone or with the necessary treatments, could reduce the risk of mortality or the deterioration of quality of life. In our recent work, we summarized the role of two central factors, i.e., appropriate levels of vitamin D and SIRT1, which are connected to adequate lifestyles with beneficial effects on the prevention and control of non-communicable diseases. Both of these factors have received increased attention in relation to the COVID-19 pandemic as they both take part in regulation of the main metabolic processes, i.e., lipid/glucose/energy homeostasis, oxidative stress, redox balance, and cell fate, as well as in the healthy regulation of the immune system. Vitamin D and SIRT1 have direct and indirect influence of the regulation of transcription and epigenetic changes and are related to cytoplasmic signaling pathways such as PLC/DAG/IP3/PKC/MAPK, MEK/Erk, insulin/mTOR/cell growth, proliferation; leptin/PI3K-Akt-mTORC1, Akt/NFĸB/COX-2, NFĸB/TNFα, IL-6, IL-8, IL-1β, and AMPK/PGC-1α/GLUT4, among others. Through their proper regulation, they maintain normal body weight, lipid profile, insulin secretion and sensitivity, balance between the pro- and anti-inflammatory processes under normal conditions and infections, maintain endothelial health; balance cell differentiation, proliferation, and fate; and balance the circadian rhythm of the cellular metabolism. The role of these two molecules is interconnected in the molecular network, and they regulate each other in several layers of the homeostasis of energy and the cellular metabolism. Both have a central role in the maintenance of healthy and balanced immune regulation and redox reactions; therefore, they could constitute promising targets either for prevention or as complementary therapies to achieve a better quality of life, at any age, for healthy people and patients under chronic conditions.
Collapse
Affiliation(s)
- Zsuzsanna Nemeth
- Department of Internal Medicine and Oncology, Semmelweis University, Koranyi S. u 2/a, 1083 Budapest, Hungary
| | - Attila Patonai
- Department of Surgery, Transplantation and Gastroenterology, Semmelweis University, Ulloi u. 78, 1082 Budapest, Hungary
| | - Laura Simon-Szabó
- Department of Molecular Biology, Semmelweis University, Tuzolto u. 37-47, 1094 Budapest, Hungary
| | - István Takács
- Department of Internal Medicine and Oncology, Semmelweis University, Koranyi S. u 2/a, 1083 Budapest, Hungary
| |
Collapse
|
11
|
Ewendt F, Kotwan J, Ploch S, Feger M, Hirche F, Föller M, Stangl GI. Tachysterol 2 increases the synthesis of fibroblast growth factor 23 in bone cells. Front Nutr 2022; 9:948264. [PMID: 35958252 PMCID: PMC9358286 DOI: 10.3389/fnut.2022.948264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/06/2022] [Indexed: 12/16/2022] Open
Abstract
Tachysterol2 (T2) is a photoisomer of the previtamin D2 found in UV-B-irradiated foods such as mushrooms or baker’s yeast. Due to its structural similarity to vitamin D, we hypothesized that T2 can affect vitamin D metabolism and in turn, fibroblast growth factor 23 (FGF23), a bone-derived phosphaturic hormone that is transcriptionally regulated by the vitamin D receptor (VDR). Initially, a mouse study was conducted to investigate the bioavailability of T2 and its impact on vitamin D metabolism and Fgf23 expression. UMR106 and IDG-SW3 bone cell lines were used to elucidate the effect of T2 on FGF23 synthesis and the corresponding mechanisms. LC-MS/MS analysis found high concentrations of T2 in tissues and plasma of mice fed 4 vs. 0 mg/kg T2 for 2 weeks, accompanied by a significant decrease in plasma 1,25(OH)2D and increased renal Cyp24a1 mRNA abundance. The Fgf23 mRNA abundance in bones of mice fed T2 was moderately higher than that in control mice. The expression of Fgf23 strongly increased in UMR106 cells treated with T2. After Vdr silencing, the T2 effect on Fgf23 diminished. This effect is presumably mediated by single-hydroxylated T2-derivatives, since siRNA-mediated silencing of Cyp27a1, but not Cyp27b1, resulted in a marked reduction in T2-induced Fgf23 gene expression. To conclude, T2 is a potent regulator of Fgf23 synthesis in bone and activates Vdr. This effect depends, at least in part, on the action of Cyp27a1. The potential of oral T2 to modulate vitamin D metabolism and FGF23 synthesis raises questions about the safety of UV-B-treated foods.
Collapse
Affiliation(s)
- Franz Ewendt
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Julia Kotwan
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.,NutriCARD Competence Cluster for Nutrition and Cardiovascular Health, Halle (Saale), Germany
| | - Stefan Ploch
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Martina Feger
- Department of Physiology, University of Hohenheim, Stuttgart, Germany
| | - Frank Hirche
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Michael Föller
- Department of Physiology, University of Hohenheim, Stuttgart, Germany
| | - Gabriele I Stangl
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.,NutriCARD Competence Cluster for Nutrition and Cardiovascular Health, Halle (Saale), Germany
| |
Collapse
|
12
|
Zheng L, Han Z, Luo D, Li J, Ye H, Feng R, Zhong Q, Jing J, Yao Y. FGF23 and SOX9 expression in hemophilic cartilage: In vitro studies of the effects of iron. Haemophilia 2022; 28:1062-1068. [PMID: 35802007 DOI: 10.1111/hae.14623] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/07/2022] [Accepted: 06/24/2022] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Clarifying the links between iron and FGF23, SOX9 expression in chondrocytes would be helpful for comprehending articular cartilage degradation pathogenesis in blood-induced arthritis and exploring new protective methods. AIM The purpose of this study was to determine iron regulation of fibroblast growth factor 23 (FGF23) and SRY-box 9 (SOX9) in human chondrocytes, an area which is unexplored in blood-induced arthritis cartilage degradation pathogenesis. METHODS Expression of FGF23, SOX9, MMP13 and collagen Ⅱ in articular cartilage of patients with osteoarthritis (OA) or haemophilic arthritis (HA) was determined by western blot (WB). Iron induced FGF23 and SOX9 mRNA and protein expression in primary human normal chondrocyte cells (HUM-iCell-s018) was quantifified by qRT-PCR and WB, respectively. RESULTS We found that compared with OA patients, the expression of FGF23, MMP13 in articular cartilage of patients with HA was up-regulated, while the expression of SOX9, collagen Ⅱ was down-regulated. Iron induced FGF23 and suppressed SOX9 expression in chondrocytes in a dose-dependent manner. CONCLUSIONS These findings demonstrated that iron were involved in hemophilic cartilage lesion directly via changing cartilage phenotype through regulation of FGF23 and SOX9 expression in chondrocytes.
Collapse
Affiliation(s)
- Liujie Zheng
- Department of Orthopaedic Surgery, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Zhiwei Han
- Department of Orthopaedic Surgery, The Second Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Dasheng Luo
- Department of Orthopaedic Surgery, The Second Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Jiale Li
- Department of Orthopaedic Surgery, Fuyang Hospital of Anhui Medical University, Fuyang, Anhui, People's Republic of China
| | - Houlong Ye
- Department of Orthopaedic Surgery, The Second Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Ru Feng
- Department of Orthopaedic Surgery, The Second Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Qigang Zhong
- Department of Orthopaedic Surgery, The Second Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Juehua Jing
- Department of Orthopaedic Surgery, The Second Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Yunfeng Yao
- Department of Orthopaedic Surgery, The Second Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| |
Collapse
|
13
|
Lu W, Zhu H, Wu J, Liao S, Cheng G, Li X. Rhein attenuates angiotensin II-induced cardiac remodeling by modulating AMPK–FGF23 signaling. J Transl Med 2022; 20:305. [PMID: 35794561 PMCID: PMC9258170 DOI: 10.1186/s12967-022-03482-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/11/2022] [Indexed: 12/07/2022] Open
Abstract
Background Increasing evidence indicates that myocardial oxidative injury plays a crucial role in the pathophysiology of cardiac hypertrophy (CH) and heart failure (HF). The active component of rhubarb, rhein exerts significant actions on oxidative stress and inflammation. Nonetheless, its role in cardiac remodeling remains unclear. Methods CH was induced by angiotensin II (Ang II, 1.4 mg/kg/d for 4 weeks) in male C57BL/6 J mice. Then, rhein (50 and 100 mg/kg) was injected intraperitoneally for 28 days. CH, fibrosis, oxidative stress, and cardiac function in the mice were examined. In vitro, neonatal rat cardiomyocytes (CMs) and cardiac fibroblasts (CFs) pre-treated with rhein (5 and 25 μM) were challenged with Ang II. We performed RNA sequencing to determine the mechanistic role of rhein in the heart. Results Rhein significantly suppressed Ang II-induced CH, fibrosis, and reactive oxygen species production and improved cardiac systolic dysfunction in vivo. In vitro, rhein significantly attenuated Ang II-induced CM hypertrophy and CF collagen expression. In addition, rhein obviously alleviated the increased production of superoxide induced by Ang II. Mechanistically, rhein inhibited FGF23 expression significantly. Furthermore, FGF23 overexpression abolished the protective effects of rhein on CMs, CFs, and cardiac remodeling. Rhein reduced FGF23 expression, mostly through the activation of AMPK (AMP-activated protein kinase). AMPK activity inhibition suppressed Ang II-induced CM hypertrophy and CF phenotypic transformation. Conclusion Rhein inhibited Ang II-induced CH, fibrosis, and oxidative stress during cardiac remodeling through the AMPK–FGF23 axis. These findings suggested that rhein could serve as a potential therapy in cardiac remodeling and HF. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03482-9.
Collapse
|
14
|
Yamada S, Tsuruya K, Kitazono T, Nakano T. Emerging cross-talks between chronic kidney disease-mineral and bone disorder (CKD-MBD) and malnutrition-inflammation complex syndrome (MICS) in patients receiving dialysis. Clin Exp Nephrol 2022; 26:613-629. [PMID: 35353283 PMCID: PMC9203392 DOI: 10.1007/s10157-022-02216-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/22/2022] [Indexed: 12/14/2022]
Abstract
Chronic kidney disease–mineral and bone disorder (CKD–MBD) is a systemic disorder that affects multiple organs and systems and increases the risk of morbidity and mortality in patients with CKD, especially those receiving dialysis therapy. CKD–MBD is highly prevalent in CKD patients, and its treatment is gaining attention from healthcare providers who manage these patients. Additional important pathologies often observed in CKD patients are chronic inflammation and malnutrition/protein-energy wasting (PEW). These two pathologies coexist to form a vicious cycle that accelerates the progression of various other pathologies in CKD patients. This concept is integrated into the term “malnutrition–inflammation–atherosclerosis syndrome” or “malnutrition–inflammation complex syndrome (MICS)”. Recent basic and clinical studies have shown that CKD–MBD directly induces inflammation as well as malnutrition/PEW. Indeed, higher circulating levels of inorganic phosphate, fibroblast growth factor 23, parathyroid hormone, and calciprotein particles, as markers for critical components and effectors of CKD–MBD, were shown to directly induce inflammatory responses, thereby leading to malnutrition/PEW, cardiovascular diseases, and clinically relevant complications. In this short review, we discuss the close interplay between CKD–MBD and MICS and emphasize the significance of simultaneous control of these two seemingly distinct pathologies in patients with CKD, especially those receiving dialysis therapy, for better management of the CKD/hemodialysis population.
Collapse
Affiliation(s)
- Shunsuke Yamada
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 8128582, Japan.
| | | | - Takanari Kitazono
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 8128582, Japan
| | - Toshiaki Nakano
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 8128582, Japan
| |
Collapse
|
15
|
Alber J, Föller M. Lactic acid induces fibroblast growth factor 23 (FGF23) production in UMR106 osteoblast-like cells. Mol Cell Biochem 2022; 477:363-370. [PMID: 34731356 PMCID: PMC8800909 DOI: 10.1007/s11010-021-04287-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/23/2021] [Indexed: 01/04/2023]
Abstract
Endocrine and paracrine fibroblast growth factor 23 (FGF23) is a protein predominantly produced by bone cells with strong impact on phosphate and vitamin D metabolism by targeting the kidney. Plasma FGF23 concentration early rises in kidney and cardiovascular diseases correlating with progression and outcome. Lactic acid is generated in anaerobic glycolysis. Lactic acidosis is the consequence of various physiological and pathological conditions and may be fatal. Since FGF23 production is stimulated by inflammation and lactic acid induces pro-inflammatory signaling, we investigated whether and how lactic acid influences FGF23. Experiments were performed in UMR106 osteoblast-like cells, Fgf23 mRNA levels estimated from quantitative real-time polymerase chain reaction, and FGF23 protein determined by enzyme-linked immunosorbent assay. Lactic acid dose-dependently induced Fgf23 gene expression and up-regulated FGF23 synthesis. Also, Na+-lactate as well as formic acid and acetic acid up-regulated Fgf23. The lactic acid effect was significantly attenuated by nuclear factor kappa-light-chain enhancer of activated B-cells (NFκB) inhibitors wogonin and withaferin A. Lactic acid induces FGF23 production, an effect at least in part mediated by NFκB. Lactic acidosis may, therefore, be paralleled by a surge in plasma FGF23.
Collapse
Affiliation(s)
- Jana Alber
- Department of Physiology, University of Hohenheim, Garbenstraße 30, 70599, Stuttgart, Germany
| | - Michael Föller
- Department of Physiology, University of Hohenheim, Garbenstraße 30, 70599, Stuttgart, Germany.
| |
Collapse
|
16
|
The regulation of FGF23 under physiological and pathophysiological conditions. Pflugers Arch 2022; 474:281-292. [PMID: 35084563 PMCID: PMC8837506 DOI: 10.1007/s00424-022-02668-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 12/18/2022]
Abstract
Fibroblast growth factor 23 (FGF23) is an important bone hormone that regulates phosphate homeostasis in the kidney along with active vitamin D (1,25(OH)2D3) and parathyroid hormone (PTH). Endocrine effects of FGF23 depend, at least in part, on αKlotho functioning as a co-receptor whereas further paracrine effects in other tissues are αKlotho-independent. Regulation of FGF23 production is complex under both, physiological and pathophysiological conditions. Physiological regulators of FGF23 include, but are not limited to, 1,25(OH)2D3, PTH, dietary phosphorus intake, and further intracellular and extracellular factors, kinases, cytokines, and hormones. Moreover, several acute and chronic diseases including chronic kidney disease (CKD) or further cardiovascular disorders are characterized by early rises in the plasma FGF23 level pointing to further mechanisms effective in the regulation of FGF23 under pathophysiological conditions. Therefore, FGF23 also serves as a prognostic marker in several diseases. Our review aims to comprehensively summarize the regulation of FGF23 in health and disease.
Collapse
|
17
|
Zeng S, Delic D, Chu C, Xiong Y, Luo T, Chen X, Gaballa MMS, Xue Y, Chen X, Cao Y, Hasan AA, Stadermann K, Frankenreiter S, Yin L, Krämer BK, Klein T, Hocher B. Antifibrotic effects of low dose SGLT2 Inhibition with empagliflozin in comparison to Ang II receptor blockade with telmisartan in 5/6 nephrectomised rats on high salt diet. Biomed Pharmacother 2021; 146:112606. [PMID: 34968924 DOI: 10.1016/j.biopha.2021.112606] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/26/2021] [Accepted: 12/26/2021] [Indexed: 12/13/2022] Open
Abstract
To date, the lowest protective SGLT2 inhibitor dose is unknown. We initially performed a dose-response pilot study in normal rats. Based on the results of this pilot study we compared the cardio-renal effects of the SGLT-2 inhibitor empagliflozin, with placebo or telmisartan in rats with 5/6 nephrectomy (5/6 Nx) on a high salt diet (HSD). The experimental set up was as follows: Sham operation (Sham) with normal diet and placebo; 5/6 Nx with 2% HSD and placebo; 5/6 Nx with HSD and empagliflozin (0.6 mg/kg/day, bid); 5/6 Nx with HSD and telmisartan (5 mg/kg/day, qd). Empagliflozin treatment increased urinary glucose excretion, in parallel to empagliflozin plasma levels, in a dose-dependent manner starting at doses of 1 mg/kg in the pilot study. 5/6Nx rats on HSD treated with this low empagliflozin dose showed significantly reduced cardiac (-34.85%; P < 0.05) and renal (-33.68%; P < 0.05) fibrosis in comparison to 5/6Nx rats on HSD treated with placebo. These effects were comparable to the effects observed when implementing the standard dose (5 mg/kg/day) of telmisartan (cardiac fibrosis: -36.37%; P < 0.01; renal fibrosis; -43.96%; P < 0.01). RNA-sequencing followed by confirmatory qRT-PCR revealed that both telmisartan and empagliflozin exert their cardiac effects on genes involved in vascular cell stability and cardiac iron homeostasis, whereas in the kidneys expression of genes involved in endothelial function and oxidative stress were differentially expressed. Urinary adenosine excretion, a surrogate marker of the tubuloglomerular feedback (TGF) mechanism, was not affected. In conclusion, the antifibrotic properties of low dose empagliflozin were comparable to a standard dose of telmisartan. The underlying pathways appear to be TGF independent.
Collapse
Affiliation(s)
- Shufei Zeng
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Germany; Department of Nephrology, The First Affiliated Hospital of Jinan University, China; Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Denis Delic
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Germany; Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Chang Chu
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Germany; Department of Nephrology, The First Affiliated Hospital of Jinan University, China; Department of Nephrology, Charité - Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
| | - Yingquan Xiong
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Germany; Department of Nephrology, Charité - Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
| | - Ting Luo
- Department of Nephrology, The First Affiliated Hospital of Jinan University, China; Department of Nephrology, The Third Affiliated Hospital of Sun Yat-sen University, China
| | - Xiaoyi Chen
- Department of Nephrology, The First Affiliated Hospital of Jinan University, China; Department of Nephrology, Jiangmen Central Hospital, China
| | - Mohamed M S Gaballa
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Germany; Faculty of Veterinary Medicine, Benha University, Moshtohor,Toukh, Egypt
| | - Yao Xue
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Germany
| | - Xin Chen
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Germany; Department of Nephrology, The First Affiliated Hospital of Jinan University, China; Department of Nephrology, Charité - Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
| | - Yaochen Cao
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Germany; Department of Nephrology, Charité - Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
| | - Ahmed A Hasan
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Germany; Institute of Nutritional Sciences, University of Potsdam, Potsdam, Germany; Institute of Pharmacy, Free University of Berlin, Germany
| | - Kai Stadermann
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | | | - Lianghong Yin
- Department of Nephrology, The First Affiliated Hospital of Jinan University, China
| | - Bernhard K Krämer
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Germany; European Center for Angioscience ECAS, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany
| | - Thomas Klein
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Berthold Hocher
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Germany; Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China; Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China; Institute of Medical Diagnostics, IMD, Berlin, Berlin, Germany.
| |
Collapse
|
18
|
Alber J, Freisinger P, Föller M. The synthesis of fibroblast growth factor 23 is upregulated by homocysteine in UMR106 osteoblast-like cells. Nutrition 2021; 96:111573. [PMID: 35091320 DOI: 10.1016/j.nut.2021.111573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/06/2021] [Accepted: 12/13/2021] [Indexed: 10/19/2022]
Abstract
OBJECTIVES Fibroblast growth factor 23 (FGF23) controls the production and degradation of biologically active vitamin D, 1,25(OH)2D3, and phosphate reabsorption in the kidney as a hormone synthesized by bone cells. Additional paracrine effects in other organs exist as well. As a biomarker, the FGF23 plasma concentration increases in renal and cardiovascular diseases, and is correlated with outcome. The regulation of FGF23 is incompletely understood and dependent on several factors, including oxidative stress. L-homocysteine is an amino acid produced in methionine metabolism, and can be converted into further metabolites depending on the availability of vitamin B. Hyperhomocysteinemia is a potential cardiovascular risk factor. Our study aimed to explore whether homocysteine impacts FGF23 synthesis. METHODS Experiments were performed in UMR106 osteoblast-like cells. Fgf23 gene expression and FGF23 protein concentration were measured by quantitative real-time polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. Oxidative stress was determined by 2',7'-dichlorofluorescein diacetate fluorescence. RESULTS Homocysteine dose-dependently upregulated Fgf23 gene expression and protein synthesis. Moreover, homocysteine imposed oxidative stress on UMR106 cells. The effect of homocysteine on Fgf23 was abrogated by antioxidant ascorbic acid. CONCLUSIONS Homocysteine is a potent stimulator of FGF23 production, an effect at least in part mediated by oxidative stress. The homocysteine-dependent upregulation of FGF23 presumably contributes to its role as a cardiovascular risk factor.
Collapse
Affiliation(s)
- Jana Alber
- University of Hohenheim, Department of Physiology, Stuttgart, Germany
| | - Peter Freisinger
- Kreiskliniken Reutlingen, Department of Pediatrics, Reutlingen, Germany
| | - Michael Föller
- University of Hohenheim, Department of Physiology, Stuttgart, Germany.
| |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW Fibroblast growth factor 23 (FGF23) is a bone- and bone marrow-derived hormone that is critical to maintain phosphate homeostasis. The principal actions of FGF23 are to reduce serum phosphate levels by decreasing kidney phosphate reabsorption and 1,25-dihydroxyvitamin D synthesis. FGF23 deficiency causes hyperphosphatemia and ectopic calcifications, while FGF23 excess causes hypophosphatemia and skeletal defects. Excess FGF23 also correlates with kidney disease, where it is associated with increased morbidity and mortality. Accordingly, FGF23 levels are tightly regulated, but the mechanisms remain incompletely understood. RECENT FINDINGS In addition to bone mineral factors, additional factors including iron, erythropoietin, inflammation, energy, and metabolism regulate FGF23. All these factors affect Fgf23 expression, while some also regulate FGF23 protein cleavage. Conversely, FGF23 may have a functional role in regulating these biologic processes. Understanding the bi-directional relationship between FGF23 and non-bone mineral factors is providing new insights into FGF23 regulation and function.
Collapse
Affiliation(s)
- Petra Simic
- Nephrology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Jodie L Babitt
- Nephrology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Program in Membrane Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
20
|
Role of K + and Ca 2+-Permeable Channels in Osteoblast Functions. Int J Mol Sci 2021; 22:ijms221910459. [PMID: 34638799 PMCID: PMC8509041 DOI: 10.3390/ijms221910459] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 12/20/2022] Open
Abstract
Bone-forming cells or osteoblasts play an important role in bone modeling and remodeling processes. Osteoblast differentiation or osteoblastogenesis is orchestrated by multiple intracellular signaling pathways (e.g., bone morphogenetic proteins (BMP) and Wnt signaling pathways) and is modulated by the extracellular environment (e.g., parathyroid hormone (PTH), vitamin D, transforming growth factor β (TGF-β), and integrins). The regulation of bone homeostasis depends on the proper differentiation and function of osteoblast lineage cells from osteogenic precursors to osteocytes. Intracellular Ca2+ signaling relies on the control of numerous processes in osteoblast lineage cells, including cell growth, differentiation, migration, and gene expression. In addition, hyperpolarization via the activation of K+ channels indirectly promotes Ca2+ signaling in osteoblast lineage cells. An improved understanding of the fundamental physiological and pathophysiological processes in bone homeostasis requires detailed investigations of osteoblast lineage cells. This review summarizes the current knowledge on the functional impacts of K+ channels and Ca2+-permeable channels, which critically regulate Ca2+ signaling in osteoblast lineage cells to maintain bone homeostasis.
Collapse
|
21
|
Liang Y, Luo S, Schooling CM, Au Yeung SL. Genetically Predicted Fibroblast Growth Factor 23 and Major Cardiovascular Diseases, Their Risk Factors, Kidney Function, and Longevity: A Two-Sample Mendelian Randomization Study. Front Genet 2021; 12:699455. [PMID: 34367258 PMCID: PMC8343174 DOI: 10.3389/fgene.2021.699455] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/21/2021] [Indexed: 12/26/2022] Open
Abstract
Introduction Fibroblast growth factor 23 (FGF23), a potential biomarker for kidney function, is related to cardiovascular disease (CVD) and diabetes, although it is unclear whether the relation is causal. This study evaluated the associations of genetically predicted FGF23 with major CVDs, their risk factors, kidney function, and longevity using Mendelian randomization (MR). Methods This is a two-sample MR study using summary statistics from large genome-wide association studies. Primary outcomes included coronary artery disease (CAD), myocardial infarction, heart failure, and atrial fibrillation. Secondary outcomes included cardiovascular risk factors, kidney function, and longevity. We used four single-nucleotide polymorphisms (SNPs) predicting FGF23, excluding rs2769071 in the ABO gene, which likely violates the MR exclusion-restriction assumption. We used inverse-variance weighted (IVW) as the primary statistical method to assess associations of FGF23 with the outcomes. Sensitivity analyses included weighted median (WM) and MR-Egger. We repeated the analyses including all five SNPs. Last, we validated the positive findings from the main analyses in a smaller study, i.e., FinnGen. Results Using IVW, genetically predicted higher FGF23 was inversely associated with risk of CAD [odds ratio (OR): 0.69 per logtransformed FGF23 (pg/ml) increase, 95% confidence interval (CI): 0.52–0.91] and type 2 diabetes mellitus (T2DM) (OR: 0.70, 95% CI: 0.52–0.96), but not with the other outcomes. The WM and MR-Egger estimates were directionally consistent. Conclusion This study suggests that genetically predicted higher FGF23 may be protective against CAD and T2DM. Future studies should explore the underlying mechanisms related to the potential protective effect of FGF23. FGF23 was unlikely a cause of poorer renal function.
Collapse
Affiliation(s)
- Ying Liang
- LKS Faculty of Medicine, School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Shan Luo
- LKS Faculty of Medicine, School of Public Health, The University of Hong Kong, Hong Kong, China
| | - C Mary Schooling
- LKS Faculty of Medicine, School of Public Health, The University of Hong Kong, Hong Kong, China.,School of Public Health and Health Policy, City University of New York, New York, NY, United States
| | - Shiu Lun Au Yeung
- LKS Faculty of Medicine, School of Public Health, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
22
|
De Broe ME, Jouret F. Does metformin do more benefit or harm in chronic kidney disease patients? Kidney Int 2021; 98:1098-1101. [PMID: 33126974 DOI: 10.1016/j.kint.2020.04.059] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 03/30/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Marc E De Broe
- Laboratory Physiopathology, University of Antwerp, Liège, Belgium.
| | - François Jouret
- Research Department of Pathophysiology, Department Nephrology, University Hospital of Liège, Antwerpen, Belgium.
| |
Collapse
|
23
|
Myostatin regulates the production of fibroblast growth factor 23 (FGF23) in UMR106 osteoblast-like cells. Pflugers Arch 2021; 473:969-976. [PMID: 33895875 PMCID: PMC8164604 DOI: 10.1007/s00424-021-02561-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 03/01/2021] [Accepted: 03/23/2021] [Indexed: 12/13/2022]
Abstract
Myostatin is a signaling molecule produced by skeletal muscle cells (myokine) that inhibits muscle hypertrophy and has further paracrine and endocrine effects in other organs including bone. Myostatin binds to activin receptor type 2B which forms a complex with transforming growth factor-β type I receptor (TGF-βRI) and induces intracellular p38MAPK and NFκB signaling. Fibroblast growth factor 23 (FGF23) is a paracrine and endocrine mediator produced by bone cells and regulates phosphate and vitamin D metabolism in the kidney. P38MAPK and NFκB-dependent store-operated Ca2+ entry (SOCE) are positive regulators of FGF23 production. Here, we explored whether myostatin influences the synthesis of FGF23. Fgf23 gene expression was determined by qRT-PCR and FGF23 protein by ELISA in UMR106 osteoblast–like cells. UMR106 cells expressed activin receptor type 2A and B. Myostatin upregulated Fgf23 gene expression and protein production. The myostatin effect on Fgf23 was significantly attenuated by TGF-βRI inhibitor SB431542, p38MAPK inhibitor SB202190, and NFκB inhibitor withaferin A. Moreover, SOCE inhibitor 2-APB blunted the myostatin effect on Fgf23. Taken together, myostatin is a stimulator of Fgf23 expression in UMR106 cells, an effect at least partially mediated by downstream TGF-βRI/p38MAPK signaling as well as NFκB-dependent SOCE.
Collapse
|
24
|
Haussler MR, Livingston S, Sabir ZL, Haussler CA, Jurutka PW. Vitamin D Receptor Mediates a Myriad of Biological Actions Dependent on Its 1,25-Dihydroxyvitamin D Ligand: Distinct Regulatory Themes Revealed by Induction of Klotho and Fibroblast Growth Factor-23. JBMR Plus 2021; 5:e10432. [PMID: 33553988 PMCID: PMC7839824 DOI: 10.1002/jbm4.10432] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/01/2020] [Indexed: 11/21/2022] Open
Abstract
The hormonal vitamin D metabolite, 1,25‐dihydroxyvitamin D [1,25(OH)2D], produced in kidney, acts in numerous end organs via the nuclear vitamin D receptor (VDR) to trigger molecular events that orchestrate bone mineral homeostasis. VDR is a ligand‐controlled transcription factor that obligatorily heterodimerizes with retinoid X receptor (RXR) to target vitamin D responsive elements (VDREs) in the vicinity of vitamin D‐regulated genes. Circulating 1,25(OH)2D concentrations are governed by PTH, an inducer of renal D‐hormone biosynthesis catalyzed by CYP27B1 that functions as the key player in a calcemic endocrine circuit, and by fibroblast growth factor‐23 (FGF23), a repressor of the CYP27B1 renal enzyme, creating a hypophosphatemic endocrine loop. 1,25(OH)2D/VDR–RXR acts in kidney to induce Klotho (a phosphaturic coreceptor for FGF23) to correct hyperphosphatemia, NPT2a/c to correct hypophosphatemia, and TRPV5 and CaBP28k to enhance calcium reabsorption. 1,25(OH)2D‐liganded VDR–RXR functions in osteoblasts/osteocytes by augmenting RANK‐ligand expression to paracrine signal osteoclastic bone resorption, while simultaneously inducing FGF23, SPP1, BGLP, LRP5, ANK1, ENPP1, and TNAP, and conversely repressing RUNX2 and PHEX expression, effecting localized control of mineralization to sculpt the skeleton. Herein, we document the history of 1,25(OH)2D/VDR and summarize recent advances in characterizing their physiology, biochemistry, and mechanism of action by highlighting two examples of 1,25(OH)2D/VDR molecular function. The first is VDR‐mediated primary induction of Klotho mRNA by 1,25(OH)2D in kidney via a mechanism initiated by the docking of liganded VDR–RXR on a VDRE at −35 kb in the mouse Klotho gene. In contrast, the secondary induction of FGF23 by 1,25(OH)2D in bone is proposed to involve rapid nongenomic action of 1,25(OH)2D/VDR to acutely activate PI3K, in turn signaling the induction of MZF1, a transcription factor that, in cooperation with c‐ets1‐P, binds to an enhancer element centered at −263 bp in the promoter‐proximal region of the mouse fgf23 gene. Chronically, 1,25(OH)2D‐induced osteopontin apparently potentiates MZF1. © 2020 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Mark R Haussler
- Department of Basic Medical Sciences University of Arizona College of Medicine-Phoenix Phoenix AZ
| | - Sarah Livingston
- School of Mathematical and Natural Sciences Arizona State University Glendale AZ
| | - Zhela L Sabir
- School of Mathematical and Natural Sciences Arizona State University Glendale AZ
| | - Carol A Haussler
- Department of Basic Medical Sciences University of Arizona College of Medicine-Phoenix Phoenix AZ
| | - Peter W Jurutka
- Department of Basic Medical Sciences University of Arizona College of Medicine-Phoenix Phoenix AZ.,School of Mathematical and Natural Sciences Arizona State University Glendale AZ
| |
Collapse
|
25
|
Usui T, Zhao J, Fuller DS, Hanafusa N, Hasegawa T, Fujino H, Nomura T, Zee J, Young E, Robinson BM, Nangaku M. Association of erythropoietin resistance and fibroblast growth factor 23 in dialysis patients: Results from the Japanese Dialysis Outcomes and Practice Patterns Study. Nephrology (Carlton) 2021; 26:46-53. [PMID: 32743932 PMCID: PMC7754421 DOI: 10.1111/nep.13765] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 06/12/2020] [Accepted: 07/25/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Fibroblast growth factor 23 (FGF23) plays an important role in chronic kidney disease (CKD)-related mineral and bone disorders. High FGF23 levels are associated with increased risk of anaemia in non-haemodialysis CKD patients. FGF23 also negatively regulates erythropoiesis in mice. We hypothesized that higher FGF23 levels are associated with increased erythropoietin hyporesponsiveness among haemodialysis patients. METHODS The study included 1044 patients from the Japanese Dialysis Outcomes and Practice Patterns Study (J-DOPPS) phase 5 (2012-2015). The outcome was erythropoiesis-stimulating agent hyporesponsiveness (ESA-hypo), defined as mean Hgb <10 g/dL and standardized mean ESA dose >6000 u/week over 4 months following FGF23 measurement. The association between ESA-hypo and FGF23 was estimated using multivariable-adjusted logistic generalized estimating equation regression models. RESULTS Patients with higher levels of FGF23 were younger and had higher levels of serum albumin, creatinine, albumin-corrected calcium, phosphorus, PTH, 25(OH)-vitamin D, and had higher percentages of intravenous (IV) iron, IV vitamin D and cinacalcet use. ESA-hypo was present in 144 patients (13.8%). Compared with the third quintile of FGF23 levels, the odds ratio (95% CI) of ESA-hypo was 2.14 (0.99, 4.62) and 1.74 (0.74, 4.11) for the first and fifth quintiles, respectively. CONCLUSION The lowest and highest levels of FGF23 were associated with higher odds of ESA-hypo in patients on maintenance haemodialysis, although the associations were not statistically significant. The relationship between FGF23 and anaemia, and particularly the increased risks of ESA-hypo at low FGF23 levels which might be the result of energy saving, must be confirmed in larger clinical studies.
Collapse
Affiliation(s)
- Tomoko Usui
- Division of Nephrology and EndocrinologyThe University of Tokyo HospitalTokyoJapan
| | - Junhui Zhao
- Arbor Research Collaborative for HealthAnn ArborMichiganUSA
| | | | - Norio Hanafusa
- Department of Blood Purification, Kidney Center, Tokyo Women's Medical UniversityTokyoJapan
| | - Takeshi Hasegawa
- Showa University Research Administration Center (SURAC)Showa UniversityTokyoJapan
- Division of Nephrology (Fujigaoka Hospital), Department of Medicine, School of MedicineShowa UniversityYokohamaJapan
- Center for Innovative Research for Communities and Clinical ExcellenceFukushima Medical UniversityFukushimaJapan
| | - Hiroshi Fujino
- Medical Affairs Department, Kyowa Kirin Co. Ltd.TokyoJapan
| | | | - Jarcy Zee
- Arbor Research Collaborative for HealthAnn ArborMichiganUSA
| | - Eric Young
- Arbor Research Collaborative for HealthAnn ArborMichiganUSA
| | | | - Masaomi Nangaku
- Division of Nephrology and EndocrinologyThe University of Tokyo HospitalTokyoJapan
| |
Collapse
|
26
|
Abstract
Phosphorus, a 5A element with atomic weight of 31, comprises just over 0.6% of the composition by weight of plants and animals. Three isotopes are available for studying phosphorus metabolism and kinetics. 31P is stable, whereas the radioactive isotope 33P has a half-life of 25 days and 32P has a half-life of 14 days. Phosphate ester and phosphoanhydride are common chemical linkages and phosphorus is a key element in organic molecules involved in a wide variety of essential cellular functions. These include biochemical energy transfer via adenosine triphosphate (ATP), maintenance of genetic information with nucleotides DNA and RNA, intracellular signaling via cyclic adenosine monophosphate (cAMP), and membrane structural integrity via glycerophospholipids. However, this review focuses on the metabolism of inorganic phosphorus (Pi) acting as a weak acid. Phosphoric acid has all three hydrogens attached to oxygen and is a weak diprotic acid. It has 3 pKa values: pH 2.2, pH 7.2, and pH 12.7. At physiological pH of 7.4, Pi exists as both H2PO4(-) and HPO4(2-) and acts as an extracellular fluid (ECF) buffer. Pi is the form transported across tissue compartments and cells. Measurement of Pi in biological fluids is based on its reaction with ammonium molybdate which does not measure organic phosphorus. In humans, 80% of the body phosphorus is present in the form of calcium phosphate crystals (apatite) that confer hardness to bone and teeth, and function as the major phosphorus reservoir (Fig. 1). The remainder is present in soft tissues and ECF. Dietary phosphorus, comprising both inorganic and organic forms, is digested in the upper gastrointestinal tract. Absorbed Pi is transported to and from bone, skeletal muscle and soft tissues, and kidney at rates determined by ECF Pi concentration, rate of blood flow, and activity of cell Pi transporters (Fig. 2). During growth, there is net accretion of phosphorus, and with aging, net loss of phosphorus occurs. The bone phosphorus reservoir is depleted and repleted by overall phosphorus requirement. Skeletal muscle is rich in phosphorus used in essential biochemical energy transfer. Kidney is the main regulator of ECF Pi concentration by virtue of having a tubular maximum reabsorptive capacity for Pi (TmPi) that is under close endocrine control. It is also the main excretory pathway for Pi surplus which is passed in urine. Transcellular and paracellular Pi transports are performed by a number of transport mechanisms widely distributed in tissues, and particularly important in gut, bone, and kidney. Pi transporters are regulated by a hormonal axis comprising fibroblast growth factor 23 (FGF23), parathyroid hormone (PTH), and 1,25 dihydroxy vitamin D (1,25D). Pi and calcium (Ca) metabolism are intimately interrelated, and clinically neither can be considered in isolation. Diseases of Pi metabolism affect bone as osteomalacia/rickets, soft tissues as ectopic mineralization, skeletal muscle as myopathy, and kidney as nephrocalcinosis and urinary stone formation. Fig. 1 Content of phosphorus in human adult: skeleton, soft tissue, and extracellular fluid (grams, log scale). Corresponding data for calcium are shown for comparison Fig. 2 Phosphate (Pi) transport to and from tissue compartments in mg/24 h. At a dietary phosphorus of 1400 mg, 1120 mg is absorbed in upper intestine to the ECF, 210 mg returned to intestine by endogenous secretion, resulting in 910 mg net Pi absorption and 490 mg fecal excretion. At bone, 180 mg is deposited by bone formation and 180 mg return to the ECF by bone resorption. At kidney, 5040 mg is filtered at the glomerulus and 4130 mg return to the ECF by tubular reabsorption with 910 mg excreted in the urine. In soft tissue, Pi is exchanged between ECF and cells.
Collapse
Affiliation(s)
- Munro Peacock
- Division of Endocrinology, Department of Medicine, Indiana University School of Medicine, 1120 W Michigan Street, CL365, Indianapolis, IN, 46202, USA.
| |
Collapse
|
27
|
Caloric Intake in Renal Patients: Repercussions on Mineral Metabolism. Nutrients 2020; 13:nu13010018. [PMID: 33374582 PMCID: PMC7822489 DOI: 10.3390/nu13010018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/15/2020] [Accepted: 12/19/2020] [Indexed: 12/22/2022] Open
Abstract
The aim of this paper is to review current knowledge about how calorie intake influences mineral metabolism focussing on four aspects of major interest for the renal patient: (a) phosphate (P) handling, (b) fibroblast growth factor 23 (FGF23) and calcitriol synthesis and secretion, (c) metabolic bone disease, and (d) vascular calcification (VC). Caloric intake has been shown to modulate P balance in experimental models: high caloric intake promotes P retention, while caloric restriction decreases plasma P concentrations. Synthesis and secretion of the phosphaturic hormone FGF23 is directly influenced by energy intake; a direct correlation between caloric intake and FGF23 plasma concentrations has been shown in animals and humans. Moreover, in vitro, energy availability has been demonstrated to regulate FGF23 synthesis through mechanisms in which the molecular target of rapamycin (mTOR) signalling pathway is involved. Plasma calcitriol concentrations are inversely proportional to caloric intake due to modulation by FGF23 of the enzymes implicated in vitamin D metabolism. The effect of caloric intake on bone is controversial. High caloric intake has been reported to increase bone mass, but the associated changes in adipokines and cytokines may as well be deleterious for bone. Low caloric intake tends to reduce bone mass but also may provide indirect (through modulation of inflammation and insulin regulation) beneficial effects on bone. Finally, while VC has been shown to be exacerbated by diets with high caloric content, the opposite has not been demonstrated with low calorie intake. In conclusion, although prospective studies in humans are needed, when planning caloric intake for a renal patient, it is important to take into consideration the associated changes in mineral metabolism.
Collapse
|
28
|
Jovanovich A, Ginsberg C, You Z, Katz R, Ambrosius WT, Berlowitz D, Cheung AK, Cho M, Lee AK, Punzi H, Rehman S, Roumie C, Supiano MA, Wright CB, Shlipak M, Ix JH, Chonchol M. FGF23, Frailty, and Falls in SPRINT. J Am Geriatr Soc 2020; 69:467-473. [PMID: 33289072 DOI: 10.1111/jgs.16895] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND/OBJECTIVES Chronic kidney disease (CKD) is associated with frailty. Fibroblast growth factor 23 (FGF23) is elevated in CKD and associated with frailty among non-CKD older adults and individuals with human immunodeficiency virus. Whether FGF23 is associated with frailty and falls in CKD is unknown. DESIGN Cross-sectional and longitudinal observational study. SETTING Systolic Blood Pressure Intervention Trial (SPRINT), a randomized trial evaluating standard (systolic blood pressure [SBP] <140 mm Hg) versus intensive (SBP <120 mm Hg) blood pressure lowering on cardiovascular and cognitive outcomes among older adults without diabetes mellitus. PARTICIPANTS A total of 2,376 participants with CKD (estimated glomerular filtration rate [eGFR] <60 mL/min/1.73 m2 ). MEASUREMENTS The exposure variable was intact FGF23. We used multinomial logistic regression to determine the cross-sectional association of intact FGF23 with frailty and Cox proportional hazards analysis to determine the longitudinal association with incident falls. Models were adjusted for demographics, comorbidities, randomization group, antihypertensives, eGFR, mineral metabolism markers, and frailty. RESULTS After adjustment, the odds ratio for prevalent frailty versus non-frailty per twofold higher FGF23 was 1.34 (95% confidence interval [CI] = 1.01-1.77). FGF23 levels in the highest quartile versus the lowest quartile demonstrated more than a twofold increased fall risk (hazard ratio [HR] = 2.32; 95% CI = 1.26-4.26), and the HR per twofold higher FGF23 was 1.99 (95% CI = 1.48-2.68). CONCLUSION Among SPRINT participants with CKD, FGF23 was associated with prevalent frailty and falls.
Collapse
Affiliation(s)
- Anna Jovanovich
- VA Eastern Colorado Healthcare System, Aurora, Colorado.,University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | | | - Zhiying You
- University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Ronit Katz
- University of Washington, Seattle, Washington
| | | | | | - Alfred K Cheung
- University of Utah, Salt Lake City, Utah.,Salt Lake City VA Medical Center, Salt Lake City, Utah
| | - Monique Cho
- Salt Lake City VA Medical Center, Salt Lake City, Utah
| | - Alexandra K Lee
- University of California, San Francisco, San Francisco, California
| | | | - Shakaib Rehman
- Phoenix VA Healthcare System, Phoenix, Arizona.,University of Arizona College of Medicine-Phoenix, Phoenix, Arizona
| | | | - Mark A Supiano
- University of Utah, Salt Lake City, Utah.,Salt Lake City VA Medical Center, Salt Lake City, Utah
| | - Clinton B Wright
- National Institute of Neurological Disorders and Stroke, Bethesda, Maryland
| | - Michael Shlipak
- University of California, San Francisco, San Francisco, California
| | - Joachim H Ix
- University of California San Diego, San Diego, California.,Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Michel Chonchol
- University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
29
|
Abstract
The rapid rise in circulating fibroblast growth factor 23 (FGF23) associated with kidney injury results in calcitriol deficiency, altered calcium homeostasis, and secondary hyperparathyroidism, and may contribute to cardiovascular complications and death. However, the mechanisms of increased FGF23 in states of kidney injury remain unclear. In this issue of the JCI, Simic et al. screened plasma taken from the renal vein of patients undergoing cardiac catheterization and identified glycerol-3-phosphate (G-3-P) as the most significant correlate of simultaneous arterial FGF23 levels. When G-3-P was administered to mice, FGF23 production increased in bone. In a series of elegant mouse studies, the authors discovered a pathway linking increased G-3-P to increased FGF23 via increases in lysophosphatidic acid (LPA), which activates the LPA receptor 1 in FGF23-secreting cells in the bone and bone marrow. Although the authors present human data that broadly support the results from the mouse models, further research is needed to determine whether targeting the G-3-P/FGF23 pathway has the potential to modify FGF23-related complications in the clinic.
Collapse
Affiliation(s)
| | - Myles Wolf
- Division of Nephrology, Department of Medicine, and.,Duke Clinical Research Institute, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
30
|
Rausch S, Barholz M, Föller M, Feger M. Vitamin A regulates fibroblast growth factor 23 (FGF23). Nutrition 2020; 79-80:110988. [PMID: 32961447 DOI: 10.1016/j.nut.2020.110988] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/02/2020] [Accepted: 07/28/2020] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Renal phosphate and vitamin D metabolism are regulated by proteohormone fibroblast growth factor 23 (FGF23), which is secreted by bone cells. FGF23 inhibits phosphate reabsorption and the production of calcitriol, active vitamin D (1,25(OH)2D3). FGF23 generated by other cells exerts further paracrine effects in the liver, heart, and immune system. The FGF23 plasma concentration is positively associated with the onset and progression of kidney and cardiovascular diseases, disclosing FGF23 as a potential disease biomarker. The effects of vitamin A on the expression of FGF23 are controversial. Vitamin A components, retinoids, are mainly effective through nuclear retinoic acid receptors (RAR) and exert different effects on bone. The aim of this study was to clarify whether vitamin A modulates the production of FGF23. METHODS We studied the relevance of vitamin A for FGF23 production. Fgf23 transcripts were determined by real-time quantitative polymerase chain reaction in UMR106 osteoblast-like cells and IDG-SW3 osteocytes. FGF23 protein in the cell culture supernatant was measured by enzyme-linked immunosorbent assay. RESULTS All-trans-retinoic acid, retinyl acetate, RAR agonist TTNPB (4-[(E)-2-(5,6,7,8-Tetrahydro-5,5,8,8-tetramethyl-2-naphthalenyl)-1-propenyl]benzoic acid), and 13-cis-retinoic acid downregulated the expression of the Fgf23 gene in a dose-dependent manner. This effect was significantly attenuated by RAR antagonist AGN193109 (4-[2-[5,6-Dihydro-5,5-dimethyl-8-(4-methylphenyl)-2-naphthalenyl]ethynyl]benzoic acid). CONCLUSION The present study demonstrated that vitamin A is a potent suppressor of FGF23 production through RAR.
Collapse
Affiliation(s)
- Steffen Rausch
- Department of Physiology, University of Hohenheim, Stuttgart, Germany
| | - Michelle Barholz
- Department of Physiology, University of Hohenheim, Stuttgart, Germany
| | - Michael Föller
- Department of Physiology, University of Hohenheim, Stuttgart, Germany
| | - Martina Feger
- Department of Physiology, University of Hohenheim, Stuttgart, Germany.
| |
Collapse
|
31
|
Chen DQ, Wang YN, Vaziri ND, Chen L, Hu HH, Zhao YY. Poricoic acid A activates AMPK to attenuate fibroblast activation and abnormal extracellular matrix remodelling in renal fibrosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 72:153232. [PMID: 32460034 DOI: 10.1016/j.phymed.2020.153232] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 03/06/2020] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND In chronic kidney disease, although fibrosis prevention is beneficial, few interventions are available that specifically target fibrogenesis. Poricoic acid A (PAA) isolated from Poria cocos exhibits anti-fibrotic effects in the kidney, however the underlying mechanisms remain obscure. PURPOSE We isolated PAA and investigated its effects and the underlying mechanisms in renal fibrosis. STUDY DESIGN Unilateral ureteral obstruction (UUO) and 5/6 nephrectomy (Nx) animal models and TGF-β1-induced renal fibroblasts (NRK-49F) were used to investigate the anti-fibrotic activity of PAA and its underlying mechanisms. METHODS Western blots, qRT-PCR, immunofluorescence staining, co-immunoprecipitation and molecular docking methods were used. Knock-down and knock-in of adenosine monophosphate-activated protein kinase (AMPK) in the UUO model and cultured NRK-49F cells were employed to verify the mechanisms of action of PAA. RESULTS PAA improved renal function and alleviated fibrosis by stimulating AMPK and inhibiting Smad3 specifically in Nx and UUO models. Reduced AMPK activity was associated with Smad3 induction, fibroblast activation, and the accumulation and aberrant remodelling of extracellular matrix (ECM) in human renal puncture samples and cultured NRK-49F cells. PAA stimulated AMPK activity and decreased fibrosis in a dose-dependent manner, thus showing that AMPK was essential for PAA to exert its anti-fibrotic effects. AMPK deficiency reduced the anti-fibrotic effects of PAA, while AMPK overexpression enhanced its effect. CONCLUSION PAA activated AMPK and further inhibited Smad3 specifically to suppress fibrosis by preventing aberrant ECM accumulation and remodelling and facilitating the deactivation of fibroblasts.
Collapse
Affiliation(s)
- Dan-Qian Chen
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Yan-Ni Wang
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Nosratola D Vaziri
- Division of Nephrology and Hypertension, School of Medicine, University of California Irvine, Irvine, California 92897, USA
| | - Lin Chen
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - He-He Hu
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Ying-Yong Zhao
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China.
| |
Collapse
|
32
|
Ewendt F, Hirche F, Feger M, Föller M. Peroxisome proliferator-activated receptor α (PPARα)-dependent regulation of fibroblast growth factor 23 (FGF23). Pflugers Arch 2020; 472:503-511. [PMID: 32189072 DOI: 10.1007/s00424-020-02363-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 10/24/2022]
Abstract
Bone cells secrete fibroblast growth factor 23 (FGF23), a hormone that inhibits the synthesis of active vitamin D (1,25(OH)2D3) and induces phosphate excretion in the kidney. In addition, it exerts paracrine effects on other cells including hepatocytes, cardiomyocytes, and immune cells. The production of FGF23 is controlled by different factors including parathyroid hormone, 1,25(OH)2D3, alimentary phosphate, insulin, inflammation, and AMP-dependent kinase (AMPK) regulation of store-operated Ca2+ entry (SOCE). Peroxisome proliferator-activated receptor α (PPARα) is a transcription factor with anti-inflammatory properties regulating lipid metabolism. Fibrates, PPARα agonists, are used in the treatment of dyslipidemia and activate AMPK. Here, we tested whether PPARα is a regulator of FGF23. Fgf23 gene expression was analyzed in UMR106 rat osteoblast-like cells by qRT-PCR, AMPK phosphorylation by Western blotting, and SOCE assessed by fluorescence optics. PPARα agonists fenofibrate and WY-14643 suppressed, whereas PPARα antagonist GW6471 and siRNA-mediated knockdown of PPARα induced Fgf23 gene expression. Fenofibrate induced AMPK activity in UMR106 cells and lowered SOCE. AMPK inhibitor compound C abrogated the PPARα effect on FGF23 in large part. Silencing of Orai-1 resulted in failure of PPARα to significantly influence Fgf23 expression. Taken together, PPARα is a potent regulator of FGF23. PPARα agonists down-regulate FGF23 formation at least in part through AMPK-mediated suppression of SOCE.
Collapse
Affiliation(s)
- Franz Ewendt
- Institute of Agricultural and Nutritional Science, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Frank Hirche
- Institute of Agricultural and Nutritional Science, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Martina Feger
- Department of Physiology, University of Hohenheim, Garbenstraße 30, 70599, Stuttgart, Germany
| | - Michael Föller
- Department of Physiology, University of Hohenheim, Garbenstraße 30, 70599, Stuttgart, Germany.
| |
Collapse
|
33
|
Feger M, Ewendt F, Menzel M, Hocher B, Föller M. Endothelin receptor B controls the production of fibroblast growth factor 23. FASEB J 2020; 34:6262-6270. [DOI: 10.1096/fj.201903109r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/21/2020] [Accepted: 02/27/2020] [Indexed: 01/20/2023]
Affiliation(s)
- Martina Feger
- Department of Physiology University of Hohenheim Stuttgart Germany
| | - Franz Ewendt
- Institute of Agricultural and Nutritional Sciences Martin Luther University Halle‐Wittenberg Halle (Saale) Germany
| | - Matthias Menzel
- Fraunhofer Institute for Microstructure of Materials and Systems (IMWS) Halle (Saale) Germany
| | - Berthold Hocher
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology) University Medical Center MannheimUniversity of Heidelberg Mannheim Germany
| | - Michael Föller
- Department of Physiology University of Hohenheim Stuttgart Germany
| |
Collapse
|
34
|
Abstract
Over the past 25 years, successive cloning of SLC34A1, SLC34A2 and SLC34A3, which encode the sodium-dependent inorganic phosphate (Pi) cotransport proteins 2a-2c, has facilitated the identification of molecular mechanisms that underlie the regulation of renal and intestinal Pi transport. Pi and various hormones, including parathyroid hormone and phosphatonins, such as fibroblast growth factor 23, regulate the activity of these Pi transporters through transcriptional, translational and post-translational mechanisms involving interactions with PDZ domain-containing proteins, lipid microdomains and acute trafficking of the transporters via endocytosis and exocytosis. In humans and rodents, mutations in any of the three transporters lead to dysregulation of epithelial Pi transport with effects on serum Pi levels and can cause cardiovascular and musculoskeletal damage, illustrating the importance of these transporters in the maintenance of local and systemic Pi homeostasis. Functional and structural studies have provided insights into the mechanism by which these proteins transport Pi, whereas in vivo and ex vivo cell culture studies have identified several small molecules that can modify their transport function. These small molecules represent potential new drugs to help maintain Pi homeostasis in patients with chronic kidney disease - a condition that is associated with hyperphosphataemia and severe cardiovascular and skeletal consequences.
Collapse
|
35
|
Direct regulation of fibroblast growth factor 23 by energy intake through mTOR. Sci Rep 2020; 10:1795. [PMID: 32020002 PMCID: PMC7000745 DOI: 10.1038/s41598-020-58663-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 01/20/2020] [Indexed: 11/17/2022] Open
Abstract
To test the hypothesis that fibroblast growth factor 23 (FGF23) is directly regulated by energy intake, in vivo and in vitro experiments were conducted. Three groups of rats were fed diets with high (HC), normal (NC) and low (LC) caloric content that resulted in different energy intake. In vitro, UMR106 cells were incubated in high (HG, 4.5 g/l) or low glucose (LG, 1 g/l) medium. Additional treatments included phosphorus (P), mannitol, rapamycin and everolimus. Intestinal absorption of P and plasma P concentrations were similar in the three groups of rats. As compared with NC, plasma FGF23 concentrations were increased in HC and decreased in the LC group. A significant correlation between energy intake and plasma FGF23 concentrations was observed. In vitro, mRNA FGF23 was significantly higher in UMR106 cells cultured in HG than in LG. When exposed to high P, mRNA FGF23 increased but only when cells were cultured in HG. Cells incubated with HG and mechanistic target of rapamycin (mTOR) inhibitors expressed low mRNA FGF23, similar to the values obtained in LG. In conclusion, this study shows a direct regulation of FGF23 production by energy availability and demonstrates that the mTOR signaling pathway plays a central role in this regulatory system.
Collapse
|
36
|
Pelzl L, Sahu I, Ma K, Heinzmann D, Bhuyan AAM, Al-Maghout T, Sukkar B, Sharma Y, Marini I, Rigoni F, Artunc F, Cao H, Gutti R, Voelkl J, Pieske B, Gawaz M, Bakchoul T, Lang F. Beta-Glycerophosphate-Induced ORAI1 Expression and Store Operated Ca 2+ Entry in Megakaryocytes. Sci Rep 2020; 10:1728. [PMID: 32015442 PMCID: PMC6997179 DOI: 10.1038/s41598-020-58384-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 01/03/2020] [Indexed: 12/13/2022] Open
Abstract
Impairment of renal phosphate elimination in chronic kidney disease (CKD) leads to enhanced plasma and tissue phosphate concentration, which in turn up-regulates transcription factor NFAT5 and serum & glucocorticoid-inducible kinase SGK1. The kinase upregulates ORAI1, a Ca2+-channel accomplishing store-operated Ca2+-entry (SOCE). ORAI1 is stimulated following intracellular store depletion by Ca2+-sensors STIM1 and/or STIM2. In megakaryocytes and blood platelets SOCE and thus ORAI1 are powerful regulators of activity. The present study explored whether the phosphate-donor ß-glycerophosphate augments NFAT5, ORAI1,2,3 and/or STIM1,2 expressions and thus SOCE in megakaryocytes. Human megakaryocytic Meg01cells were exposed to 2 mM of phosphate-donor ß-glycerophosphate for 24 hours. Platelets were isolated from blood samples of patients with impaired kidney function or control volunteers. Transcript levels were estimated utilizing q-RT-PCR, cytosolic Ca2+-concentration ([Ca2+]i) by Fura-2-fluorescence, and SOCE from increase of [Ca2+]i following re-addition of extracellular Ca2+ after store depletion with thapsigargin (1 µM). NFAT5 and ORAI1 protein abundance was estimated with Western blots. As a result, ß-glycerophosphate increased NFAT5, ORAI1/2/3, STIM1/2 transcript levels, as well as SOCE. Transcript levels of NFAT5, SGK1, ORAI1/2/3, and STIM1/2 as well as NFAT5 and ORAI1 protein abundance were significantly higher in platelets isolated from patients with impaired kidney function than in platelets from control volunteers. In conclusion, phosphate-donor ß-glycerophosphate triggers a signaling cascade of NFAT5/SGK1/ORAI/STIM, thus up-regulating store-operated Ca2+-entry.
Collapse
Affiliation(s)
- Lisann Pelzl
- Transfusion Medicine, Medical Faculty, Eberhard Karl University Tuebingen, Tuebingen, Germany
| | - Itishri Sahu
- Department of Internal Medicine III, Eberhard Karl University Tuebingen, Tuebingen, Germany.,Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Ke Ma
- Department of Internal Medicine III, Eberhard Karl University Tuebingen, Tuebingen, Germany
| | - David Heinzmann
- Department of Internal Medicine III, Eberhard Karl University Tuebingen, Tuebingen, Germany
| | | | - Tamer Al-Maghout
- Department of Internal Medicine III, Eberhard Karl University Tuebingen, Tuebingen, Germany
| | - Basma Sukkar
- Department of Internal Medicine III, Eberhard Karl University Tuebingen, Tuebingen, Germany
| | - Yamini Sharma
- Department of Internal Medicine III, Eberhard Karl University Tuebingen, Tuebingen, Germany
| | - Irene Marini
- Transfusion Medicine, Medical Faculty, Eberhard Karl University Tuebingen, Tuebingen, Germany
| | - Flaviana Rigoni
- Transfusion Medicine, Medical Faculty, Eberhard Karl University Tuebingen, Tuebingen, Germany
| | - Ferruh Artunc
- Department of Internal Medicine IV, Eberhard Karl University Tuebingen, Tuebingen, Germany
| | - Hang Cao
- Department of Internal Medicine III, Eberhard Karl University Tuebingen, Tuebingen, Germany
| | - Ravi Gutti
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Jakob Voelkl
- Institute for Physiology, Johannes Kepler University, Linz, Austria.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany.,Department of Nephrology and Medical Intensive Care, Charité University Medicine, Berlin, Germany.,Department of Internal Medicine and Cardiology, Campus Virchow Klinikum, Charité University Medicine, Berlin, Germany
| | - Burkert Pieske
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, and Department of Internal Medicine and Cardiology, German Heart Center Berlin (DHZB), Berlin, Germany.,Department of Internal Medicine and Cardiology, Campus Virchow Klinikum, Charité University Medicine, Berlin, Germany
| | - Meinrad Gawaz
- Department of Internal Medicine III, Eberhard Karl University Tuebingen, Tuebingen, Germany
| | - Tamam Bakchoul
- Transfusion Medicine, Medical Faculty, Eberhard Karl University Tuebingen, Tuebingen, Germany.,Centre for Clinical Transfusion Medicine, University Hospital of Tuebingen, Tuebingen, Germany
| | - Florian Lang
- Department of Vegetative and Clinical Physiology, Eberhard Karl University Tuebingen, Tuebingen, Germany.
| |
Collapse
|
37
|
Ewendt F, Föller M. p38MAPK controls fibroblast growth factor 23 (FGF23) synthesis in UMR106-osteoblast-like cells and in IDG-SW3 osteocytes. J Endocrinol Invest 2019; 42:1477-1483. [PMID: 31201665 DOI: 10.1007/s40618-019-01073-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 06/10/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND p38 mitogen-activated protein kinase (p38MAPK) is a serine/threonine kinase activated by cellular stress stimuli including radiation, osmotic shock, and inflammation and influencing apoptosis, cell proliferation, and autophagy. Moreover, p38MAPK induces transcriptional activity of the transcription factor complex NFκB mediating multiple pro-inflammatory cellular responses. Fibroblast growth factor 23 (FGF23) is produced by bone cells, and regulates renal phosphate and vitamin D metabolism as a hormone. FGF23 expression is enhanced by NFκB. Here, we analyzed the relevance of p38MAPK activity for the production of FGF23. METHODS Fgf23 expression was analyzed by qRT-PCR and FGF23 protein by ELISA in UMR106 osteoblast-like cells and in IDG-SW3 osteocytes. RESULTS Inhibition of p38MAPK with SB203580 or SB202190 significantly down-regulated Fgf23 expression and FGF23 protein expression. Conversely, p38MAPK activator anisomycin increased the abundance of Fgf23 mRNA. NFκB inhibitors wogonin and withaferin A abrogated the stimulatory effect of anisomycin on Fgf23 gene expression. CONCLUSION p38MAPK induces FGF23 formation, an effect at least in part dependent on NFκB activity.
Collapse
Affiliation(s)
- F Ewendt
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - M Föller
- Institute of Physiology, University of Hohenheim, Garbenstraße 30, 70599, Stuttgart, Germany.
| |
Collapse
|
38
|
Rahmani S, Defferrari MS, Wakarchuk WW, Antonescu CN. Energetic adaptations: Metabolic control of endocytic membrane traffic. Traffic 2019; 20:912-931. [DOI: 10.1111/tra.12705] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 09/11/2019] [Accepted: 10/13/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Sadia Rahmani
- Department of Chemistry and BiologyRyerson University Toronto Ontario Canada
| | | | - Warren W. Wakarchuk
- Department of Chemistry and BiologyRyerson University Toronto Ontario Canada
- Department of Biological SciencesUniversity of Alberta Edmonton Alberta Canada
| | - Costin N. Antonescu
- Department of Chemistry and BiologyRyerson University Toronto Ontario Canada
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital Toronto Ontario Canada
| |
Collapse
|
39
|
El-Damanawi R, Viecelli AK, Pascoe EM, Craig JC, Johnson DW, Mallett AJ, Hawley CM, Hiemstra TF. Metformin for preventing the progression of chronic kidney disease. Hippokratia 2019. [DOI: 10.1002/14651858.cd013414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ragada El-Damanawi
- University of Cambridge; Division of Experimental Medicine and Immunotherapeutics, Department of Medicine; Cambridge UK
- Addenbrooke's Hospital; Cambridge Clinical Trials Unit; Cambridge UK
| | - Andrea K Viecelli
- Princess Alexandra Hospital; Department of Nephrology; 199 Ipswich Road Brisbane Queensland Australia 4102
- The University of Queensland; Faculty of Medicine; Herston Australia
| | - Elaine M Pascoe
- The University of Queensland; Centre for Health Services Research; Brisbane Australia
| | - Jonathan C Craig
- The Children's Hospital at Westmead; Cochrane Kidney and Transplant, Centre for Kidney Research; Westmead NSW Australia 2145
- Flinders University; College of Medicine and Public Health; Adelaide SA Australia 5001
| | - David W Johnson
- Princess Alexandra Hospital; Department of Nephrology; 199 Ipswich Road Brisbane Queensland Australia 4102
- The University of Queensland; Faculty of Medicine; Herston Australia
- Translational Research Institute; Brisbane Australia
| | - Andrew J Mallett
- The University of Queensland; Faculty of Medicine; Herston Australia
- Royal Brisbane and Women's Hospital; Department of Renal Medicine; Herston Queensland Australia
- The University of Queensland; Institute for Molecular Bioscience; Brisbane Queensland Australia
| | - Carmel M Hawley
- Princess Alexandra Hospital; Department of Nephrology; 199 Ipswich Road Brisbane Queensland Australia 4102
- The University of Queensland; Faculty of Medicine; Herston Australia
- Translational Research Institute; Brisbane Australia
| | - Thomas F Hiemstra
- University of Cambridge; Division of Experimental Medicine and Immunotherapeutics, Department of Medicine; Cambridge UK
- Addenbrooke's Hospital; Cambridge Clinical Trials Unit; Cambridge UK
| |
Collapse
|
40
|
Bär L, Stournaras C, Lang F, Föller M. Regulation of fibroblast growth factor 23 (FGF23) in health and disease. FEBS Lett 2019; 593:1879-1900. [PMID: 31199502 DOI: 10.1002/1873-3468.13494] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 12/19/2022]
Abstract
Fibroblast growth factor 23 (FGF23) is mainly produced in the bone and, upon secretion, forms a complex with a FGF receptor and coreceptor αKlotho. FGF23 can exert several endocrine functions, such as inhibiting renal phosphate reabsorption and 1,25-dihydroxyvitamin D3 production. Moreover, it has paracrine activities on several cell types, including neutrophils and hepatocytes. Klotho and Fgf23 deficiencies result in pathologies otherwise encountered in age-associated diseases, mainly as a result of hyperphosphataemia-dependent calcification. FGF23 levels are also perturbed in the plasma of patients with several disorders, including kidney or cardiovascular diseases. Here, we review mechanisms controlling FGF23 production and discuss how FGF23 regulation is perturbed in disease.
Collapse
Affiliation(s)
- Ludmilla Bär
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Christos Stournaras
- Institute of Biochemistry, University of Crete Medical School, Heraklion, Greece
| | - Florian Lang
- Institute of Physiology, University of Tübingen, Germany
| | - Michael Föller
- Institute of Physiology, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
41
|
Bär L, Hase P, Föller M. PKC regulates the production of fibroblast growth factor 23 (FGF23). PLoS One 2019; 14:e0211309. [PMID: 30921339 PMCID: PMC6438472 DOI: 10.1371/journal.pone.0211309] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/14/2019] [Indexed: 12/20/2022] Open
Abstract
Serine/threonine protein kinase C (PKC) is activated by diacylglycerol that is released from membrane lipids by phospholipase C in response to activation of G protein-coupled receptors or receptor tyrosine kinases. PKC isoforms are particularly relevant for proliferation and differentiation of cells including osteoblasts. Osteoblasts/osteocytes produce fibroblast growth factor 23 (FGF23), a hormone regulating renal phosphate and vitamin D handling. PKC activates NFκB, a transcription factor complex controlling FGF23 expression. Here, we analyzed the impact of PKC on FGF23 synthesis. Fgf23 expression was analyzed by qRT-PCR in UMR106 osteoblast-like cells and in IDG-SW3 osteocytes, and FGF23 protein was measured by ELISA. Phorbol ester 12-O-tetradecanoylphorbol-13-acetate (PMA), a PKC activator, up-regulated FGF23 production. In contrast, PKC inhibitors calphostin C, Gö6976, sotrastaurin and ruboxistaurin suppressed FGF23 formation. NFκB inhibitor withaferin A abolished the stimulatory effect of PMA on Fgf23. PKC is a powerful regulator of FGF23 synthesis, an effect which is at least partly mediated by NFκB.
Collapse
Affiliation(s)
- Ludmilla Bär
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Philipp Hase
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Michael Föller
- Institute of Physiology, University of Hohenheim, Stuttgart, Germany
- * E-mail:
| |
Collapse
|
42
|
Corremans R, Vervaet BA, D'Haese PC, Neven E, Verhulst A. Metformin: A Candidate Drug for Renal Diseases. Int J Mol Sci 2018; 20:E42. [PMID: 30583483 PMCID: PMC6337137 DOI: 10.3390/ijms20010042] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 12/12/2018] [Accepted: 12/20/2018] [Indexed: 12/11/2022] Open
Abstract
Over the past decades metformin has been the optimal first-line treatment for type 2 diabetes mellitus (T2DM). Only in the last few years, it has become increasingly clear that metformin exerts benign pleiotropic actions beyond its prescribed use and ongoing investigations focus on a putative beneficial impact of metformin on the kidney. Both acute kidney injury (AKI) and chronic kidney disease (CKD), two major renal health issues, often result in the need for renal replacement therapy (dialysis or transplantation) with a high socio-economic impact for the patients. Unfortunately, to date, effective treatment directly targeting the kidney is lacking. Metformin has been shown to exert beneficial effects on the kidney in various clinical trials and experimental studies performed in divergent rodent models representing different types of renal diseases going from AKI to CKD. Despite growing evidence on metformin as a candidate drug for renal diseases, in-depth research is imperative to unravel the molecular signaling pathways responsible for metformin's renoprotective actions. This review will discuss the current state-of-the-art literature on clinical and preclinical data, and put forward potential cellular mechanisms and molecular pathways by which metformin ameliorates AKI/CKD.
Collapse
Affiliation(s)
- Raphaëlle Corremans
- Laboratory of Pathophysiology, Department of Biomedical Sciences, University of Antwerp, 2000 Antwerp, Belgium.
| | - Benjamin A Vervaet
- Laboratory of Pathophysiology, Department of Biomedical Sciences, University of Antwerp, 2000 Antwerp, Belgium.
| | - Patrick C D'Haese
- Laboratory of Pathophysiology, Department of Biomedical Sciences, University of Antwerp, 2000 Antwerp, Belgium.
| | - Ellen Neven
- Laboratory of Pathophysiology, Department of Biomedical Sciences, University of Antwerp, 2000 Antwerp, Belgium.
| | - Anja Verhulst
- Laboratory of Pathophysiology, Department of Biomedical Sciences, University of Antwerp, 2000 Antwerp, Belgium.
| |
Collapse
|
43
|
AMP-Activated Protein Kinase (AMPK)-Dependent Regulation of Renal Transport. Int J Mol Sci 2018; 19:ijms19113481. [PMID: 30404151 PMCID: PMC6274953 DOI: 10.3390/ijms19113481] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/26/2018] [Accepted: 10/30/2018] [Indexed: 02/06/2023] Open
Abstract
AMP-activated kinase (AMPK) is a serine/threonine kinase that is expressed in most cells and activated by a high cellular AMP/ATP ratio (indicating energy deficiency) or by Ca2+. In general, AMPK turns on energy-generating pathways (e.g., glucose uptake, glycolysis, fatty acid oxidation) and stops energy-consuming processes (e.g., lipogenesis, glycogenesis), thereby helping cells survive low energy states. The functional element of the kidney, the nephron, consists of the glomerulus, where the primary urine is filtered, and the proximal tubule, Henle's loop, the distal tubule, and the collecting duct. In the tubular system of the kidney, the composition of primary urine is modified by the reabsorption and secretion of ions and molecules to yield final excreted urine. The underlying membrane transport processes are mainly energy-consuming (active transport) and in some cases passive. Since active transport accounts for a large part of the cell's ATP demands, it is an important target for AMPK. Here, we review the AMPK-dependent regulation of membrane transport along nephron segments and discuss physiological and pathophysiological implications.
Collapse
|
44
|
Komaba H. Energy sensor as a new regulator of FGF23 synthesis. Kidney Int 2018; 94:453-455. [DOI: 10.1016/j.kint.2018.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 05/03/2018] [Accepted: 05/07/2018] [Indexed: 11/16/2022]
|