1
|
Maury AA, Holton KF. Biomarkers Associated with Depression Improvement in Veterans with Gulf War Illness Using the Low-Glutamate Diet. Nutrients 2024; 16:2255. [PMID: 39064698 PMCID: PMC11280460 DOI: 10.3390/nu16142255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Gulf War Illness (GWI) is a chronic multi-symptom neurological disorder affecting veterans of the Gulf War that is commonly comorbid with depression. A secondary data analysis was conducted to examine serum homocysteine and inflammatory cytokines (IFN-γ, IL-6, IL-1β, TNF-α) as potential biomarkers of depression improvement among veterans with GWI after a one-month dietary intervention aimed at reducing excitotoxicity and increasing micronutrients. Analyses, including multiple linear and logistic regression, were conducted in R studio. Dietary adherence was estimated using a specialized excitotoxin food frequency questionnaire (FFQ), and depression was measured using the Center for Epidemiologic Studies Depression (CES-D) scale. After one month on the diet, 52% of participants reported a significant decrease in depression (p < 0.01). Greater dietary adherence (FFQ) was associated with increased likelihood of depression improvement; OR (95% CI) = 1.06 (1.01, 1.11), (p = 0.02). Reduced homocysteine was associated with depression improvement after adjusting for FFQ change (β = 2.58, p = 0.04), and serum folate and vitamin B12 were not mediators of this association. Reduction in IFN-γ was marginally associated with likelihood of depression improvement (OR (95% CI) = 1.11 (0.00, 1.42), (p = 0.06)), after adjustment for potential confounders. Findings suggest that homocysteine, and possibly IFN-γ, may serve as biomarkers for depression improvement in GWI. Larger trials are needed to replicate this work.
Collapse
Affiliation(s)
- Amy A. Maury
- Department of Neuroscience, American University, Washington, DC 20016, USA;
| | - Kathleen F. Holton
- Department of Health Studies, American University, Washington, DC 20016, USA
- Center for Neuroscience and Behavior, American University, Washington, DC 20016, USA
| |
Collapse
|
2
|
Ejtahed HS, Mardi P, Hejrani B, Mahdavi FS, Ghoreshi B, Gohari K, Heidari-Beni M, Qorbani M. Association between junk food consumption and mental health problems in adults: a systematic review and meta-analysis. BMC Psychiatry 2024; 24:438. [PMID: 38867156 PMCID: PMC11167869 DOI: 10.1186/s12888-024-05889-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 06/04/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Anxiety and depression can seriously undermine mental health and quality of life globally. The consumption of junk foods, including ultra-processed foods, fast foods, unhealthy snacks, and sugar-sweetened beverages, has been linked to mental health. The aim of this study is to use the published literature to evaluate how junk food consumption may be associated with mental health disorders in adults. METHODS A systematic search was conducted up to July 2023 across international databases including PubMed/Medline, ISI Web of Science, Scopus, Cochrane, Google Scholar, and EMBASE. Data extraction and quality assessment were performed by two independent reviewers. Heterogeneity across studies was assessed using the I2 statistic and chi-square-based Q-test. A random/fixed effect meta-analysis was conducted to pool odds ratios (ORs) and hazard ratios (HRs). RESULTS Of the 1745 retrieved articles, 17 studies with 159,885 participants were suitable for inclusion in the systematic review and meta-analysis (seven longitudinal, nine cross-sectional and one case-control studies). Quantitative synthesis based on cross-sectional studies showed that junk food consumption increases the odds of having stress and depression (OR = 1.15, 95% CI: 1.06 to 1.23). Moreover, pooling results of cohort studies showed that junk food consumption is associated with a 16% increment in the odds of developing mental health problems (OR = 1.16, 95% CI: 1.07 to 1.24). CONCLUSION Meta-analysis revealed that consumption of junk foods was associated with an increased hazard of developing depression. Increased consumption of junk food has heightened the odds of depression and psychological stress being experienced in adult populations.
Collapse
Affiliation(s)
- Hanieh-Sadat Ejtahed
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Parham Mardi
- Social Determinants of Health Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Bahram Hejrani
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Sadat Mahdavi
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
- Clinical Research Development Unit, Shahid Rajaei Educational & Medical Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Behnaz Ghoreshi
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Kimia Gohari
- Department of Biostatistics, Faculty of Medicine Sciences, Tarbiat Modares University, Tehran, Iran
| | - Motahar Heidari-Beni
- Department of Nutrition, Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mostafa Qorbani
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Boyko M, Gruenbaum BF, Oleshko A, Merzlikin I, Zlotnik A. Diet's Impact on Post-Traumatic Brain Injury Depression: Exploring Neurodegeneration, Chronic Blood-Brain Barrier Destruction, and Glutamate Neurotoxicity Mechanisms. Nutrients 2023; 15:4681. [PMID: 37960334 PMCID: PMC10649677 DOI: 10.3390/nu15214681] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
Traumatic brain injury (TBI) has a profound impact on cognitive and mental functioning, leading to lifelong impairment and significantly diminishing the quality of life for affected individuals. A healthy blood-brain barrier (BBB) plays a crucial role in guarding the brain against elevated levels of blood glutamate, making its permeability a vital aspect of glutamate regulation within the brain. Studies have shown the efficacy of reducing excess glutamate in the brain as a treatment for post-TBI depression, anxiety, and aggression. The purpose of this article is to evaluate the involvement of dietary glutamate in the development of depression after TBI. We performed a literature search to examine the effects of diets abundant in glutamate, which are common in Asian populations, when compared to diets low in glutamate, which are prevalent in Europe and America. We specifically explored these effects in the context of chronic BBB damage after TBI, which may initiate neurodegeneration and subsequently have an impact on depression through the mechanism of chronic glutamate neurotoxicity. A glutamate-rich diet leads to increased blood glutamate levels when contrasted with a glutamate-poor diet. Within the context of chronic BBB disruption, elevated blood glutamate levels translate to heightened brain glutamate concentrations, thereby intensifying neurodegeneration due to glutamate neurotoxicity.
Collapse
Affiliation(s)
- Matthew Boyko
- Department of Anesthesiology and Critical Care, Soroka University Medical Center, Ben-Gurion of the Negev, Beer-Sheva 84101, Israel
| | - Benjamin F Gruenbaum
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Anna Oleshko
- Department of Biology and Methods of Teaching Biology, A. S. Makarenko Sumy State Pedagogical University, Sumy 40002, Ukraine
| | - Igor Merzlikin
- Department of Biology and Methods of Teaching Biology, A. S. Makarenko Sumy State Pedagogical University, Sumy 40002, Ukraine
| | - Alexander Zlotnik
- Department of Anesthesiology and Critical Care, Soroka University Medical Center, Ben-Gurion of the Negev, Beer-Sheva 84101, Israel
| |
Collapse
|
4
|
El-Hashash SA, El-Sakhawy MA, Eldamaty HS, Alqasem AA. Experimental evidence of the neurotoxic effect of monosodium glutamate in adult female Sprague Dawley rats: The potential protective role of Zingiber officinale Rosc. rhizomes. Saudi J Biol Sci 2023; 30:103824. [PMID: 37869363 PMCID: PMC10587751 DOI: 10.1016/j.sjbs.2023.103824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/19/2023] [Accepted: 09/29/2023] [Indexed: 10/24/2023] Open
Abstract
Strategies to prevent the health abnormalities associated with the extensive use of MSG (monosodium glutamate) as a flavoring booster are badly needed. The current study was conducted to investigate oxidative stress, inflammation, and abnormal lipid profile as the main risk factors of neurotoxicity in MSG-exposed female albino rats. Besides, the effect of concurrent consumption of Zingiber officinale rhizomes powder was studied at low doses. Twenty rats (total) were split into 4 separate groups. The 1st group was a negative control group (without any treatment), while the others received 6 mg MSG/kg. The 2nd group was left untreated, whereas the 3rd and 4th groups were given a regular laboratory diet that included ginger rhizome powder supplements (GRP, 0.5 & 1%, respectively) for six weeks. In brain tissue homogenates, exposure to MSG caused a significant depletion of gamma-aminobutyric acid (GABA) and total protein levels, while triglycerides and cholesterol contents were significantly elevated. Moreover, a noteworthy upsurge in oxidative load and inflammation markers was also noticed associated with a marked reduction of antioxidant levels, which histopathological staining verified further. The rat diet formulated with GRP, with a dose-dependent effect, resulted in increased GABA and total protein contents and attenuated inflammation, oxidative stress, abnormal lipid profile, and marked histological changes in cerebral cortical neurons of MSG-administered animals. Therefore, this study reveals that GRP shields rats against the neurotoxicity that MSG causes. The anti-inflammatory as well as antioxidant, and lipid-normalizing properties of rhizomes of ginger may be accountable for their observed neuroprotective action.
Collapse
Affiliation(s)
- Samah A. El-Hashash
- Department of Nutrition and Food Science, Faculty of Home Economics, Al-Azhar University, Nawag, Tanta City, P.O. Box 31732, Egypt
| | - Mohamed A. El-Sakhawy
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Department of Medicinal and Aromatic Plants, Desert Research Center, Cairo, Egypt
| | - Hanan S.E. Eldamaty
- Department of Nutrition and Food Science, Faculty of Home Economics, Al-Azhar University, Nawag, Tanta City, P.O. Box 31732, Egypt
| | - Abdullah A. Alqasem
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
5
|
Martinez-Vega MV, Galván-Menéndez-Conde S, Freyre-Fonseca V. Possible Signaling Pathways in the Gut Microbiota-Brain Axis for the Development of Parkinson's Disease Caused by Chronic Consumption of Food Additives. ACS Chem Neurosci 2023. [PMID: 37171224 DOI: 10.1021/acschemneuro.3c00170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023] Open
Abstract
It is well-known that consumption of synthetic and natural food additives has both positive and negative effects in the human body. However, it is not clear yet how food additives are related to the development of Parkinson's disease. Therefore, in this review work, the food additive effects related to the gut microbiota-brain axis and the processes that are carried out to develop Parkinson's disease are studied. To this end, a systematic literature analysis is performed with the selected keywords and the food additive effects are studied to draw possible routes of action. This analysis leads to the proposition of a model that explains the pathways that relate the ingestion of food additives to the development of Parkinson's disease. This work motivates further research that ponders the safety of food additives by measuring their impacts over the gut microbiota-brain axis.
Collapse
Affiliation(s)
- Melanie Verónica Martinez-Vega
- Facultad de Ciencias de la Salud, Universidad Anahuac Mexico, Av. Universidad Anahuac 46, Naucalpan de Juarez 52786, Mexico
| | | | - Verónica Freyre-Fonseca
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México, Campus Norte, Huixquilucan, Estado de México 52786, Mexico
| |
Collapse
|
6
|
Lane MM, Lotfalian M, Hodge A, O'Neil A, Travica N, Jacka FN, Rocks T, Machado P, Forbes M, Ashtree DN, Marx W. High ultra-processed food consumption is associated with elevated psychological distress as an indicator of depression in adults from the Melbourne Collaborative Cohort Study. J Affect Disord 2023; 335:57-66. [PMID: 37149054 DOI: 10.1016/j.jad.2023.04.124] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 04/14/2023] [Accepted: 04/29/2023] [Indexed: 05/08/2023]
Abstract
BACKGROUND Few studies have tested longitudinal associations between ultra-processed food consumption and depressive outcomes. As such, further investigation and replication are necessary. The aim of this study is to examine associations of ultra-processed food intake with elevated psychological distress as a marker for depression after 15 years. METHOD Data from the Melbourne Collaborative Cohort Study (MCCS) were analysed (n = 23,299). We applied the NOVA food classification system to a food frequency questionnaire (FFQ) to determine ultra-processed food intake at baseline. We categorised energy-adjusted ultra-processed food consumption into quartiles by using the distribution of the dataset. Psychological distress was measured by the ten-item Kessler Psychological Distress Scale (K10). We fitted unadjusted and adjusted logistic regression models to assess the association of ultra-processed food consumption (exposure) with significant psychological distress (outcome and defined as K10 ≥ 20). We fitted additional logistic regression models to determine whether these associations were modified by sex, age and body mass index. RESULTS After adjusting for sociodemographic characteristics and lifestyle and health-related behaviours, participants with the highest relative intake of ultra-processed food were at increased odds of significant psychological distress compared to participants with the lowest intake (aOR: 1.23; 95%CI: 1.10, 1.38, p for trend = 0.001). We found no evidence for an interaction of sex, age and body mass index with ultra-processed food intake. CONCLUSION Higher ultra-processed food intake at baseline was associated with subsequent elevated psychological distress as an indicator of depression at follow-up. Further prospective and intervention studies are necessary to identify possible underlying pathways, specify the precise attributes of ultra-processed food that confer harm, and optimise nutrition-related and public health strategies for common mental disorders.
Collapse
Affiliation(s)
- Melissa M Lane
- Deakin University, IMPACT (the Institute for Mental and Physical Health and Clinical Translation), Food & Mood Centre, School of Medicine, Barwon Health, Geelong, Australia.
| | - Mojtaba Lotfalian
- Deakin University, IMPACT (the Institute for Mental and Physical Health and Clinical Translation), Food & Mood Centre, School of Medicine, Barwon Health, Geelong, Australia
| | - Allison Hodge
- Cancer Epidemiology Division, Cancer Council Victoria, 615 St Kilda Rd, Melbourne, VIC 3004, Australia; Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, VIC, Australia
| | - Adrienne O'Neil
- Deakin University, IMPACT (the Institute for Mental and Physical Health and Clinical Translation), Food & Mood Centre, School of Medicine, Barwon Health, Geelong, Australia
| | - Nikolaj Travica
- Deakin University, IMPACT (the Institute for Mental and Physical Health and Clinical Translation), Food & Mood Centre, School of Medicine, Barwon Health, Geelong, Australia
| | - Felice N Jacka
- Deakin University, IMPACT (the Institute for Mental and Physical Health and Clinical Translation), Food & Mood Centre, School of Medicine, Barwon Health, Geelong, Australia; Centre for Adolescent Health, Murdoch Children's Research Institute, VIC, Australia; Black Dog Institute, NSW, Australia; James Cook University, QLD, Australia
| | - Tetyana Rocks
- Deakin University, IMPACT (the Institute for Mental and Physical Health and Clinical Translation), Food & Mood Centre, School of Medicine, Barwon Health, Geelong, Australia
| | - Priscila Machado
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC 3220, Australia; Center for Epidemiological Research in Nutrition and Health, University of Sao Paulo, Av. Dr. Arnaldo, 715, Sao Paulo 01246-904, Brazil
| | - Malcolm Forbes
- Deakin University, IMPACT (the Institute for Mental and Physical Health and Clinical Translation), Food & Mood Centre, School of Medicine, Barwon Health, Geelong, Australia; Mental Health, Drugs & Alcohol Service, University Hospital Geelong, Barwon Health, VIC 3220, Australia; Department of Psychiatry, University of Melbourne, Parkville, VIC 3050, Australia
| | - Deborah N Ashtree
- Deakin University, IMPACT (the Institute for Mental and Physical Health and Clinical Translation), Food & Mood Centre, School of Medicine, Barwon Health, Geelong, Australia
| | - Wolfgang Marx
- Deakin University, IMPACT (the Institute for Mental and Physical Health and Clinical Translation), Food & Mood Centre, School of Medicine, Barwon Health, Geelong, Australia
| |
Collapse
|
7
|
Bölükbaş F, Öznurlu Y. Determining the effects of in ovo administration of monosodium glutamate on the embryonic development of brain in chickens. Neurotoxicology 2023; 94:87-97. [PMID: 36400230 DOI: 10.1016/j.neuro.2022.11.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 10/24/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022]
Abstract
Monosodium glutamate (MSG) is a popular flavor enhancer largely used in the food industry. Although numerous studies have reported the neurotoxic effects of MSG on humans and animals, there is limited information about how it affects embryonic brain development. Thus, this study aimed to determine the effects of in ovo administered MSG on embryonic brain development in chickens. For this purpose, 410 fertilized chicken eggs were divided into 5 groups as control, distilled water, 0.12, 0.6 and 1.2 mg/g egg MSG, and injections were performed via the egg yolk. On days 15, 18, and 21 of the incubation period, brain tissue samples were taken from all embryos and chicks. The mortality rates of MSG-treated groups were significantly higher than those of the control and distilled water groups. The MSG-treated groups showed embryonic growth retardation and various structural abnormalities such as abdominal hernia, unilateral anophthalmia, hemorrhage, brain malformation, and the curling of legs and fingers. The relative embryo and body weights of the MSG-treated groups were significantly lower than those of the control group on incubation days 18 and 21. Histopathological evaluations revealed that MSG caused histopathological changes such as necrosis, neuronophagia, and gliosis in brain on incubation days 15, 18, and 21. There was a significant increase in the number of necrotic neurons in the MSG-treated groups compared to the control and distilled water groups in the hyperpallium, optic tectum and hippocampus regions. Proliferating cell nuclear antigen (PCNA) positive cells in brain were found in the hyperpallium, optic tectum, and hippocampus regions; there were more PCNA(+) immunoreactive cells in MSG-treated groups than in control and distilled water groups. In conclusion, it was determined that in ovo MSG administered could adversely affect embryonic growth and development in addition to causing necrosis in the neurons in the developing brain.
Collapse
Affiliation(s)
- Ferhan Bölükbaş
- Department of Histology and Embryology, Faculty of Medicine, Aksaray University, Aksaray, Turkey.
| | - Yasemin Öznurlu
- Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Selcuk, Konya, Turkey
| |
Collapse
|
8
|
Abu-Elfotuh K, Abdel-Sattar SA, Abbas AN, Mahran YF, Alshanwani AR, Hamdan AME, Atwa AM, Reda E, Ahmed YM, Zaghlool SS, El-Din MN. The protective effect of thymoquinone or/and thymol against monosodium glutamate-induced attention-deficit/hyperactivity disorder (ADHD)-like behavior in rats: Modulation of Nrf2/HO-1, TLR4/NF-κB/NLRP3/caspase-1 and Wnt/β-Catenin signaling pathways in rat model. Biomed Pharmacother 2022; 155:113799. [PMID: 36271575 DOI: 10.1016/j.biopha.2022.113799] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/28/2022] [Accepted: 10/02/2022] [Indexed: 11/26/2022] Open
Abstract
Both thymoquinone (TQ) and thymol (T) have been proved to possess a positive impact on human health. In this research, we aimed to investigate the effect of these compounds separately and together on the Attention-deficit/hyperactivity disorder (ADHD)-like behavior induced by monosodium glutamate (MSG) in rats. Forty male, Spargue Dawley rat pups (postnatal day 21), were randomly allocated into five groups: Normal saline (NS), MSG, MSG+TQ, MSG+T, and MSG+TQ+T. MSG (0.4 mg/kg/day), TQ (10 mg/kg/day) and T (30 mg/kg/day) were orally administered for 8 weeks. The behavioral tests proved that rats treated with TQ and/or T showed improved locomotor, attention and cognitive functions compared to the MSG group with more pronounced effect displayed with their combination. All treated groups showed improvement in MSG-induced aberrations in brain levels of GSH, IL-1β, TNF-α, GFAP, glutamate, calcium, dopamine, norepinephrine, Wnt3a, β-Catenin and BDNF. TQ and/or T treatment also enhanced the mRNA expression of Nrf2, HO-1 and Bcl2 while reducing the protein expression of TLR4, NFκB, NLRP3, caspase 1, Bax, AIF and GSK3β as compared to the MSG group. However, the combined therapy showed more significant effects in all measured parameters. All of these findings were further confirmed by the histopathological examinations. Current results concluded that the combined therapy of TQ and T had higher protective effects than their individual supplementations against MSG-induced ADHD-like behavior in rats.
Collapse
|
9
|
Neuroprotective Effect of Morin Hydrate against Attention-Deficit/Hyperactivity Disorder (ADHD) Induced by MSG and/or Protein Malnutrition in Rat Pups: Effect on Oxidative/Monoamines/Inflammatory Balance and Apoptosis. Pharmaceuticals (Basel) 2022; 15:ph15081012. [PMID: 36015160 PMCID: PMC9415807 DOI: 10.3390/ph15081012] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/12/2022] [Accepted: 08/12/2022] [Indexed: 11/28/2022] Open
Abstract
Monosodium glutamate (MSG) is one of the most widely used food additives. However, it has been linked to protein malnutrition (PM) and various forms of toxicities such as metabolic disorders and neurotoxic effects. The current study is the first to explore the association between MSG, PM, and induced brain injury similar to attention-deficit/hyperactivity disorder (ADHD). Moreover, we determined the underlying mechanistic protective pathways of morin hydrate (MH)―a natural flavonoid with reported multiple therapeutic properties. PM was induced by feeding animals with a low protein diet and confirmed by low serum albumin measurement. Subsequently, rat pups were randomized into seven groups of 10 rats each. Group I, III, and VI were normally fed (NF) and groups II, IV, V, and VII were PM fed. Group I served as normal control NF while Group II served as PM control animals. Group III received NF + 0.4 g/kg MSG, Group IV: PM + 0.4 g/kg MSG, Group V: PM + 60 mg/kg MH, Group VI: NF + 0.4 kg/g MSG + 60 mg/kg MH and Group VII: PM + 0.4 kg/kg MSG + 60 mg/kg MH. At the end of the experimental period, animals were subjected to behavioral and biochemical tests. Our results showed that treatment of rats with a combination of MSG + PM-fed exhibited inferior outcomes as evidenced by deteriorated effects on behavioral, neurochemical, and histopathological analyses when compared to rats who had received MSG or PM alone. Interestingly, MH improved animals’ behavior, increased brain monoamines, brain-derived neuroprotective factor (BDNF), antioxidant status and protein expression of Nrf2/HO-1. This also was accompanied by a significant decrease in brain MDA, inflammatory markers (NF-kB, TNF-α and IL1β), and suppression of TLR4/NLRP3/caspase-1 axis. Taken together, MSG and/or PM are associated with neuronal dysfunction. Our findings suggest MH as a potential neuroprotective agent against brain insults via targeting Nrf2/HO-1 and hindering TLR4/NLRP3 inflammasome signaling pathways.
Collapse
|
10
|
Lane MM, Gamage E, Travica N, Dissanayaka T, Ashtree DN, Gauci S, Lotfaliany M, O’Neil A, Jacka FN, Marx W. Ultra-Processed Food Consumption and Mental Health: A Systematic Review and Meta-Analysis of Observational Studies. Nutrients 2022; 14:2568. [PMID: 35807749 PMCID: PMC9268228 DOI: 10.3390/nu14132568] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/14/2022] [Accepted: 06/17/2022] [Indexed: 02/01/2023] Open
Abstract
Since previous meta-analyses, which were limited only to depression and by a small number of studies available for inclusion at the time of publication, several additional studies have been published assessing the link between ultra-processed food consumption and depression as well as other mental disorders. We aimed to build on previously conducted reviews to synthesise and meta-analyse the contemporary evidence base and clarify the associations between the consumption of ultra-processed food and mental disorders. A total of 17 observational studies were included (n = 385,541); 15 cross-sectional and 2 prospective. Greater ultra-processed food consumption was cross-sectionally associated with increased odds of depressive and anxiety symptoms, both when these outcomes were assessed together (common mental disorder symptoms odds ratio: 1.53, 95%CI 1.43 to 1.63) as well as separately (depressive symptoms odds ratio: 1.44, 95%CI 1.14 to 1.82; and, anxiety symptoms odds ratio: 1.48, 95%CI 1.37 to 1.59). Furthermore, a meta-analysis of prospective studies demonstrated that greater ultra-processed food intake was associated with increased risk of subsequent depression (hazard ratio: 1.22, 95%CI 1.16 to 1.28). While we found evidence for associations between ultra-processed food consumption and adverse mental health, further rigorously designed prospective and experimental studies are needed to better understand causal pathways.
Collapse
Affiliation(s)
- Melissa M. Lane
- Food & Mood Centre, The Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC 3220, Australia; (E.G.); (N.T.); (T.D.); (D.N.A.); (S.G.); (M.L.); (A.O.); (F.N.J.); (W.M.)
| | - Elizabeth Gamage
- Food & Mood Centre, The Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC 3220, Australia; (E.G.); (N.T.); (T.D.); (D.N.A.); (S.G.); (M.L.); (A.O.); (F.N.J.); (W.M.)
| | - Nikolaj Travica
- Food & Mood Centre, The Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC 3220, Australia; (E.G.); (N.T.); (T.D.); (D.N.A.); (S.G.); (M.L.); (A.O.); (F.N.J.); (W.M.)
| | - Thusharika Dissanayaka
- Food & Mood Centre, The Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC 3220, Australia; (E.G.); (N.T.); (T.D.); (D.N.A.); (S.G.); (M.L.); (A.O.); (F.N.J.); (W.M.)
| | - Deborah N. Ashtree
- Food & Mood Centre, The Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC 3220, Australia; (E.G.); (N.T.); (T.D.); (D.N.A.); (S.G.); (M.L.); (A.O.); (F.N.J.); (W.M.)
| | - Sarah Gauci
- Food & Mood Centre, The Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC 3220, Australia; (E.G.); (N.T.); (T.D.); (D.N.A.); (S.G.); (M.L.); (A.O.); (F.N.J.); (W.M.)
| | - Mojtaba Lotfaliany
- Food & Mood Centre, The Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC 3220, Australia; (E.G.); (N.T.); (T.D.); (D.N.A.); (S.G.); (M.L.); (A.O.); (F.N.J.); (W.M.)
| | - Adrienne O’Neil
- Food & Mood Centre, The Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC 3220, Australia; (E.G.); (N.T.); (T.D.); (D.N.A.); (S.G.); (M.L.); (A.O.); (F.N.J.); (W.M.)
| | - Felice N. Jacka
- Food & Mood Centre, The Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC 3220, Australia; (E.G.); (N.T.); (T.D.); (D.N.A.); (S.G.); (M.L.); (A.O.); (F.N.J.); (W.M.)
- Centre for Adolescent Health, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
- College of Public Health, Medical & Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia
| | - Wolfgang Marx
- Food & Mood Centre, The Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC 3220, Australia; (E.G.); (N.T.); (T.D.); (D.N.A.); (S.G.); (M.L.); (A.O.); (F.N.J.); (W.M.)
| |
Collapse
|
11
|
Owumi SE, Adedara IA, Oyelere AK. Indole-3-propionic acid mitigates chlorpyrifos-mediated neurotoxicity by modulating cholinergic and redox-regulatory systems, inflammatory stress, apoptotic responses and DNA damage in rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 89:103786. [PMID: 34915193 DOI: 10.1016/j.etap.2021.103786] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/13/2021] [Accepted: 12/07/2021] [Indexed: 05/10/2023]
Abstract
This study probed the neuroprotective influence of indole-3-propionic acid (IPA) in rats exposed to chlorpyrifos (CPF) alone at 5 mg/kg body weight or co-administered with IPA at 12.5 and 25 mg/kg for 14 days. Behavioral data indicated that IPA significantly (p < 0.05) abated CPF-mediated anxiogenic-like behaviors with concomitant improvement in the locomotor and exploratory behaviors as substantiated by track plots and heat maps data. Also, IPA mitigated CPF-mediated diminution in cholinergic and antioxidant defense systems whereas it markedly improved thioredoxin level and thioredoxin reductase activity in cerebral and cerebellar tissues of the animals. Co-administration of IPA significantly enhanced anti-inflammatory cytokine, interleukin-10 but suppressed oxidative and inflammatory stress, caspase-9 and caspase-3 activation with concomitant reduction in 8-hydroxy-2'-deoxyguanosine (8-OHdG) level and histological damage. Collectively, IPA-mediated neuroprotection involves modulation of cholinergic and redox-regulatory systems, inflammatory stress, apoptotic responses and DNA damage in cerebrum and cerebellum of rats.
Collapse
Affiliation(s)
- Solomon E Owumi
- Cancer Research and Molecular Biology Laboratory, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| | - Isaac A Adedara
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adegboyega K Oyelere
- School of Biochemistry and Chemistry, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
12
|
Al Hargan A, Daghestani MH, Harrath AH. Alterations in APC, BECN1, and TP53 gene expression levels in colon cancer cells caused by monosodium glutamate. BRAZ J BIOL 2021; 83:e246970. [PMID: 34909835 DOI: 10.1590/1519-6984.246970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/04/2021] [Indexed: 11/21/2022] Open
Abstract
Colorectal cancer (CRC) is a disease with high incidence worldwide. As of 2018, it is the second leading cause of cancer deaths in the world. In Saudi Arabia, the incidence of this disease has been increasing in the younger population. Both genetic and lifestyle factors may have contributed to its increased incidence and pathogenesis. Monosodium glutamate (MSG) is a food flavor enhancer that can be found in many commercial foods, and it can sometimes be used as a substitute to table salt. MSG has been investigated for its possible genotoxicity, yielding controversial results. In the present study, the effect of MSG on cell viability and its effect on expression of APC, BECN1, and TP53 genes in SW620 and SW480 colon cancer cell lines were studied. TP53 is a tumor suppressor gene that functions in modifying DNA errors and/or inducing apoptosis of damaged cells, and both APC and BECN1 genes are involved in CRC and are of importance in cellular growth and metastasis. Cancer cell viability was analyzed using MTT assay, and the results showed a significant increase in the number of viable cells after 24 h of treatment with MSG with different concentrations (0.5, 1.0, 10, 50, and 100mM). Moreover, gene expression results showed a significant increase in the expression levels of APC and BECN1 under specified conditions in both cell lines; conversely, TP53 showed a significant decrease in expression in SW620 cells. Thus, it can be concluded that MSG possibly confers a pro-proliferative effect on CRC cells.
Collapse
Affiliation(s)
- A Al Hargan
- King Saud University, Department of Zoology, College of Science, Centre for Scientific and Medical Female Colleges, Riyadh, Saudi Arabia
| | - M H Daghestani
- King Saud University, Department of Zoology, College of Science, Centre for Scientific and Medical Female Colleges, Riyadh, Saudi Arabia
| | - A H Harrath
- King Saud University, Department of Zoology, College of Science, Centre for Scientific and Medical Female Colleges, Riyadh, Saudi Arabia
| |
Collapse
|
13
|
Al-Ghamdi FA. Microscopic study of potential toxic effects of monosodium glutamate on liver of chicken embryos aged 16 days. EGYPTIAN LIVER JOURNAL 2021. [DOI: 10.1186/s43066-021-00109-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
This experimental study aimed to determine the changes caused by monosodium glutamate (MSG) on morphology and histology of liver of chicken embryos aged 16 days of incubation. In this research, 50 fertilized eggs were used. They were divided into two equal groups, one group was used as control with normal liver structure, while the other group (MSG) was treated with MSG in 0 day of incubation (0.1ml/egg).
Results
The results showed many harmful effects on hepatic cells, blood sinusoids, and bile ducts in MSG group. These changes included alterations in nuclei conformation and nuclear envelope. Chromatin distribution was associated with increased electronic intensity. Also, there were rupture in smooth endoplasm systems and malfunction of mitochondria and Golgi apparatus, with increased lysosomes and lipid droplets.
Conclusions
This study concluded that MSG had severe toxic effects on liver structure if it was given in pre-conception period as this period is considered critical for liver growth (organogenesis).
Collapse
|
14
|
Biney RP, Djankpa FT, Osei SA, Egbenya DL, Aboagye B, Karikari AA, Ussif A, Wiafe GA, Nuertey D. Effects of in utero exposure to monosodium glutamate on locomotion, anxiety, depression, memory and KCC2 expression in offspring. Int J Dev Neurosci 2021; 82:50-62. [PMID: 34755371 DOI: 10.1002/jdn.10158] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/16/2021] [Accepted: 11/02/2021] [Indexed: 11/11/2022] Open
Abstract
In pregnancy, there is a significant risk for developing embryos to be adversely affected by everyday chemicals such as food additives and environmental toxins. In recent times, several studies have documented the detrimental effect of exposure to such chemicals on the behaviour and neurodevelopment of the offspring. This study evaluated the influence of the food additive, monosodium glutamate (MSG), on behaviour and development in mice. Pregnant dams were exposed to MSG 2 or 4 g/kg or distilled water from gestation day 10-20. On delivery, postnatal day 1 (PN 1), 3 pups were sacrificed and whole brain samples assayed for KCC2 expression by western blot. The remaining pups were housed until PN 43 before commencing behavioural assessment. Their weights were measured at birth and at 3 days intervals until PN 42. The impact of prenatal exposure to MSG on baseline exploratory, anxiety and depression behaviours as well as spatial and working memory was assessed. In utero exposure to 4 g/kg MSG significantly reduced exploratory drive and increased depression-like behaviours but did not exert any significant impact on anxiety-like behaviours (p < 0.01). Additionally, there was a two-fold increase in KCC2 expression in both 2 and 4 g/kg MSG-exposed offspring. CONCLUSION: This study indicates that, in utero exposure to MSG increases the expression of KCC2 and causes significant effect on locomotion and depression-like behaviours but only marginally affects memory function.
Collapse
Affiliation(s)
| | - Francis Tanam Djankpa
- Department of Physiology, School of Medical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Silas Acheampong Osei
- School of Pharmacy and Pharmaceutical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Daniel Lawer Egbenya
- Department of Anatomy and Cell Biology, School of Medical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Benjamin Aboagye
- Department of Forensic Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Akua Afriyie Karikari
- School of Pharmacy and Pharmaceutical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Abdala Ussif
- Department of Forensic Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Gideon Akuamoah Wiafe
- Department of Physiology, School of Medical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - David Nuertey
- Department of Physiology, School of Medical Sciences, University of Cape Coast, Cape Coast, Ghana
| |
Collapse
|
15
|
Khan TA, Sievenpiper JL, Fernstrom JD. Commentary: Dietary Glutamic Acid, Obesity, and Depressive Symptoms in Patients With Schizophrenia. Front Psychiatry 2021; 12:725786. [PMID: 34721103 PMCID: PMC8551475 DOI: 10.3389/fpsyt.2021.725786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/27/2021] [Indexed: 11/29/2022] Open
Affiliation(s)
- Tauseef A. Khan
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, St. Michael's Hospital, Toronto, ON, Canada
- Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, ON, Canada
| | - John L. Sievenpiper
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, St. Michael's Hospital, Toronto, ON, Canada
- Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, ON, Canada
- Division of Endocrinology & Metabolism, Department of Medicine, St. Michael's Hospital, Toronto, ON, Canada
- Scientist, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
| | - John D. Fernstrom
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
16
|
Onaolapo AY, Onaolapo OJ. Glutamate and depression: Reflecting a deepening knowledge of the gut and brain effects of a ubiquitous molecule. World J Psychiatry 2021; 11:297-315. [PMID: 34327123 PMCID: PMC8311508 DOI: 10.5498/wjp.v11.i7.297] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/13/2021] [Accepted: 05/10/2021] [Indexed: 02/06/2023] Open
Abstract
The versatility of glutamate as the brain’s foremost excitatory neurotransmitter and modulator of neurotransmission and function is considered common knowledge. Years of research have continued to uncover glutamate’s effects and roles in several neurological and neuropsychiatric disorders, including depression. It had been considered that a deeper understanding of the roles of glutamate in depression might open a new door to understanding the pathological basis of the disorder, improve the approach to patient management, and lead to the development of newer drugs that may benefit more patients. This review examines our current understanding of the roles of endogenous and exogenous sources of glutamate and the glutamatergic system in the aetiology, progression and management of depression. It also examines the relationships that link the gut-brain axis, glutamate and depression; as it emphasizes how the gut-brain axis could impact depression pathogenesis and management via changes in glutamate homeostasis. Finally, we consider what the likely future of glutamate-based therapies and glutamate-based therapeutic manipulations in depression are, and if with them, we are now on the final chapter of understanding the neurochemical milieu of depressive disorders.
Collapse
Affiliation(s)
- Adejoke Yetunde Onaolapo
- Behavioural Neuroscience Unit, Neurobiology Subdivision, Department of Anatomy, Ladoke Akintola University of Technology, Oyo State 234, Nigeria
| | - Olakunle James Onaolapo
- Behavioural Neuroscience Unit, Neuropharmacology Subdivision, Department of Pharmacology, Ladoke Akintola University of Technology, Oyo State 234, Nigeria
| |
Collapse
|
17
|
Rodrigues KC, Bortolatto CF, da Motta KP, de Oliveira RL, Paltian JJ, Krüger R, Roman SS, Boeira SP, Alves D, Wilhelm EA, Luchese C. The neurotherapeutic role of a selenium-functionalized quinoline in hypothalamic obese rats. Psychopharmacology (Berl) 2021; 238:1937-1951. [PMID: 33740091 DOI: 10.1007/s00213-021-05821-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 03/08/2021] [Indexed: 12/30/2022]
Abstract
RATIONALE Obesity is considered one of the major global health problems and increases the risk of several medical complications, such as diabetes and mental illnesses. OBJECTIVE The present study investigated the effect of 7-chloro-4-(phenylselanyl) quinoline (4-PSQ) on obesity parameters, behavioral and neurochemical alterations in hypothalamic obese rats. METHODS Male Wistar rats received subcutaneous neonatal injections of monosodium glutamate (MSG, 4g/kg) or saline. After the Lee Index evaluation, rats were divided into groups and treated with 4-PSQ (5 mg/kg, intragastric route) or canola oil once a day (post-natal days (PND) 60→76). Open-field, elevated plus-maze, forced swim task, object recognition/location memory, and stepdown inhibitory avoidance tasks were conducted from PND 66 to 74. On PND 76, rats were euthanized and epididymal fat, blood, cerebral cortex, andhippocampus were removed. Blood biochemical parameters and cortical/hippocampal acetylcholinesterase (AChE) and Na /K -ATPase activities were assessed. RESULTS MSG increased the Lee Index characterizing the chemically induced hypothalamic obesity model. 4-PSQ reversed the increases of epididymal fat, blood glucose, and triglyceride levels caused by MSG exposure. 4-PSQ attenuated anxiety-like and depression-like behaviors induced by neonatal administrations of MSG. Memory deficits found in MSG-obese rats were reversed by treatment with 4-PSQ. Neurochemical alterations produced by MSG evidenced by stimulation ofNa+/K+-ATPase and AChE activities in the cerebral cortex and hippocampus of rats were normalized by 4-PSQ treatment. CONCLUSIONS In brief, 4-PSQ therapy improved hypothalamic obesity-related parameters, as well as psychiatric symptoms, cognitive impairment, and neurochemical alterations found in obese rats.
Collapse
Affiliation(s)
- Karline C Rodrigues
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), Campus Capão do Leão, Pelotas, RS, CEP 96010-900, Brazil
| | - Cristiani F Bortolatto
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), Pelotas, RS, CEP 96010-900, Brazil
| | - Ketlyn P da Motta
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), Campus Capão do Leão, Pelotas, RS, CEP 96010-900, Brazil
| | - Renata L de Oliveira
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), Campus Capão do Leão, Pelotas, RS, CEP 96010-900, Brazil
| | - Jaini J Paltian
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), Campus Capão do Leão, Pelotas, RS, CEP 96010-900, Brazil
| | - Roberta Krüger
- Programa de Pós-graduação em Química, Laboratório de Síntese Orgânica Limpa - LASOL, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), P.O. Box 354, Pelotas, RS, 96010-900, Brazil
| | - Silvane S Roman
- Universidade Regional Integrada, Campus Erechim, Erechim, RS, CEP 99700-000, Brazil
| | - Silvana P Boeira
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas, LaftamBio Pampa, Universidade Federal do Pampa, Itaqui, RS, CEP 97650-000, Brazil
| | - Diego Alves
- Programa de Pós-graduação em Química, Laboratório de Síntese Orgânica Limpa - LASOL, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), P.O. Box 354, Pelotas, RS, 96010-900, Brazil
| | - Ethel Antunes Wilhelm
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), Campus Capão do Leão, Pelotas, RS, CEP 96010-900, Brazil.
| | - Cristiane Luchese
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), Campus Capão do Leão, Pelotas, RS, CEP 96010-900, Brazil.
| |
Collapse
|
18
|
Modulation of immune functions, inflammatory response, and cytokine production following long-term oral exposure to three food additives; thiabendazole, monosodium glutamate, and brilliant blue in rats. Int Immunopharmacol 2021; 98:107902. [PMID: 34182247 DOI: 10.1016/j.intimp.2021.107902] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/06/2021] [Accepted: 06/16/2021] [Indexed: 11/22/2022]
Abstract
The food additives thiabendazole (TBZ), monosodium glutamate (MSG), and brilliant blue (BB) are commonly used in many daily-consumed food products worldwide. They are widely used in major agricultural and industrial applications. Yet, many of its toxicological aspects are still unclear, especially immune modulation. This research was therefore intended to investigate the effects of male Wistar rats' daily oral exposure for 90 days to TBZ (10 mg/kg b.wt), MSG (20 mg/kg b.wt), or BB (1.2 mg/kg b.wt) on the blood cells, immunity, and inflammatory indicators. The three tested food additives showed varying degrees of hematological alterations. Initially, megaloblastic anemia and thrombocytopenia were evident with the three tested food additives. At the same time, TBZ showed no significant changes in the leukogram element except eosinopenia. MSG induced leukopenia, lymphocytopenia, neutrophilia, and eosinophilia. BB evoked neutrophilia and lymphopenia. The immunoglobins M (IgM) and IgG were significantly reduced with the three tested food additives. In contrast, lysozyme and nitric oxide levels were elevated. A reduced considerably lymphocyte proliferation was detected with TBZ and MSG exposure without affecting the phagocytic activity. Various pathologic disturbances in splenic tissues have been detected. An obvious increase in CD4+ but a lessening in CD8+ immunolabeling was evident in TBZ and MSG groups. The cytokines, including interferon-gamma, tumor necrosis factor-alpha, and interleukin 1β, 6, 10, and 13, were significantly upregulated in the spleen of rats exposed to TBZ, MSG, and BB. These results concluded that TBZ, MSG, and BB negatively affect hematological parameters, innate and humoral immune functions together with inflammatory responses. TBZ achieved the maximal negative impacts followed by MSG and finally with BB. Given the prevalence of these food additives, TBZ and MSG should be limited to a minimal volume use, or natural food additives should be used instead.
Collapse
|
19
|
Koohpeyma F, Siri M, Allahyari S, Mahmoodi M, Saki F, Dastghaib S. The effects of L-carnitine on renal function and gene expression of caspase-9 and Bcl-2 in monosodium glutamate-induced rats. BMC Nephrol 2021; 22:162. [PMID: 33933022 PMCID: PMC8088661 DOI: 10.1186/s12882-021-02364-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 04/19/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Monosodium glutamate (MSG) is frequently consumed as a flavor enhancer or food additive. Possible damages induced by MSG effects on some organs have been stated in experimental animal models. The aim of the present study was to evaluate the protective effects of L-carnitine (L-ca) on the renal tissue in MSG-Induced Rats. METHODS In this regard, 60 male rats were randomly divided into six groups (n = 10/each): 1 (Control); 2 (sham); 3 (L-carnitine 200 mg/kg b.w); 4 (MSG 3 g/kg b.w); 5 (MSG + L-carnitine 100 mg/kg); and 6 (MSG + L-carnitine 200 mg/kg). After 6 months, the rats were sacrificed, the blood sample collected and the kidneys harvested for evaluation of biochemical analytes, genes expression, and histopathological changes. RESULTS MSG significantly increased the serum level of MDA, BUN, creatinine, uric acid and renal Caspase-9, NGAL and KIM-1 expression, but it decreased the serum activity also renal expression of SOD, catalase, GPX, and Bcl-2 expression compared to the control group. Treatment with L-ca significantly reduced the serum BUN, creatinine, uric acid and MDA level and increased catalase, GPX and SOD compared to the MSG group. However, only administration of L-ca 200 significantly decreased the caspase-9, NGAL and KIM-1; also, it increased the Bcl-2 expression in the kidney compared to the MSG group. CONCLUSIONS Our findings indicated that L-carnitine had a major impact on the cell protection and might be an effective therapy in ameliorating the complications of the kidney induced by MSG via its antioxidant and anti-apoptotic properties.
Collapse
Affiliation(s)
- Farhad Koohpeyma
- Shiraz Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, 719363-5899, Shiraz, Iran
| | - Morvarid Siri
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Marzieh Mahmoodi
- Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Forough Saki
- Shiraz Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, 719363-5899, Shiraz, Iran
| | - Sanaz Dastghaib
- Shiraz Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, 719363-5899, Shiraz, Iran
| |
Collapse
|
20
|
Altaher W, Alhelo H, Chosky D, Kulesza RJ. Neonatal exposure to monosodium glutamate results in impaired auditory brainstem structure and function. Hear Res 2021; 405:108243. [PMID: 33865019 DOI: 10.1016/j.heares.2021.108243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 03/14/2021] [Accepted: 03/31/2021] [Indexed: 10/21/2022]
Abstract
Excitotoxic injury during the neonatal period has been shown to result in neurodegenerative changes in several different brain regions. Exposure to monosodium glutamate (MSG) during the first two postnatal weeks results in glutamate neurotoxicity in the cochlea and has been shown to result in damage to cochlear hair cells and fewer neurons in the spiral ganglion. Further, we have shown that such exposure results in fewer neurons in the cochlear nucleus and superior olivary complex and abnormal expression of the calcium binding proteins calbindin and calretinin. Based on these findings, we hypothesized that neonatal MSG exposure would result in loss of neurons at more rostral levels in the auditory brainstem, and this exposure would result in abnormal brainstem auditory evoked potentials. We identified a significantly lower density of neurons in the spiral ganglion, heterogenous loss of neurons in the globular bushy cell-trapezoid body circuit, and fewer neurons in the nuclei of the lateral lemniscus and central nucleus of the inferior colliculus. The most severe loss of neurons was found in the inferior colliculus. Click-evoked auditory brainstem responses revealed significantly higher thresholds and longer latency responses, but these did not deteriorate with age. These results, together with our previous findings, indicate that neonatal exposure to MSG results in fewer neurons throughout the entire auditory brainstem and results in abnormal auditory brainstem responses.
Collapse
Affiliation(s)
- Weam Altaher
- Department of Anatomy, Lake Erie College of Osteopathic Medicine, 1858 West Grandview Blvd, Erie, PA 16504, United States
| | - Hasan Alhelo
- Department of Anatomy, Lake Erie College of Osteopathic Medicine, 1858 West Grandview Blvd, Erie, PA 16504, United States
| | - Devon Chosky
- Department of Anatomy, Lake Erie College of Osteopathic Medicine, 1858 West Grandview Blvd, Erie, PA 16504, United States
| | - Randy J Kulesza
- Department of Anatomy, Lake Erie College of Osteopathic Medicine, 1858 West Grandview Blvd, Erie, PA 16504, United States.
| |
Collapse
|
21
|
Kumar P, Kraal AZ, Prawdzik AM, Ringold AE, Ellingrod V. Dietary Glutamic Acid, Obesity, and Depressive Symptoms in Patients With Schizophrenia. Front Psychiatry 2021; 11:620097. [PMID: 33551881 PMCID: PMC7859478 DOI: 10.3389/fpsyt.2020.620097] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/23/2020] [Indexed: 12/12/2022] Open
Abstract
Introduction: Schizophrenia is a lifelong condition associated with several comorbid conditions such as physical illnesses like obesity, as well as co-occurring psychiatric symptoms such as depression. Research regarding susceptibility to some of these comorbidities has primary focused on genetic risks or neurotransmitters and very little work has been done to understand environmental factors such as diet. In particular, understanding the role of dietary glutamic acid consumption on co-morbidities in patients with schizophrenia is important, as evidence suggests that glutamic acid consumption may directly influence glutamatergic neurotransmission; a key neurotransmitter related to schizophrenia, its associated co-morbidities, and depression. Therefore, the aim of this study was to examine the potential relationship between dietary glutamic acid and depressive symptomatology in patients with schizophrenia, stratified by obesity status, due to its relationship with inflammation, antipsychotic use, and depressive symptoms. Methods: Subjects included in this analysis, were part of a parent cross-sectional study in which included three dietary recalls analyzed using protocols outlined as part of the National Health and Nutrition Examination Surveys (NHANES) standardized criteria. Additionally, body mass index (BMI), and Beck Depression Inventory were obtained at this visit. Subjects with a BMI ≥ 30 kg/m2 were included in the obesity group, and the relationship between glutamic acid consumption and BDI scores was analyzed after controlling for age, race, sex, antidepressant and antipsychotic use, and animal and vegetable protein intake which provide natural forms of dietary glutamic acid. Results: A total of 168 participants were included in this study, of which 42.5% were female and 52.9% were White. The mean BMI for the group as a whole was 33.5 ± 8.7 (kg/m2) and the mean BDI was 14.5 ± 10.2 (range 2-50). No differences were found between obesity groups, other than a greater hyperlipidemia, hypertension, and lower waist to hip ratio. Overall, no relationship was found between dietary glutamic acid and BDI scores, However, for non-obese participants, diets higher levels of glutamic acid were associated with greater depression symptomatology (p = 0.021). Conclusion: These preliminary results indicate a possible correlation between dietary glutamic acid a depressive symptoms in non-obese patients with schizophrenia, although further research is needed to specifically examine this relationship.
Collapse
Affiliation(s)
- Pooja Kumar
- College of Pharmacy, University of Michigan, Ann Arbor, MI, United States
- Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - A. Zarina Kraal
- College of Pharmacy, University of Michigan, Ann Arbor, MI, United States
- Department of Psychiatry, School of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Andreas M. Prawdzik
- College of Pharmacy, University of Michigan, Ann Arbor, MI, United States
- Department of Mathematics, Central Michigan University, Mount Pleasant, MI, United States
| | | | - Vicki Ellingrod
- College of Pharmacy, University of Michigan, Ann Arbor, MI, United States
- Department of Psychiatry, School of Medicine, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
22
|
Zhu W, Yang F, Cai X, Zhang W, Zhang J, Cai M, Li X, Xiang J, Cai D. Role of glucocorticoid receptor phosphorylation-mediated synaptic plasticity in anxiogenic and depressive behaviors induced by monosodium glutamate. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:151-164. [PMID: 32444989 DOI: 10.1007/s00210-020-01845-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/19/2020] [Indexed: 12/15/2022]
Abstract
Psychiatric diseases and metabolic disorders frequently cooccur, yet the mechanisms underlying this interaction remain unknown. The aim of this study was to determine the role of glucocorticoid receptor (GR) phosphorylation in the comorbidity of metabolic and psychiatric disorders. Neonatal Sprague-Dawley rats were subcutaneously injected with monosodium glutamate (MSG) every 2 days for 10 days after birth. Metabolic and behavioral tests were performed 12 weeks later. Golgi staining and transmission electron microscopy (TEM) were performed to evaluate synaptic structural plasticity. Changes in GR phosphorylation and the BDNF/TrkB pathway were evaluated by western blotting and immunofluorescence. We found that MSG-treated rats displayed significant metabolic abnormalities accompanied by anxiogenic and depressive behaviors, an altered synaptic ultrastructure and the loss of dendritic spines. The expression of phosphorylated GR was reduced in the brain. Furthermore, a specific agonist of BDNF/TrkB significantly reversed the reduction in GR phosphorylation, as well as the metabolic and behavioral outcomes. These findings indicate that a decrease in BDNF/TrkB pathway-dependent GR phosphorylation is a long-term effect of MSG treatment that may contribute to metabolic and behavioral disturbances.
Collapse
Affiliation(s)
- Wen Zhu
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, Shanghai, 200032, China
| | - Feng Yang
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, Shanghai, 200032, China
| | - Xiaofang Cai
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wen Zhang
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, Shanghai, 200032, China
| | - Jingsi Zhang
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, Shanghai, 200032, China
| | - Min Cai
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, Shanghai, 200032, China
| | - Xiangting Li
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, Shanghai, 200032, China
| | - Jun Xiang
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, Shanghai, 200032, China.
| | - Dingfang Cai
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
23
|
Adedara IA, Owumi SE, Oyelere AK, Farombi EO. Neuroprotective role of gallic acid in aflatoxin B 1 -induced behavioral abnormalities in rats. J Biochem Mol Toxicol 2020; 35:e22684. [PMID: 33319922 DOI: 10.1002/jbt.22684] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/07/2020] [Accepted: 11/26/2020] [Indexed: 12/12/2022]
Abstract
The neurotoxic impact of dietary exposure to aflatoxin B1 (AFB1 ) is documented in experimental and epidemiological studies. Gallic acid (GA) is a triphenolic phytochemical with potent anticancer, anti-inflammatory, and antioxidant activities. There is a knowledge gap on the influence of GA on AFB1 -induced neurotoxicity. This study probed the influence of GA on neurobehavioral and biochemical abnormalities in rats orally treated with AFB1 per se (75 µg/kg body weight) or administered together with GA (20 and 40 mg/kg) for 28 uninterrupted days. Behavioral endpoints obtained with video-tracking software demonstrated significant (p < .05) abatement of AFB1 -induced anxiogenic-like behaviors (increased freezing, urination, and fecal bolus discharge), motor and locomotor inadequacies, namely increased negative geotaxis and diminished grip strength, absolute turn angle, total time mobile, body rotation, maximum speed, and total distance traveled by GA. The improvement of exploratory behavior in animals that received both AFB1 and GA was confirmed by track plots and heat maps appraisal. Abatement of AFB1 -induced decreases in acetylcholinesterase activity, antioxidant status and glutathione level by GA was accompanied by a marked reduction in oxidative stress markers in the cerebellum and cerebrum of rats. Additionally, GA treatment abrogated AFB1 -mediated decrease in interleukin-10 and elevation of inflammatory indices, namely tumor necrosis factor-α, myeloperoxidase activity, interleukin-1β, and nitric oxide. Further, GA treatment curtailed caspase-3 activation and histological injuries in the cerebral and cerebellar tissues. In conclusion, abatement of AFB1 -induced neurobehavioral abnormalities by GA involves anti-inflammatory, antioxidant, and antiapoptotic mechanisms in rats.
Collapse
Affiliation(s)
- Isaac A Adedara
- Department of Biochemistry, Drug Metabolism and Toxicology Research Laboratories, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Solomon E Owumi
- Department of Biochemistry, Cancer Research and Molecular Biology Laboratory, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adegboyega K Oyelere
- School of Biochemistry and Chemistry, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Ebenezer O Farombi
- Department of Biochemistry, Drug Metabolism and Toxicology Research Laboratories, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
24
|
Motta HS, Roos D, Tabarelli G, Rodrigues OED, Ávila D, Quines CB. Activation of SOD-3 is involved in the antioxidant effect of a new class of β-aryl-chalcogenium azide compounds in Caenorhabditis elegans. AN ACAD BRAS CIENC 2020; 92:e20181147. [PMID: 32901676 DOI: 10.1590/0001-3765202020181147] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 04/08/2019] [Indexed: 12/31/2022] Open
Abstract
Organic selenium, tellurium and sulfur compounds have been studied due to their pharmacological properties. For instance, the β-aryl-chalcogenium azide compounds have demonstrated antitumoral action in vitro. However, yet no pharmacological actions of this class of compounds were determined in vivo. Caenorhabditis elegans is a nematode that presents innumerable advantages in relation to mammalian models, such as having a small and transparent body, which allows the visualization of its internal anatomy, besides short life and low cost. Based on that, the aim of this work was to investigate the pharmacological and toxicological properties of β-aryl-chalcogenium azide compounds in C. elegans. As well, to evaluate the capacity of organochalcogenium compounds to repair oxidative damage induced by hydrogen peroxide and the possible mechanism of action of these compounds using CF1553 transgenic strain with superoxide dismutase (SOD-3) tagged with GFP. Our results showed that β-aryl-chalcogenium azide have low toxicity in wild-type worms and the pre-treatment protected against the damage induced by hydrogen peroxide at higher tested concentration. Associated with this, we observed that this protection is due in part to the increased expression of the antioxidant enzyme SOD-3. In conclusion, β-aryl-chalcogenium azide compounds caused low toxicity and induced stress-resistance by modulating SOD-3 expression in C. elegans.
Collapse
Affiliation(s)
- Hodara S Motta
- Universidade Federal do Pampa, Laboratório de Bioquímica e Toxicologia em Caenorhabditis elegans, BR 472, Km 585, Caixa Postal 118, 97501-970 Uruguaiana, RS, Brazil
| | - Daniel Roos
- Universidade Federal do Pampa, Laboratório de Bioquímica e Toxicologia em Caenorhabditis elegans, BR 472, Km 585, Caixa Postal 118, 97501-970 Uruguaiana, RS, Brazil
| | - Greice Tabarelli
- Universidade Federal de Santa Maria, Avenida Roraima, 1000, Cidade Universitária, Camobi, 97105-900 Santa Maria, RS, Brazil
| | - Oscar E D Rodrigues
- Universidade Federal de Santa Maria, Avenida Roraima, 1000, Cidade Universitária, Camobi, 97105-900 Santa Maria, RS, Brazil
| | - Daiana Ávila
- Universidade Federal do Pampa, Laboratório de Bioquímica e Toxicologia em Caenorhabditis elegans, BR 472, Km 585, Caixa Postal 118, 97501-970 Uruguaiana, RS, Brazil
| | - Caroline B Quines
- Universidade Federal do Pampa, Laboratório de Bioquímica e Toxicologia em Caenorhabditis elegans, BR 472, Km 585, Caixa Postal 118, 97501-970 Uruguaiana, RS, Brazil
| |
Collapse
|
25
|
Onaolapo AY, Onaolapo OJ. Dietary glutamate and the brain: In the footprints of a Jekyll and Hyde molecule. Neurotoxicology 2020; 80:93-104. [PMID: 32687843 DOI: 10.1016/j.neuro.2020.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/29/2020] [Accepted: 07/14/2020] [Indexed: 12/15/2022]
Abstract
Glutamate is a crucial neurotransmitter of the mammalian central nervous system, a molecular component of our diet, and a popular food-additive. However, for decades, concerns have been raised about the issue of glutamate's safety as a food additive; especially, with regards to its ability (or otherwise) to cross the blood-brain barrier, cause excitotoxicity, or lead to neuron death. Results of animal studies following glutamate administration via different routes suggest that an array of effects can be observed. While some of the changes appear deleterious, some are not fully-understood, and the impact of others might even be beneficial. These observations suggest that with regards to the mammalian brain, exogenous glutamate might exert a double-sided effect, and in essence be a two-faced molecule whose effects may be dependent on several factors. This review draws from the research experiences of the authors and other researchers regarding the effects of exogenous glutamate on the brain of rodents. We also highlight the possible implications of such effects on the brain, in health and disease. Finally, we deduce that beyond the culinary effects of exogenous glutamate, there is the possibility of a beneficial role in the understanding and management of brain disorders.
Collapse
Affiliation(s)
- Adejoke Y Onaolapo
- Behavioural Neuroscience/Neurobiology Unit, Department of Anatomy, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria.
| | - Olakunle J Onaolapo
- Behavioural Neuroscience/Neuropharmacology Unit, Department of Pharmacology, Ladoke Akintola University of Technology, Osogbo, Osun State, Nigeria.
| |
Collapse
|
26
|
Soyseven M, Aboul‐Enein HY, Arli G. Development of a HPLC method combined with ultraviolet/diode array detection for determination of monosodium glutamate in various food samples. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14661] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Murat Soyseven
- Department of Medical Services and Techniques Yunus Emre Vocational School of Health Services Anadolu University Eskişehir 26470 Turkey
| | - Hassan Y. Aboul‐Enein
- Pharmaceutical and Medicinal Chemistry Department Pharmaceutical and Drug Industries Research Division National Research Center Dokki Cairo 12622 Egypt
| | - Göksel Arli
- Department of Medical Services and Techniques Yunus Emre Vocational School of Health Services Anadolu University Eskişehir 26470 Turkey
- Department of Analytical Chemistry Faculty of Pharmacy Anadolu University Eskişehir 26470 Turkey
| |
Collapse
|
27
|
Role of 5-HT1A Receptor in the Anxiolytic-Relaxant Effects of Bergamot Essential Oil in Rodent. Int J Mol Sci 2020; 21:ijms21072597. [PMID: 32283606 PMCID: PMC7177770 DOI: 10.3390/ijms21072597] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/04/2020] [Accepted: 04/07/2020] [Indexed: 12/20/2022] Open
Abstract
The essential oil obtained by the fresh fruit of Citrus bergamia Risso et Poiteau is used worldwide in aromatherapy to reduce pain, facilitate sleep induction, and/or minimize the effects of stress-induced anxiety. Preclinical pharmacological data demonstrate that bergamot essential oil (BEO) modulates specific neurotransmissions and shows an anxiolytic-relaxant effect not superimposable to that of the benzodiazepine diazepam, suggesting that neurotransmissions, other than GABAergic, could be involved. Several studies on essential oils indicate a role for serotonergic (5-HT) neurotransmission in anxiety. Interestingly, among serotonergic receptors, the 5-HT1A subtype seems to play a key role in the control of anxiety. Here, we report that modulation of the 5-HT1A receptor by selective agonist ((±)8-OH-DPAT) or antagonist (WAY-100635) may influence some of the anxiolytic-relaxant effects of BEO in Open Field and Elevated Plus Maze tests.
Collapse
|
28
|
Yang F, Zhu W, Cai X, Zhang W, Yu Z, Li X, Zhang J, Cai M, Xiang J, Cai D. Minocycline alleviates NLRP3 inflammasome-dependent pyroptosis in monosodium glutamate-induced depressive rats. Biochem Biophys Res Commun 2020; 526:553-559. [PMID: 32245616 DOI: 10.1016/j.bbrc.2020.02.149] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 02/24/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND Inflammasome activation and followed by the release of proinflammatory cytokines play a pivotal role in the development and progression of depression. However, the involvement of gasdermin D (GSDMD)-mediated pyroptosis in inflammasome-associated depression has not been studied. The present study aimed to determine the involvement of pyroptosis in the development of depression. METHODS The rat depressive model was established by the administration of monosodium glutamate (MSG) in postnatal rats. Minocycline (an anti-inflammatory agent) and VX-765 (a specific inhibitor of caspase-1) were given as intervention treatments when rats were two-month-old. Rat depressive behaviors were evaluated by behavioral tests, including open field test, sucrose preference test, and forced swim test. Rat hippocampi were collected for western blotting and immunofluorescence examination. RESULTS MSG administration induced depressive-like behavior in rats. MSG upregulated protein presences of caspase-1, GSDMD, interleukin-1β (IL-1β), interleukin-18 (IL-18), NLR pyrin domain-containing 3 (NLRP3), apoptosis-associated speck-like protein (ASC), high mobility group box 1 protein (HMGB1), and the receptor for advanced glycation end products (RAGE) in the hippocampus. Protein presences of HMGB1, NLRP3 and GSDMD were upregulated in Olig2+ oligodendrocytes in the hippocampus. The data suggest that both HMGB1/RAGE/NLRP3 signalings and GSDMD-dependent pyroptosis were activated. Both minocycline and VX-765 treatments improved depressive-like behaviors. Minocycline treatment significantly reduced both HMGB1/RAGE/NLRP3 inflammasome signalings and GSDMD-dependent pyroptosis. VX-765 downregulated GSDMD-dependent pyroptosis, but not HMGB1/RAGE signalings, indicating that GSDMD-dependent pyroptosis is a key player in the progress of depression. CONCLUSION In rats hippocampus, NLRP3 inflammasome activates GSDMD mediated-pyroptosis in the hippocampus of MSG-induced depressive rats.
Collapse
Affiliation(s)
- Feng Yang
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, China; Institute of Neurology, Academy of Integrative Medicine, Fudan University, Shanghai, China
| | - Wen Zhu
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, China; Institute of Neurology, Academy of Integrative Medicine, Fudan University, Shanghai, China
| | - Xiaofang Cai
- Department of Traditional Chinese Medicine, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, China
| | - Wen Zhang
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, China; Institute of Neurology, Academy of Integrative Medicine, Fudan University, Shanghai, China
| | - Zhonghai Yu
- Department of Traditional Chinese Medicine, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, China
| | - Xiangting Li
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, China; Institute of Neurology, Academy of Integrative Medicine, Fudan University, Shanghai, China
| | - Jingsi Zhang
- Department of Neurology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, China
| | - Min Cai
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, China; Institute of Neurology, Academy of Integrative Medicine, Fudan University, Shanghai, China
| | - Jun Xiang
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, China; Institute of Neurology, Academy of Integrative Medicine, Fudan University, Shanghai, China.
| | - Dingfang Cai
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, China; Institute of Neurology, Academy of Integrative Medicine, Fudan University, Shanghai, China.
| |
Collapse
|
29
|
Adedara IA, Fabunmi AT, Ayenitaju FC, Atanda OE, Adebowale AA, Ajayi BO, Owoeye O, Rocha JB, Farombi EO. Neuroprotective mechanisms of selenium against arsenic-induced behavioral impairments in rats. Neurotoxicology 2020; 76:99-110. [DOI: 10.1016/j.neuro.2019.10.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/20/2019] [Accepted: 10/24/2019] [Indexed: 12/13/2022]
|
30
|
Adedara IA, Adegbosin AN, Abiola MA, Odunewu AA, Owoeye O, Owumi SE, Farombi EO. Neurobehavioural and biochemical responses associated with exposure to binary waterborne mixtures of zinc and nickel in rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 73:103294. [PMID: 31734518 DOI: 10.1016/j.etap.2019.103294] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 10/24/2019] [Accepted: 10/30/2019] [Indexed: 06/10/2023]
Abstract
Environmental and occupational exposure to metal mixtures due to various geogenic and anthropogenic activities poses a health threat to exposed organisms. The outcome of systemic interactions of metals is a topical area of research because it may cause either synergistic or antagonistic effect. The present study investigated the impact of co-exposure to environmentally relevant concentrations of waterborne nickel (75 and 150 μg NiCl 2 L-1) and zinc (100 and 200 μg ZnCl2 L-1) mixtures on neurobehavioural performance of rats. Locomotor, motor and exploratory activities were evaluated using video-tracking software during trial in a novel arena and thereafter, biochemical and histological analyses were performed using the cerebrum, cerebellum and liver. Results indicated that zinc significantly (p < 0.05) abated the nickel-induced locomotor and motor deficits as well as improved the exploratory activity of exposed rats as verified by track plots and heat map analyses. Moreover, zinc mitigated nickel-mediated decrease in acetylcholinesterase activity, elevation in biomarkers of liver damage, levels of reactive oxygen and nitrogen species as well as lipid peroxidation in the exposed rats when compared with control. Additionally, nickel mediated decrease in antioxidant enzyme activities as well as the increase in tumour necrosis factor alpha, interleukin-1 beta and caspase-3 activity were markedly abrogated in the cerebrum, cerebellum and liver of rats co-exposed to nickel and zinc. Histological and histomorphometrical analyses evinced that zinc abated nickel-mediated neurohepatic degeneration as well as quantitative reduction in the widest diameter of the Purkinje cells and the densities of viable granule cell layer of dentate gyrus, pyramidal neurones of cornu ammonis 3 and cortical neurons in the exposed rats. Taken together, zinc abrogated nickel-induced neurohepatic damage via suppression of oxido-inflammatory stress and caspase-3 activation in rats.
Collapse
Affiliation(s)
- Isaac A Adedara
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adedayo N Adegbosin
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Michael A Abiola
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ajibola A Odunewu
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olatunde Owoeye
- Department of Anatomy, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Solomon E Owumi
- Cancer Research and Molecular Biology Laboratory, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ebenezer O Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| |
Collapse
|
31
|
Zhao BB, Chen LL, Long QH, Xie GJ, Xu B, Li ZF, Wang P, Li H. Preventive Effects of Escitalopram Against Anxiety-Like Depressive Behaviors in Monosodium Glutamate-Teated Rats Subjected to Partial Hepatectomy. Front Psychol 2019; 10:2462. [PMID: 31798487 PMCID: PMC6861546 DOI: 10.3389/fpsyg.2019.02462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 10/17/2019] [Indexed: 12/15/2022] Open
Abstract
The reasons for the relationship between depression and chronic liver disease (CLD) are complex and multifactorial. Further research is needed to decipher the etiology and establish an optimal management approach for depression in patients, including the potential role of non-pharmacological treatments. monosodium glutamate (MSG)-treated rats are more likely to develop anxiogenic- and depressive-like behaviors, which could be related to the dysfunction of serotonergic system. In this study, partial hepatectomy (PH) was performed in MSG-treated rats and the histopathological changes were observed in orbitofrontal cortex (OFC) and liver. The effect of escitalopram, a widely used antidepressant, on neural and liver injury in this model was also examined. The MSG + PH-treated rats displayed decreased distances traveled in total, in center arena, and in the left side of arena in inner open field test (OFT), as compared to saline, saline + PH, and MSG-treated animals. The present study established that PH aggravated anxiety-like depressive behaviors in MSG-treated rats, concordant with damaged Nissl bodies (and neurites), decreased IBA-1 and Sox-2 expression in OFC and neurotransmitter disorder. Escitalopram treatment could alleviate these pathological changes as well as reduce hepatic steatosis and lipid metabolism.
Collapse
Affiliation(s)
- Bin-Bin Zhao
- Hubei University of Chinese Medicine, Wuhan, China
| | - Lin-Lin Chen
- Hubei University of Chinese Medicine, Wuhan, China
| | | | | | - Bo Xu
- Hubei University of Chinese Medicine, Wuhan, China
| | - Ze-Fei Li
- Hubei University of Chinese Medicine, Wuhan, China
| | - Ping Wang
- Hubei University of Chinese Medicine, Wuhan, China
| | - Hanmin Li
- Hubei Hospital of Traditional Chinese Medicine (Affiliated Hospital of Hubei University of Traditional Chinese Medicine), Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
32
|
AY O, OI O, FO Y, AM A, IO A, OJ O. Oral Monosodium Glutamate Differentially Affects Open-Field Behaviours, Behavioural Despair and Place Preference in Male and Female Mice. ACTA ACUST UNITED AC 2019. [DOI: 10.2174/2211556008666181213160527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background:
Monosodium glutamate (MSG) is a flavour enhancer which induces
behavioural changes in animals. However the influence of sex on the behavioural response
to MSG has not been investigated.
Objective:
The sex-differential effects of MSG on open-field behaviours, anxiety-related
behaviour, behavioural despair, place-preference, and plasma/brain glutamate levels in
adult mice were assessed.
Methods:
Mice were assigned to three groups (1-3), based on the models used to assess
behaviours. Animals in group 1 were for the elevated-plus maze and tail-suspension paradigms,
group 2 for the open-field and forced-swim paradigms, while mice in group 3 were
for observation in the conditioned place preference paradigm. Mice in all groups were further
assigned into five subgroups (10 males and 10 females), and administered vehicle (distilled
water at 10 ml/kg) or one of four doses of MSG (20, 40, 80 and 160 mg/kg) daily for
6 weeks, following which they were exposed to the behavioural paradigms. At the end of
the behavioural tests, the animals were sacrificed, and blood was taken for estimation of
glutamate levels. The brains were also homogenised for estimation of glutamate levels.
Results:
MSG was associated with a reduction in locomotion in males and females (except
at 160 mg/kg, male), an anxiolytic response in females, an anxiogenic response in males,
and decreased behavioural despair in both sexes (females more responsive). Postconditioning
MSG-associated place-preference was significantly higher in females. Plasma/
brain glutamate was not significantly different between sexes.
Conclusion:
Repeated MSG administration alters a range of behaviours in a sex-dependent
manner in mice.
Collapse
Affiliation(s)
- Onaolapo AY
- Behavioural Neuroscience/Neurobiology Unit, Department of Anatomy, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
| | - Olawore OI
- Behavioural Neuroscience/Neurobiology Unit, Department of Anatomy, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
| | - Yusuf FO
- Behavioural Neuroscience/Neurobiology Unit, Department of Anatomy, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
| | - Adeyemo AM
- Behavioural Neuroscience/Neurobiology Unit, Department of Anatomy, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
| | - Adewole IO
- Behavioural Neuroscience/Neuropharmacology Unit, Department of Pharmacology, Ladoke Akintola University of Technology, Osogbo, Osun State, Nigeria
| | - Onaolapo OJ
- Behavioural Neuroscience/Neuropharmacology Unit, Department of Pharmacology, Ladoke Akintola University of Technology, Osogbo, Osun State, Nigeria
| |
Collapse
|
33
|
Adjibade M, Julia C, Allès B, Touvier M, Lemogne C, Srour B, Hercberg S, Galan P, Assmann KE, Kesse-Guyot E. Prospective association between ultra-processed food consumption and incident depressive symptoms in the French NutriNet-Santé cohort. BMC Med 2019; 17:78. [PMID: 30982472 PMCID: PMC6463641 DOI: 10.1186/s12916-019-1312-y] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 03/25/2019] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Ultra-processed food (UPF) consumption has increased over the last decades in Westernized countries. Our objective was to investigate for the first time the association between the proportion of UPF (%UPF) in the diet and incident depressive symptoms in the NutriNet-Santé cohort. METHODS The sample included 20,380 women and 6350 men (aged 18-86 years) without depressive symptoms at the first Center for Epidemiologic Studies Depression Scale (CES-D) measurement, using validated cut-offs (CES-D score ≥ 17 for men and ≥ 23 for women). The proportion of UPF in the diet was computed for each subject using the NOVA classification applied to dietary intakes collected by repeated 24-h records (mean = 8; SD = 2.3). The association between UPF and depressive symptoms was evaluated using multivariable Cox proportional hazards models. RESULTS Over a mean follow-up of 5.4 years, 2221 incident cases of depressive symptoms were identified. After accounting for a wide range of potential confounders, an increased risk of depressive symptoms was observed with an increased %UPF in the diet. In the main model adjusted for sociodemographic characteristics, body mass index, and lifestyle factors, the estimated hazard ratio for a 10% increase in UPF was 1.21 (95% confidence interval = 1.15-1.27). Considering %UPF in food groups, the association was significant only for beverages and sauces or added fats. CONCLUSION Overall, UPF consumption was positively associated with the risk of incident depressive symptoms, suggesting that accounting for this non-nutritional aspect of the diet could be important for mental health promotion.
Collapse
Affiliation(s)
- Moufidath Adjibade
- Equipe de Recherche en Epidémiologie Nutritionnelle (EREN), Université Paris 13, Centre d'Epidémiologie et Statistiques Sorbonne Paris Cité, Inserm (U1153), Inra (U1125), Cnam, COMUE Sorbonne Paris Cité, 74 rue Marcel Cachin, 93017, Bobigny, France.
| | - Chantal Julia
- Equipe de Recherche en Epidémiologie Nutritionnelle (EREN), Université Paris 13, Centre d'Epidémiologie et Statistiques Sorbonne Paris Cité, Inserm (U1153), Inra (U1125), Cnam, COMUE Sorbonne Paris Cité, 74 rue Marcel Cachin, 93017, Bobigny, France.,Département de Santé Publique, Hôpital Avicenne, F-93017, Bobigny, France
| | - Benjamin Allès
- Equipe de Recherche en Epidémiologie Nutritionnelle (EREN), Université Paris 13, Centre d'Epidémiologie et Statistiques Sorbonne Paris Cité, Inserm (U1153), Inra (U1125), Cnam, COMUE Sorbonne Paris Cité, 74 rue Marcel Cachin, 93017, Bobigny, France
| | - Mathilde Touvier
- Equipe de Recherche en Epidémiologie Nutritionnelle (EREN), Université Paris 13, Centre d'Epidémiologie et Statistiques Sorbonne Paris Cité, Inserm (U1153), Inra (U1125), Cnam, COMUE Sorbonne Paris Cité, 74 rue Marcel Cachin, 93017, Bobigny, France
| | - Cédric Lemogne
- Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Service de Psychiatrie et Addictologie de l'adulte et du sujet âgé, AP-HP, Hôpital européen Georges-Pompidou, Paris, France.,Institut Psychiatrie et Neurosciences, Inserm (U1266), UMR-S 1266, Paris, France
| | - Bernard Srour
- Equipe de Recherche en Epidémiologie Nutritionnelle (EREN), Université Paris 13, Centre d'Epidémiologie et Statistiques Sorbonne Paris Cité, Inserm (U1153), Inra (U1125), Cnam, COMUE Sorbonne Paris Cité, 74 rue Marcel Cachin, 93017, Bobigny, France
| | - Serge Hercberg
- Equipe de Recherche en Epidémiologie Nutritionnelle (EREN), Université Paris 13, Centre d'Epidémiologie et Statistiques Sorbonne Paris Cité, Inserm (U1153), Inra (U1125), Cnam, COMUE Sorbonne Paris Cité, 74 rue Marcel Cachin, 93017, Bobigny, France.,Département de Santé Publique, Hôpital Avicenne, F-93017, Bobigny, France
| | - Pilar Galan
- Equipe de Recherche en Epidémiologie Nutritionnelle (EREN), Université Paris 13, Centre d'Epidémiologie et Statistiques Sorbonne Paris Cité, Inserm (U1153), Inra (U1125), Cnam, COMUE Sorbonne Paris Cité, 74 rue Marcel Cachin, 93017, Bobigny, France
| | - Karen E Assmann
- Equipe de Recherche en Epidémiologie Nutritionnelle (EREN), Université Paris 13, Centre d'Epidémiologie et Statistiques Sorbonne Paris Cité, Inserm (U1153), Inra (U1125), Cnam, COMUE Sorbonne Paris Cité, 74 rue Marcel Cachin, 93017, Bobigny, France
| | - Emmanuelle Kesse-Guyot
- Equipe de Recherche en Epidémiologie Nutritionnelle (EREN), Université Paris 13, Centre d'Epidémiologie et Statistiques Sorbonne Paris Cité, Inserm (U1153), Inra (U1125), Cnam, COMUE Sorbonne Paris Cité, 74 rue Marcel Cachin, 93017, Bobigny, France
| |
Collapse
|
34
|
Adedara IA, Fasina OB, Ayeni MF, Ajayi OM, Farombi EO. Protocatechuic acid ameliorates neurobehavioral deficits via suppression of oxidative damage, inflammation, caspase-3 and acetylcholinesterase activities in diabetic rats. Food Chem Toxicol 2019; 125:170-181. [DOI: 10.1016/j.fct.2018.12.040] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 12/21/2018] [Accepted: 12/24/2018] [Indexed: 01/21/2023]
|
35
|
Dietary composition modulates impact of food-added monosodium glutamate on behaviour, metabolic status and cerebral cortical morphology in mice. Biomed Pharmacother 2018; 109:417-428. [PMID: 30399577 DOI: 10.1016/j.biopha.2018.10.172] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/20/2018] [Accepted: 10/30/2018] [Indexed: 02/07/2023] Open
Abstract
Effects of food-added monosodium glutamate (MSG) on neurobehaviour, serum biochemical parameters, malondialdehyde (MDA) levels, and changes in cerebral cortex, liver and kidney morphology were assessed in mice fed standard diet (SD) or high-fat diet (HFD). Animals were assigned to 8 groups [SD control, HFD control, and six groups fed MSG plus SD or HFD at 0.1, 0.2 and 0.4 g/kg of feed]. Animals were fed for 8 weeks, behavioural tests were conducted, and blood was taken for estimation of biochemical parameters and MDA level. Whole brain was homogenised for neurochemical assays, while the cerebrum, liver and kidneys were processed for histology. In groups fed MSG/SD, there was a decrease in weight gain, increase in food-intake, an increase in locomotion, a decrease in rearing/grooming, and a decrease in anxiety-response. Also observed were derangements in biochemical parameters, increased MDA, and alteration of renal morphology. Compared to HFD, MSG/HFD groups had reduction in weight gain, food-intake, grooming and anxiety-response, an increase in locomotion, and improved memory. Protection against biochemical derangements and HFD-induced organ injuries were also observed. In conclusion, the findings suggest that possible interactions that may occur between dietary constituents and MSG are determinants of the effects of food-added MSG in mice.
Collapse
|
36
|
Protective Effects of Liu Wei Di Huang Wan on the Liver, Orbitofrontal Cortex Nissl Bodies, and Neurites in MSG+PH-Induced Liver Regeneration Rat Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:9090128. [PMID: 30224933 PMCID: PMC6129786 DOI: 10.1155/2018/9090128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 06/03/2018] [Indexed: 01/05/2023]
Abstract
Introduction. To examine the protective effects of Liu Wei Di Huang Wan formula (LWDH) on liver and orbitofrontal cortex (OFC) injuries in monosodium glutamate (MSG) and partial hepatectomy (PH) rat model. Methods. Neonatal Wistar rats were given MSG or saline on postnatal days 2, 4, 6, 8, and 10. The rats were caged into five groups and treated accordingly at six weeks old as follows: Saline group, Saline+PH group, MSG group, MSG+PH group, and LWDH group (MSG+PH+LWDH). The PH was performed during week 8 by excision of the left and median hepatic lobes (occupying about 68% of whole liver).On day 8 after the PH, the rats were subjected to an inner OFT before being sacrificed. The liver and OFC were stained using H&E, ORO, or Nissl staining. The expression of neurotrophic factors (β-NGF, BDNF) was examined in the OFC lysates by ELISA. Serum levels of cytokines (IL-1β, VEGF) were examined using the Bio-Plex suspension array. Results. LWDH increased the total distance traveled by the animals (p<0.05), and LWDH improved the integrity of the Nissl bodies in the OFC (mean area of the Nissl bodies, p<0.01; mean diameter, p<0.05; mean density, p<0.05; and IOD, p<0.01). There were less white area in the liver (p>0.05) and decreased hepatic steatosis (p<0.01) in LWDH group. LWDH administration decreased the expression of serum levels of IL-1β (p>0.05), while it increased VEGF (p>0.05) expression. LWDH administration increased the expression of BDNF (p>0.05) and β-NGF (p>0.05) in the OFC, all as compared to the MSG+PH group. Conclusion. LWDH partly protected the animals from depressive-like behaviors in the MSG+PH-induced liver regeneration neonatal rat model. LWDH alleviated hepatic injury and steatosis and, furthermore, protected the Nissl body integrity and the growth of neurites.
Collapse
|
37
|
Briguglio M, Dell'Osso B, Panzica G, Malgaroli A, Banfi G, Zanaboni Dina C, Galentino R, Porta M. Dietary Neurotransmitters: A Narrative Review on Current Knowledge. Nutrients 2018; 10:E591. [PMID: 29748506 PMCID: PMC5986471 DOI: 10.3390/nu10050591] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 12/12/2022] Open
Abstract
Foods are natural sources of substances that may exert crucial effects on the nervous system in humans. Some of these substances are the neurotransmitters (NTs) acetylcholine (ACh), the modified amino acids glutamate and γ-aminobutyric acid (GABA), and the biogenic amines dopamine, serotonin (5-HT), and histamine. In neuropsychiatry, progressive integration of dietary approaches in clinical routine made it necessary to discern the more about some of these dietary NTs. Relevant books and literature from PubMed and Scopus databases were searched for data on food sources of Ach, glutamate, GABA, dopamine, 5-HT, and histamine. Different animal foods, fruits, edible plants, roots, and botanicals were reported to contain NTs. These substances can either be naturally present, as part of essential metabolic processes and ecological interactions, or derive from controlled/uncontrolled food technology processes. Ripening time, methods of preservation and cooking, and microbial activity further contributes to NTs. Moreover, gut microbiota are considerable sources of NTs. However, the significance of dietary NTs intake needs to be further investigated as there are no significant data on their bioavailability, neuronal/non neuronal effects, or clinical implications. Evidence-based interventions studies should be encouraged.
Collapse
Affiliation(s)
- Matteo Briguglio
- Tourette's Syndrome and Movement Disorders Centre, I.R.C.C.S. Galeazzi Hospital, 20161 Milan, Italy.
| | - Bernardo Dell'Osso
- Department of Pathophysiology and Transplantation, I.R.C.C.S. Ca' Granda Foundation, Ospedale Maggiore Policlinico, 20122 Milan, Italy.
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA 94305, USA.
| | - Giancarlo Panzica
- Department of Neuroscience, Rita Levi Montalcini, University of Turin, 10126 Turin, Italy.
| | - Antonio Malgaroli
- Neurobiology of Learning Unit, Division of Neuroscience, Vita-Salute San Raffaele University, 20132 Milan, Italy.
| | - Giuseppe Banfi
- Scientific Direction, I.R.C.C.S. Galeazzi Hospital, 20161 Milan, Italy.
| | - Carlotta Zanaboni Dina
- Tourette's Syndrome and Movement Disorders Centre, I.R.C.C.S. Galeazzi Hospital, 20161 Milan, Italy.
| | - Roberta Galentino
- Tourette's Syndrome and Movement Disorders Centre, I.R.C.C.S. Galeazzi Hospital, 20161 Milan, Italy.
| | - Mauro Porta
- Tourette's Syndrome and Movement Disorders Centre, I.R.C.C.S. Galeazzi Hospital, 20161 Milan, Italy.
| |
Collapse
|
38
|
Monosodium glutamate affects cognitive functions in male albino rats. EGYPTIAN JOURNAL OF FORENSIC SCIENCES 2018. [DOI: 10.1186/s41935-018-0038-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
39
|
Araujo PCO, Quines CB, Jardim NS, Leite MR, Nogueira CW. Resistance exercise reduces memory impairment induced by monosodium glutamate in male and female rats. Exp Physiol 2017; 102:845-853. [DOI: 10.1113/ep086198] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 03/29/2017] [Indexed: 01/17/2023]
Affiliation(s)
- Paulo Cesar Oliveira Araujo
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas; Universidade Federal de Santa Maria; Santa Maria CEP 97105-900 Rio Grande do Sul Brasil
| | - Caroline Brandão Quines
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas; Universidade Federal de Santa Maria; Santa Maria CEP 97105-900 Rio Grande do Sul Brasil
| | - Natália Silva Jardim
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas; Universidade Federal de Santa Maria; Santa Maria CEP 97105-900 Rio Grande do Sul Brasil
| | - Marlon Regis Leite
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas; Universidade Federal de Santa Maria; Santa Maria CEP 97105-900 Rio Grande do Sul Brasil
| | - Cristina Wayne Nogueira
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas; Universidade Federal de Santa Maria; Santa Maria CEP 97105-900 Rio Grande do Sul Brasil
| |
Collapse
|
40
|
Foran L, Blackburn K, Kulesza RJ. Auditory hindbrain atrophy and anomalous calcium binding protein expression after neonatal exposure to monosodium glutamate. Neuroscience 2017; 344:406-417. [DOI: 10.1016/j.neuroscience.2017.01.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 12/31/2016] [Accepted: 01/03/2017] [Indexed: 01/29/2023]
|
41
|
Greisinger S, Jovanovski S, Buchbauer G. An Interesting Tour of New Research Results on Umami and Umami Compounds. Nat Prod Commun 2016. [DOI: 10.1177/1934578x1601101040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Knowledge about the fifth basic taste, the umami taste, has been investigated by many scientists in the last years and continues to gain importance. Therefore, a lot of scientific studies were conducted to explore several effects influencing the mechanism of umami, which is elicited and enhanced by defined concentrations of MSG (monosodium glutamate) and umami compounds. This paper covers the most relevant scientific literature regarding umami, its use as a flavor enhancer, and the latest umami compounds, which have been released in the last ten years. The main goal of this overview was to summarize the most important results which were related to umami as one of the five basic tastes, the umami taste receptor, the essential role of umami in a great number of physiological mechanisms, and the MSG symptom complex. Furthermore, the function of umami in the interaction of taste, aftertaste and olfactory pathways has been discussed.
Collapse
Affiliation(s)
- Sabine Greisinger
- Department of Pharmaceutical Chemistry, University of Vienna, A-1090 Vienna, Austria
| | - Stefan Jovanovski
- Department of Pharmaceutical Chemistry, University of Vienna, A-1090 Vienna, Austria
| | - Gerhard Buchbauer
- Department of Pharmaceutical Chemistry, University of Vienna, A-1090 Vienna, Austria
| |
Collapse
|
42
|
Low dose of l-glutamic acid attenuated the neurological dysfunctions and excitotoxicity in bilateral common carotid artery occluded mice. Behav Pharmacol 2016; 27:615-22. [DOI: 10.1097/fbp.0000000000000256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
43
|
Rosa SG, Quines CB, Stangherlin EC, Nogueira CW. Diphenyl diselenide ameliorates monosodium glutamate induced anxiety-like behavior in rats by modulating hippocampal BDNF-Akt pathway and uptake of GABA and serotonin neurotransmitters. Physiol Behav 2016; 155:1-8. [DOI: 10.1016/j.physbeh.2015.11.038] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 11/23/2015] [Accepted: 11/30/2015] [Indexed: 11/24/2022]
|
44
|
Quines CB, Rosa SG, Velasquez D, Da Rocha JT, Neto JSS, Nogueira CW. Diphenyl diselenide elicits antidepressant-like activity in rats exposed to monosodium glutamate: A contribution of serotonin uptake and Na(+), K(+)-ATPase activity. Behav Brain Res 2015; 301:161-7. [PMID: 26738966 DOI: 10.1016/j.bbr.2015.12.038] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 12/19/2015] [Accepted: 12/22/2015] [Indexed: 12/30/2022]
Abstract
Depression is a disorder with symptoms manifested at the psychological, behavioral and physiological levels. Monosodium glutamate (MSG) is the most widely used additive in the food industry; however, some adverse effects induced by this additive have been demonstrated in experimental animals and humans, including functional and behavioral alterations. The aim of this study was to investigate the possible antidepressant-like effect of diphenyl diselenide (PhSe)2, an organoselenium compound with pharmacological properties already documented, in the depressive-like behavior induced by MSG in rats. Male and female newborn Wistar rats were divided in control and MSG groups, which received, respectively, a daily subcutaneous injection of saline (0.9%) or MSG (4g/kg/day) from the 1st to 5th postnatal day. At 60th day of life, animals received (PhSe)2 (10mg/kg, intragastrically) 25min before spontaneous locomotor and forced swimming tests (FST). The cerebral cortices of rats were removed to determine [(3)H] serotonin (5-HT) uptake and Na(+), K(+)-ATPase activity. A single administration of (PhSe)2 was effective against locomotor hyperactivity caused by MSG in rats. (PhSe)2 treatment protected against the increase in the immobility time and a decrease in the latency for the first episode of immobility in the FST induced by MSG. Furthermore, (PhSe)2 reduced the [(3)H] 5-HT uptake and restored Na(+), K(+)-ATPase activity altered by MSG. In the present study a single administration of (PhSe)2 elicited an antidepressant-like effect and decrease the synaptosomal [(3)H] 5-HT uptake and an increase in the Na(+), K(+)-ATPase activity in MSG-treated rats.
Collapse
Affiliation(s)
- Caroline B Quines
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900 RS, Brazil
| | - Suzan G Rosa
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900 RS, Brazil
| | - Daniela Velasquez
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900 RS, Brazil
| | - Juliana T Da Rocha
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900 RS, Brazil
| | - José S S Neto
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900 RS, Brazil
| | - Cristina W Nogueira
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900 RS, Brazil.
| |
Collapse
|
45
|
Quines CB, Rosa SG, Chagas PM, da Rocha JT, Dobrachinski F, Carvalho NR, Soares FA, da Luz SCA, Nogueira CW. Homeostatic effect of p-chloro-diphenyl diselenide on glucose metabolism and mitochondrial function alterations induced by monosodium glutamate administration to rats. Amino Acids 2015; 48:137-48. [DOI: 10.1007/s00726-015-2073-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 08/13/2015] [Indexed: 10/23/2022]
|
46
|
Rosa SG, Quines CB, da Rocha JT, Bortolatto CF, Duarte T, Nogueira CW. Antinociceptive action of diphenyl diselenide in the nociception induced by neonatal administration of monosodium glutamate in rats. Eur J Pharmacol 2015; 758:64-71. [DOI: 10.1016/j.ejphar.2015.03.060] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 02/13/2015] [Accepted: 03/14/2015] [Indexed: 12/21/2022]
|
47
|
Demirhan BE, Demirhan B, Sönmez C, Torul H, Tamer U, Yentür G. Monosodium glutamate in chicken and beef stock cubes using high-performance liquid chromatography. FOOD ADDITIVES & CONTAMINANTS PART B-SURVEILLANCE 2014; 8:63-6. [PMID: 25494446 DOI: 10.1080/19393210.2014.991355] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In this survey monosodium glutamate (MSG) levels in chicken and beef stock cube samples were determined. A total number of 122 stock cube samples (from brands A, B, C, D) were collected from local markets in Ankara, Turkey. High-performance liquid chromatography with diode array detection (HPLC-DAD) was used for quantitative MSG determination. Mean MSG levels (±SE) in samples of A, B, C and D brands were 14.6 ± 0.2 g kg⁻¹, 11.9 ± 0.3 g kg⁻¹, 9.7 ± 0.1 g kg⁻¹ and 7.2 ± 0.1 g kg⁻¹, respectively. Differences between mean levels of brands were significant. Also, mean levels of chicken stock cube samples were lower than in beef stock cubes. Maximum limits for MSG in stock cubes are not specified in the Turkish Food Codex (TFC). Generally the limit for MSG in foods (except some foods) is established as 10 g kg⁻¹ (individually or in combination).
Collapse
Affiliation(s)
- Buket Er Demirhan
- a Department of Food Analysis, Faculty of Pharmacy , Gazi University , Ankara , Turkey
| | | | | | | | | | | |
Collapse
|
48
|
Logan AC, Jacka FN. Nutritional psychiatry research: an emerging discipline and its intersection with global urbanization, environmental challenges and the evolutionary mismatch. J Physiol Anthropol 2014; 33:22. [PMID: 25060574 PMCID: PMC4131231 DOI: 10.1186/1880-6805-33-22] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 07/02/2014] [Indexed: 12/14/2022] Open
Abstract
In 21st-century public health, rapid urbanization and mental health disorders are a growing global concern. The relationship between diet, brain function and the risk of mental disorders has been the subject of intense research in recent years. In this review, we examine some of the potential socioeconomic and environmental challenges detracting from the traditional dietary patterns that might otherwise support positive mental health. In the context of urban expansion, climate change, cultural and technological changes and the global industrialization and ultraprocessing of food, findings related to nutrition and mental health are connected to some of the most pressing issues of our time. The research is also of relevance to matters of biophysiological anthropology. We explore some aspects of a potential evolutionary mismatch between our ancestral past (Paleolithic, Neolithic) and the contemporary nutritional environment. Changes related to dietary acid load, advanced glycation end products and microbiota (via dietary choices and cooking practices) may be of relevance to depression, anxiety and other mental disorders. In particular, the results of emerging studies demonstrate the importance of prenatal and early childhood dietary practices within the developmental origins of health and disease concept. There is still much work to be done before these population studies and their mirrored advances in bench research can provide translation to clinical medicine and public health policy. However, the clear message is that in the midst of a looming global epidemic, we ignore nutrition at our peril.
Collapse
Affiliation(s)
- Alan C Logan
- CAMNR, 23679 Calabasas Road Suite 542, Calabasas, CA 91302, USA
| | - Felice N Jacka
- School of Medicine, Deakin University, IMPACT SRC, PO Box 281, Geelong, VIC 3220, Australia
| |
Collapse
|