1
|
Kvidera SK, Mayorga EJ, McCarthy CS, Horst EA, Abeyta MA, Baumgard LH. Effects of supplemental citrulline on thermal and intestinal morphology parameters during heat stress and feed restriction in growing pigs. J Anim Sci 2024; 102:skae120. [PMID: 38812469 PMCID: PMC11143481 DOI: 10.1093/jas/skae120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 05/29/2024] [Indexed: 05/31/2024] Open
Abstract
Study objectives were to characterize the effects of citrulline (CIT) on physiological and intestinal morphology metrics during heat stress (HS) and feed restriction. Forty crossbred gilts (30 ± 2 kg body weight [BW]) were assigned to one of five treatments: (1) thermoneutral (TN) fed ad libitum (AL) with control (CON) supplement (TNAL; n = 8), (2) TN pair-fed (PF) with CON (PF-CON; n = 8), (3) TN PF with CIT (PF-CIT; n = 8), (4) HS AL with CON (HS-CON; n = 8), and (5) HS AL with CIT (HS-CIT; n = 8). During the period (P) 1 (7 d), pigs were in TN conditions (23.6 °C) and fed AL their respective supplemental treatments. During P2 (2.5 d), HS-CON and HS-CIT pigs were fed AL and exposed to cyclical HS (33.6 to 38.3 °C), while TNAL, PF-CON, and PF-CIT remained in TN and were fed either AL or PF to their HS counterparts. Citrulline (0.13 g/kg BW) was orally administered twice daily during P1 and P2. HS increased rectal temperature (Tr), skin temperature (Ts), and respiration rate (RR) relative to TN pigs (0.8 °C, 4.7 °C, and 47 breaths/min, respectively; P < 0.01). However, HS-CIT had decreased RR (7 breaths/min, P = 0.04) and a tendency for decreased Tr (0.1 °C, P = 0.07) relative to HS-CON pigs. During P2, HS pigs had decreased feed intake (22%; P < 0.01) and a tendency for decreased average daily gain (P = 0.08) relative to TNAL pigs, and by experimental design, PF pigs followed this same pattern. Circulating lipopolysaccharide-binding protein tended to be decreased (29%; P = 0.08) in PF relative to TNAL pigs and was increased (41%; P = 0.03) in HS compared to PF pigs. Jejunum villus height was decreased in PF relative to TNAL pigs (15%; P = 0.03); however, CIT supplementation improved this metric during feed restriction (16%; P = 0.10). Jejunum mucosal surface area decreased in PF (16%; P = 0.02) and tended to decrease in HS (11%; P = 0.10) compared to TNAL pigs. Ileum villus height and mucosal surface area decreased in HS compared to TNAL pigs (10 and 14%, respectively; P ≤ 0.04), but both parameters were rescued by CIT supplementation (P ≤ 0.08). Intestinal myeloperoxidase and goblet cell area remained similar among treatments and intestinal segments (P > 0.24). In summary, CIT supplementation slightly improved RR and Tr during HS. Feed restriction and HS differentially affected jejunum and ileum morphology and while CIT ameliorated some of these effects, the benefit appeared dependent on intestinal section and stressor type.
Collapse
Affiliation(s)
- Sara K Kvidera
- Department of Animal Science, Iowa State University, Ames, Iowa 50011, USA
| | - Edith J Mayorga
- Department of Animal Science, Iowa State University, Ames, Iowa 50011, USA
| | - Carrie S McCarthy
- Department of Animal Science, Iowa State University, Ames, Iowa 50011, USA
| | - Erin A Horst
- Department of Animal Science, Iowa State University, Ames, Iowa 50011, USA
| | - Megan A Abeyta
- Department of Animal Science, Iowa State University, Ames, Iowa 50011, USA
| | - Lance H Baumgard
- Department of Animal Science, Iowa State University, Ames, Iowa 50011, USA
| |
Collapse
|
2
|
Zhao L, Ma D, Wang L, Su X, Feng L, Zhu L, Chen Y, Hao Y, Wang X, Feng J. Metabolic changes with the occurrence of atherosclerotic plaques and the effects of statins. Front Immunol 2023; 14:1301051. [PMID: 38143759 PMCID: PMC10739339 DOI: 10.3389/fimmu.2023.1301051] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 11/23/2023] [Indexed: 12/26/2023] Open
Abstract
Atherosclerosis is a common cardiovascular disease caused by the abnormal expression of multiple factors and genes influenced by both environmental and genetic factors. The primary manifestation of atherosclerosis is plaque formation, which occurs when inflammatory cells consume excess lipids, affecting their retention and modification within the arterial intima. This triggers endothelial cell (EC) activation, immune cell infiltration, vascular smooth muscle cell (VSMC) proliferation and migration, foam cell formation, lipid streaks, and fibrous plaque development. These processes can lead to vascular wall sclerosis, lumen stenosis, and thrombosis. Immune cells, ECs, and VSMCs in atherosclerotic plaques undergo significant metabolic changes and inflammatory responses. The interaction of cytokines and chemokines secreted by these cells leads to the onset, progression, and regression of atherosclerosis. The regulation of cell- or cytokine-based immune responses is a novel therapeutic approach for atherosclerosis. Statins are currently the primary pharmacological agents utilised for managing unstable plaques owing to their ability to enhance endothelial function, regulate VSMC proliferation and apoptosis by reducing cholesterol levels, and mitigate the expression and activity of inflammatory cytokines. In this review, we provide an overview of the metabolic changes associated with atherosclerosis, describe the effects of inflammatory responses on atherosclerotic plaques, and discuss the mechanisms through which statins contribute to plaque stabilisation. Additionally, we examine the role of statins in combination with other drugs in the management of atherosclerosis.
Collapse
Affiliation(s)
| | - Di Ma
- Bethune First Hospital, Jilin University, Changchun, China
| | - LiJuan Wang
- Bethune First Hospital, Jilin University, Changchun, China
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Amleh A, Chen HP, Watad L, Abramovich I, Agranovich B, Gottlieb E, Ben-Dov IZ, Nechama M, Volovelsky O. Arginine depletion attenuates renal cystogenesis in tuberous sclerosis complex model. Cell Rep Med 2023:101073. [PMID: 37290438 DOI: 10.1016/j.xcrm.2023.101073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 03/02/2023] [Accepted: 05/15/2023] [Indexed: 06/10/2023]
Abstract
Cystic kidney disease is a leading cause of morbidity in patients with tuberous sclerosis complex (TSC). We characterize the misregulated metabolic pathways using cell lines, a TSC mouse model, and human kidney sections. Our study reveals a substantial perturbation in the arginine biosynthesis pathway in TSC models with overexpression of argininosuccinate synthetase 1 (ASS1). The rise in ASS1 expression is dependent on the mechanistic target of rapamycin complex 1 (mTORC1) activity. Arginine depletion prevents mTORC1 hyperactivation and cell cycle progression and averts cystogenic signaling overexpression of c-Myc and P65. Accordingly, an arginine-depleted diet substantially reduces the TSC cystic load in mice, indicating the potential therapeutic effects of arginine deprivation for the treatment of TSC-associated kidney disease.
Collapse
Affiliation(s)
- Athar Amleh
- Pediatric Nephrology Unit, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel; Wohl Institute for Translational Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Hadass Pri Chen
- Wohl Institute for Translational Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel; Department of Nephrology, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Lana Watad
- Pediatric Nephrology Unit, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel; Wohl Institute for Translational Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Ifat Abramovich
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Bella Agranovich
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Eyal Gottlieb
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Iddo Z Ben-Dov
- Department of Nephrology, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel; Laboratory of Medical Transcriptomics, Department of Nephrology and Hypertension and Internal Medicine B, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | - Morris Nechama
- Pediatric Nephrology Unit, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel; Wohl Institute for Translational Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.
| | - Oded Volovelsky
- Pediatric Nephrology Unit, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel; Wohl Institute for Translational Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.
| |
Collapse
|
4
|
Gahramanova M, Ostapchuk A, Molozhava O, Svyatetska V, Rudyk M, Hurmach Y, Gorbach O, Skivka L. Anti-inflammatory effect of polyherbal composition with hepatoprotective and choleretic properties on LPS-stimulated murine macrophages. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2023; 20:404-412. [PMID: 36017665 DOI: 10.1515/jcim-2020-0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVES A polyherbal formulation with hepatoprotective and choleretic properties combining pharmacological potential of eight medicinal plants was developed in Nargiz Medical center (Republic of Azerbaijan) for the use as herbal tea. To explore the effect of polyherbal composition on the metabolism of LPS-stimulated macrophages in vitro. METHODS The qualitative and quantitative phytochemical analysis was conducted using specific color reactions and gas chromatography-mass spectrometry (GC-MS). Nitric oxide (NO) assay was determined using the Griess reaction. Reactive oxygen species (ROS) generation was measured using ROS-sensitive fluorescence indicator, H2DCFDA, by flow cytometry. Arginase activity was examined by colorimetric method. RESULTS The studied polyherbal formulation exerted anti-inflammatory activity in LPS-stimulated macrophages which was evidenced by dose-dependent decrease of ROS generation and by shift of arginine metabolism to the increase of arginase activity and decrease of NO release. CONCLUSIONS Our findings suggest that the herbal tea reduces macrophage inflammatory activity, that provide an important rationale to utilize it for the attenuation of chronic inflammation typical of hepatobiliary disorders.
Collapse
Affiliation(s)
- Malahat Gahramanova
- Nargiz Medical Center, Baku, Azerbaijan
- ESC "Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | | | - Olga Molozhava
- ESC "Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Vitalina Svyatetska
- ESC "Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Mariia Rudyk
- ESC "Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | | | - Oleksandr Gorbach
- Research Laboratory of Experimental Oncology, National Cancer Institute, Kyiv, Ukraine
| | - Larysa Skivka
- ESC "Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| |
Collapse
|
5
|
Psarras A, Clarke A. A cellular overview of immunometabolism in systemic lupus erythematosus. OXFORD OPEN IMMUNOLOGY 2023; 4:iqad005. [PMID: 37554724 PMCID: PMC10264559 DOI: 10.1093/oxfimm/iqad005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/16/2023] [Accepted: 05/02/2023] [Indexed: 08/10/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disease, characterized by a breakdown of immune tolerance and the development of autoantibodies against nucleic self-antigens. Immunometabolism is a rapidly expanding scientific field investigating the metabolic programming of cells of the immune system. During the normal immune response, extensive reprogramming of cellular metabolism occurs, both to generate adenosine triphosphate and facilitate protein synthesis, and also to manage cellular stress. Major pathways upregulated include glycolysis, oxidative phosphorylation, the tricarboxylic acid cycle and the pentose phosphate pathway, among others. Metabolic reprogramming also occurs to aid resolution of inflammation. Immune cells of both patients with SLE and lupus-prone mice are characterized by metabolic abnormalities resulting in an altered functional and inflammatory state. Recent studies have described how metabolic reprogramming occurs in many cell populations in SLE, particularly CD4+ T cells, e.g. favouring a glycolytic profile by overactivation of the mechanistic target of rapamycin pathway. These advances have led to an increased understanding of the metabolic changes affecting the inflammatory profile of T and B cells, monocytes, dendritic cells and neutrophils, and how they contribute to autoimmunity and SLE pathogenesis. In the current review, we aim to summarize recent advances in the field of immunometabolism involved in SLE and how these could potentially lead to new therapeutic strategies in the future.
Collapse
Affiliation(s)
- Antonios Psarras
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK
| | - Alexander Clarke
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK
| |
Collapse
|
6
|
Sun JX, Xu XH, Jin L. Effects of Metabolism on Macrophage Polarization Under Different Disease Backgrounds. Front Immunol 2022; 13:880286. [PMID: 35911719 PMCID: PMC9331907 DOI: 10.3389/fimmu.2022.880286] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/21/2022] [Indexed: 11/20/2022] Open
Abstract
Macrophages are versatile immune cells associated with various diseases, and their phenotypes and functions change on the basis of the surrounding environments. Reprogramming of metabolism is required for the proper polarization of macrophages. This review will focus on basic metabolic pathways, the effects of key enzymes and specific products, relationships between cellular metabolism and macrophage polarization in different diseases and the potential prospect of therapy targeted key metabolic enzymes. In particular, the types and characteristics of macrophages at the maternal-fetal interface and their effects on a successful conception will be discussed.
Collapse
Affiliation(s)
| | | | - Liping Jin
- *Correspondence: Liping Jin, ; Xiang-Hong Xu,
| |
Collapse
|
7
|
Li Y, Zhao Z, Yu Y, Liang X, Wang S, Wang L, Cui D, Huang M. Plasma Metabolomics Reveals Pathogenesis of Retained Placenta in Dairy Cows. Front Vet Sci 2021; 8:697789. [PMID: 34458353 PMCID: PMC8385782 DOI: 10.3389/fvets.2021.697789] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/25/2021] [Indexed: 12/01/2022] Open
Abstract
The complex etiology and pathogenesis of retained placenta (RP) bring huge challenges for researchers and clinical veterinarians in investigating the pathogenesis and treatment schedule. This study aims to investigate the pathogenesis of RP in dairy cows by plasma metabolomics. As subjects, 10 dairy cows with RP and 10 healthy dairy cows were enrolled according to strict enrollment criteria. Imbalanced antioxidant capacity, reduced Th1/Th2 cytokine ratio, and deregulation of total bilirubin (T-bil), alkaline phosphatase (ALP), and reproductive hormones were shown in dairy cows with RP by detecting biochemical indicators, oxidation and antioxidant markers, and cytokines in serum. Plasma metabolites were detected and analyzed by a liquid chromatography–mass spectrometry (LC–MS) system coupled with multivariate statistical analysis software. A total of 23 potential biomarkers were uncovered in the plasma of dairy cows with RP. The metabolic pathways involved in these potential biomarkers are interconnected, and the conversion, utilization, and excretion of nitrogen were disturbed in dairy cows with RP. Moreover, these potential biomarkers are involved in the regulation of antioxidant capacity, inflammation, and autocrine or paracrine hormone. All of these findings suggest that an imbalance of these potential biomarkers might be responsible for the imbalanced antioxidant capacity, reduced Th1/Th2 cytokine ratio, and deregulation of reproductive hormones in dairy cows with RP. The regulation of metabolic pathways involved in these potential biomarkers represents a promising therapeutic strategy for RP.
Collapse
Affiliation(s)
- Yuqiong Li
- Laboratory Institute of Animal Science, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, China
| | - Zhengwei Zhao
- Laboratory Institute of Animal Science, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, China
| | - Yang Yu
- Laboratory Institute of Animal Science, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, China
| | - Xiaojun Liang
- Laboratory Institute of Animal Science, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, China
| | - Shengyi Wang
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Lei Wang
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Dongan Cui
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Meizhou Huang
- Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
8
|
Xie Q, Ding J, Chen Y. Role of CD8 + T lymphocyte cells: Interplay with stromal cells in tumor microenvironment. Acta Pharm Sin B 2021; 11:1365-1378. [PMID: 34221857 PMCID: PMC8245853 DOI: 10.1016/j.apsb.2021.03.027] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/17/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023] Open
Abstract
CD8+ T lymphocytes are pivotal cells in the host response to antitumor immunity. Tumor-driven microenvironments provide the conditions necessary for regulating infiltrating CD8+ T cells in favor of tumor survival, including weakening CD8+ T cell activation, driving tumor cells to impair immune attack, and recruiting other cells to reprogram the immune milieu. Also in tumor microenvironment, stromal cells exert immunosuppressive skills to avoid CD8+ T cell cytotoxicity. In this review, we explore the universal function and fate decision of infiltrated CD8+ T cells and highlight their antitumor response within various stromal architectures in the process of confronting neoantigen-specific tumor cells. Thus, this review provides a foundation for the development of antitumor therapy based on CD8+ T lymphocyte manipulation.
Collapse
Affiliation(s)
- Qin Xie
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310012, China
- Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jian Ding
- Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Shanghai HaiHe Pharmaceutical Co., Ltd., Shanghai 201203, China
| | - Yi Chen
- Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Zhang W, Liu Z, Xu X. Navigating immune cell immunometabolism after liver transplantation. Crit Rev Oncol Hematol 2021; 160:103227. [PMID: 33675906 DOI: 10.1016/j.critrevonc.2021.103227] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 12/18/2020] [Accepted: 01/16/2021] [Indexed: 11/15/2022] Open
Abstract
Liver transplantation (LT) is the most effective treatment for end-stage liver diseases. The immunometabolism microenvironment undergoes massive changes at the interface of immune functionalities and metabolic regulations after LT. These changes considerably modify post-transplant complications, and immune cells play an influential role in the hepatic immunometabolism microenvironment after LT. Therefore, adequate studies on the complex pathobiology of immune cells are critical to prevent post-transplant complications, and the interplay between cellular metabolism and immune function is evident. Furthermore, immune cells perform their specified functions, such as activation or differentiation, accompanied by alterations in metabolic pathways, such as metabolic reprogramming. This transformation remarkably affects post-transplant complications like rejection. By targeting different metabolic pathways, regulations of metabolism are employed to shape immune responses. These differences of metabolic pathways allow for selective regulation of immune responses to further develop effective therapies that prevent graft loss after LT. This review examines immune cells in the hepatic immunometabolism microenvironment after LT, summarizes possible mechanisms and potential prevention on rejection to acquire immune tolerance, and offers some insight into references for scientific research along with clinical treatment.
Collapse
Affiliation(s)
- Wenhui Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China; Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Zhejiang University Cancer Center, Hangzhou 310058, China
| | - Zhikun Liu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Xiao Xu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China; Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Zhejiang University Cancer Center, Hangzhou 310058, China.
| |
Collapse
|
10
|
Hurmach Y, Rudyk M, Prylutska S, Hurmach V, Prylutskyy YI, Ritter U, Scharff P, Skivka L. C 60 Fullerene Governs Doxorubicin Effect on Metabolic Profile of Rat Microglial Cells In Vitro. Mol Pharm 2020; 17:3622-3632. [PMID: 32673486 DOI: 10.1021/acs.molpharmaceut.0c00691] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background: C60 fullerenes and their derivatives are actively investigated for the use in neuroscience. Applications of these nanoscale materials require the examination of their interaction with different neural cells, especially with microglia, because these cells, like other tissue resident phagocytes, are the earliest and most sensitive responders to nanoparticles. The aim of this study was to investigate the effect of C60 fullerene and its nanocomplex with doxorubicin (Dox) on the metabolic profile of brain-resident phagocytes-microglia-in vitro. Methods: Resting microglial cells from adult male Wistar rats were used in experiments. Potential C60 fullerene targets in microglial cells were studied by computer simulation. Microglia oxidative metabolism and phagocytic activity were examined by flow cytometry. Griess reaction and arginase activity colorimetric assay were used to explore arginine metabolism. Results: C60 fullerene when used alone did not influence microglia oxidative metabolism and phagocytic activity but shifted arginine metabolism toward the decrease of NO generation. Complexation of C60 fullerene with Dox (C60-Dox) potentiated the ability of the latter to stimulate NO generation. Conclusion: The capability of C60 fullerenes used alone to cause anti-inflammatory shift of microglia arginine metabolism makes them a promising agent for the correction of neuroinflammatory processes involved in neurodegeneration. The potentiating action of C60 fullerene on the immunomodulatory effect of Dox allows us to consider the C60 molecule as an attractive vehicle for this antitumor agent.
Collapse
Affiliation(s)
- Yevheniia Hurmach
- Bogomolets National Medical University, 13, T. Shevchenko blvd, 01601 Kyiv, Ukraine
| | - Mariia Rudyk
- Taras Shevchenko National University of Kyiv, Volodymyrska str., 64, 01601 Kyiv, Ukraine
| | - Svitlana Prylutska
- Taras Shevchenko National University of Kyiv, Volodymyrska str., 64, 01601 Kyiv, Ukraine
| | - Vasyl Hurmach
- Taras Shevchenko National University of Kyiv, Volodymyrska str., 64, 01601 Kyiv, Ukraine
| | - Yuriy I Prylutskyy
- Taras Shevchenko National University of Kyiv, Volodymyrska str., 64, 01601 Kyiv, Ukraine
| | - Uwe Ritter
- Institute of Chemistry and Biotechnology, Technical University of Ilmenau, Weimarer Str., 25, 98693 Ilmenau, Germany
| | - Peter Scharff
- Institute of Chemistry and Biotechnology, Technical University of Ilmenau, Weimarer Str., 25, 98693 Ilmenau, Germany
| | - Larysa Skivka
- Taras Shevchenko National University of Kyiv, Volodymyrska str., 64, 01601 Kyiv, Ukraine
| |
Collapse
|
11
|
Characterization of Large Deletion Mutants of Mycobacterium tuberculosis Selected for Isoniazid Resistance. Antimicrob Agents Chemother 2020; 64:AAC.00792-20. [PMID: 32631825 DOI: 10.1128/aac.00792-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/30/2020] [Indexed: 01/10/2023] Open
Abstract
Large genomic deletions (LGDs) (6 to 63 kbp) were observed in isoniazid-resistant Mycobacterium tuberculosis mutants derived from four M. tuberculosis strains. These LGDs had no growth defect in vitro but could be defective in intracellular growth and showed various sensitivities toward oxidative stress despite lacking katG The LGD regions comprise 74 genes, mostly of unknown function, that may be important for M. tuberculosis intracellular growth and protection against oxidative stress.
Collapse
|
12
|
Chowdhury R, van Daalen KR, Franco OH. Cardiometabolic Health: Key in Reducing Adverse COVID-19 Outcomes. Glob Heart 2020; 15:58. [PMID: 32923351 PMCID: PMC7442174 DOI: 10.5334/gh.879] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 02/06/2023] Open
Abstract
Whilst current public health measures focused on good hygiene practices and limiting person-to-person transmission contribute effectively in managing the COVID-19 pandemic, they will not prevent all individuals from becoming infected. Thus, it is of importance to explore what individuals could do to mitigate adverse outcomes. The value of beneficial health behaviours and a healthy lifestyle to improve immune functioning and lower adverse consequences of COVID-19 are increasingly being emphasized. Here we discuss seven key health behaviours and corresponding recommendations that may assist in reducing unfavourable COVID-19 outcomes.
Collapse
Affiliation(s)
- Rajiv Chowdhury
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, Strangeways Research Laboratory, Cambridge, UK
| | - Kim R. van Daalen
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, Strangeways Research Laboratory, Cambridge, UK
| | - Oscar H. Franco
- University of Bern, Institute of Social and Preventive Medicine (ISPM), Bern, CH
| |
Collapse
|
13
|
Souza MFS, Carvalho ES, Maeda NY, Thomaz AM, Zorzanelli L, Castro CR, Pereira J, Lopes AA. Macrophage migration inhibitory factor and chemokine RANTES in young pediatric patients with congenital cardiac communications: Relation to hemodynamic parameters and the presence of Down syndrome. Cytokine 2020; 134:155192. [PMID: 32683105 DOI: 10.1016/j.cyto.2020.155192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/16/2020] [Accepted: 07/04/2020] [Indexed: 01/08/2023]
Abstract
Inflammation and immunity are central in the pathobiology of pulmonary vascular disorders. Preliminary headway has been made in understanding the relationships between inflammatory proteins and clinical parameters in pediatric congenital heart disease. In this study, we analyzed serum levels of macrophage migration inhibitory factor (MIF) and regulated on activation normal T cell expressed and secreted chemokine (RANTES) in 87 patients with unrestrictive congenital cardiac communications and signs of pulmonary hypertension (age 2-36 months) and 50 pediatric controls. They were investigated in relation to clinical and hemodynamic parameters and the presence of Down syndrome. Hemodynamics was assessed by transthoracic Doppler echocardiography and cardiac catheterization. Chemokines were analyzed in serum using a chemiluminescence assay. The highest MIF levels were observed in very young subjects with heightened pulmonary vascular resistance but who presented a positive response to vasodilator challenge with inhaled nitric oxide. In contrast, RANTES levels were higher in patients with pulmonary overcirculation and congestion, correlating nonlinearly with pulmonary blood flow. Levels of both chemokines were higher in subjects with Down syndrome than in nonsyndromic individuals, but the difference was observed only in patients, not in the control group. In patients with Down syndrome, there was a direct relationship between preoperative serum MIF and the level of pulmonary artery pressure observed 6 months after surgical repair of cardiac anomalies. Thus, it was interesting to observe that MIF, which is key in the innate immune response and chemokine RANTES, which is highly expressed in respiratory viral infections were related to clinical and hemodynamic abnormalities associated with pediatric congenital heart disease.
Collapse
Affiliation(s)
| | - Eloisa S Carvalho
- Heart Institute, University of São Paulo School of Medicine, São Paulo, Brazil
| | | | - Ana M Thomaz
- Heart Institute, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Leína Zorzanelli
- Heart Institute, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Claudia R Castro
- Heart Institute, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Juliana Pereira
- Laboratory of Medical Investigation on Pathogenesis and Targeted Therapy in Onco-immuno-hematology (LIM-31), University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
14
|
Zhang CX, Wang HY, Yin L, Mao YY, Zhou W. Immunometabolism in the pathogenesis of systemic lupus erythematosus. J Transl Autoimmun 2020; 3:100046. [PMID: 32743527 PMCID: PMC7388408 DOI: 10.1016/j.jtauto.2020.100046] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/07/2020] [Accepted: 03/08/2020] [Indexed: 12/25/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a typical autoimmune disease characterized by chronic inflammation and pathogenic auto-antibodies. Apart from B cells, dysregulation of other immune cells also plays an essential role in the pathogenesis and development of the disease including CD4+T cells, dendritic cells, macrophages and neutrophils. Since metabolic programs control immune cell fate and function, they are critical checkpoints in an effective immune response and are involved in the etiology of autoimmune disease. In addition, mitochondria and oxidative stress are both involved in cellular metabolism and is also essential in immune response. In this review, apart from the disturbed immune system, we will discuss mitochondrial dysfunction, oxidative stress, abnormal metabolism (including glucose, lipid and amino acid metabolism) of immune cells as well as epigenetic control of metabolism reprogramming to elucidate the underlying pathogenic mechanisms of systemic lupus erythematosus. Mitochondria plays a vital role in cellular metabolism and is involved in immune response. There are alterations in glucose, lipid and amino acid metabolism of various immune cells in SLE patients. Epigenetic status is influenced by the presence of metabolic intermediates and certain autoimmunity-related genes are hypomethylated in CD4+T cells, CD19+ B cells as well as CD14+ monocytes of SLE.
Collapse
Affiliation(s)
- Chen-Xing Zhang
- Department of Nephrology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 200127, Shanghai, China
| | - Hui-Yu Wang
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, 48149, Muenster, Germany
| | - Lei Yin
- Department of Nephrology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 200127, Shanghai, China
| | - You-Ying Mao
- Department of Nephrology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 200127, Shanghai, China
| | - Wei Zhou
- Department of Nephrology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 200127, Shanghai, China
| |
Collapse
|
15
|
L-arginine supplementation reduces mortality and improves disease outcome in mice infected with Trypanosoma cruzi. PLoS Negl Trop Dis 2018; 12:e0006179. [PMID: 29337988 PMCID: PMC5786330 DOI: 10.1371/journal.pntd.0006179] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 01/26/2018] [Accepted: 12/19/2017] [Indexed: 11/19/2022] Open
Abstract
Chagas disease caused by Trypanosoma cruzi is a neglected disease that affects about 7 million people in Latin America, recently emerging on other continents due to migration. As infection in mice is characterized by depletion of plasma L-arginine, the effect on infection outcome was tested in mice with or without L-arginine supplementation and treatment with 1400W, a specific inhibitor of inducible nitric oxide synthase (iNOS). We found that levels of L-arginine and citrulline were reduced in the heart and plasma of infected mice, whereas levels of asymmetric dimethylarginine, an endogenous iNOS inhibitor, were higher. Moreover, L-arginine supplementation decreased parasitemia and heart parasite burden, improving clinical score and survival. Nitric oxide production in heart tissue and plasma was increased by L-arginine supplementation, while pharmacological inhibition of iNOS yielded an increase in parasitemia and worse clinical score. Interestingly, electrocardiograms improved in mice supplemented with L-arginine, suggesting that it modulates infection and heart function and is thus a potential biomarker of pathology. More importantly, L-arginine may be useful for treating T. cruzi infection, either alone or in combination with other antiparasitic drugs. Trypanosoma cruzi is the causative agent of the neglected Chagas disease in humans. During infection in mice, depletion of plasma L-arginine is correlated with mortality. L-arginine is a semi-essential amino acid needed for cell proliferation, and is the substrate of arginase 1 (Arg-1) and inducible nitric oxide synthase (iNOS), which is involved in the immune response against infections. Observed L-arginine depletion is likely caused by increased Arg-1 activity, but the effect on immune response are still unknown. Our hypothesis is that L-arginine depletion may block nitric oxide (NO) production by iNOS, which is needed for parasite killing. To test this hypothesis, mice were supplemented with and without L-arginine, and the differential effect of treatment with an iNOS inhibitor was determined. L-arginine supplement was beneficial to the mice, lowering mortality and improving disease outcome and heart function. The beneficial effect was associated with increased levels of NO, thus low levels of L-arginine and NO are considered candidate markers of pathology. Finally, as L-arginine is a common dietary supplement, it may be useful for treatment of Chagas patients, either alone or in combination with antiparasitic drugs.
Collapse
|
16
|
Muxel SM, Aoki JI, Fernandes JCR, Laranjeira-Silva MF, Zampieri RA, Acuña SM, Müller KE, Vanderlinde RH, Floeter-Winter LM. Arginine and Polyamines Fate in Leishmania Infection. Front Microbiol 2018; 8:2682. [PMID: 29379478 PMCID: PMC5775291 DOI: 10.3389/fmicb.2017.02682] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 12/22/2017] [Indexed: 01/22/2023] Open
Abstract
Leishmania is a protozoan parasite that alternates its life cycle between the sand fly and the mammalian host macrophages, involving several environmental changes. The parasite responds to these changes by promoting a rapid metabolic adaptation through cellular signaling modifications that lead to transcriptional and post-transcriptional gene expression regulation and morphological modifications. Molecular approaches such as gene expression regulation, next-generation sequencing (NGS), microRNA (miRNA) expression profiling, in cell Western blot analyses and enzymatic activity profiling, have been used to characterize the infection of murine BALB/c and C57BL/6 macrophages, as well as the human monocytic cell-lineage THP-1, with Leishmania amazonensis wild type (La-WT) or arginase knockout (La-arg-). These models are being used to elucidate physiological roles of arginine and polyamines pathways and the importance of arginase for the establishment of the infection. In this review, we will describe the main aspects of Leishmania-host interaction, focusing on the arginine and polyamines pathways and pointing to possible targets to be used for prognosis and/or in the control of the infection. The parasite enzymes, arginase and nitric oxide synthase-like, have essential roles in the parasite survival and in the maintenance of infection. On the other hand, in mammalian macrophages, defense mechanisms are activated inducing alterations in the mRNA, miRNA and enzymatic profiles that lead to the control of infection. Furthermore, the genetic background of both parasite and host are also important to define the fate of infection.
Collapse
Affiliation(s)
- Sandra M Muxel
- Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Juliana I Aoki
- Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Juliane C R Fernandes
- Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | | | - Ricardo A Zampieri
- Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Stephanie M Acuña
- Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Karl E Müller
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Rubia H Vanderlinde
- Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Lucile M Floeter-Winter
- Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
17
|
Abstract
The surgical critically ill patient is subject to a variable and complex metabolic response, which has detrimental effects on immunity, wound healing, and preservation of lean body muscle. The concept of nutrition support has evolved into nutrition therapy, whereby the primary objectives are to prevent oxidative cell injury, modulate the immune response, and attenuate the metabolic response. This review outlines the metabolic response to critical illness, describes nutritional risk; reviews the evidence for the role, dose, and timing of enteral and parenteral nutrition, and reviews the evidence for immunonutrition in the surgical intensive care unit.
Collapse
|
18
|
Yamada D, Koppensteiner P, Odagiri S, Eguchi M, Yamaguchi S, Yamada T, Katagiri H, Wada K, Sekiguchi M. Common Hepatic Branch of Vagus Nerve-Dependent Expression of Immediate Early Genes in the Mouse Brain by Intraportal L-Arginine: Comparison with Cholecystokinin-8. Front Neurosci 2017; 11:366. [PMID: 28701913 PMCID: PMC5487424 DOI: 10.3389/fnins.2017.00366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 06/12/2017] [Indexed: 12/22/2022] Open
Abstract
Information from the peripheral organs is thought to be transmitted to the brain by humoral factors and neurons such as afferent vagal or spinal nerves. The common hepatic branch of the vagus (CHBV) is one of the main vagus nerve branches, and consists of heterogeneous neuronal fibers that innervate multiple peripheral organs such as the bile duct, portal vein, paraganglia, and gastroduodenal tract. Although, previous studies suggested that the CHBV has a pivotal role in transmitting information on the status of the liver to the brain, the details of its central projections remain unknown. The purpose of the present study was to investigate the brain regions activated by the CHBV. For this purpose, we injected L-arginine or anorexia-associated peptide cholecystokinin-8 (CCK), which are known to increase CHBV electrical activity, into the portal vein of transgenic Arc-dVenus mice expressing the fluorescent protein Venus under control of the activity-regulated cytoskeleton-associated protein (Arc) promotor. The brain slices were prepared from these mice and the number of Venus positive cells in the slices was counted. After that, c-Fos expression in these slices was analyzed by immunohistochemistry using the avidin-biotin-peroxidase complex method. Intraportal administration of L-arginine increased the number of Venus positive or c-Fos positive cells in the insular cortex. This action of L-arginine was not observed in CHBV-vagotomized Arc-dVenus mice. In contrast, intraportal administration of CCK did not increase the number of c-Fos positive or Venus positive cells in the insular cortex. Intraportal CCK induced c-Fos expression in the dorsomedial hypothalamus, while intraportal L-arginine did not. This action of CCK was abolished by CHBV vagotomy. Intraportal L-arginine reduced, while intraportal CCK increased, the number of c-Fos positive cells in the nucleus tractus solitarii in a CHBV-dependent manner. The present results suggest that the CHBV can activate different brain regions depending on the nature of the peripheral stimulus.
Collapse
Affiliation(s)
- Daisuke Yamada
- Department of Degenerative Neurological Diseases, National Center of Neurology and Psychiatry, National Institute of NeuroscienceTokyo, Japan
| | - Peter Koppensteiner
- Department of Degenerative Neurological Diseases, National Center of Neurology and Psychiatry, National Institute of NeuroscienceTokyo, Japan
| | - Saori Odagiri
- Department of Degenerative Neurological Diseases, National Center of Neurology and Psychiatry, National Institute of NeuroscienceTokyo, Japan
| | - Megumi Eguchi
- Department of Morphological Neuroscience, Graduate School of Medicine, Gifu UniversityGifu, Japan
| | - Shun Yamaguchi
- Department of Morphological Neuroscience, Graduate School of Medicine, Gifu UniversityGifu, Japan.,Center for Highly Advanced Integration of Nano and Life Sciences, Gifu UniversityGifu, Japan.,Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology AgencySaitama, Japan
| | - Tetsuya Yamada
- Department of Metabolism and Diabetes, Graduate School of Medicine, Tohoku UniversityMiyagi, Japan
| | - Hideki Katagiri
- Department of Metabolism and Diabetes, Graduate School of Medicine, Tohoku UniversityMiyagi, Japan.,CREST, Japan Agency for Medical Research and DevelopmentTokyo, Japan
| | - Keiji Wada
- Department of Degenerative Neurological Diseases, National Center of Neurology and Psychiatry, National Institute of NeuroscienceTokyo, Japan.,CREST, Japan Agency for Medical Research and DevelopmentTokyo, Japan
| | - Masayuki Sekiguchi
- Department of Degenerative Neurological Diseases, National Center of Neurology and Psychiatry, National Institute of NeuroscienceTokyo, Japan
| |
Collapse
|
19
|
Mitochondrial dysfunction associated with nitric oxide pathways in glutamate neurotoxicity. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS 2017; 29:92-97. [DOI: 10.1016/j.arteri.2016.04.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 03/30/2016] [Accepted: 04/05/2016] [Indexed: 12/26/2022]
|
20
|
Candida albicans Chitin Increases Arginase-1 Activity in Human Macrophages, with an Impact on Macrophage Antimicrobial Functions. mBio 2017; 8:mBio.01820-16. [PMID: 28119468 PMCID: PMC5263244 DOI: 10.1128/mbio.01820-16] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The opportunistic human fungal pathogen Candida albicans can cause a variety of diseases, ranging from superficial mucosal infections to life-threatening systemic infections. Phagocytic cells of the innate immune response, such as neutrophils and macrophages, are important first-line responders to an infection and generate reactive oxygen and nitrogen species as part of their protective antimicrobial response. During an infection, host cells generate nitric oxide through the enzyme inducible nitric oxide synthase (iNOS) to kill the invading pathogen. Inside the phagocyte, iNOS competes with the enzyme arginase-1 for a common substrate, the amino acid l-arginine. Several pathogenic species, including bacteria and parasitic protozoans, actively modulate the production of nitric oxide by inducing their own arginases or the host’s arginase activity to prevent the conversion of l-arginine to nitric oxide. We report here that C. albicans blocks nitric oxide production in human-monocyte-derived macrophages by induction of host arginase activity. We further determined that purified chitin (a fungal cell wall polysaccharide) and increased chitin exposure at the fungal cell wall surface induces this host arginase activity. Blocking the C. albicans-induced arginase activity with the arginase-specific substrate inhibitor Nω-hydroxy-nor-arginine (nor-NOHA) or the chitinase inhibitor bisdionin F restored nitric oxide production and increased the efficiency of fungal killing. Moreover, we determined that C. albicans influences macrophage polarization from a classically activated phenotype toward an alternatively activated phenotype, thereby reducing antimicrobial functions and mediating fungal survival. Therefore, C. albicans modulates l-arginine metabolism in macrophages during an infection, potentiating its own survival. The availability and metabolism of amino acids are increasingly recognized as crucial regulators of immune functions. In acute infections, the conversion of the “conditionally essential” amino acid l-arginine by the inducible nitric oxide synthase to nitric oxide is a resistance factor that is produced by the host to fight pathogens. Manipulation of these host defense mechanisms by the pathogen can be key to successful host invasion. We show here that the human opportunistic fungal pathogen Candida albicans influences l-arginine availability for nitric oxide production by induction of the substrate-competing host enzyme arginase-1. This led to a reduced production of nitric oxide and, moreover, reduced eradication of the fungus by human macrophages. We demonstrate that blocking of host arginase-1 activity restored nitric oxide production and increased the killing potential of macrophages. These results highlight the therapeutic potential of l-arginine metabolism in fungal diseases.
Collapse
|
21
|
Ginguay A, De Bandt JP, Cynober L. Indications and contraindications for infusing specific amino acids (leucine, glutamine, arginine, citrulline, and taurine) in critical illness. Curr Opin Clin Nutr Metab Care 2016; 19:161-9. [PMID: 26828584 DOI: 10.1097/mco.0000000000000255] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
PURPOSE OF REVIEW The review assesses the utility of supplementing parenteral or enteral nutrition of ICU patients with each of five specific amino acids that display pharmacological properties. Specifying indications implies also stating contraindications.Combined supplementation of amino acids with ω3-fatty acids and/or trace elements (immune-enhancing diets) will not be considered in this review because these mixtures do not allow the role of amino acids in the effect (positive or negative) of the mixture to be isolated, and so cannot show whether or not supplementation of a given amino acid is indicated. RECENT FINDINGS After decades of unbridled use of glutamine (GLN) supplementation in critically ill patients, recent large trials have brought a note of caution, indicating for example that GLN should not be used in patients with multiple organ failure. Yet these large trials do not change the conclusions of recent meta-analyses. Arginine (ARG), as a single dietary supplement, is probably not harmful in critical illness, in particular in a situation of ARG deficiency syndrome with low nitric oxide production. Citrulline supplementation strongly improves microcirculation in animal models with gut injury, but clinical studies are lacking. Taurine has a potent protective effect against ischemic reperfusion injury. SUMMARY Amino acid-based pharmaconutrition has displayed familiar 'big project' stages: enthusiasm (citrulline and taurine), doubt (GLN), hunt for the guilty (ARG), and backpedalling (leucine). Progress in this field is very slow, and sometimes gives way to retreat, as demonstrated by recent large trials on GLN supplementation.
Collapse
Affiliation(s)
- Antonin Ginguay
- aService de Biochimie Générale et Spécialisée, Hôpitaux Cochin et Hôtel-Dieu, Groupement Hospitalier Hôpitaux Universitaires Paris-Centre (GH HUPC), AP-HP bLaboratoire de Biologie de la Nutrition, EA 4466 PRETRAM, Faculté de Pharmacie, Université Paris Descartes, Paris, France
| | | | | |
Collapse
|
22
|
Pânzariu AT, Apotrosoaei M, Vasincu IM, Drăgan M, Constantin S, Buron F, Routier S, Profire L, Tuchilus C. Synthesis and biological evaluation of new 1,3-thiazolidine-4-one derivatives of nitro-l-arginine methyl ester. Chem Cent J 2016; 10:6. [PMID: 26855668 PMCID: PMC4743259 DOI: 10.1186/s13065-016-0151-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 01/21/2016] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND l-Arginine is a semi-essential aminoacid with important role in regulation of physiological processes in humans. It serves as precursor for the synthesis of proteins and is also substrate for different enzymes such as nitric oxide synthase. This amino-acid act as free radical scavenger, inhibits the activity of pro-oxidant enzymes and thus acts as an antioxidant and has also bactericidal effect against a broad spectrum of bacteria. RESULTS New thiazolidine-4-one derivatives of nitro-l-arginine methyl ester (NO2-Arg-OMe) have been synthesized and biologically evaluated in terms of antioxidant and antibacterial/antifungal activity. The structures of the synthesized compounds were confirmed by (1)H, (13)C NMR, Mass and IR spectral data. The antioxidant potential was investigated using in vitro methods based on ferric/phosphomolybdenum reducing antioxidant power and DPPH/ABTS radical scavenging assay. The antibacterial effect was investigated against Gram positive (Staphylococcus aureus ATCC 25923, Sarcina lutea ATCC 9341) and Gram negative (Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853) bacterial strains. The antifungal activity was also investigated against Candida spp. (Candida albicans ATCC 10231, Candida glabrata ATCC MYA 2950, Candida parapsilosis ATCC 22019). CONCLUSIONS Synthesized compounds showed a good antioxidant activity in comparison with the NO2-Arg-OMe. The antimicrobial results support the selectivity of tested compounds especially on P. aeruginosa as bacterial strain and C. parapsilosis as fungal strain. The most proper compounds were 6g (R = 3-OCH3) and 6h (R = 2-OCH3) which showed a high free radical (DPPH, ABTS) scavenging ability and 6j (R = 2-NO2) that was the most active on both bacterial and fungal strains and also it showed the highest ABTS radical scavenging ability.Graphical abstract1: ethyl 3-aminopropionate hydrochloride, 2a-j: aromatic aldehydes, 3: thioglycolic acid, 4a-j: thiazolidine-propionic acid derivatives , 5: Nω-nitro-L-arginine methyl ester hydrochloride, 6a-j: thiazolidine-propionyl-nitro-L-arginine methyl ester derivatives.
Collapse
Affiliation(s)
- Andreea-Teodora Pânzariu
- />Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa”, 16 University Street, 700115 Iasi, Romania
| | - Maria Apotrosoaei
- />Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa”, 16 University Street, 700115 Iasi, Romania
| | - Ioana Mirela Vasincu
- />Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa”, 16 University Street, 700115 Iasi, Romania
| | - Maria Drăgan
- />Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa”, 16 University Street, 700115 Iasi, Romania
| | - Sandra Constantin
- />Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa”, 16 University Street, 700115 Iasi, Romania
| | - Frédéric Buron
- />Institut de Chimie Organique et Analytique - ICOA UMR7311, Pôle de chimie, Rue de Chartres, 45100 Orléans, France
| | - Sylvain Routier
- />Institut de Chimie Organique et Analytique - ICOA UMR7311, Pôle de chimie, Rue de Chartres, 45100 Orléans, France
| | - Lenuta Profire
- />Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa”, 16 University Street, 700115 Iasi, Romania
| | - Cristina Tuchilus
- />Department of Microbiology, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa”, 16 University Street, 700115 Iasi, Romania
| |
Collapse
|