1
|
Chen X, Qian W, Wang X, Yao J, Ma Y, Lian X. Impact of glucose fluctuations on white matter hyperintensity in type 2 diabetic patients. Acta Diabetol 2025:10.1007/s00592-025-02471-w. [PMID: 39998648 DOI: 10.1007/s00592-025-02471-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 02/09/2025] [Indexed: 02/27/2025]
Abstract
OBJECTIVES The mean amplitude of glycemic excursion (MAGE) is widely recognized for representing glucose fluctuation extent, its implications in cerebral small vessel disease remain unclear. This study aims to investigate the correlation between MAGE and white matter hyperintensity (WMH). MATERIALS AND METHODS This cross-sectional study, spanning from March 2021 to October 2022, included 212 type 2 diabetic patients aged between 50 and 80. Participants underwent MRI scans and continuous glucose monitoring. Clinical and laboratory data were compiled for analysis. WMH volumes were evaluated using both the Fazekas visual rating scale and a quantitative approach. Based on Fazekas scores, patients were categorized into low level of WMH (L-WMH, n = 88) and high level of WMH (H-WMH, n = 124) groups. RESULTS MAGE levels were significantly higher in the H-WMH group compared to the L-WMH group. Time below range [TBR< 3.9] emerged as an independent risk factor for elevated MAGE. Both MAGE and TBR< 3.9 independently correlated with an increased WMH burden. Additionally, MAGE was identified as a partial mediator in the relationship between TBR< 3.9 and WMH volumes. CONCLUSION MAGE and hypoglycemia exhibit independent associations with WMH in diabetic patients. Moreover, hypoglycemia may indirectly influence WMH progression through the augmentation of glucose fluctuations.
Collapse
Affiliation(s)
- Xin Chen
- Department of Neurology, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, China
| | - Wanbing Qian
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Xin Wang
- Department of Radiology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jianrong Yao
- Department of Neurology, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, China
| | - Yazhou Ma
- Department of Neurology, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, China
| | - Xuegan Lian
- Department of Neurology, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, China.
| |
Collapse
|
2
|
Krestinin R, Kobyakova M, Baburina Y, Sotnikova L, Krestinina O. Astaxanthin Protects Against H 2O 2- and Doxorubicin-Induced Cardiotoxicity in H9c2 Rat Myocardial Cells. Life (Basel) 2024; 14:1409. [PMID: 39598207 PMCID: PMC11595901 DOI: 10.3390/life14111409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
Astaxanthin (AST) is a carotenoid that has positive effects on various organs and tissues. It also exhibits a cardioprotective action. In this study, the influence of AST on the survival of H9c2 cardiomyocytes under hydrogen peroxide (H2O2)- and doxorubicin (DOX)-induced cardiotoxicity was investigated. Under these conditions, the content of cytosolic Ca2+ was measured, and changes in the area of the mitochondrial mass, as well as in the content of the voltage-dependent anion channel 1 (VDAC1), the autophagy marker LC3A/B, and the pro-apoptotic transcription factor homologous protein (CHOP), were determined. It was found that AST removed the cytotoxic effect of H2O2 and DOX, while cell survival increased, and the mitochondrial mass did not differ from the control. At the same time, a decrease in the content of cytosolic Ca2+ and the restoration of the VDAC1 level to values close to the control were observed. The restoration of the CHOP level suggests a reduction in endoplasmic reticulum (ER) stress in cells. The results allow us to consider AST as a potential agent in the prevention and/or treatment of cardiac diseases associated with oxidative stress.
Collapse
Affiliation(s)
| | | | | | | | - Olga Krestinina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia; (R.K.); (M.K.); (Y.B.); (L.S.)
| |
Collapse
|
3
|
Krestinin RR, Kobyakova MI, Baburina YL, Sotnikova LD, Krestinina OV. Astaxanthin Reduces H 2O 2- and Doxorubicin-Induced Cardiotoxicity in H9c2 Cardiomyocyte Cells. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1823-1833. [PMID: 39523118 DOI: 10.1134/s0006297924100122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 11/16/2024]
Abstract
Cardiovascular diseases are among the most challenging problems in clinical practice. Astaxanthin (AST) is a keto-carotenoid (xanthophyll) mainly of marine origin, which is able to penetrate the cell membrane, localize in mitochondria, and prevent mitochondrial dysfunction. In this study effect of astaxanthin on the death of H9c2 cardiomyocytes caused by the cytotoxic effect of hydrogen peroxide (H2O2) and doxorubicin (DOX) was examined. Using methods of spectrophotometry, spectrofluorimetry, and Western blotting analysis, it was shown that treatment of the cells with AST contributed to the increase in the number of H9c2 cells resistant to H2O2 and doxorubicin, while maintaining the value of their mitochondrial transmembrane potential, reducing intracellular production of reactive oxygen species, and increasing intracellular content of the mitophagy markers PINK1, Parkin, and prohibitin 2. The obtained results suggest that the use of AST could be a highly effective way to prevent and treat cardiovascular diseases.
Collapse
Affiliation(s)
- Roman R Krestinin
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Margarita I Kobyakova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Yuliya L Baburina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Linda D Sotnikova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Olga V Krestinina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| |
Collapse
|
4
|
Jia Y, Long D, Yang Y, Wang Q, Wu Q, Zhang Q. Diabetic peripheral neuropathy and glycemic variability assessed by continuous glucose monitoring: A systematic review and meta-analysis. Diabetes Res Clin Pract 2024; 213:111757. [PMID: 38944250 DOI: 10.1016/j.diabres.2024.111757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/15/2024] [Accepted: 06/21/2024] [Indexed: 07/01/2024]
Abstract
Continuous glucose monitoring (CGM)-derived metrics have been used to accurately assess glycemic variability (GV) to facilitate management of diabetes mellitus, yet their relationship with diabetic peripheral neuropathy (DPN) is not fully understood. We performed a systematic review and meta-analysis to evaluate the association between GV metrics and the risk of developing DPN. Nine studies totaling 3,649 patients with type 1 and type 2 diabetes mellitus were included. A significant association was found between increased GV, as indicated by metrics including standard deviation (SD) with OR and 95% CI of 2.58 (1.45-4.57), mean amplitude of glycemic excursions (MAGE) with OR and 95% CI of 1.90 (1.01-3.58), mean of daily difference (MODD) with OR and 95% CI of 2.88 (2.17-3.81) and the incidence of DPN. Our findings support a link between higher GV and an increased risk of DPN in patients with diabetes. These findings highlight the potential of GV metrics as indicators for the development of DPN, advocating for their inclusion in diabetes management strategies to potentially mitigate neuropathy risk. Longitudinal studies with longer observation periods and larger sample sizes are necessary to validate these associations across diverse populations.
Collapse
Affiliation(s)
- Yifan Jia
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Dan Long
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yunshuang Yang
- Department of Preventive Medicine, Beijing Longfu Hospital, Beijing 100010, China
| | - Qiong Wang
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qunli Wu
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
| | - Qian Zhang
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
| |
Collapse
|
5
|
Ding J, Shi Q, Dong L, Su H, Du Y, Pan T, Zhong X. Association of HbA1c Variability with Vibrating Perception Threshold in Middle-Aged and Elderly Patients with Type 2 Diabetes Mellitus: A Retrospective Cohort Study. Diabetes Metab Syndr Obes 2024; 17:193-202. [PMID: 38225978 PMCID: PMC10788684 DOI: 10.2147/dmso.s443917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/07/2024] [Indexed: 01/17/2024] Open
Abstract
Purpose To investigate the relationship between HbA1c variability and vibrating perception threshold (VPT) in middle-aged and elderly patients with type 2 diabetes mellitus (T2DM). Patients and Methods A total of 367 middle-aged and elderly patients with T2DM were enrolled. All patients were categorized into the control and vibration sensation deficiency group (VSD) based on VPT. Clinical data were collected. The coefficient of variation of glycated hemoglobin A1c (HbA1c-CV) and the mean glycated hemoglobin A1c(HbA1c-Mean) are considered as indexes of HbA1c variability. Multivariate logistic regression analysis, the generalized linear model and ROC curve correlation analysis were used to analyze the correlation of various factors and VPT. Results The multivariate logistic regression analysis revealed that age, systolic blood pressure (SBP), and HbA1c-CV were identified as risk factors for vibration sensation deficiency in middle-aged and elderly patients with T2DM, while estimated glomerular filtration rate (eGFR), triiodothyronine (T3), and alanine aminotransferase (ALT) were considered as protective factors. In the unadjusted generalized linear model, a significant association was observed between HbA1c-CV and VPT values. After adjusting for age, diabetic duration, SBP, homeostatic model assessment for beta-cell function (HOMA-β), ALT, eGFR, T3, 24-hour urinary protein excretion levels, and HbA1c-Mean, HbA1c-CV remained significantly correlated with VPT values on both sides. (left side, B=2.560, 95% CI 1.298~3.823; P<0.001; right side, B=2.608, 95% CI 1.498~3.718, P<0.001). The area under the curve (AUC) for HbA1c-CV and VSD prevalence was 0.723, with a sensitivity of 79.85%, specificity of 56.22%. Conclusion The risk of developing VSD increases proportionally with higher HbA1c-CV levels in middle-aged and elderly patients with T2DM. Reaching and maintaining blood glucose stability is essential to the mitigation of diabetes peripheral neuropathy occurrence.
Collapse
Affiliation(s)
- Jingcheng Ding
- Department of Endocrinology, The Second Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, 230601, People’s Republic of China
| | - Qian Shi
- Department of Endocrinology, The Second Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, 230601, People’s Republic of China
| | - Ling Dong
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, 230601, People’s Republic of China
| | - Hong Su
- Department of Epidemiology and Health Statistics, Anhui Medical University, Hefei City, Anhui Province, 230601, People’s Republic of China
| | - Yijun Du
- Department of Endocrinology, The Second Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, 230601, People’s Republic of China
| | - Tianrong Pan
- Department of Endocrinology, The Second Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, 230601, People’s Republic of China
| | - Xing Zhong
- Department of Endocrinology, The Second Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, 230601, People’s Republic of China
| |
Collapse
|
6
|
An Y, Xu BT, Wan SR, Ma XM, Long Y, Xu Y, Jiang ZZ. The role of oxidative stress in diabetes mellitus-induced vascular endothelial dysfunction. Cardiovasc Diabetol 2023; 22:237. [PMID: 37660030 PMCID: PMC10475205 DOI: 10.1186/s12933-023-01965-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/14/2023] [Indexed: 09/04/2023] Open
Abstract
Diabetes mellitus is a metabolic disease characterized by long-term hyperglycaemia, which leads to microangiopathy and macroangiopathy and ultimately increases the mortality of diabetic patients. Endothelial dysfunction, which has been recognized as a key factor in the pathogenesis of diabetic microangiopathy and macroangiopathy, is characterized by a reduction in NO bioavailability. Oxidative stress, which is the main pathogenic factor in diabetes, is one of the major triggers of endothelial dysfunction through the reduction in NO. In this review, we summarize the four sources of ROS in the diabetic vasculature and the underlying molecular mechanisms by which the pathogenic factors hyperglycaemia, hyperlipidaemia, adipokines and insulin resistance induce oxidative stress in endothelial cells in the context of diabetes. In addition, we discuss oxidative stress-targeted interventions, including hypoglycaemic drugs, antioxidants and lifestyle interventions, and their effects on diabetes-induced endothelial dysfunction. In summary, our review provides comprehensive insight into the roles of oxidative stress in diabetes-induced endothelial dysfunction.
Collapse
Affiliation(s)
- Ying An
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, 646000, China
| | - Bu-Tuo Xu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, 646000, China
| | - Sheng-Rong Wan
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, 646000, China
| | - Xiu-Mei Ma
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, 646000, China
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China
| | - Yang Long
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, 646000, China
| | - Yong Xu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China.
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, 646000, China.
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, 646000, China.
| | - Zong-Zhe Jiang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China.
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, 646000, China.
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, 646000, China.
| |
Collapse
|
7
|
Alugoju P, Krishna Swamy VKD, Anthikapalli NVA, Tencomnao T. Health benefits of astaxanthin against age-related diseases of multiple organs: A comprehensive review. Crit Rev Food Sci Nutr 2022; 63:10709-10774. [PMID: 35708049 DOI: 10.1080/10408398.2022.2084600] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Age-related diseases are associated with increased morbidity in the past few decades and the cost associated with the treatment of these age-related diseases exerts a substantial impact on social and health care expenditure. Anti-aging strategies aim to mitigate, delay and reverse aging-associated diseases, thereby improving quality of life and reducing the burden of age-related pathologies. The natural dietary antioxidant supplementation offers substantial pharmacological and therapeutic effects against various disease conditions. Astaxanthin is one such natural carotenoid with superior antioxidant activity than other carotenoids, as well as well as vitamins C and E, and additionally, it is known to exhibit a plethora of pharmacological effects. The present review summarizes the protective molecular mechanisms of actions of astaxanthin on age-related diseases of multiple organs such as Neurodegenerative diseases [Alzheimer's disease (AD), Parkinson's disease (PD), Stroke, Multiple Sclerosis (MS), Amyotrophic lateral sclerosis (ALS), and Status Epilepticus (SE)], Bone Related Diseases [Osteoarthritis (OA) and Osteoporosis], Cancers [Colon cancer, Prostate cancer, Breast cancer, and Lung Cancer], Cardiovascular disorders [Hypertension, Atherosclerosis and Myocardial infarction (MI)], Diabetes associated complications [Diabetic nephropathy (DN), Diabetic neuropathy, and Diabetic retinopathy (DR)], Eye disorders [Age related macular degeneration (AMD), Dry eye disease (DED), Cataract and Uveitis], Gastric Disorders [Gastritis, Colitis, and Functional dyspepsia], Kidney Disorders [Nephrolithiasis, Renal fibrosis, Renal Ischemia reperfusion (RIR), Acute kidney injury (AKI), and hyperuricemia], Liver Diseases [Nonalcoholic fatty liver disease (NAFLD), Alcoholic Liver Disease (AFLD), Liver fibrosis, and Hepatic Ischemia-Reperfusion (IR) Injury], Pulmonary Disorders [Pulmonary Fibrosis, Acute Lung injury (ALI), and Chronic obstructive pulmonary disease (COPD)], Muscle disorders (skeletal muscle atrophy), Skin diseases [Atopic dermatitis (ATD), Skin Photoaging, and Wound healing]. We have also briefly discussed astaxanthin's protective effects on reproductive health.
Collapse
Affiliation(s)
- Phaniendra Alugoju
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok, Thailand
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - V K D Krishna Swamy
- Department of Biochemistry and Molecular Biology, Pondicherry University (A Central University), Puducherry, India
| | | | - Tewin Tencomnao
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok, Thailand
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
8
|
A Emara A, H Mohamed M, S Nada E, A Hashem N, S Mahmoud E, M Abd-Elmonem A, Y Talab E, N Hameed A, M Dabbash O, Amir S, A Abd-Elgwad M, H Mohamed A, S Othman A, S Mansour M, A Ali A, A Hussein M. Astaxanthin Attenuates D-Galactosamine-Induced Pancreatic Injury by Activating Antioxidant Enzymes and Inhibiting VEGF-C Gene Expression. Pak J Biol Sci 2022; 25:191-200. [PMID: 35234009 DOI: 10.3923/pjbs.2022.191.200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
<b>Background and Objective:</b> Astaxanthin (3,3'-dihydroxy-β-β-carotene-4,4'-dione) is a carotenoid, commonly found in marine environments has been reported to possess versatile biological properties including anti-inflammatory and antioxidant. In this study, the pancreatic protective effect of astaxanthin was investigated in D-Galactosamine-induced pancreas injury in rats. <b>Materials and Methods:</b> In this experimental study, MTT assay was used to determine cytotoxic effects of the Astaxanthin on pnc1 cells. A total of 30 adult albino rats divided into 5 groups, six rats in each. Group I was given an equal amount of distilled water, group II was received 400 mg kg<sup>1</sup> b.wt. D-galactosamine on 15th day, groups III-V were treated with astaxanthin (50 and 100 mg kg<sup>1</sup>) and/or silymarin (50 mg kg<sup>1</sup>) for 14 days + 400 mg kg<sup>1</sup> b.wt. D-galactosamine on the 15th day, respectively. <b>Results:</b> IC<sub>50 </sub>of Astaxanthin against the pnc1 cell line was 92.9 μg mL<sup>1</sup>. The daily oral administration of astaxanthin (50 and 100 mg kg<sup>1</sup>) as well as silymarin (50 mg kg<sup>1</sup>) for 14 days to rats treated with D-galactosamine resulted in a significant improvement in plasma AST, ALT, ALP as well as pancreatic TNF-α, IL-1β, IL-10, NO and VEGF-C gene expression. On the other hand, inducible oral administration of astaxanthin increased the activity of pancreatic GSH, SOD, GPx, GR, CAT and the level of TBARs in D-galactosamine-treated pancreatic of rats. Furthermore, Astaxanthin almost normalized these effects in pancreatic tissue histoarchitecture and MRI examination. <b>Conclusion:</b> The obtained results showed that Astaxanthin protected experimental animals against D-galactosamine-induced pancreatic injury through activation of antioxidant enzymes and IL-10 and inhibition of VEGF-C activation.
Collapse
|
9
|
Zhu Z, Li J, Tong R, Zhang X, Yu B. Astaxanthin suppresses End MT by LOX-1 pathway in ox-LDL-induced HUVECs. EUR J INFLAMM 2022. [DOI: 10.1177/1721727x221105131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Introduction Astaxanthin (ASX) is carotenoid with the highest antioxidant activity in various cell types and reverse atherosclerosis. However, the roles and detailed mechanisms of ASX in atherosclerosis associated endothelial injury remains unclear. Methods In vitro atherosclerosis model was established in HUVECs by incubation with oxidized low-density lipoprotein (ox-LDL). Cell viability and oxidative stress were measured. The mRNA and protein expressions of lectin-like ox-LDL receptor (LOX-1) and other related genes were determined. Results ox-LDL reduced cell viability of HUVECs, and induced oxidative stress, as evidenced by elevated cellular malondialdehyde (MDA) and decreased superoxide dismutase (SOD). Pretreatment with ASX (50, 100, 200, and 400 μM) markedly reversed the reduction in cell viability and an increase in migration of HUVECs induced by ox-LDL (50 μg/mL). ASX attenuated the increase in the endothelial-to-mesenchymal transition (EndMT) process, as evidenced by increased CD31 and decreased α-SMA and vimentin proteins by ASX treatment in HUVECs. Furthermore, ASX attenuated the increase in MDA and decrease in SOD induced by ox-LDL, increased supernatant NO production, attenuated the increase in iNOS and decrease in eNOS in HUVECs with ox-LDL. ASX enhanced mRNA and protein expressions of the lectin-like ox-LDL receptor (LOX-1), which was dependent on ASX’s antioxidant activity. The inhibitory effect of ASX on EndMT could be abolished by overexpression of LOX-1 in HUVECs induced by ox-LDL. Conclusions Our data speculate that ASX prevents ox-LDL-induced endothelial cell injury and EndMT by inducing antioxidant property (SOD and NO) and decreasing LOX-1 expression.
Collapse
Affiliation(s)
- Zhongsheng Zhu
- Department of Cardiology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Jinyu Li
- Department of Cardiology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Rui Tong
- Department of Cardiology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Xiaorong Zhang
- Department of Cardiology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Bo Yu
- Department of Vascular Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| |
Collapse
|
10
|
Kohandel Z, Farkhondeh T, Aschner M, Pourbagher-Shahri AM, Samarghandian S. Anti-inflammatory action of astaxanthin and its use in the treatment of various diseases. Biomed Pharmacother 2021; 145:112179. [PMID: 34736076 DOI: 10.1016/j.biopha.2021.112179] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 09/04/2021] [Accepted: 09/07/2021] [Indexed: 12/21/2022] Open
Abstract
Astaxanthin (AST) is a red pigmented carotenoid with significant antioxidant, anti-inflammatory, anti-proliferative, and anti-apoptotic properties. In this study, we summarize the available literature on the anti-inflammatory efficacy of AST in various chronic and acute disorders, such as neurodegenerative, renal-, hepato-, skin- and eye-related diseases, as well as gastrointestinal disorders. In addition, we elaborated on therapeutic efficacy of AST and the role of several pathways, including PI3K/AKT, Nrf2, NF-κB, ERK1/2, JNK, p38 MAPK, and JAK-2/STAT-3 in mediating its effects. However, additional experimental and clinical studies should be performed to corroborate the anti-inflammatory effects and protective effects of AST against inflammatory diseases in humans. Nevertheless, this review suggests that AST with its demonstrated anti-inflammatory property may be a suitable candidate for drug design with novel technology.
Collapse
Affiliation(s)
- Zeynab Kohandel
- Department of Biology, Faculty of Sciences, University of Tehran, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran; Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
11
|
Gowd V, Xiao J, Wang M, Chen F, Cheng KW. Multi-Mechanistic Antidiabetic Potential of Astaxanthin: An Update on Preclinical and Clinical Evidence. Mol Nutr Food Res 2021; 65:e2100252. [PMID: 34636497 DOI: 10.1002/mnfr.202100252] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 09/09/2021] [Indexed: 02/05/2023]
Abstract
Diabetes mellitus (DM) is a cluster of physiological dysfunctions typified by persistent hyperglycemia. Diet plays a paramount role in human health, and regular consumption of a fruit- and vegetable-rich diet can delay or prevent DM and its associated complications. The promising effect of fruits and vegetables could be partly attributed to their antioxidant constituents, including carotenoids. Carotenoids are natural antioxidants that occur in many vegetables, fruits, microalgae, and other natural sources. Astaxanthin is a xanthophyll carotenoid predominantly present in microalgae and some red-colored marine organisms. It is currently marketed as a health supplement and is well-known for its antioxidant capacity. Accumulating evidence indicates that astaxanthin exerts its beneficial effects against DM by acting on various molecular targets and signaling pathways in multiple organs/tissues. Astaxanthin can lower blood glucose levels by preserving β-cell function, improving insulin resistance (IR), and increasing insulin secretion. This manuscript summarizes the connection between glucose homeostasis, oxidative stress, and DM. This is followed by a review of recent studies on astaxanthin's pharmacological effects against IR, microvascular (diabetic retinopathy, diabetic nephropathy, and neurological damage), and macrovascular DM complications emphasizing the cellular and molecular mechanisms involved. A few lines of clinical evidence supporting its antidiabetic potential are also highlighted.
Collapse
Affiliation(s)
- Vemana Gowd
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jianbo Xiao
- Institute of Innovative Development of Food Industry, Shenzhen University, Shenzhen, 518060, China.,Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, 17 University of Vigo, Vigo, Spain
| | - Mingfu Wang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China.,School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Feng Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China.,Institute of Food Safety and Nutrition, Jiangsu University, Zhenjiang, 212013, China
| | - Ka-Wing Cheng
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China.,Institute of Food Safety and Nutrition, Jiangsu University, Zhenjiang, 212013, China
| |
Collapse
|
12
|
Wu W, Chai Q, Zhang Z. Glucose fluctuation accelerates cardiac injury of diabetic mice via sodium-dependent glucose cotransporter 1 (SGLT1). Arch Biochem Biophys 2021; 709:108968. [PMID: 34153296 DOI: 10.1016/j.abb.2021.108968] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 06/06/2021] [Accepted: 06/08/2021] [Indexed: 11/30/2022]
Abstract
Recent studies have shown that blood glucose fluctuation is associated with complications of diabetes mellitus (DM). SGLT1 (sodium-dependent glucose cotransporter 1), is highly expressed in pathological conditions of heart, and is expressed in cardiomyocytes induced by high glucose. Herein, we constructed a diabetic mouse model with glucose fluctuation to investigate whether SGLT1 is involved in glucose fluctuation-induced cardiac injury. Echocardiography, histology examination, and TUNEL staining were performed to evaluate cardiac dysfunction and damage. To assess glucose fluctuation-induced oxidative stress, reactive oxygen species (ROS), malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH) levels were measured. To assess mitochondrial dysfunction, mitochondrial membrane potential (MMP), ATP content, mitochondrial respiratory chain complex activity, and expression of mitochondrial fusion and fission proteins were determined. The results indicated that diabetic mice with glucose fluctuation showed elevation of cardiac SGLT1 expression, left ventricular dysfunction, oxidative stress and mitochondrial dysfunction. Knockdown of SGLT1 could abrogate the effects of glucose fluctuation on cardiac injury. Thus, our study highlighted that SGLT1 plays an important role in glucose fluctuation induced cardiac injury through oxidative stress and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Weihua Wu
- Department of General Medicine, The Third Affiliated Hospital of Shenzhen University, Shenzhen 518001, People's Republic of China.
| | - Qian Chai
- Department of General Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, People's Republic of China
| | - Ziying Zhang
- Department of General Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, People's Republic of China
| |
Collapse
|
13
|
Suzuki T, Yamashita S, Hattori K, Matsuda N, Hattori Y. Impact of a long-term high-glucose environment on pro-inflammatory responses in macrophages stimulated with lipopolysaccharide. Naunyn Schmiedebergs Arch Pharmacol 2021; 394:2129-2139. [PMID: 34402957 DOI: 10.1007/s00210-021-02137-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 08/04/2021] [Indexed: 11/27/2022]
Abstract
Cumulative evidence has established that macrophages orchestrate inflammatory responses that crucially contribute to the pathogenesis of insulin-resistant obesity and type 2 diabetes. In the present study, we examined the impact of hyperglycemia on macrophage pro-inflammatory responses under an inflammatory stimulus. To conduct this study, RAW264.7 macrophages were cultured under normal- (5.5 mM) or high-glucose (22 or 40 mM) conditions for 7 days and stimulated with lipopolysaccharide (LPS). Long-term exposure to high glucose significantly enhanced the increase in the production of pro-inflammatory cytokines, including tumor necrosis-α, interleukin (IL)-1β, and IL-6, when macrophages were stimulated with LPS. The LPS-induced increases in inducible nitric oxide (NO) synthase (iNOS) expression and NO production were also significantly enhanced by long-term exposure of macrophages to high glucose. Treatment with N-acetyl-L-cysteine, a widely used thiol-containing antioxidant, blunted the enhancement of the LPS-induced upregulation of pro-inflammatory cytokine production, iNOS expression, and NO production in macrophages. When intracellular reactive oxygen species (ROS) were visualized using the fluorescence dye 5-(and-6)-chloromethyl-2',7'-dichlorofluorescein diacetate, acetyl ester, a significant increase in ROS generation was found after stimulation of macrophages with LPS, and this increased ROS generation was exacerbated under long-term high-glucose conditions. LPS-induced translocation of phosphorylated nuclear factor-κB (NF-κB), a transcription factor regulating many pro-inflammatory genes, into the nucleus was promoted under long-term high-glucose conditions. Altogether, the present results indicate that a long-term high-glucose environment can enhance activation of NF-κB in LPS-stimulated macrophages possibly due to excessive ROS production, thereby leading to increased macrophage pro-inflammatory responses.
Collapse
Affiliation(s)
- Tokiko Suzuki
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
- J-Pharma Co., Ltd., Yokohama, 230-0046, Japan
| | - Shigeyuki Yamashita
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
- Department of Thoracic and Cardiovascular Surgery, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
| | - Kohshi Hattori
- Department of Anesthesiology and Pain Relief Center, The University of Tokyo Hospital, Tokyo, 113-8655, Japan
| | - Naoyuki Matsuda
- Department of Emergency and Critical Care Medicine, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Yuichi Hattori
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan.
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, Tobetsu, 061-0293, Japan.
| |
Collapse
|
14
|
Klimontov VV, Saik OV, Korbut AI. Glucose Variability: How Does It Work? Int J Mol Sci 2021; 22:ijms22157783. [PMID: 34360550 PMCID: PMC8346105 DOI: 10.3390/ijms22157783] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/16/2021] [Accepted: 07/17/2021] [Indexed: 02/07/2023] Open
Abstract
A growing body of evidence points to the role of glucose variability (GV) in the development of the microvascular and macrovascular complications of diabetes. In this review, we summarize data on GV-induced biochemical, cellular and molecular events involved in the pathogenesis of diabetic complications. Current data indicate that the deteriorating effect of GV on target organs can be realized through oxidative stress, glycation, chronic low-grade inflammation, endothelial dysfunction, platelet activation, impaired angiogenesis and renal fibrosis. The effects of GV on oxidative stress, inflammation, endothelial dysfunction and hypercoagulability could be aggravated by hypoglycemia, associated with high GV. Oscillating hyperglycemia contributes to beta cell dysfunction, which leads to a further increase in GV and completes the vicious circle. In cells, the GV-induced cytotoxic effect includes mitochondrial dysfunction, endoplasmic reticulum stress and disturbances in autophagic flux, which are accompanied by reduced viability, activation of apoptosis and abnormalities in cell proliferation. These effects are realized through the up- and down-regulation of a large number of genes and the activity of signaling pathways such as PI3K/Akt, NF-κB, MAPK (ERK), JNK and TGF-β/Smad. Epigenetic modifications mediate the postponed effects of glucose fluctuations. The multiple deteriorative effects of GV provide further support for considering it as a therapeutic target in diabetes.
Collapse
Affiliation(s)
- Vadim V. Klimontov
- Laboratory of Endocrinology, Research Institute of Clinical and Experimental Lymphology—Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (RICEL—Branch of IC&G SB RAS), 630060 Novosibirsk, Russia; (O.V.S.); (A.I.K.)
- Correspondence:
| | - Olga V. Saik
- Laboratory of Endocrinology, Research Institute of Clinical and Experimental Lymphology—Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (RICEL—Branch of IC&G SB RAS), 630060 Novosibirsk, Russia; (O.V.S.); (A.I.K.)
- Laboratory of Computer Proteomics, Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (IC&G SB RAS), 630090 Novosibirsk, Russia
| | - Anton I. Korbut
- Laboratory of Endocrinology, Research Institute of Clinical and Experimental Lymphology—Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (RICEL—Branch of IC&G SB RAS), 630060 Novosibirsk, Russia; (O.V.S.); (A.I.K.)
| |
Collapse
|
15
|
Kanwugu ON, Glukhareva TV, Danilova IG, Kovaleva EG. Natural antioxidants in diabetes treatment and management: prospects of astaxanthin. Crit Rev Food Sci Nutr 2021; 62:5005-5028. [PMID: 33591215 DOI: 10.1080/10408398.2021.1881434] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Diabetes remains a major health emergency in our entire world, affecting hundreds of millions of people worldwide. In conjunction with its much-dreaded complications (e.g., nephropathy, neuropathy, retinopathy, cardiovascular diseases, etc.) it substantially reduces the quality of life, increases mortality as well as economic burden among patients. Over the years, oxidative stress and inflammation have been highlighted as key players in the development and progression of diabetes and its associated complications. Much research has been devoted, as such, to the role of antioxidants in diabetes. Astaxanthin is a powerful antioxidant found mostly in marine organisms. Over the past years, several studies have demonstrated that astaxanthin could be useful in the treatment and management of diabetes. It has been shown to protect β-cells, neurons as well as several organs including the eyes, kidney, liver, etc. against oxidative injuries experienced during diabetes. Furthermore, it improves glucose and lipid metabolism along with cardiovascular health. Its beneficial effects are exerted through multiple actions on cellular functions. Considering these and the fact that foods and natural products with biological and pharmacological activities are of much interest in the 21st-century food and drug industry, astaxanthin has a bright prospect in the management of diabetes and its complications.
Collapse
Affiliation(s)
- Osman N Kanwugu
- Institute of Chemical Engineering, Ural Federal University, Ekaterinburg, Russia
| | - Tatiana V Glukhareva
- Institute of Chemical Engineering, Ural Federal University, Ekaterinburg, Russia.,Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| | - Irina G Danilova
- Institute of Immunology and Physiology, Ural Branch of the Russia Academy of Science, Yekaterinburg, Russia
| | - Elena G Kovaleva
- Institute of Chemical Engineering, Ural Federal University, Ekaterinburg, Russia
| |
Collapse
|
16
|
Teodoro JS, Machado IF, Castela AC, Rolo AP, Palmeira CM. Mitochondria as a target for safety and toxicity evaluation of nutraceuticals. NUTRACEUTICALS 2021:463-483. [DOI: 10.1016/b978-0-12-821038-3.00030-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
17
|
Pereira CPM, Souza ACR, Vasconcelos AR, Prado PS, Name JJ. Antioxidant and anti‑inflammatory mechanisms of action of astaxanthin in cardiovascular diseases (Review). Int J Mol Med 2021; 47:37-48. [PMID: 33155666 PMCID: PMC7723678 DOI: 10.3892/ijmm.2020.4783] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/12/2020] [Indexed: 11/06/2022] Open
Abstract
Cardiovascular diseases are the most common cause of mortality worldwide. Oxidative stress and inflammation are pathophysiological processes involved in the development of cardiovascular diseases; thus, anti‑inflammatory and antioxidant agents that modulate redox balance have become research targets so as to evaluate their molecular mechanisms of action and therapeutic properties. Astaxanthin, a carotenoid of the xanthophyll group, has potent antioxidant properties due to its molecular structure and its arrangement in the plasma membrane, factors that favor the neutralization of reactive oxygen and nitrogen species. This carotenoid also has prominent anti‑inflammatory activity, possibly interrelated with its antioxidant effect, and is also involved in the modulation of lipid and glucose metabolism. Considering the potential beneficial effects of astaxanthin on cardiovascular health evidenced by preclinical and clinical studies, the aim of the present review was to describe the molecular and cellular mechanisms associated with the antioxidant and anti‑inflammatory properties of this carotenoid in cardiovascular diseases, particularly atherosclerosis. The beneficial properties and safety profile of astaxanthin indicate that this compound may be used for preventing progression or as an adjuvant in the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
| | | | - Andrea Rodrigues Vasconcelos
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | | | - José João Name
- Kilyos Assessoria, Cursos e Palestras, São Paulo, SP 01311-100
| |
Collapse
|
18
|
Chai Q, Miao J, Liu M, Zhang Z, Meng Z, Wu W. Knockdown of SGLT1 prevents the apoptosis of cardiomyocytes induced by glucose fluctuation via relieving oxidative stress and mitochondrial dysfunction. Biochem Cell Biol 2020; 99:356-363. [PMID: 33259229 DOI: 10.1139/bcb-2020-0491] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Fluctuations in the concentration of glucose in the blood is more detrimental than a constantly high level of glucose with respect to the development of cardiovascular complications associated with diabetes mellitus (DM). Sodium glucose cotransporter 2 (SGLT2) inhibitors have been developed as antidiabetic drugs with cardiovascular benefits; however, whether inhibition of SGLT1 protects the diabetic heart remains to be determined. This study investigated the role of SGLT1 in rat H9c2 cardiomyocytes subjected to fluctuating levels of glucose and the underlying mechanisms. The results indicated that knockdown of SGLT1 restored cell proliferation and suppressed the cytotoxicity associated with fluctuating glucose levels. Oxidative stress was induced in H9c2 cells subjected to fluctuating glucose levels, but these changes were effectively reversed by knockdown of SGLT1, as manifested by reductions in the level of intracellular reactive oxygen species and increased antioxidant activity. Further study demonstrated that knockdown of SGLT1 attenuated the mitochondrial dysfunction in H9c2 cells exposed to fluctuating glucose levels, by restoring mitochondrial membrane potential and promoting mitochondrial fusion. In addition, knockdown of SGLT1 downregulated the expression of Bax, upregulated the expression of Bcl-2, and reduced the activation of caspase-3 in H9c2 cells subjected to fluctuating levels of glucose. Collectively, our results show that knockdown of SGLT1 ameliorates the apoptosis of cardiomyocyte caused by fluctuating glucose levels via regulating oxidative stress and combatting mitochondrial dysfunction.
Collapse
Affiliation(s)
- Qian Chai
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, P.R. China
| | - Jiajing Miao
- Department of Endocrinology, Affiliated Hospital of Jilin Medical College, Jilin 132013, P.R. China
| | - Meili Liu
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, P.R. China
| | - Ziying Zhang
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, P.R. China
| | - Ziang Meng
- Department of Urology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin 150001, P.R. China
| | - Weihua Wu
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, P.R. China
| |
Collapse
|
19
|
High-Fat Diet Induced Hedgehog Signaling Modifications during Chronic Kidney Damage. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8073926. [PMID: 33294454 PMCID: PMC7718043 DOI: 10.1155/2020/8073926] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/13/2020] [Accepted: 11/07/2020] [Indexed: 12/25/2022]
Abstract
Excessive consumption of dietary fats leads to the deposition of unnecessary metabolites and multiple organ damage. Lipids, important key regulators of Hedgehog signaling, are involved in triggering fibrotic chronic kidney disease. The present study encompasses the assessment of renal morphofunctional modifications and alteration of lipid metabolism influencing the changes in gene expression of hedgehog signaling pathway genes. Fifteen male Rattus norvegicus of 200 ± 25 grams weight were equally divided into three groups: control (standard rat chow), D-1 (unsaturated high-fat diet) and D-2 (saturated high-fat diet). Animals were provided with respective diets and were followed for 16 weeks. Both HFD-fed groups did not show overall body weight gain as compared to the control. While significant downregulation of hedgehog pathway genes was found in fatty diet groups. In comparison with the control group, Shh, Gli1, Gli2, and Gli3 were downregulated after the consumption of both unsaturated and saturated fatty diets. Ihh and Smo exhibit a similar downregulation in the D-1 group, but an upregulation was detected in the D-2 group. D-2 group also had an increased serum urea concentration as compared to the control (P = 0.0023). Furthermore, renal histopathology revealed tubular necrosis, glomerular edema, glomerular shrinkage, and hypocellularity. Collagen deposition in both HFD groups marks the extent of fibrosis summary figure. Extravagant intake of dietary fats impaired normal kidney functioning and morphofunctionally anomalous kidney triggers on Hh signaling in adult rats. These anomalies can be linked to an escalated risk of chronic kidney disease in adults strongly recommending the reduced uptake of fatty diets to prevent impaired metabolism and renal lipotoxicity.
Collapse
|
20
|
Guo QY, Lu B, Guo ZH, Feng ZQ, Yuan YY, Jin XG, Zang P, Gu P, Shao JQ. Continuous glucose monitoring defined time-in-range is associated with sudomotor dysfunction in type 2 diabetes. World J Diabetes 2020; 11:489-500. [PMID: 33269061 PMCID: PMC7672791 DOI: 10.4239/wjd.v11.i11.489] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/21/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Time in range (TIR), as a novel metric for glycemic control, has robust relevance with diabetic complications. Diabetic peripheral neuropathy (DPN) is characterized by sudomotor dysfunction.
AIM To explore the relationship between TIR obtained from continuous glucose monitoring (CGM) and sudomotor function detected by SUDOSCAN in subjects with type 2 diabetes.
METHODS The research enrolled 466 inpatients with type 2 diabetes. All subjects underwent 3-d CGM and SUDOSCAN. SUDOSCAN was assessed with electrochemical skin conductance in hands (HESC) and feet (FESC). Average feet ESC < 60 µS was defined as sudomotor dysfunction (+), otherwise it was sudomotor dysfunction (-). TIR refers to the percentage of time when blood glucose is between 3.9-10 mmol/L during 1 d period.
RESULTS Among the enrolled subjects, 135 (28.97%) presented with sudomotor dysfunction. Patients with sudomotor dysfunction (+) showed a decreased level of TIR (P < 0.001). Compared to the lowest tertile of TIR, the middle and the highest tertiles of TIR was associated with an obviously lower prevalence of sudomotor dysfunction (20.51% and 21.94% vs 44.52%) (P < 0.001). In addition, with the increase of TIR, HESC and FESC increased (P < 0.001). Regression analysis demonstrated that TIR was inversely and independently linked with the prevalence of sudomotor dysfunction after adjusting for confounding values (odds ratio = 0.979, 95%CI: 0.971-0.987, P < 0.001).
CONCLUSION The tight glycemic control assessed by TIR is of vitally protective value for sudomotor dysfunction in type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Qing-Yu Guo
- Department of Endocrinology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, Jiangsu Province, China
| | - Bin Lu
- Department of Endocrinology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, Jiangsu Province, China
| | - Zhan-Hong Guo
- Department of Endocrinology, Jinling Hospital, Nanjing Medical University, Nanjing 210002, Jiangsu Province, China
| | - Zhou-Qin Feng
- Department of Endocrinology, Jinling Hospital, Southern Medical University, Nanjing 210002, Jiangsu Province, China
| | - Yan-Yu Yuan
- Department of Endocrinology, Jinling Hospital, Nanjing Medical University, Nanjing 210002, Jiangsu Province, China
| | - Xu-Guang Jin
- Department of Endocrinology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, Jiangsu Province, China
| | - Pu Zang
- Department of Endocrinology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, Jiangsu Province, China
| | - Ping Gu
- Department of Endocrinology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, Jiangsu Province, China
| | - Jia-Qing Shao
- Department of Endocrinology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, Jiangsu Province, China
| |
Collapse
|
21
|
Purohith R, Nagalingaswamy NP, Shivananju NS. Dietary Carotenoids in Managing Metabolic Syndrome and Role of PPARs in the Process. CURRENT NUTRITION & FOOD SCIENCE 2020. [DOI: 10.2174/1573401315666190619111557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Metabolic syndrome is a collective term that denotes disorder in metabolism, symptoms of
which include hyperglycemia, hyperlipidemia, hypertension, and endothelial dysfunction. Diet is a
major predisposing factor in the development of metabolic syndrome, and dietary intervention is
necessary for both prevention and management. The bioactive constituents of food play a key role in
this process. Micronutrients such as vitamins, carotenoids, amino acids, flavonoids, minerals, and
aromatic pigment molecules found in fruits, vegetables, spices, and condiments are known to have
beneficial effects in preventing and managing metabolic syndrome. There exists a well-established
relationship between oxidative stress and major pathological conditions such as inflammation, metabolic
syndrome, and cancer. Consequently, dietary antioxidants are implicated in the remediation of
these complications. The mechanism of action and targets of dietary antioxidants as well as their
effects on related pathways are being extensively studied and elucidated in recent times. This review
attempts a comprehensive study of the role of dietary carotenoids in alleviating metabolic syndromewith
an emphasis on molecular mechanism-in the light of recent advances.
Collapse
Affiliation(s)
- Raghunandan Purohith
- Department of Biotechnology, Sri Jayachamarajendra Engineering College, JSS Science and Technology University, JSS Technical Institutions Campus, Mysuru 570005, India
| | - Nagendra P.M. Nagalingaswamy
- Department of Biotechnology, Sri Jayachamarajendra Engineering College, JSS Science and Technology University, JSS Technical Institutions Campus, Mysuru 570005, India
| | - Nanjunda S. Shivananju
- Department of Biotechnology, Sri Jayachamarajendra Engineering College, JSS Science and Technology University, JSS Technical Institutions Campus, Mysuru 570005, India
| |
Collapse
|
22
|
Wang J, Toan S, Zhou H. Mitochondrial quality control in cardiac microvascular ischemia-reperfusion injury: New insights into the mechanisms and therapeutic potentials. Pharmacol Res 2020; 156:104771. [PMID: 32234339 DOI: 10.1016/j.phrs.2020.104771] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 03/13/2020] [Accepted: 03/19/2020] [Indexed: 12/17/2022]
Abstract
Thrombolytic therapy and revascularization strategies create a complete recanalization of the occluded epicardial coronary artery in patients with myocardial infarction (MI). However, about 35 % of patients still experience an impaired myocardial reperfusion, which is termed a no-reflow phenomenon mainly caused by cardiac microvascular ischemia-reperfusion (I/R) injury. Mitochondria are essential for microvascular endothelial cells' survival, both because of their roles as metabolic energy producers and as regulators of programmed cell death. Mitochondrial structure and function are regulated by a mitochondrial quality control (MQC) system, a series of processes including mitochondrial biogenesis, mitochondrial dynamics/mitophagy, mitochondrial proteostasis, and mitochondria-mediated cell death. Our review discusses the MQC mechanisms and how they are linked to cardiac microvascular I/R injury. Additionally, we will summarize the molecular basis that results in defective MQC mechanisms and present potential therapeutic interventions for improving MQC in cardiac microvascular I/R injury.
Collapse
Affiliation(s)
- Jin Wang
- Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing 100853, China
| | - Sam Toan
- Department of Chemical Engineering, University of Minnesota-Duluth, Duluth, MN 55812, USA
| | - Hao Zhou
- Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing 100853, China.
| |
Collapse
|
23
|
Astaxanthin Prevents Mitochondrial Impairment Induced by Isoproterenol in Isolated Rat Heart Mitochondria. Antioxidants (Basel) 2020; 9:antiox9030262. [PMID: 32210012 PMCID: PMC7139515 DOI: 10.3390/antiox9030262] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 12/14/2022] Open
Abstract
Mitochondria are considered to be a power station of the cell. It is known that they play a major role in both normal and pathological heart function. Alterations in mitochondrial bioenergetics are one of the main causes of the origin and progression of heart failure since they have an inhibitory effect on the activity of respiratory complexes in the inner mitochondrial membrane. Astaxanthin (AST) is a xanthophyll carotenoid of mainly marine origin. It has both lipophilic and hydrophilic properties and may prevent mitochondrial dysfunction by permeating the cell membrane and co-localizing within mitochondria. The carotenoid suppresses oxidative stress-induced mitochondrial dysfunction and the development of diseases. In the present study, it was found that the preliminary oral administration of AST upregulated the activity of respiratory chain complexes and ATP synthase and the level of their main subunits, thereby improving the respiration of rat heart mitochondria (RHM) in the heart injured by isoproterenol (ISO). AST decreased the level of cyclophilin D (CyP-D) and increased the level of adenine nucleotide translocase (ANT) in this condition. It was concluded that AST could be considered as a potential mitochondrial-targeted agent in the therapy of pathological conditions associated with oxidative damage and mitochondrial dysfunction. AST, as a dietary supplement, has a potential in the prevention of cardiovascular diseases.
Collapse
|
24
|
Mohaghegh Shalmani L, Valian N, Pournajaf S, Abbaszadeh F, Dargahi L, Jorjani M. Combination therapy with astaxanthin and epidermal neural crest stem cells improves motor impairments and activates mitochondrial biogenesis in a rat model of spinal cord injury. Mitochondrion 2020; 52:125-134. [PMID: 32151747 DOI: 10.1016/j.mito.2020.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/23/2020] [Accepted: 03/04/2020] [Indexed: 12/26/2022]
Abstract
Spinal cord injury (SCI), a multifactorial disease, can lead to irreversible motor and sensory disabilities. Cell therapy in combination with pharmacological agents can be a promising approach to attenuate SCI damages. Epidermal neural crest stem cells (EPI-NCSCs) extracted from bulge hair follicle in adults are attractive candidates due to the possibility of autologous transplantation. This study evaluated the effect of EPI-NCSCs combined with astaxanthin (Ast), a potent antioxidant, on damages induced by SCI. Male rats were treated with Ast (0.2 mM) and EPI-NCSCs (106/10 μl PBS) alone and combined together after SCI contusion. Motor function was assessed by Basso, Beattie and Bresnahan (BBB) test on days 1, 3, 7, 14, 21, 28, 35 and 42 post-injury. Motor neurons number and myelin level were evaluated on days 14 and 42 using Nissl and Luxol Fast Blue staining. The gene expression of mitochondrial biogenesis involved factors (PGC1α, NRF1 and TFAM) was measured by qPCR. All treatments improved motor function, with the highest BBB score in Ast + Cell compared to Ast and Cell. Decreased motor neurons number and myelin level following SCI, were increased by Ast, Cell and Ast + Cell, but combination therapy significantly had a better effect. We observed reduction in PGC1α, NRF1, and TFAM expression in spinal tissue after SCI, and treatment with Cell and Ast + Cell significantly restored NRF1 and TFAM mRNA levels. These results suggested that Ast in combination with EPI-NCSCs has better effects on behavioral dysfunction, motor neuron loss and demyelination after SCI. These protective effects may be attributed to mitochondrial biogenesis activation.
Collapse
Affiliation(s)
- Leila Mohaghegh Shalmani
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Valian
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Safura Pournajaf
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Abbaszadeh
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Dargahi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Masoumeh Jorjani
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
25
|
Nan B, Gu X, Huang X. The Role of the Reactive Oxygen Species Scavenger Agent, Astaxanthin, in the Protection of Cisplatin-Treated Patients Against Hearing Loss. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:4291-4303. [PMID: 31908415 PMCID: PMC6927222 DOI: 10.2147/dddt.s212313] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 12/02/2019] [Indexed: 12/18/2022]
Abstract
Emerging evidence of significant hearing loss occurring shortly after cisplatin administration in cancer patients has stimulated research into the causes and treatment of this side effect. Although the aetiology of cisplatin-induced hearing loss (CIHL) remains unknown, an increasing body of research suggests that it is associated with excessive generation of intracellular reactive oxygen species (ROS) in the cochlea. Astaxanthin, a xanthophyll carotenoid, has powerful anti-oxidant, anti-inflammatory, and anti-apoptotic properties based on its unique cell membrane function, diverse biological activities, and ability to permeate the blood-brain barrier. In this review, we summarize the role of ROS in CIHL and the effect of astaxanthin on inhibiting ROS production. We focus on investigating the mechanism of action of astaxanthin in suppressing excessive production of ROS.
Collapse
Affiliation(s)
- Benyu Nan
- Department of Otorhinolaryngology-Head and Neck Surgery, Wenzhou Medical University, Affiliated Hospital 2, Wenzhou 325000, People's Republic of China.,Department of Otorhinolaryngology-Head and Neck Surgery, Zhongshan Hospital, Fudan University, Shanghai 200030, People's Republic of China
| | - Xi Gu
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350000, People's Republic of China
| | - Xinsheng Huang
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongshan Hospital, Fudan University, Shanghai 200030, People's Republic of China
| |
Collapse
|
26
|
Kim SH, Kim H. Astaxanthin Modulation of Signaling Pathways That Regulate Autophagy. Mar Drugs 2019; 17:md17100546. [PMID: 31547619 PMCID: PMC6836186 DOI: 10.3390/md17100546] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 09/18/2019] [Accepted: 09/20/2019] [Indexed: 01/07/2023] Open
Abstract
Autophagy is a lysosomal pathway that degrades and recycles unused or dysfunctional cell components as well as toxic cytosolic materials. Basal autophagy favors cell survival. However, the aberrant regulation of autophagy can promote pathological conditions. The autophagy pathway is regulated by several cell-stress and cell-survival signaling pathways that can be targeted for the purpose of disease control. In experimental models of disease, the carotenoid astaxanthin has been shown to modulate autophagy by regulating signaling pathways, including the AMP-activated protein kinase (AMPK), cellular homolog of murine thymoma virus akt8 oncogene (Akt), and mitogen-activated protein kinase (MAPK), such as c-Jun N-terminal kinase (JNK) and p38. Astaxanthin is a promising therapeutic agent for the treatment of a wide variety of diseases by regulating autophagy.
Collapse
Affiliation(s)
- Suhn Hyung Kim
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul 03722, Korea.
| | - Hyeyoung Kim
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul 03722, Korea.
| |
Collapse
|
27
|
Zhang ZY, Miao LF, Qian LL, Wang N, Qi MM, Zhang YM, Dang SP, Wu Y, Wang RX. Molecular Mechanisms of Glucose Fluctuations on Diabetic Complications. Front Endocrinol (Lausanne) 2019; 10:640. [PMID: 31620092 PMCID: PMC6759481 DOI: 10.3389/fendo.2019.00640] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 09/03/2019] [Indexed: 12/11/2022] Open
Abstract
Accumulating evidence indicates the occurrence and development of diabetic complications relates to not only constant high plasma glucose, but also glucose fluctuations which affect various kinds of molecular mechanisms in various target cells and tissues. In this review, we detail reactive oxygen species and their potentially damaging effects upon glucose fluctuations and resultant downstream regulation of protein signaling pathways, including protein kinase C, protein kinase B, nuclear factor-κB, and the mitogen-activated protein kinase signaling pathway. A deeper understanding of glucose-fluctuation-related molecular mechanisms in the development of diabetic complications may enable more potential target therapies in future.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ru-Xing Wang
- Department of Cardiology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| |
Collapse
|
28
|
Ying C, Wang S, Lu Y, Chen L, Mao Y, Ling H, Cheng X, Zhou X. Glucose fluctuation increased mesangial cell apoptosis related to AKT signal pathway. Arch Med Sci 2019; 15:730-737. [PMID: 31110541 PMCID: PMC6524177 DOI: 10.5114/aoms.2019.84739] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 02/22/2017] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION Blood glucose fluctuation is an important factor for the development of diabetic complications. Glucose fluctuation aggravated the renal injury in diabetic nephropathy. In the present study, our aim was to investigate the effects of blood glucose fluctuation on the glomerular mesangal cells and its related mechanism. MATERIAL AND METHODS Mesangial cells were divided into four groups: the normal glucose group (NG) cells were incubated in normal glucose conditions (5.6 mmol/l); the high glucose group (HG) cells were treated with 25 mmol/l; the glucose fluctuation (FG) group received 5.6 mmol/l and 25 mmol/l glucose repeated 3 times; the mannitol group (MG) received 5.6 mmol/l glucose plus 24.4 mmol/l mannitol as a control. Cell viability and apoptosis were detected, reactive oxygen species (ROS) level, superoxide dismutase (SOD) activity and malonaldehyde (MDA) levels were measured. Phosphorylated ser/thr protein kinase (P-AKT, phosphor-Ser473), phosphorylated glycogen synthase kinase-3β (P-GSK-3β, phosphor-Ser9) and cleaved cysteinyl aspartate-specific proteinase-3 (cleaved caspase-3) levels were assessed using western blot. RESULTS Data suggested that mesangial cells in the FG group show higher cell viability in 12 h, and lower cell viability from 48 h. The FG group showed cell apoptosis accompanied by a significant MDA level increase and SOD activity decrease in 48 h. More importantly, glucose fluctuation could aggravate oxidative stress in glomerular mesangial cells. Furthermore, the P-AKT level was lower, and increased P-GSK-3β and cleaved caspase-3 levels were higher in the FG group than in the HG group. CONCLUSIONS Glucose fluctuation aggravates mesangial cell apoptosis, which may be partly induced by activating oxidative stress and inhibiting the AKT signaling pathway.
Collapse
Affiliation(s)
- Changjiang Ying
- Department of Endocrinology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Endocrinology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Shanshan Wang
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yan Lu
- Department of Endocrinology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Lei Chen
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yizhen Mao
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hongwei Ling
- Department of Endocrinology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xingbo Cheng
- Department of Endocrinology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiaoyan Zhou
- Laboratory of Morphology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
29
|
Wang XJ, Tian DC, Wang FW, Zhang MH, Fan CD, Chen W, Wang MH, Fu XY, Ma JK. Astaxanthin inhibits homocysteine‑induced endothelial cell dysfunction via the regulation of the reactive oxygen species‑dependent VEGF‑VEGFR2‑FAK signaling pathway. Mol Med Rep 2019; 19:4753-4760. [PMID: 31059085 PMCID: PMC6522805 DOI: 10.3892/mmr.2019.10162] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 04/10/2019] [Indexed: 12/11/2022] Open
Abstract
Increased plasma levels of homocysteine (Hcy) can cause severe damage to vascular endothelial cells. Hcy‑induced endothelial cell dysfunction contributes to the occurrence and development of human cerebrovascular diseases (CVDs). Our previous studies have revealed that astaxanthin (ATX) exhibits novel cardioprotective activity against Hcy‑induced cardiotoxicity in vitro and in vivo. However, the protective effect and mechanism of ATX against Hcy‑induced endothelial cell dysfunction requires further investigation. In the present study, treatment of human umbilical vascular endothelial cells (HUVECs) with Hcy inhibited the migration, invasive and tube formation potentials of these cells in a dose‑dependent manner. Hcy treatment further induced a time‑dependent increase in the production of reactive oxygen species (ROS), and downregulated the expression of vascular endothelial growth factor (VEGF), phosphorylated (p)‑Tyr‑VEGF receptor 2 (VEGFR2) and p‑Tyr397‑focal adhesion kinase (FAK). On the contrary, ATX pre‑treatment significantly inhibited Hcy‑induced cytotoxicity and increased HUVEC migration, invasion and tube formation following Hcy treatment. The mechanism of action may involve the effective inhibition of Hcy‑induced ROS generation and the recovery of FAK phosphorylation. Collectively, our findings suggested that ATX could inhibit Hcy‑induced endothelial dysfunction by suppressing Hcy‑induced activation of the VEGF‑VEGFR2‑FAK signaling axis, which indicates the novel therapeutic potential of ATX in treating Hcy‑mediated CVD.
Collapse
Affiliation(s)
- Xian-Jun Wang
- Department of Neurology, People's Hospital of Linyi Affiliated to Qingdao University, Linyi, Shandong 276000, P.R. China
| | - Da-Chen Tian
- Department of Neurology, People's Hospital of Linyi Affiliated to Qingdao University, Linyi, Shandong 276000, P.R. China
| | - Feng-Wen Wang
- Department of Biochemistry, Basic Medical School, Taishan Medical University, Taian, Shandong 271000, P.R. China
| | - Meng-Hao Zhang
- Department of Biochemistry, Basic Medical School, Taishan Medical University, Taian, Shandong 271000, P.R. China
| | - Cun-Dong Fan
- Department of Biochemistry, Basic Medical School, Taishan Medical University, Taian, Shandong 271000, P.R. China
| | - Wang Chen
- Department of Neurology, People's Hospital of Linyi Affiliated to Qingdao University, Linyi, Shandong 276000, P.R. China
| | - Mei-Hong Wang
- Department of Neurology, People's Hospital of Linyi Affiliated to Qingdao University, Linyi, Shandong 276000, P.R. China
| | - Xiao-Yan Fu
- Department of Biochemistry, Basic Medical School, Taishan Medical University, Taian, Shandong 271000, P.R. China
| | - Jin-Kui Ma
- Department of Food Science and Technology, School of Food and Pharmaceutical Engineering, Zhaoqing University, Zhaoqing, Guangdong 526061, P.R. China
| |
Collapse
|
30
|
Palikhe S, Ohashi W, Sakamoto T, Hattori K, Kawakami M, Andoh T, Yamazaki H, Hattori Y. Regulatory Role of GRK2 in the TLR Signaling-Mediated iNOS Induction Pathway in Microglial Cells. Front Pharmacol 2019; 10:59. [PMID: 30778300 PMCID: PMC6369205 DOI: 10.3389/fphar.2019.00059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 01/18/2019] [Indexed: 12/31/2022] Open
Abstract
G protein-coupled receptor kinase 2 (GRK2) is a ubiquitous member of the GRK family that restrains cellular activation by G protein-coupled receptor (GPCR) phosphorylation leading to receptor desensitization and internalization, but has been identified to regulate a variety of signaling molecules, among which may be associated with inflammation. In this study, we attempted to establish the regulatory role of GRK2 in the Toll-like receptor (TLR) signaling pathway for inducible nitric oxide synthase (iNOS) expression in microglial cells. When mouse MG6 cells were stimulated with the TLR4 ligands lipopolysaccharide (LPS) and paclitaxel, we found that interferon regulatory factor 1 (IRF1) protein expression and activation was upregulated, transcription of interferon-β (IFN-β) was accelerated, induction/activation of STAT1 and activation of STAT3 were promoted, and subsequently iNOS expression was upregulated. The ablation of GRK2 by small interfering RNAs (siRNAs) not only eliminated TLR4-mediated upregulation of IRF1 protein expression and nuclear translocation but also suppressed the activation of the STAT pathway, resulting in negating the iNOS upregulation. The TLR3-mediated changes in IRF1 and STAT1/3, leading to iNOS induction, were also abrogated by siRNA knockdown of GRK2. Furthermore, transfection of GRK2 siRNA blocked the exogenous IFN-β supplementation-induced increases in phosphorylation of STAT1 as well as STAT3 and abrogated the augmentation of iNOS expression in the presence of exogenous IFN-β. Taken together, our results show that GRK2 regulates the activation of IRF1 as well as the activation of the STAT pathway, leading to upregulated transcription of iNOS in activated microglial cells. Modulation of the TLR signaling pathway via GRK2 in microglia may be a novel therapeutic target for treatment of neuroinflammatory disorders.
Collapse
Affiliation(s)
- Sailesh Palikhe
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Wakana Ohashi
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Takuya Sakamoto
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Kohshi Hattori
- Department of Anesthesiology and Pain Relief Center, The University of Tokyo Hospital, Tokyo, Japan
| | - Masaaki Kawakami
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Tsugunobu Andoh
- Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Hiromi Yamazaki
- Faculty of Nursing Science, Tsuruga Nursing University, Tsuruga, Japan
| | - Yuichi Hattori
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
- The Research Institute of Cancer Prevention, Health Sciences University of Hokkaido, Tobetsu, Japan
| |
Collapse
|
31
|
Kim SH, Kim H. Inhibitory Effect of Astaxanthin on Oxidative Stress-Induced Mitochondrial Dysfunction-A Mini-Review. Nutrients 2018; 10:nu10091137. [PMID: 30134611 PMCID: PMC6165470 DOI: 10.3390/nu10091137] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/13/2018] [Accepted: 08/18/2018] [Indexed: 12/22/2022] Open
Abstract
Oxidative stress is a major contributor to the pathogenesis of various human diseases as well as to the aging process. Mitochondria, as the center of cellular metabolism and major regulators of redox balance, play a critical role in disease development and progression. Mitochondrial dysfunction involving structural and metabolic impairment is prominent in oxidative stress-related diseases. Increased oxidative stress can damage mitochondria, and subsequent mitochondrial dysfunction generates excesses of mitochondrial reactive oxygen species that cause cellular damage. Mitochondrial dysfunction also activates the mitochondrial apoptotic pathway, resulting in cellular death. Astaxanthin, a red-colored xanthophyll carotenoid, exerts an anti-oxidative and anti-inflammatory effect on various cell lines. In this manner astaxanthin maintains mitochondrial integrity under various pathological conditions. In this review, the inhibitory effects of astaxanthin on oxidative stress-induced mitochondrial dysfunction and related disease development are discussed.
Collapse
Affiliation(s)
- Suhn Hyung Kim
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul 03722, Korea.
| | - Hyeyoung Kim
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul 03722, Korea.
| |
Collapse
|
32
|
Sakamoto T, Ohashi W, Tomita K, Hattori K, Matsuda N, Hattori Y. Anti-inflammatory properties of cilostazol: Its interruption of DNA binding activity of NF-κB from the Toll-like receptor signaling pathways. Int Immunopharmacol 2018; 62:120-131. [PMID: 30005227 DOI: 10.1016/j.intimp.2018.06.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/11/2018] [Accepted: 06/13/2018] [Indexed: 02/07/2023]
Abstract
Cilostazol, a selective inhibitor of phosphodiesterase type III with anti-platelet, anti-mitogenic, and vasodilating properties, is widely used to treat ischemic symptoms of peripheral vascular disease. Ample evidence has suggested that cilostazol also exhibits an anti-inflammatory effect, but its anti-inflammatory mechanism is not fully understood. Here, we showed that cilostazol specifically inhibited expression of cytokines, which are induced by nuclear factor-κB (NF-κB) activation, in RAW264.7 macrophage cells stimulated with different Toll-like receptor (TLR) ligands. Cilostazol was found to significantly reduce TLR-4 and TLR-3 ligands-stimulated NF-κB transcriptional activity, which was quantified by luciferase reporter assays. However, cilostazol was without effect on IκBα degradation and NF-κB p65 phosphorylation and nuclear translocation after challenge with the TLR-4 ligand lipopolysaccharide (LPS). Cilostazol did not also prevent the LPS-induced increase in phosphorylated levels of the mitogen-activated protein kinase (MAPK) family. On the other hand, using chromatin immunoprecipitation assays, we demonstrated that cilostazol reduced the LPS-induced transcriptional activities of interleukin-6 and tumor necrosis factor-α by preventing the recruitment of NF-κB p65 to these gene promoters. When cilostazol was given to mice by oral gavage daily for 7 days, LPS-induced aberrant pro-inflammatory cytokine production and end-organ tissue injury were significantly reduced. The results of this study suggest that cilostazol is capable of directly interrupting DNA binding activity of NF-κB proteins from the TLR signaling pathways. The therapy to specifically intervene in this pathway may be potentially beneficial for the prevention of different inflammatory disorders.
Collapse
Affiliation(s)
- Takuya Sakamoto
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Wakana Ohashi
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Kengo Tomita
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Kohshi Hattori
- Department of Anesthesiology and Pain Relief Center, The University of Tokyo Hospital, Tokyo, Japan
| | - Naoyuki Matsuda
- Department of Emergency and Critical Care Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuichi Hattori
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan.
| |
Collapse
|
33
|
Niu T, Xuan R, Jiang L, Wu W, Zhen Z, Song Y, Hong L, Zheng K, Zhang J, Xu Q, Tan Y, Yan X, Chen H. Astaxanthin Induces the Nrf2/HO-1 Antioxidant Pathway in Human Umbilical Vein Endothelial Cells by Generating Trace Amounts of ROS. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:1551-1559. [PMID: 29381356 DOI: 10.1021/acs.jafc.7b05493] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Astaxanthin is a powerful antioxidant that possesses potent protective effects against various human diseases and physiological disorders. However, the mechanisms underlying its antioxidant functions in cells are not fully understood. In the present study, the effects of astaxanthin on reactive oxygen species (ROS) production and antioxidant enzyme activity, as well as mitogen-activated protein kinases (MAPKs), phosphatidylinositol 3-kinase (PI3K)/Akt, and the nuclear factor erythroid 2-related factor 2 (Nrf-2)/heme oxygenase-1 (HO-1) pathways in human umbilical vein endothelial cells (HUVECs), were examined. It was shown that astaxanthin (0.1, 1, and 10 μM) induced ROS production by 9.35%, 14.8%, and 18.06% compared to control, respectively, in HUVECs. In addition, astaxanthin increased the mRNA levels of phase II enzymes HO-1 and also promoted GSH-Px enzyme activity. Furthermore, we observed ERK phosphorylation, nuclear translocation of Nrf-2, and activation of antioxidant response element-driven luciferase activity upon astaxanthin treatment. Knockdown of Nrf-2 by small interfering RNA inhibited HO-1 mRNA expression by 60%, indicating that the Nrf-2/ARE signaling pathway is activated by astaxanthin. Our results suggest that astaxanthin activates the Nrf-2/HO-1 antioxidant pathway by generating small amounts of ROS.
Collapse
Affiliation(s)
- Tingting Niu
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University , Ningbo, Zhejiang 315211, China
- Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture School of Marine Sciences, Ningbo University , Ningbo, Zhejiang 315211, China
| | - Rongrong Xuan
- Department of Gynecology and Obstetrics, The Affiliated Hospital of Medical College of Ningbo University , Ningbo, Zhejiang 315211, China
| | - Ligang Jiang
- PROYA Companies , Hangzhou, Zhejiang 310012, China
| | - Wei Wu
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University , Ningbo, Zhejiang 315211, China
| | - Zhanghe Zhen
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University , Ningbo, Zhejiang 315211, China
| | - Yuling Song
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University , Ningbo, Zhejiang 315211, China
| | - Lili Hong
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University , Ningbo, Zhejiang 315211, China
| | - Kaiqin Zheng
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University , Ningbo, Zhejiang 315211, China
| | - Jiaxing Zhang
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University , Ningbo, Zhejiang 315211, China
| | - Qingshan Xu
- Chenghai Baoer Bio-Ltd , Lijiang, Yunnan 674202, China
| | - Yinghong Tan
- Chenghai Baoer Bio-Ltd , Lijiang, Yunnan 674202, China
| | - Xiaojun Yan
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University , Ningbo, Zhejiang 315211, China
| | - Haimin Chen
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University , Ningbo, Zhejiang 315211, China
| |
Collapse
|
34
|
Fan CD, Sun JY, Fu XT, Hou YJ, Li Y, Yang MF, Fu XY, Sun BL. Astaxanthin Attenuates Homocysteine-Induced Cardiotoxicity in Vitro and in Vivo by Inhibiting Mitochondrial Dysfunction and Oxidative Damage. Front Physiol 2017; 8:1041. [PMID: 29311972 PMCID: PMC5733103 DOI: 10.3389/fphys.2017.01041] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/29/2017] [Indexed: 12/13/2022] Open
Abstract
Homocysteine (Hcy) as an independent risk factor contributes to the occurrence and development of human cardiovascular diseases (CVD). Induction of oxidative stress and apoptosis was commonly accepted as the major mechanism in Hcy-induced cardiotoxicity. Astaxanthin (ATX) as one of the most powerful antioxidants exhibits novel cardioprotective potential against Hcy-induced endothelial dysfunction. However, the protective effect and mechanism of ATX against Hcy-induced cardiotoxicity in cardiomyocytes have not been elucidated yet. Herein, H9c2 rat cardiomyocytes and Hcy-injured animal model were employed in the present study. The MTT, flow cytometry analysis (FCM), TUNEL-DAPI and western blotting results all demonstrated that ATX significantly alleviated Hcy-induced cytotoxicity in H9c2 cells through inhibition of mitochondria-mediated apoptosis. The JC-1 and Mito-tracker staining both revealed that ATX pre-treatment blocked Hcy-induced mitochondrial dysfunction by regulating Bcl-2 family expression. Moreover, DCFH-DA and Mito-SOX staining showed that ATX effectively attenuated Hcy-induced oxidative damage via scavenging intracellular reactive oxygen species (ROS). Importantly, the ELISA and immunohistochemical results indicated that Hcy-induced cardiotoxicity in vivo was also significantly inhibited by ATX through inhibition of oxidative damage and apoptosis, and improvement of the angiogenesis. Taken together, our results demonstrated that ATX suppressed Hcy-induced cardiotoxicity in vitro and in vivo by inhibiting mitochondrial dysfunction and oxidative damage. Our findings validated the strategy of using ATX may be a highly efficient way to combat Hcy-mediated human CVD.
Collapse
Affiliation(s)
- Cun-Dong Fan
- Key Lab of Cerebral Microcirculation in Universities of Shandong, Taishan Medical University, Taian, China
| | - Jing-Yi Sun
- Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, South Korea
| | - Xiao-Ting Fu
- Key Lab of Cerebral Microcirculation in Universities of Shandong, Taishan Medical University, Taian, China
| | - Ya-Jun Hou
- Key Lab of Cerebral Microcirculation in Universities of Shandong, Taishan Medical University, Taian, China
| | - Yuan Li
- Key Lab of Cerebral Microcirculation in Universities of Shandong, Taishan Medical University, Taian, China
| | - Ming-Feng Yang
- Key Lab of Cerebral Microcirculation in Universities of Shandong, Taishan Medical University, Taian, China
| | - Xiao-Yan Fu
- Key Lab of Cerebral Microcirculation in Universities of Shandong, Taishan Medical University, Taian, China
| | - Bao-Liang Sun
- Key Lab of Cerebral Microcirculation in Universities of Shandong, Taishan Medical University, Taian, China.,Department of Neurology, Affiliated Hospital of Taishan Medical University, Taian, China
| |
Collapse
|
35
|
Wu N, Shen H, Wang Y, He B, Zhang Y, Bai Y, Du R, Du Q, Han P. Role of the PKCβII/JNK signaling pathway in acute glucose fluctuation-induced apoptosis of rat vascular endothelial cells. Acta Diabetol 2017; 54:727-736. [PMID: 28478520 DOI: 10.1007/s00592-017-0999-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 04/24/2017] [Indexed: 12/19/2022]
Abstract
AIMS The purpose of this study was to investigate the mechanism of vascular endothelial cell apoptosis induced by acute blood glucose fluctuation. METHODS Thirty rats were assigned to three groups: normal saline (SAL group), constant high glucose (CHG group) and acute blood glucose fluctuation (AFG) group. Other forty rats were assigned to SAL group, AFG group, LY group (PKCβ inhibitor LY333531 was injected intragastrically to the rats who were under acute blood glucose fluctuation) and SP group (JNK inhibitor SP600125 was injected intraperitoneally to the rats who were under acute blood glucose fluctuation). Oxidative stress and inflammatory cytokines were detected. TUNEL was performed to detect apoptosis. Pro-caspase-3, caspase-3 p17, JNK, PKC-βII and insulin signaling-related protein expression were tested by Western blotting. RESULTS After administration of LY333531, AFG-induced membrane translocation of PKCβII protein was inhibited, but SP600125 failed to affect AFG-induced PKCβII membrane translocation. After administration of LY333531, the AFG-induced increase in JNK activity was significantly compromised. LY333531 inhibited AFG-induced oxidative stress. However, SP600125 only slightly inhibited AFG-induced oxidative stress reaction (P > 0.05). Both LY333531 and SP600125 can reverse AFG-induced endothelial cell apoptosis increase, inflammatory cytokines levels rise and insulin signaling impairment. CONCLUSIONS It is necessary to actively control blood glucose and avoid significant glucose fluctuation. PKCβII/JNK may serve as a target, and inhibitors of PKCβII/JNK may be used to help prevent cardiovascular diseases in patients with poor glucose control or significant glucose fluctuation.
Collapse
Affiliation(s)
- Na Wu
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Haitao Shen
- Department of Emergency, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Yanjun Wang
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Bing He
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Yongyan Zhang
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Yu Bai
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Runyu Du
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Qiang Du
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Ping Han
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
36
|
Li D, Tong W, Liu D, Zou Y, Zhang C, Xu W. Astaxanthin mitigates cobalt cytotoxicity in the MG-63 cells by modulating the oxidative stress. BMC Pharmacol Toxicol 2017; 18:58. [PMID: 28738843 PMCID: PMC5525213 DOI: 10.1186/s40360-017-0166-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 07/14/2017] [Indexed: 12/11/2022] Open
Abstract
Background With the re-popularity of metal-on-metal (MoM) bearing in recent years, the cobalt toxicity has been a cause for concern in the total hip replacement surgery by both physicians and patients. Methods MG-63 cell line was cultured in vitro and incubated with cobalt (II) chloride (CoCl2) and/or with astaxanthin (ASX) for 24 h. MTT assay was conducted to evaluate the cell viability after cobalt exposure and ASX treatment. Fluorescence-activated cell sorting (FACS) analysis was performed to examine the reactive oxygen species (ROS) level. Quantitative real-time polymerase chain reaction (PCR) was adopted to determine the mRNA levels of related targets. And western blot analysis was used to examine the protein expressions. One-way ANOVA with posttest Newman-Keuls multiple comparisons was adopted to analysis all the obtained data. Results In the current study, ASX exhibited significant protective effect against the Co(II)-induced cytotoxicity in MG-63 cell line. We also found that ASX protected the cells against Co-induced apoptosis by regulating the expression of Bcl-2 family proteins. Besides, heme oxygenase 1 (HO-1) could be activated by Co exposure; ASX treatment significantly inhibited HO-1 activation, suppressing the oxidative stress induced by Co exposure. Moreover, c-Jun N-terminal Kinase (JNK) phosphorylation was shown to participate in the signaling pathway of the protective effect of ASX. However, knockdown of JNK expression by siRNA transfection or JNK inhibitor SP600125 treatment did not affect the protective effect of ASX against cobalt cytotoxicity in MG-63 cells. Conclusions ASX mitigated cobalt cytotoxicity in the MG-63 cells by modulating the oxidative stress. And ASX could be a promising therapy against cobalt toxicity in the hip articulation surgery. Electronic supplementary material The online version of this article (doi:10.1186/s40360-017-0166-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dahe Li
- Department of Orthopedics, The Eighty-eighth Military Hospital, Tai'an, 271000, China
| | - Wenwen Tong
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Denghui Liu
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Yuming Zou
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Chen Zhang
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Weidong Xu
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
37
|
Visioli F, Artaria C. Astaxanthin in cardiovascular health and disease: mechanisms of action, therapeutic merits, and knowledge gaps. Food Funct 2017; 8:39-63. [DOI: 10.1039/c6fo01721e] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cardiovascular disease is the main contributor to morbidity and mortality worldwide.
Collapse
Affiliation(s)
- Francesco Visioli
- Laboratory of Functional Foods
- Madrid Institute for Advanced Studies (IMDEA) – 6 Food
- CEI UAM+CSIC
- Madrid
- Spain
| | | |
Collapse
|