1
|
Xu X, Xu X, Cao J, Ruan L. MicroRNA-1258 suppresses oxidative stress and inflammation in septic acute lung injury through the Pknox1-regulated TGF-β1/SMAD3 cascade. Clinics (Sao Paulo) 2024; 79:100354. [PMID: 38640751 PMCID: PMC11031721 DOI: 10.1016/j.clinsp.2024.100354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/16/2024] [Accepted: 03/18/2024] [Indexed: 04/21/2024] Open
Abstract
AIM The study was to clarify the mechanism of miR-1258 targeting Prep1 (pKnox1) to control Transforming Growth Factor β1 (TGF-β1)/SMAD3 pathway in septic Acute Lung Injury (ALI)-induced oxidative stress and inflammation. METHODS BEAS-2B cells and C57BL/6 mice were used to make in vitro and in vivo septic ALI models, respectively. miR-1258 expression was checked by RT-qPCR. After transfection in the in vitro experimental model, inflammation, oxidative stress, viability, and apoptosis were observed through ELISA, MTT, and flow cytometry. RESULTS In the in vivo model after miR-1258 overexpression treatment, inflammation, oxidative stress, and lung injury were further investigated. The targeting relationship between miR-1258 and Pknox1 was tested. Low miR-1258 was expressed in septic ALI patients, LPS-treated BEAS-2B cells, and mice. Upregulated miR-1258 prevented inflammation, oxidative stress, and apoptosis but enhanced the viability of LPS-treated BEAS-2B cells. The impact of upregulated miR-1258 on LPS-treated BEAS-2B cells was mitigated by inhibiting Pknox1 expression. MiR-1258 overexpression had the alleviating effects on inflammation, oxidative stress, and lung injury of LPS-injured mice through suppressing Pknox1 expression and TGF-β1/SMAD3 cascade activation. CONCLUSIONS The study concludes that miR-1258 suppresses oxidative stress and inflammation in septic ALI through the Pknox1-regulated TGF-β1/SMAD3 cascade.
Collapse
Affiliation(s)
- XiaoMeng Xu
- Guangzhou Hospital of Integrated Traditional and West Medicine, Department of Anesthesiology, Guangzhou City, Guangdong Province, China
| | - XiaoHong Xu
- Guangzhou Hospital of Integrated Traditional and West Medicine, Department of Pediatrics, Guangzhou City, Guangdong Province, China
| | - JinLiang Cao
- Guangzhou Hospital of Integrated Traditional and West Medicine, Department of Anesthesiology, Guangzhou City, Guangdong Province, China
| | - LuoYang Ruan
- Guangzhou Hospital of Integrated Traditional and West Medicine, Department of Anesthesiology, Guangzhou City, Guangdong Province, China.
| |
Collapse
|
2
|
Alikiaii B, Bagherniya M, Askari G, Rajendram R, Sahebkar A. MicroRNA Profiles in Critically Ill Patients. Curr Med Chem 2024; 31:6801-6825. [PMID: 37496239 DOI: 10.2174/0929867331666230726095222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 05/19/2023] [Accepted: 06/01/2023] [Indexed: 07/28/2023]
Abstract
The use of biomarkers to expedite diagnosis, prognostication, and treatment could significantly improve patient outcomes. The early diagnosis and treatment of critical illnesses can greatly reduce mortality and morbidity. Therefore, there is great interest in the discovery of biomarkers for critical illnesses. Micro-ribonucleic acids (miRNAs) are a highly conserved group of non-coding RNA molecules. They regulate the expression of genes involved in several developmental, physiological, and pathological processes. The characteristics of miRNAs suggest that they could be versatile biomarkers. Assay panels to measure the expression of several miRNAs could facilitate clinical decision-- making for a range of diseases. We have, in this paper, reviewed the current understanding of the role of miRNAs as biomarkers in critically ill patients.
Collapse
Affiliation(s)
- Babak Alikiaii
- Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Bagherniya
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gholamreza Askari
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Rajkumar Rajendram
- Department of Medicine, King Abdulaziz Medical City, King Abdulaziz International Medical Research Center, Ministry of National Guard - Health Affairs, Riyadh, Saudi Arabia
- College of Medicine, King Saud bin Abdulaziz University of Health Sciences, Riyadh, Saudi Arabia
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Chen L, Huang Q, Luo Y, Zhou Y, Tong T, Chen Y, Bai Q, Lu C, Li Z. MiR-184 targeting FOXO1 regulates host-cell oxidative stress induced by Chlamydia psittaci via the Wnt/β-catenin signaling pathway. Infect Immun 2023; 91:e0033723. [PMID: 37815369 PMCID: PMC10652854 DOI: 10.1128/iai.00337-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 08/25/2023] [Indexed: 10/11/2023] Open
Abstract
Chlamydia psittaci is a human pathogen that causes atypical pneumonia after zoonotic transmission. We confirmed that C. psittaci infection induces oxidative stress in human bronchial epithelial (HBEs) cells and explored how this is regulated through miR-184 and the Wnt/β-catenin signaling pathway. miR-184 mimic, miR-184 inhibitor, FOXO1 siRNA, or negative control sequence was transfected into HBE cells cultured in serum-free medium using Lipofectamine 2000. Then, prior to the cells were infected with C. psittaci 6BC, and the cells were treated with or without 30 µM Wnt/β-catenin inhibitor ICG-001. Quantification of reactive oxygen species, malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione was carried out according to the manufacturer's protocol using a corresponding assay kit. The outcome of both protein and gene was measured by western blotting or real-time fluorescence quantitative PCR. In C. psittaci-infected HBE cells, miR-184 was upregulated, while one of its target genes, FOXO1, was downregulated. ROS and MDA levels increased, while SOD and GSH contents decreased after C. psittaci infection. When miR-184 expression was downregulated, the level of oxidative stress caused by C. psittaci infection was reduced, and the Wnt/β-catenin signaling pathway was inhibited. The opposite results were seen when miR-184 mimic was used. Transfecting with FOXO1 siRNA reversed the effect of miR-184 inhibitor. Moreover, when the Wnt/β-catenin-specific inhibitor ICG-001 was used, the level of oxidative stress induced by C. psittaci infection was significantly suppressed. miR-184 can target FOXO1 to promote oxidative stress in HBE cells following C. psittaci infection by activation of the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Lili Chen
- Department of public health laboratory sciences, School of public health, Hengyang Medical School, University of South China, Hengyang, China
| | - Qiaoling Huang
- Department of public health laboratory sciences, School of public health, Hengyang Medical School, University of South China, Hengyang, China
| | - Yuchen Luo
- Department of public health laboratory sciences, School of public health, Hengyang Medical School, University of South China, Hengyang, China
| | - You Zhou
- Department of public health laboratory sciences, School of public health, Hengyang Medical School, University of South China, Hengyang, China
| | - Ting Tong
- Department of public health laboratory sciences, School of public health, Hengyang Medical School, University of South China, Hengyang, China
| | - Yuyu Chen
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Qinqin Bai
- Department of public health laboratory sciences, School of public health, Hengyang Medical School, University of South China, Hengyang, China
| | - Chunxue Lu
- Institute of Pathogenic Biology, Hengyang Medical School, University of South China, Hengyang, China
| | - Zhongyu Li
- Institute of Pathogenic Biology, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
4
|
Mao X, Wu Y, Xu W. miR-126-5p expression in the plasma of patients with sepsis-induced acute lung injury and its correlation with inflammation and immune function. THE CLINICAL RESPIRATORY JOURNAL 2023. [PMID: 37248197 PMCID: PMC10363794 DOI: 10.1111/crj.13646] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 05/04/2023] [Accepted: 05/12/2023] [Indexed: 05/31/2023]
Abstract
OBJECTIVE This work was implemented to elucidate the miR-126-5p expression in the plasma of patients with sepsis-induced acute lung injury (ALI) and its correlation with inflammation and immune function. METHODS The peripheral blood of patients with sepsis-induced ALI was obtained, and the levels of inflammatory factors (interleukin-6 [IL-6], C-reactive protein [CRP], and procalcitonin [PCT]) were determined. Meanwhile, T lymphocyte subsets (CD3+, CD4+, and CD8+), and immunoglobulins (IgA, IgM, and IgG) were tested. miR-126-5p and TRAF6 mRNA expression in plasma was assessed. Receiver operating characteristic (ROC) curve was performed to assess the diagnostic accuracy of miR-126-5p in sepsis without ALI and sepsis with ALI. Correlation between miR-126-5p expression and clinical indicators was analyzed. The targets of miR-126-5p were predicted using the bioinformatics method, and the direct targets were verified through investigations. RESULTS miR-126-5p expression in plasma of patients with sepsis-induced ALI was reduced than that of patients with sepsis without ALI. miR-126-5p expression was negatively correlated with IL-6, CRP, and PCT but positively correlated with IgA, IgM, and IgG as well as CD3+, CD4+, and CD8+ in patients with sepsis-induced ALI. ROC curve suggested that miR-126-5p (AUC: 0.777; 95%CI: 0.689-0.866) could distinguish patients with sepsis with ALI from patients with sepsis without ALI. TRAF6 expression in patients with sepsis-induced ALI was higher than that in patients with sepsis without ALI. TRAF6 was a target gene of miR-126-5p, CONCLUSION: This research highlights that miR-126-5p is reduced in the plasma of patients with sepsis-induced ALI, and miR-126-5p relates to systemic inflammation and immune function indicators.
Collapse
Affiliation(s)
- Xiaoyong Mao
- Department of Blood Transfusion, Zhuji People's Hospital, Shaoxing, Zhejiang, China
| | - Yiping Wu
- Department of Clinical Laboratory, The Second People's Hospital of Zhuji, Shaoxing, Zhejiang, China
| | - Weifeng Xu
- Department of Clinical Laboratory, The Second People's Hospital of Zhuji, Shaoxing, Zhejiang, China
| |
Collapse
|
5
|
Shang T, Zhang ZS, Wang XT, Chang J, Zhou ME, Lyu M, He S, Yang J, Chang YX, Wang Y, Li MC, Gao X, Zhu Y, Feng Y. Xuebijing injection inhibited neutrophil extracellular traps to reverse lung injury in sepsis mice via reducing Gasdermin D. Front Pharmacol 2022; 13:1054176. [PMID: 36467039 PMCID: PMC9710739 DOI: 10.3389/fphar.2022.1054176] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/20/2022] [Indexed: 09/11/2023] Open
Abstract
The mortality of sepsis and septic shock remains high worldwide. Neutrophil extracellular traps (NETs) release is a major cause of organ failure and mortality in sepsis. Targeting Gasdermin D (GSDMD) can restrain NETs formation, which is promising for sepsis management. However, no medicine is identified without severe safety concerns for this purpose. Xuebijing injection (XBJ) has been demonstrated to alleviate the clinical symptoms of COVID-19 and sepsis patients, but there are not enough animal studies to reveal its mechanisms in depth. Therefore, we wondered whether XBJ relieved pulmonary damage in sepsis by suppressing NETs formation and adopted a clinically relevant polymicrobial infection model to test this hypothesis. Firstly, XBJ effectively reversed lung injury caused by sepsis and restrained neutrophils recruitment to lung by down-regulating proinflammatory chemokines, such as CSF-3, CXCL-2, and CXCR-2. Strikingly, we found that XBJ significantly reduced the expressions of NETs component proteins, including citrullinated histone H3 (CitH3), myeloperoxidase (MPO), and neutrophil elastase (NE). GSDMD contributes to the production of NETs in sepsis. Notably, XBJ exhibited a reduced effect on the expressions of GSDMD and its upstream regulators. Besides, we also revealed that XBJ reversed NETs formation by inhibiting the expressions of GSDMD-related genes. Collectively, we demonstrated XBJ protected against sepsis-induced lung injury by reversing GSDMD-related pathway to inhibit NETs formation.
Collapse
Affiliation(s)
- Ting Shang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China
| | - Zhi-Sen Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China
| | - Xin-Tong Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China
| | - Jing Chang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China
| | - Meng-En Zhou
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China
| | - Ming Lyu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China
| | - Shuang He
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China
| | - Jian Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China
| | - Yan-Xu Chang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuefei Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ming-Chun Li
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Xiumei Gao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yan Zhu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China
| | - Yuxin Feng
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China
| |
Collapse
|
6
|
Cong P, Tong C, Mao S, Shi X, Liu Y, Shi L, Jin H, Liu Y, Hou M. Proteomic global proteins analysis in blast lung injury reveals the altered characteristics of crucial proteins in response to oxidative stress, oxidation-reduction process and lipid metabolic process. Exp Lung Res 2022; 48:275-290. [PMID: 36346360 DOI: 10.1080/01902148.2022.2143596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Background: Blast lung injury (BLI) is the most common fatal blast injury induced by overpressure wave in the events of terrorist attack, gas and underground explosion. Our previous work revealed the characteristics of inflammationrelated key proteins involved in BLI, including those regulating inflammatory response, leukocyte transendothelial migration, phagocytosis, and immune process. However, the molecular characteristics of oxidative-related proteins in BLI ar still lacking. Methods: In this study, protein expression profiling of the blast lungs obtained by tandem mass tag (TMT) spectrometry quantitative proteomics were re-analyzed to identify the characteristics of oxidative-related key proteins. Forty-eight male C57BL/6 mice were randomly divided into six groups: control, 12 h, 24 h, 48 h, 72 h and 1 w after blast exposure. The differential protein expression was identified by bioinformatics analysis and verified by western blotting. Results: The results demonstrated that thoracic blast exposure induced reactive oxygen species generation and lipid peroxidation in the lungs. Analysis of global proteins and oxidative-related proteomes showed that 62, 59, 73, 69, 27 proteins (accounted for 204 distinct proteins) were identified to be associated with oxidative stress at 12 h, 24 h, 48 h, 72 h, and 1 week after blast exposure, respectively. These 204 distinct proteins were mainly enriched in response to oxidative stress, oxidation-reduction process and lipid metabolic process. We also validated these results by western blotting. Conclusions: These findings provided new perspectives on blast-induced oxidative injury in lung, which may potentially benefit the development of future treatment of BLI.
Collapse
Affiliation(s)
- Peifang Cong
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, Liaoning Province, China
| | - Changci Tong
- Shuren International College, Shenyang Medical College, Shenyang, Liaoning Province, China
| | - Shun Mao
- Shuren International College, Shenyang Medical College, Shenyang, Liaoning Province, China
| | - Xiuyun Shi
- Emergency Medicine Department of General Hospital of Northern theatre command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, Shenyang, Liaoning Province, China
| | - Ying Liu
- Emergency Medicine Department of General Hospital of Northern theatre command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, Shenyang, Liaoning Province, China
| | - Lin Shi
- Shuren International College, Shenyang Medical College, Shenyang, Liaoning Province, China
| | - Hongxu Jin
- Emergency Medicine Department of General Hospital of Northern theatre command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, Shenyang, Liaoning Province, China
| | - Yunen Liu
- Shuren International College, Shenyang Medical College, Shenyang, Liaoning Province, China
| | - Mingxiao Hou
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, Liaoning Province, China.,Shuren International College, Shenyang Medical College, Shenyang, Liaoning Province, China.,The Second Affiliated Hospital of Shenyang Medical College, The Veterans General Hospital of Liaoning Province, Shenyang, Liaoning Province, China
| |
Collapse
|
7
|
Begum R, Mamun-Or-Rashid ANM, Lucy TT, Pramanik MK, Sil BK, Mukerjee N, Tagde P, Yagi M, Yonei Y. Potential Therapeutic Approach of Melatonin against Omicron and Some Other Variants of SARS-CoV-2. Molecules 2022; 27:6934. [PMID: 36296527 PMCID: PMC9609612 DOI: 10.3390/molecules27206934] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/03/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
The Omicron variant (B.529) of COVID-19 caused disease outbreaks worldwide because of its contagious and diverse mutations. To reduce these outbreaks, therapeutic drugs and adjuvant vaccines have been applied for the treatment of the disease. However, these drugs have not shown high efficacy in reducing COVID-19 severity, and even antiviral drugs have not shown to be effective. Researchers thus continue to search for an effective adjuvant therapy with a combination of drugs or vaccines to treat COVID-19 disease. We were motivated to consider melatonin as a defensive agent against SARS-CoV-2 because of its various unique properties. Over 200 scientific publications have shown the significant effects of melatonin in treating diseases, with strong antioxidant, anti-inflammatory, and immunomodulatory effects. Melatonin has a high safety profile, but it needs further clinical trials and experiments for use as a therapeutic agent against the Omicron variant of COVID-19. It might immediately be able to prevent the development of severe symptoms caused by the coronavirus and can reduce the severity of the infection by improving immunity.
Collapse
Affiliation(s)
- Rahima Begum
- Department of Microbiology, Gono Bishwabidyalay, Dhaka 1344, Bangladesh
| | - A. N. M. Mamun-Or-Rashid
- Anti-Aging Medical Research Center, Graduate School of Life and Medical Sciences, Doshisha University 1-3 TataraMiyakodani, Kyoto 610-0394, Japan
- Glycative Stress Research Center, Graduate School of Life and Medical Sciences, Doshisha University 1-3 Tatara Miyakodani, Kyoto 610-0394, Japan
- Department of Environmental & Occupational Health, School of Public Health, University of Pittsburgh, 130 De Soto Str., Pittsburgh, PA 15231, USA
| | - Tanzima Tarannum Lucy
- Anti-Aging Medical Research Center, Graduate School of Life and Medical Sciences, Doshisha University 1-3 TataraMiyakodani, Kyoto 610-0394, Japan
- Glycative Stress Research Center, Graduate School of Life and Medical Sciences, Doshisha University 1-3 Tatara Miyakodani, Kyoto 610-0394, Japan
| | - Md. Kamruzzaman Pramanik
- Microbiology and Industrial Irradiation Division, Institute of Food and Radiation Biology, Atomic Energy Research Establishment, Savar 1349, Bangladesh
| | - Bijon Kumar Sil
- Department of Microbiology, Gono Bishwabidyalay, Dhaka 1344, Bangladesh
| | - Nobendu Mukerjee
- Department of Microbiology, Ramakrishna Mission Vivekananda Centenary College, Kolkata 700118, India
- Department of Health Sciences, Novel Global Community Educational Foundation, Sydney 37729, Australia
| | - Priti Tagde
- Patel College of Pharmacy, Madhyanchal Professional University, Bhopal 462044, India
| | - Masayuki Yagi
- Anti-Aging Medical Research Center, Graduate School of Life and Medical Sciences, Doshisha University 1-3 TataraMiyakodani, Kyoto 610-0394, Japan
- Glycative Stress Research Center, Graduate School of Life and Medical Sciences, Doshisha University 1-3 Tatara Miyakodani, Kyoto 610-0394, Japan
| | - Yoshikazu Yonei
- Anti-Aging Medical Research Center, Graduate School of Life and Medical Sciences, Doshisha University 1-3 TataraMiyakodani, Kyoto 610-0394, Japan
- Glycative Stress Research Center, Graduate School of Life and Medical Sciences, Doshisha University 1-3 Tatara Miyakodani, Kyoto 610-0394, Japan
| |
Collapse
|
8
|
An Axis between the Long Non-Coding RNA HOXA11-AS and NQOs Enhances Metastatic Ability in Oral Squamous Cell Carcinoma. Int J Mol Sci 2022; 23:ijms231810704. [PMID: 36142607 PMCID: PMC9506332 DOI: 10.3390/ijms231810704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 12/03/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) play critical roles in human cancers. HOXA11 anti-sense RNA (HOXA11-AS) is an lncRNA belonging to the homeobox (HOX) gene cluster that promotes liver metastasis in human colon cancer. However, its role and mechanism of action in human oral squamous cell carcinoma (OSCC) are unclear. In this study, we investigated HOXA11-AS expression and function in human OSCC tissues and cell lines, as well as a mouse model of OSCC. Our analyses showed that HOXA11-AS expression in human OSCC cases correlates with lymph node metastasis, nicotinamide adenine dinucleotide (NAD)(P)H: quinone oxidoreductase 1 (NQO1) upregulation, and dihydronicotinamide riboside (NRH): quinone oxidoreductase 2 (NQO2) downregulation. Using the human OSCC cell lines HSC3 and HSC4, we demonstrate that HOXA11-AS promotes NQO1 expression by sponging microRNA-494. In contrast, HOXA11-AS recruits zeste homolog 2 (EZH2) to the NQO2 promoter to suppress its expression via the trimethylation of H3K27. The upregulation of NQO1 enzymatic activity by HOXA11-AS results in the consumption of flavin adenine dinucleotide (FAD), which reduces FAD-requiring glyceraldehyde-3-phosphate dehydrogenase (GAPDH) activity and suppresses glycolysis. However, our analyses show that lactic acid fermentation levels are preserved by glutaminolysis due to increased malic enzyme-1 expression, promoting enhanced proliferation, invasion, survival, and drug resistance. In contrast, suppression of NQO2 expression reduces the consumption of NRH via NQO2 enzymatic activity and increases NAD levels, which promotes enhanced stemness and metastatic potential. In mouse tumor models, knockdown of HOXA11-AS markedly suppressed tumor growth and lung metastasis. From these findings, targeting HOXA11-AS may strongly suppress high-grade OSCC by regulating both NQO1 and NQO2.
Collapse
|
9
|
Antonakos N, Gilbert C, Théroude C, Schrijver IT, Roger T. Modes of action and diagnostic value of miRNAs in sepsis. Front Immunol 2022; 13:951798. [PMID: 35990654 PMCID: PMC9389448 DOI: 10.3389/fimmu.2022.951798] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Sepsis is a clinical syndrome defined as a dysregulated host response to infection resulting in life-threatening organ dysfunction. Sepsis is a major public health concern associated with one in five deaths worldwide. Sepsis is characterized by unbalanced inflammation and profound and sustained immunosuppression, increasing patient susceptibility to secondary infections and mortality. microRNAs (miRNAs) play a central role in the control of many biological processes, and deregulation of their expression has been linked to the development of oncological, cardiovascular, neurodegenerative and metabolic diseases. In this review, we discuss the role of miRNAs in sepsis pathophysiology. Overall, miRNAs are seen as promising biomarkers, and it has been proposed to develop miRNA-based therapies for sepsis. Yet, the picture is not so straightforward because of the versatile and dynamic features of miRNAs. Clearly, more research is needed to clarify the expression and role of miRNAs in sepsis, and to promote the use of miRNAs for sepsis management.
Collapse
Affiliation(s)
| | | | | | | | - Thierry Roger
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Epalinges, Switzerland
| |
Collapse
|
10
|
Antioxidation Function of EGCG by Activating Nrf2/HO-1 Pathway in Mice with Coronary Heart Disease. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:8639139. [PMID: 35919501 PMCID: PMC9293516 DOI: 10.1155/2022/8639139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 11/17/2022]
Abstract
Objective. To explore the effect and mechanism of epigallocatechin gallate (EGCG) in mice with coronary heart disease (CHD). Methods. Firstly, a CHD model of mouse was established by feeding mice high-fat diet and randomly divided into four groups, including Model group (0.5% sodium cholate) and 10 mg/kg EGCG, 20 mg/kg EGCG, and 40 mg/kg EGCG groups. After oral administration of sodium cholate or EGCG, HE staining was conducted to assess the pathological changes of mouse cardiac tissues in each group of mice, biochemical kits to measure the levels of blood lipid and oxidative stress substance activity, and western blot to detect matrix metalloproteinase 2 (MMP-2), vascular endothelial growth factor (VEGFA), as well as expression levels of protein related to Nrf2/HO-1/NQO1 pathway in cardiac tissues. Results. The mice in the CHD model appeared to have myocardial pathological damage with elevated serum total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), and decreased high-density lipoprotein cholesterol (HDL-C). Of note, administration of EGCG significantly attenuated myocardial injuries and improved blood lipid levels in mice in a concentration-dependent manner. The advent of EGCG significantly decreased the expression of VEGFA and MMP-2 and increased the activity of superoxide dismutase (SOD), when reducing the content of reactive oxygen species (ROS) in the myocardial tissue and upregulating the expression of HO-1, NQO1, and Nrf2. Conclusion. EGCG may reduce atherosclerotic plaque and alleviate pathological damage in the cardiac tissue of CHD mice as well as improve blood lipid levels with antioxidative effect. The mechanism of its effect may be related to the activation of the Nrf2/HO-1/NQO1 antioxidant pathway in vivo of the CHD mice.
Collapse
|
11
|
Tobeiha M, Jafari A, Fadaei S, Mirazimi SMA, Dashti F, Amiri A, Khan H, Asemi Z, Reiter RJ, Hamblin MR, Mirzaei H. Evidence for the Benefits of Melatonin in Cardiovascular Disease. Front Cardiovasc Med 2022; 9:888319. [PMID: 35795371 PMCID: PMC9251346 DOI: 10.3389/fcvm.2022.888319] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/10/2022] [Indexed: 12/13/2022] Open
Abstract
The pineal gland is a neuroendocrine gland which produces melatonin, a neuroendocrine hormone with critical physiological roles in the circadian rhythm and sleep-wake cycle. Melatonin has been shown to possess anti-oxidant activity and neuroprotective properties. Numerous studies have shown that melatonin has significant functions in cardiovascular disease, and may have anti-aging properties. The ability of melatonin to decrease primary hypertension needs to be more extensively evaluated. Melatonin has shown significant benefits in reducing cardiac pathology, and preventing the death of cardiac muscle in response to ischemia-reperfusion in rodent species. Moreover, melatonin may also prevent the hypertrophy of the heart muscle under some circumstances, which in turn would lessen the development of heart failure. Several currently used conventional drugs show cardiotoxicity as an adverse effect. Recent rodent studies have shown that melatonin acts as an anti-oxidant and is effective in suppressing heart damage mediated by pharmacologic drugs. Therefore, melatonin has been shown to have cardioprotective activity in multiple animal and human studies. Herein, we summarize the most established benefits of melatonin in the cardiovascular system with a focus on the molecular mechanisms of action.
Collapse
Affiliation(s)
- Mohammad Tobeiha
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Ameneh Jafari
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Fadaei
- Department of Internal Medicine and Endocrinology, Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Ali Mirazimi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Dashti
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Atefeh Amiri
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, UT Health. Long School of Medicine, San Antonio, TX, United States
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Johannesburg, South Africa
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
12
|
Zou F, Zhuang ZB, Zou SS, Wang B, Zhang ZH. BML-111 alleviates inflammatory response of alveolar epithelial cells via miR-494/Slit2/Robo4 signalling axis to improve acute lung injury. Autoimmunity 2022; 55:318-327. [PMID: 35656971 DOI: 10.1080/08916934.2022.2065671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Fang Zou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei Province, P.R. China
| | - Zhong-Bao Zhuang
- Department of Pharmacy, Hebei North University, Zhangjiakou, Hebei Province, P.R. China
| | - Shuang-Shuang Zou
- Guangzhou Liwan Stomatological Hospital, Guangzhou, Guangdong Province, P.R. China
| | - Bu Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei Province, P.R. China
| | - Zhi-Hua Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei Province, P.R. China
| |
Collapse
|
13
|
Hu Y, Yang W. Paeoniflorin Can Improve Acute Lung Injury Caused by Severe Acute Pancreatitis through Nrf2/ARE Pathway. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:5712219. [PMID: 35586665 PMCID: PMC9110196 DOI: 10.1155/2022/5712219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/22/2022] [Accepted: 04/06/2022] [Indexed: 12/04/2022]
Abstract
Objective To evaluate the potential therapeutic effect of paeoniflorin on acute lung injury induced by severe acute pancreatitis (SAP) and to initially explore the possible protective mechanisms of paeoniflorin. Method The SAP lung injury rat model was established by retrograde injection of 5% sodium taurocholate to the cholangiopancreatic duct. H&E staining was used to detect pathological changes in rat lung tissue. W/D ratio method, serum amylase (AMY), and lipase activity were used to assess the degree of lung injury in rats. Oxidation indicators such as LDH, MDA, and SOD in lung tissue were measured. Levels of inflammatory factors TNF-α, IL-6, and IL-10 were measured in bronchoalveolar lavage fluid (BALF). At the same time, Western blot was used to detect the expression of related proteins in the Nrf2/ARE signaling pathway. Results In SAP rats, paeoniflorin treatment could significantly alleviate lung injury conditions such as pulmonary edema and inflammatory cell infiltration in lung tissue and reduce serum amylase and lipase activities. Paeoniflorin can reduce the content of LDH and MDA in lung tissue and increase the content of SOD. In addition, ELISA results showed that paeoniflorin could inhibit the levels of TNF-α and IL-6 in BALF and upregulate the levels of IL-10. Paeoniflorin could upregulate the expression of Nrf2/ARE signaling pathway proteins Cyt-Nrf2, HO-1, and NQO1 in lung tissue of SAP rats. Conclusion Paeoniflorin may improve acute lung injury in rats with severe pancreatitis by inhibiting inflammation and oxidative stress response. These effects may be related to activating the Nrf2/ARE signaling pathway.
Collapse
Affiliation(s)
- Yanyan Hu
- Department of Gastroenterology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang 441021, China
| | - Wei Yang
- Department of Gastroenterology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang 441021, China
| |
Collapse
|
14
|
High dose melatonin as an adjuvant therapy in intubated patients with COVID-19: A randomized clinical trial. J Taibah Univ Med Sci 2022; 17:454-460. [PMID: 35581997 PMCID: PMC9098937 DOI: 10.1016/j.jtumed.2022.04.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/11/2022] [Accepted: 04/28/2022] [Indexed: 01/08/2023] Open
Abstract
Objective In the COVID-19 pandemic, the SARS-CoV-2 virus has infected millions of people worldwide. Mortality primarily results from the inflammation state and its complications. High-dose melatonin has been established as an anti-inflammatory agent. This study evaluated high-dose melatonin as an adjuvant therapy in critically ill patients with SARS-CoV-2 infection. Methods We conducted a double-blinded, randomized clinical trial of 21 mg of melatonin per day compared with a placebo in 67 patients with COVID-19. We enrolled patients older than 18 years of age with documented SARS-CoV-2 infection, who were admitted to the intensive care unit and underwent invasive mechanical ventilation. Administration of melatonin and placebo through a nasogastric tube continued for 5 days. The main outcomes were mortality rate, duration of mechanical ventilation, changes in oxygenation indices, and C-reactive protein (CRP) levels. Results No significant differences were observed in mortality and duration of mechanical ventilation between the control and intervention groups. After 5 days of the intervention, the mean (±standard deviation) CRP and platelet count were 47.28 (±38.86) mg/L and 195.73 (±87.13) × 1000/μL, respectively, in the intervention group and 75.52 (±48.02) mg/L and 149.62 (±68.03) × 1000/μL, respectively, in the control group (P < 0.05). Conclusion High-dose melatonin in intubated patients with COVID-19 was associated with a decrease in CRP levels. However, this treatment did not apparently affect patient outcomes.
Collapse
|
15
|
Ghafouri-Fard S, Khoshbakht T, Hussen BM, Taheri M, Arefian N. Regulatory Role of Non-Coding RNAs on Immune Responses During Sepsis. Front Immunol 2021; 12:798713. [PMID: 34956235 PMCID: PMC8695688 DOI: 10.3389/fimmu.2021.798713] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/19/2021] [Indexed: 12/22/2022] Open
Abstract
Sepsis is resulted from a systemic inflammatory response to bacterial, viral, or fungal agents. The induced inflammatory response by these microorganisms can lead to multiple organ system failure with devastating consequences. Recent studies have shown altered expressions of several non-coding RNAs such as long non-coding RNAs (lncRNAs), microRNAs (miRNAs) and circular RNAs (circRNAs) during sepsis. These transcripts have also been found to participate in the pathogenesis of multiple organ system failure through different mechanisms. NEAT1, MALAT1, THRIL, XIST, MIAT and TUG1 are among lncRNAs that participate in the pathoetiology of sepsis-related complications. miR-21, miR-155, miR-15a-5p, miR-494-3p, miR-218, miR-122, miR-208a-5p, miR-328 and miR-218 are examples of miRNAs participating in these complications. Finally, tens of circRNAs such as circC3P1, hsa_circRNA_104484, hsa_circRNA_104670 and circVMA21 and circ-PRKCI have been found to affect pathogenesis of sepsis. In the current review, we describe the role of these three classes of noncoding RNAs in the pathoetiology of sepsis-related complications.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayyebeh Khoshbakht
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq.,Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Normohammad Arefian
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Xu Y, Huang X, Luo Q, Zhang X. MicroRNAs Involved in Oxidative Stress Processes Regulating Physiological and Pathological Responses. Microrna 2021; 10:164-180. [PMID: 34279211 DOI: 10.2174/2211536610666210716153929] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 11/22/2022]
Abstract
Oxidative stress influences several physiological and pathological cellular events, including cell differentiation, excessive growth, proliferation, apoptosis, and the inflammatory response. Therefore, oxidative stress is involved in the pathogenesis of various diseases, including pulmonary fibrosis, epilepsy, hypertension, atherosclerosis, Parkinson's disease, cardiovascular disease, and Alzheimer's disease. Recent studies have shown that several microRNAs (miRNAs) are involved in developing various diseases caused by oxidative stress and that miRNAs may be helpful to determine the inflammatory characteristics of immune responses during infection and disease. This review describes the known effects of miRNAs on reactive oxygen species to induce oxidative stress and the miRNA regulatory mechanisms involved in the uncoupling of Keap1-Nrf2 complexes. Finally, we summarized the functions of miRNAs in several antioxidant genes. Understanding the crosstalk between miRNAs and oxidative stress-inducing factors during physiological and pathological cellular events may have implications for designing more effective treatments for immune diseases.
Collapse
Affiliation(s)
- Yongjie Xu
- Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Areas, School of Life Science of Jiaying University, Guangdong Innovation Centre for Science and Technology of Wuhua Yellow Chicken, Meizhou 514015, China
| | - Xunhe Huang
- Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Areas, School of Life Science of Jiaying University, Guangdong Innovation Centre for Science and Technology of Wuhua Yellow Chicken, Meizhou 514015, China
| | - Qingbin Luo
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science/ Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Xiquan Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science/ Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW Studies indicating that non-coding RNAs (ncRNAs) play a regulatory role in sepsis are increasing rapidly. This present review summarizes recent publications on the role of microRNAs and long non-coding RNAs (lncRNAs) in sepsis. RECENT FINDINGS MicroRNAs (miRNAs) and lncRNAs are being identified as potential sepsis biomarkers and therapeutic targets. Experimental studies have examined the biological mechanisms that might underpin the regulatory role of these ncRNAs in sepsis. SUMMARY Clinical applications of miRNAs and lncRNAs in sepsis are on the horizon. These data could lead to the identification of novel treatments or indeed support the repurposing of existing drugs for sepsis. Validation of the findings from these preliminary studies and crucially integration of multiomics datasets will undoubtedly revolutionize the clinical management of sepsis.
Collapse
|
18
|
Lu P, Zhang L, Liu T, Fan JJ, Luo X, Zhu YT. MiR-494-mediated Effects on the NF-κB Signaling Pathway Regulate Lipopolysaccharide-Induced Acute Kidney Injury in Mice. Immunol Invest 2021; 51:1372-1384. [PMID: 34238104 DOI: 10.1080/08820139.2021.1944184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE To explore the effects of miR-494 inhibition through the NF-κB signaling pathway on lipopolysaccharide (LPS)-induced acute kidney injury (AKI) mouse model. METHODS The AKI mice induced by LPS were treated with miR-494 antagomir, and the kidney parameters and indicators of oxidative stress were detected. HE and TUNEL staining were performed to observe the kidney histopathology and the apoptosis in renal tubular epithelial cells (RTECs), respectively. The ROS level was measured using dihydroethidium (DHE) staining. In addition, qRT-PCR, western blotting, immunohistochemistry (IHC), and ELISA were also used to detect gene or protein expression. RESULTS LPS-induced AKI mice injected with the miR-494 antagomir showed reduced blood urea nitrogen (BUN) and serum creatinine (Cr) with improved kidney histopathology. The expression levels of p-IKKα/β, p-IκBα and p65 NF-κB in the nucleus were increased in kidney tissues from the LPS-induced AKI mice, and they were decreased by the miR-494 antagomir. Moreover, the results of IHC showed that the miR-494 antagomir downregulated p65 NF-κB in kidney tissues from the LPS-induced AKI mice, accompanied by decreased levels of TNF-α, IL-1β, IL-6, MDA, NO, and ROS but increased levels of SOD and GSH. In addition, the LPS-induced AKI mice had increased apoptosis in RTECs, as well as increased Caspase-3 and Bax and decreased Bcl-2, which were reversed by the miR-494 antagomir. CONCLUSIONS The inhibition of miR-494 could reduce inflammatory responses and improve oxidative stress in kidney tissues from LPS-induced AKI mice by blocking the NF-κB pathway accompanying by reduced apoptosis in RTECs.
Collapse
Affiliation(s)
- Peng Lu
- Department of Clinical Laboratory, Cangzhou Central Hospital, Cangzhou, China
| | - Lei Zhang
- Department of Clinical Laboratory, Cangzhou Central Hospital, Cangzhou, China
| | - Ting Liu
- Department of Clinical Laboratory, The 252nd Hospital of PLA, Baoding, China
| | - Jing-Jing Fan
- Department of Emergency ICU, Cangzhou Central Hospital, Cangzhou, China
| | - Xu Luo
- Department of Pharmacy, Cangzhou Central Hospital, Cangzhou, China
| | - Yi-Tang Zhu
- Department of Clinical Laboratory, Cangzhou Central Hospital, Cangzhou, China
| |
Collapse
|
19
|
Zhang W, Li J, Yao H, Li T. Restoring microRNA-499-5p Protects Sepsis-Induced Lung Injury Mice Via Targeting Sox6. NANOSCALE RESEARCH LETTERS 2021; 16:89. [PMID: 34019224 PMCID: PMC8140057 DOI: 10.1186/s11671-021-03534-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 04/20/2021] [Indexed: 05/05/2023]
Abstract
BACKGROUND MicroRNAs (miRs) are known to participate in sepsis; hence, we aim to discuss the protective effect of miR-499-5p targeting sex-determining region Y-related high-mobility-group box 6 (Sox6) on sepsis-induced lung injury in mice. METHODS The sepsis-induced lung injury model was established by cecal ligation and puncture. The wet/dry weight (W/D) ratio, miR-499-5p, Sox6, Caspase-3 and Caspase-9 expression in lung tissues of mice were tested. Lung injury score, collagen fibers and the degree of pulmonary fibrosis in lung tissues were determined. Further, the cell apoptosis in lung tissues was measured. The inflammatory factors contents and oxidative stress indices in bronchoalveolar lavage fluid (BALF) and lung tissues were detected via loss- and gain-of-function assays. The targeting relation between miR-499-5p and Sox6 was verified. RESULTS W/D ratio and Sox6 were increased while miR-499-5p was decreased in lung tissues of sepsis-induced lung injury mice. Restored miR-499-5p or depleted Sox6 alleviated lung tissues pathology, reduced lung injury score, collagen fibers, the degree of pulmonary fibrosis, TUNEL positive cells, Caspase-3 and Caspase-9 protein expression and inflammatory factors contents in BALF and lung tissues as well as oxidative stress response in lung tissues of sepsis-induced lung injury mice. miR-499-5p targeted Sox6. CONCLUSION High expression of miR-499-5p can attenuate cell apoptosis in lung tissues and inhibit inflammation of sepsis-induced lung injury mice via depleting Sox6, and it is a potential candidate marker and therapeutic target for sepsis-induced lung injury.
Collapse
Affiliation(s)
- Wenjie Zhang
- Intensive Care Unit (ICU), Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, No. 70, Heping Road, Weihai, 264200, Shandong, China
| | - Jing Li
- Preventive Medicine Ward, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, 264200, Shandong, China
| | - Hui Yao
- Intensive Care Unit (ICU), Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, No. 70, Heping Road, Weihai, 264200, Shandong, China
| | - Tianmin Li
- Intensive Care Unit (ICU), Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, No. 70, Heping Road, Weihai, 264200, Shandong, China.
| |
Collapse
|
20
|
Zhao Z, Wang X, Zhang R, Ma B, Niu S, Di X, Ni L, Liu C. Melatonin attenuates smoking-induced atherosclerosis by activating the Nrf2 pathway via NLRP3 inflammasomes in endothelial cells. Aging (Albany NY) 2021; 13:11363-11380. [PMID: 33839695 PMCID: PMC8109127 DOI: 10.18632/aging.202829] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 01/07/2021] [Indexed: 12/30/2022]
Abstract
Substantial evidence suggests that the effects of smoking in atherosclerosis are associated with inflammation mediated by endothelial cells. However, the mechanisms and potential drug therapies for smoking-induced atherosclerosis remain to be clarified. Considering that melatonin exerts beneficial effects in cardiovascular diseases, we examined its effects on cigarette smoke-induced vascular injury. We found that cigarette smoke extract (CSE) treatment induced NLRP3-related pyroptosis in human aortic endothelial cells (HAECs). CSE also induced ROS generation and upregulated the Nrf2 pathway in HAECs. Furthermore, pretreatment of HAECs with Nrf2-specific siRNA and an Nrf2 activator revealed that Nrf2 can inhibit CSE-induced ROS/NLRP3 activation. Nrf2 also improved cell viability and the expression of VEGF and eNOS in CSE-treated HAECs. In balloon-induced carotid artery injury model rats exposed to cigarette smoke, melatonin treatment reduced intimal hyperplasia in the carotid artery. Mechanistic studies revealed that compared with the control group, Nrf2 activation was increased in the melatonin group, whereas ROS levels and the NLRP3 inflammasome pathway were inhibited. These results reveal that melatonin might effectively protect against smoking-induced vascular injury and atherosclerosis through the Nrf2/ROS/NLRP3 signaling pathway. Overall, these observations provide compelling evidence for the clinical use of melatonin to reduce smoking-related inflammatory vascular injury and atherosclerosis.
Collapse
Affiliation(s)
- Zhewei Zhao
- Department of Vascular Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xuebin Wang
- Department of Vascular Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Rui Zhang
- Department of Vascular Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Baitao Ma
- Department of Vascular Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Shuai Niu
- Department of Vascular Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiao Di
- Department of Vascular Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Leng Ni
- Department of Vascular Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Changwei Liu
- Department of Vascular Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
21
|
From sepsis to acute respiratory distress syndrome (ARDS): emerging preventive strategies based on molecular and genetic researches. Biosci Rep 2021; 40:222737. [PMID: 32319516 PMCID: PMC7199454 DOI: 10.1042/bsr20200830] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/11/2020] [Accepted: 04/14/2020] [Indexed: 12/12/2022] Open
Abstract
A healthy body activates the immune response to target invading pathogens (i.e. viruses, bacteria, fungi, and parasites) and avoid further systemic infection. The activation of immunological mechanisms includes several components of the immune system, such as innate and acquired immunity. Once any component of the immune response to infections is aberrantly altered or dysregulated, resulting in a failure to clear infection, sepsis will develop through a pro-inflammatory immunological mechanism. Furthermore, the severe inflammatory responses induced by sepsis also increase vascular permeability, leading to acute pulmonary edema and resulting in acute respiratory distress syndrome (ARDS). Apparently, potential for improvement exists in the management of the transition from sepsis to ARDS; thus, this article presents an exhaustive review that highlights the previously unrecognized relationship between sepsis and ARDS and suggests a direction for future therapeutic developments, including plasma and genetic pre-diagnostic strategies and interference with proinflammatory signaling.
Collapse
|
22
|
Mu X, Wang H, Li H. Silencing of long noncoding RNA H19 alleviates pulmonary injury, inflammation, and fibrosis of acute respiratory distress syndrome through regulating the microRNA-423-5p/FOXA1 axis. Exp Lung Res 2021; 47:183-197. [PMID: 33629893 DOI: 10.1080/01902148.2021.1887967] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE This study aimed to explore the regulatory effects and mechanisms of long noncoding RNA H19 (H19) on pulmonary injury, inflammation, and fibrosis of acute respiratory distress syndrome (ARDS). MATERIALS AND METHODS A rat model of ARDS was established by intratracheal instillation of 2 mg/kg lipopolysaccharide (LPS). qRT-PCR was performed to detect the expression of H19, miR-423-5p, tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, monocyte chemoattractant protein (MCP)-1, and vascular endothelial growth factor (VEGF). Histology score was assessed by hematoxylin-eosin (HE) staining. Enzyme-linked immunosorbent assay (ELISA) was used to detect the levels of proinflammatory cytokines and the content of VEGF in bronchoalveolar lavage fluid (BALF). The lung fibrosis was evaluated using western blot and Masson's trichrome staining. Dual-luciferase reporter gene assay was used for confirming the relationship between miR-423-5p and H19/FOXA1 in alveolar macrophage cells (MH-S) and alveolar epithelial cells (MLE-12). The regulatory effects of H19/miR-423-5p/FOXA1 axis on the inflammation and fibrosis were further analyzed in LPS-induced MH-S cells. RESULTS The expression of H19 and FOXA1 was significantly up-regulated, while the expression of miR-423-5p was down-regulated in LPS-induced ARDS rats. Silencing of H19 decreased the mRNA expression of TNF-α, IL-1β, IL-6, MCP-1, and VEGF, the contents of TNF-α, IL-1β, IL-6, and VEGF in BALF, and histology score in LPS-induced ARDS rats. H19 knockdown also reduced the fibrosis scores and the protein expression of vimentin and α-SMA, and elevated the protein expression of E-cadherin in LPS-induced ARDS rats. Furthermore, silencing of miR-423-5p and overexpression of FOXA1 reversed the inhibitory effects of si-H19 on the inflammation and fibrosis of LPS-induced MH-S cells. CONCLUSIONS Silencing of H19 relieved the pulmonary injury, inflammation and fibrosis of LPS-induced ARDS in rats. Silencing of H19 also alleviated the inflammation and fibrosis of LPS-induced MH-S cells through regulating the miR-423-5p/FOXA1 axis.
Collapse
Affiliation(s)
- Xianyu Mu
- Department of Emergency, Yantai Yuhuangding Hospital, Yantai City, China Shandong Province, China
| | - Hongrong Wang
- Department of Emergency, Yantai Yuhuangding Hospital, Yantai City, China Shandong Province, China
| | - Haiyong Li
- Department of Emergency, Yantai Yuhuangding Hospital, Yantai City, China Shandong Province, China
| |
Collapse
|
23
|
Fei L, Sun G, You Q. miR-642a-5p partially mediates the effects of lipopolysaccharide on human pulmonary microvascular endothelial cells via eEF2. FEBS Open Bio 2020; 10:2294-2304. [PMID: 32881411 PMCID: PMC7609801 DOI: 10.1002/2211-5463.12969] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 08/08/2020] [Accepted: 08/27/2020] [Indexed: 11/29/2022] Open
Abstract
Inhalation or systemic administration of lipopolysaccharide (LPS) can induce acute pulmonary inflammation and lung injury. The pulmonary vasculature is composed of pulmonary microvascular endothelial cells (PMVECs), which form a semiselective membrane for gas exchange. The miRNA miR‐642a‐5p has previously been reported to be up‐regulated in patients with acute respiratory distress syndrome; thus, here, we examined whether this miRNA is involved in the effects of LPS on PMVECs. The levels of miR‐642a‐5p and mRNA encoding eukaryotic elongation factor 2 (eEF2) were detected by quantitative RT‐PCR. Moesin and eEF2 protein levels were tested by western blot assay. Dual‐luciferase reporter assay was used to examine the relationship between miR‐642a‐5p and eEF2. Cell viability was assessed using the 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide assay, and cell permeability was analyzed using the transendothelial electrical resistance assay. We report that miR‐642a‐5p levels are significantly up‐regulated in LPS‐stimulated PMVECs, and miR‐642a‐5p contributes to LPS‐induced hyperpermeability and apoptosis of PMVECs. LPS treatment results in down‐regulation of eEF2 in PMVECs. Overexpression of eEF2, a direct target of miR‐642a‐5p, inhibited the effect of LPS on PMVECs. miR‐642a‐5p promoted LPS‐induced hyperpermeability and apoptosis by targeting eEF2. Thus, miR‐642a‐5p and eEF2 may serve as potential targets for acute lung injury/acute respiratory distress syndrome diagnosis or treatment.
Collapse
Affiliation(s)
- Liming Fei
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Gengyun Sun
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qinghai You
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
24
|
Kleszczyński K, Slominski AT, Steinbrink K, Reiter RJ. Clinical Trials for Use of Melatonin to Fight against COVID-19 Are Urgently Needed. Nutrients 2020; 12:E2561. [PMID: 32847033 PMCID: PMC7551551 DOI: 10.3390/nu12092561] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 02/06/2023] Open
Abstract
The recent pandemic of COVID-19 has already infected millions of individuals and has resulted in the death of hundreds of thousands worldwide. Based on clinical features, pathology, and the pathogenesis of respiratory disorders induced by this and other highly homogenous coronaviruses, the evidence suggests that excessive inflammation, oxidation, and an exaggerated immune response contribute to COVID-19 pathology; these are caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This leads to a cytokine storm and subsequent progression triggering acute lung injury (ALI)/acute respiratory distress syndrome (ARDS), and often death. We and others have reported melatonin to be an anti-inflammatory and anti-oxidative molecule with a high safety profile. It is effective in critical care patients by reducing their vascular permeability and anxiety, inducing sedation, and improving their quality of sleep. As melatonin shows no harmful adverse effects in humans, it is imperative to introduce this indoleamine into clinical trials where it might be beneficial for better clinical outcomes as an adjuvant treatment of COVID-19-infected patients. Herein, we strongly encourage health care professionals to test the potential of melatonin for targeting the COVID-19 pandemic. This is urgent, since there is no reliable treatment for this devastating disease.
Collapse
Affiliation(s)
- Konrad Kleszczyński
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany;
| | - Andrzej T. Slominski
- Department of Dermatology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
- Pathology and Laboratory Medicine Service, VA Medical Center, Birmingham, AL 35294, USA
| | - Kerstin Steinbrink
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany;
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, UT Health, San Antonio, TX 78229, USA;
| |
Collapse
|
25
|
Overexpression of miR-129-5p Mitigates Sepsis-Induced Acute Lung Injury by Targeting High Mobility Group Box 1. J Surg Res 2020; 256:23-30. [PMID: 32682121 DOI: 10.1016/j.jss.2020.05.101] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 05/14/2020] [Accepted: 05/24/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND MicroRNAs are dysregulated in sepsis. Acute lung injury is a progressive syndrome during sepsis. However, the role of miR-129-5p in the development of acute lung injury induced by sepsis remains unclear. METHODS The acute lung injury of sepsis model was established by cecal ligation puncture (CLP)-treated mice and lipopolysaccharide (LPS)-treated murine alveolar epithelial cell line (MLE)-12 cells. The lung injury in vivo was investigated by hematoxylin and eosin staining, terminal dexynucleotidyl transferase (TdT)-mediated dUTP nick end labeling staining, enzyme-linked immunosorbent assay, lung wet-to-dry weight ratio, and myeloperoxidase activity. The lung injury in vitro was evaluated by 3-(4,5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide, flow cytometry, and enzyme-linked immunosorbent assay. The expression levels of miR-129-5p and high mobility group box 1 (HMGB1) were measured by quantitative real-time polymerase chain reaction and Western blot. The association between miR-129-5p and HMGB1 was validated by luciferase assay and RNA immunoprecipitation. RESULTS The expression of miR-129-5p was decreased in CLP model and LPS-treated MLE-12 cells. Overexpression of miR-129-5p attenuated inflammatory response, apoptosis, lung wet/dry weight ratio, and myeloperoxidase activity induced by CLP surgery in vivo. Moreover, addition of miR-129-5p increased cell viability and suppressed cell apoptosis and inflammatory response in vitro. HMGB1 as a target of miR-129-5p alleviated miR-129-5p-mediated injury suppression in LPS-treated MLE-12 cells. CONCLUSIONS miR-129-5p protects against sepsis-induced acute lung injury by decreasing HMGB1 expression, providing new target for sepsis treatment.
Collapse
|
26
|
Fu S. MicroRNA‑17 contributes to the suppression of the inflammatory response in lipopolysaccharide‑induced acute lung injury in mice via targeting the toll‑like receptor 4/nuclear factor‑κB pathway. Int J Mol Med 2020; 46:131-140. [PMID: 32626914 PMCID: PMC7255461 DOI: 10.3892/ijmm.2020.4599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 02/21/2020] [Indexed: 11/06/2022] Open
Abstract
Acute lung injury (ALI) is a common lung disease with a high mortality rate, which is characterized by an excessive uncontrolled inflammatory response. MicroRNA (miR)-17 has previously emerged as a novel regulatory molecule of inflammatory response in various complex diseases; however, the anti-inflammatory action and associated molecular mechanisms of miR-17 in ALI have not been fully elucidated. The aim of the present study was to investigate the role of miR-17 in the inflammatory response in ALI and to elucidate the potential underlying mechanism. Using a lipopolysaccharide (LPS)-induced ALI mouse model, it was observed that miR-17 was significantly downregulated in lung tissues compared with the control group. In this model, ectopic expression of miR-17 attenuated lung pathological damage, reduced lung wet/dry ratio and lung permeability, and increased survival rate in ALI mice. In addition, agomiR-17 injection significantly suppressed LPS-induced inflammation, as evidenced by a reduction in the activity of myeloperoxidase and the production of interleukin (IL)-6, IL-1β and tumor necrosis factor-α in lung tissues. Of note, toll-like receptor (TLR) 4, an upstream regulator of the nuclear factor (NF)-κB inflammatory signaling pathway, was directly targeted by miR-17, and its translation was suppressed by miR-17 in vitro and in vivo. Using an LPS-induced RAW264.1 macrophage injury model, it was observed that miR-17 overexpression suppressed the pro-inflammatory effect of LPS, while these inhibitory effects were markedly abrogated by TLR4 overexpression. In addition, TLR4 knockdown by si-TLR4 mimicked the effects of miR-17 overexpression on LPS-induced cytokine secretion in the in vitro model. Further experiments revealed that miR-17 significantly reduced the expression of key proteins in the NF-κB pathway, including IKKβ, p-IκBα and nuclear p-p65, and suppressed the NF-κB activity in ALI mice. Collectively, these results indicated that miR-17 protected mice against LPS-induced lung injury via inhibiting inflammation by targeting the TLR4/NF-κB pathway; therefore, miR-17 may serve as a potential therapeutic target for ALI.
Collapse
Affiliation(s)
- Shan Fu
- Department of Emergency, Affiliated Hospital of Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia 028000, P.R. China
| |
Collapse
|
27
|
Zhang R, Wang X, Ni L, Di X, Ma B, Niu S, Liu C, Reiter RJ. COVID-19: Melatonin as a potential adjuvant treatment. Life Sci 2020; 250:117583. [PMID: 32217117 PMCID: PMC7102583 DOI: 10.1016/j.lfs.2020.117583] [Citation(s) in RCA: 400] [Impact Index Per Article: 100.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/16/2020] [Accepted: 03/20/2020] [Indexed: 12/11/2022]
Abstract
This article summarizes the likely benefits of melatonin in the attenuation of COVID-19 based on its putative pathogenesis. The recent outbreak of COVID-19 has become a pandemic with tens of thousands of infected patients. Based on clinical features, pathology, the pathogenesis of acute respiratory disorder induced by either highly homogenous coronaviruses or other pathogens, the evidence suggests that excessive inflammation, oxidation, and an exaggerated immune response very likely contribute to COVID-19 pathology. This leads to a cytokine storm and subsequent progression to acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) and often death. Melatonin, a well-known anti-inflammatory and anti-oxidative molecule, is protective against ALI/ARDS caused by viral and other pathogens. Melatonin is effective in critical care patients by reducing vessel permeability, anxiety, sedation use, and improving sleeping quality, which might also be beneficial for better clinical outcomes for COVID-19 patients. Notably, melatonin has a high safety profile. There is significant data showing that melatonin limits virus-related diseases and would also likely be beneficial in COVID-19 patients. Additional experiments and clinical studies are required to confirm this speculation.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xuebin Wang
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Leng Ni
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao Di
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Baitao Ma
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuai Niu
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Changwei Liu
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
28
|
Gao H, Xiao D, Gao L, Li X. MicroRNA‑93 contributes to the suppression of lung inflammatory responses in LPS‑induced acute lung injury in mice via the TLR4/MyD88/NF‑κB signaling pathway. Int J Mol Med 2020; 46:561-570. [PMID: 32468034 PMCID: PMC7307825 DOI: 10.3892/ijmm.2020.4610] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 03/19/2020] [Indexed: 12/12/2022] Open
Abstract
Acute lung injury (ALI) is a severe inflammatory lung disease with a rapid onset. The anti-inflammatory functions of microRNA-93 (miRNA/miR-93) have been described in various types of tissue injury and disease. However, the biological role of miR-93 and its molecular mechanisms underlying the initiation and progression of ALI have not yet been reported, at least to the best of our knowledge. The present study aimed to investigate the regulatory effects exerted by miR-93 in ALI. Using an in vivo murine model of ALI induced by lipopolysaccharide (LPS), miR-93 expression was found to be downregulated in the lung tissues and bronchoalveolar lavage fluid (BALF) compared with the control group. Following agomiR-93 injection, it was observed that agomiR-93 attenuated lung injury, as evidenced by decreased lung permeability, a reduced lung wet/dry weight ratio and an increased survival rate of the mice. Concomitantly, agomiR-93 significantly reduced LPS-induced the interleukin (IL)-6, IL-1β, and tumor necrosis factor (TNF)-α levels in BALF. Of note, Toll-like receptor 4 (TLR4), an upstream regulator of the nuclear factor (NF)-κB signaling pathway, was directly suppressed by miR-93 in RAW 264.7 cells. Importantly, agomiR-93 induced a significant suppression of the TLR4/myeloid differentiation primary response 88 (MyD88)/NF-κB signaling pathway, as demonstrated by the downregulation of MyD88, and the phosphorylation of IκB-α and p65 in the lung tissues of mice with ALI. Taken together, the findings of the present study indicate that miR-93 attenutes LPS-induced lung injury by regulating the TLR4/MyD88/NF-κB signaling pathway, suggesting that miR-93 may prove to be a potential therapeutic target for ALI.
Collapse
Affiliation(s)
- Hu Gao
- Department of Emergency, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610000, P.R. China
| | - Dongqiong Xiao
- Department of Emergency, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610000, P.R. China
| | - Linbo Gao
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610000, P.R. China
| | - Xihong Li
- Department of Emergency, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610000, P.R. China
| |
Collapse
|
29
|
Goodwin AJ, Li P, Halushka PV, Cook JA, Sumal AS, Fan H. Circulating miRNA 887 is differentially expressed in ARDS and modulates endothelial function. Am J Physiol Lung Cell Mol Physiol 2020; 318:L1261-L1269. [PMID: 32321279 DOI: 10.1152/ajplung.00494.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Circulating microRNAs (miRNAs) can be taken up by recipient cells and have been recently associated with the acute respiratory distress syndrome (ARDS). Their role in host predisposition to the syndrome is unknown. The objective of the study was to identify circulating miRNAs associated with the development of sepsis-related ARDS and examine their impact on endothelial cell gene expression and function. We determined miRNA levels in plasma collected from subjects during the first 24 h of admission to a tertiary intensive care unit for sepsis. A miRNA that was differentially expressed between subjects who did and did not develop ARDS was identified and was transfected into human pulmonary microvascular endothelial cells (HPMECs). RNA sequencing, in silico analysis, cytokine expression, and leukocyte migration assays were used to determine the impact of this miRNA on gene expression and cell function. In two cohorts, circulating miR-887-3p levels were elevated in septic patients who developed ARDS compared with those who did not. Transfection of miR-887-3p into HPMECs altered gene expression, including the upregulation of several genes previously associated with ARDS (e.g., CXCL10, CCL5, CX3CL1, VCAM1, CASP1, IL1B, IFNB, and TLR2), and activation of cellular pathways relevant to the response to infection. Functionally, miR-887-3p increased the endothelial release of chemokines and facilitated trans-endothelial leukocyte migration. Circulating miR-887-3p is associated with ARDS in critically ill patients with sepsis. In vitro, miR-887-3p regulates the expression of genes relevant to ARDS and neutrophil tracking. This miRNA may contribute to ARDS pathogenesis and could represent a novel therapeutic target.
Collapse
Affiliation(s)
- Andrew J Goodwin
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Pengfei Li
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Perry V Halushka
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina.,Department of Pharmacology, Medical University of South Carolina, Charleston, South Carolina
| | - James A Cook
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina
| | - Aman S Sumal
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Hongkuan Fan
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
30
|
Forefront: MiR-34a-Knockout Mice with Wild Type Hematopoietic Cells, Retain Persistent Fibrosis Following Lung Injury. Int J Mol Sci 2020; 21:ijms21062228. [PMID: 32210149 PMCID: PMC7139923 DOI: 10.3390/ijms21062228] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/15/2020] [Accepted: 03/19/2020] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRs) are known to limit gene expression at the post-transcriptional level and have important roles in the pathogenesis of various conditions, including acute lung injury (ALI) and fibrotic diseases such as idiopathic pulmonary fibrosis (IPF). In this study, we found increased levels of miR-34 at times of fibrosis resolution following injury, in myofibroblasts from Bleomycin-treated mouse lungs, which correlates with susceptibility to cell death induced by immune cells. On the contrary, a substantial downregulation of miR-34 was detected at stages of evolution, when fibroblasts resist cell death. Concomitantly, we found an inverse correlation between miR-34 levels with that of the survival molecule FLICE-like inhibitory protein (FLIP) in lung myofibroblasts from humans with IPF and the experimental model. Forced upregulation of miR-34 with miR-34 mimic in human IPF fibrotic-lung myofibroblasts led to decreased cell survival through downregulation of FLIP. Using chimeric miR-34 knock-out (KO)-C57BL/6 mice with miR34KO myofibroblasts but wild-type (WT) hematopoietic cells, we found, in contrast to WT mice, increased and persistent FLIP levels with a more severe fibrosis and with no signs of resolution as detected in pathology and collagen accumulation. Moreover, a mimic of miR-34a decreased FLIP expression and susceptibility to cell death was regained in miR-34KO fibroblasts. Through this study, we show for the first time an inverse correlation between miR-34a and FLIP expression in myofibroblasts, which affects survival, and accumulation in lung fibrosis. Reprogramming fibrotic-lung myofibroblasts to regain susceptibility to cell-death by specifically increasing their miR34a and downregulating FLIP, may be a useful strategy, enabling tissue regeneration following lung injury.
Collapse
|
31
|
Chen X, Hu J, Pan Y, Tang Z. Novel noncoding RNAs biomarkers in acute respiratory distress syndrome. Expert Rev Respir Med 2020; 14:299-306. [PMID: 31903804 DOI: 10.1080/17476348.2020.1711736] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Introduction: Acute respiratory distress syndrome (ARDS) is a very common condition associated with critically ill patients, which causes substantial morbidity and mortality. Currently, there is no effective clinical ARDS treatment strategy. Novel targets that effectively treat ARDS need to be found.Areas covered: Data sources were published articles through June 2019 in PubMed using the following keywords: 'acute respiratory distress syndrome,' 'miRNAs,' 'lncRNAs,' and 'biomarkers.' The selection of studies focused on in cellular model, animal model, and clinical studies of ARDS.Expert commentary: Accumulated evidence revealed that some specific miRNAs and lncRNAs could regulate the signaling pathways of the pathophysiology by targeting specific molecule in ARDS. The differentially expressed miRNAs exert a crucial role in apoptosis of neutrophil, antigen-presenting cells and lung epithelial cell, and the dysfunction of mitochondrial. Recently, the influence of lncRNAs upon miRNA function is also rapidly emerging. In some cases, lncRNA MALAT1 target TLR4 to mediate the p38 MAPK and NF-κB signaling pathway in ARDS rat model. In other cases, lncRNA CASC2 was found to act as a ceRNA of miR-144-3p which directly targeted AQP1 in LPS-induced A549 cell. In addition, other miRNA-lncRNA regulatory patterns in ARDS and novel biomarkers still require deeper research.
Collapse
Affiliation(s)
- Xianfeng Chen
- Department of Intensive Care Unit, The First Affiliated Hospital of Guangxi Medical University, Nanning, PR China
| | - Juntao Hu
- Department of Intensive Care Unit, The First Affiliated Hospital of Guangxi Medical University, Nanning, PR China
| | - Yiping Pan
- Department of Intensive Care Unit, The First Affiliated Hospital of Guangxi Medical University, Nanning, PR China
| | - Zhanhong Tang
- Department of Intensive Care Unit, The First Affiliated Hospital of Guangxi Medical University, Nanning, PR China
| |
Collapse
|
32
|
Chen Z, Dong WH, Chen Q, Li QG, Qiu ZM. Downregulation of miR-199a-3p mediated by the CtBP2-HDAC1-FOXP3 transcriptional complex contributes to acute lung injury by targeting NLRP1. Int J Biol Sci 2019; 15:2627-2640. [PMID: 31754335 PMCID: PMC6854378 DOI: 10.7150/ijbs.37133] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 08/27/2019] [Indexed: 02/07/2023] Open
Abstract
Emerging evidence indicates that microRNAs (miRNAs) play fundamental roles in the pathogenesis of multiple diseases, including acute lung injury (ALI). Here, we discovered that miR-199a-3p was significantly downregulated in ALI lung tissues using a microarray analysis. In vitro lipopolysaccharide (LPS) treatment of the human epithelial cell line A549 and the human macrophage cell line U937 caused a decrease of miR-199a-3p. Mechanically, miR-199a-3p specifically bound to the 3'-untranslated region (3'-UTR) of NLRP1 (nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain-containing protein 1), a critical member of inflammasomes. Ectopic overexpression or downregulation of miR-199a-3p resulted in the repression or induction of NLRP1, respectively, thereby downregulating or activating its downstream events. Moreover, transcription factor FOXP3 (forkhead box P3) was able to specifically bind to the promoter of miR-199a-3p. Knockdown or overexpression of FOXP3 resulted in a decrease or induction miR-199a-3p expression, respectively. Using immunoprecipitation (IP), mass spectrometry and co-IP assays, we found that FOXP3 formed a transcriptional complex with HDAC1 (histone deacetylase 1) and CtBP2 (C-terminal-binding protein 2). Collectively, our results suggested that the CtBP2-HDAC1-FOXP3 transcriptional complex (CHFTC) could specifically bind to the promoter of miR-199a-3p and repress its expression. Downregulation of miR-199a-3p eliminated its inhibition of NLRP1, causing activation of NLRP1 and cleavage of pro-IL-1β and pro-IL-18 mediated by Caspase-1. The secretion of IL-1β and IL-18 further aggravated the inflammatory response and resulted in the occurrence of ALI.
Collapse
Affiliation(s)
- Zhi Chen
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China.,Department of Critical Care Medicine, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang 330006, Jiangxi, China
| | - Wei-Hua Dong
- Department of Critical Care Medicine, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang 330006, Jiangxi, China
| | - Qiang Chen
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Qiu-Gen Li
- Department of Pulmonary and Critical Care Medicine, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang 330006, Jiangxi, China
| | - Zhong-Min Qiu
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| |
Collapse
|
33
|
Ma L, Li Z, Li W, Ai J, Chen X. MicroRNA-142-3p suppresses endometriosis by regulating KLF9-mediated autophagy in vitro and in vivo. RNA Biol 2019; 16:1733-1748. [PMID: 31425004 DOI: 10.1080/15476286.2019.1657352] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The detailed pathogenesis of endometriosis remains largely unclear despite decades of research. Recent studies have demonstrated that miRNAs plays an important role in endometriosis. The expression of miR-142-3p was decreased in ectopic endometrial tissues, while KLF9 and VEGFA expression levels were increased. Overexpression of miR-142-3p or knockdown of KLF9 significantly suppressed CRL-7566 cell proliferation and metastasis, induced cell apoptosis, and decreased both cell autophagy and vascularization. Additionally, KLF9 was confirmed to be a direct target of miR-142-3p and to directly bind to the promoter of the VEGFA gene, regulating its expression. Finally, intraperitoneal injection of miR-142-3p lentivirus significantly attenuated ectopic endometriotic lesions in vivo.miR-142-3p directly targeted KLF9, regulated VEGFA expression, and was protective against the growth of ectopic endometriotic lesions. Therefore, the miR-142-3p/KLF9/VEGFA signalling pathway may be a potential target in endometriosis treatment.
Collapse
Affiliation(s)
- Lin Ma
- Reproductive Medicine center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Zaiyi Li
- Reproductive Medicine center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Weihao Li
- Reproductive Medicine center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Jing Ai
- Reproductive Medicine center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xiaoxuan Chen
- Reproductive Medicine center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|