1
|
Xia B, Lu YL, Peng J, Liang JW, Li FQ, Ding JY, Wan CW, Le CY, Dai JL, Jie-Wang, Guo B, Huang J. Galactin-8 DNA methylation mediates macrophage autophagy through the MAPK/mTOR pathway to alleviate atherosclerosis. Sci Rep 2025; 15:603. [PMID: 39747459 DOI: 10.1038/s41598-024-85036-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025] Open
Abstract
DNA methylation modifications are an important mechanism affecting the process of atherosclerosis (AS). Previous studies have shown that Galectin-8 (GAL8) DNA methylation level is associated with sudden death of coronary heart disease or acute events of coronary heart disease. However, the mechanism of GAL8 DNA methylation and gene expression in AS has not been elucidated, prompting us to carry out further research on it. ApoE-/- mice were used to establish an atherosclerosis model, and DNA methylation inhibitor DO05 and MAPK/mTOR inhibitor UO126 were used for intervention. Pyrosequencing was used to detect changes in GAL8 DNA methylation levels of the mouse aorta between groups. ROC curve analysis was performed to assess the relationship between GAL8 DNA methylation and atherosclerosis. Aortic staining with hematoxylin and eosin (H&E) was used to observe the aortic intima, plaque area, and characteristics of secondary lesions within the plaque. Oil Red O staining was used to detect lipid deposition in mouse arterial plaques or macrophages. Movat staining was used to detect the number of foam cells in the plaque. Immunohistochemistry (IHC) and Western blot were used to quantify the localization and expression levels of DNA methyltransferase1 (DNMT1), GAL8, MAPK/mTOR pathway proteins, Light Chain3 (LC3), Beclin1, Sequestosome1 (p62), Tumor Necrosis Factor-α (TNF-α), and other proteins. Immunofluorescence (IF) was used to detect the fluorescence intensity of GAL8, LC3, Monocyte chemoattractant protein-1(MCP-1), and other proteins. Detection of autophagosomes in macrophages by transmission electron microscopy was also performed. The foam cell model was induced with human monocytes (THP-1) and co-cultured with foam cells using siRNAs targeting GAL8, DO05, and UO126. The level of DNMT1 was detected by Western blot; Oil red O staining was used to detect lipid deposition in foam cells in each group, and the localization and expression levels of GAL8, MAPK/mTOR pathway proteins, LC3, Beclin1, p62, and TNF-α were quantitatively determined by Western blot. Immunofluorescence (IF) was used to detect the fluorescence intensity of GAL8, MAPK/mTOR pathway protein, LC3, p62, TNF-α, and other proteins. The GAL-8 promoter region harbors six CpG sites susceptible to DNA methylation. Following DNMT1 inhibition, the DC05 group displayed a significant decrease in methylation across all six CpG sites compared to the C57 and AS groups. Conversely, the UO126 group exhibited increased methylation at the first three CpG loci relative to the AS group. ROC curve analysis revealed GAL8 DNA methylation as an independent risk factor for atherosclerosis: GAL8, along with inflammation-related proteins MCP-1, MMP9, and TNF-α, were upregulated in the mouse lesion group, while expression of autophagy-related proteins LC3 and Beclin1 was downregulated. Additionally, phosphorylated MAPK/mTOR pathway proteins were detected in the mouse model of atherosclerosis. After inhibiting the methylation level of GAL-8 DNA, the expression of GAL-8 was up-regulated, macrophage autophagy was inhibited, inflammation was increased, and atherosclerotic lesions in mice were aggravated. After direct inhibition of the activity of the MAPK/mTOR pathway, macrophage autophagy was further weakened, the inflammatory response was further aggravated, and the atherosclerotic lesions of mice were further aggravated. After the specific knockdown of GAL-8 using siRNA GAL-8 using foam cells, the above phenomenon was reversed, macrophage autophagy was promoted, the inflammatory response was reduced, and the degree of atherosclerosis was alleviated. The degree of GAL8 DNA methylation is related to the progression of atherosclerosis, and its hypomethylation can aggravate atherosclerotic lesions. The mechanism may be through the regulation of MAPK/mTOR pathway to slow down the autophagy of macrophages, and then aggravate the inflammation in plaques. Targeting GAL8 DNA methylation may be a new target for the diagnosis and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Bing Xia
- School of Forensic Medicine, Guizhou Medical University, Guiyang, 550004, China
| | - Yan-Lin Lu
- School of Forensic Medicine, Guizhou Medical University, Guiyang, 550004, China
| | - Jin Peng
- School of Forensic Medicine, Guizhou Medical University, Guiyang, 550004, China
- School of Basic Medicine, Guizhou Medical University, Guiyang, 550004, China
| | - Jing-Wei Liang
- School of Forensic Medicine, Guizhou Medical University, Guiyang, 550004, China
| | - Fang-Qin Li
- School of Forensic Medicine, Guizhou Medical University, Guiyang, 550004, China
| | - Jiu-Yang Ding
- School of Forensic Medicine, Guizhou Medical University, Guiyang, 550004, China
| | - Chang-Wu Wan
- School of Forensic Medicine, Guizhou Medical University, Guiyang, 550004, China
| | - Cui-Yun Le
- School of Forensic Medicine, Guizhou Medical University, Guiyang, 550004, China
| | - Jia-Lin Dai
- School of Forensic Medicine, Guizhou Medical University, Guiyang, 550004, China
| | - Jie-Wang
- School of Forensic Medicine, Guizhou Medical University, Guiyang, 550004, China
| | - Bing Guo
- School of Basic Medicine, Guizhou Medical University, Guiyang, 550004, China.
| | - Jiang Huang
- School of Forensic Medicine, Guizhou Medical University, Guiyang, 550004, China.
| |
Collapse
|
2
|
Fu Y, Jiang J, Wu Y, Cao D, Jia Z, Zhang Y, Li D, Cui Y, Zhang Y, Cao X. Genome-wide 5-hydroxymethylcytosines in circulating cell-free DNA as noninvasive diagnostic markers for gastric cancer. Gastric Cancer 2024; 27:735-746. [PMID: 38584223 DOI: 10.1007/s10120-024-01493-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/14/2024] [Indexed: 04/09/2024]
Abstract
BACKGROUND 5-Hydroxymethylcytosine-enriched gene profiles and regions show tissue-specific and tumor specific. There is a potential value to explore cell-free DNA 5-hydroxymethylcytosine feature biomarkers for early gastric cancer detection. METHODS A matched case‒control study design with 50 gastric cancer patients and 50 controls was performed to sequence the different 5-hydroxymethylcytosine modification features of cell free DNA. Significantly differential 5-hydroxymethylcytosine modification genes were identified to construct a gastric cancer diagnostic model. Data set from GEO was used as an external testing set to test the robustness of the diagnostic model. RESULTS Accounting for more than 90% of 5-hydroxymethylcytosine peaks were distributed in the gene body in both the gastric cancer and control groups. The diagnostic model was developed based on five different 5-hydroxymethylcytosine modification genes, FBXL7, PDE3A, TPO, SNTG2 and STXBP5. The model could effectively distinguish gastric cancer patients from controls in the training (AUC = 0.95, sensitivity = 88.6%, specificity = 94.3%), validation (AUC = 0.87, sensitivity = 73.3%, specificity = 93.3%) and testing (AUC = 0.90, sensitivity = 81.9%, specificity = 90.2%) sets. The risk scores of the controls from the model were significantly lower than those of gastric cancer patients in both our own data (P < 0.001) and GEO external testing data (P < 0.001), and no significant difference between different TNM stage patients (P = 0.09 and 0.66). Furthermore, there was no significant difference between the healthy control and benign gastric disease patients in the testing set from GEO (P = 0.10). CONCLUSIONS The characteristics of 5-hydroxymethylcytosine in cell free DNA are specific to gastric cancer patients, and the diagnostic model constructed by five genes' 5-hydroxymethylcytosine features could effectively identify gastric cancer patients.
Collapse
Affiliation(s)
- Yingli Fu
- Division of Clinical Epidemiology, The First Hospital of Jilin University, Changchun, China
| | - Jing Jiang
- Division of Clinical Epidemiology, The First Hospital of Jilin University, Changchun, China
| | - Yanhua Wu
- Division of Clinical Epidemiology, The First Hospital of Jilin University, Changchun, China
| | - Donghui Cao
- Division of Clinical Epidemiology, The First Hospital of Jilin University, Changchun, China
| | - Zhifang Jia
- Division of Clinical Epidemiology, The First Hospital of Jilin University, Changchun, China
| | - Yangyu Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Dongming Li
- Department of Hospital Infection Management, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yingnan Cui
- Department of Hospital Infection Management, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yuzheng Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
- Department of Hospital Infection Management, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xueyuan Cao
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
3
|
Xia B, Lu Y, Liang J, Li F, Peng J, Wang J, Wan C, Ding J, Le C, Dai J, Guo B, Shen Z. Association of GAL-8 promoter methylation levels with coronary plaque inflammation. Int J Cardiol 2024; 401:131782. [PMID: 38246423 DOI: 10.1016/j.ijcard.2024.131782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/12/2023] [Accepted: 01/14/2024] [Indexed: 01/23/2024]
Abstract
BACKGROUND AND AIMS Coronary heart disease (CHD) is a condition that carries a high risk of mortality and is associated with aging. CHD is characterized by the chronic inflammatory response of the coronary intima. Recent studies have shown that the methylation level of blood mononuclear cell DNA is closely associated with adverse events in CHD, but the roles and mechanisms of DNA methylation in CHD remain elusive. METHODS AND RESULTS In this study, the DNA methylation status within the epigenome of human coronary tissue in the sudden coronary death (SCD) group and control (CON) group of coronary heart disease was analyzed using the Illumina® Infinium Methylation EPIC BeadChip (850 K chip), resulting in the identification of a total of 2553 differentially methylated genes (DMGs). The differentially methylated genes were then subjected to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, and significant differential DNA methylation was found. Among the differentially hypomethylated genes were GAL-8, LTF, and RFPL3, while the highly methylated genes were TMEM9B, ANK3, and C6orF48. These genes were mainly enriched in 10 significantly enriched pathways, such as cell adhesion junctions, among which the differentially methylated gene GAL-8 was involved in inflammatory pathway signaling. For functional analysis of GAL-8, we first examined the differences in GAL-8 promoter methylation levels among different subgroups of human coronary tissue in the CON, CHD, and SCD groups using pyrophosphate sequencing. The results revealed reduced GAL-8 promoter methylation levels in the SCD group, while the difference between the CHD and CON groups was not statistically significant (P > 0.05). The reduced GAL-8 promoter methylation level was associated with upregulated GAL-8 expression, which led to increased expression of the inflammatory markers TNF-α, IL-1β, MCP-1, MIP-2, MMP-2, and MMP-9. This enhanced inflammatory response contributed to the accumulation of foam cells, thickening of the intima of human coronary arteries, and increased luminal stenosis, which promoted the occurrence of sudden coronary death. Next, we found that GAL-8 promoter methylation levels in PBMC were consistent with human coronary tissue. The unstable angina group (UAP) had significantly lower GAL-8 promoter methylation levels than stable angina (SAP) and healthy controls (CON) (P < 0.05), and there was a significant correlation between reduced GAL-8 promoter methylation levels and risk factors for coronary heart disease. These findings highlight the association between decreased GAL-8 promoter methylation and the presence of coronary heart disease risk factors. ROC curve analysis suggests that methylation of the GAL 8 promoter region is an independent risk factor for CHD. In conclusion, our study confirmed differential expression of GAL-8, LTF, MUC4D, TMEM9B, MYOM2, and ANK3 genes due to DNA methylation in the SCD group. We also established the consistency of GAL-8 promoter methylation alterations between human coronary tissue and patient peripheral blood monocytes. The decreased methylation level of the GAL-8 promoter may be related to the increased expression of GAL-8 and the coronary risk factors. CONCLUSIONS Accordingly, we hypothesized that reduced levels of GAL-8 promoter methylation may be an independent risk factor for adverse events in coronary heart disease.
Collapse
Affiliation(s)
- Bing Xia
- Department of Forensic Medicine, Guizhou Medical University, Guiyang 550000, China
| | - Yanlin Lu
- Department of Forensic Medicine, Guizhou Medical University, Guiyang 550000, China; School of Medicine and Science and Technology, Zunyi Medical University, Zunyi 563000, China
| | - Jingwei Liang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang 550000, China
| | - Fangqin Li
- Department of Forensic Medicine, Guizhou Medical University, Guiyang 550000, China
| | - Jin Peng
- Department of Forensic Medicine, Guizhou Medical University, Guiyang 550000, China
| | - Jie Wang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang 550000, China
| | - Changwu Wan
- Department of Forensic Medicine, Guizhou Medical University, Guiyang 550000, China
| | - Jiuyang Ding
- Department of Forensic Medicine, Guizhou Medical University, Guiyang 550000, China
| | - Cuiyun Le
- Department of Forensic Medicine, Guizhou Medical University, Guiyang 550000, China
| | - Jialin Dai
- Department of Forensic Medicine, Guizhou Medical University, Guiyang 550000, China
| | - Bing Guo
- Department of Forensic Medicine, Guizhou Medical University, Guiyang 550000, China; Affiliated Hospital of Guizhou Medical University, Guiyang 550000, China.
| | - Zheng Shen
- Department of Forensic Medicine, Guizhou Medical University, Guiyang 550000, China; Affiliated Hospital of Guizhou Medical University, Guiyang 550000, China.
| |
Collapse
|
4
|
Kamzolas O, Papazoglou AS, Gemousakakis E, Moysidis DV, Kyriakoulis KG, Brilakis ES, Milkas A. Concomitant Coronary Artery Disease in Identical Twins: Case Report and Systematic Literature Review. J Clin Med 2023; 12:5742. [PMID: 37685809 PMCID: PMC10489011 DOI: 10.3390/jcm12175742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
Coronary artery disease (CAD) is multifactorial and strongly affected by genetic, epigenetic and environmental factors. Several studies have reported development of concomitant CAD in identical twins. We report a case in which a pair of Caucasian male monozygotic twins presented almost concomitantly with acute coronary syndrome (ACS) and had concordant coronary anatomy and identical site of occlusion. We performed a systematic literature review of PubMed, Web Of Science and Scopus databases from inception until 28 February 2023 of case reports/case series reporting the concomitant development of CAD in monozygotic twins. We found 25 eligible case reports with a total of 31 monozygotic twin pairs (including the case from our center) suffering from CAD and presenting (most of them simultaneously) with ACS (mean age of presentation: 45 ± 12 years, males: 81%). Coronary angiograms demonstrated lesion and anatomy concordance in 77% and 79% of the twin pairs, respectively. Screening for disease-related genetic mutations was performed in six twin pairs leading to the identification of five CAD-related genetic polymorphisms. This is the first systematic literature review of studies reporting identical twin pairs suffering from CAD. In summary, there is high concordance of coronary anatomy and clinical presentation between monozygotic twins. Future monozygotic twin studies-unbiased by age effects-can provide insights into CAD heritability being able to disentangle the traditional dyad of genetic and environmental factors and investigate the within-pair epigenetic drift.
Collapse
Affiliation(s)
| | | | | | | | | | - Emmanouil S Brilakis
- Center for Coronary Artery Disease, Minneapolis Heart Institute and Minneapolis Heart Institute Foundation, Abbott Northwestern, Minneapolis, MN 55407, USA
| | | |
Collapse
|
5
|
Qiu L, Jing Q, Li Y, Han J. RNA modification: mechanisms and therapeutic targets. MOLECULAR BIOMEDICINE 2023; 4:25. [PMID: 37612540 PMCID: PMC10447785 DOI: 10.1186/s43556-023-00139-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 07/28/2023] [Indexed: 08/25/2023] Open
Abstract
RNA modifications are dynamic and reversible chemical modifications on substrate RNA that are regulated by specific modifying enzymes. They play important roles in the regulation of many biological processes in various diseases, such as the development of cancer and other diseases. With the help of advanced sequencing technologies, the role of RNA modifications has caught increasing attention in human diseases in scientific research. In this review, we briefly summarized the basic mechanisms of several common RNA modifications, including m6A, m5C, m1A, m7G, Ψ, A-to-I editing and ac4C. Importantly, we discussed their potential functions in human diseases, including cancer, neurological disorders, cardiovascular diseases, metabolic diseases, genetic and developmental diseases, as well as immune disorders. Through the "writing-erasing-reading" mechanisms, RNA modifications regulate the stability, translation, and localization of pivotal disease-related mRNAs to manipulate disease development. Moreover, we also highlighted in this review all currently available RNA-modifier-targeting small molecular inhibitors or activators, most of which are designed against m6A-related enzymes, such as METTL3, FTO and ALKBH5. This review provides clues for potential clinical therapy as well as future study directions in the RNA modification field. More in-depth studies on RNA modifications, their roles in human diseases and further development of their inhibitors or activators are needed for a thorough understanding of epitranscriptomics as well as diagnosis, treatment, and prognosis of human diseases.
Collapse
Affiliation(s)
- Lei Qiu
- State Key Laboratory of Biotherapy and Cancer Center, Research Laboratory of Tumor Epigenetics and Genomics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Qian Jing
- State Key Laboratory of Biotherapy and Cancer Center, Research Laboratory of Tumor Epigenetics and Genomics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Yanbo Li
- State Key Laboratory of Biotherapy and Cancer Center, Research Laboratory of Tumor Epigenetics and Genomics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Junhong Han
- State Key Laboratory of Biotherapy and Cancer Center, Research Laboratory of Tumor Epigenetics and Genomics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China.
| |
Collapse
|
6
|
Krolevets M, Cate VT, Prochaska JH, Schulz A, Rapp S, Tenzer S, Andrade-Navarro MA, Horvath S, Niehrs C, Wild PS. DNA methylation and cardiovascular disease in humans: a systematic review and database of known CpG methylation sites. Clin Epigenetics 2023; 15:56. [PMID: 36991458 PMCID: PMC10061871 DOI: 10.1186/s13148-023-01468-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/19/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND Cardiovascular disease (CVD) is the leading cause of death worldwide and considered one of the most environmentally driven diseases. The role of DNA methylation in response to the individual exposure for the development and progression of CVD is still poorly understood and a synthesis of the evidence is lacking. RESULTS A systematic review of articles examining measurements of DNA cytosine methylation in CVD was conducted in accordance with PRISMA (preferred reporting items for systematic reviews and meta-analyses) guidelines. The search yielded 5,563 articles from PubMed and CENTRAL databases. From 99 studies with a total of 87,827 individuals eligible for analysis, a database was created combining all CpG-, gene- and study-related information. It contains 74,580 unique CpG sites, of which 1452 CpG sites were mentioned in ≥ 2, and 441 CpG sites in ≥ 3 publications. Two sites were referenced in ≥ 6 publications: cg01656216 (near ZNF438) related to vascular disease and epigenetic age, and cg03636183 (near F2RL3) related to coronary heart disease, myocardial infarction, smoking and air pollution. Of 19,127 mapped genes, 5,807 were reported in ≥ 2 studies. Most frequently reported were TEAD1 (TEA Domain Transcription Factor 1) and PTPRN2 (Protein Tyrosine Phosphatase Receptor Type N2) in association with outcomes ranging from vascular to cardiac disease. Gene set enrichment analysis of 4,532 overlapping genes revealed enrichment for Gene Ontology molecular function "DNA-binding transcription activator activity" (q = 1.65 × 10-11) and biological processes "skeletal system development" (q = 1.89 × 10-23). Gene enrichment demonstrated that general CVD-related terms are shared, while "heart" and "vasculature" specific genes have more disease-specific terms as PR interval for "heart" or platelet distribution width for "vasculature." STRING analysis revealed significant protein-protein interactions between the products of the differentially methylated genes (p = 0.003) suggesting that dysregulation of the protein interaction network could contribute to CVD. Overlaps with curated gene sets from the Molecular Signatures Database showed enrichment of genes in hemostasis (p = 2.9 × 10-6) and atherosclerosis (p = 4.9 × 10-4). CONCLUSION This review highlights the current state of knowledge on significant relationship between DNA methylation and CVD in humans. An open-access database has been compiled of reported CpG methylation sites, genes and pathways that may play an important role in this relationship.
Collapse
Affiliation(s)
- Mykhailo Krolevets
- Preventive Cardiology and Preventive Medicine, Department of Cardiology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
- Institute of Molecular Biology (IMB), 55128, Mainz, Germany
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- Systems Medicine, Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany
| | - Vincent Ten Cate
- Preventive Cardiology and Preventive Medicine, Department of Cardiology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
- Clinical Epidemiology and Systems Medicine, Center for Thrombosis and Hemostasis (CTH), Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine Main, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Jürgen H Prochaska
- Preventive Cardiology and Preventive Medicine, Department of Cardiology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
- Clinical Epidemiology and Systems Medicine, Center for Thrombosis and Hemostasis (CTH), Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine Main, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Andreas Schulz
- Preventive Cardiology and Preventive Medicine, Department of Cardiology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Steffen Rapp
- Preventive Cardiology and Preventive Medicine, Department of Cardiology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
- Clinical Epidemiology and Systems Medicine, Center for Thrombosis and Hemostasis (CTH), Mainz, Germany
| | - Stefan Tenzer
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Miguel A Andrade-Navarro
- Institute for Immunology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | | | - Christof Niehrs
- Institute of Molecular Biology (IMB), 55128, Mainz, Germany
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
| | - Philipp S Wild
- Preventive Cardiology and Preventive Medicine, Department of Cardiology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany.
- Systems Medicine, Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany.
- Clinical Epidemiology and Systems Medicine, Center for Thrombosis and Hemostasis (CTH), Mainz, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine Main, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
7
|
Sallam M, Mysara M, Benotmane MA, Tamarat R, Santos SCR, Crijns APG, Spoor D, Van Nieuwerburgh F, Deforce D, Baatout S, Guns PJ, Aerts A, Ramadan R. DNA Methylation Alterations in Fractionally Irradiated Rats and Breast Cancer Patients Receiving Radiotherapy. Int J Mol Sci 2022; 23:16214. [PMID: 36555856 PMCID: PMC9783664 DOI: 10.3390/ijms232416214] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Radiation-Induced CardioVascular Disease (RICVD) is an important concern in thoracic radiotherapy with complex underlying pathophysiology. Recently, we proposed DNA methylation as a possible mechanism contributing to RICVD. The current study investigates DNA methylation in heart-irradiated rats and radiotherapy-treated breast cancer (BC) patients. Rats received fractionated whole heart X-irradiation (0, 0.92, 6.9 and 27.6 Gy total doses) and blood was collected after 1.5, 3, 7 and 12 months. Global and gene-specific methylation of the samples were evaluated; and gene expression of selected differentially methylated regions (DMRs) was validated in rat and BC patient blood. In rats receiving an absorbed dose of 27.6 Gy, DNA methylation alterations were detected up to 7 months with differential expression of cardiac-relevant DMRs. Of those, SLMAP showed increased expression at 1.5 months, which correlated with hypomethylation. Furthermore, E2F6 inversely correlated with a decreased global longitudinal strain. In BC patients, E2F6 and SLMAP exhibited differential expression directly and 6 months after radiotherapy, respectively. This study describes a systemic radiation fingerprint at the DNA methylation level, elucidating a possible association of DNA methylation to RICVD pathophysiology, to be validated in future mechanistic studies.
Collapse
Affiliation(s)
- Magy Sallam
- Radiobiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre, SCK CEN, 2400 Mol, Belgium; (M.S.); (M.M.); (M.A.B.); (S.B.); (A.A.)
- Laboratory of Physiopharmacology, University of Antwerp, 2610 Wilrijk, Belgium;
| | - Mohamed Mysara
- Radiobiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre, SCK CEN, 2400 Mol, Belgium; (M.S.); (M.M.); (M.A.B.); (S.B.); (A.A.)
| | - Mohammed Abderrafi Benotmane
- Radiobiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre, SCK CEN, 2400 Mol, Belgium; (M.S.); (M.M.); (M.A.B.); (S.B.); (A.A.)
| | - Radia Tamarat
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PRP-HOM, SRBE, LR2I, 92260 Fontenay-aux-Roses, France;
| | - Susana Constantino Rosa Santos
- Centro Cardiovascular da Universidade de Lisboa (CCUL@RISE), Lisbon School of Medicine of the Universidade de Lisboa, 1649-028 Lisbon, Portugal;
| | - Anne P. G. Crijns
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (A.P.G.C.); (D.S.)
| | - Daan Spoor
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (A.P.G.C.); (D.S.)
| | - Filip Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Ghent University, 9000 Ghent, Belgium; (F.V.N.); (D.D.)
| | - Dieter Deforce
- Laboratory of Pharmaceutical Biotechnology, Ghent University, 9000 Ghent, Belgium; (F.V.N.); (D.D.)
| | - Sarah Baatout
- Radiobiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre, SCK CEN, 2400 Mol, Belgium; (M.S.); (M.M.); (M.A.B.); (S.B.); (A.A.)
- Department of Molecular Biotechnology, Ghent University, 9000 Ghent, Belgium
| | - Pieter-Jan Guns
- Laboratory of Physiopharmacology, University of Antwerp, 2610 Wilrijk, Belgium;
| | - An Aerts
- Radiobiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre, SCK CEN, 2400 Mol, Belgium; (M.S.); (M.M.); (M.A.B.); (S.B.); (A.A.)
| | - Raghda Ramadan
- Radiobiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre, SCK CEN, 2400 Mol, Belgium; (M.S.); (M.M.); (M.A.B.); (S.B.); (A.A.)
| |
Collapse
|
8
|
Guo Z, Wang L, Liu H, Xie Y. Innate Immune Memory in Monocytes and Macrophages: The Potential Therapeutic Strategies for Atherosclerosis. Cells 2022; 11:4072. [PMID: 36552836 PMCID: PMC9776628 DOI: 10.3390/cells11244072] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/28/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Atherosclerosis is a complex metabolic disease characterized by the dysfunction of lipid metabolism and chronic inflammation in the intimal space of the vessel. As the most abundant innate immune cells, monocyte-derived macrophages play a pivotal role in the inflammatory response, cholesterol metabolism, and foam cell formation. In recent decades, it has been demonstrated that monocytes and macrophages can establish innate immune memory (also termed trained immunity) via endogenous and exogenous atherogenic stimuli and exhibit a long-lasting proinflammatory phenotype. The important cellular metabolism processes, including glycolysis, oxidative phosphorylation (OXPHOS), the tricarboxylic acid (TCA) cycle, fatty acid synthesis, and cholesterol synthesis, are reprogrammed. Trained monocytes/macrophages with innate immune memory can be persistently hyperactivated and can undergo extensive epigenetic rewiring, which contributes to the pathophysiological development of atherosclerosis via increased proinflammatory cytokine production and lipid accumulation. Here, we provide an overview of the regulation of cellular metabolic processes and epigenetic modifications of innate immune memory in monocytes/macrophages as well as the potential endogenous and exogenous stimulations involved in the progression of atherosclerosis that have been reported recently. These elucidations might be beneficial for further understanding innate immune memory and the development of therapeutic strategies for inflammatory diseases and atherosclerosis.
Collapse
Affiliation(s)
- Zhigang Guo
- Huanghe Science and Technology College, Zhengzhou 450006, China
| | - Lixue Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai’an 271018, China
| | - Hongjian Liu
- Department of Pharmacy, The Second Affiliated Hospital of Shandong First Medical University, Tai’an 271000, China
| | - Yuhuai Xie
- Huanghe Science and Technology College, Zhengzhou 450006, China
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
9
|
RNA modifications in aging-associated cardiovascular diseases. Aging (Albany NY) 2022; 14:8110-8136. [PMID: 36178367 PMCID: PMC9596201 DOI: 10.18632/aging.204311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 09/17/2022] [Indexed: 11/25/2022]
Abstract
Cardiovascular disease (CVD) is a leading cause of morbidity and mortality worldwide that bears an enormous healthcare burden and aging is a major contributing factor to CVDs. Functional gene expression network during aging is regulated by mRNAs transcriptionally and by non-coding RNAs epi-transcriptionally. RNA modifications alter the stability and function of both mRNAs and non-coding RNAs and are involved in differentiation, development, and diseases. Here we review major chemical RNA modifications on mRNAs and non-coding RNAs, including N6-adenosine methylation, N1-adenosine methylation, 5-methylcytidine, pseudouridylation, 2′ -O-ribose-methylation, and N7-methylguanosine, in the aging process with an emphasis on cardiovascular aging. We also summarize the currently available methods to detect RNA modifications and the bioinformatic tools to study RNA modifications. More importantly, we discussed the specific implication of the RNA modifications on mRNAs and non-coding RNAs in the pathogenesis of aging-associated CVDs, including atherosclerosis, hypertension, coronary heart diseases, congestive heart failure, atrial fibrillation, peripheral artery disease, venous insufficiency, and stroke.
Collapse
|
10
|
Fakhrolmobasheri M, Shiravi A, Zeinalian M. SARS-CoV-2 Interaction with Human DNA Methyl Transferase 1: A Potential Risk for Increasing the Incidence of Later Chronic Diseases in the Survived Patients. Int J Prev Med 2022; 13:23. [PMID: 35392323 PMCID: PMC8980824 DOI: 10.4103/ijpvm.ijpvm_628_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 06/27/2021] [Indexed: 11/26/2022] Open
Abstract
Currently, the COVID-19 pandemic is the most discussed subject in medical researches worldwide. As the knowledge is expanded about the disease, more hypotheses become created. A recent study on the viral protein interaction map revealed that SARS-CoV-2 open reading frame 8 (ORF8) interacts with human DNA methyl transferase1 (DNMT1), an active epigenetic agent in DNA methylation. Moreover, DNMT1 is a contributor to a variety of chronic diseases which could cause some epigenetic dysregulation in infected cells, especially leukocytes, pancreatic beta, and endothelial cells. Regarding the fact that epigenetic alterations have a partial, but not completely reversible phenomena, it raises the question that if this interaction may cause long-term complications such as diabetes, atherosclerosis, cancer, and autoimmune diseases. Accordingly, long follow-up studies on the recovered patients from COVID-19 are recommended.
Collapse
Affiliation(s)
- Mohammad Fakhrolmobasheri
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amirabbas Shiravi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehrdad Zeinalian
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.,Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Diseases, Isfahan University of Medical Sciences, Isfahan, Iran.,Iranians Cancer Control Charity Institute (MACSA), Isfahan, Iran
| |
Collapse
|
11
|
Chae CW, Choi GE, Jung YH, Lim JR, Cho JH, Yoon JH, Han HJ. High glucose-mediated VPS26a downregulation dysregulates neuronal amyloid precursor protein processing and tau phosphorylation. Br J Pharmacol 2022; 179:3934-3950. [PMID: 35297035 DOI: 10.1111/bph.15836] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 02/07/2022] [Accepted: 02/19/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND AND PURPOSE The relationship between hyperglycaemia-induced retromer dysfunction impairing intracellular trafficking and AD remains unclear, although Diabetes mellitus (DM) is considered a risk factor for Alzheimer's disease (AD). Here, we investigated the effects of high glucose on the retromer, and defined the dysregulation of mechanisms of amyloid precursor protein (APP) processing and tau phosphorylation. EXPERIMENTAL APPROACH We used human induced-pluripotent stem cell-derived neuronal differentiated cells and SH-SY5Ys exposed to high glucose to identify the underlying mechanisms. Streptozotocin-induced diabetic mice were used to elucidate whether the retromer contributes to the AD-like pathology. KEY RESULTS We found that vacuolar protein sorting-associated protein 26a (VPS26a) was decreased in the hippocampus of diabetic mice and high glucose-treated human neuronal cells. High glucose downregulated VPS26a through ROS/NF-κB/DNA methyltransferase1-mediated promoter hypermethylation. VPS26a recovery blocked retention of APP and cation-independent mannose-6-phosphate receptor in endosomes and promoted transport to the trans-Golgi, which decreased Aβ levels, and improved Cathepsin D activity, reducing p-tau levels, respectively. Retromer enhancement ameliorated synaptic deficits, astrocyte over-activation, and cognitive impairment in diabetic mice. CONCLUSION AND IMPLICATIONS In conclusion, VPS26a is a promising candidate for the inhibition of DM-associated AD pathogenesis by modulating APP processing and tau phosphorylation.
Collapse
Affiliation(s)
- Chang Woo Chae
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 Four Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, Republic of Korea
| | - Gee Euhn Choi
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 Four Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, Republic of Korea
| | - Young Hyun Jung
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 Four Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, Republic of Korea
| | - Jae Ryong Lim
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 Four Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, Republic of Korea
| | - Ji Hyeon Cho
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 Four Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, Republic of Korea
| | - Jee Hyeon Yoon
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 Four Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, Republic of Korea
| | - Ho Jae Han
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 Four Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
12
|
Sallam M, Benotmane MA, Baatout S, Guns PJ, Aerts A. Radiation-induced cardiovascular disease: an overlooked role for DNA methylation? Epigenetics 2022; 17:59-80. [PMID: 33522387 PMCID: PMC8812767 DOI: 10.1080/15592294.2021.1873628] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/27/2020] [Accepted: 01/04/2021] [Indexed: 11/25/2022] Open
Abstract
Radiotherapy in cancer treatment involves the use of ionizing radiation for cancer cell killing. Although radiotherapy has shown significant improvements on cancer recurrence and mortality, several radiation-induced adverse effects have been documented. Of these adverse effects, radiation-induced cardiovascular disease (CVD) is particularly prominent among patients receiving mediastinal radiotherapy, such as breast cancer and Hodgkin's lymphoma patients. A number of mechanisms of radiation-induced CVD pathogenesis have been proposed such as endothelial inflammatory activation, premature endothelial senescence, increased ROS and mitochondrial dysfunction. However, current research seems to point to a so-far unexamined and potentially novel involvement of epigenetics in radiation-induced CVD pathogenesis. Firstly, epigenetic mechanisms have been implicated in CVD pathophysiology. In addition, several studies have shown that ionizing radiation can cause epigenetic modifications, especially DNA methylation alterations. As a result, this review aims to provide a summary of the current literature linking DNA methylation to radiation-induced CVD and thereby explore DNA methylation as a possible contributor to radiation-induced CVD pathogenesis.
Collapse
Affiliation(s)
- Magy Sallam
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
- Laboratory of Physiopharmacology, University of Antwerp, Wilrijk, Belgium
| | - Mohammed Abderrafi Benotmane
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
- Department of Molecular Biotechnology, Ghent University, Ghent, Belgium
| | - Pieter-Jan Guns
- Laboratory of Physiopharmacology, University of Antwerp, Wilrijk, Belgium
| | - An Aerts
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| |
Collapse
|
13
|
Dai J, Leung M, Guan W, Guo HT, Krasnow RE, Wang TJ, El-Rifai W, Zhao Z, Reed T. Whole-Genome Differentially Hydroxymethylated DNA Regions among Twins Discordant for Cardiovascular Death. Genes (Basel) 2021; 12:genes12081183. [PMID: 34440357 PMCID: PMC8392630 DOI: 10.3390/genes12081183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 07/26/2021] [Accepted: 07/29/2021] [Indexed: 12/19/2022] Open
Abstract
Epigenetics is a mechanism underlying cardiovascular disease. It is unknown whether DNA hydroxymethylation is prospectively associated with the risk for cardiovascular death independent of germline and common environment. Male twin pairs middle-aged in 1969–1973 and discordant for cardiovascular death through December 31, 2014, were included. Hydroxymethylation was quantified in buffy coat DNA collected in 1986–1987. The 1893 differentially hydroxymethylated regions (DhMRs) were identified after controlling for blood leukocyte subtypes and age among 12 monozygotic (MZ) pairs (Benjamini–Hochberg False Discovery Rate < 0.01), of which the 102 DhMRs were confirmed with directionally consistent log2-fold changes and p < 0.01 among additional 7 MZ pairs. These signature 102 DhMRs, independent of the germline, were located on all chromosomes except for chromosome 21 and the Y chromosome, mainly within/overlapped with intergenic regions and introns, and predominantly hyper-hydroxymethylated. A binary linear classifier predicting cardiovascular death among 19 dizygotic pairs was identified and equivalent to that generated from MZ via the 2D transformation. Computational bioinformatics discovered pathways, phenotypes, and DNA motifs for these DhMRs or their subtypes, suggesting that hydroxymethylation was a pathophysiological mechanism underlying cardiovascular death that might be influenced by genetic factors and warranted further investigations of mechanisms of these signature regions in vivo and in vitro.
Collapse
Affiliation(s)
- Jun Dai
- Department of Public Health, College of Health Sciences, Des Moines University, Des Moines, IA 50312, USA
- Correspondence: ; Tel.: +1-515-271-1367
| | - Ming Leung
- Institute for Personalized Medicine, Penn State College of Medicine, Hershey, PA 17033, USA;
| | - Weihua Guan
- Division of Biostatistics, University of Minnesota School of Public Health, Minneapolis, MN 55455, USA;
| | - Han-Tian Guo
- Bioinformatics and Computational Biology Undergraduate Program, Iowa State University, Ames, IA 50011, USA;
| | - Ruth E. Krasnow
- Center for Health Sciences, SRI International, Menlo Park, CA 94025, USA;
| | - Thomas J. Wang
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Wael El-Rifai
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA;
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Terry Reed
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| |
Collapse
|
14
|
Dogan MV, Knight S, Dogan TK, Knowlton KU, Philibert R. External validation of integrated genetic-epigenetic biomarkers for predicting incident coronary heart disease. Epigenomics 2021; 13:1095-1112. [PMID: 34148365 PMCID: PMC8356680 DOI: 10.2217/epi-2021-0123] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/07/2021] [Indexed: 12/27/2022] Open
Abstract
Aim: The Framingham Risk Score (FRS) and atherosclerotic cardiovascular disease (ASCVD) Pooled Cohort Equation (PCE) for predicting risk for incident coronary heart disease (CHD) work poorly. To improve risk stratification for CHD, we developed a novel integrated genetic-epigenetic tool. Materials & methods: Using machine learning techniques and datasets from the Framingham Heart Study (FHS) and Intermountain Healthcare (IM), we developed and validated an integrated genetic-epigenetic model for predicting 3-year incident CHD. Results: Our approach was more sensitive than FRS and PCE and had high generalizability across cohorts. It performed with sensitivity/specificity of 79/75% in the FHS test set and 75/72% in the IM set. The sensitivity/specificity was 15/93% in FHS and 31/89% in IM for FRS, and sensitivity/specificity was 41/74% in FHS and 69/55% in IM for PCE. Conclusion: The use of our tool in a clinical setting could better identify patients at high risk for a heart attack.
Collapse
Affiliation(s)
- Meeshanthini V Dogan
- Cardio Diagnostics, Inc., Coralville, IA 52241, USA
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52242, USA
| | - Stacey Knight
- Intermountain Heart Institute, Intermountain Healthcare, Salt Lake City, UT 84103, USA
- Department of Medicine, University of Utah, Salt Lake City, UT 84112, USA
| | | | - Kirk U Knowlton
- Intermountain Heart Institute, Intermountain Healthcare, Salt Lake City, UT 84103, USA
| | - Robert Philibert
- Cardio Diagnostics, Inc., Coralville, IA 52241, USA
- Department of Psychiatry, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
15
|
Lin D, Zhang X, Zhang C, Jin Q, Jiang L. LncRNA-TCONS_00034812 is upregulated in atherosclerosis and upregulates miR-21 through methylation in vascular smooth muscle cells. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1005. [PMID: 34277805 PMCID: PMC8267259 DOI: 10.21037/atm-21-2632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/16/2021] [Indexed: 12/14/2022]
Abstract
Background LncRNA-TCONS_00034812 is a critical player in the proliferation of aortic smooth muscle cells. It is known that artery injury plays an important role in atherosclerosis. However, the potential implication of LncRNA-TCONS_00034812 in atherosclerosis remains unclear. In this study, we collected artery specimens from patients with atherosclerosis and healthy controls to investigate the involvement of LncRNA-TCONS_00034812 in atherosclerosis. Methods Sixty patients with atherosclerosis and 60 controls, admitted at The First Hospital of Changsha (Changsha, China), between March 2017 and March 2019, were included. An artery biopsy was performed on all participants to obtain the artery specimens. Real-time quantitative PCR were performed to quantify the relative expression level of LncRNA-TCONS_00034812. Its role in atherosclerotic lesion was evaluated in (high fat diet) HFD-induced ApoE−/− mice. Moreover, human aortic smooth muscle cells (HAOSMCs) was employed to study functional role of LncRNA-TCONS_00034812 overexpression and knockdown by methylation-specific PCR and cell proliferation assay. Results Overexpression of TCONS_00034812 resulted in miR-21 upregulation and a decrease of miR-21 gene methylation. In contrast, silencing of TCONS_00034812 caused miR-21 downregulation and an increase of miR-21 gene methylation. Cell proliferation analysis indicated that the overexpression of TCONS_00034812 and miR-21 promoted cell proliferation, while silencing of TCONS_00034812 played an opposite role. Moreover, miR-21 overexpression weakened the effects of silencing TCONS_00034812 on cell proliferation. Conclusions In summary, LncRNA-TCONS_00034812 is upregulated in atherosclerotic samples, and its overexpression upregulates miR-21 through methylation in human aortic smooth muscle cells (HAOSMCs). Our study indicates that LncRNA-TCONS_00034812 could serve as a potential biomarker for diagnosis of atherosclerosis.
Collapse
Affiliation(s)
- Dongsheng Lin
- Department of Cardiovascular Medicine, The First Hospital of Changsha, Changsha, China
| | - Xian Zhang
- Department of Cardiovascular Medicine, The People's Hospital of Zhangjiajie, Zhangjiajie, China
| | - Chiyuan Zhang
- Department of Cardiovascular Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Qiao Jin
- Department of Cardiovascular Medicine, University of South China Affiliated Changsha Central Hospital, Changsha, China
| | - Luping Jiang
- Department of Cardiovascular Medicine, University of South China Affiliated Changsha Central Hospital, Changsha, China
| |
Collapse
|
16
|
Fischer MA, Vondriska TM. Clinical epigenomics for cardiovascular disease: Diagnostics and therapies. J Mol Cell Cardiol 2021; 154:97-105. [PMID: 33561434 PMCID: PMC8330446 DOI: 10.1016/j.yjmcc.2021.01.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/05/2021] [Accepted: 01/10/2021] [Indexed: 12/28/2022]
Abstract
The study of epigenomics has advanced in recent years to span the regulation of a single genetic locus to the structure and orientation of entire chromosomes within the nucleus. In this review, we focus on the challenges and opportunities of clinical epigenomics in cardiovascular disease. As an integrator of genetic and environmental inputs, and because of advances in measurement techniques that are highly reproducible and provide sequence information, the epigenome is a rich source of potential biosignatures of cardiovascular health and disease. Most of the studies to date have focused on the latter, and herein we discuss observations on epigenomic changes in human cardiovascular disease, examining the role of protein modifiers of chromatin, noncoding RNAs and DNA modification. We provide an overview of cardiovascular epigenomics, discussing the challenges of data sovereignty, data analysis, doctor-patient ethics and innovations necessary to implement precision health.
Collapse
Affiliation(s)
- Matthew A Fischer
- Department of Anesthesiology & Perioperative Medicine, David Geffen School of Medicine at UCLA, USA.
| | - Thomas M Vondriska
- Department of Anesthesiology & Perioperative Medicine, David Geffen School of Medicine at UCLA, USA
| |
Collapse
|
17
|
Pasyukova EG, Symonenko AV, Rybina OY, Vaiserman AM. Epigenetic enzymes: A role in aging and prospects for pharmacological targeting. Ageing Res Rev 2021; 67:101312. [PMID: 33657446 DOI: 10.1016/j.arr.2021.101312] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/05/2021] [Accepted: 02/25/2021] [Indexed: 02/06/2023]
Abstract
The development of interventions aimed at improving healthspan is one of the priority tasks for the academic and public health authorities. It is also the main objective of a novel branch in biogerontological research, geroscience. According to the geroscience concept, targeting aging is an effective way to combat age-related disorders. Since aging is an exceptionally complex process, system-oriented integrated approaches seem most appropriate for such an interventional strategy. Given the high plasticity and adaptability of the epigenome, epigenome-targeted interventions appear highly promising in geroscience research. Pharmaceuticals targeted at mechanisms involved in epigenetic control of gene activity are actively developed and implemented to prevent and treat various aging-related conditions such as cardiometabolic, neurodegenerative, inflammatory disorders, and cancer. In this review, we describe the roles of epigenetic mechanisms in aging; characterize enzymes contributing to the regulation of epigenetic processes; particularly focus on epigenetic drugs, such as inhibitors of DNA methyltransferases and histone deacetylases that may potentially affect aging-associated diseases and longevity; and discuss possible caveats associated with the use of epigenetic drugs.
Collapse
Affiliation(s)
- Elena G Pasyukova
- Institute of Molecular Genetics of National Research Centre "Kurchatov Institute", Kurchatov Sq. 2, Moscow, 123182, Russia
| | - Alexander V Symonenko
- Institute of Molecular Genetics of National Research Centre "Kurchatov Institute", Kurchatov Sq. 2, Moscow, 123182, Russia
| | - Olga Y Rybina
- Institute of Molecular Genetics of National Research Centre "Kurchatov Institute", Kurchatov Sq. 2, Moscow, 123182, Russia; Federal State Budgetary Educational Institution of Higher Education «Moscow Pedagogical State University», M. Pirogovskaya Str. 1/1, Moscow, 119991, Russia
| | | |
Collapse
|
18
|
Ultra performance liquid chromatography-tandem mass spectrometry assay for the quantification of RNA and DNA methylation. J Pharm Biomed Anal 2021; 197:113969. [PMID: 33636646 DOI: 10.1016/j.jpba.2021.113969] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 01/17/2021] [Accepted: 02/09/2021] [Indexed: 02/08/2023]
Abstract
Previous studies have reported that nucleic acid methylation is a critical element in cardiovascular disease, and most studies mainly focused on sequencing and biochemical research. Here we developed an Ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/ MS) method for the quantification analysis of the dissociative epigenetic modified nucleosides (5mdC, 5mrC, m6A) in Myocardial Infarction (MI) SD rats from different periods (1 week, 4 weeks, 8 weeks) after the surgery. The samples for analysis were obtained from heart tissue and blood of the rats. All the quantification results are compared with the sham-operated group. Total RNA and DNA were isolated by enzymatic hydrolytic methods before the UPLC-MS/MS analysis. The statistical analysis demonstrates the dynamic changes of modified nucleosides in MI rats, and it showed good specificity, accuracy, stability and less samples were needed in the method. In this paper, we discovered that the concentration of 5mdC, 5mrC, m6A from heart tissue significantly increased at 8 weeks after the surgery. Furthermore, UPLC-MS/MS helps us observe the similar change of the concentration of those 3 methylated biomarkers in peripheral blood after 8 weeks. The result shows that the dynamic process of those 3 methylated biomarkers in peripheral blood is related to the content of methylated biomarkers from the heart tissue. Based on the scientific evidence available, we proved that the methylation of genetic materials in peripheral blood is similar to myocardial infarction tissue. The relation between them indicates that peripheral blood could be a promising alternative to the heart tissue which monitor the level of methylation and MI diagnosis-aided.
Collapse
|
19
|
Hou H, Zhao H. Epigenetic factors in atherosclerosis: DNA methylation, folic acid metabolism, and intestinal microbiota. Clin Chim Acta 2020; 512:7-11. [PMID: 33232735 DOI: 10.1016/j.cca.2020.11.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/07/2020] [Accepted: 11/10/2020] [Indexed: 12/11/2022]
Abstract
Atherosclerosis is a complex disease, influenced by both genetic and non-genetic factors. The most important epigenetic mechanism in the pathogenesis of atherosclerosis is DNA methylation, which involves modification of the gene without changes in the gene sequence. Nutrients involved in one-carbon metabolism interact to regulate DNA methylation, especially folic acid and B vitamins. Deficiencies in folic acid and other nutrients, such as vitamins B6 and B12, can increase homocysteine levels, induce endothelial dysfunction, and accelerate atherosclerotic pathological processes. Supplemented nutrients can improve DNA methylation status, reduce levels of inflammatory factors, and delay the process of atherosclerosis. In this review, the influence of intestinal flora on folate metabolism and epigenetics is also considered.
Collapse
Affiliation(s)
- Huimin Hou
- Department of Geriatrics, The First Hospital of Jilin University, Changchun 130021, China
| | - Huiying Zhao
- Department of Geriatrics, The First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
20
|
Wang Z, Li C, Sun X, Li Z, Li J, Wang L, Sun Y. Hypermethylation of miR-181b in monocytes is associated with coronary artery disease and promotes M1 polarized phenotype via PIAS1-KLF4 axis. Cardiovasc Diagn Ther 2020; 10:738-751. [PMID: 32968630 DOI: 10.21037/cdt-20-407] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background Dysregulated microRNAs are involved in the macrophage polarization and atherosclerotic development. Apart from microRNAs, alteration in DNA methylation is considered as one of the most frequent epigenetic changes. The purpose of the research is to investigate the altered methylation status of miR-181b in the circulating monocytes from patients with coronary artery disease (CAD) and explore the underlying mechanisms. Methods We examined the methylation status of miR-181b in purified circulating monocytes from patients with CAD and healthy controls. We then transfected monocytes with miR-181b mimics and determined the role of miR-181b on the phenotypic switch of macrophages and inflammatory response. DNA methylation levels determined by MethyLight PCR and pyrosequencing at the promoter of miR-181b significantly increased in CAD patients. Based on TargetScan database, we identified PIAS1 as the target gene of miR-181b and explored the interaction of miR-181b and PIAS1 by Dual-Luciferase assay, quantitative PCR and immunoblots. We also investigated the role of miR-181b and PIAS1 on macrophage polarization and inflammation. Results Hypermethylation at the promoter of miR-181b directly contributed to the decrease of miR-181b activity and expression. Overexpression of miR-181b reduced M1 polarization and facilitated M2 polarization determined by quantitative PCR. While knockdown of PIAS1 induced KLF4 degradation and SUMOylation in monocytes, miR-181b mimics reverse the KLF4 SUMOylation via suppression of PIAS1. Moreover, KLF4 SUMOylation by PIAS1 reversed M1 polarization induced by depletion of miR-181b in monocytes. Conclusions Hypermethylation of miR-181b induces M1 polarization and promotes atherosclerosis through activation of PIAS1 and KLF4 SUMOylation in macrophages.
Collapse
Affiliation(s)
- Zhonghua Wang
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chunlei Li
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinyong Sun
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhuqin Li
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jia Li
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lanfeng Wang
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yanming Sun
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
21
|
de la Rocha C, Zaina S, Lund G. Is Any Cardiovascular Disease-Specific DNA Methylation Biomarker Within Reach? Curr Atheroscler Rep 2020; 22:62. [DOI: 10.1007/s11883-020-00875-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
22
|
Xu Y. TET2 expedites coronary heart disease by promoting microRNA-126 expression and inhibiting the E2F3-PI3K-AKT axis. Biochem Cell Biol 2020; 98:698-708. [PMID: 32818384 DOI: 10.1139/bcb-2020-0297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
DNA demethylases of the ten-eleven translocation (TET) family serve as tumor suppressors in various human cancers, but their pathogenic effects in coronary heart disease (CHD) remain unclear. Here we report that TET2 is transcriptionally upregulated in CHD patients, where it shows potential as a diagnostic tool. Mechanistic investigations revealed that TET2 facilitates inflammatory responses and cardiomyocyte apoptosis in rats through demethylation of microRNA-126 (miR-126) promoter. This interaction leads to sequestration of miR-126 from its target E2F transcription factor 3 (E2F3), contributing to E2F3 suppression in CHD. Upregulation of miR-126 when TET2 was silenced restored levels of inflammatory factors and aggravated the degree of cardiac injury and cardiomyocyte apoptosis in rats. By contrast, simultaneous overexpression of E2F3 and miR-126 reduced the levels of inflammatory factors, cardiac injury, and cardiomyocyte apoptosis in rats. Also, TET2 was found to regulate the activity of the PI3K-AKT pathway through the miR-126-E2F3 axis. Our findings uncover a novel function for TET2 in facilitating the progression of CHD.
Collapse
Affiliation(s)
- Yan Xu
- Department of Internal Medicine-Cardiovascular, the People's Hospital of Rizhao City, Rizhao 276800, Shandong, P.R. China.,Department of Internal Medicine-Cardiovascular, the People's Hospital of Rizhao City, Rizhao 276800, Shandong, P.R. China
| |
Collapse
|
23
|
Chen WD, Song T, Cao QH, Li R, Wang H, Chen XB, Chen ZT. Atherosclerosis prediction by microarray-based DNA methylation analysis. Exp Ther Med 2020; 20:2863-2869. [PMID: 32765783 DOI: 10.3892/etm.2020.9025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 04/29/2020] [Indexed: 12/23/2022] Open
Abstract
Using a series of DNA methylation analysis, pathogenesis was investigated to identify the specific DNA methylation markers for diagnosing atherosclerosis. Firstly, with the chip platform of Illumina Human Methylation 450 BeadChip, a total of 1,458 CpGs, covering 971 differential methylated genes were extracted with stringent filtering criteria. Secondly, hierarchical clustering as a heat map was used to check on the dependability of differential methylated genes. Thirdly, the related GO terms and pathways were enriched by up- and down-methylated genes, respectively, after verifying the capacity of these differential methylated genes to distinguish between atherosclerosis and healthy controls. In total, 971 differential DNA methylated genes were identified (1,458 CpGs). Several important function regions were also identified, including cell adhesion, PI3K-Akt signaling pathway and transcription from RNA polymerase II promoter. This study indicates that patients with atherosclerosis have high levels of DNA methylation, which is promising for early diagnosis and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Wei-da Chen
- Health Care Department, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China.,Health Care Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011, P.R. China
| | - Ting Song
- Health Care Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011, P.R. China
| | - Qiu-Hong Cao
- Department of Anesthesiology, Jinan Center Hospital, Jinan, Shandong 250013, P.R. China
| | - Rui Li
- Health Care Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011, P.R. China
| | - Hua Wang
- Health Care Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011, P.R. China
| | - Xiu-Bao Chen
- Health Care Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011, P.R. China
| | - Ze-Tao Chen
- Health Care Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011, P.R. China
| |
Collapse
|
24
|
Gosselt HR, Griffioen PH, van Zelst BD, Oosterom N, de Jonge R, Heil SG. Global DNA (hydroxy)methylation is stable over time under several storage conditions and temperatures. Epigenetics 2020; 16:45-53. [PMID: 32614650 PMCID: PMC7889142 DOI: 10.1080/15592294.2020.1786318] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Background: Epigenetic markers are often quantified and related to disease in stored samples. While, effects of storage on stability of these markers have not been thoroughly examined. In this longitudinal study, we investigated the influence of storage time, material, temperature, and freeze-thaw cycles on stability of global DNA (hydroxy)methylation. Methods: EDTA blood was collected from 90 individuals. Blood (n = 30, group 1) and extracted DNA (n = 30, group 2) were stored at 4°C, −20°C and −80°C for 0, 1 (endpoint blood 4°C), 6, 12 or 18 months. Additionally, freeze-thaw cycles of blood and DNA samples (n = 30, group 3) were performed over three days. Global DNA methylation and hydroxymethylation (mean ± SD) were quantified using liquid chromatography–electrospray ionization–tandem mass spectrometry (LC-ESI-MS/MS) with between-run precision of 2.8% (methylation) and 6.3% (hydroxymethylation). Effects on stability were assessed using linear mixed models. Results: global DNA methylation was stable over 18 months in blood at −20°C and −80°C and DNA at 4°C and −80°C. However, at 18 months DNA methylation from DNA stored at −20°C relatively decreased −6.1% compared to baseline. Global DNA hydroxymethylation was more stable in DNA samples compared to blood, independent of temperature (p = 0.0131). Stability of global DNA methylation and hydroxymethylation was not affected up to three freeze – thaw cycles. Conclusion: Global DNA methylation and hydroxymethylation stored as blood and DNA can be used for epigenetic studies. The relevance of small differences occuring during storage depend on the expected effect size and research question.
Collapse
Affiliation(s)
- Helen R Gosselt
- Department of Clinical Chemistry, Erasmus MC, University Medical Center Rotterdam , Rotterdam, The Netherlands.,Department of Clinical Chemistry, Amsterdam Gastroenterology and Metabolism, Amsterdam UMC, Vrije Universiteit Amsterdam , Amsterdam, The Netherlands
| | - Pieter H Griffioen
- Department of Clinical Chemistry, Erasmus MC, University Medical Center Rotterdam , Rotterdam, The Netherlands
| | - Bertrand D van Zelst
- Department of Clinical Chemistry, Erasmus MC, University Medical Center Rotterdam , Rotterdam, The Netherlands
| | - Natanja Oosterom
- Department of Clinical Chemistry, Erasmus MC, University Medical Center Rotterdam , Rotterdam, The Netherlands
| | - Robert de Jonge
- Department of Clinical Chemistry, Amsterdam Gastroenterology and Metabolism, Amsterdam UMC, Vrije Universiteit Amsterdam , Amsterdam, The Netherlands
| | - Sandra G Heil
- Department of Clinical Chemistry, Erasmus MC, University Medical Center Rotterdam , Rotterdam, The Netherlands
| |
Collapse
|
25
|
Jiang D, Wang Y, Chang G, Duan Q, You L, Sun M, Hu C, Gao L, Wu S, Tao H, Lu K, Zhang D. DNA hydroxymethylation combined with carotid plaques as a novel biomarker for coronary atherosclerosis. Aging (Albany NY) 2020; 11:3170-3181. [PMID: 31123222 PMCID: PMC6555448 DOI: 10.18632/aging.101972] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 05/12/2019] [Indexed: 01/05/2023]
Abstract
Little is known about the diagnostic value of DNA methylation and hydroxymethylation for coronary atherosclerosis. Carotid plaque is a common marker for coronary atherosclerosis. Our aim is to determine whether DNA methylation and hydroxymethylation combined with carotid plaques can be useful to the diagnosis of coronary atherosclerosis. The 5-methylcytosine (5-mC) and 5-hydroxymethylcytosine (5-hmC) levels from peripheral blood mononuclear cells (PBMCs) were measured in 113 enrolled patients. Crouse score and Gensini score were used to evaluate the severity of carotid and coronary atherosclerosis, respectively. With the increasing of severity of carotid plaque, a stepwise upward trend was observed in 5-mC and 5-hmC levels from PBMCs, which were significantly correlated with the risk factors, Crouse score and Gensini score. Crouse score and 5-hmC, not 5-mC, were the risk factors for coronary atherosclerosis after adjustment for the risk factors (the history of diabetes, FPG and HbA1c). Receiver operating characteristic (ROC) analysis indicated that 5-hmC combined with Crouse score was the diagnostic biomarker for coronary atherosclerosis, with the highest areas under the curve (AUC) for 0.980 (0.933–0.997), valuable sensitivity for 96.23% and specificity for 91.67%. These findings suggest 5-hmC level combined with Crouse score may provide the meaningful information for coronary atherosclerosis diagnosis.
Collapse
Affiliation(s)
- Dan Jiang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, China.,Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, China
| | - Ying Wang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, China
| | - Guanglei Chang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, China
| | - Qin Duan
- Department of Cardiology, The First Branch of the First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, China
| | - Linna You
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, China
| | - Min Sun
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, China
| | - Chunxiao Hu
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, China.,Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, China
| | - Lei Gao
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, China.,Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, China
| | - Shiyong Wu
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, China.,Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, China
| | - Hongmei Tao
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, China
| | - Kai Lu
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, China
| | - Dongying Zhang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, China
| |
Collapse
|
26
|
Salameh Y, Bejaoui Y, El Hajj N. DNA Methylation Biomarkers in Aging and Age-Related Diseases. Front Genet 2020; 11:171. [PMID: 32211026 PMCID: PMC7076122 DOI: 10.3389/fgene.2020.00171] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 02/13/2020] [Indexed: 12/11/2022] Open
Abstract
Recent research efforts provided compelling evidence of genome-wide DNA methylation alterations in aging and age-related disease. It is currently well established that DNA methylation biomarkers can determine biological age of any tissue across the entire human lifespan, even during development. There is growing evidence suggesting epigenetic age acceleration to be strongly linked to common diseases or occurring in response to various environmental factors. DNA methylation based clocks are proposed as biomarkers of early disease risk as well as predictors of life expectancy and mortality. In this review, we will summarize key advances in epigenetic clocks and their potential application in precision health. We will also provide an overview of progresses in epigenetic biomarker discovery in Alzheimer's, type 2 diabetes, and cardiovascular disease. Furthermore, we will highlight the importance of prospective study designs to identify and confirm epigenetic biomarkers of disease.
Collapse
Affiliation(s)
| | | | - Nady El Hajj
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| |
Collapse
|
27
|
Chen JJ, Tao J, Zhang XL, Xia LZ, Zeng JF, Zhang H, Wei DH, Lv YC, Li GH, Wang Z. Inhibition of the ox-LDL-Induced Pyroptosis by FGF21 of Human Umbilical Vein Endothelial Cells Through the TET2-UQCRC1-ROS Pathway. DNA Cell Biol 2020; 39:661-670. [PMID: 32101022 DOI: 10.1089/dna.2019.5151] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Fibroblast growth factor 21 (FGF21) is a hormone-like member of the FGF family that is associated with cell death in atherosclerosis. However, its underlying mechanisms remain unclear. In this study, the effect of FGF21 on endothelial cell pyroptosis and its potential mechanisms were investigated. Results showed that FGF21 inhibits oxidized low-density lipoprotein (ox-LDL)-induced pyroptosis and related molecular expression in human umbilical vein endothelial cells (HUVECs). Mitochondrial function was damaged by ox-LDL and restored by FGF21. A mechanism proved that ubiquinol cytochrome c reductase core protein I (UQCRC1) was downregulated by ox-LDL and upregulated by FGF21. Further, the silencing of UQCRC1 aggravated HUVEC pyroptosis and impaired mitochondrial function and reactive oxygen species (ROS) production. Moreover, Tet methylcytosine dioxygenase (TET2) was involved in the regulation of UQCRC1 expression and pyroptosis. In summary, FGF21 inhibited ox-LDL-induced HUVEC pyroptosis through the TET2-UQCRC1-ROS pathway.
Collapse
Affiliation(s)
- Jiao-Jiao Chen
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Jun Tao
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | | | - Lin-Zhen Xia
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Jun-Fa Zeng
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Hai Zhang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Dang-Heng Wei
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Yun-Cheng Lv
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang, Hunan, China
| | - Guo-Hua Li
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Zuo Wang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| |
Collapse
|
28
|
Association of N 6-methyladenine DNA with plaque progression in atherosclerosis via myocardial infarction-associated transcripts. Cell Death Dis 2019; 10:909. [PMID: 31797919 PMCID: PMC6892866 DOI: 10.1038/s41419-019-2152-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/01/2019] [Accepted: 11/05/2019] [Indexed: 01/14/2023]
Abstract
Modification of the novel N6-methyladenine (m6A) DNA implicates this epigenetic mark in human malignant disease, but its role in atherosclerosis (AS) is largely unknown. Here, we found that the leukocyte level of m6A but not 5mC DNA modification was decreased with increasing of carotid plaque size and thickness in 207 AS patients as compared with 142 sex- and age-matched controls. Serum low-density lipoprotein (LDL) and leukocyte m6A levels were associated with the progression of carotid plaque size and thickness. Both LDL level and plaque thickness were also independently and negatively related to m6A level. Reduced m6A level was further confirmed in leukocytes and endothelium in western diet-induced AS mice and in oxidized-LDL (ox-LDL)-treated human endothelium and monocyte cells. Decreased m6A level was closely related to the upregulation of AlkB homolog 1 (ALKBH1), the demethylase of m6A. Silencing of ALKBH1 or hypoxia-inducible factor 1α (HIF1α) could rescue the ox-LDL–increased level of MIAT, a hypoxia-response gene. Mechanically, ox-LDL induced HIF1α for transfer into the nucleus. Nuclear HIF1α bound to the ALKBH1-demethylated MIAT promoter and transcriptionally upregulated its expression. Therefore, elevated ALKBH1 level in endothelium and leukocytes reduced m6A level, which is a novel and sensitive biomarker for AS progression.
Collapse
|
29
|
Soler-Botija C, Gálvez-Montón C, Bayés-Genís A. Epigenetic Biomarkers in Cardiovascular Diseases. Front Genet 2019; 10:950. [PMID: 31649728 PMCID: PMC6795132 DOI: 10.3389/fgene.2019.00950] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 09/05/2019] [Indexed: 12/16/2022] Open
Abstract
Cardiovascular diseases are the number one cause of death worldwide and greatly impact quality of life and medical costs. Enormous effort has been made in research to obtain new tools for efficient and quick diagnosis and predicting the prognosis of these diseases. Discoveries of epigenetic mechanisms have related several pathologies, including cardiovascular diseases, to epigenetic dysregulation. This has implications on disease progression and is the basis for new preventive strategies. Advances in methodology and big data analysis have identified novel mechanisms and targets involved in numerous diseases, allowing more individualized epigenetic maps for personalized diagnosis and treatment. This paves the way for what is called pharmacoepigenetics, which predicts the drug response and develops a tailored therapy based on differences in the epigenetic basis of each patient. Similarly, epigenetic biomarkers have emerged as a promising instrument for the consistent diagnosis and prognosis of cardiovascular diseases. Their good accessibility and feasible methods of detection make them suitable for use in clinical practice. However, multicenter studies with a large sample population are required to determine with certainty which epigenetic biomarkers are reliable for clinical routine. Therefore, this review focuses on current discoveries regarding epigenetic biomarkers and its controversy aiming to improve the diagnosis, prognosis, and therapy in cardiovascular patients.
Collapse
Affiliation(s)
- Carolina Soler-Botija
- Heart Failure and Cardiac Regeneration (ICREC) Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Badalona, Spain
- CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
| | - Carolina Gálvez-Montón
- Heart Failure and Cardiac Regeneration (ICREC) Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Badalona, Spain
- CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
| | - Antoni Bayés-Genís
- Heart Failure and Cardiac Regeneration (ICREC) Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Badalona, Spain
- CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
- Cardiology Service, HUGTiP, Badalona, Spain
- Department of Medicine, Barcelona Autonomous University (UAB), Badalona, Spain
| |
Collapse
|
30
|
Prasher D, Greenway SC, Singh RB. The impact of epigenetics on cardiovascular disease. Biochem Cell Biol 2019; 98:12-22. [PMID: 31112654 DOI: 10.1139/bcb-2019-0045] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mortality and morbidity from cardiovascular diseases (CVDs) represents a huge burden to society. It is recognized that environmental factors and individual lifestyles play important roles in disease susceptibility, but the link between these external risk factors and our genetics has been unclear. However, the discovery of sequence-independent heritable DNA changes (epigenetics) have helped us to explain the link between genes and the environment. Multiple diverse epigenetic processes, including DNA methylation, histone modification, and the expression of non-coding RNA molecules affect the expression of genes that produce important changes in cellular differentiation and function, influencing the health and adaptability of the organism. CVDs such as congenital heart disease, cardiomyopathy, heart failure, cardiac fibrosis, hypertension, and atherosclerosis are now being viewed as much more complex and dynamic disorders. The role of epigenetics in these and other CVDs is currently under intense scrutiny, and we can expect important insights to emerge, including novel biomarkers and new approaches to enable precision medicine. This review summarizes the recent advances in our understanding of the role of epigenetics in CVD.
Collapse
Affiliation(s)
- Dimple Prasher
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Steven C Greenway
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada.,Department of Pediatrics and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada.,Department of Cardiac Sciences and Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Raja B Singh
- Alberta Epigenetics Network, 3512-33 Street, NW, Suite 200, Calgary, AB, Canada.,University of Alberta, Faculty of Medicine and Dentistry, Edmonton, AB T2L 2A6, Canada
| |
Collapse
|