1
|
Zhang X, Tian X, Wang Y, Yan Y, Wang Y, Su M, Lv H, Li K, Hao X, Xing X, Song S. Application of lipopolysaccharide in establishing inflammatory models. Int J Biol Macromol 2024; 279:135371. [PMID: 39244120 DOI: 10.1016/j.ijbiomac.2024.135371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/25/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
Lipopolysaccharide (LPS), a unique component of the outer membrane of Gram-negative bacteria, possesses immune-activating properties. It induces an immune response by stimulating host cells to produce a lot of inflammatory cytokines with a thermogenic effect, which may cause an inflammatory response. In the past few decades, the structure and function of LPS and its mechanism leading to inflammation have been extensively analyzed. Since LPS can cause inflammation, it is often used to establish inflammation models. These models are crucial in the study of inflammatory diseases that pose a serious threat to human health. In addition, the non-pro-inflammatory effects of LPS under certain circumstances are also being studied widely. This review summarizes the methods by which LPS has been used to establish inflammatory models at the cellular and animal levels to study related diseases. It also introduces in detail the evaluation indicators necessary for the successful establishment of these models, providing a reference for future research.
Collapse
Affiliation(s)
- Xiao Zhang
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| | - Xiao Tian
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| | - Yan Wang
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| | - Yong Yan
- JD Berry Agricultural Development Co., Ltd, Weihai, Shandong 264209, China.
| | - Yuan Wang
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| | - Meicai Su
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| | - Haifei Lv
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| | - Kaitao Li
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| | - Xiaobin Hao
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| | - Xiang Xing
- Marine College, Shandong University, Weihai, Shandong 264209, China; Weihai Research Institute of Industrial Technology, Shandong University, Weihai 264209, China.
| | - Shuliang Song
- Marine College, Shandong University, Weihai, Shandong 264209, China; Weihai Research Institute of Industrial Technology, Shandong University, Weihai 264209, China.
| |
Collapse
|
2
|
Zheng Z, Zhao M, Xu Y, Zhang J, Peng S, Liu J, Pan W, Yin Z, Wei C, Qin JJ, Wan J, Wang M. Resolvin D2/GPR 18 axis ameliorates pressure overload-induced heart failure by inhibiting pro-inflammatory macrophage polarization. J Lipid Res 2024:100679. [PMID: 39490925 DOI: 10.1016/j.jlr.2024.100679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 10/14/2024] [Accepted: 10/18/2024] [Indexed: 11/05/2024] Open
Abstract
Accumulating evidence has revealed that chronic unresolved inflammation can cause significant tissue damage and can be a key mediator of advanced heart failure (HF). Resolvin (Rv) D2, a member of specialized pro-resolving lipid mediators (SPMs), plays a protective role in various diseases by facilitating resolution. However, whether RvD2 participates in the pathogenesis of HF is still unclear. Our study demonstrated that RvD2 treatment mitigated cardiac remodeling and improved cardiac function in HF mice induced by pressure overload. The absence of G protein-coupled receptor 18 (GPR18), an endogenous receptor for RvD2, abolished the beneficial effects of RvD2 on HF. Additionally, RvD2 inhibited inflammatory responses and Ly6Chigh macrophage polarization during both early and late inflammatory stages involved in HF. Further investigation revealed that bone marrow transplantation from GPR18 deficient mice into WT mice blocked the protective effects of RvD2 in HF mice. Moreover, GPR18 deficiency impeded RvD2's capacity to downregulate inflammatory responses and Ly6Chigh macrophage polarization. Consistent with experiments in vivo, RvD2 treatment in bone marrow-derived macrophages (BMDMs) reduced inflammatory responses through its receptor GPR18. Mechanistically, RvD2 suppressed the phosphorylation of STAT1 and NF-κB p65, and the effects of RvD2 were reversed by the application of STAT1 or NF-κB p65 agonists in BMDMs. In conclusion, RvD2/GPR18 axis improved cardiac remodeling and function in pressure overload-induced HF mice by modulating macrophages phenotype via STAT1 and NF-κB p65 pathways. Our findings underscore the anti-inflammatory potential of RvD2/GPR18 axis, which may be a promising strategy for reducing the burden of HF.
Collapse
Affiliation(s)
- Zihui Zheng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Mengmeng Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yao Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jishou Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Shanshan Peng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jianfang Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Wei Pan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Zheng Yin
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Cheng Wei
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Juan-Juan Qin
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan, China; Center for Healthy Aging, Wuhan University School of Nursing, Wuhan, China.
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China.
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China.
| |
Collapse
|
3
|
Sun S, Yang D, Lv J, Xia H, Mao Z, Chen X, Gao Y. Pharmacological effects of specialized pro-resolving mediators in sepsis-induced organ dysfunction: a narrative review. Front Immunol 2024; 15:1444740. [PMID: 39372413 PMCID: PMC11451296 DOI: 10.3389/fimmu.2024.1444740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/30/2024] [Indexed: 10/08/2024] Open
Abstract
Sepsis is a life-threatening syndrome of organ dysfunction, characterized by uncontrolled inflammatory response and immune dysregulation, often leading to multiple organ failure and even death. Specialized pro-resolving mediators (SPMs), which are typically thought to be formed via consecutive steps of oxidation of polyenoic fatty acids, have been shown to suppress inflammation and promote timely resolution of inflammation. They are mainly divided into four categories: lipoxins, resolvins, protectins, and maresins. The SPMs may improve the prognosis of sepsis by modulating the immune and inflammatory balance, thereby holding promise for clinical applications. However, their biosynthetic and pharmacological properties are very complex. Through a literature review, we aim to comprehensively elucidate the protective mechanisms of different SPMs in sepsis and its organ damage, in order to provide sufficient theoretical basis for the future clinical translation of SPMs.
Collapse
Affiliation(s)
- Shujun Sun
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
- Department of Pain, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dong Yang
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
- Department of Pain, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Lv
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Haifa Xia
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Zhangyan Mao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
- Department of Pain, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangdong Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Yafen Gao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| |
Collapse
|
4
|
Zhang J, Liu S, Ding W, Wan J, Qin JJ, Wang M. Resolution of inflammation, an active process to restore the immune microenvironment balance: A novel drug target for treating arterial hypertension. Ageing Res Rev 2024; 99:102352. [PMID: 38857706 DOI: 10.1016/j.arr.2024.102352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 05/11/2024] [Accepted: 05/27/2024] [Indexed: 06/12/2024]
Abstract
The resolution of inflammation, the other side of the inflammatory response, is defined as an active and highly coordinated process that promotes the restoration of immune microenvironment balance and tissue repair. Inflammation resolution involves several key processes, including dampening proinflammatory signaling, specialized proresolving lipid mediator (SPM) production, nonlipid proresolving mediator production, efferocytosis and regulatory T-cell (Treg) induction. In recent years, increasing attention has been given to the effects of inflammation resolution on hypertension. Furthermore, our previous studies reported the antihypertensive effects of SPMs. Therefore, in this review, we aim to summarize and discuss the detailed association between arterial hypertension and inflammation resolution. Additional, the association between gut microbe-mediated immune and hypertension is discussed. This findings suggested that accelerating the resolution of inflammation can have beneficial effects on hypertension and its related organ damage. Exploring novel drug targets by focusing on various pathways involved in accelerating inflammation resolution will contribute to the treatment and control of hypertensive diseases in the future.
Collapse
Affiliation(s)
- Jishou Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Siqi Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Wen Ding
- Department of Cardiology, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China; Department of Radiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China.
| | - Juan-Juan Qin
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China; Center for Healthy Aging, Wuhan University School of Nursing, Wuhan, China.
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China.
| |
Collapse
|
5
|
Li M, Sun Y, Liu B, Xue Y, Zhu M, Zhang K, Jing Y, Ding H, Liang Y, Zhou H, Dong C. Association between plasma maresin 1 and the risk of atherosclerotic cardiovascular disease in Chinese adults: A community-based cohort study. Nutr Metab Cardiovasc Dis 2024; 34:1631-1638. [PMID: 38653673 DOI: 10.1016/j.numecd.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/26/2024] [Accepted: 03/11/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND AND AIMS It has been reported that maresin 1 (MaR1) is able to protect against the development of atherogenesis in cellular and animal models. This study was performed to investigate whether plasma MaR1 is associated with the risk of atherosclerotic cardiovascular disease (ASCVD) at the population level. METHODS AND RESULTS The study included 2822 non-ASCVD participants from a community-based cohort who were followed for about 8 years. Hazard ratios (HRs) and 95% confidence intervals (95% CIs) for ASCVD events according to baseline MaR1 quartiles were calculated using the Cox proportional hazards model. During follow-up, a total of 290 new ASCVD cases were identified. The restricted cubic spline analysis indicated a linear dose-response association between plasma MaR1 and incident ASCVD. In addition, the adjusted-HR (95% CI) for ASCVD events associated with one standard deviation increase in MaR1 was 0.79 (0.68-0.91). Moreover, the adjusted-HRs (95% CIs) for ASCVD events associated with the second, third and fourth quartiles versus the first quartile of plasma MaR1 were 1.00, 1.04 (0.76, 1.42), 0.88 (0.64, 1.22) and 0.58 (0.41, 0.84), respectively. Mediation analyses showed that the association between MaR1 and incident ASCVD was partially mediated by small dense low-density lipoprotein cholesterol, with a mediation proportion of 9.23%. Further, the net reclassification improvement and integrated discrimination improvement of ASCVD risk were significantly improved when MaR1 was added to basic model established by conventional risk factors (all p < 0.01). CONCLUSIONS Elevated plasma MaR1 concentrations are associated with a lower risk of ASCVD development.
Collapse
Affiliation(s)
- Mengyuan Li
- Department of Epidemiology and Statistics, School of Public Health, Jiangsu Key Laboratory and Translational Medicine for Chronic Non-communicable Disease, Medical College of Soochow University, Soochow, China
| | - Yajun Sun
- Huai'an No 3 People's Hospital, Huai'an, China
| | - Bingyue Liu
- Department of Epidemiology and Statistics, School of Public Health, Jiangsu Key Laboratory and Translational Medicine for Chronic Non-communicable Disease, Medical College of Soochow University, Soochow, China
| | - Yong Xue
- Huai'an No 3 People's Hospital, Huai'an, China
| | - Mengya Zhu
- Huai'an No 3 People's Hospital, Huai'an, China
| | - Kexin Zhang
- Department of Epidemiology and Statistics, School of Public Health, Jiangsu Key Laboratory and Translational Medicine for Chronic Non-communicable Disease, Medical College of Soochow University, Soochow, China
| | - Yang Jing
- Suzhou Industrial Park Centers for Disease Control and Prevention, Soochow, China
| | - Hongzhan Ding
- Department of Epidemiology and Statistics, School of Public Health, Jiangsu Key Laboratory and Translational Medicine for Chronic Non-communicable Disease, Medical College of Soochow University, Soochow, China
| | - Yanyu Liang
- Department of Epidemiology and Statistics, School of Public Health, Jiangsu Key Laboratory and Translational Medicine for Chronic Non-communicable Disease, Medical College of Soochow University, Soochow, China
| | - Hui Zhou
- Suzhou Industrial Park Centers for Disease Control and Prevention, Soochow, China.
| | - Chen Dong
- Department of Epidemiology and Statistics, School of Public Health, Jiangsu Key Laboratory and Translational Medicine for Chronic Non-communicable Disease, Medical College of Soochow University, Soochow, China.
| |
Collapse
|
6
|
Amaro-Prellezo E, Gómez-Ferrer M, Hakobyan L, Ontoria-Oviedo I, Peiró-Molina E, Tarazona S, Salguero P, Ruiz-Saurí A, Selva-Roldán M, Vives-Sanchez R, Sepúlveda P. Extracellular vesicles from dental pulp mesenchymal stem cells modulate macrophage phenotype during acute and chronic cardiac inflammation in athymic nude rats with myocardial infarction. Inflamm Regen 2024; 44:25. [PMID: 38807194 PMCID: PMC11134765 DOI: 10.1186/s41232-024-00340-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/23/2024] [Indexed: 05/30/2024] Open
Abstract
BACKGROUND/AIMS Extracellular vesicles (EVs) derived from dental pulp mesenchymal stem cells (DP-MSCs) are a promising therapeutic option for the treatment of myocardial ischemia. The aim of this study is to determine whether MSC-EVs could promote a pro-resolving environment in the heart by modulating macrophage populations. METHODS EVs derived from three independent biopsies of DP-MSCs (MSC-EVs) were isolated by tangential flow-filtration and size exclusion chromatography and were characterized by omics analyses. Biological processes associated with these molecules were analyzed using String and GeneCodis platforms. The immunomodulatory capacity of MSC-EVs to polarize macrophages towards a pro-resolving or M2-like phenotype was assessed by evaluating surface markers, cytokine production, and efferocytosis. The therapeutic potential of MSC-EVs was evaluated in an acute myocardial infarction (AMI) model in nude rats. Infarct size and the distribution of macrophage populations in the infarct area were evaluated 7 and 21 days after intramyocardial injection of MSC-EVs. RESULTS Lipidomic, proteomic, and miRNA-seq analysis of MSC-EVs revealed their association with biological processes involved in tissue regeneration and regulation of the immune system, among others. MSC-EVs promoted the differentiation of pro-inflammatory macrophages towards a pro-resolving phenotype, as evidenced by increased expression of M2 markers and decreased secretion of pro-inflammatory cytokines. Administration of MSC-EVs in rats with AMI limited the extent of the infarcted area at 7 and 21 days post-infarction. MSC-EV treatment also reduced the number of pro-inflammatory macrophages within the infarct area, promoting the resolution of inflammation. CONCLUSION EVs derived from DP-MSCs exhibited similar characteristics at the omics level irrespective of the biopsy from which they were derived. All MSC-EVs exerted effective pro-resolving responses in a rat model of AMI, indicating their potential as therapeutic agents for the treatment of inflammation associated with AMI.
Collapse
Affiliation(s)
- Elena Amaro-Prellezo
- Regenerative Medicine and Heart Transplantation Unit, Health Research Institute Hospital La Fe, Avda. Fernando Abril Martorell 106, Valencia, 46026, Spain
| | - Marta Gómez-Ferrer
- Regenerative Medicine and Heart Transplantation Unit, Health Research Institute Hospital La Fe, Avda. Fernando Abril Martorell 106, Valencia, 46026, Spain
| | - Lusine Hakobyan
- Regenerative Medicine and Heart Transplantation Unit, Health Research Institute Hospital La Fe, Avda. Fernando Abril Martorell 106, Valencia, 46026, Spain
- Department of Analytical Chemistry, Faculty of Chemistry, University of Valencia, Valencia, 46100, Spain
| | - Imelda Ontoria-Oviedo
- Regenerative Medicine and Heart Transplantation Unit, Health Research Institute Hospital La Fe, Avda. Fernando Abril Martorell 106, Valencia, 46026, Spain
| | - Esteban Peiró-Molina
- Regenerative Medicine and Heart Transplantation Unit, Health Research Institute Hospital La Fe, Avda. Fernando Abril Martorell 106, Valencia, 46026, Spain
- Hospital Universitari I Politècnic La Fe, Valencia, 46026, Spain
| | - Sonia Tarazona
- Department of Applied Statistics and Operations Research and Quality, Universitat Politècnica de València, Valencia, 46022, Spain
| | - Pedro Salguero
- Department of Applied Statistics and Operations Research and Quality, Universitat Politècnica de València, Valencia, 46022, Spain
| | - Amparo Ruiz-Saurí
- Department of Pathology, University of Valencia, Valencia, 46010, Spain
| | - Marta Selva-Roldán
- Regenerative Medicine and Heart Transplantation Unit, Health Research Institute Hospital La Fe, Avda. Fernando Abril Martorell 106, Valencia, 46026, Spain
| | - Rosa Vives-Sanchez
- Regenerative Medicine and Heart Transplantation Unit, Health Research Institute Hospital La Fe, Avda. Fernando Abril Martorell 106, Valencia, 46026, Spain
| | - Pilar Sepúlveda
- Regenerative Medicine and Heart Transplantation Unit, Health Research Institute Hospital La Fe, Avda. Fernando Abril Martorell 106, Valencia, 46026, Spain.
- Hospital Universitari I Politècnic La Fe, Valencia, 46026, Spain.
- Department of Pathology, University of Valencia, Valencia, 46010, Spain.
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), III Institute of Health, Madrid, Carlos, Spain.
| |
Collapse
|
7
|
Sun Y, Sun S, Chen P, Dai Y, Yang D, Lin Y, Yi L. Maresins as novel anti-inflammatory actors and putative therapeutic targets in sepsis. Pharmacol Res 2024; 202:107113. [PMID: 38387744 DOI: 10.1016/j.phrs.2024.107113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/19/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Sepsis, a complex clinical syndrome characterized by an exaggerated host response to infection, often necessitates hospitalization and intensive care unit admission. Delayed or inaccurate diagnosis of sepsis, coupled with suboptimal treatment strategies, can result in unfavorable outcomes, including mortality. Maresins, a newly discovered family of lipid mediators synthesized from docosahexaenoic acid by macrophages, have emerged as key players in promoting inflammation resolution and the termination of inflammatory processes. Extensive evidence has unequivocally demonstrated the beneficial effects of maresins in modulating the inflammatory response associated with sepsis; however, their bioactivity and functions exhibit remarkable diversity and complexity. This article presents a comprehensive review of recent research on the role of maresins in sepsis, aiming to enhance our understanding of their effectiveness and elucidate the specific mechanisms underlying their actions in sepsis treatment. Furthermore, emerging insights into the management of patients with sepsis are also highlighted.
Collapse
Affiliation(s)
- Yan Sun
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Shujun Sun
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China; Department of Pain, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Pu Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Yan Dai
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Dong Yang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China; Department of Pain, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yun Lin
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Lisha Yi
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China.
| |
Collapse
|
8
|
Xing Y, Gao Z, Bai Y, Wang W, Chen C, Zheng Y, Meng Y. Golgi Protein 73 Promotes LPS-Induced Cardiac Dysfunction via Mediating Myocardial Apoptosis and Autophagy. J Cardiovasc Pharmacol 2024; 83:116-125. [PMID: 37755435 DOI: 10.1097/fjc.0000000000001487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 09/02/2023] [Indexed: 09/28/2023]
Abstract
ABSTRACT Sepsis-induced cardiac dysfunction represents a major cause of high mortality in intensive care units with limited therapeutic options. Golgi protein 73 (GP73) has been implicated in various diseases. However, the role of GP73 in lipopolysaccharide (LPS)-induced cardiac dysfunction is unclear. In this study, we established a sepsis-induced cardiac dysfunction model by LPS administration in wild-type and GP73 knockout ( GP73-/- ) mice. We found that GP73 was increased in LPS-treated mouse hearts and LPS-cultured neonatal rat cardiomyocytes (NRCMs). Knockout of GP73 alleviated myocardial injury and improved cardiac dysfunction. Moreover, depletion of GP73 in NRCMs relieved LPS-induced cardiomyocyte apoptosis and activated myocardial autophagy. Therefore, GP73 is a negative regulator in LPS-induced cardiac dysfunction by promoting cardiomyocyte apoptosis and inhibiting cardiomyocyte autophagy.
Collapse
Affiliation(s)
- Yaqi Xing
- Department of Pathology, Capital Medical University, Beijing, China
| | - Zhenqiang Gao
- Department of Pathology, Capital Medical University, Beijing, China
| | - Yunfei Bai
- Department of Pathology, Capital Medical University, Beijing, China
| | - Wen Wang
- Department of Pathology, Capital Medical University, Beijing, China
- National Demonstration Center for Experimental Basic Medical Education, Experimental Teaching Center of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Chen Chen
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China; and
| | - Yuanyuan Zheng
- Department of Pharmacology, Capital Medical University, Beijing, China
| | - Yan Meng
- Department of Pathology, Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Sun S, Wang L, Wang J, Chen R, Pei S, Yao S, Lin Y, Yao C, Xia H. Maresin1 prevents sepsis-induced acute liver injury by suppressing NF-κB/Stat3/MAPK pathways, mitigating inflammation. Heliyon 2023; 9:e21883. [PMID: 38027581 PMCID: PMC10665730 DOI: 10.1016/j.heliyon.2023.e21883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/21/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
Aims The treatment of sepsis remains challenging and the liver is a non-neglectful target of sepsis-induced injury. Uncontrolled inflammatory responses exert a central role in the pathophysiological process of sepsis-induced acute liver injury (SI-ALI). Maresin1 (MaR1) is a derivative of omega-3 docosahexaenoic acid (DHA), which has been shown to have anti-inflammatory effects and is effective in a variety of sepsis-related diseases. This study aimed to determine the effect of MaR1 on cecal ligation and puncture (CLP)-caused SI-ALI and explore its possible mechanisms. Main methods Mice were subjected to CLP, and then intravenously injected via tail vein with low-dose MaR1 (0.5 ng, 200 μL) or high-dose MaR1 (1 ng, 200 μL) or sterile normal saline (NS) (200 μL) 1 h later. Then, the survival rate, body weight change, liver function, bacterial load, neutrophil infiltration, and inflammatory cytokines were detected. Results MaR1 significantly increased the 7-day survival rate and reduced the bacterial load in peritoneal lavage fluid and blood in a dose-dependent manner in mice with SI-ALI. Treatment with MaR1 could also restore the function of the liver in septic mice. Besides, MaR1 exerted anti-inflammatory effects by decreasing the expression of pro-inflammatory molecules (TNF-α, IL-6 and IL-1β), bacterial load, and neutrophil infiltration and increasing the expression of anti-inflammatory molecules (IL-10). Significance Our experimental results showed that MaR1 alleviated liver injury induced by sepsis. This work highlighted a potential clinic use of MaR1 in treating acute inflammation of SI-ALI, but also provided new insight into the underlying molecular mechanism.
Collapse
Affiliation(s)
- Shujun Sun
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Li Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Jiamei Wang
- Wuhan Institute of Biological Products Co. Ltd, Wuhan, 430022, China
| | - Rui Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Shuaijie Pei
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Shanglong Yao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Yun Lin
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Chengye Yao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Haifa Xia
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| |
Collapse
|
10
|
Videla LA, Valenzuela R, Del Campo A, Zúñiga-Hernández J. Omega-3 Lipid Mediators: Modulation of the M1/M2 Macrophage Phenotype and Its Protective Role in Chronic Liver Diseases. Int J Mol Sci 2023; 24:15528. [PMID: 37958514 PMCID: PMC10647594 DOI: 10.3390/ijms242115528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 11/15/2023] Open
Abstract
The complex interplay between dietary factors, inflammation, and macrophage polarization is pivotal in the pathogenesis and progression of chronic liver diseases (CLDs). Omega-3 fatty acids (FAs) have brought in attention due to their potential to modulate inflammation and exert protective effects in various pathological conditions. Omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have shown promise in mitigating inflammation and enhancing the resolution of inflammatory responses. They influence the M1/M2 macrophage phenotype balance, promoting a shift towards the M2 anti-inflammatory phenotype. Specialized pro-resolving mediators (SPMs), such as resolvins (Rvs), protectins (PDs), and maresins (MaRs), have emerged as potent regulators of inflammation and macrophage polarization. They show anti-inflammatory and pro-resolving properties, by modulating the expression of cytokines, facilitate the phagocytosis of apoptotic cells, and promote tissue repair. MaR1, in particular, has demonstrated significant hepatoprotective effects by promoting M2 macrophage polarization, reducing oxidative stress, and inhibiting key inflammatory pathways such as NF-κB. In the context of CLDs, such as nonalcoholic fatty liver disease (NAFLD) and cirrhosis, omega-3s and their SPMs have shown promise in attenuating liver injury, promoting tissue regeneration, and modulating macrophage phenotypes. The aim of this article was to analyze the emerging role of omega-3 FAs and their SPMs in the context of macrophage polarization, with special interest in the mechanisms underlying their effects and their interactions with other cell types within the liver microenvironment, focused on CLDs and the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Luis Alberto Videla
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Science, Faculty of Medicine, University of Chile, Santiago 8380000, Chile;
| | - Rodrigo Valenzuela
- Nutrition Department, Faculty of Medicine, University of Chile, Santiago 8380000, Chile;
| | - Andrea Del Campo
- Laboratorio de Fisiología y Bioenergética Celular, Escuela de Química y Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile;
| | - Jessica Zúñiga-Hernández
- Biomedical Sciences Department, Faculty of Health Sciences, University of Talca, Talca 3460000, Chile
| |
Collapse
|
11
|
Hu L, Lv Z, Gu Y, Zheng T, Kong Y, Mao W. A bibliometric analysis of efferocytosis in cardiovascular diseases from 2001 to 2022. Medicine (Baltimore) 2023; 102:e34366. [PMID: 37773819 PMCID: PMC10545234 DOI: 10.1097/md.0000000000034366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/26/2023] [Indexed: 10/01/2023] Open
Abstract
INTRODUCTION In recent years, efferocytosis in cardiovascular diseases has become an intense area of research. However, only a few bibliometric analyses have been conducted in this area. In this review, we used CiteSpace 5.7. R2 and VOSviewer 1.6.17 software to perform text mining and knowledge map analysis. This study summarizes the latest progress, development paths, frontier research hotspots, and future research trends in this field. MATERIALS AND METHODS Studies on efferocytosis in cardiovascular diseases were downloaded from the Web of Science Core Collection. RESULTS In total, 327 studies published by 506 institutions across 42 countries and regions were identified. The number of studies on efferocytosis in cardiovascular diseases has increased over time. Arteriosclerosis Thrombosis and Vascular Biology published the highest number of articles and was the top co-cited journal. Tabas Ira. was the most prolific researcher and co-cited the most. The most productive countries were the United States and China. Columbia University, Harvard Medical School, and Brigham Women's Hospital were the 3 most productive institutions in the field of research. Keyword Co-occurrence, Clusters, and Burst analyses showed that inflammation, atherosclerosis, macrophages, and phagocytosis appeared with the highest frequency in these studies. CONCLUSION Multinational cooperation and multidisciplinary intersections are characteristic trends of development in the field, and the immune microenvironment, glycolysis, and lipid metabolism will be the focus of future research.
Collapse
Affiliation(s)
- Luoxia Hu
- Department of Cardiology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- Key Laboratory of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, Hangzhou, China
| | - Zhengtian Lv
- Department of Cardiology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- Key Laboratory of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, Hangzhou, China
| | - Yangyang Gu
- Department of Cardiology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- Key Laboratory of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, Hangzhou, China
| | - Tiantian Zheng
- Department of Cardiology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- Key Laboratory of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, Hangzhou, China
| | - Youjin Kong
- Department of Cardiology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- Key Laboratory of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, Hangzhou, China
| | - Wei Mao
- Key Laboratory of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, Hangzhou, China
- Department of Cardiology, Zhengjiang Hospital, Hangzhou, China
| |
Collapse
|
12
|
Zhao M, Zheng Z, Yin Z, Zhang J, Qin J, Wan J, Wang M. Resolvin D2 and its receptor GPR18 in cardiovascular and metabolic diseases: A promising biomarker and therapeutic target. Pharmacol Res 2023; 195:106832. [PMID: 37364787 DOI: 10.1016/j.phrs.2023.106832] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/18/2023] [Accepted: 06/19/2023] [Indexed: 06/28/2023]
Abstract
Accumulating evidence suggests that inflammation plays an important role in the pathophysiology of the initiation and progression of cardiovascular and metabolic diseases (CVMDs). Anti-inflammation strategies and those that promote inflammation resolution have gradually become potential therapeutic approaches for CVMDs. Resolvin D2 (RvD2), a specialized pro-resolving mediator, exerts anti-inflammatory and pro-resolution effects through its receptor GPR18, a G protein-coupled receptor. Recently, the RvD2/GPR18 axis has received more attention due to its protective role in CVMDs, including atherosclerosis, hypertension, ischaemiareperfusion, and diabetes. Here, we introduce basic information about RvD2 and GPR18, summarize their roles in different immune cells, and review the therapeutic potential of the RvD2/GPR18 axis in CVMDs. In summary, RvD2 and its receptor GPR18 play an important role in the occurrence and development of CVMDs and are potential biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Mengmeng Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Zihui Zheng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Zheng Yin
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Jishou Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Juanjuan Qin
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan 430060, China; Center for Healthy Aging, Wuhan University School of Nursing, Wuhan 430060, China.
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China.
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China.
| |
Collapse
|
13
|
Liu WC, Yang YH, Wang YC, Chang WM, Wang CW. Maresin: Macrophage Mediator for Resolving Inflammation and Bridging Tissue Regeneration-A System-Based Preclinical Systematic Review. Int J Mol Sci 2023; 24:11012. [PMID: 37446190 DOI: 10.3390/ijms241311012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Maresins are lipid mediators derived from omega-3 fatty acids with anti-inflammatory and pro-resolving properties, capable of promoting tissue regeneration and potentially serving as a therapeutic agent for chronic inflammatory diseases. The aim of this review was to systematically investigate preclinical and clinical studies on maresin to inform translational research. Two independent reviewers performed comprehensive searches with the term "Maresin (NOT) Review" on PubMed. A total of 137 studies were included and categorized into 11 human organ systems. Data pertinent to clinical translation were specifically extracted, including delivery methods, optimal dose response, and specific functional efficacy. Maresins generally exhibit efficacy in treating inflammatory diseases, attenuating inflammation, protecting organs, and promoting tissue regeneration, mostly in rodent preclinical models. The nervous system has the highest number of original studies (n = 25), followed by the cardiovascular system, digestive system, and respiratory system, each having the second highest number of studies (n = 18) in the field. Most studies considered systemic delivery with an optimal dose response for mouse animal models ranging from 4 to 25 μg/kg or 2 to 200 ng via intraperitoneal or intravenous injection respectively, whereas human in vitro studies ranged between 1 and 10 nM. Although there has been no human interventional clinical trial yet, the levels of MaR1 in human tissue fluid can potentially serve as biomarkers, including salivary samples for predicting the occurrence of cardiovascular diseases and periodontal diseases; plasma and synovial fluid levels of MaR1 can be associated with treatment response and defining pathotypes of rheumatoid arthritis. Maresins exhibit great potency in resolving disease inflammation and bridging tissue regeneration in preclinical models, and future translational development is warranted.
Collapse
Affiliation(s)
- Wen-Chun Liu
- School of Dentistry, College of Oral Medicine, Taipei Medical University, No. 250, Wuxing St., Taipei 110310, Taiwan
| | - Yu-Hsin Yang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, No. 250, Wuxing St., Taipei 110310, Taiwan
| | - Yu-Chin Wang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, No. 250, Wuxing St., Taipei 110310, Taiwan
| | - Wei-Ming Chang
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Chin-Wei Wang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, No. 250, Wuxing St., Taipei 110310, Taiwan
- Division of Periodontics, Department of Dentistry, Taipei Medical University Hospital, Taipei 110301, Taiwan
| |
Collapse
|
14
|
Zhang Z, Ji C, Wang D, Wang M, She X, Song D, Xu X, Zhang D. Maresin1: A multifunctional regulator in inflammatory bone diseases. Int Immunopharmacol 2023; 120:110308. [PMID: 37192551 DOI: 10.1016/j.intimp.2023.110308] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/26/2023] [Accepted: 05/05/2023] [Indexed: 05/18/2023]
Abstract
Inflammation plays a crucial role in the physical response to danger signals, the elimination of toxic stimuli, and the restoration of homeostasis. However, dysregulated inflammatory responses lead to tissue damage, and chronic inflammation can disrupt osteogenic-osteoclastic homeostasis, ultimately leading to bone loss. Maresin1 (MaR1), a member of the specialized pro-resolving mediators (SPMs) family, has been found to possess significant anti-inflammatory, anti-allergic, pro-hemolytic, pro-healing, and pain-relieving properties. MaR1 is synthesized by macrophages (Mφs) and omega-3 fatty acids, and it may have the potential to promote bone homeostasis and treat inflammatory bone diseases. MaR1 has been found to stimulate osteoblast proliferation through leucine-rich repeat G protein-coupled receptor 6 (LGR6). It also activates Mφ phagocytosis and M2-type polarization, which helps to control the immune system. MaR1 can regulate T cells to exert anti-inflammatory effects and inhibit neutrophil infiltration and recruitment. In addition, MaR1 is involved in antioxidant signaling, including nuclear factor erythroid 2-related factor 2 (NRF2). It has also been found to promote the autophagic behavior of periodontal ligament stem cells, stimulate Mφs against pathogenic bacteria, and regulate tissue regeneration and repair. In summary, this review provides new information and a comprehensive overview of the critical roles of MaR1 in inflammatory bone diseases, indicating its potential as a therapeutic approach for managing skeletal metabolism and inflammatory bone diseases.
Collapse
Affiliation(s)
- Zhanwei Zhang
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China; Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China; Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China; Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
| | - Chonghao Ji
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China; Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China; Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China; Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
| | | | - Maoshan Wang
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China; Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China; Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China; Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
| | - Xiao She
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China; Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China; Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China; Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
| | - Dawei Song
- School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Xin Xu
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China; Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China; Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China; Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China.
| | - Dongjiao Zhang
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China; Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China; Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China; Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China.
| |
Collapse
|
15
|
Wang X, Botchway BOA, Zhang Y, Huang M, Liu X. Maresin1 can be a potential therapeutic target for nerve injury. Biomed Pharmacother 2023; 161:114466. [PMID: 36870281 DOI: 10.1016/j.biopha.2023.114466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Nerve injury significantly affects human motor and sensory function due to destruction of the integrity of nerve structure. In the wake of nerve injury, glial cells are activated, and synaptic integrity is destroyed, causing inflammation and pain hypersensitivity. Maresin1, an omega-3 fatty acid, is a derivative of docosahexaenoic acid. It has showed beneficial effects in several animal models of central and peripheral nerve injuries. In this review, we summarize the anti-inflammatory, neuroprotective and pain hypersensitivity effects of maresin1 in nerve injury and provide a theoretical basis for the clinical treatment of nerve injury using maresin1.
Collapse
Affiliation(s)
- Xichen Wang
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Zhejiang, China
| | - Benson O A Botchway
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China; Bupa Cromwell Hospital, London, UK
| | - Yong Zhang
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Zhejiang, China
| | - Min Huang
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Zhejiang, China
| | - Xuehong Liu
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Zhejiang, China.
| |
Collapse
|
16
|
Wang F, Gong Y, Chen T, Li B, Zhang W, Yin L, Zhao H, Tang Y, Wang X, Huang C. Maresin1 ameliorates ventricular remodelling and arrhythmia in mice models of myocardial infarction via NRF2/HO-1 and TLR4/NF-kB signalling. Int Immunopharmacol 2022; 113:109369. [DOI: 10.1016/j.intimp.2022.109369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/04/2022] [Accepted: 10/15/2022] [Indexed: 11/05/2022]
|
17
|
Davinelli S, Medoro A, Intrieri M, Saso L, Scapagnini G, Kang JX. Targeting NRF2-KEAP1 axis by Omega-3 fatty acids and their derivatives: Emerging opportunities against aging and diseases. Free Radic Biol Med 2022; 193:736-750. [PMID: 36402440 DOI: 10.1016/j.freeradbiomed.2022.11.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/01/2022] [Accepted: 11/10/2022] [Indexed: 11/18/2022]
Abstract
The transcription factor NRF2 and its endogenous inhibitor KEAP1 play a crucial role in the maintenance of cellular redox homeostasis by regulating the gene expression of diverse networks of antioxidant, anti-inflammatory, and detoxification enzymes. Therefore, activation of NRF2 provides cytoprotection against numerous pathologies, including age-related diseases. An age-associated loss of NRF2 function may be a key driving force behind the aging phenotype. Recently, numerous NRF2 inducers have been identified and some of them are promising candidates to restore NRF2 transcriptional activity during aging. Emerging evidence indicates that omega-3 (n-3) polyunsaturated fatty acids (PUFAs) and their electrophilic derivatives may trigger a protective response via NRF2 activation, rescuing or maintaining cellular redox homeostasis. In this review, we provide an overview of the NRF2-KEAP1 system and its dysregulation in aging cells. We also summarize current studies on the modulatory role of n-3 PUFAs as potential agents to prevent multiple chronic diseases and restore the age-related impairment of NRF2 function.
Collapse
Affiliation(s)
- Sergio Davinelli
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Alessandro Medoro
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Mariano Intrieri
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Giovanni Scapagnini
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy.
| | - Jing X Kang
- Laboratory for Lipid Medicine and Technology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
18
|
Ye J, Peng J, Liu K, Zhang T, Huang W. MCTR1 inhibits ferroptosis by promoting NRF2 expression to attenuate hepatic ischemia-reperfusion injury. Am J Physiol Gastrointest Liver Physiol 2022; 323:G283-G293. [PMID: 35916424 DOI: 10.1152/ajpgi.00354.2021] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Hepatic ischemia-reperfusion injury (HIRI) can lead to poor prognosis in patients undergoing liver transplantation or extensive liver resection. Maresin conjugate in tissue regeneration 1 (MCTR1) exerts a protective effect in several inflammatory disease models, but its role in HIRI remains unknown. In this study, we examined the effect of MCTR1 on HIRI and its underlying mechanism. HIRI mice and oxygen-glucose deprivation/reperfusion (OGD/R) AML12 cell models were used to evaluate the effects of MCTR1 at different doses on HIRI. Histological changes, inflammatory mediators, and ferroptosis-associated markers including iron content, oxidative stress and antioxidant activity, cell death marker (LDH), and the expression of Nuclear factor erythroid-derived 2-like 2 (NRF2) were analyzed. The results showed that MCTR1 treatment significantly ameliorated liver tissue damage and AST/ALT levels in HIRI mice. It also ameliorated ferroptosis in both HIRI mice and OGD/R AML12 cells, including a decrease in iron content, serum LDH release levels, reactive oxygen species (ROS), MDA, IL-1β levels, and COX2 and transferrin receptor (TFRC) expression. In addition, it increased the levels of IL-10, the antioxidant stress markers SOD and GSH, and the expression of GPX4. With respect to the underlying mechanism, the expression of NRF2 in HIRI mice and OGD/R AML12 cells was significantly inhibited. MCTR1 treatment restored the inhibition of NRF2 expression caused by ischemia-reperfusion, and NRF2 inhibitors significantly inhibited nuclear aggregation of NRF2 promoted by MCTR1. In conclusion, the MCTR1 ameliorates ferroptosis-induced hepatic ischemia-reperfusion injury by promoting NRF2 expression and may represent a therapeutic strategy for treating HIRI.NEW & NOTEWORTHY MCTR1 exerts a protective effect in several inflammatory disease models, but its role in hepatic HIRI remains unknown. We confirm that the MCTR1 ameliorates ferroptosis-induced hepatic ischemia-reperfusion injury by promoting NRF2 expression. Our study illustrates the mechanism that MCTR1 protects from HIRI and identifies a therapeutic target for liver transplantation ischemia-reperfusion injury from the perspective of ferroptosis.
Collapse
Affiliation(s)
- Jianhong Ye
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jun Peng
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Kuanzhi Liu
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tao Zhang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenqi Huang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
19
|
Silva RCMC, Vasconcelos LR, Travassos LH. The different facets of heme-oxygenase 1 in innate and adaptive immunity. Cell Biochem Biophys 2022; 80:609-631. [PMID: 36018440 DOI: 10.1007/s12013-022-01087-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 07/20/2022] [Indexed: 11/26/2022]
Abstract
Heme oxygenase (HO) enzymes are responsible for the main oxidative step in heme degradation, generating equimolar amounts of free iron, biliverdin and carbon monoxide. HO-1 is induced as a crucial stress response protein, playing protective roles in physiologic and pathological conditions, due to its antioxidant, anti-apoptotic and anti-inflammatory effects. The mechanisms behind HO-1-mediated protection are being explored by different studies, affecting cell fate through multiple ways, such as reduction in intracellular levels of heme and ROS, transcriptional regulation, and through its byproducts generation. In this review we focus on the interplay between HO-1 and immune-related signaling pathways, which culminate in the activation of transcription factors important in immune responses and inflammation. We also discuss the dual interaction of HO-1 and inflammatory mediators that govern resolution and tissue damage. We highlight the dichotomy of HO-1 in innate and adaptive immune cells development and activation in different disease contexts. Finally, we address different known anti-inflammatory pharmaceuticals that are now being described to modulate HO-1, and the possible contribution of HO-1 in their anti-inflammatory effects.
Collapse
Affiliation(s)
- Rafael Cardoso Maciel Costa Silva
- Laboratory of Immunoreceptors and Signaling, Instituto de Biofísica Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Luiz Ricardo Vasconcelos
- Cellular Signaling and Cytoskeletal Function Laboratory, The Francis Crick Institute, London, UK
| | - Leonardo Holanda Travassos
- Laboratory of Immunoreceptors and Signaling, Instituto de Biofísica Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
20
|
Zhang Z, Ji C, Wang YN, Liu S, Wang M, Xu X, Zhang D. Maresin1 Suppresses High-Glucose-Induced Ferroptosis in Osteoblasts via NRF2 Activation in Type 2 Diabetic Osteoporosis. Cells 2022; 11:cells11162560. [PMID: 36010637 PMCID: PMC9406434 DOI: 10.3390/cells11162560] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/25/2022] Open
Abstract
Maresin1 (MaR1) is an endogenous pro-resolving lipid mediator produced from polyunsaturated fatty acids and is believed to have antioxidant and anti-inflammatory properties. The objective of this study was to estimate MaR1′s impact on type 2 diabetic osteoporosis (T2DOP) and its pharmacological mode of action. An in vitro high-glucose model of the osteoblast cell line MC3T3-E1 was constructed and stimulated with MaR1. Type 2 diabetic rats were used to establish in vivo models of calvarial defects and were treated in situ with MaR1. The results revealed that, aside from preventing mortality and promoting the osteogenic capacity of MC3T3-E1 cells, MaR1 increased nuclear factor erythroid-2 related factor 2 (NRF2) signaling as well as the activity of glutathione peroxidase 4 (GPX4) and cystine-glutamate antiporter (SLC7A11) and caused the restraint of ferroptosis under hyperglycemic stimulation. However, the therapeutic impact of MaR1 was significantly diminished due to NRF2-siRNA interference and the ferroptosis activator Erastin. Meanwhile, these results were validated through in vivo experiments. These findings imply that MaR1 activated the NRF2 pathway in vivo and in vitro to alleviate high-glucose-induced ferroptosis greatly. More crucially, MaR1 might effectively reduce the risk of T2DOP.
Collapse
Affiliation(s)
- Zhanwei Zhang
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1 Wenhua Road West, Jinan 250012, China
| | - Chonghao Ji
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1 Wenhua Road West, Jinan 250012, China
| | - Ya-Nan Wang
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1 Wenhua Road West, Jinan 250012, China
| | - Shiyue Liu
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1 Wenhua Road West, Jinan 250012, China
| | - Maoshan Wang
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1 Wenhua Road West, Jinan 250012, China
| | - Xin Xu
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1 Wenhua Road West, Jinan 250012, China
- Correspondence: (X.X.); (D.Z.)
| | - Dongjiao Zhang
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1 Wenhua Road West, Jinan 250012, China
- Correspondence: (X.X.); (D.Z.)
| |
Collapse
|
21
|
Wang L, He C. Nrf2-mediated anti-inflammatory polarization of macrophages as therapeutic targets for osteoarthritis. Front Immunol 2022; 13:967193. [PMID: 36032081 PMCID: PMC9411667 DOI: 10.3389/fimmu.2022.967193] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 07/27/2022] [Indexed: 12/14/2022] Open
Abstract
Macrophages are the most abundant immune cells within the synovial joints, and also the main innate immune effector cells triggering the initial inflammatory responses in the pathological process of osteoarthritis (OA). The transition of synovial macrophages between pro-inflammatory and anti-inflammatory phenotypes can play a key role in building the intra-articular microenvironment. The pro-inflammatory cascade induced by TNF-α, IL-1β, and IL-6 is closely related to M1 macrophages, resulting in the production of pro-chondrolytic mediators. However, IL-10, IL1RA, CCL-18, IGF, and TGF are closely related to M2 macrophages, leading to the protection of cartilage and the promoted regeneration. The inhibition of NF-κB signaling pathway is central in OA treatment via controlling inflammatory responses in macrophages, while the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway appears not to attract widespread attention in the field. Nrf2 is a transcription factor encoding a large number of antioxidant enzymes. The activation of Nrf2 can have antioxidant and anti-inflammatory effects, which can also have complex crosstalk with NF-κB signaling pathway. The activation of Nrf2 can inhibit the M1 polarization and promote the M2 polarization through potential signaling transductions including TGF-β/SMAD, TLR/NF-κB, and JAK/STAT signaling pathways, with the regulation or cooperation of Notch, NLRP3, PI3K/Akt, and MAPK signaling. And the expression of heme oxygenase-1 (HO-1) and the negative regulation of Nrf2 for NF-κB can be the main mechanisms for promotion. Furthermore, the candidates of OA treatment by activating Nrf2 to promote M2 phenotype macrophages in OA are also reviewed in this work, such as itaconate and fumarate derivatives, curcumin, quercetin, melatonin, mesenchymal stem cells, and low-intensity pulsed ultrasound.
Collapse
Affiliation(s)
- Lin Wang
- Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China,Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Chengqi He
- Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China,Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Chengqi He,
| |
Collapse
|
22
|
Liu M, He H, Chen L. Protective Potential of Maresins in Cardiovascular Diseases. Front Cardiovasc Med 2022; 9:923413. [PMID: 35859590 PMCID: PMC9289265 DOI: 10.3389/fcvm.2022.923413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/02/2022] [Indexed: 11/16/2022] Open
Abstract
Cardiovascular diseases are the leading causes of global mortality. Growing evidence suggests that unresolved inflammation contributes to the chronicity, progression and morbidity of many cardiovascular diseases, thus emphasizing the urgent need to illuminate the mechanisms controlling inflammation and its resolution, for the sake of new effective therapeutic options. Macrophage mediators in resolving inflammation (Maresins) are a family of specialized pro-resolving lipid mediators (SPMs) derived from the ω-3 fatty acid docosahexaenoic acid (DHA). Studies have indicated that Maresins play critical role in initiating the pro-resolving functions of phagocytes, decreasing the magnitude of the overall inflammatory response, and thereby protecting against inflammation-related disorders. In this review, we summarize the detailed actions and the therapeutic potential of Maresins, with a particular emphasis on Maresin-1 (MaR1), in cardiovascular diseases. We hope this review will lead to new avenues to Maresins-based therapies for inflammation-associated cardiovascular diseases.
Collapse
|
23
|
Bi CF, Liu J, Yang LS, Zhang JF. Research Progress on the Mechanism of Sepsis Induced Myocardial Injury. J Inflamm Res 2022; 15:4275-4290. [PMID: 35923903 PMCID: PMC9342248 DOI: 10.2147/jir.s374117] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/19/2022] [Indexed: 11/30/2022] Open
Abstract
Sepsis is an abnormal condition with multiple organ dysfunctions caused by the uncontrolled infection response and one of the major diseases that seriously hang over global human health. Besides, sepsis is characterized by high morbidity and mortality, especially in intensive care unit (ICU). Among the numerous subsequent organ injuries of sepsis, myocardial injury is one of the most common complications and the main cause of death in septic patients. To better manage septic inpatients, it is necessary to understand the specific mechanisms of sepsis induced myocardial injury (SIMI). Therefore, this review will elucidate the pathophysiology of SIMI from the following certain mechanisms: apoptosis, mitochondrial damage, autophagy, excessive inflammatory response, oxidative stress and pyroptosis, and outline current therapeutic strategies and potential approaches in SIMI.
Collapse
Affiliation(s)
- Cheng-Fei Bi
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, People’s Republic of China
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, People’s Republic of China
- Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, People’s Republic of China
| | - Jia Liu
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, People’s Republic of China
- Medical Experimental Center, General Hospital of Ningxia Medical University, Yinchuan, People’s Republic of China
| | - Li-Shan Yang
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, People’s Republic of China
- Correspondence: Li-Shan Yang; Jun-Fei Zhang, Email ;
| | - Jun-Fei Zhang
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, People’s Republic of China
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, People’s Republic of China
- Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, People’s Republic of China
| |
Collapse
|
24
|
Peng Y, Wang L, Zhao X, Lai S, He X, Fan Q, He H, He M. Puerarin attenuates lipopolysaccharide-induced myocardial injury via the 14-3-3γ/PKCε pathway activating adaptive autophagy. Int Immunopharmacol 2022; 108:108905. [DOI: 10.1016/j.intimp.2022.108905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 05/18/2022] [Accepted: 05/24/2022] [Indexed: 12/30/2022]
|
25
|
Zhao M, Li C, Zhang J, Yin Z, Zheng Z, Wan J, Wang M. Maresin-1 and Its Receptors RORα/LGR6 as Potential Therapeutic Target for Respiratory Diseases. Pharmacol Res 2022; 182:106337. [PMID: 35781060 DOI: 10.1016/j.phrs.2022.106337] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/18/2022] [Accepted: 06/28/2022] [Indexed: 12/15/2022]
Abstract
Maresin-1 is one of the representative specialized pro-resolving mediators that has shown beneficial effects in inflammatory disease models. Recently, two distinct types of receptor molecules were discovered as the targets of maresin-1, further revealing the pro-resolution mechanism of maresin-1. One is retinoic acid-related orphan receptor α (RORα) and the another one is leucine-rich repeat domain-containing G protein-coupled receptor 6 (LGR6). In this review, we summarized the detailed role of maresin-1 and its two different receptors in respiratory diseases. RORα and LGR6 are potential targets for the treatment of respiratory diseases. Future basic research and clinical trials on MaR1 and its receptors should provide useful information for the treatment of respiratory diseases.
Collapse
Affiliation(s)
- Mengmeng Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Chenfei Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China
| | - Jishou Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China
| | - Zheng Yin
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Zihui Zheng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China.
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China.
| |
Collapse
|
26
|
Disulfiram inhibits oxidative stress and NLRP3 inflammasome activation to prevent LPS-induced cardiac injury. Int Immunopharmacol 2022; 105:108545. [DOI: 10.1016/j.intimp.2022.108545] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 12/18/2022]
|
27
|
Maresin-1 and Inflammatory Disease. Int J Mol Sci 2022; 23:ijms23031367. [PMID: 35163291 PMCID: PMC8835953 DOI: 10.3390/ijms23031367] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 11/17/2022] Open
Abstract
Inflammation is an essential action to protect the host human body from external, harmful antigens and microorganisms. However, an excessive inflammation reaction sometimes exceeds tissue damage and can disrupt organ functions. Therefore, anti-inflammatory action and resolution mechanisms need to be clarified. Dietary foods are an essential daily lifestyle that influences various human physiological processes and pathological conditions. Especially, omega-3 fatty acids in the diet ameliorate chronic inflammatory skin diseases. Recent studies have identified that omega-3 fatty acid derivatives, such as the resolvin series, showed strong anti-inflammatory actions in various inflammatory diseases. Maresin-1 is a derivative of one of the representative omega-3 fatty acids, i.e., docosahexaenoic acid (DHA), and has shown beneficial action in inflammatory disease models. In this review, we summarize the detailed actions of maresin-1 in immune cells and inflammatory diseases.
Collapse
|
28
|
Doganyigit Z, Eroglu E, Akyuz E. Inflammatory mediators of cytokines and chemokines in sepsis: From bench to bedside. Hum Exp Toxicol 2022; 41:9603271221078871. [PMID: 35337213 DOI: 10.1177/09603271221078871] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Background: Sepsis is a serious clinical condition characterized by damage to the immune system as a result of an uncontrolled response to infection. Septic patients show complications such as fever, cardiovascular shock, and/or systemic organ failure. Acute organ failure formed in sepsis mostly affects the respiratory and cardiovascular systems. In sepsis, responses including pro-inflammatory and anti-inflammatory processes in addition to the Toll-Like Receptor 4 (TLR4) signals leading to the release of inflammatory mediators have been suggested to be fundamental pathways in the pathophysiology of sepsis. Purpose: In this context, unregulated levels of sepsis-associated inflammatory mediators may increase the risk of mortality. In sepsis, infection-induced pathogens lead to a systemic inflammatory response. These systemic responses may contribute to septic shock and organ dysfunction. In the unfavorable clinical course of sepsis, an uncontrolled inflammatory response is observed. Accordingly, the mechanism of inflammatory mediators such as cytokines and chemokines in sepsis might increase. Neurotransmitters and gene regulators affect inflammatory mediators and control the inflammatory response. In this review, we aimed to show the new therapeutic targets in sepsis treatment with current studies. New clinical implications targeting inflammatory mediators in high mortality affected by the uncontrolled inflammatory response in sepsis can contribute to the understanding of the symptoms.
Collapse
Affiliation(s)
- Zuleyha Doganyigit
- Faculty of Medicine, Histology and Embryology, 162338Yozgat Bozok University, Yozgat, Turkey
| | - Ece Eroglu
- Faculty of Medicine, 162338Yozgat Bozok University Yozgat, Turkey
| | - Enes Akyuz
- Faculty of International Medicine, Department of Biophysics, 448249University of Health Sciences Istanbul, Turkey
| |
Collapse
|
29
|
Julliard WA, Myo YPA, Perelas A, Jackson PD, Thatcher TH, Sime PJ. Specialized pro-resolving mediators as modulators of immune responses. Semin Immunol 2022; 59:101605. [PMID: 35660338 PMCID: PMC9962762 DOI: 10.1016/j.smim.2022.101605] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/04/2022] [Accepted: 05/25/2022] [Indexed: 01/15/2023]
Abstract
Specialized pro-resolving mediators (SPMs) are endogenous small molecules produced mainly from dietary omega-3 polyunsaturated fatty acids by both structural cells and cells of the active and innate immune systems. Specialized pro-resolving mediators have been shown to both limit acute inflammation and promote resolution and return to homeostasis following infection or injury. There is growing evidence that chronic immune disorders are characterized by deficiencies in resolution and SPMs have significant potential as novel therapeutics to prevent and treat chronic inflammation and immune system disorders. This review focuses on important breakthroughs in understanding how SPMs are produced by, and act on, cells of the adaptive immune system, specifically macrophages, B cells and T cells. We also highlight recent evidence demonstrating the potential of SPMs as novel therapeutic agents in topics including immunization, autoimmune disease and transplantation.
Collapse
Affiliation(s)
- Walker A Julliard
- Department of Surgery, Virginia Commonwealth University, Richmond VA, USA
| | - Yu Par Aung Myo
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond VA, USA
| | - Apostolos Perelas
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Internal Medicine, Virginia Commonwealth University, Richmond VA, USA
| | - Peter D. Jackson
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Internal Medicine, Virginia Commonwealth University, Richmond VA, USA
| | - Thomas H. Thatcher
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Internal Medicine, Virginia Commonwealth University, Richmond VA, USA
| | - Patricia J Sime
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
30
|
Serini S, Calviello G. New Insights on the Effects of Dietary Omega-3 Fatty Acids on Impaired Skin Healing in Diabetes and Chronic Venous Leg Ulcers. Foods 2021; 10:foods10102306. [PMID: 34681353 PMCID: PMC8535038 DOI: 10.3390/foods10102306] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/23/2021] [Accepted: 09/26/2021] [Indexed: 02/06/2023] Open
Abstract
Long-chain Omega-3 polyunsaturated fatty acids (Omega-3 PUFAs) are widely recognized as powerful negative regulators of acute inflammation. However, the precise role exerted by these dietary compounds during the healing process is still largely unknown, and there is increasing interest in understanding their specific effects on the implicated cells/molecular factors. Particular attention is being focused also on their potential clinical application in chronic pathologies characterized by delayed and impaired healing, such as diabetes and vascular diseases in lower limbs. On these bases, we firstly summarized the current knowledge on wound healing (WH) in skin, both in normal conditions and in the setting of these two pathologies, with particular attention to the cellular and molecular mechanisms involved. Then, we critically reviewed the outcomes of recent research papers investigating the activity exerted by Omega-3 PUFAs and their bioactive metabolites in the regulation of WH in patients with diabetes or venous insufficiency and showing chronic recalcitrant ulcers. We especially focused on recent studies investigating the mechanisms through which these compounds may act. Considerations on the optimal dietary doses are also reported, and, finally, possible future perspectives in this area are suggested.
Collapse
|