1
|
Miao X, Liu P, Liu Y, Zhang W, Li C, Wang X. Epigenetic targets and their inhibitors in the treatment of idiopathic pulmonary fibrosis. Eur J Med Chem 2025; 289:117463. [PMID: 40048798 DOI: 10.1016/j.ejmech.2025.117463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 03/29/2025]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a deadly lung disease characterized by fibroblast proliferation, excessive extracellular matrix buildup, inflammation, and tissue damage, resulting in respiratory failure and death. Recent studies suggest that impaired interactions among epithelial, mesenchymal, immune, and endothelial cells play a key role in IPF development. Advances in bioinformatics have also linked epigenetics, which bridges gene expression and environmental factors, to IPF. Despite the incomplete understanding of the pathogenic mechanisms underlying IPF, recent preclinical studies have identified several novel epigenetic therapeutic targets, including DNMT, EZH2, G9a/GLP, PRMT1/7, KDM6B, HDAC, CBP/p300, BRD4, METTL3, FTO, and ALKBH5, along with potential small-molecule inhibitors relevant for its treatment. This review explores the pathogenesis of IPF, emphasizing epigenetic therapeutic targets and potential small molecule drugs. It also analyzes the structure-activity relationships of these epigenetic drugs and summarizes their biological activities. The objective is to advance the development of innovative epigenetic therapies for IPF.
Collapse
Affiliation(s)
- Xiaohui Miao
- Department of Clinical Laboratory Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Pan Liu
- Department of Clinical Laboratory Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Yangyang Liu
- Department of Clinical Laboratory Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Wenying Zhang
- Department of Clinical Laboratory Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Chunxin Li
- Department of Clinical Laboratory Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Xiujiang Wang
- Department of Pulmonary Diseases, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China.
| |
Collapse
|
2
|
Jiang M, Zhang K, Wei G, Qi F, Yu D, Ma J, Zhang X, Chen L, Xie Y, Yu Z, Chen J, Chen D. HDAC4 Super-Enhancer Drives CEBPB-Mediated TWIST2 Transcription to Promote Chemoresistance in LUAD. Cancer Lett 2025:217716. [PMID: 40222483 DOI: 10.1016/j.canlet.2025.217716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 04/01/2025] [Accepted: 04/10/2025] [Indexed: 04/15/2025]
Abstract
Lung cancer remains one of the most prevalent malignancies worldwide. This study investigates the role of histone deacetylase 4 (HDAC4) in mediating chemoresistance in lung adenocarcinoma (LUAD). Super-enhancers (SEs), known to regulate aberrant gene expression, are critical drivers of tumor progression. We identified a specific super-enhancer region associated with HDAC4, referred to as HDAC4-SE. Among its nearby genes, TWIST2 emerged as a key player, strongly linked to chemoresistance and the epithelial-to-mesenchymal transition (EMT). We demonstrated that HDAC4-SE regulates TWIST2 expression, thereby contributing to chemoresistance in LUAD. Through bioinformatics analysis, we identified transcription factors binding to both the promoter of TWIST2 and the activation region of HDAC4-SE, with CCAAT/enhancer-binding protein beta (CEBPB) identified as a central regulator. Chromatin immunoprecipitation (ChIP) assays confirmed that CEBPB binds to both the HDAC4-SE and the TWIST2 promoter. Additionally, our investigation into the involvement of long non-coding RNAs (lncRNAs) revealed that LINC01940 might mediate the regulatory effects of HDAC4-SE on downstream genes. In conclusion, we uncovered a novel HDAC4-SE/LINC01940/CEBPB/TWIST2 signaling pathway that drives chemoresistance and tumor progression in LUAD. This pathway offers promising insights into potential therapeutic targets to overcome chemoresistance in lung cancer.
Collapse
Affiliation(s)
- Min Jiang
- Department of Medical Oncology, the First Affiliated Hospital of Soochow University, No.188 Shizi Street, Gusu District, Suzhou, 215006, Jiangsu, China
| | - Kai Zhang
- Department of Respiratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China
| | - Guohao Wei
- The Second Hospital of Nanjing, Affiliated Hospital to Nanjing University of Chinese Medicine, 210003, Nanjing, China
| | - Feng Qi
- Department of Pharmacy, the Yancheng Clinical College of Xuzhou Medical University, the First People's Hospital of Yancheng, No.166 West Yulong Road, Yancheng, 224006, Jiangsu, China
| | - Danlei Yu
- Department of Medical Oncology, the First Affiliated Hospital of Soochow University, No.188 Shizi Street, Gusu District, Suzhou, 215006, Jiangsu, China
| | - Jingjing Ma
- Department of Pharmacy, Dushu Lake Hospital, Soochow University, No.9 Chongwen Road, Suzhou, 215100, Jiangsu, China
| | - Xiaofei Zhang
- Department of Medical Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, No.160 Pujian Road, Pudong New District, Shanghai, 200127, China
| | - Longbang Chen
- Department of Medical Oncology, Nanjing Jinling Hospital, School of Medicine, Nanjing University, Nanjing, 210008, Jiangsu, China
| | - Yuhao Xie
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, 11439, USA
| | - Zhengyuan Yu
- Department of Medical Oncology, the First Affiliated Hospital of Soochow University, No.188 Shizi Street, Gusu District, Suzhou, 215006, Jiangsu, China.
| | - Jing Chen
- Department of Biochemistry and Molecular Biology, School of Medicine, Nanjing University of Chinese Medicine, No.138 Xianlin Avenue, Nanjing, 210023, Jiangsu, China.
| | - Dongqin Chen
- Department of Medical Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, No.160 Pujian Road, Pudong New District, Shanghai, 200127, China; Department of Oncology, Nantong City No. 1 People's Hospital and Second Affiliated Hospital of Nantong University, No. 666 Shengli Road, Nantong, 226000, Jiangsu, China; Department of Medical Oncology, Baoshan Branch, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, No.1058 Huanzhen North Road, Baoshan District, Shanghai, 200444, China.
| |
Collapse
|
3
|
Artetxe-Zurutuza A, Iturrioz-Rodriguez N, Elizazu J, Toledano-Pinedo M, Porro-Pérez A, De Goñi I, Elua-Pinin A, Schäker-Hübner L, Azkargorta M, Elortza F, Iriepa I, Lòpez-Muñoz F, Moncho-Amor V, Hansen FK, Sampron N, Marco-Contelles JL, Matheu A. Generation and validation of a novel multitarget small molecule in glioblastoma. Cell Death Dis 2025; 16:250. [PMID: 40185715 PMCID: PMC11971462 DOI: 10.1038/s41419-025-07569-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/28/2025] [Accepted: 03/18/2025] [Indexed: 04/07/2025]
Abstract
The development of multitarget small molecules (MSMs) has emerged as a powerful strategy for the treatment of multifactorial diseases such as cancer. Glioblastoma is the most prevalent and malignant primary brain tumor in adults, which is characterized by poor prognosis and a high heterogeneity. Current standards of treatment present limited effectiveness, as patients develop therapy resistance and recur. In this work, we synthesized and characterized a novel multi-target molecule (named DDI199 or contilistat), which is a polyfunctionalized indole derivative developed by juxtaposing selected pharmacophoric moieties of the parent compounds Contilisant and Vorinostat (SAHA) to act as multifunctional ligands that inhibit histone deacetylases (HDACs), monoamine oxidases (MAOs) and cholinesterases (ChEs), and modulate histamine H3 (H3R) and Sigma 1 Receptor (S1R) receptors. DDI199 exerts high cytotoxic activity in conventional glioblastoma cell lines and patient-derived glioma stem cells in vitro. Importantly, it significantly reduces tumor growth in vivo, both alone and in combination with temozolomide (TMZ). The comparison with SAHA showed higher target specificity and antitumor activity of the new molecule. Transcriptomic and proteomic analyses of patient-derived glioma stem cells revealed a deregulation in cell cycle, DNA remodeling and neurotransmission activity by the treatment with DDI199. In conclusion, our data reveal the efficacy of a novel MSM in glioblastoma pre-clinical setting.
Collapse
Affiliation(s)
- Aizpea Artetxe-Zurutuza
- Cellular Oncology group, Biogipuzkoa (Biodonostia) Health Research Institute, San Sebastian, Spain
| | - Nerea Iturrioz-Rodriguez
- Cellular Oncology group, Biogipuzkoa (Biodonostia) Health Research Institute, San Sebastian, Spain
| | - Joseba Elizazu
- Cellular Oncology group, Biogipuzkoa (Biodonostia) Health Research Institute, San Sebastian, Spain
| | - Mireia Toledano-Pinedo
- Laboratory of Medicinal Chemistry (Institute of General Organic Chemistry, CSIC), Madrid, Spain
| | - Alicia Porro-Pérez
- Laboratory of Medicinal Chemistry (Institute of General Organic Chemistry, CSIC), Madrid, Spain
| | - Irati De Goñi
- Cellular Oncology group, Biogipuzkoa (Biodonostia) Health Research Institute, San Sebastian, Spain
- Neurosurgery Service, Donostia University Hospital, San Sebastian, Spain
| | - Alejandro Elua-Pinin
- Cellular Oncology group, Biogipuzkoa (Biodonostia) Health Research Institute, San Sebastian, Spain
- Neurosurgery Service, Donostia University Hospital, San Sebastian, Spain
| | - Linda Schäker-Hübner
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, Bonn, Germany
| | - Mikel Azkargorta
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehd, Derio, Spain
| | - Felix Elortza
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehd, Derio, Spain
| | - Isabel Iriepa
- Alcala University, Department of Organic and Inorganic Chemistry, Andrés M. del Río Chemistry Research Institute (IQAR); and DISCOBAC group, Castilla-La Mancha Health Research Institute (IDISCAM), Madrid, Spain
| | - Francisco Lòpez-Muñoz
- Faculty of Health Sciences-HM Hospitals, Camilo José Cela University; HM Hospitals Health Research Institute; Neuropsychopharmacology Unit, "Hospital 12 de Octubre" Research Institute, Madrid, Spain
| | - Veronica Moncho-Amor
- Cellular Oncology group, Biogipuzkoa (Biodonostia) Health Research Institute, San Sebastian, Spain
| | - Finn K Hansen
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, Bonn, Germany
| | - Nicolás Sampron
- Cellular Oncology group, Biogipuzkoa (Biodonostia) Health Research Institute, San Sebastian, Spain
- Neurosurgery Service, Donostia University Hospital, San Sebastian, Spain
| | - Jose Luis Marco-Contelles
- Laboratory of Medicinal Chemistry (Institute of General Organic Chemistry, CSIC), Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Ander Matheu
- Cellular Oncology group, Biogipuzkoa (Biodonostia) Health Research Institute, San Sebastian, Spain.
- Centre for Biomedical Network Research on frailty and healthy aging (CIBERFES), ISCIII, Madrid, Spain.
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
4
|
Zhao Z, Wu Y, Geng X, Yuan C, Yang G. Single-Cell Analysis Reveals Histone Deacetylation Factor Guide Intercellular Communication of Tumor Microenvironment that Contribute to Colorectal Cancer Progression and Immunotherapy. Biochem Genet 2025; 63:1862-1879. [PMID: 38637426 DOI: 10.1007/s10528-024-10730-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 01/31/2024] [Indexed: 04/20/2024]
Abstract
In this study, single-cell RNA-seq data were collected to analyze the characteristics of Histone deacetylation factor (HDF). The tumor microenvironment (TME) cell clusters related to prognosis and immune response were identified by using CRC tissue transcriptome and immunotherapy cohorts from public repository. We explored the expression characteristics of HDF in stromal cells, macrophages, T lymphocytes, and B lymphocytes of the CRC single-cell dataset TME and further identified 4 to 6 cell subclusters using the expression profiles of HDF-associated genes, respectively. The regulatory role of HDF-associated genes on the CRC tumor microenvironment was explored by using single-cell trajectory analysis, and the cellular subtypes identified by biologically characterized genes were compared with those identified by HDF-associated genes. The interaction of HDF-associated gene-mediated microenvironmental cell subtypes and tumor epithelial cells were explored by using intercellular communication analysis, revealing the molecular regulatory mechanism of tumor epithelial cell heterogeneity. Based on the expression of feature genes mediated by HDF-related genes in the microenvironment T-cell subtypes, enrichment scoring was performed on the feature gene expression in the CRC tumor tissue transcriptome dataset. It was found that the feature gene scoring of microenvironment T-cell subtypes (HDF-TME score) has a certain predictive ability for the prognosis and immunotherapy benefits of CRC tumor patients, providing data support for precise immunotherapy in CRC tumors.
Collapse
Affiliation(s)
- Zihan Zhao
- Department of Gastroenterology, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, 15 Yuquan Road, Haidian District, Beijing, 100049, China
| | - Yarui Wu
- Department of Gastroenterology, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, 15 Yuquan Road, Haidian District, Beijing, 100049, China
| | - Xuhua Geng
- Department of Gastroenterology, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, 15 Yuquan Road, Haidian District, Beijing, 100049, China
| | - Congrui Yuan
- Department of Gastroenterology, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, 15 Yuquan Road, Haidian District, Beijing, 100049, China
| | - Guibin Yang
- Department of Gastroenterology, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, 15 Yuquan Road, Haidian District, Beijing, 100049, China.
| |
Collapse
|
5
|
Ma Z, Tang M, Yang L, Chen L. Distribution, metabolism, and excretion of [ 14C] purinostat mesylate, a novel selective HDAC I/IIb inhibitor, in rats analyzed by high-performance liquid chromatography coupled with LTQ orbitrap mass spectrometry/radioactivity monitoring. J Pharm Biomed Anal 2025; 261:116834. [PMID: 40164058 DOI: 10.1016/j.jpba.2025.116834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 03/17/2025] [Accepted: 03/19/2025] [Indexed: 04/02/2025]
Abstract
Purinostat Mesylate (PM) is a novel and highly efficient selective histone deacetylase (HDAC) I/IIb inhibitor for hematologic tumor treatment that was granted Investigational New Drug (IND) approval for clinical investigation by the National Medical Products Administration and is currently in phase IIb clinical trials for relapsed/refractory diffuse large B-cell lymphoma. In this paper, the excretion, distribution, and metabolism properties of this IND were researched by High-Performance Liquid Chromatography coupled with LTQ Orbitrap Mass Spectrometry/Radioactivity Monitoring (HPLC-LTQ-Orbitrap-MS/RAM) and liquid scintillation counting. Following a single intravenous dose of [14C] PM to rats, a total of 98.49 % of the dose was recovered from intact rats within 0-168 h post-dose, with 14.16 % in urine and 83.15 % in feces, most of which was recovered within the first 24 h post-dose. For bile duct cannulated rats, a total of 95.54 % of the dose was recovered, with 62.37 % in bile, 23.37 % in urine and 8.58 % in feces within 0-72 h post-dose, suggesting that [14C] PM was excreted mainly into feces via biliary excretion. [14C] PM was distributed widely and eliminated rapidly throughout the body, with the lung, liver, kidney and intestine as the main organs. Interestingly, slow elimination was observed in the spleen, which could benefit the functional restoration of the spleen in hematological tumors. In terms of metabolism, [14C] PM underwent an extensive metabolic transformation in rats. Fourteen metabolites were tentatively identified, with major phase I metabolic pathways encompassing reduction, N-dealkylation, and oxidative deamination. Concomitantly, the primary phase II metabolic routes involved acetylation and glucuronic acid conjugation. This study was the first comprehensive PM pharmacokinetic study utilizing [14C] isotope labeling technology.
Collapse
Affiliation(s)
- Ziyan Ma
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Chengdu Zenitar Biomedical Technology Co., Ltd, Chengdu 610212, China
| | - Minghai Tang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Linyu Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lijuan Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Chengdu Zenitar Biomedical Technology Co., Ltd, Chengdu 610212, China.
| |
Collapse
|
6
|
Zhang H, Pang Y, Yi L, Wang X, Wei P, Wang H, Lin S. Epigenetic regulators combined with tumour immunotherapy: current status and perspectives. Clin Epigenetics 2025; 17:51. [PMID: 40119465 PMCID: PMC11929245 DOI: 10.1186/s13148-025-01856-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 03/03/2025] [Indexed: 03/24/2025] Open
Abstract
Immunotherapy, particularly immune checkpoint inhibitor therapy, has demonstrated clinical benefits in solid tumours. Despite its satisfactory clinical efficacy, it still faces several issues, such as limited eligibility, low response rates and cytotoxicity. Cancer epigenetics implies that tumour cells exhibit unique phenotypes because of their unique characteristics, thus reprogramming of the epigenome holds promise for cancer therapy. Epigenetic regulation plays an important role in regulating gene expression during tumour development and maintenance. Epigenetic regulators induce cancer cell cycle arrest, apoptosis and differentiation of cancer cells, thereby exerting anti-tumour effects. Recent studies have revealed a significant correlation between epigenetic regulatory factors and immune checkpoint therapy. Epigenetics can modulate various aspects of the tumour immune microenvironment and immune response to enhance the sensitivity of immunotherapy, such as lowering the concentration required and mitigating cytotoxicity. This review primarily discusses DNA methyltransferase inhibitors, histone deacetylase inhibitors, enhancer of zeste homolog 2 inhibitors and lysine-specific demethylase 1 inhibitors, which are associated with transcriptional repression. This repression alters the expression of genes involved in the immune checkpoint, thereby enhancing the effectiveness of immunotherapy. We also discuss the potential and challenges of tumour immunotherapy and highlight its advantages, application challenges and clinical research on integrating epigenetic regulatory factors with tumour immunotherapy.
Collapse
Affiliation(s)
- Huan Zhang
- Department of Gastroenterology, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Yutong Pang
- Department of Gastroenterology, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Ling Yi
- Cancer Research Center, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Xiaojue Wang
- Cancer Research Center, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Panjian Wei
- Cancer Research Center, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Haichao Wang
- Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100089, China.
| | - Shuye Lin
- Department of Gastroenterology, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China.
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 101149, China.
| |
Collapse
|
7
|
Chen YM, Yang WQ, Fan YY, Chen Z, Liu YZ, Zhao BS. Trichostatin A augments cell migration and epithelial-mesenchymal transition in esophageal squamous cell carcinoma through BRD4/ c-Myc endoplasmic reticulum-stress pathway. World J Gastroenterol 2025; 31:103449. [PMID: 40124272 PMCID: PMC11924005 DOI: 10.3748/wjg.v31.i11.103449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/09/2025] [Accepted: 02/14/2025] [Indexed: 03/13/2025] Open
Abstract
BACKGROUND The causes of death in patients with advanced esophageal cancer are multifactorial, with tumor metastasis being one of the important factors. Histone acetylation promotes the migration of esophageal squamous cell carcinoma (ESCC) cells, while the histone deacetylase inhibitor (HDACi) shows complex effects on tumor functions. AIM To comprehensively elucidate the impact and molecular mechanisms of trichostatin A (TSA), an HDACi, on cell migration in ESCC through bromodomain-containing protein (BRD4)/cellular myelocytomatosis oncogene (c-Myc)/endoplasmic reticulum (ER)-stress. METHODS The effects of TSA on ESCC cell lines Eca109 and EC9706 migration were evaluated using Transwell assays, with small interfering transfection and pathway-specific inhibitors to elucidate underlying mechanisms. The mRNA levels involved were examined by quantitative real-time polymerase chain reaction. Protein levels of acetylated histones H3 (acH3) and acetylated histones H4, BRD4, c-Myc, as well as markers of ER stress and epithelial-mesenchymal transition (EMT), were analyzed using western blot. Additionally, this method was also used to examine acH3 levels in esophageal cancer tissues and adjacent tissues. Patient outcomes were subsequently tracked to identify prognostic indicators using Log-Rank tests and Cox multivariate analysis. RESULTS TSA promoted the migration of ESCC cells by stimulating the EMT process. TSA-mediated histone acetylation facilitated the recruitment of BRD4, a bromodomain-containing protein, triggering the expression of c-Myc. This cascade induced ER stress and enhanced EMT in ESCC cells. To further elucidate the underlying mechanism, we employed various interventions including the ER stress inhibitor 4-phenylbutyric acid, knockdown of c-Myc and BRD4 expression, and utilization of the BRD4 inhibitor carboxylic acid as well as the inhibitor of TSA 1. Mechanistically, these studies revealed that TSA-mediated histone acetylation facilitated the recruitment of BRD4, which in turn triggered the expression of c-Myc. This sequential activation induced ER stress and subsequently enhanced EMT, thereby promoting the migration of ESCC cells. Additionally, we examined histone acetylation levels in specimens from 43 patients with ESCC, including both tumor tissues and paired adjacent tissues. Statistical analysis unveiled a negative correlation between the level of histone acetylation and the long-term prognosis of patients with ESCC. CONCLUSION TSA promoted ESCC cell migration through the BRD4/c-Myc/ER stress pathway. Moreover, elevated histone acetylation in ESCC tissues correlated with poor ESCC prognosis. These findings enhance our understanding of ESCC migration and HDACi therapy.
Collapse
Affiliation(s)
- Yan-Min Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan Province, China
- Department of Oncology, The First Affiliated Hospital of Henan Polytechnic University, Jiaozuo 454000, Henan Province, China
| | - Wen-Qian Yang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan Province, China
- Henan Medical Science Key Laboratory of Esophageal Cancer Metastasis Translational Medicine, Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan Province, China
- Life Science Research Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan Province, China
| | - Ying-Ying Fan
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan Province, China
| | - Zhi Chen
- Department of Anesthesiology, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan Province, China
| | - Yu-Zhen Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan Province, China
- Henan Medical Science Key Laboratory of Esophageal Cancer Metastasis Translational Medicine, Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan Province, China
- Life Science Research Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan Province, China
| | - Bao-Sheng Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan Province, China
- Henan Medical Science Key Laboratory of Esophageal Cancer Metastasis Translational Medicine, Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan Province, China
| |
Collapse
|
8
|
Cheng B, Li H, Hong Y, Zhou Y, Chen J, Shao C, Kong Z. Research progress in bifunctional small molecules for cancer immunotherapy. Eur J Med Chem 2025; 286:117289. [PMID: 39919914 DOI: 10.1016/j.ejmech.2025.117289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 02/09/2025]
Abstract
Immunotherapy has become one of the most revolutionary modalities for cancer treatment with the approval of many anti-PD-L1 (programmed cell death-ligand 1)/PD-1 (programmed cell death-1) monoclonal antibodies (mAbs). However, anti-PD-L1/PD-1 mAbs suffer from several drawbacks including limited clinical efficacy (∼20 %), poor pharmacokinetics, and the development of immune resistance. Hence, the search for PD-1/PD-L1-based combination therapies and other PD-L1-based bifunctional small molecule modulators [e.g. PD-L1/HDAC (Histone Deacetylase), PD-L1/CXCL12 (C-X-C chemokine ligand 12), PD-L1/Tubulin, PD-L1/IDO1 (Indoleamine 2,3 dioxygenase 1), PD-L1/PARP (Poly(ADP-ribose) polymerase), PD-L1/STING (Stimulator of interferon genes), and PD-L1/NAMPT (Nicotinamide phosphoribosyltransferase)-targeting dual inhibitors] has been intensified with considerable strides achieved in the past couple of years. Herein, we summarize the latest development of bifunctional small molecules as immunotherapy for tumor treatment, including those PD-L1-based, A2AR (Adenosine 2A receptor)-based, IDO1-based, Toll-like receptor (TLR)-based, SHP2 (Src homology 2 domain-containing phosphatase 2)-based, and HPK1 (Hematopoietic progenitor kinase 1)-based dual-acting compounds. In addition, we also summarize the tumorigenesis and synergy mechanism of various targets. Finally, the challenges and future directions for bifunctional small molecules for cancer immunotherapy are also discussed in detail.
Collapse
Affiliation(s)
- Binbin Cheng
- Hubei Polytechnic University, Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Hubei Polytechnic University School of Medicine, Huangshi, 435003, China; Central Laboratory, Wenzhou Medical University Lishui Hospital, Lishui People's Hospital, Lishui, Zhejiang, 323000, China
| | - Hongqiao Li
- The Central Hospital of Huangshi, Huangshi, 435000, China
| | - Yimeng Hong
- Hubei Polytechnic University, Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Hubei Polytechnic University School of Medicine, Huangshi, 435003, China
| | - Yingxing Zhou
- Hubei Polytechnic University, Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Hubei Polytechnic University School of Medicine, Huangshi, 435003, China; Huangshi Key Laboratory of Molecular Diagnosis and Individualized Treatment, Huangshi Love&health Hospital Affiliated of Hubei Polytechnic University, China.
| | - Jianjun Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Chuxiao Shao
- Central Laboratory, Wenzhou Medical University Lishui Hospital, Lishui People's Hospital, Lishui, Zhejiang, 323000, China.
| | - Zhihua Kong
- Guangdong Provincial Hospital of Integrated Traditional Chinese and Western Medicine, FoShan, 528200, China.
| |
Collapse
|
9
|
Liang H, Li S, Peng X, Xiao H. Overview of the epigenetic/cytotoxic dual-target inhibitors for cancer therapy. Eur J Med Chem 2025; 285:117235. [PMID: 39788061 DOI: 10.1016/j.ejmech.2024.117235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/24/2024] [Accepted: 12/31/2024] [Indexed: 01/12/2025]
Abstract
Epigenetic dysregulation plays a pivotal role in the initiation and progression of various cancers, influencing critical processes such as tumor growth, invasion, migration, survival, apoptosis, and angiogenesis. Consequently, targeting epigenetic pathways has emerged as a promising strategy for anticancer drug discovery in recent years. However, the clinical efficacy of epigenetic inhibitors, such as HDAC inhibitors, has been limited, often accompanied by resistance. To overcome these challenges, innovative therapeutic approaches are required, including the combination of epigenetic inhibitors with cytotoxic agents or the design of dual-acting inhibitors that target both epigenetic and cytotoxic pathways. In this review, we provide a comprehensive overview of the structures, biological functions and inhibitors of epigenetic regulators (such as HDAC, LSD1, PARP, and BET) and cytotoxic targets (including tubulin and topoisomerase). Furthermore, we discuss recent advancement of combination therapies and dual-target inhibitors that target both epigenetic and cytotoxic pathways, with a particular focus on recent advances, including rational drug design, pharmacodynamics, pharmacokinetics, and clinical applications.
Collapse
Affiliation(s)
- Hailiu Liang
- School of Medical and Information Engineering, School of Pharmacy, Gannan Medical University, Ganzhou, 341000, PR China
| | - Shuqing Li
- School of Medical and Information Engineering, School of Pharmacy, Gannan Medical University, Ganzhou, 341000, PR China
| | - Xiaopeng Peng
- School of Medical and Information Engineering, School of Pharmacy, Gannan Medical University, Ganzhou, 341000, PR China; Jiangxi Provincial Key Laboratory of Tissue Engineering, Gannan Medical University, Ganzhou, 341000, PR China.
| | - Hao Xiao
- School of Medical and Information Engineering, School of Pharmacy, Gannan Medical University, Ganzhou, 341000, PR China; Jiangxi Provincial Key Laboratory of Tissue Engineering, Gannan Medical University, Ganzhou, 341000, PR China.
| |
Collapse
|
10
|
Wang R, Li W, Cao H, Zhang L. Decoding the Tumor-Associated Microbiota: From Origins to Nanomedicine Applications in Cancer Therapy. BIOLOGY 2025; 14:243. [PMID: 40136500 PMCID: PMC11940167 DOI: 10.3390/biology14030243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/22/2025] [Accepted: 02/25/2025] [Indexed: 03/27/2025]
Abstract
Growing evidence reveals that the tumor microbiome-comprising distinct microbial communities within neoplastic tissues-exerts a profound influence on cancer initiation, progression, and therapeutic response. These microbes actively reshape the tumor microenvironment (TME) through metabolite secretion, the modulation of immune pathways, and direct interactions with host cells, thereby affecting tumor biology and therapeutic outcomes. Despite substantial heterogeneity among cancer types, recent insights underscore the tumor microbiome's potential as both a diagnostic/prognostic biomarker and a targetable component for innovative treatments. In this review, we synthesize emerging knowledge on the mechanistic roles of tumor-associated microbiota in shaping the TME, with a focus on how these discoveries can guide novel therapeutic strategies. We further explore interdisciplinary advances, including the convergence of microbiomics and nanotechnology, to enhance drug delivery, circumvent resistance, and foster TME remodeling. By highlighting these cutting-edge developments, our review underscores the transformative potential of integrating tumor microbiome research into precision oncology and advancing more personalized cancer therapies.
Collapse
Affiliation(s)
- Ruiqi Wang
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; (R.W.); (W.L.)
| | - Weizheng Li
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; (R.W.); (W.L.)
| | - Hongqian Cao
- Department of Health Inspection and Quarantine, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Lei Zhang
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; (R.W.); (W.L.)
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| |
Collapse
|
11
|
Saadh MJ, Ahmed HH, Kareem RA, Bishoyi AK, Roopashree R, Shit D, Arya R, Sharma A, Khaitov K, Sameer HN, Yaseen A, Athab ZH, Adil M. Molecular mechanisms of Hippo pathway in tumorigenesis: therapeutic implications. Mol Biol Rep 2025; 52:267. [PMID: 40014178 DOI: 10.1007/s11033-025-10372-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 02/17/2025] [Indexed: 02/28/2025]
Abstract
The Hippo signaling pathway is a pivotal regulator of tissue homeostasis, organ size, and cell proliferation. Its dysregulation is profoundly implicated in various forms of cancer, making it a highly promising target for therapeutic intervention. This review extensively evaluates the mechanisms underlying the dysregulation of the Hippo pathway in cancer cells and the molecular processes linking these alterations to tumorigenesis. Under normal physiological conditions, the Hippo pathway is a guardian, ensuring controlled cellular proliferation and programmed cell death. However, numerous mutations and epigenetic modifications can disrupt this equilibrium in cancer cells, leading to unchecked cell proliferation, enhanced survival, and metastatic capabilities. The pathway's interaction with other critical signaling networks, including Wnt/β-catenin, PI3K/Akt, TGF-β/SMAD, and EGFR pathways, further amplifies its oncogenic potential. Central to these disruptions is the activation of YAP and TAZ transcriptional coactivators, which drive the expression of genes that promote oncogenesis. This review delves into the molecular mechanisms responsible for the dysregulation of the Hippo pathway in cancer, elucidating how these disruptions contribute to tumorigenesis. We also explore potential therapeutic strategies, including inhibitors targeting YAP/TAZ activity and modulators of upstream signaling components. Despite significant advancements in understanding the Hippo pathway's role in cancer, numerous questions remain unresolved. Continued research is imperative to unravel the complex interactions within this pathway and to develop innovative and effective therapies for clinical application. In conclusion, the comprehensive understanding of the Hippo pathway's regulatory mechanisms offers significant potential for advancing cancer therapies, regenerative medicine, and treatments for chronic diseases. The translation of these insights into clinical practice will necessitate collaborative efforts from researchers, clinicians, and pharmaceutical developers to bring novel and effective therapies to patients, ultimately improving clinical outcomes and advancing the field of oncology.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | | | | | - Ashok Kumar Bishoyi
- Department of Microbiology, Faculty of Science, Marwadi University Research Center, Marwadi University, Rajkot, Gujarat, 360003, India
| | - R Roopashree
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Debasish Shit
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, 140401, India
| | - Renu Arya
- Department of Pharmacy, Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab, 140307, India
| | - Abhishek Sharma
- Department of Medicine, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Kakhramon Khaitov
- Department of Dermatovenerology, Pediatric Dermatovenerology and AIDS, Tashkent Pediatric Medical Institute, Bogishamol Street 223, Tashkent, 100140, Uzbekistan
| | - Hayder Naji Sameer
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar, 64001, Iraq
| | | | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Mohaned Adil
- Pharmacy College, Al-Farahidi University, Baghdad, Iraq
| |
Collapse
|
12
|
Li S, Hu Z, Pan W, Wu H, Peng W, Wu Y, Jiang F, Peng X. Discovery of Highly Potent and Orally Bioavailable Histone Deacetylase 3 Inhibitors as Immunomodulators and Enhancers of DNA-Damage Response in Cancer Therapy. J Med Chem 2025; 68:3212-3237. [PMID: 39873221 DOI: 10.1021/acs.jmedchem.4c02445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Histone deacetylase 3 (HDAC3) is a well-established target for cancer therapy. Herein, we developed LSQ-28 as a novel HDAC3 inhibitor, which exhibited high HDAC3 inhibitory activity (IC50 = 42 nM, SI > 161) and displayed potent antiproliferative activity against four cancer cells and further demonstrated excellent antimigratory, anti-invasive, and antiwound healing activities. Further studies revealed that LSQ-28 induced a dose-dependent increase in Ac-H3 expression and promoted the degradation of PD-L1. Additionally, LSQ-28 enhanced the DNA damage response induced by PARP inhibitor, as evidenced by regulated expression of PARP1 and γ-H2AX. Notably, LSQ-28 also possessed favorable pharmacokinetic properties with significant oral bioavailability (F = 95.34%). Importantly, the combination of LSQ-28 with the PD-L1 inhibitor NP-19 could enhance antitumor immune response (TGI = 80%). When combined with olaparib, LSQ-28 significantly enhanced the in vivo tumor-suppression activity (TGI = 91%). Collectively, LSQ-28 represents a promising HDAC3 inhibitor for further exploration in cancer therapeutic strategies.
Collapse
Affiliation(s)
- Shuqing Li
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Disease, Ministry of Education; Jiangxi Provincal Key Laboratory of Tissue Engineering; College of Pharmacy, Gannan Medical University, Ganzhou 314000, China
| | - Zhihao Hu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Disease, Ministry of Education; Jiangxi Provincal Key Laboratory of Tissue Engineering; College of Pharmacy, Gannan Medical University, Ganzhou 314000, China
| | - Wanyi Pan
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Disease, Ministry of Education; Jiangxi Provincal Key Laboratory of Tissue Engineering; College of Pharmacy, Gannan Medical University, Ganzhou 314000, China
| | - Haiyan Wu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Disease, Ministry of Education; Jiangxi Provincal Key Laboratory of Tissue Engineering; College of Pharmacy, Gannan Medical University, Ganzhou 314000, China
| | - Weijie Peng
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Disease, Ministry of Education; Jiangxi Provincal Key Laboratory of Tissue Engineering; College of Pharmacy, Gannan Medical University, Ganzhou 314000, China
| | - Yi Wu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Disease, Ministry of Education; Jiangxi Provincal Key Laboratory of Tissue Engineering; College of Pharmacy, Gannan Medical University, Ganzhou 314000, China
| | - Feng Jiang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Disease, Ministry of Education; Jiangxi Provincal Key Laboratory of Tissue Engineering; College of Pharmacy, Gannan Medical University, Ganzhou 314000, China
| | - Xiaopeng Peng
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Disease, Ministry of Education; Jiangxi Provincal Key Laboratory of Tissue Engineering; College of Pharmacy, Gannan Medical University, Ganzhou 314000, China
| |
Collapse
|
13
|
Song H, Zhang M, Guo C, Guo X, Ma Y, Ma Y. Implication of protein post translational modifications in gastric cancer. Front Cell Dev Biol 2025; 13:1523958. [PMID: 39968176 PMCID: PMC11833226 DOI: 10.3389/fcell.2025.1523958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/10/2025] [Indexed: 02/20/2025] Open
Abstract
Gastric cancer (GC) is one of the most common and highly lethal malignant tumors worldwide, and its occurrence and development are regulated by multiple molecular mechanisms. Post-translational modifications (PTM) common forms include ubiquitylation, phosphorylation, acetylation and methylation. Emerging research has highlighted lactylation and glycosylation. The diverse realm of PTM and PTM crosstalk is linked to many critical signaling events involved in neoplastic transformation, carcinogenesis and metastasis. This review provides a comprehensive overview of the impact of PTM on the occurrence and progression of GC. Specifically, aberrant PTM have been shown to alter the proliferation, migration, and invasion capabilities of GC cells. Moreover, PTM are closely associated with resistance to chemotherapeutic agents in GC. Notably, this review also discusses the phenomenon of PTM crosstalk, highlighting the interactions among PTM and their roles in regulating signaling pathways and protein functions. Therefore, in-depth investigation into the mechanisms of PTM and the development of targeted therapeutic strategies hold promise for advancing early diagnosis, treatment, and prognostic evaluation of GC, offering novel insights and future research directions.
Collapse
Affiliation(s)
- Houji Song
- The First Clinical Medical College, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Mingze Zhang
- The First Clinical Medical College, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Chengwang Guo
- The First Clinical Medical College, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Xi Guo
- The First Clinical Medical College, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Yuqi Ma
- The First Clinical Medical College, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Yuntao Ma
- The First Clinical Medical College, Gansu University of Traditional Chinese Medicine, Lanzhou, China
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, China
| |
Collapse
|
14
|
Shirbhate E, Singh V, Kore R, Koch B, Veerasamy R, Tiwari AK, Rajak H. Synergistic strategies: histone deacetylase inhibitors and platinum-based drugs in cancer therapy. Expert Rev Anticancer Ther 2025; 25:121-141. [PMID: 39873641 DOI: 10.1080/14737140.2025.2458156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/23/2024] [Accepted: 01/21/2025] [Indexed: 01/30/2025]
Abstract
INTRODUCTION The synergistic combination of histone deacetylase inhibitors and platinum-based medicines represents a promising therapeutic strategy to efficacy and overcome drug resistance in cancer therapy, necessitating a comprehensive understanding on their molecular interactions and clinical potential. AREAS COVERED The objective of presented review is to investigate the molecular pathways of platinum medicines and HDAC inhibitors. A comprehensive literature review from 2011 to 2024 was conducted across multiple databases like MEDLINE, PubMed, Google Scholar, Science Direct, Scopus and official websites of ClinicalTrial.gov to explore publications on HDAC inhibitors, platinum drugs, and combination cancer therapies, revealing preliminary evidence of innovative treatment strategies involving HDAC inhibitors and platinum chemotherapeutics. Several new platinum (IV) complexes, with HDAC inhibitory moieties and better cytotoxicity profiles than conventional platinum drugs, are also reviewed here. EXPERT OPINION The above combination has great potential in cancer treatment, however managing toxicity, dosage regimens, and patient selection biomarkers are problematic. More selective HDAC inhibitors and innovative delivery techniques are potential areas for future research. An adaptation toward changing cancer therapeutic landscapes, highlights combining HDAC inhibitors with platinum-based medicines serves as a new concept for personalized medicine, however, a deeper research is still needed at this time.
Collapse
Affiliation(s)
- Ekta Shirbhate
- Department of Pharmacy, Guru Ghasidas University, Bilaspur, India
| | - Vaibhav Singh
- Department of Pharmacy, Guru Ghasidas University, Bilaspur, India
| | - Rakesh Kore
- Department of Pharmacy, Guru Ghasidas University, Bilaspur, India
| | - Biplab Koch
- Department of Zoology, Banaras Hindu University, Varanasi, India
| | | | - Amit Kumar Tiwari
- Cancer & System Therapeutics, UAMS College of Pharmacy, UAMS - University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Harish Rajak
- Department of Pharmacy, Guru Ghasidas University, Bilaspur, India
| |
Collapse
|
15
|
Liang M, Dong Q, Wu W, Fan J. Short-Chain Fatty Acids: Promising Therapeutic Targets for Respiratory Syncytial Virus Infection. Clin Rev Allergy Immunol 2025; 68:8. [PMID: 39873814 DOI: 10.1007/s12016-024-09018-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2024] [Indexed: 01/30/2025]
Abstract
The intestinal microbiota is a complex community of organisms present in the human gastrointestinal tract, some of which can produce short-chain fatty acids (SCFAs) through the fermentation of dietary fiber. SCFAs play a major role in mediating the intestinal microbiota's regulation of host immunity and intestinal homeostasis. Respiratory syncytial virus (RSV) can cause an imbalance between anti-inflammatory and proinflammatory responses in the host. In addition, changes in SCFA levels and the structure of the intestinal microbiota have been observed after RSV infection. Therefore, there may be a link between SCFAs and RSV infection, and SCFAs are expected to be therapeutic targets for RSV infection.
Collapse
Affiliation(s)
- Mingxin Liang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China
- Department of Pediatrics, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, 610072, Sichuan, China
| | - Qinqin Dong
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, China
- Department of Pediatrics, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, 610072, Sichuan, China
| | - Weiyi Wu
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China
- Department of Pediatrics, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, 610072, Sichuan, China
| | - Juan Fan
- Department of Pediatrics, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, 610072, Sichuan, China.
| |
Collapse
|
16
|
Buccheri R, Coco A, Pasquinucci L, Amata E, Marrazzo A, Rescifina A. Enhancing HDAC Inhibitor Screening: Addressing Zinc Parameterization and Ligand Protonation in Docking Studies. Int J Mol Sci 2025; 26:850. [PMID: 39859564 PMCID: PMC11766394 DOI: 10.3390/ijms26020850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/17/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025] Open
Abstract
Precise binding free-energy predictions for ligands targeting metalloproteins, especially zinc-containing histone deacetylase (HDAC) enzymes, require specialized computational approaches due to the unique interactions at metal-binding sites. This study evaluates a docking algorithm optimized for zinc coordination to determine whether it could accurately differentiate between protonated and deprotonated states of hydroxamic acid ligands, a key functional group in HDAC inhibitors (HDACi). By systematically analyzing both protonation states, we sought to identify which state produces docking poses and binding energy estimates most closely aligned with experimental values. The docking algorithm was applied across HDAC 2, 4, and 8, comparing protonated and deprotonated ligand correlations to experimental data. The results demonstrate that the deprotonated state consistently yielded stronger correlations with experimental data, with R2 values for deprotonated ligands outperforming protonated counterparts in all HDAC targets (average R2 = 0.80 compared to the protonated form where R2 = 0.67). These findings emphasize the significance of proper ligand protonation in molecular docking studies of zinc-binding enzymes, particularly HDACs, and suggest that deprotonation enhances predictive accuracy. The study's methodology provides a robust foundation for improved virtual screening protocols to evaluate large ligand libraries efficiently. This approach supports the streamlined discovery of high-affinity, zinc-binding HDACi, advancing therapeutic exploration of metalloprotein targets. A comprehensive, step-by-step tutorial is provided to facilitate a thorough understanding of the methodology and enable reproducibility of the results.
Collapse
Affiliation(s)
| | | | | | | | | | - Antonio Rescifina
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (R.B.); (A.C.); (L.P.); (E.A.); (A.M.)
| |
Collapse
|
17
|
Wagih N, Abdel-Rahman IM, El-Koussi NA, El-Din A Abuo-Rahma G. Anticancer benzimidazole derivatives as inhibitors of epigenetic targets: a review article. RSC Adv 2025; 15:966-1010. [PMID: 39807197 PMCID: PMC11726184 DOI: 10.1039/d4ra05014b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 12/11/2024] [Indexed: 01/16/2025] Open
Abstract
Cancer is one of the leading causes of morbidity and mortality worldwide. One of the primary causes of cancer development and progression is epigenetic dysregulation, which is a heritable modification that alters gene expression without changing the DNA sequence. Therefore, targeting these epigenetic changes has emerged as a promising therapeutic strategy. Benzimidazole derivatives have gained attention for their potent epigenetic modulatory effects as they interact with various epigenetic targets, including DNA methyltransferases, histone deacetylases and histone methyltransferases. This review provides a comprehensive overview of benzimidazole derivatives that inhibit different acetylation and methylation reader, writer and eraser epigenetic targets. Herein, we emphasize the therapeutic potential of these compounds in developing targeted, less toxic cancer therapies. Presently, some promising benzimidazole derivatives have entered clinical trials and shown great advancements in the fields of hematological and solid malignancy therapies. Accordingly, we highlight the recent advancements in benzimidazole research as epigenetic agents that could pave the way for designing new multi-target drugs to overcome resistance and improve clinical outcomes for cancer patients. This review can help researchers in designing new anticancer benzimidazole derivatives with better properties.
Collapse
Affiliation(s)
- Nardin Wagih
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Deraya University New Minia 61111 Egypt
| | - Islam M Abdel-Rahman
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Deraya University New Minia 61111 Egypt
| | - Nawal A El-Koussi
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Deraya University New Minia 61111 Egypt
- Medicinal Chemistry Department, Faculty of Pharmacy, Assiut University 71526 Assiut Egypt
| | - Gamal El-Din A Abuo-Rahma
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University 61519 Minia Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Deraya University New Minia 61111 Egypt
| |
Collapse
|
18
|
Hsieh HH, Kuo MZ, Chen IA, Lin CJ, Hsu V, HuangFu WC, Wu TY. Epigenetic Modifications as Novel Therapeutic Strategies of Cancer Chemoprevention by Phytochemicals. Pharm Res 2025; 42:69-78. [PMID: 39775615 DOI: 10.1007/s11095-024-03810-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025]
Abstract
PURPOSE Epigenetic modifications, such as aberrant DNA methylation, histone alterations, non-coding RNA remodeling, and modulation of transcription factors, are pivotal in the pathogenesis of diverse malignancies. Reactive oxygen species (ROS) have the capacity to impact these epigenetic mechanisms, including DNA methylation, throughout the different stages of cancer development. Therefore, the aim of this review is to address the impact of. METHODS Published papers were searched in Pubmed and Google Scholar databases using the keywords "epigenetic", or "DNA methylation", or "phytochemicals", or "chemoprevention" to prepare this review. RESULTS There is mounting evidence indicating that diminishing ROS accumulation within cells can regulate the function of DNA methyltransferases (DNMTs). Moreover, activation of the cellular defense system can impede and potentially reverse the progression of tumors in cancerous cells. As a result, ROS scavengers, antioxidants, and demethylating agents have emerged as potential therapeutic approaches for specific types of cancer. Additionally, dietary phytochemicals present in fruits, vegetables, and herbs, which have been utilized for centuries, exhibit the capability to modulate transcription factors, decrease inflammation, deliver antioxidant benefits, induce cell-cycle arrest, and stimulate apoptosis. CONCLUSION These phytochemicals can also renew and reprogram the expression of genes that suppress cancer. Thus, prolonged exposure to phytochemicals at low doses represents an innovative therapeutic tactic for the prevention of cancer.
Collapse
Affiliation(s)
- Hui-Hsia Hsieh
- Department of Pharmacy, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung City, Taiwan
- School of Pharmacy, China Medical University, Taichung City, Taiwan
| | - Min-Zhan Kuo
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - I-An Chen
- Department of English, National Taichung University of Education, Taichung City, Taiwan
| | - Chien-Ju Lin
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung City, Taiwan
| | - Victor Hsu
- Bergen County Academies, Hackensack, NJ, USA
| | - Wei-Chun HuangFu
- Graduate Institute of Cancer Biology and Drug Development, College of Medical Science and Technology, Taipei Medical University, Taipei City, Taiwan.
| | - Tien-Yuan Wu
- School of Pharmacy, Taipei Medical University, Taipei City, Taiwan.
- Department of Pharmacy, Wan Fang Hospital, Taipei Medical University, Taipei City, Taiwan.
| |
Collapse
|
19
|
Wang C, Ma X. The role of acetylation and deacetylation in cancer metabolism. Clin Transl Med 2025; 15:e70145. [PMID: 39778006 PMCID: PMC11706801 DOI: 10.1002/ctm2.70145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/02/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
As a hallmark of cancer, metabolic reprogramming adjusts macromolecular synthesis, energy metabolism and redox homeostasis processes to adapt to and promote the complex biological processes of abnormal growth and proliferation. The complexity of metabolic reprogramming lies in its precise regulation by multiple levels and factors, including the interplay of multiple signalling pathways, precise regulation of transcription factors and dynamic adjustments in metabolic enzyme activity. In this complex regulatory network, acetylation and deacetylation, which are important post-translational modifications, regulate key molecules and processes related to metabolic reprogramming by affecting protein function and stability. Dysregulation of acetylation and deacetylation may alter cancer cell metabolic patterns by affecting signalling pathways, transcription factors and metabolic enzyme activity related to metabolic reprogramming, increasing the susceptibility to rapid proliferation and survival. In this review, we focus on discussing how acetylation and deacetylation regulate cancer metabolism, thereby highlighting the central role of these post-translational modifications in metabolic reprogramming, and hoping to provide strong support for the development of novel cancer treatment strategies. KEY POINTS: Protein acetylation and deacetylation are key regulators of metabolic reprogramming in tumour cells. These modifications influence signalling pathways critical for tumour metabolism. They modulate the activity of transcription factors that drive gene expression changes. Metabolic enzymes are also affected, altering cellular metabolism to support tumour growth.
Collapse
Affiliation(s)
- Cuicui Wang
- Department of Obstetrics and GynecologyShengjing Hospital of China Medical UniversityShenyang CityLiaoning ProvinceChina
- Key Laboratory of Gynecological Oncology of Liaoning ProvinceDepartment of Obstetrics and GynecologyShengjing Hospital of China Medical UniversityShenyangLiaoning ProvinceChina
| | - Xiaoxin Ma
- Department of Obstetrics and GynecologyShengjing Hospital of China Medical UniversityShenyang CityLiaoning ProvinceChina
- Key Laboratory of Gynecological Oncology of Liaoning ProvinceDepartment of Obstetrics and GynecologyShengjing Hospital of China Medical UniversityShenyangLiaoning ProvinceChina
| |
Collapse
|
20
|
Al-Dalla Ali AF, Al-Hamashi AAA. Molecular Modeling, Synthesis, and Preliminary Cytotoxicity Evaluation of New Indole-Based Molecules as Possible Sirtuin Inhibitors. Chem Pharm Bull (Tokyo) 2025; 73:307-313. [PMID: 40175102 DOI: 10.1248/cpb.c24-00774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Sirtuin enzymes are interesting targets for developing new drug candidates. This study aims to design new indole-based sirtuin inhibitors, filtering through molecular docking alongside molecular dynamics and pharmacokinetic property prediction, synthesizing 4 compounds with an evaluation of their cytotoxic activity alongside the sirtuin inhibitor AGK2 against the breast cancer (MCF7) cell line via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The antibacterial activity of these compounds was evaluated by comparing the minimum inhibitory concentration (MIC) with ciprofloxacin against Staphylococcus aureus and Klebsiella pneumoniae using resazurin dye. The docking study showed a higher binding affinity for the synthesized compounds than sirtuin inhibitors AGK2 and selisistat against the sirtuin2 isoform. In addition, the molecular dynamics study showed good stability of the compound with the higher docking score in complex with sirtuin2 over 100 ns. The prediction of pharmacokinetic properties showed adherence to drug-likeness criteria. The MTT assay revealed comparable IC50 values for the compounds with AGK2, as compound AFJ1 showed the highest cytotoxic activity (IC50 = 2.6 μM). Among the synthesized compounds, AFJ2 showed the lowest MIC against K. pneumoniae (125 μg/mL) compared to ciprofloxacin (62.5 μg/mL).
Collapse
Affiliation(s)
- Ali Fakhri Al-Dalla Ali
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Anbar, Ramadi 31001, Iraq
| | - Ayad Abed Ali Al-Hamashi
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Baghdad, Baghdad 10045, Iraq
| |
Collapse
|
21
|
Nalla K, Chatterjee B, Poyya J, Swain A, Ghosh K, Pan A, Joshi CG, Manavathi B, Kanade SR. Epigallocatechin-3-gallate inhibit the protein arginine methyltransferase 5 and enhancer of Zeste homolog 2 in breast cancer both in vitro and in vivo. Arch Biochem Biophys 2025; 763:110223. [PMID: 39581340 DOI: 10.1016/j.abb.2024.110223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 11/07/2024] [Accepted: 11/20/2024] [Indexed: 11/26/2024]
Abstract
PURPOSE Histone methyltransferases are enzymes that selectively methylate lysine or arginine residues on both histone and non-histone proteins, categorized into lysine methyltransferases and arginine methyltransferases. Notably, EZH2 and PRMT5 are known for catalyzing trimethylation of H3 at K27 and symmetric dimethylation of H4 at R3, respectively. These methylation events are recognized as characteristic histone-repressive marks in cancer. The over expression of PRMT5 and EZH2 were reported in various cancers and recognized as a drug target. The study aims to explore the inhibitory potential of phytocompound, Epigallocatechin-3-gallate (EGCG), against PRMT5 and EZH2 in the breast cancer model. METHODS Screening of an array of phytocompounds was conducted through a combination of in-silico and in-vitro assays. Interactions between EGCG and human PRMT5: MEP50 and EZH2 were evaluated using molecular docking. Binding efficiency was validated, by Surface Plasmon Resonance studies and inhibitory potential was accessed by in vitro methylation followed by western blots, ELISA, and cell-based assays. In-vivo efficacy of EGCG was carried on cell line derived mice xenograft model. RESULTS EGCG demonstrated robust interactions with PRMT5:MEP50 complex and EZH2, particularly within the SAM binding site. Surface Plasmon Resonance analysis revealed strong binding affinity in nanomolar concentrations, particularly with PRMT5-MEP50 compared to EZH2. In-vitro assays confirmed EGCG's ability to inhibit PRMT5 and EZH2, leading to a decrease in their catalytic products, namely H4R3me2s and H3K27me3, respectively. EGCG treatment induced both autophagy and apoptosis invitro. In-vivo studies demonstrated significant reductions in tumor size and the proliferation marker ki67, accompanied by a decrease in histone repressive marks. CONCLUSION The findings suggest that EGCG effectively inhibits PRMT5 and EZH2, underscoring its potential for combined therapeutic strategies in cancer treatment.
Collapse
Affiliation(s)
- Kirankumar Nalla
- Department of Plant Sciences, School of Life Sciences University of Hyderabad PO Central University Gachibowli, Hyderabad Telangana, 500046, India
| | - Biji Chatterjee
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Centre, Houston, TX, USA
| | - Jagadeesha Poyya
- SDM Research Institute for Biomedical Sciences, A Constituent Unit of Shri Dharmasthala, Manjunatheshwara University, Dharwad, 580009, Karnataka, India
| | - Aishwarya Swain
- Department for Bioinformatics, Pondicherry University, Puducherry, 605014, India
| | - Krishna Ghosh
- Department of Anaesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Centre, Houston, TX, USA
| | - Archana Pan
- Department for Bioinformatics, Pondicherry University, Puducherry, 605014, India
| | - Chandrashekhar G Joshi
- Department of Studies in Biochemistry, Mangalore University PG Centre, Jnana Kaveri, Chikka Aluvara, Thorenoor Post Kushalnagar, Somawarpet TQ, Kodagu, 571232, India
| | - Bramanandam Manavathi
- Department of Biochemistry, School of Life Sciences, University of Hyderabad PO Central University Gachibowli, Hyderabad Telangana 500046, India
| | - Santosh R Kanade
- Department of Plant Sciences, School of Life Sciences University of Hyderabad PO Central University Gachibowli, Hyderabad Telangana, 500046, India.
| |
Collapse
|
22
|
Yang L, Sui H, Ding Y, Zhu Y, Song X, Zhang Y, Fan G, Wang J, Cui X, Jiang Y, Zhao S, Hong Y, Mu N, Tian Z, Zhao Y, Li P, Zhao X. Disulfiram impairs USP21-mediated MOF-K257 deubiquitination to inhibit esophageal squamous cell carcinoma progression. Cancer Lett 2024; 611:217419. [PMID: 39725149 DOI: 10.1016/j.canlet.2024.217419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 11/15/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
Disulfiram (DSF), primarily applied in the therapy for alcohol addiction, has been demonstrated to possess the promising capability of anti-tumor in many human cancers, including esophageal squamous cell carcinoma (ESCC). To date, almost all studies about DSF in ESCC are focusing on investigating either drug combinations or nanoparticle-based delivery systems. However, the exact molecular mechanisms mediating the response to DSF in ESCC are totally unknown. An increasing number of studies reported that aberrant expression of acetylation-related genes is closely involved in regulating the response of cancer cells to anti-tumor drugs. Here, we defined DSF-sensitive and -resistant cells by measuring the half-maximal inhibitory concentration (IC50) of DSF in four ESCC cell lines, followed by detecting the protein expression of nine dysregulated histone acetyltransferase (HAT) genes in ESCC. Our results demonstrate that MOF is responsible for the sensitivity to DSF in ESCC cells. Consistently, DSF treatment markedly abolished MOF-driving ESCC progression and Wnt/β-Catenin signaling activation. Interestingly, DSF decreased MOF protein expression via the ubiquitin-proteasome system. Further exploration verified the essential role of USP21, among three candidates (USP2, USP21, and USP10), in DSF-mediated MOF protein levels. Mechanistically, USP21 binds to MOF protein and decreases the ubiquitination of its K257 site, while DSF notably impedes MOF-mediated ESCC malignant progression and Wnt/β-Catenin signaling activation by blocking USP21-governed MOF-K257 deubiquitination. In conclusion, our study elucidates the USP21/MOF-K257 axis regulating the response to DSF in ESCC, which provides novel and key evidence for the clinical application of DSF in individualized therapy for ESCC patients.
Collapse
Affiliation(s)
- Lingxiao Yang
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Huacong Sui
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yi Ding
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yilin Zhu
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiangqing Song
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yifan Zhang
- Department of Pathology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Guangyan Fan
- Department of Pathology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jiaxu Wang
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiujie Cui
- Department of Pathology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yunfeng Jiang
- Department of Thoracic Surgery, Yan Tai Yu Huang Ding Hospital, Yantai, China
| | | | | | - Ning Mu
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China; Key Laboratory of Precision Diagnosis and Treatment of Lung Tumors in Shandong Provincial Medicine and Health, Shandong University, Jinan, China; Key Laboratory of Basic Research and Clinical Transformation of Thoracic Tumors in Shandong Provincial Colleges and Universities, Shandong University, Jinan, China
| | - Zhongxian Tian
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China; Key Laboratory of Precision Diagnosis and Treatment of Lung Tumors in Shandong Provincial Medicine and Health, Shandong University, Jinan, China; Key Laboratory of Basic Research and Clinical Transformation of Thoracic Tumors in Shandong Provincial Colleges and Universities, Shandong University, Jinan, China
| | - Yunpeng Zhao
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Peichao Li
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China; Key Laboratory of Precision Diagnosis and Treatment of Lung Tumors in Shandong Provincial Medicine and Health, Shandong University, Jinan, China; Key Laboratory of Basic Research and Clinical Transformation of Thoracic Tumors in Shandong Provincial Colleges and Universities, Shandong University, Jinan, China.
| | - Xiaogang Zhao
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China; Key Laboratory of Precision Diagnosis and Treatment of Lung Tumors in Shandong Provincial Medicine and Health, Shandong University, Jinan, China; Key Laboratory of Basic Research and Clinical Transformation of Thoracic Tumors in Shandong Provincial Colleges and Universities, Shandong University, Jinan, China.
| |
Collapse
|
23
|
Zheng T, Lu F, Cai T, Chen H, Zhang R, Wang G, Li X. The interconnection between periodontitis and HIV-1 latency: Molecular mechanisms and therapeutic insights. Int Immunopharmacol 2024; 143:113402. [PMID: 39437490 DOI: 10.1016/j.intimp.2024.113402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
Periodontitis is one of the major global public health problems associated with the occurrence and development of diverse systemic diseases, especially acquired immune deficiency syndrome (AIDS), necessitating further research and clinical attention. The persistence of HIV-1 latency poses a significant challenge to the attainment of a functional cure for AIDS, despite the introduction of highly active antiretroviral therapy (HAART). A similar mechanistic basis between periodontitis and HIV-1 latency has been revealed by many studies, suggesting possible mechanisms whereby periodontitis and HIV-1 latency may mutually influence each other. Therefore, we aimed to systematically summarize the current research on periodontitis and HIV-1 latency to investigate their potential correlations. This study revealed several common hubs for periodontitis and HIV-1 latency in the nuclear factor kappa-B (NF-κB) signaling pathway and other signaling pathways, including the Wnt/β-catenin pathway, bromodomain-containing protein 4 (BRD4), protein kinase C (PKC), the NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome, programmed cell death protein 1 (PD-1), histone deacetylases (HDACs), and the phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathway. Furthermore, we will discuss the hypothesis that periodontal pathogens may represent the unifying mechanism elucidating the intricate interconnection between periodontitis and HIV-1 latency. This article presents a detailed and comprehensive overview of the relationship underlying periodontitis and HIV-1 latency in terms of molecular mechanisms, which may provide novel theoretical insight into the pathogenesis of periodontitis and HIV-1 latency and reveal suitable therapeutic targets for the two diseases.
Collapse
Affiliation(s)
- Tengyi Zheng
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Fumiao Lu
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Tiange Cai
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Huaxue Chen
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Rongxin Zhang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China.
| | - Guixiang Wang
- Department of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China.
| | - Xin Li
- Department of Endodontics, Southern Medical University Stomatological Hospital, Guangzhou, China.
| |
Collapse
|
24
|
Wang X, Zhang P, Yan J, Huang J, Shen Y, He H, Dou H. SIRT6 deficiency impairs the deacetylation and ubiquitination of UHRF1 to strengthen glycolysis and lactate secretion in bladder cancer. Cell Biosci 2024; 14:153. [PMID: 39709438 DOI: 10.1186/s13578-024-01333-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 12/05/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Aberrant interplay between epigenetic reprogramming and metabolic rewiring events contributes to bladder cancer progression and metastasis. How the deacetylase Sirtuin-6 (SIRT6) regulates glycolysis and lactate secretion in bladder cancer remains poorly defined. We thus aimed to study the biological functions of SIRT6 in bladder cancer. METHODS Bioinformatic analysis was used to study the prognostic significance of SIRT6/UHRF1 in BLCA. Both in vitro and in vivo assays were used to determine the roles of SIRT6/UHRF1 in BLCA. Deacetylation and ubiquitin assays were performed to uncover the regulations of SIRT6-UHRF1. Measurement of extracellular acidification rate (ECAR) and oxygen consumption rate (OCR) was used to assess glycolytic abilities. RESULTS Here, we show that protein deacetylase SIRT6 was down-regulated in BLCA, and predicts poor overall survival. SIRT6 deficiency notably enhances BLCA cell proliferation, self-renewal, and migration capacities in vitro and in vivo. Mechanistically, SIRT6 interacts with, deacetylates, and promotes UHRF1 degradation mediated by β-TrCP1. Thus, SIRT6 deficiency leads to stabilized UHRF1 and depends on UHRF1 to accelerate BLCA malignant progression. Furthermore, UHRF1 significantly increased aerobic glycolysis via activating MCT4/HK2 expressions. Down-regulated SIRT6 thus depended on UHRF1 to promote glycolysis and lactate secretion in BLCA. Targeting UHRF1 or MCT4 notably impaired the extracellular lactate accumulations in BLCA. Significantly, a specific small-molecule inhibitor (NSC232003) targeting UHRF1 substantially inhibited SIRT6-deficient BLCA progression. CONCLUSION Together, our study uncovered an epigenetic mechanism of the SIRT6/UHRF1 axis in driving BLCA glycolysis and lactate secretion, creating a novel vulnerability for BLCA treatment.
Collapse
Affiliation(s)
- Xiaojing Wang
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Peipei Zhang
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiaqi Yan
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jingyi Huang
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yan Shen
- Research Centre for Experimental Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hongchao He
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Hongjing Dou
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
25
|
Liu D, Zhu K, Guo T, Xiao Y, Wang M, Guan Y, Li J, Chang D, Yu X. Chrysophanol: A promising natural compound in cancer therapy - Mechanistic insights and future perspectives. Pharmacol Res 2024; 210:107502. [PMID: 39521026 DOI: 10.1016/j.phrs.2024.107502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/26/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Cancer continues to be a leading cause of death worldwide, highlighting the urgent need for the development of new therapeutic strategies. Chrysophanol, a naturally occurring anthraquinone compound, has demonstrated significant potential in cancer treatment due to its diverse biological activities. This review delves into the mechanisms through which chrysophanol exerts its anti-cancer effects, including the induction of cell cycle arrest, promotion of apoptosis, regulation of autophagy, and initiation of necrosis across various cancer cell lines. Additionally, the review discusses chrysophanol's impact on inhibiting cancer cell invasion and metastasis and its role in modulating chemotherapy sensitivity. Despite the promising therapeutic potential of chrysophanol, challenges such as poor water solubility, low bioavailability, and safety concerns remain. Comprehensive clinical trials are essential to validate its efficacy and safety. This review emphasizes chrysophanol as a promising candidate for cancer therapy and underscores the necessity for further research to fully harness its therapeutic potential.
Collapse
Affiliation(s)
- Dehong Liu
- Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Kun Zhu
- Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Tao Guo
- Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Yao Xiao
- Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Meijing Wang
- Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Yanxin Guan
- Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Junjun Li
- Chengdu Fifth People's Hospital, The Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Degui Chang
- Hospital of Chengdu University of Traditional Chinese Medicine, TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu 610072, China.
| | - Xujun Yu
- Hospital of Chengdu University of Traditional Chinese Medicine, TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu 610072, China.
| |
Collapse
|
26
|
Nerlakanti N, McGuire JJ, Bishop RT, Nasr MM, Li T, Reed DR, Lynch CC. Histone deacetylase upregulation of neuropilin-1 in osteosarcoma is essential for pulmonary metastasis. Cancer Lett 2024; 606:217302. [PMID: 39427726 DOI: 10.1016/j.canlet.2024.217302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/25/2024] [Accepted: 10/09/2024] [Indexed: 10/22/2024]
Abstract
The lungs represent the most common site of metastasis for osteosarcoma (OS). Despite our advances in developing targeted therapies for treating solid malignancies, broad acting chemotherapies remain the first line treatment for OS. In assaying the efficacy of approved therapeutics for non-OS malignancies, we previously identified the histone deacetylase 1 and 2 (HDAC1 and 2) inhibitor, romidepsin, as effective for the treatment of established lung metastatic OS. Yet, romidepsin has noted toxicities in humans and so here we aimed to define the primary mechanisms through which HDAC1/2 mediate OS progression to identify more selective druggable targets/pathways. Microarray and proteomics analyses of romidepsin treated OS cells revealed a significant suppression of neuropilin-1 (NRP1), a known regulator of cancer cell migration and invasion. Silencing of NRP1 significantly reduced OS proliferation, migration, invasion and adhesion in vitro. More strikingly, in vivo, reduced NRP1 expression significantly mitigated the lung metastatic potential of OS in two independent models (K7M2 and SAOS-LM7). Mechanistically, our data point to NRP1 mediating this effect via the down regulation of migration machinery, namely SRC, FAK and ROCK1 expression/activity, that is in part, related to NRP1 interaction with integrin beta 1 (ITGB1). In summary, our data indicate that romidepsin down regulation of NRP1 significantly mitigates the ability of OS cells to seed the lung and establish metastases, and that targeting NRP1 or its effectors with selective inhibitors may be a viable means with which to prevent this deadly aspect of the disease.
Collapse
Affiliation(s)
- Niveditha Nerlakanti
- Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL, 33612, USA; Department of Tumor Microenvironment & Metastasis, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Jeremy J McGuire
- Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL, 33612, USA; Department of Tumor Microenvironment & Metastasis, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Ryan T Bishop
- Department of Tumor Microenvironment & Metastasis, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Mostafa M Nasr
- Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL, 33612, USA; Department of Tumor Microenvironment & Metastasis, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Tao Li
- Department of Tumor Microenvironment & Metastasis, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Damon R Reed
- Sarcoma Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA
| | - Conor C Lynch
- Department of Tumor Microenvironment & Metastasis, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA.
| |
Collapse
|
27
|
Liu L, Hussain SA, Hu X. Fisetin reduces the resistance of MOLT-4 and K562 cells to TRAIL-induced apoptosis through upregulation of TRAIL receptors. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:9689-9700. [PMID: 38918236 DOI: 10.1007/s00210-024-03101-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/11/2024] [Indexed: 06/27/2024]
Abstract
TNF-related apoptosis-inducing ligand (TRAIL) is a member of the TNF superfamily that is capable of apoptosis induction selectively in tumor cells. Although TRAIL has been harnessed in numerous clinical trials, resistance to TRAIL-induced apoptosis is a major challenge ahead of this therapy in various cancer models as well as in leukemia. Since histone deacetylases (HDACs) are known to affect drug resistance in malignant cells, the present study aimed to evaluate the potential of fisetin for sensitization of MOLT-4 and K-562 leukemic cells to TRAIL-induced apoptosis. The MOLT-4 and K-562 cells were treated with increasing concentrations of fisetin and its impact on the growth inhibition and apoptosis induction of TRAIL were evaluated by MTT and Annexin V/7-AAD assays. The impact of fisetin on the mRNA and protein expression levels of apoptosis regulatory genes such as BIRC2/c-IAP1, CFLAR/cFLIP, CASP3, CASP7, CASPP9, TNFRSF10A/DR4, TNFRSF10B/DR5, and BID were examined by PCR array, qRT-PCR, and flow cytometry. Pre-treatment of MOLT-4 and K-562 cells with fisetin reduced the IC50 of TRAIL in growth inhibition along with an improvement in apoptosis induction by TRAIL. The expression of the BIRC2 gene encoding antiapoptotic protein c-IAP1 downregulated in the fisetin-treated cells while the expressions of TNFRSF10A and TNFRSF10B encoding TRAIL death receptors increased. Fisetin demonstrated a potential for alleviating the TRAIL resistance by modulating the apoptosis regulatory factors and improving the expressions of TRAIL receptors that could facilitate the application of TRAIL in cancer therapies.
Collapse
Affiliation(s)
- Lei Liu
- Department of Hematology and Oncology, The First People's Hospital of Guiyang, Guiyang, 550018, China
| | - Shaik Althaf Hussain
- Department of Zoology, College of Science, King Saud University, P.O. Box 2454, Riyadh, 11451, Saudi Arabia
| | - Xiaoyan Hu
- Department of Hematology and Oncology, The First People's Hospital of Guiyang, Guiyang, 550018, China.
| |
Collapse
|
28
|
Fan S, Wan Z, Qu Y, Lu W, Li X, Yang F, Zhang H. Design and optimization of novel Tetrahydro-β-carboline-based HDAC inhibitors with potent activities against tumor cell growth and metastasis. Bioorg Med Chem Lett 2024; 114:129986. [PMID: 39395632 DOI: 10.1016/j.bmcl.2024.129986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/22/2024] [Accepted: 10/07/2024] [Indexed: 10/14/2024]
Abstract
Histone deacetylases (HDACs) are validated drug targets for various therapeutic applications. A series of Tetrahydro-β-carboline-based hydroxamate derivatives, designed as HDAC inhibitors (HDACis), were synthesized. Compound 11g exhibited strong inhibitory activity against HDAC1 and the A549 cancer cell line. Additionally, this compound increased the levels of acetylated histone H3 and H4. Notably, 11g effectively arrested A549 cells in the G2/M phase and also increased ROS production and DNA damage, thereby inducing apoptosis. Further molecular docking experiments illustrated the potential interactions between compound 11g and HDAC1. These findings suggested that the novel Tetrahydro-β-carboline-based HDACis could serve as a promising framework for further optimization as anticancer agents.
Collapse
Affiliation(s)
- Shule Fan
- School of Biological Science and Technology, University of Jinan, Jinan, Shandong Province 250022, China
| | - Zeyi Wan
- School of Biological Science and Technology, University of Jinan, Jinan, Shandong Province 250022, China
| | - Yuhua Qu
- School of Biological Science and Technology, University of Jinan, Jinan, Shandong Province 250022, China
| | - Wenxia Lu
- School of Biological Science and Technology, University of Jinan, Jinan, Shandong Province 250022, China
| | - Xiangzhi Li
- School of Biological Science and Technology, University of Jinan, Jinan, Shandong Province 250022, China
| | - Feifei Yang
- School of Biological Science and Technology, University of Jinan, Jinan, Shandong Province 250022, China.
| | - Hua Zhang
- School of Biological Science and Technology, University of Jinan, Jinan, Shandong Province 250022, China.
| |
Collapse
|
29
|
Guo S, Zhao J, Zhang Y, Qin Y, Yuan J, Yu Z, Xing Y, Zhang Y, Hui Y, Wang A, Han M, Zhao Y, Ning X, Sun S. Histone deacetylases: potential therapeutic targets in cisplatin-induced acute kidney injury. Ann Med 2024; 56:2418958. [PMID: 39450927 PMCID: PMC11514411 DOI: 10.1080/07853890.2024.2418958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/11/2024] [Accepted: 07/20/2024] [Indexed: 10/26/2024] Open
Abstract
Aim: Chemotherapy has been well shown to enhance life expectancy in patients with malignancy. However, conventional chemotherapy drugs, particularly cisplatin, are highly associated with nephrotoxicity, which limits therapeutic efficacy and impairs quality of life. Histone deacetylases (HDACs) are proteases that play significant roles in diseases by influencing protein post-translational modification and gene expression. Agents that inhibit HDAC enzymes have been developed and approved by the FDA as anticancer drugs. It is worth noting that in certain preclinical studies with tumour cell lines, the integration of HDAC modulators and cisplatin not only exerts synergistic or additive tumour-killing effects but also alleviates cisplatin nephrotoxicity. The aim of this review is to discuss the role of HDACs in cisplatin nephrotoxicity. Methods: After searching in PubMed and Web of Science databases using 'Histone deacetylase', 'nephrotoxicity', 'cisplatin', and 'onconpehrology' as keywords, studies related was compiled and examined. Results: HDAC inhibitors exert renal protective effects by inhibiting inflammation, apoptosis, oxidative stress, and promoting autophagy; whereas sirtuins play a renal protective role by regulating lipid metabolism, inhibiting inflammation and apoptosis, and protecting mitochondrial biosynthesis and mitochondrial dynamics. These potential interactions provide clues concerning targets for molecular treatment. Conclusion: This review encapsulates the function and molecular mechanisms of HDACs in cisplatin nephrotoxicity, providing the current view by which HDACs induce different biological signaling in the regulation of chemotherapy-associated renal injury. More importantly, this review exhaustively elucidates that HDACs could be targeted to develop a new therapeutic strategy in treating cisplatin nephrotoxicity, which will extend the knowledge of the biological impact and clinical implications of HDACs.
Collapse
Affiliation(s)
- Shuxian Guo
- Department of Nephrology, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Jin Zhao
- Department of Nephrology, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Yuzhan Zhang
- Department of Nephrology, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Yunlong Qin
- Department of Nephrology, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Jinguo Yuan
- Department of Nephrology, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Zixian Yu
- Department of Nephrology, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Yan Xing
- Department of Nephrology, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Yumeng Zhang
- Department of Nephrology, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Yueqing Hui
- Department of Nephrology, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Anjing Wang
- Department of Nephrology, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Mei Han
- Department of Nephrology, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Yueru Zhao
- School of Clinical Medicine, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Xiaoxuan Ning
- Department of Geriatric, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Shiren Sun
- Department of Nephrology, Xijing Hospital, Air Force Medical University, Xi’an, China
| |
Collapse
|
30
|
Chen WL, Tai HY, Chan CC, Lin HC, Hung TH, Tsai MH, Wei CC, Han YS, Shen CC. Changes in the small-molecule fingerprints of rice planted near an industrial explosion site in Taiwan. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:66388-66396. [PMID: 39625622 DOI: 10.1007/s11356-024-35565-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 11/11/2024] [Indexed: 12/21/2024]
Abstract
A fire and explosion accident at a petrochemical complex sparked concerns over the rice health and production in nearby paddy fields. To unveil the potential effects, this study investigated small molecule changes in rice harvested in nearby counties using non-target analysis. Rice grains were harvested three, eight, 15, and 20 months after the accident from a total of ten townships. Small-molecule (m/z 70-1100) data in brown rice (n = 27) were acquired using high-resolution mass spectrometry (HRMS). Partial least squares discriminant analysis (PLS-DA) models were constructed to illustrate the temporal and spatial trends of rice's small-molecule fingerprints, and markers of production locations were identified. The small-molecule fingerprint in the rice directly exposed to the accident and harvested three months after the explosion differed significantly from those planted after the accident (PLS-DA model Q2 = 0.943, Q2/R2Y = 0.962), probably indicating the exclusion of long-term effects. Besides, in the rice directly exposed to the accident, the rice collected from near the explosion site (< 15 km) exhibited reduced jasmonic acid and increased imidacloprid levels (log2 fold change: -1.53 and 5.46, respectively), compared to that from farther locations. The result would suggest compromised disease defence in rice grown under the stress of explosion. In addition, lipid and amino acid metabolism perturbations are deemed relevant to plant development.
Collapse
Affiliation(s)
- Wen-Ling Chen
- Department of Public Health, College of Public Health, National Taiwan University, No. 17, Xuzhou Rd., Taipei, 100, Taiwan
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, No. 17, Xuzhou Rd., Taipei, 100, Taiwan
- Department of Agricultural Chemistry, College of Bioresources and Agriculture, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 106, Taiwan
| | - Husan-Yu Tai
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, No. 17, Xuzhou Rd., Taipei, 100, Taiwan
| | - Chang-Chuan Chan
- Department of Public Health, College of Public Health, National Taiwan University, No. 17, Xuzhou Rd., Taipei, 100, Taiwan.
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, No. 17, Xuzhou Rd., Taipei, 100, Taiwan.
| | - Hung-Chien Lin
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, No. 17, Xuzhou Rd., Taipei, 100, Taiwan
| | - Ting-Hsuan Hung
- Department of Plant Pathology and Microbiology, College of BioResources and Agriculture, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 106, Taiwan
| | - Mong-Hsun Tsai
- Institute of Biotechnology, College of BioResources and Agriculture, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 106, Taiwan
| | - Chia-Cheng Wei
- Department of Public Health, College of Public Health, National Taiwan University, No. 17, Xuzhou Rd., Taipei, 100, Taiwan
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, No. 17, Xuzhou Rd., Taipei, 100, Taiwan
| | - Yu-San Han
- Institute of Fisheries Science, College of Life Science, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 106, Taiwan
| | - Chuan-Chou Shen
- Department of Geosciences, College of Science, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 106, Taiwan
| |
Collapse
|
31
|
Roszkowska M. Multilevel Mechanisms of Cancer Drug Resistance. Int J Mol Sci 2024; 25:12402. [PMID: 39596466 PMCID: PMC11594576 DOI: 10.3390/ijms252212402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/14/2024] [Accepted: 11/17/2024] [Indexed: 11/28/2024] Open
Abstract
Cancer drug resistance represents one of the most significant challenges in oncology and manifests through multiple interconnected molecular and cellular mechanisms. Objective: To provide a comprehensive analysis of multilevel processes driving treatment resistance by integrating recent advances in understanding genetic, epigenetic, and microenvironmental factors. This is a systematic review of the recent literature focusing on the mechanisms of cancer drug resistance, including genomic studies, clinical trials, and experimental research. Key findings include the following: (1) Up to 63% of somatic mutations can be heterogeneous within individual tumors, contributing to resistance development; (2) cancer stem cells demonstrate enhanced DNA repair capacity and altered metabolic profiles; (3) the tumor microenvironment, including cancer-associated fibroblasts and immune cell populations, plays a crucial role in promoting resistance; and (4) selective pressure from radiotherapy drives the emergence of radioresistant phenotypes through multiple adaptive mechanisms. Understanding the complex interplay between various resistance mechanisms is essential for developing effective treatment strategies. Future therapeutic approaches should focus on combination strategies that target multiple resistance pathways simultaneously, guided by specific biomarkers.
Collapse
Affiliation(s)
- Malgorzata Roszkowska
- Department of Clinical Neuropsychology, Collegium Medicum, Nicolaus Copernicus University, 85-067 Bydgoszcz, Poland
| |
Collapse
|
32
|
Debbarma M, Sarkar K, Sil SK. Dissecting the epigenetic orchestra of HDAC isoforms in breast cancer development: a review. Med Oncol 2024; 42:1. [PMID: 39532757 DOI: 10.1007/s12032-024-02553-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Epigenetic modulators have recently emerged as potential targets in cancer therapy. Breast cancer, the second leading cause of cancer-related deaths among women globally and the most common cancer in India, continues to have a low survival rate despite available treatments. This underscores the urgent need for more effective therapeutic strategies. Histone deacetylases (HDACs), a prominent class of epigenetic modulators, are frequently overexpressed in various cancers, including breast cancer, making them and their downstream pathways, a focus of current research, aiming to develop more effective and less invasive treatments that could help overcome chemoresistance and enhance patient outcomes. Despite the growing body of evidences, a comprehensive and consolidated review on molecular intricacy behind the HDAC-mediated epigenetic regulation of breast cancer is conspicuously absent. Therefore, this review aims to open doors for future research by exploring the evolving role of HDACs, their molecular mechanisms, and their potential as therapeutic targets in breast cancer treatment.
Collapse
Affiliation(s)
- Maria Debbarma
- Molecular Genetics & Cancer Biology Laboratory, Department of Human Physiology, Tripura University, Suryamaninagar, Tripura, 799022, India
| | - Kakali Sarkar
- Molecular Genetics & Cancer Biology Laboratory, Department of Human Physiology, Tripura University, Suryamaninagar, Tripura, 799022, India
| | - Samir Kumar Sil
- Molecular Genetics & Cancer Biology Laboratory, Department of Human Physiology, Tripura University, Suryamaninagar, Tripura, 799022, India.
| |
Collapse
|
33
|
Huang K, Li S, Yang M, Teng Z, Xu B, Wang B, Chen J, Zhao L, Wu H. The epigenetic mechanism of metabolic risk in bipolar disorder. Obes Rev 2024; 25:e13816. [PMID: 39188090 DOI: 10.1111/obr.13816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/31/2024] [Accepted: 08/02/2024] [Indexed: 08/28/2024]
Abstract
Bipolar disorder (BD) is a complex and severe mental illness that causes significant suffering to patients. In addition to the burden of depressive and manic symptoms, patients with BD are at an increased risk for metabolic syndrome (MetS). MetS includes factors associated with an increased risk of atherosclerotic cardiovascular disease (CVD) and type 2 diabetes mellitus (T2DM), which may increase the mortality rate of patients with BD. Several studies have suggested a link between BD and MetS, which may be explained at an epigenetic level. We have focused on epigenetic mechanisms to review the causes of metabolic risk in BD.
Collapse
Affiliation(s)
- Kexin Huang
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Sujuan Li
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Min Yang
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ziwei Teng
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Baoyan Xu
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Department of Psychiatry, Hebei Provincial Mental Health Center, Hebei Key Laboratory of Major Mental and Behavioral Disorders, The Sixth Clinical Medical College of Hebei University, Baoding, Hebei, China
| | - Bolun Wang
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jindong Chen
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Liping Zhao
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Haishan Wu
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
34
|
Berluti F, Baselious F, Hagemann S, Hilscher S, Schmidt M, Hüttelmaier S, Schutkowski M, Sippl W, Ibrahim HS. Development of new pyrazoles as class I HDAC inhibitors: Synthesis, molecular modeling, and biological characterization in leukemia cells. Arch Pharm (Weinheim) 2024; 357:e2400437. [PMID: 39291901 DOI: 10.1002/ardp.202400437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/19/2024]
Abstract
Class I histone deacetylases (HDACs) are considered promising targets in current cancer research. To obtain subtype-selective and potent HDAC inhibitors, we used the aminobenzamide scaffold as the zinc-binding group and prepared new derivatives with a pyrazole ring as the linking group. The synthesized compounds were analyzed in vitro using an enzymatic assay against HDAC1, -2, and -3. Compounds 12b, 15b, and 15i were found to be potent HDAC1 inhibitors, also in comparison to the reference compounds entinostat and tacedinaline, with IC50 values of 0.93, 0.22, and 0.68 μM, respectively. The best compounds were measured for their cellular effect and target engagement in acute myeloid leukemia (AML) cells. In addition, we studied the interaction of the compounds with HDAC subtypes using docking and molecular dynamic simulations. In summary, we have developed a new chemotype of HDAC1 inhibitors that can be used for further structure-based optimization.
Collapse
Affiliation(s)
- Francesco Berluti
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Fady Baselious
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Sven Hagemann
- Department of Molecular Medicine, Faculty of Medicine, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Sebastian Hilscher
- Department of Enzymology, Institute of Biochemistry, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Matthias Schmidt
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Stefan Hüttelmaier
- Department of Molecular Medicine, Faculty of Medicine, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Mike Schutkowski
- Department of Enzymology, Institute of Biochemistry, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Wolfgang Sippl
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Hany S Ibrahim
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo, Egypt
| |
Collapse
|
35
|
Yang H, Guo K, Ding P, Ning J, Zhang Y, Wang Y, Wang Z, Liu G, Shao C, Pan M, Ma Z, Yan X, Han J. Histone deacetylases: Regulation of vascular homeostasis via endothelial cells and vascular smooth muscle cells and the role in vascular pathogenesis. Genes Dis 2024; 11:101216. [PMID: 39281836 PMCID: PMC11396065 DOI: 10.1016/j.gendis.2024.101216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/20/2023] [Accepted: 01/04/2024] [Indexed: 09/18/2024] Open
Abstract
Histone deacetylases (HDACs) are proteases that play a key role in chromosome structural modification and gene expression regulation, and the involvement of HDACs in cancer, the nervous system, and the metabolic and immune system has been well reviewed. Our understanding of the function of HDACs in the vascular system has recently progressed, and a significant variety of HDAC inhibitors have been shown to be effective in the treatment of vascular diseases. However, few reviews have focused on the role of HDACs in the vascular system. In this study, the role of HDACs in the regulation of the vascular system mainly involving endothelial cells and vascular smooth muscle cells was discussed based on recent updates, and the role of HDACs in different vascular pathogenesis was summarized as well. Furthermore, the therapeutic effects and prospects of HDAC inhibitors were also addressed in this review.
Collapse
Affiliation(s)
- Hanyi Yang
- Department of Ophthalmology, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
- Xi'an Medical University, Xi'an, Shaanxi 710086, China
| | - Kai Guo
- Department of Thoracic Surgery, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710068, China
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
| | - Peng Ding
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
| | - Jiayi Ning
- Department of Ophthalmology, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
- Xi'an Medical University, Xi'an, Shaanxi 710086, China
| | - Yimeng Zhang
- Department of Ophthalmology, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
- Xi'an Medical University, Xi'an, Shaanxi 710086, China
| | - Yuanyong Wang
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
| | - Zhaoyang Wang
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
| | - Guanglin Liu
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
| | - Changjian Shao
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
| | - Minghong Pan
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
| | - Zhiqiang Ma
- Department of Medical Oncology, Senior Department of Oncology, Chinese PLA General Hospital, The Fifth Medical Center, Beijing 100853, China
| | - Xiaolong Yan
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
| | - Jing Han
- Department of Ophthalmology, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
| |
Collapse
|
36
|
Vatankhah A, Moghaddam SH, Afshari S, Afshari AR, Kesharwani P, Sahebkar A. Recent update on anti-tumor mechanisms of valproic acid in glioblastoma multiforme. Pathol Res Pract 2024; 263:155636. [PMID: 39395298 DOI: 10.1016/j.prp.2024.155636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/14/2024]
Abstract
Glioblastoma multiforme (GBM) is a malignant tumor of the brain that is considered to be incurable. Currently, surgical removal of tumors, chemotherapy with temozolomide, and radiation treatment remain established options for treatment. Nevertheless, the prognosis of those with GBM continues to be poor owing to the inherent characteristics of tumor growth and spread, as well as the resistance to treatment. To effectively deal with the present circumstances, it is vital to do extensive study to understand GBM thoroughly. The following piece provides a concise overview of the most recent advancements in using valproic acid, an antiseizure medication licensed by the FDA, for treating GBM. In this review, we outline the most recent developments of valproic acid in treating GBM, as well as its fundamental mechanisms and practical consequences. Our goal is to provide a greater understanding of the clinical use of valproic acid as a potential therapeutic agent for GBM.
Collapse
Affiliation(s)
- Abulfazl Vatankhah
- School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | | | - Sadaf Afshari
- Student Research Committee, Faculty of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir R Afshari
- Department of Basic Sciences, Faculty of Medicine, Mashhad Medical Sciences, Islamic Azad University, Mashhad, Iran; Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran; Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Amirhossein Sahebkar
- Center for Global health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
37
|
Li T, Chen Y, Li S. The Advances in the Development of Epigenetic Modifications Therapeutic Drugs Delivery Systems. Int J Nanomedicine 2024; 19:10623-10637. [PMID: 39445155 PMCID: PMC11498046 DOI: 10.2147/ijn.s480095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024] Open
Abstract
Epigenetic dysregulation can significantly trigger the onset and progression of various diseases, epigenetic therapy is a new treatment strategy by changing DNA methylation, histone modification, N6-methyladenosine, chromatin modification and other epigenetic modifications to regulate gene expression levels for therapeutic purposes. However, small-molecule epigenetic drugs face challenges in disease treatment, such as lack of selectivity, limited therapeutic efficacy, and insufficient safety. Nanomedicine delivery systems offer significant advantages in addressing these issues by enhancing drug targeting, improving bioavailability, and reducing nonspecific distribution. This help minimize side effects while increasing both therapeutic effectiveness and safety of epigenetic drugs. In this review, we focus on the mechanism and role of epigenetic regulatory factors in diseases, as well as the challenges faced by small molecule inhibitors in treatment strategies, especially the research advancements in epigenetic drug delivery systems, review and discuss the therapeutic potential and challenges of using nanotechnology to develop epigenetic drug delivery systems.
Collapse
Affiliation(s)
- Tingyi Li
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, People’s Republic of China
- Dalian Medical University, Dalian, People’s Republic of China
| | - Yanwei Chen
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, People’s Republic of China
| | - Shuai Li
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, People’s Republic of China
| |
Collapse
|
38
|
Chen X, Xie X, Sun N, Liu X, Liu J, Zhang W, Cao Y. Gut microbiota-derived butyrate improved acute leptospirosis in hamster via promoting macrophage ROS mediated by HDAC3 inhibition. mBio 2024; 15:e0190624. [PMID: 39287437 PMCID: PMC11481532 DOI: 10.1128/mbio.01906-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024] Open
Abstract
Leptospirosis is a re-emerging worldwide zoonotic disease. Infected patients and animals often exhibit intestinal symptoms. Mounting evidence suggests that host immune responses to bacterial infection are closely associated with intestinal homeostasis. Our previous research has shown that the gut microbiota can protect the host from acute leptospirosis, while the specific bacterial metabolic mediators participating in the pathogenesis remain to be identified. Short-chain fatty acids (SCFAs) are metabolites produced mainly by the gut microbiota that play a role in immune regulation. However, whether SCFAs are the key to protecting the host against leptospirosis and the underlying regulatory mechanisms are unknown. In this study, our results showed that the SCFA butyrate is involved in ameliorating leptospirosis. The depletion of SCFAs by antibiotic cocktail treatment reduced survival time after Leptospira infection while supplementation with butyrate but not acetate or propionate significantly amelioration of leptospirosis. In vitro experiments showed that butyrate treatment enhanced the intracellular bactericidal activity mediated by reactive oxygen species (ROS) production. Mechanistically, butyrate functions as a histone deacetylase 3 inhibitor (HDAC3i) to promote ROS production via monocarboxylate transporter (MCT). The protection of butyrate against acute leptospirosis mediated by ROS was also proven in vivo. Collectively, our data provide evidence that the butyrate-MCT-HDAC3i-ROS signaling axis is a potential therapeutic target for acute leptospirosis. Our work not only interprets the microbial metabolite signaling involved in transkingdom interactions between the host and gut microbiota but also provides a possible target for developing a prevention strategy for acute leptospirosis. IMPORTANCE Leptospirosis is a worldwide zoonotic disease caused by Leptospira. An estimated 1 million people are infected with leptospirosis each year. Studies have shown that healthy gut microbiota can protect the host against leptospirosis but the mechanism is not clear. This work elucidated the mechanism of gut microbiota protecting the host against acute leptospirosis. Here, we find that butyrate, a metabolite of gut microbiota, can improve the survival rate of hamsters with leptospirosis by promoting the bactericidal activity of macrophages. Mechanistically, butyrate upregulates reactive oxygen species (ROS) levels after macrophage infection with Leptospira by inhibiting HDAC3. This work confirms the therapeutic potential of butyrate in preventing acute leptospirosis and provides evidence for the benefits of the macrophage-HDAC3i-ROS axis.
Collapse
Affiliation(s)
- Xi Chen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xufeng Xie
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ni Sun
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xin Liu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jiuxi Liu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Wenlong Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yongguo Cao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
39
|
Hou M, Yu QQ, Yang L, Zhao H, Jiang P, Qin L, Zhang Q. The role of short-chain fatty acid metabolism in the pathogenesis, diagnosis and treatment of cancer. Front Oncol 2024; 14:1451045. [PMID: 39435279 PMCID: PMC11491288 DOI: 10.3389/fonc.2024.1451045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/19/2024] [Indexed: 10/23/2024] Open
Abstract
Short-chain fatty acids (SCFAs), which are saturated fatty acids consisting of six or fewer carbon atoms, have been found to be closely associated with the biological behavior of malignant tumors. This manuscript provides a comprehensive review on the role of SCFAs in regulating cell cycle, apoptosis, tumor angiogenesis, epithelial-mesenchymal transition, protein regulatory pathways, and histone regulation in promoting the development of malignant tumors. Furthermore, we discuss the potential therapeutic strategies targeting SCFAs for treating malignant tumors. This review offers a theoretical foundation for investigating the mechanisms by which SCFAs impact malignant tumors and provides insights into developing novel treatment targets.
Collapse
Affiliation(s)
- Maolin Hou
- Department of Internal Medicine, Siziwangqi People’s Hospital, Wulancabu, China
| | - Qing-Qing Yu
- Translational Pharmaceutical Laboratory, Jining NO.1 People’s Hospital, Jining, China
| | - Le Yang
- Department of Gastrointestinal Surgery, Jining NO.1 People’s Hospital, Jining, China
| | - Haibo Zhao
- Department of Oncology, Jining No.1 People’s Hospital, Jining, China
| | - Pei Jiang
- Translational Pharmaceutical Laboratory, Jining NO.1 People’s Hospital, Jining, China
| | - Lei Qin
- Department of Gastrointestinal Surgery, Jining NO.1 People’s Hospital, Jining, China
| | - Qiujie Zhang
- Department of Oncology, Jining No.1 People’s Hospital, Jining, China
| |
Collapse
|
40
|
Bollmann LM, Lange F, Hamacher A, Biermann L, Schäker-Hübner L, Hansen FK, Kassack MU. Triple Combination of Entinostat, a Bromodomain Inhibitor, and Cisplatin Is a Promising Treatment Option for Bladder Cancer. Cancers (Basel) 2024; 16:3374. [PMID: 39409994 PMCID: PMC11476342 DOI: 10.3390/cancers16193374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/16/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND/OBJECTIVES Cisplatin is part of the first-line treatment of advanced urothelial carcinoma. Cisplatin resistance is a major problem but may be overcome by combination treatments such as targeting epigenetic aberrances. Here, we investigated the effect of the class I HDACi entinostat and bromodomain inhibitors (BETis) on the potency of cisplatin in two pairs of sensitive and cisplatin-resistant bladder cancer cell lines. Cisplatin-resistant J82cisR and T24 LTT were 3.8- and 24-fold more resistant to cisplatin compared to the native cell lines J82 and T24. In addition, a hybrid compound (compound 20) comprising structural features of an HDACi and a BETi was investigated. RESULTS We found complete (J82cisR) or partial (T24 LTT) reversal of chemoresistance upon combination of entinostat, JQ1, and cisplatin. The same was found for the BETis JQ35 and OTX015, both in clinical trials, and for compound 20. The combinations were highly synergistic (Chou Talalay analysis) and increased caspase-mediated apoptosis accompanied by enhanced expression of p21, Bim, and FOXO1. Notably, the combinations were at least 4-fold less toxic in non-cancer cell lines HBLAK and HEK293. CONCLUSIONS The triple combination of entinostat, a BETi, and cisplatin is highly synergistic, reverses cisplatin resistance, and may thus serve as a novel therapeutic approach for bladder cancer.
Collapse
Affiliation(s)
- Lukas M. Bollmann
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University Duesseldorf, 40225 Duesseldorf, Germany; (L.M.B.)
| | - Friedrich Lange
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University Duesseldorf, 40225 Duesseldorf, Germany; (L.M.B.)
| | - Alexandra Hamacher
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University Duesseldorf, 40225 Duesseldorf, Germany; (L.M.B.)
| | - Lukas Biermann
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University Duesseldorf, 40225 Duesseldorf, Germany; (L.M.B.)
| | - Linda Schäker-Hübner
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany (F.K.H.)
| | - Finn K. Hansen
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany (F.K.H.)
| | - Matthias U. Kassack
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University Duesseldorf, 40225 Duesseldorf, Germany; (L.M.B.)
| |
Collapse
|
41
|
Ahn YR, Jang JY, Kang YJ, Oh HJ, Kang MK, Yoon D, Kim HS, Moon HR, Chung HY, Kim ND. MHY446 induces apoptosis via reactive oxygen species-mediated endoplasmic reticulum stress in HCT116 human colorectal cancer cells. J Chemother 2024; 36:483-500. [PMID: 38054850 DOI: 10.1080/1120009x.2023.2286757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/03/2023] [Accepted: 11/18/2023] [Indexed: 12/07/2023]
Abstract
This study investigated the potential of a newly synthesized histone deacetylase (HDAC) inhibitor, MHY446, in inducing cell death in HCT116 colorectal cancer cells and compared its activity with that of suberoylanilide hydroxamic acid (SAHA), a well-known HDAC inhibitor. The results showed that MHY446 increased the acetylation of histones H3 and H4 and decreased the expression and activity of HDAC proteins in HCT116 cells. Additionally, MHY446 was confirmed to bind more strongly to HDAC1 than HDAC2 and inhibit its activity. In vivo experiments using nude mice revealed that MHY446 was as effective as SAHA in inhibiting HCT116 cell-grafted tumor growth. This study also evaluated the biological effects of MHY446 on cell survival and death pathways. The reactive oxygen species (ROS) scavenger N-acetyl-L-cysteine (NAC) confirmed that ROS play a role in MHY446-induced cell death by reducing poly(ADP-ribose) polymerase cleavage. MHY446 also induced cell death via endoplasmic reticulum (ER) stress by increasing the expression of ER stress-related proteins. NAC treatment decreased the expression of ER stress-related proteins, indicating that ROS mediate ER stress as an upstream signaling pathway and induce cell death. While MHY446 did not exhibit superior HDAC inhibition efficacy compared to SAHA, it is anticipated to provide innovative insights into the future development of therapeutic agents for human CRC by offering novel chemical structure-activity relationship-related information.
Collapse
Affiliation(s)
- Yu Ra Ahn
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan, Republic of Korea
| | - Jung Yoon Jang
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan, Republic of Korea
| | - Yong Jung Kang
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan, Republic of Korea
| | - Hye Jin Oh
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan, Republic of Korea
| | - Min Kyung Kang
- Department of Manufacturing Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan, Republic of Korea
| | - Dahye Yoon
- Department of Manufacturing Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan, Republic of Korea
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hyung Ryong Moon
- Department of Manufacturing Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan, Republic of Korea
| | - Hae Young Chung
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan, Republic of Korea
| | - Nam Deuk Kim
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
42
|
Shrestha P, Duwa R, Lee S, Kwon TK, Jeong JH, Yook S. ROS-responsive thioketal nanoparticles delivering system for targeted ulcerative colitis therapy with potent HDAC6 inhibitor, tubastatin A. Eur J Pharm Sci 2024; 201:106856. [PMID: 39032536 DOI: 10.1016/j.ejps.2024.106856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Ulcerative colitis (UC) is a common gastrointestinal problem characterized by the mucosal injury primarily affecting the large intestine. Currently available therapies are not satisfactory as evidenced by high relapse rate and adverse effects. In this study we aimed to develop an effective drug delivery system using reactive oxygen species (ROS)-responsive thioketal nanoparticles (TKNP), to deliver tubastatin A, a potent HDAC6 inhibitor, to the inflamed colon in mice with ulcerative colitis (UC). TKNPs were synthesized by step-growth polymerization from an acetal exchange reaction while TUBA-TKNP was prepared using the single emulsion solvent evaporation technique. Our developed nanoparticle showed release of tubastatin A only in presence of ROS which is found to be highly present at the site of inflamed colon. Oral administration of TUBA-TKNP resulted in the higher accumulation of tubastatin A at the inflamed colon site and decreased the inflammation as evidenced by reduced infiltration of immune cells and decreased level of pro-inflammatory cytokines in TUBA-TKNP treated mice. In summary, our results show the successful localization of tubastatin A at the site of colon inflammation through TUBA-TKNP delivery, as well as resolution of clinical features of UC in mice.
Collapse
Affiliation(s)
- Prabhat Shrestha
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ramesh Duwa
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea; Department of Radiology, Molecular Imaging Program at Standford (MIPS), School of Medicine, Standford University, Standford, California 94305, USA
| | - Sooyeun Lee
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, Daegu, 42601, Republic of Korea
| | - Jee-Heon Jeong
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Simmyung Yook
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea; School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
43
|
Zhang H, Shen Q, Hu Z, Wu PQ, Chen Y, Zhao JX, Yue JM. Design, Synthesis, and Biological Evaluation of HDAC Inhibitors Containing Natural Product-Inspired N-Linked 2-Acetylpyrrole Cap. Molecules 2024; 29:4653. [PMID: 39407581 PMCID: PMC11477621 DOI: 10.3390/molecules29194653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/20/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Drawing inspiration from the structural resemblance between a natural product N-(3-carboxypropyl)-2-acetylpyrrole and phenylbutyric acid, a pioneer HDAC inhibitor evaluated in clinical trials, we embarked on the design and synthesis of a novel array of HDAC inhibitors containing an N-linked 2-acetylpyrrole cap by utilizing the pharmacophore fusion strategy. Among them, compound 20 exhibited potential inhibitory activity on HDAC1, and demonstrated notable potency against RPMI-8226 cells with an IC50 value of 2.89 ± 0.43 μM, which was better than chidamide (IC50 = 10.23 ± 1.02 μM). Western blot analysis and Annexin V-FTIC/propidium iodide (PI) staining showed that 20 could enhance the acetylation of histone H3, as well as remarkably induce apoptosis of RPMI-8226 cancer cells. The docking study highlighted the presence of a hydrogen bond between the carbonyl oxygen of the 2-acetylpyrrole cap group and Phe198 of the HDAC1 enzyme in 20, emphasizing the crucial role of introducing this natural product-inspired cap group. Molecular dynamics simulations showed that the docked complex had good conformational stability. The ADME parameters calculation showed that 20 possesses remarkable theoretical drug-likeness properties. Taken together, these results suggested that 20 is worthy of further exploration as a potential HDAC-targeted anticancer drug candidate.
Collapse
Affiliation(s)
- Han Zhang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China;
- State Key Laboratory of Drug Research, Ethnomedicine and Biofunctional Molecule Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; (Z.H.); (P.-Q.W.)
| | - Qianqian Shen
- State Key Laboratory of Chemical Biology, Division of Antitumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China;
| | - Zhu Hu
- State Key Laboratory of Drug Research, Ethnomedicine and Biofunctional Molecule Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; (Z.H.); (P.-Q.W.)
| | - Pei-Qian Wu
- State Key Laboratory of Drug Research, Ethnomedicine and Biofunctional Molecule Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; (Z.H.); (P.-Q.W.)
| | - Yi Chen
- State Key Laboratory of Chemical Biology, Division of Antitumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China;
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, 198 East Binhai Road, Yantai 264117, China
| | - Jin-Xin Zhao
- State Key Laboratory of Drug Research, Ethnomedicine and Biofunctional Molecule Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; (Z.H.); (P.-Q.W.)
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, 198 East Binhai Road, Yantai 264117, China
| | - Jian-Min Yue
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China;
- State Key Laboratory of Drug Research, Ethnomedicine and Biofunctional Molecule Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; (Z.H.); (P.-Q.W.)
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, 198 East Binhai Road, Yantai 264117, China
| |
Collapse
|
44
|
Li P, Xue Y. Dysregulation of lysine acetylation in the pathogenesis of digestive tract cancers and its clinical applications. Front Cell Dev Biol 2024; 12:1447939. [PMID: 39391349 PMCID: PMC11464462 DOI: 10.3389/fcell.2024.1447939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/20/2024] [Indexed: 10/12/2024] Open
Abstract
Recent advances in high-resolution mass spectrometry-based proteomics have improved our understanding of lysine acetylation in proteins, including histones and non-histone proteins. Lysine acetylation, a reversible post-translational modification, is catalyzed by lysine acetyltransferases (KATs) and lysine deacetylases (KDACs). Proteins comprising evolutionarily conserved bromodomains (BRDs) recognize these acetylated lysine residues and consequently activate transcription. Lysine acetylation regulates almost all cellular processes, including transcription, cell cycle progression, and metabolic functions. Studies have reported the aberrant expression, translocation, and mutation of genes encoding lysine acetylation regulators in various cancers, including digestive tract cancers. These dysregulated lysine acetylation regulators contribute to the pathogenesis of digestive system cancers by modulating the expression and activity of cancer-related genes or pathways. Several inhibitors targeting KATs, KDACs, and BRDs are currently in preclinical trials and have demonstrated anti-cancer effects. Digestive tract cancers, including encompass esophageal, gastric, colorectal, liver, and pancreatic cancers, represent a group of heterogeneous malignancies. However, these cancers are typically diagnosed at an advanced stage owing to the lack of early symptoms and are consequently associated with poor 5-year survival rates. Thus, there is an urgent need to identify novel biomarkers for early detection, as well as to accurately predict the clinical outcomes and identify effective therapeutic targets for these malignancies. Although the role of lysine acetylation in digestive tract cancers remains unclear, further analysis could improve our understanding of its role in the pathogenesis of digestive tract cancers. This review aims to summarize the implications and pathogenic mechanisms of lysine acetylation dysregulation in digestive tract cancers, as well as its potential clinical applications.
Collapse
Affiliation(s)
- Penghui Li
- Department of Gastrointestinal surgery, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, Henan, China
| | - Yuan Xue
- Department of thyroid surgery, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, Henan, China
| |
Collapse
|
45
|
Zhuang S, Huang Z, Fan H, Wu Z, Liu H. LINC01232 promotes ARNTL2 transcriptional activation and inhibits ferroptosis of CRC cells through p300/H3K27ac. Epigenomics 2024; 16:1097-1115. [PMID: 39268727 PMCID: PMC11418281 DOI: 10.1080/17501911.2024.2387528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/29/2024] [Indexed: 09/15/2024] Open
Abstract
Aim: This study investigated the role of lncRNA LINC01232 in ferroptosis of colorectal cancer (CRC).Materials & methods: Real time quantitative polymerase chain reaction or western blot experiments were performed to examine relevant mRNAs and proteins expression. The kit assays evaluated malondialdehyde, iron, Fe2+ and glutathione levels. ROS levels were verified by flow cytometry. Chromatin immunoprecipitation and RNA immunoprecipitation analysis monitored the correlation among LINC01232, H3K27ac, p300 and ARNTL2.Results: LINC01232 or ARNTL2 knockdown facilitated erastin-induced ferroptosis. The interaction between LINC01232 and p300 resulted in the enhancement of H3K27ac levels at ARNTL2 promoter to promote ARNTL2 transcriptional activity. ARNTL2 overexpression reversed the promoting effect of LINC01232 knockdown on ferroptosis.Conclusion: LINC01232 inhibited the ferroptosis in CRC by epigenetically upregulating the transcriptional activity of ARNTL2.
Collapse
Affiliation(s)
- Shengwei Zhuang
- General surgery Departmet, Zhongshan Hospital (Xiamen), Fudan University & Xiamen Clinical Research Center for Cancer Therapy, Xiamen, Fujian Province, 351015, P.R. China
| | - Zhekun Huang
- General surgery Departmet, Zhongshan Hospital (Xiamen), Fudan University & Xiamen Clinical Research Center for Cancer Therapy, Xiamen, Fujian Province, 351015, P.R. China
| | - Hongkai Fan
- General surgery Departmet, Zhongshan Hospital (Xiamen), Fudan University & Xiamen Clinical Research Center for Cancer Therapy, Xiamen, Fujian Province, 351015, P.R. China
| | - Zhirong Wu
- General surgery Departmet, Zhongshan Hospital (Xiamen), Fudan University & Xiamen Clinical Research Center for Cancer Therapy, Xiamen, Fujian Province, 351015, P.R. China
| | - Han Liu
- General surgery Departmet, Zhongshan Hospital (Xiamen), Fudan University & Xiamen Clinical Research Center for Cancer Therapy, Xiamen, Fujian Province, 351015, P.R. China
| |
Collapse
|
46
|
Qian K, Li W, Ren S, Peng W, Qing B, Liu X, Wei X, Zhu L, Wang Y, Jin X. HDAC8 Enhances the Function of HIF-2α by Deacetylating ETS1 to Decrease the Sensitivity of TKIs in ccRCC. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401142. [PMID: 39073752 PMCID: PMC11423204 DOI: 10.1002/advs.202401142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/03/2024] [Indexed: 07/30/2024]
Abstract
Drug resistance after long-term use of Tyrosine kinase inhibitors (TKIs) has become an obstacle for prolonging the survival time of patients with clear cell renal cell carcinoma (ccRCC). Here, genome-wide CRISPR-based screening to reveal that HDAC8 is involved in decreasing the sensitivity of ccRCC cells to sunitinib is applied. Mechanically, HDAC8 deacetylated ETS1 at the K245 site to promote the interaction between ETS1 and HIF-2α and enhance the transcriptional activity of the ETS1/HIF-2α complex. However, the antitumor effect of inhibiting HDAC8 on sensitized TKI is not very satisfactory. Subsequently, inhibition of HDAC8 increased the expression of NEK1, and up-regulated NEK1 phosphorylated ETS1 at the T241 site to promote the interaction between ETS1 and HIF-2α by impeded acetylation at ETS1-K245 site is showed. Moreover, TKI treatment increased the expression of HDAC8 by inhibiting STAT3 phosphorylation in ccRCC cells is also found. These 2 findings highlight a potential mechanism of acquired resistance to TKIs and HDAC8 inhibitors in ccRCC. Finally, HDAC8-in-PROTACs to optimize the effects of HDAC8 inhibitors through degrading HDAC8 and overcoming the resistance of ccRCC to TKIs are synthesized. Collectively, the results revealed HDAC8 as a potential therapeutic candidate for resistance to ccRCC-targeted therapies.
Collapse
Affiliation(s)
- Kang Qian
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, National Clinical Research Center for Metabolic Disease, Changsha, 410011, China
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wei Li
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, National Clinical Research Center for Metabolic Disease, Changsha, 410011, China
| | - Shangqing Ren
- Robotic Minimally Invasive Surgery Center, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Weilin Peng
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Bei Qing
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Xinlin Liu
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, National Clinical Research Center for Metabolic Disease, Changsha, 410011, China
| | - Xiong Wei
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, National Clinical Research Center for Metabolic Disease, Changsha, 410011, China
| | - Liang Zhu
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, National Clinical Research Center for Metabolic Disease, Changsha, 410011, China
| | - Yapeng Wang
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Xin Jin
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, National Clinical Research Center for Metabolic Disease, Changsha, 410011, China
| |
Collapse
|
47
|
Dong W, Lu J, Li Y, Zeng J, Du X, Yu A, Zhao X, Chi F, Xi Z, Cao S. SIRT1: a novel regulator in colorectal cancer. Biomed Pharmacother 2024; 178:117176. [PMID: 39059350 DOI: 10.1016/j.biopha.2024.117176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/08/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024] Open
Abstract
The class-III histone deacetylase SIRT1 is the most extensively investigated sirtuin deacetylase. It is resistant to the broad deacetylase inhibitor trichostatin A and depends on oxidized nicotinamide adenine nucleotide (NAD+). SIRT1 plays a crucial role in the tumorigenesis of numerous types of cancers, including colorectal cancer (CRC). Accumulating evidence indicates that SIRT1 is a therapeutic target for CRC; however, the function and underlying mechanism of SIRT1 in CRC still need to be elucidated. Herein, we provide a detailed and updated review to illustrate that SIRT1 regulates many processes that go awry in CRC cells, such as apoptosis, autophagy, proliferation, migration, invasion, metastasis, oxidative stress, resistance to chemo-radio therapy, immune evasion, and metabolic reprogramming. Moreover, we closely link our review to the clinical practice of CRC treatment, summarizing the mechanisms and prospects of SIRT1 inhibitors in CRC therapy. SIRT1 inhibitors as monotherapy in CRC or in combination with chemotherapy, radiotherapy, and immune therapies are comprehensively discussed. From epigenetic regulation to its potential therapeutic effect, we hope to offer novel insights and a comprehensive understanding of SIRT1's role in CRC.
Collapse
Affiliation(s)
- Weiwei Dong
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province 110004, China
| | - Jinjing Lu
- Department of Health Management, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province 110004, China
| | - You Li
- Nursing Department, Liaoning Jinqiu Hospital, Shenyang, Liaoning Province 110016, China
| | - Juan Zeng
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province 110004, China
| | - Xiaoyun Du
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province 110004, China
| | - Ao Yu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province 110004, China
| | - Xuechan Zhao
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province 110004, China
| | - Feng Chi
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province 110004, China.
| | - Zhuo Xi
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province 110004, China.
| | - Shuo Cao
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province 110004, China.
| |
Collapse
|
48
|
Zhang Z, Zhao M, Wang Q, Wang X, Wang Y, Ge Y, Wu Z, Wang W, Shan L. Forkhead box protein FOXK1 disrupts the circadian rhythm to promote breast tumorigenesis in response to insulin resistance. Cancer Lett 2024; 599:217147. [PMID: 39094826 DOI: 10.1016/j.canlet.2024.217147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/09/2024] [Accepted: 07/27/2024] [Indexed: 08/04/2024]
Abstract
The dysregulation of circadian rhythm oscillation is a prominent feature of various solid tumors. Thus, clarifying the molecular mechanisms that maintain the circadian clock is important. In the present study, we revealed that the transcription factor forkhead box FOXK1 functions as an oncogene in breast cancer. We showed that FOXK1 recruits multiple transcription corepressor complexes, including NCoR/SMRT, SIN3A, NuRD, and REST/CoREST. Among them, the FOXK1/NCoR/SIN3A complex transcriptionally regulates a cohort of genes, including CLOCK, PER2, and CRY2, that are critically involved in the circadian rhythm. The complex promoted the proliferation of breast cancer cells by disturbing the circadian rhythm oscillation. Notably, the nuclear expression of FOXK1 was positively correlated with tumor grade. Insulin resistance gradually became more severe with tumor progression and was accompanied by the increased expression of OGT, which caused the nuclear translocation and increased expression of FOXK1. Additionally, we found that metformin downregulates FOXK1 and exports it from the nucleus, while HDAC inhibitors (HDACi) inhibit the FOXK1-related enzymatic activity. Combined treatment enhanced the expression of circadian clock genes through the regulation of FOXK1, thereby exerting an antitumor effect, indicating that highly nuclear FOXK1-expressing breast cancers are potential candidates for the combined application of metformin and HDACi.
Collapse
Affiliation(s)
- Zhaohan Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Minghui Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Qian Wang
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute, and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, 300060, Tianjin, China; National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, 300060, Tianjin, China
| | - Xilin Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yu Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yuze Ge
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Zicheng Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Wenjuan Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Cancer Invasion and Metastasis Research, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Lin Shan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Cancer Invasion and Metastasis Research, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
49
|
Choi J, Gang S, Ramalingam M, Hwang J, Jeong H, Yoo J, Cho HH, Kim BC, Jang G, Jeong HS, Jang S. BML-281 promotes neuronal differentiation by modulating Wnt/Ca 2+ and Wnt/PCP signaling pathway. Mol Cell Biochem 2024; 479:2391-2403. [PMID: 37768498 DOI: 10.1007/s11010-023-04857-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023]
Abstract
Histone deacetylase (HDAC) inhibitors promote differentiation through post-translational modifications of histones. BML-281, an HDAC6 inhibitor, has been known to prevent tumors, acute dextran sodium sulfate-associated colitis, and lung injury. However, the neurogenic differentiation effect of BML-281 is poorly understood. In this study, we investigated the effect of BML-281 on neuroblastoma SH-SY5Y cell differentiation into mature neurons by immunocytochemistry (ICC), reverse transcriptase PCR (RT-PCR), quantitative PCR (qPCR), and western blotting analysis. We found that the cells treated with BML-281 showed neurite outgrowth and morphological changes into mature neurons under a microscope. It was confirmed that the gene expression of neuronal markers (NEFL, MAP2, Tuj1, NEFH, and NEFM) was increased with certain concentrations of BML-281. Similarly, the protein expression of neuronal markers (NeuN, Synaptophysin, Tuj1, and NFH) was upregulated with BML-281 compared to untreated cells. Following treatment with BML-281, the expression of Wnt5α increased, and downstream pathways were activated. Interestingly, both Wnt/Ca2+ and Wnt/PCP pathways activated and regulated PKC, Cdc42, RhoA, Rac1/2/3, and p-JNK. Therefore, BML-281 induces the differentiation of SH-SY5Y cells into mature neurons by activating the non-canonical Wnt signaling pathway. From these results, we concluded that BML-281 might be a novel drug to differentiation into neuronal cells through the regulation of Wnt signaling pathway to reduce the neuronal cell death.
Collapse
Affiliation(s)
- Jiyun Choi
- Department of Physiology, Chonnam National University Medical School, Jellanamdo, 58128, Republic of Korea
| | - Seoyeon Gang
- Department of Physiology, Chonnam National University Medical School, Jellanamdo, 58128, Republic of Korea
- Department of Pre-Medical Science, Chonnam National University Medical School, Jellanamdo, 58128, Republic of Korea
| | - Mahesh Ramalingam
- Department of Physiology, Chonnam National University Medical School, Jellanamdo, 58128, Republic of Korea
| | - Jinsu Hwang
- Department of Physiology, Chonnam National University Medical School, Jellanamdo, 58128, Republic of Korea
| | - Haewon Jeong
- Department of Physiology, Chonnam National University Medical School, Jellanamdo, 58128, Republic of Korea
| | - Jin Yoo
- Department of Physiological Education, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Hyong-Ho Cho
- Department of Otolaryngology-Head and Neck Surgery, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
| | - Byeong C Kim
- Department of Neurology, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
| | - Geupil Jang
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Han-Seong Jeong
- Department of Physiology, Chonnam National University Medical School, Jellanamdo, 58128, Republic of Korea.
| | - Sujeong Jang
- Department of Physiology, Chonnam National University Medical School, Jellanamdo, 58128, Republic of Korea.
| |
Collapse
|
50
|
Liu Y, Yu J, An X, Rao H, Qiu Z, Ke J, Wu L, Zhu Z, Deng H, Wu F, Zhang Z, Li S. TSA attenuates the progression of c-Myc-driven hepatocarcinogenesis by pAKT-ADH4 pathway. BMC Cancer 2024; 24:1049. [PMID: 39187747 PMCID: PMC11346213 DOI: 10.1186/s12885-024-12781-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 08/08/2024] [Indexed: 08/28/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the primary malignant tumor of the liver. c-Myc is one of the most common oncogenes in clinical settings, and amplified levels of c-Myc are frequently found in HCC. Histone deacetylase inhibitors (HDACi), such as Trichostatin A (TSA), hold enormous promise for the treatment of HCC. However, the potential and mechanism of TSA in the treatment of c-Myc-induced HCC are unclear. In this study, we investigated the effects of TSA treatment on a c-Myc-induced HCC model in mice. TSA treatment delayed the development of HCC, and liver function indicators such as ALT, AST, liver weight ratio, and spleen weight ratio demonstrated the effectiveness of TSA treatment. Oil red staining further demonstrated that TSA attenuated lipid accumulation in the HCC tissues of mice. Through mRNA sequencing, we identified that TSA mainly affected cell cycle and fatty acid degradation genes, with alcohol dehydrogenase 4 (ADH4) potentially being the core molecular downstream target. QPCR, immunohistochemistry, and western blot analysis revealed that ADH4 expression was repressed by c-Myc and restored after TSA treatment both in vitro and in vivo. Furthermore, we observed that the levels of total NAD+ and NADH, NAD+, NAD+/NADH, and ATP concentration increased after c-Myc transfection in liver cells but decreased after TSA intervention. The levels of phosphorylated protein kinase B (p-AKT) and p-mTOR were identified as targets regulated by TSA, and they governed the ADH4 expression and the downstream regulation of total NAD+ and NADH, NAD+, NAD+/NADH, and ATP concentration. Overall, our study suggests that TSA has a therapeutic effect on c-Myc-induced HCC through the AKT-mTOR-ADH4 pathway. These findings provide valuable insights into the potential treatment of HCC using TSA and shed light on the underlying molecular mechanisms involved.
Collapse
Grants
- JC2020003, JC202109, YC2023033, YC2024007 Innovative Research Program for Graduates of Institute of Hubei University of Medicine
- JC2020003, JC202109, YC2023033, YC2024007 Innovative Research Program for Graduates of Institute of Hubei University of Medicine
- JC2020003, JC202109, YC2023033, YC2024007 Innovative Research Program for Graduates of Institute of Hubei University of Medicine
- JC2020003, JC202109, YC2023033, YC2024007 Innovative Research Program for Graduates of Institute of Hubei University of Medicine
- 2023AFB882, 2022CFB004 the Hubei Provincial Natural Science Foundation
- 2023AFB882, 2022CFB004 the Hubei Provincial Natural Science Foundation
- S202110929011 the Provincial Training Program of Innovation and Entrepreneurship for undergraduates
- Q20212103 the Natural Science Foundation of Hubei Provincial Department of Education
- Q20212103 the Natural Science Foundation of Hubei Provincial Department of Education
- 2020QDJZR018 Cultivating Project for Young Scholar at Hubei University of Medicine
- FDFR201901 Free Exploration Project of Hubei University of Medicine
Collapse
Affiliation(s)
- Yang Liu
- Sinopharm Dongfeng General Hospital, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, People's Republic of China
- Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, People's Republic of China
| | - Juan Yu
- Sinopharm Dongfeng General Hospital, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, People's Republic of China
| | - Xiaotong An
- Sinopharm Dongfeng General Hospital, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, People's Republic of China
| | - Huiling Rao
- Sinopharm Dongfeng General Hospital, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, People's Republic of China
| | - Zhenpeng Qiu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, People's Republic of China
| | - Jing Ke
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, 442000, People's Republic of China
| | - Lun Wu
- Sinopharm Dongfeng General Hospital, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, People's Republic of China
| | - Zhengpeng Zhu
- Sinopharm Dongfeng General Hospital, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, People's Republic of China
| | - Haojun Deng
- Sinopharm Dongfeng General Hospital, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, People's Republic of China
| | - Fuyun Wu
- Sinopharm Dongfeng General Hospital, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, People's Republic of China.
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, 442000, People's Republic of China.
- Institute of Basic Medical Science, Hubei University of Medicine, Shiyan, 442000, People's Republic of China.
| | - Zhaoyang Zhang
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, 442000, People's Republic of China.
- Institute of Basic Medical Science, Hubei University of Medicine, Shiyan, 442000, People's Republic of China.
| | - Shan Li
- Sinopharm Dongfeng General Hospital, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, People's Republic of China.
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, 442000, People's Republic of China.
- Institute of Basic Medical Science, Hubei University of Medicine, Shiyan, 442000, People's Republic of China.
| |
Collapse
|