1
|
Nalla K, Chatterjee B, Poyya J, Swain A, Ghosh K, Pan A, Joshi CG, Manavathi B, Kanade SR. Epigallocatechin-3-gallate inhibit the protein arginine methyltransferase 5 and enhancer of Zeste homolog 2 in breast cancer both in vitro and in vivo. Arch Biochem Biophys 2025; 763:110223. [PMID: 39581340 DOI: 10.1016/j.abb.2024.110223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 11/07/2024] [Accepted: 11/20/2024] [Indexed: 11/26/2024]
Abstract
PURPOSE Histone methyltransferases are enzymes that selectively methylate lysine or arginine residues on both histone and non-histone proteins, categorized into lysine methyltransferases and arginine methyltransferases. Notably, EZH2 and PRMT5 are known for catalyzing trimethylation of H3 at K27 and symmetric dimethylation of H4 at R3, respectively. These methylation events are recognized as characteristic histone-repressive marks in cancer. The over expression of PRMT5 and EZH2 were reported in various cancers and recognized as a drug target. The study aims to explore the inhibitory potential of phytocompound, Epigallocatechin-3-gallate (EGCG), against PRMT5 and EZH2 in the breast cancer model. METHODS Screening of an array of phytocompounds was conducted through a combination of in-silico and in-vitro assays. Interactions between EGCG and human PRMT5: MEP50 and EZH2 were evaluated using molecular docking. Binding efficiency was validated, by Surface Plasmon Resonance studies and inhibitory potential was accessed by in vitro methylation followed by western blots, ELISA, and cell-based assays. In-vivo efficacy of EGCG was carried on cell line derived mice xenograft model. RESULTS EGCG demonstrated robust interactions with PRMT5:MEP50 complex and EZH2, particularly within the SAM binding site. Surface Plasmon Resonance analysis revealed strong binding affinity in nanomolar concentrations, particularly with PRMT5-MEP50 compared to EZH2. In-vitro assays confirmed EGCG's ability to inhibit PRMT5 and EZH2, leading to a decrease in their catalytic products, namely H4R3me2s and H3K27me3, respectively. EGCG treatment induced both autophagy and apoptosis invitro. In-vivo studies demonstrated significant reductions in tumor size and the proliferation marker ki67, accompanied by a decrease in histone repressive marks. CONCLUSION The findings suggest that EGCG effectively inhibits PRMT5 and EZH2, underscoring its potential for combined therapeutic strategies in cancer treatment.
Collapse
Affiliation(s)
- Kirankumar Nalla
- Department of Plant Sciences, School of Life Sciences University of Hyderabad PO Central University Gachibowli, Hyderabad Telangana, 500046, India
| | - Biji Chatterjee
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Centre, Houston, TX, USA
| | - Jagadeesha Poyya
- SDM Research Institute for Biomedical Sciences, A Constituent Unit of Shri Dharmasthala, Manjunatheshwara University, Dharwad, 580009, Karnataka, India
| | - Aishwarya Swain
- Department for Bioinformatics, Pondicherry University, Puducherry, 605014, India
| | - Krishna Ghosh
- Department of Anaesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Centre, Houston, TX, USA
| | - Archana Pan
- Department for Bioinformatics, Pondicherry University, Puducherry, 605014, India
| | - Chandrashekhar G Joshi
- Department of Studies in Biochemistry, Mangalore University PG Centre, Jnana Kaveri, Chikka Aluvara, Thorenoor Post Kushalnagar, Somawarpet TQ, Kodagu, 571232, India
| | - Bramanandam Manavathi
- Department of Biochemistry, School of Life Sciences, University of Hyderabad PO Central University Gachibowli, Hyderabad Telangana 500046, India
| | - Santosh R Kanade
- Department of Plant Sciences, School of Life Sciences University of Hyderabad PO Central University Gachibowli, Hyderabad Telangana, 500046, India.
| |
Collapse
|
2
|
Zheng T, Lu F, Cai T, Chen H, Zhang R, Wang G, Li X. The interconnection between periodontitis and HIV-1 latency: Molecular mechanisms and therapeutic insights. Int Immunopharmacol 2024; 143:113402. [PMID: 39437490 DOI: 10.1016/j.intimp.2024.113402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
Periodontitis is one of the major global public health problems associated with the occurrence and development of diverse systemic diseases, especially acquired immune deficiency syndrome (AIDS), necessitating further research and clinical attention. The persistence of HIV-1 latency poses a significant challenge to the attainment of a functional cure for AIDS, despite the introduction of highly active antiretroviral therapy (HAART). A similar mechanistic basis between periodontitis and HIV-1 latency has been revealed by many studies, suggesting possible mechanisms whereby periodontitis and HIV-1 latency may mutually influence each other. Therefore, we aimed to systematically summarize the current research on periodontitis and HIV-1 latency to investigate their potential correlations. This study revealed several common hubs for periodontitis and HIV-1 latency in the nuclear factor kappa-B (NF-κB) signaling pathway and other signaling pathways, including the Wnt/β-catenin pathway, bromodomain-containing protein 4 (BRD4), protein kinase C (PKC), the NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome, programmed cell death protein 1 (PD-1), histone deacetylases (HDACs), and the phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathway. Furthermore, we will discuss the hypothesis that periodontal pathogens may represent the unifying mechanism elucidating the intricate interconnection between periodontitis and HIV-1 latency. This article presents a detailed and comprehensive overview of the relationship underlying periodontitis and HIV-1 latency in terms of molecular mechanisms, which may provide novel theoretical insight into the pathogenesis of periodontitis and HIV-1 latency and reveal suitable therapeutic targets for the two diseases.
Collapse
Affiliation(s)
- Tengyi Zheng
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Fumiao Lu
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Tiange Cai
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Huaxue Chen
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Rongxin Zhang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China.
| | - Guixiang Wang
- Department of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China.
| | - Xin Li
- Department of Endodontics, Southern Medical University Stomatological Hospital, Guangzhou, China.
| |
Collapse
|
3
|
Yang L, Sui H, Ding Y, Zhu Y, Song X, Zhang Y, Fan G, Wang J, Cui X, Jiang Y, Zhao S, Hong Y, Mu N, Tian Z, Zhao Y, Li P, Zhao X. Disulfiram impairs USP21-mediated MOF-K257 deubiquitination to inhibit esophageal squamous cell carcinoma progression. Cancer Lett 2024; 611:217419. [PMID: 39725149 DOI: 10.1016/j.canlet.2024.217419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 11/15/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
Disulfiram (DSF), primarily applied in the therapy for alcohol addiction, has been demonstrated to possess the promising capability of anti-tumor in many human cancers, including esophageal squamous cell carcinoma (ESCC). To date, almost all studies about DSF in ESCC are focusing on investigating either drug combinations or nanoparticle-based delivery systems. However, the exact molecular mechanisms mediating the response to DSF in ESCC are totally unknown. An increasing number of studies reported that aberrant expression of acetylation-related genes is closely involved in regulating the response of cancer cells to anti-tumor drugs. Here, we defined DSF-sensitive and -resistant cells by measuring the half-maximal inhibitory concentration (IC50) of DSF in four ESCC cell lines, followed by detecting the protein expression of nine dysregulated histone acetyltransferase (HAT) genes in ESCC. Our results demonstrate that MOF is responsible for the sensitivity to DSF in ESCC cells. Consistently, DSF treatment markedly abolished MOF-driving ESCC progression and Wnt/β-Catenin signaling activation. Interestingly, DSF decreased MOF protein expression via the ubiquitin-proteasome system. Further exploration verified the essential role of USP21, among three candidates (USP2, USP21, and USP10), in DSF-mediated MOF protein levels. Mechanistically, USP21 binds to MOF protein and decreases the ubiquitination of its K257 site, while DSF notably impedes MOF-mediated ESCC malignant progression and Wnt/β-Catenin signaling activation by blocking USP21-governed MOF-K257 deubiquitination. In conclusion, our study elucidates the USP21/MOF-K257 axis regulating the response to DSF in ESCC, which provides novel and key evidence for the clinical application of DSF in individualized therapy for ESCC patients.
Collapse
Affiliation(s)
- Lingxiao Yang
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Huacong Sui
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yi Ding
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yilin Zhu
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiangqing Song
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yifan Zhang
- Department of Pathology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Guangyan Fan
- Department of Pathology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jiaxu Wang
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiujie Cui
- Department of Pathology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yunfeng Jiang
- Department of Thoracic Surgery, Yan Tai Yu Huang Ding Hospital, Yantai, China
| | | | | | - Ning Mu
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China; Key Laboratory of Precision Diagnosis and Treatment of Lung Tumors in Shandong Provincial Medicine and Health, Shandong University, Jinan, China; Key Laboratory of Basic Research and Clinical Transformation of Thoracic Tumors in Shandong Provincial Colleges and Universities, Shandong University, Jinan, China
| | - Zhongxian Tian
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China; Key Laboratory of Precision Diagnosis and Treatment of Lung Tumors in Shandong Provincial Medicine and Health, Shandong University, Jinan, China; Key Laboratory of Basic Research and Clinical Transformation of Thoracic Tumors in Shandong Provincial Colleges and Universities, Shandong University, Jinan, China
| | - Yunpeng Zhao
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Peichao Li
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China; Key Laboratory of Precision Diagnosis and Treatment of Lung Tumors in Shandong Provincial Medicine and Health, Shandong University, Jinan, China; Key Laboratory of Basic Research and Clinical Transformation of Thoracic Tumors in Shandong Provincial Colleges and Universities, Shandong University, Jinan, China.
| | - Xiaogang Zhao
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China; Key Laboratory of Precision Diagnosis and Treatment of Lung Tumors in Shandong Provincial Medicine and Health, Shandong University, Jinan, China; Key Laboratory of Basic Research and Clinical Transformation of Thoracic Tumors in Shandong Provincial Colleges and Universities, Shandong University, Jinan, China.
| |
Collapse
|
4
|
Wang X, Zhang P, Yan J, Huang J, Shen Y, He H, Dou H. SIRT6 deficiency impairs the deacetylation and ubiquitination of UHRF1 to strengthen glycolysis and lactate secretion in bladder cancer. Cell Biosci 2024; 14:153. [PMID: 39709438 DOI: 10.1186/s13578-024-01333-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 12/05/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Aberrant interplay between epigenetic reprogramming and metabolic rewiring events contributes to bladder cancer progression and metastasis. How the deacetylase Sirtuin-6 (SIRT6) regulates glycolysis and lactate secretion in bladder cancer remains poorly defined. We thus aimed to study the biological functions of SIRT6 in bladder cancer. METHODS Bioinformatic analysis was used to study the prognostic significance of SIRT6/UHRF1 in BLCA. Both in vitro and in vivo assays were used to determine the roles of SIRT6/UHRF1 in BLCA. Deacetylation and ubiquitin assays were performed to uncover the regulations of SIRT6-UHRF1. Measurement of extracellular acidification rate (ECAR) and oxygen consumption rate (OCR) was used to assess glycolytic abilities. RESULTS Here, we show that protein deacetylase SIRT6 was down-regulated in BLCA, and predicts poor overall survival. SIRT6 deficiency notably enhances BLCA cell proliferation, self-renewal, and migration capacities in vitro and in vivo. Mechanistically, SIRT6 interacts with, deacetylates, and promotes UHRF1 degradation mediated by β-TrCP1. Thus, SIRT6 deficiency leads to stabilized UHRF1 and depends on UHRF1 to accelerate BLCA malignant progression. Furthermore, UHRF1 significantly increased aerobic glycolysis via activating MCT4/HK2 expressions. Down-regulated SIRT6 thus depended on UHRF1 to promote glycolysis and lactate secretion in BLCA. Targeting UHRF1 or MCT4 notably impaired the extracellular lactate accumulations in BLCA. Significantly, a specific small-molecule inhibitor (NSC232003) targeting UHRF1 substantially inhibited SIRT6-deficient BLCA progression. CONCLUSION Together, our study uncovered an epigenetic mechanism of the SIRT6/UHRF1 axis in driving BLCA glycolysis and lactate secretion, creating a novel vulnerability for BLCA treatment.
Collapse
Affiliation(s)
- Xiaojing Wang
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Peipei Zhang
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiaqi Yan
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jingyi Huang
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yan Shen
- Research Centre for Experimental Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hongchao He
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Hongjing Dou
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
5
|
Liu D, Zhu K, Guo T, Xiao Y, Wang M, Guan Y, Li J, Chang D, Yu X. Chrysophanol: A promising natural compound in cancer therapy - Mechanistic insights and future perspectives. Pharmacol Res 2024; 210:107502. [PMID: 39521026 DOI: 10.1016/j.phrs.2024.107502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/26/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Cancer continues to be a leading cause of death worldwide, highlighting the urgent need for the development of new therapeutic strategies. Chrysophanol, a naturally occurring anthraquinone compound, has demonstrated significant potential in cancer treatment due to its diverse biological activities. This review delves into the mechanisms through which chrysophanol exerts its anti-cancer effects, including the induction of cell cycle arrest, promotion of apoptosis, regulation of autophagy, and initiation of necrosis across various cancer cell lines. Additionally, the review discusses chrysophanol's impact on inhibiting cancer cell invasion and metastasis and its role in modulating chemotherapy sensitivity. Despite the promising therapeutic potential of chrysophanol, challenges such as poor water solubility, low bioavailability, and safety concerns remain. Comprehensive clinical trials are essential to validate its efficacy and safety. This review emphasizes chrysophanol as a promising candidate for cancer therapy and underscores the necessity for further research to fully harness its therapeutic potential.
Collapse
Affiliation(s)
- Dehong Liu
- Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Kun Zhu
- Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Tao Guo
- Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Yao Xiao
- Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Meijing Wang
- Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Yanxin Guan
- Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Junjun Li
- Chengdu Fifth People's Hospital, The Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Degui Chang
- Hospital of Chengdu University of Traditional Chinese Medicine, TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu 610072, China.
| | - Xujun Yu
- Hospital of Chengdu University of Traditional Chinese Medicine, TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu 610072, China.
| |
Collapse
|
6
|
Nerlakanti N, McGuire JJ, Bishop RT, Nasr MM, Li T, Reed DR, Lynch CC. Histone deacetylase upregulation of neuropilin-1 in osteosarcoma is essential for pulmonary metastasis. Cancer Lett 2024; 606:217302. [PMID: 39427726 DOI: 10.1016/j.canlet.2024.217302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/25/2024] [Accepted: 10/09/2024] [Indexed: 10/22/2024]
Abstract
The lungs represent the most common site of metastasis for osteosarcoma (OS). Despite our advances in developing targeted therapies for treating solid malignancies, broad acting chemotherapies remain the first line treatment for OS. In assaying the efficacy of approved therapeutics for non-OS malignancies, we previously identified the histone deacetylase 1 and 2 (HDAC1 and 2) inhibitor, romidepsin, as effective for the treatment of established lung metastatic OS. Yet, romidepsin has noted toxicities in humans and so here we aimed to define the primary mechanisms through which HDAC1/2 mediate OS progression to identify more selective druggable targets/pathways. Microarray and proteomics analyses of romidepsin treated OS cells revealed a significant suppression of neuropilin-1 (NRP1), a known regulator of cancer cell migration and invasion. Silencing of NRP1 significantly reduced OS proliferation, migration, invasion and adhesion in vitro. More strikingly, in vivo, reduced NRP1 expression significantly mitigated the lung metastatic potential of OS in two independent models (K7M2 and SAOS-LM7). Mechanistically, our data point to NRP1 mediating this effect via the down regulation of migration machinery, namely SRC, FAK and ROCK1 expression/activity, that is in part, related to NRP1 interaction with integrin beta 1 (ITGB1). In summary, our data indicate that romidepsin down regulation of NRP1 significantly mitigates the ability of OS cells to seed the lung and establish metastases, and that targeting NRP1 or its effectors with selective inhibitors may be a viable means with which to prevent this deadly aspect of the disease.
Collapse
Affiliation(s)
- Niveditha Nerlakanti
- Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL, 33612, USA; Department of Tumor Microenvironment & Metastasis, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Jeremy J McGuire
- Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL, 33612, USA; Department of Tumor Microenvironment & Metastasis, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Ryan T Bishop
- Department of Tumor Microenvironment & Metastasis, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Mostafa M Nasr
- Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL, 33612, USA; Department of Tumor Microenvironment & Metastasis, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Tao Li
- Department of Tumor Microenvironment & Metastasis, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Damon R Reed
- Sarcoma Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA
| | - Conor C Lynch
- Department of Tumor Microenvironment & Metastasis, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA.
| |
Collapse
|
7
|
Liu L, Hussain SA, Hu X. Fisetin reduces the resistance of MOLT-4 and K562 cells to TRAIL-induced apoptosis through upregulation of TRAIL receptors. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:9689-9700. [PMID: 38918236 DOI: 10.1007/s00210-024-03101-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/11/2024] [Indexed: 06/27/2024]
Abstract
TNF-related apoptosis-inducing ligand (TRAIL) is a member of the TNF superfamily that is capable of apoptosis induction selectively in tumor cells. Although TRAIL has been harnessed in numerous clinical trials, resistance to TRAIL-induced apoptosis is a major challenge ahead of this therapy in various cancer models as well as in leukemia. Since histone deacetylases (HDACs) are known to affect drug resistance in malignant cells, the present study aimed to evaluate the potential of fisetin for sensitization of MOLT-4 and K-562 leukemic cells to TRAIL-induced apoptosis. The MOLT-4 and K-562 cells were treated with increasing concentrations of fisetin and its impact on the growth inhibition and apoptosis induction of TRAIL were evaluated by MTT and Annexin V/7-AAD assays. The impact of fisetin on the mRNA and protein expression levels of apoptosis regulatory genes such as BIRC2/c-IAP1, CFLAR/cFLIP, CASP3, CASP7, CASPP9, TNFRSF10A/DR4, TNFRSF10B/DR5, and BID were examined by PCR array, qRT-PCR, and flow cytometry. Pre-treatment of MOLT-4 and K-562 cells with fisetin reduced the IC50 of TRAIL in growth inhibition along with an improvement in apoptosis induction by TRAIL. The expression of the BIRC2 gene encoding antiapoptotic protein c-IAP1 downregulated in the fisetin-treated cells while the expressions of TNFRSF10A and TNFRSF10B encoding TRAIL death receptors increased. Fisetin demonstrated a potential for alleviating the TRAIL resistance by modulating the apoptosis regulatory factors and improving the expressions of TRAIL receptors that could facilitate the application of TRAIL in cancer therapies.
Collapse
Affiliation(s)
- Lei Liu
- Department of Hematology and Oncology, The First People's Hospital of Guiyang, Guiyang, 550018, China
| | - Shaik Althaf Hussain
- Department of Zoology, College of Science, King Saud University, P.O. Box 2454, Riyadh, 11451, Saudi Arabia
| | - Xiaoyan Hu
- Department of Hematology and Oncology, The First People's Hospital of Guiyang, Guiyang, 550018, China.
| |
Collapse
|
8
|
Fan S, Wan Z, Qu Y, Lu W, Li X, Yang F, Zhang H. Design and optimization of novel Tetrahydro-β-carboline-based HDAC inhibitors with potent activities against tumor cell growth and metastasis. Bioorg Med Chem Lett 2024; 114:129986. [PMID: 39395632 DOI: 10.1016/j.bmcl.2024.129986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/22/2024] [Accepted: 10/07/2024] [Indexed: 10/14/2024]
Abstract
Histone deacetylases (HDACs) are validated drug targets for various therapeutic applications. A series of Tetrahydro-β-carboline-based hydroxamate derivatives, designed as HDAC inhibitors (HDACis), were synthesized. Compound 11g exhibited strong inhibitory activity against HDAC1 and the A549 cancer cell line. Additionally, this compound increased the levels of acetylated histone H3 and H4. Notably, 11g effectively arrested A549 cells in the G2/M phase and also increased ROS production and DNA damage, thereby inducing apoptosis. Further molecular docking experiments illustrated the potential interactions between compound 11g and HDAC1. These findings suggested that the novel Tetrahydro-β-carboline-based HDACis could serve as a promising framework for further optimization as anticancer agents.
Collapse
Affiliation(s)
- Shule Fan
- School of Biological Science and Technology, University of Jinan, Jinan, Shandong Province 250022, China
| | - Zeyi Wan
- School of Biological Science and Technology, University of Jinan, Jinan, Shandong Province 250022, China
| | - Yuhua Qu
- School of Biological Science and Technology, University of Jinan, Jinan, Shandong Province 250022, China
| | - Wenxia Lu
- School of Biological Science and Technology, University of Jinan, Jinan, Shandong Province 250022, China
| | - Xiangzhi Li
- School of Biological Science and Technology, University of Jinan, Jinan, Shandong Province 250022, China
| | - Feifei Yang
- School of Biological Science and Technology, University of Jinan, Jinan, Shandong Province 250022, China.
| | - Hua Zhang
- School of Biological Science and Technology, University of Jinan, Jinan, Shandong Province 250022, China.
| |
Collapse
|
9
|
Guo S, Zhao J, Zhang Y, Qin Y, Yuan J, Yu Z, Xing Y, Zhang Y, Hui Y, Wang A, Han M, Zhao Y, Ning X, Sun S. Histone deacetylases: potential therapeutic targets in cisplatin-induced acute kidney injury. Ann Med 2024; 56:2418958. [PMID: 39450927 PMCID: PMC11514411 DOI: 10.1080/07853890.2024.2418958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/11/2024] [Accepted: 07/20/2024] [Indexed: 10/26/2024] Open
Abstract
Aim: Chemotherapy has been well shown to enhance life expectancy in patients with malignancy. However, conventional chemotherapy drugs, particularly cisplatin, are highly associated with nephrotoxicity, which limits therapeutic efficacy and impairs quality of life. Histone deacetylases (HDACs) are proteases that play significant roles in diseases by influencing protein post-translational modification and gene expression. Agents that inhibit HDAC enzymes have been developed and approved by the FDA as anticancer drugs. It is worth noting that in certain preclinical studies with tumour cell lines, the integration of HDAC modulators and cisplatin not only exerts synergistic or additive tumour-killing effects but also alleviates cisplatin nephrotoxicity. The aim of this review is to discuss the role of HDACs in cisplatin nephrotoxicity. Methods: After searching in PubMed and Web of Science databases using 'Histone deacetylase', 'nephrotoxicity', 'cisplatin', and 'onconpehrology' as keywords, studies related was compiled and examined. Results: HDAC inhibitors exert renal protective effects by inhibiting inflammation, apoptosis, oxidative stress, and promoting autophagy; whereas sirtuins play a renal protective role by regulating lipid metabolism, inhibiting inflammation and apoptosis, and protecting mitochondrial biosynthesis and mitochondrial dynamics. These potential interactions provide clues concerning targets for molecular treatment. Conclusion: This review encapsulates the function and molecular mechanisms of HDACs in cisplatin nephrotoxicity, providing the current view by which HDACs induce different biological signaling in the regulation of chemotherapy-associated renal injury. More importantly, this review exhaustively elucidates that HDACs could be targeted to develop a new therapeutic strategy in treating cisplatin nephrotoxicity, which will extend the knowledge of the biological impact and clinical implications of HDACs.
Collapse
Affiliation(s)
- Shuxian Guo
- Department of Nephrology, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Jin Zhao
- Department of Nephrology, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Yuzhan Zhang
- Department of Nephrology, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Yunlong Qin
- Department of Nephrology, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Jinguo Yuan
- Department of Nephrology, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Zixian Yu
- Department of Nephrology, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Yan Xing
- Department of Nephrology, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Yumeng Zhang
- Department of Nephrology, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Yueqing Hui
- Department of Nephrology, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Anjing Wang
- Department of Nephrology, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Mei Han
- Department of Nephrology, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Yueru Zhao
- School of Clinical Medicine, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Xiaoxuan Ning
- Department of Geriatric, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Shiren Sun
- Department of Nephrology, Xijing Hospital, Air Force Medical University, Xi’an, China
| |
Collapse
|
10
|
Chen WL, Tai HY, Chan CC, Lin HC, Hung TH, Tsai MH, Wei CC, Han YS, Shen CC. Changes in the small-molecule fingerprints of rice planted near an industrial explosion site in Taiwan. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:66388-66396. [PMID: 39625622 DOI: 10.1007/s11356-024-35565-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 11/11/2024] [Indexed: 12/21/2024]
Abstract
A fire and explosion accident at a petrochemical complex sparked concerns over the rice health and production in nearby paddy fields. To unveil the potential effects, this study investigated small molecule changes in rice harvested in nearby counties using non-target analysis. Rice grains were harvested three, eight, 15, and 20 months after the accident from a total of ten townships. Small-molecule (m/z 70-1100) data in brown rice (n = 27) were acquired using high-resolution mass spectrometry (HRMS). Partial least squares discriminant analysis (PLS-DA) models were constructed to illustrate the temporal and spatial trends of rice's small-molecule fingerprints, and markers of production locations were identified. The small-molecule fingerprint in the rice directly exposed to the accident and harvested three months after the explosion differed significantly from those planted after the accident (PLS-DA model Q2 = 0.943, Q2/R2Y = 0.962), probably indicating the exclusion of long-term effects. Besides, in the rice directly exposed to the accident, the rice collected from near the explosion site (< 15 km) exhibited reduced jasmonic acid and increased imidacloprid levels (log2 fold change: -1.53 and 5.46, respectively), compared to that from farther locations. The result would suggest compromised disease defence in rice grown under the stress of explosion. In addition, lipid and amino acid metabolism perturbations are deemed relevant to plant development.
Collapse
Affiliation(s)
- Wen-Ling Chen
- Department of Public Health, College of Public Health, National Taiwan University, No. 17, Xuzhou Rd., Taipei, 100, Taiwan
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, No. 17, Xuzhou Rd., Taipei, 100, Taiwan
- Department of Agricultural Chemistry, College of Bioresources and Agriculture, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 106, Taiwan
| | - Husan-Yu Tai
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, No. 17, Xuzhou Rd., Taipei, 100, Taiwan
| | - Chang-Chuan Chan
- Department of Public Health, College of Public Health, National Taiwan University, No. 17, Xuzhou Rd., Taipei, 100, Taiwan.
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, No. 17, Xuzhou Rd., Taipei, 100, Taiwan.
| | - Hung-Chien Lin
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, No. 17, Xuzhou Rd., Taipei, 100, Taiwan
| | - Ting-Hsuan Hung
- Department of Plant Pathology and Microbiology, College of BioResources and Agriculture, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 106, Taiwan
| | - Mong-Hsun Tsai
- Institute of Biotechnology, College of BioResources and Agriculture, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 106, Taiwan
| | - Chia-Cheng Wei
- Department of Public Health, College of Public Health, National Taiwan University, No. 17, Xuzhou Rd., Taipei, 100, Taiwan
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, No. 17, Xuzhou Rd., Taipei, 100, Taiwan
| | - Yu-San Han
- Institute of Fisheries Science, College of Life Science, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 106, Taiwan
| | - Chuan-Chou Shen
- Department of Geosciences, College of Science, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 106, Taiwan
| |
Collapse
|
11
|
Roszkowska M. Multilevel Mechanisms of Cancer Drug Resistance. Int J Mol Sci 2024; 25:12402. [PMID: 39596466 PMCID: PMC11594576 DOI: 10.3390/ijms252212402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/14/2024] [Accepted: 11/17/2024] [Indexed: 11/28/2024] Open
Abstract
Cancer drug resistance represents one of the most significant challenges in oncology and manifests through multiple interconnected molecular and cellular mechanisms. Objective: To provide a comprehensive analysis of multilevel processes driving treatment resistance by integrating recent advances in understanding genetic, epigenetic, and microenvironmental factors. This is a systematic review of the recent literature focusing on the mechanisms of cancer drug resistance, including genomic studies, clinical trials, and experimental research. Key findings include the following: (1) Up to 63% of somatic mutations can be heterogeneous within individual tumors, contributing to resistance development; (2) cancer stem cells demonstrate enhanced DNA repair capacity and altered metabolic profiles; (3) the tumor microenvironment, including cancer-associated fibroblasts and immune cell populations, plays a crucial role in promoting resistance; and (4) selective pressure from radiotherapy drives the emergence of radioresistant phenotypes through multiple adaptive mechanisms. Understanding the complex interplay between various resistance mechanisms is essential for developing effective treatment strategies. Future therapeutic approaches should focus on combination strategies that target multiple resistance pathways simultaneously, guided by specific biomarkers.
Collapse
Affiliation(s)
- Malgorzata Roszkowska
- Department of Clinical Neuropsychology, Collegium Medicum, Nicolaus Copernicus University, 85-067 Bydgoszcz, Poland
| |
Collapse
|
12
|
Debbarma M, Sarkar K, Sil SK. Dissecting the epigenetic orchestra of HDAC isoforms in breast cancer development: a review. Med Oncol 2024; 42:1. [PMID: 39532757 DOI: 10.1007/s12032-024-02553-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Epigenetic modulators have recently emerged as potential targets in cancer therapy. Breast cancer, the second leading cause of cancer-related deaths among women globally and the most common cancer in India, continues to have a low survival rate despite available treatments. This underscores the urgent need for more effective therapeutic strategies. Histone deacetylases (HDACs), a prominent class of epigenetic modulators, are frequently overexpressed in various cancers, including breast cancer, making them and their downstream pathways, a focus of current research, aiming to develop more effective and less invasive treatments that could help overcome chemoresistance and enhance patient outcomes. Despite the growing body of evidences, a comprehensive and consolidated review on molecular intricacy behind the HDAC-mediated epigenetic regulation of breast cancer is conspicuously absent. Therefore, this review aims to open doors for future research by exploring the evolving role of HDACs, their molecular mechanisms, and their potential as therapeutic targets in breast cancer treatment.
Collapse
Affiliation(s)
- Maria Debbarma
- Molecular Genetics & Cancer Biology Laboratory, Department of Human Physiology, Tripura University, Suryamaninagar, Tripura, 799022, India
| | - Kakali Sarkar
- Molecular Genetics & Cancer Biology Laboratory, Department of Human Physiology, Tripura University, Suryamaninagar, Tripura, 799022, India
| | - Samir Kumar Sil
- Molecular Genetics & Cancer Biology Laboratory, Department of Human Physiology, Tripura University, Suryamaninagar, Tripura, 799022, India.
| |
Collapse
|
13
|
Huang K, Li S, Yang M, Teng Z, Xu B, Wang B, Chen J, Zhao L, Wu H. The epigenetic mechanism of metabolic risk in bipolar disorder. Obes Rev 2024; 25:e13816. [PMID: 39188090 DOI: 10.1111/obr.13816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/31/2024] [Accepted: 08/02/2024] [Indexed: 08/28/2024]
Abstract
Bipolar disorder (BD) is a complex and severe mental illness that causes significant suffering to patients. In addition to the burden of depressive and manic symptoms, patients with BD are at an increased risk for metabolic syndrome (MetS). MetS includes factors associated with an increased risk of atherosclerotic cardiovascular disease (CVD) and type 2 diabetes mellitus (T2DM), which may increase the mortality rate of patients with BD. Several studies have suggested a link between BD and MetS, which may be explained at an epigenetic level. We have focused on epigenetic mechanisms to review the causes of metabolic risk in BD.
Collapse
Affiliation(s)
- Kexin Huang
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Sujuan Li
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Min Yang
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ziwei Teng
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Baoyan Xu
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Department of Psychiatry, Hebei Provincial Mental Health Center, Hebei Key Laboratory of Major Mental and Behavioral Disorders, The Sixth Clinical Medical College of Hebei University, Baoding, Hebei, China
| | - Bolun Wang
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jindong Chen
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Liping Zhao
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Haishan Wu
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
14
|
Berluti F, Baselious F, Hagemann S, Hilscher S, Schmidt M, Hüttelmaier S, Schutkowski M, Sippl W, Ibrahim HS. Development of new pyrazoles as class I HDAC inhibitors: Synthesis, molecular modeling, and biological characterization in leukemia cells. Arch Pharm (Weinheim) 2024; 357:e2400437. [PMID: 39291901 DOI: 10.1002/ardp.202400437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/19/2024]
Abstract
Class I histone deacetylases (HDACs) are considered promising targets in current cancer research. To obtain subtype-selective and potent HDAC inhibitors, we used the aminobenzamide scaffold as the zinc-binding group and prepared new derivatives with a pyrazole ring as the linking group. The synthesized compounds were analyzed in vitro using an enzymatic assay against HDAC1, -2, and -3. Compounds 12b, 15b, and 15i were found to be potent HDAC1 inhibitors, also in comparison to the reference compounds entinostat and tacedinaline, with IC50 values of 0.93, 0.22, and 0.68 μM, respectively. The best compounds were measured for their cellular effect and target engagement in acute myeloid leukemia (AML) cells. In addition, we studied the interaction of the compounds with HDAC subtypes using docking and molecular dynamic simulations. In summary, we have developed a new chemotype of HDAC1 inhibitors that can be used for further structure-based optimization.
Collapse
Affiliation(s)
- Francesco Berluti
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Fady Baselious
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Sven Hagemann
- Department of Molecular Medicine, Faculty of Medicine, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Sebastian Hilscher
- Department of Enzymology, Institute of Biochemistry, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Matthias Schmidt
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Stefan Hüttelmaier
- Department of Molecular Medicine, Faculty of Medicine, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Mike Schutkowski
- Department of Enzymology, Institute of Biochemistry, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Wolfgang Sippl
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Hany S Ibrahim
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo, Egypt
| |
Collapse
|
15
|
Yang H, Guo K, Ding P, Ning J, Zhang Y, Wang Y, Wang Z, Liu G, Shao C, Pan M, Ma Z, Yan X, Han J. Histone deacetylases: Regulation of vascular homeostasis via endothelial cells and vascular smooth muscle cells and the role in vascular pathogenesis. Genes Dis 2024; 11:101216. [PMID: 39281836 PMCID: PMC11396065 DOI: 10.1016/j.gendis.2024.101216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/20/2023] [Accepted: 01/04/2024] [Indexed: 09/18/2024] Open
Abstract
Histone deacetylases (HDACs) are proteases that play a key role in chromosome structural modification and gene expression regulation, and the involvement of HDACs in cancer, the nervous system, and the metabolic and immune system has been well reviewed. Our understanding of the function of HDACs in the vascular system has recently progressed, and a significant variety of HDAC inhibitors have been shown to be effective in the treatment of vascular diseases. However, few reviews have focused on the role of HDACs in the vascular system. In this study, the role of HDACs in the regulation of the vascular system mainly involving endothelial cells and vascular smooth muscle cells was discussed based on recent updates, and the role of HDACs in different vascular pathogenesis was summarized as well. Furthermore, the therapeutic effects and prospects of HDAC inhibitors were also addressed in this review.
Collapse
Affiliation(s)
- Hanyi Yang
- Department of Ophthalmology, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
- Xi'an Medical University, Xi'an, Shaanxi 710086, China
| | - Kai Guo
- Department of Thoracic Surgery, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710068, China
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
| | - Peng Ding
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
| | - Jiayi Ning
- Department of Ophthalmology, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
- Xi'an Medical University, Xi'an, Shaanxi 710086, China
| | - Yimeng Zhang
- Department of Ophthalmology, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
- Xi'an Medical University, Xi'an, Shaanxi 710086, China
| | - Yuanyong Wang
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
| | - Zhaoyang Wang
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
| | - Guanglin Liu
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
| | - Changjian Shao
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
| | - Minghong Pan
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
| | - Zhiqiang Ma
- Department of Medical Oncology, Senior Department of Oncology, Chinese PLA General Hospital, The Fifth Medical Center, Beijing 100853, China
| | - Xiaolong Yan
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
| | - Jing Han
- Department of Ophthalmology, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
| |
Collapse
|
16
|
Vatankhah A, Moghaddam SH, Afshari S, Afshari AR, Kesharwani P, Sahebkar A. Recent update on anti-tumor mechanisms of valproic acid in glioblastoma multiforme. Pathol Res Pract 2024; 263:155636. [PMID: 39395298 DOI: 10.1016/j.prp.2024.155636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/14/2024]
Abstract
Glioblastoma multiforme (GBM) is a malignant tumor of the brain that is considered to be incurable. Currently, surgical removal of tumors, chemotherapy with temozolomide, and radiation treatment remain established options for treatment. Nevertheless, the prognosis of those with GBM continues to be poor owing to the inherent characteristics of tumor growth and spread, as well as the resistance to treatment. To effectively deal with the present circumstances, it is vital to do extensive study to understand GBM thoroughly. The following piece provides a concise overview of the most recent advancements in using valproic acid, an antiseizure medication licensed by the FDA, for treating GBM. In this review, we outline the most recent developments of valproic acid in treating GBM, as well as its fundamental mechanisms and practical consequences. Our goal is to provide a greater understanding of the clinical use of valproic acid as a potential therapeutic agent for GBM.
Collapse
Affiliation(s)
- Abulfazl Vatankhah
- School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | | | - Sadaf Afshari
- Student Research Committee, Faculty of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir R Afshari
- Department of Basic Sciences, Faculty of Medicine, Mashhad Medical Sciences, Islamic Azad University, Mashhad, Iran; Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran; Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Amirhossein Sahebkar
- Center for Global health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
17
|
Li T, Chen Y, Li S. The Advances in the Development of Epigenetic Modifications Therapeutic Drugs Delivery Systems. Int J Nanomedicine 2024; 19:10623-10637. [PMID: 39445155 PMCID: PMC11498046 DOI: 10.2147/ijn.s480095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024] Open
Abstract
Epigenetic dysregulation can significantly trigger the onset and progression of various diseases, epigenetic therapy is a new treatment strategy by changing DNA methylation, histone modification, N6-methyladenosine, chromatin modification and other epigenetic modifications to regulate gene expression levels for therapeutic purposes. However, small-molecule epigenetic drugs face challenges in disease treatment, such as lack of selectivity, limited therapeutic efficacy, and insufficient safety. Nanomedicine delivery systems offer significant advantages in addressing these issues by enhancing drug targeting, improving bioavailability, and reducing nonspecific distribution. This help minimize side effects while increasing both therapeutic effectiveness and safety of epigenetic drugs. In this review, we focus on the mechanism and role of epigenetic regulatory factors in diseases, as well as the challenges faced by small molecule inhibitors in treatment strategies, especially the research advancements in epigenetic drug delivery systems, review and discuss the therapeutic potential and challenges of using nanotechnology to develop epigenetic drug delivery systems.
Collapse
Affiliation(s)
- Tingyi Li
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, People’s Republic of China
- Dalian Medical University, Dalian, People’s Republic of China
| | - Yanwei Chen
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, People’s Republic of China
| | - Shuai Li
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, People’s Republic of China
| |
Collapse
|
18
|
Chen X, Xie X, Sun N, Liu X, Liu J, Zhang W, Cao Y. Gut microbiota-derived butyrate improved acute leptospirosis in hamster via promoting macrophage ROS mediated by HDAC3 inhibition. mBio 2024; 15:e0190624. [PMID: 39287437 PMCID: PMC11481532 DOI: 10.1128/mbio.01906-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024] Open
Abstract
Leptospirosis is a re-emerging worldwide zoonotic disease. Infected patients and animals often exhibit intestinal symptoms. Mounting evidence suggests that host immune responses to bacterial infection are closely associated with intestinal homeostasis. Our previous research has shown that the gut microbiota can protect the host from acute leptospirosis, while the specific bacterial metabolic mediators participating in the pathogenesis remain to be identified. Short-chain fatty acids (SCFAs) are metabolites produced mainly by the gut microbiota that play a role in immune regulation. However, whether SCFAs are the key to protecting the host against leptospirosis and the underlying regulatory mechanisms are unknown. In this study, our results showed that the SCFA butyrate is involved in ameliorating leptospirosis. The depletion of SCFAs by antibiotic cocktail treatment reduced survival time after Leptospira infection while supplementation with butyrate but not acetate or propionate significantly amelioration of leptospirosis. In vitro experiments showed that butyrate treatment enhanced the intracellular bactericidal activity mediated by reactive oxygen species (ROS) production. Mechanistically, butyrate functions as a histone deacetylase 3 inhibitor (HDAC3i) to promote ROS production via monocarboxylate transporter (MCT). The protection of butyrate against acute leptospirosis mediated by ROS was also proven in vivo. Collectively, our data provide evidence that the butyrate-MCT-HDAC3i-ROS signaling axis is a potential therapeutic target for acute leptospirosis. Our work not only interprets the microbial metabolite signaling involved in transkingdom interactions between the host and gut microbiota but also provides a possible target for developing a prevention strategy for acute leptospirosis. IMPORTANCE Leptospirosis is a worldwide zoonotic disease caused by Leptospira. An estimated 1 million people are infected with leptospirosis each year. Studies have shown that healthy gut microbiota can protect the host against leptospirosis but the mechanism is not clear. This work elucidated the mechanism of gut microbiota protecting the host against acute leptospirosis. Here, we find that butyrate, a metabolite of gut microbiota, can improve the survival rate of hamsters with leptospirosis by promoting the bactericidal activity of macrophages. Mechanistically, butyrate upregulates reactive oxygen species (ROS) levels after macrophage infection with Leptospira by inhibiting HDAC3. This work confirms the therapeutic potential of butyrate in preventing acute leptospirosis and provides evidence for the benefits of the macrophage-HDAC3i-ROS axis.
Collapse
Affiliation(s)
- Xi Chen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xufeng Xie
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ni Sun
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xin Liu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jiuxi Liu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Wenlong Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yongguo Cao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
19
|
Hou M, Yu QQ, Yang L, Zhao H, Jiang P, Qin L, Zhang Q. The role of short-chain fatty acid metabolism in the pathogenesis, diagnosis and treatment of cancer. Front Oncol 2024; 14:1451045. [PMID: 39435279 PMCID: PMC11491288 DOI: 10.3389/fonc.2024.1451045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/19/2024] [Indexed: 10/23/2024] Open
Abstract
Short-chain fatty acids (SCFAs), which are saturated fatty acids consisting of six or fewer carbon atoms, have been found to be closely associated with the biological behavior of malignant tumors. This manuscript provides a comprehensive review on the role of SCFAs in regulating cell cycle, apoptosis, tumor angiogenesis, epithelial-mesenchymal transition, protein regulatory pathways, and histone regulation in promoting the development of malignant tumors. Furthermore, we discuss the potential therapeutic strategies targeting SCFAs for treating malignant tumors. This review offers a theoretical foundation for investigating the mechanisms by which SCFAs impact malignant tumors and provides insights into developing novel treatment targets.
Collapse
Affiliation(s)
- Maolin Hou
- Department of Internal Medicine, Siziwangqi People’s Hospital, Wulancabu, China
| | - Qing-Qing Yu
- Translational Pharmaceutical Laboratory, Jining NO.1 People’s Hospital, Jining, China
| | - Le Yang
- Department of Gastrointestinal Surgery, Jining NO.1 People’s Hospital, Jining, China
| | - Haibo Zhao
- Department of Oncology, Jining No.1 People’s Hospital, Jining, China
| | - Pei Jiang
- Translational Pharmaceutical Laboratory, Jining NO.1 People’s Hospital, Jining, China
| | - Lei Qin
- Department of Gastrointestinal Surgery, Jining NO.1 People’s Hospital, Jining, China
| | - Qiujie Zhang
- Department of Oncology, Jining No.1 People’s Hospital, Jining, China
| |
Collapse
|
20
|
Bollmann LM, Lange F, Hamacher A, Biermann L, Schäker-Hübner L, Hansen FK, Kassack MU. Triple Combination of Entinostat, a Bromodomain Inhibitor, and Cisplatin Is a Promising Treatment Option for Bladder Cancer. Cancers (Basel) 2024; 16:3374. [PMID: 39409994 PMCID: PMC11476342 DOI: 10.3390/cancers16193374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/16/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND/OBJECTIVES Cisplatin is part of the first-line treatment of advanced urothelial carcinoma. Cisplatin resistance is a major problem but may be overcome by combination treatments such as targeting epigenetic aberrances. Here, we investigated the effect of the class I HDACi entinostat and bromodomain inhibitors (BETis) on the potency of cisplatin in two pairs of sensitive and cisplatin-resistant bladder cancer cell lines. Cisplatin-resistant J82cisR and T24 LTT were 3.8- and 24-fold more resistant to cisplatin compared to the native cell lines J82 and T24. In addition, a hybrid compound (compound 20) comprising structural features of an HDACi and a BETi was investigated. RESULTS We found complete (J82cisR) or partial (T24 LTT) reversal of chemoresistance upon combination of entinostat, JQ1, and cisplatin. The same was found for the BETis JQ35 and OTX015, both in clinical trials, and for compound 20. The combinations were highly synergistic (Chou Talalay analysis) and increased caspase-mediated apoptosis accompanied by enhanced expression of p21, Bim, and FOXO1. Notably, the combinations were at least 4-fold less toxic in non-cancer cell lines HBLAK and HEK293. CONCLUSIONS The triple combination of entinostat, a BETi, and cisplatin is highly synergistic, reverses cisplatin resistance, and may thus serve as a novel therapeutic approach for bladder cancer.
Collapse
Affiliation(s)
- Lukas M. Bollmann
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University Duesseldorf, 40225 Duesseldorf, Germany; (L.M.B.)
| | - Friedrich Lange
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University Duesseldorf, 40225 Duesseldorf, Germany; (L.M.B.)
| | - Alexandra Hamacher
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University Duesseldorf, 40225 Duesseldorf, Germany; (L.M.B.)
| | - Lukas Biermann
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University Duesseldorf, 40225 Duesseldorf, Germany; (L.M.B.)
| | - Linda Schäker-Hübner
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany (F.K.H.)
| | - Finn K. Hansen
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany (F.K.H.)
| | - Matthias U. Kassack
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University Duesseldorf, 40225 Duesseldorf, Germany; (L.M.B.)
| |
Collapse
|
21
|
Ahn YR, Jang JY, Kang YJ, Oh HJ, Kang MK, Yoon D, Kim HS, Moon HR, Chung HY, Kim ND. MHY446 induces apoptosis via reactive oxygen species-mediated endoplasmic reticulum stress in HCT116 human colorectal cancer cells. J Chemother 2024; 36:483-500. [PMID: 38054850 DOI: 10.1080/1120009x.2023.2286757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/03/2023] [Accepted: 11/18/2023] [Indexed: 12/07/2023]
Abstract
This study investigated the potential of a newly synthesized histone deacetylase (HDAC) inhibitor, MHY446, in inducing cell death in HCT116 colorectal cancer cells and compared its activity with that of suberoylanilide hydroxamic acid (SAHA), a well-known HDAC inhibitor. The results showed that MHY446 increased the acetylation of histones H3 and H4 and decreased the expression and activity of HDAC proteins in HCT116 cells. Additionally, MHY446 was confirmed to bind more strongly to HDAC1 than HDAC2 and inhibit its activity. In vivo experiments using nude mice revealed that MHY446 was as effective as SAHA in inhibiting HCT116 cell-grafted tumor growth. This study also evaluated the biological effects of MHY446 on cell survival and death pathways. The reactive oxygen species (ROS) scavenger N-acetyl-L-cysteine (NAC) confirmed that ROS play a role in MHY446-induced cell death by reducing poly(ADP-ribose) polymerase cleavage. MHY446 also induced cell death via endoplasmic reticulum (ER) stress by increasing the expression of ER stress-related proteins. NAC treatment decreased the expression of ER stress-related proteins, indicating that ROS mediate ER stress as an upstream signaling pathway and induce cell death. While MHY446 did not exhibit superior HDAC inhibition efficacy compared to SAHA, it is anticipated to provide innovative insights into the future development of therapeutic agents for human CRC by offering novel chemical structure-activity relationship-related information.
Collapse
Affiliation(s)
- Yu Ra Ahn
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan, Republic of Korea
| | - Jung Yoon Jang
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan, Republic of Korea
| | - Yong Jung Kang
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan, Republic of Korea
| | - Hye Jin Oh
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan, Republic of Korea
| | - Min Kyung Kang
- Department of Manufacturing Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan, Republic of Korea
| | - Dahye Yoon
- Department of Manufacturing Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan, Republic of Korea
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hyung Ryong Moon
- Department of Manufacturing Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan, Republic of Korea
| | - Hae Young Chung
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan, Republic of Korea
| | - Nam Deuk Kim
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
22
|
Shrestha P, Duwa R, Lee S, Kwon TK, Jeong JH, Yook S. ROS-responsive thioketal nanoparticles delivering system for targeted ulcerative colitis therapy with potent HDAC6 inhibitor, tubastatin A. Eur J Pharm Sci 2024; 201:106856. [PMID: 39032536 DOI: 10.1016/j.ejps.2024.106856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Ulcerative colitis (UC) is a common gastrointestinal problem characterized by the mucosal injury primarily affecting the large intestine. Currently available therapies are not satisfactory as evidenced by high relapse rate and adverse effects. In this study we aimed to develop an effective drug delivery system using reactive oxygen species (ROS)-responsive thioketal nanoparticles (TKNP), to deliver tubastatin A, a potent HDAC6 inhibitor, to the inflamed colon in mice with ulcerative colitis (UC). TKNPs were synthesized by step-growth polymerization from an acetal exchange reaction while TUBA-TKNP was prepared using the single emulsion solvent evaporation technique. Our developed nanoparticle showed release of tubastatin A only in presence of ROS which is found to be highly present at the site of inflamed colon. Oral administration of TUBA-TKNP resulted in the higher accumulation of tubastatin A at the inflamed colon site and decreased the inflammation as evidenced by reduced infiltration of immune cells and decreased level of pro-inflammatory cytokines in TUBA-TKNP treated mice. In summary, our results show the successful localization of tubastatin A at the site of colon inflammation through TUBA-TKNP delivery, as well as resolution of clinical features of UC in mice.
Collapse
Affiliation(s)
- Prabhat Shrestha
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ramesh Duwa
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea; Department of Radiology, Molecular Imaging Program at Standford (MIPS), School of Medicine, Standford University, Standford, California 94305, USA
| | - Sooyeun Lee
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, Daegu, 42601, Republic of Korea
| | - Jee-Heon Jeong
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Simmyung Yook
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea; School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
23
|
Zhang H, Shen Q, Hu Z, Wu PQ, Chen Y, Zhao JX, Yue JM. Design, Synthesis, and Biological Evaluation of HDAC Inhibitors Containing Natural Product-Inspired N-Linked 2-Acetylpyrrole Cap. Molecules 2024; 29:4653. [PMID: 39407581 PMCID: PMC11477621 DOI: 10.3390/molecules29194653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/20/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Drawing inspiration from the structural resemblance between a natural product N-(3-carboxypropyl)-2-acetylpyrrole and phenylbutyric acid, a pioneer HDAC inhibitor evaluated in clinical trials, we embarked on the design and synthesis of a novel array of HDAC inhibitors containing an N-linked 2-acetylpyrrole cap by utilizing the pharmacophore fusion strategy. Among them, compound 20 exhibited potential inhibitory activity on HDAC1, and demonstrated notable potency against RPMI-8226 cells with an IC50 value of 2.89 ± 0.43 μM, which was better than chidamide (IC50 = 10.23 ± 1.02 μM). Western blot analysis and Annexin V-FTIC/propidium iodide (PI) staining showed that 20 could enhance the acetylation of histone H3, as well as remarkably induce apoptosis of RPMI-8226 cancer cells. The docking study highlighted the presence of a hydrogen bond between the carbonyl oxygen of the 2-acetylpyrrole cap group and Phe198 of the HDAC1 enzyme in 20, emphasizing the crucial role of introducing this natural product-inspired cap group. Molecular dynamics simulations showed that the docked complex had good conformational stability. The ADME parameters calculation showed that 20 possesses remarkable theoretical drug-likeness properties. Taken together, these results suggested that 20 is worthy of further exploration as a potential HDAC-targeted anticancer drug candidate.
Collapse
Affiliation(s)
- Han Zhang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China;
- State Key Laboratory of Drug Research, Ethnomedicine and Biofunctional Molecule Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; (Z.H.); (P.-Q.W.)
| | - Qianqian Shen
- State Key Laboratory of Chemical Biology, Division of Antitumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China;
| | - Zhu Hu
- State Key Laboratory of Drug Research, Ethnomedicine and Biofunctional Molecule Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; (Z.H.); (P.-Q.W.)
| | - Pei-Qian Wu
- State Key Laboratory of Drug Research, Ethnomedicine and Biofunctional Molecule Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; (Z.H.); (P.-Q.W.)
| | - Yi Chen
- State Key Laboratory of Chemical Biology, Division of Antitumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China;
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, 198 East Binhai Road, Yantai 264117, China
| | - Jin-Xin Zhao
- State Key Laboratory of Drug Research, Ethnomedicine and Biofunctional Molecule Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; (Z.H.); (P.-Q.W.)
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, 198 East Binhai Road, Yantai 264117, China
| | - Jian-Min Yue
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China;
- State Key Laboratory of Drug Research, Ethnomedicine and Biofunctional Molecule Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; (Z.H.); (P.-Q.W.)
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, 198 East Binhai Road, Yantai 264117, China
| |
Collapse
|
24
|
Li P, Xue Y. Dysregulation of lysine acetylation in the pathogenesis of digestive tract cancers and its clinical applications. Front Cell Dev Biol 2024; 12:1447939. [PMID: 39391349 PMCID: PMC11464462 DOI: 10.3389/fcell.2024.1447939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/20/2024] [Indexed: 10/12/2024] Open
Abstract
Recent advances in high-resolution mass spectrometry-based proteomics have improved our understanding of lysine acetylation in proteins, including histones and non-histone proteins. Lysine acetylation, a reversible post-translational modification, is catalyzed by lysine acetyltransferases (KATs) and lysine deacetylases (KDACs). Proteins comprising evolutionarily conserved bromodomains (BRDs) recognize these acetylated lysine residues and consequently activate transcription. Lysine acetylation regulates almost all cellular processes, including transcription, cell cycle progression, and metabolic functions. Studies have reported the aberrant expression, translocation, and mutation of genes encoding lysine acetylation regulators in various cancers, including digestive tract cancers. These dysregulated lysine acetylation regulators contribute to the pathogenesis of digestive system cancers by modulating the expression and activity of cancer-related genes or pathways. Several inhibitors targeting KATs, KDACs, and BRDs are currently in preclinical trials and have demonstrated anti-cancer effects. Digestive tract cancers, including encompass esophageal, gastric, colorectal, liver, and pancreatic cancers, represent a group of heterogeneous malignancies. However, these cancers are typically diagnosed at an advanced stage owing to the lack of early symptoms and are consequently associated with poor 5-year survival rates. Thus, there is an urgent need to identify novel biomarkers for early detection, as well as to accurately predict the clinical outcomes and identify effective therapeutic targets for these malignancies. Although the role of lysine acetylation in digestive tract cancers remains unclear, further analysis could improve our understanding of its role in the pathogenesis of digestive tract cancers. This review aims to summarize the implications and pathogenic mechanisms of lysine acetylation dysregulation in digestive tract cancers, as well as its potential clinical applications.
Collapse
Affiliation(s)
- Penghui Li
- Department of Gastrointestinal surgery, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, Henan, China
| | - Yuan Xue
- Department of thyroid surgery, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, Henan, China
| |
Collapse
|
25
|
Zhuang S, Huang Z, Fan H, Wu Z, Liu H. LINC01232 promotes ARNTL2 transcriptional activation and inhibits ferroptosis of CRC cells through p300/H3K27ac. Epigenomics 2024; 16:1097-1115. [PMID: 39268727 PMCID: PMC11418281 DOI: 10.1080/17501911.2024.2387528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/29/2024] [Indexed: 09/15/2024] Open
Abstract
Aim: This study investigated the role of lncRNA LINC01232 in ferroptosis of colorectal cancer (CRC).Materials & methods: Real time quantitative polymerase chain reaction or western blot experiments were performed to examine relevant mRNAs and proteins expression. The kit assays evaluated malondialdehyde, iron, Fe2+ and glutathione levels. ROS levels were verified by flow cytometry. Chromatin immunoprecipitation and RNA immunoprecipitation analysis monitored the correlation among LINC01232, H3K27ac, p300 and ARNTL2.Results: LINC01232 or ARNTL2 knockdown facilitated erastin-induced ferroptosis. The interaction between LINC01232 and p300 resulted in the enhancement of H3K27ac levels at ARNTL2 promoter to promote ARNTL2 transcriptional activity. ARNTL2 overexpression reversed the promoting effect of LINC01232 knockdown on ferroptosis.Conclusion: LINC01232 inhibited the ferroptosis in CRC by epigenetically upregulating the transcriptional activity of ARNTL2.
Collapse
Affiliation(s)
- Shengwei Zhuang
- General surgery Departmet, Zhongshan Hospital (Xiamen), Fudan University & Xiamen Clinical Research Center for Cancer Therapy, Xiamen, Fujian Province, 351015, P.R. China
| | - Zhekun Huang
- General surgery Departmet, Zhongshan Hospital (Xiamen), Fudan University & Xiamen Clinical Research Center for Cancer Therapy, Xiamen, Fujian Province, 351015, P.R. China
| | - Hongkai Fan
- General surgery Departmet, Zhongshan Hospital (Xiamen), Fudan University & Xiamen Clinical Research Center for Cancer Therapy, Xiamen, Fujian Province, 351015, P.R. China
| | - Zhirong Wu
- General surgery Departmet, Zhongshan Hospital (Xiamen), Fudan University & Xiamen Clinical Research Center for Cancer Therapy, Xiamen, Fujian Province, 351015, P.R. China
| | - Han Liu
- General surgery Departmet, Zhongshan Hospital (Xiamen), Fudan University & Xiamen Clinical Research Center for Cancer Therapy, Xiamen, Fujian Province, 351015, P.R. China
| |
Collapse
|
26
|
Qian K, Li W, Ren S, Peng W, Qing B, Liu X, Wei X, Zhu L, Wang Y, Jin X. HDAC8 Enhances the Function of HIF-2α by Deacetylating ETS1 to Decrease the Sensitivity of TKIs in ccRCC. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401142. [PMID: 39073752 PMCID: PMC11423204 DOI: 10.1002/advs.202401142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/03/2024] [Indexed: 07/30/2024]
Abstract
Drug resistance after long-term use of Tyrosine kinase inhibitors (TKIs) has become an obstacle for prolonging the survival time of patients with clear cell renal cell carcinoma (ccRCC). Here, genome-wide CRISPR-based screening to reveal that HDAC8 is involved in decreasing the sensitivity of ccRCC cells to sunitinib is applied. Mechanically, HDAC8 deacetylated ETS1 at the K245 site to promote the interaction between ETS1 and HIF-2α and enhance the transcriptional activity of the ETS1/HIF-2α complex. However, the antitumor effect of inhibiting HDAC8 on sensitized TKI is not very satisfactory. Subsequently, inhibition of HDAC8 increased the expression of NEK1, and up-regulated NEK1 phosphorylated ETS1 at the T241 site to promote the interaction between ETS1 and HIF-2α by impeded acetylation at ETS1-K245 site is showed. Moreover, TKI treatment increased the expression of HDAC8 by inhibiting STAT3 phosphorylation in ccRCC cells is also found. These 2 findings highlight a potential mechanism of acquired resistance to TKIs and HDAC8 inhibitors in ccRCC. Finally, HDAC8-in-PROTACs to optimize the effects of HDAC8 inhibitors through degrading HDAC8 and overcoming the resistance of ccRCC to TKIs are synthesized. Collectively, the results revealed HDAC8 as a potential therapeutic candidate for resistance to ccRCC-targeted therapies.
Collapse
Affiliation(s)
- Kang Qian
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, National Clinical Research Center for Metabolic Disease, Changsha, 410011, China
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wei Li
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, National Clinical Research Center for Metabolic Disease, Changsha, 410011, China
| | - Shangqing Ren
- Robotic Minimally Invasive Surgery Center, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Weilin Peng
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Bei Qing
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Xinlin Liu
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, National Clinical Research Center for Metabolic Disease, Changsha, 410011, China
| | - Xiong Wei
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, National Clinical Research Center for Metabolic Disease, Changsha, 410011, China
| | - Liang Zhu
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, National Clinical Research Center for Metabolic Disease, Changsha, 410011, China
| | - Yapeng Wang
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Xin Jin
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, National Clinical Research Center for Metabolic Disease, Changsha, 410011, China
| |
Collapse
|
27
|
Dong W, Lu J, Li Y, Zeng J, Du X, Yu A, Zhao X, Chi F, Xi Z, Cao S. SIRT1: a novel regulator in colorectal cancer. Biomed Pharmacother 2024; 178:117176. [PMID: 39059350 DOI: 10.1016/j.biopha.2024.117176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/08/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024] Open
Abstract
The class-III histone deacetylase SIRT1 is the most extensively investigated sirtuin deacetylase. It is resistant to the broad deacetylase inhibitor trichostatin A and depends on oxidized nicotinamide adenine nucleotide (NAD+). SIRT1 plays a crucial role in the tumorigenesis of numerous types of cancers, including colorectal cancer (CRC). Accumulating evidence indicates that SIRT1 is a therapeutic target for CRC; however, the function and underlying mechanism of SIRT1 in CRC still need to be elucidated. Herein, we provide a detailed and updated review to illustrate that SIRT1 regulates many processes that go awry in CRC cells, such as apoptosis, autophagy, proliferation, migration, invasion, metastasis, oxidative stress, resistance to chemo-radio therapy, immune evasion, and metabolic reprogramming. Moreover, we closely link our review to the clinical practice of CRC treatment, summarizing the mechanisms and prospects of SIRT1 inhibitors in CRC therapy. SIRT1 inhibitors as monotherapy in CRC or in combination with chemotherapy, radiotherapy, and immune therapies are comprehensively discussed. From epigenetic regulation to its potential therapeutic effect, we hope to offer novel insights and a comprehensive understanding of SIRT1's role in CRC.
Collapse
Affiliation(s)
- Weiwei Dong
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province 110004, China
| | - Jinjing Lu
- Department of Health Management, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province 110004, China
| | - You Li
- Nursing Department, Liaoning Jinqiu Hospital, Shenyang, Liaoning Province 110016, China
| | - Juan Zeng
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province 110004, China
| | - Xiaoyun Du
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province 110004, China
| | - Ao Yu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province 110004, China
| | - Xuechan Zhao
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province 110004, China
| | - Feng Chi
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province 110004, China.
| | - Zhuo Xi
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province 110004, China.
| | - Shuo Cao
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province 110004, China.
| |
Collapse
|
28
|
Zhang Z, Zhao M, Wang Q, Wang X, Wang Y, Ge Y, Wu Z, Wang W, Shan L. Forkhead box protein FOXK1 disrupts the circadian rhythm to promote breast tumorigenesis in response to insulin resistance. Cancer Lett 2024; 599:217147. [PMID: 39094826 DOI: 10.1016/j.canlet.2024.217147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/09/2024] [Accepted: 07/27/2024] [Indexed: 08/04/2024]
Abstract
The dysregulation of circadian rhythm oscillation is a prominent feature of various solid tumors. Thus, clarifying the molecular mechanisms that maintain the circadian clock is important. In the present study, we revealed that the transcription factor forkhead box FOXK1 functions as an oncogene in breast cancer. We showed that FOXK1 recruits multiple transcription corepressor complexes, including NCoR/SMRT, SIN3A, NuRD, and REST/CoREST. Among them, the FOXK1/NCoR/SIN3A complex transcriptionally regulates a cohort of genes, including CLOCK, PER2, and CRY2, that are critically involved in the circadian rhythm. The complex promoted the proliferation of breast cancer cells by disturbing the circadian rhythm oscillation. Notably, the nuclear expression of FOXK1 was positively correlated with tumor grade. Insulin resistance gradually became more severe with tumor progression and was accompanied by the increased expression of OGT, which caused the nuclear translocation and increased expression of FOXK1. Additionally, we found that metformin downregulates FOXK1 and exports it from the nucleus, while HDAC inhibitors (HDACi) inhibit the FOXK1-related enzymatic activity. Combined treatment enhanced the expression of circadian clock genes through the regulation of FOXK1, thereby exerting an antitumor effect, indicating that highly nuclear FOXK1-expressing breast cancers are potential candidates for the combined application of metformin and HDACi.
Collapse
Affiliation(s)
- Zhaohan Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Minghui Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Qian Wang
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute, and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, 300060, Tianjin, China; National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, 300060, Tianjin, China
| | - Xilin Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yu Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yuze Ge
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Zicheng Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Wenjuan Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Cancer Invasion and Metastasis Research, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Lin Shan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Cancer Invasion and Metastasis Research, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
29
|
Choi J, Gang S, Ramalingam M, Hwang J, Jeong H, Yoo J, Cho HH, Kim BC, Jang G, Jeong HS, Jang S. BML-281 promotes neuronal differentiation by modulating Wnt/Ca 2+ and Wnt/PCP signaling pathway. Mol Cell Biochem 2024; 479:2391-2403. [PMID: 37768498 DOI: 10.1007/s11010-023-04857-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023]
Abstract
Histone deacetylase (HDAC) inhibitors promote differentiation through post-translational modifications of histones. BML-281, an HDAC6 inhibitor, has been known to prevent tumors, acute dextran sodium sulfate-associated colitis, and lung injury. However, the neurogenic differentiation effect of BML-281 is poorly understood. In this study, we investigated the effect of BML-281 on neuroblastoma SH-SY5Y cell differentiation into mature neurons by immunocytochemistry (ICC), reverse transcriptase PCR (RT-PCR), quantitative PCR (qPCR), and western blotting analysis. We found that the cells treated with BML-281 showed neurite outgrowth and morphological changes into mature neurons under a microscope. It was confirmed that the gene expression of neuronal markers (NEFL, MAP2, Tuj1, NEFH, and NEFM) was increased with certain concentrations of BML-281. Similarly, the protein expression of neuronal markers (NeuN, Synaptophysin, Tuj1, and NFH) was upregulated with BML-281 compared to untreated cells. Following treatment with BML-281, the expression of Wnt5α increased, and downstream pathways were activated. Interestingly, both Wnt/Ca2+ and Wnt/PCP pathways activated and regulated PKC, Cdc42, RhoA, Rac1/2/3, and p-JNK. Therefore, BML-281 induces the differentiation of SH-SY5Y cells into mature neurons by activating the non-canonical Wnt signaling pathway. From these results, we concluded that BML-281 might be a novel drug to differentiation into neuronal cells through the regulation of Wnt signaling pathway to reduce the neuronal cell death.
Collapse
Affiliation(s)
- Jiyun Choi
- Department of Physiology, Chonnam National University Medical School, Jellanamdo, 58128, Republic of Korea
| | - Seoyeon Gang
- Department of Physiology, Chonnam National University Medical School, Jellanamdo, 58128, Republic of Korea
- Department of Pre-Medical Science, Chonnam National University Medical School, Jellanamdo, 58128, Republic of Korea
| | - Mahesh Ramalingam
- Department of Physiology, Chonnam National University Medical School, Jellanamdo, 58128, Republic of Korea
| | - Jinsu Hwang
- Department of Physiology, Chonnam National University Medical School, Jellanamdo, 58128, Republic of Korea
| | - Haewon Jeong
- Department of Physiology, Chonnam National University Medical School, Jellanamdo, 58128, Republic of Korea
| | - Jin Yoo
- Department of Physiological Education, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Hyong-Ho Cho
- Department of Otolaryngology-Head and Neck Surgery, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
| | - Byeong C Kim
- Department of Neurology, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
| | - Geupil Jang
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Han-Seong Jeong
- Department of Physiology, Chonnam National University Medical School, Jellanamdo, 58128, Republic of Korea.
| | - Sujeong Jang
- Department of Physiology, Chonnam National University Medical School, Jellanamdo, 58128, Republic of Korea.
| |
Collapse
|
30
|
Liu Y, Yu J, An X, Rao H, Qiu Z, Ke J, Wu L, Zhu Z, Deng H, Wu F, Zhang Z, Li S. TSA attenuates the progression of c-Myc-driven hepatocarcinogenesis by pAKT-ADH4 pathway. BMC Cancer 2024; 24:1049. [PMID: 39187747 PMCID: PMC11346213 DOI: 10.1186/s12885-024-12781-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 08/08/2024] [Indexed: 08/28/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the primary malignant tumor of the liver. c-Myc is one of the most common oncogenes in clinical settings, and amplified levels of c-Myc are frequently found in HCC. Histone deacetylase inhibitors (HDACi), such as Trichostatin A (TSA), hold enormous promise for the treatment of HCC. However, the potential and mechanism of TSA in the treatment of c-Myc-induced HCC are unclear. In this study, we investigated the effects of TSA treatment on a c-Myc-induced HCC model in mice. TSA treatment delayed the development of HCC, and liver function indicators such as ALT, AST, liver weight ratio, and spleen weight ratio demonstrated the effectiveness of TSA treatment. Oil red staining further demonstrated that TSA attenuated lipid accumulation in the HCC tissues of mice. Through mRNA sequencing, we identified that TSA mainly affected cell cycle and fatty acid degradation genes, with alcohol dehydrogenase 4 (ADH4) potentially being the core molecular downstream target. QPCR, immunohistochemistry, and western blot analysis revealed that ADH4 expression was repressed by c-Myc and restored after TSA treatment both in vitro and in vivo. Furthermore, we observed that the levels of total NAD+ and NADH, NAD+, NAD+/NADH, and ATP concentration increased after c-Myc transfection in liver cells but decreased after TSA intervention. The levels of phosphorylated protein kinase B (p-AKT) and p-mTOR were identified as targets regulated by TSA, and they governed the ADH4 expression and the downstream regulation of total NAD+ and NADH, NAD+, NAD+/NADH, and ATP concentration. Overall, our study suggests that TSA has a therapeutic effect on c-Myc-induced HCC through the AKT-mTOR-ADH4 pathway. These findings provide valuable insights into the potential treatment of HCC using TSA and shed light on the underlying molecular mechanisms involved.
Collapse
Grants
- JC2020003, JC202109, YC2023033, YC2024007 Innovative Research Program for Graduates of Institute of Hubei University of Medicine
- JC2020003, JC202109, YC2023033, YC2024007 Innovative Research Program for Graduates of Institute of Hubei University of Medicine
- JC2020003, JC202109, YC2023033, YC2024007 Innovative Research Program for Graduates of Institute of Hubei University of Medicine
- JC2020003, JC202109, YC2023033, YC2024007 Innovative Research Program for Graduates of Institute of Hubei University of Medicine
- 2023AFB882, 2022CFB004 the Hubei Provincial Natural Science Foundation
- 2023AFB882, 2022CFB004 the Hubei Provincial Natural Science Foundation
- S202110929011 the Provincial Training Program of Innovation and Entrepreneurship for undergraduates
- Q20212103 the Natural Science Foundation of Hubei Provincial Department of Education
- Q20212103 the Natural Science Foundation of Hubei Provincial Department of Education
- 2020QDJZR018 Cultivating Project for Young Scholar at Hubei University of Medicine
- FDFR201901 Free Exploration Project of Hubei University of Medicine
Collapse
Affiliation(s)
- Yang Liu
- Sinopharm Dongfeng General Hospital, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, People's Republic of China
- Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, People's Republic of China
| | - Juan Yu
- Sinopharm Dongfeng General Hospital, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, People's Republic of China
| | - Xiaotong An
- Sinopharm Dongfeng General Hospital, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, People's Republic of China
| | - Huiling Rao
- Sinopharm Dongfeng General Hospital, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, People's Republic of China
| | - Zhenpeng Qiu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, People's Republic of China
| | - Jing Ke
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, 442000, People's Republic of China
| | - Lun Wu
- Sinopharm Dongfeng General Hospital, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, People's Republic of China
| | - Zhengpeng Zhu
- Sinopharm Dongfeng General Hospital, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, People's Republic of China
| | - Haojun Deng
- Sinopharm Dongfeng General Hospital, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, People's Republic of China
| | - Fuyun Wu
- Sinopharm Dongfeng General Hospital, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, People's Republic of China.
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, 442000, People's Republic of China.
- Institute of Basic Medical Science, Hubei University of Medicine, Shiyan, 442000, People's Republic of China.
| | - Zhaoyang Zhang
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, 442000, People's Republic of China.
- Institute of Basic Medical Science, Hubei University of Medicine, Shiyan, 442000, People's Republic of China.
| | - Shan Li
- Sinopharm Dongfeng General Hospital, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, People's Republic of China.
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, 442000, People's Republic of China.
- Institute of Basic Medical Science, Hubei University of Medicine, Shiyan, 442000, People's Republic of China.
| |
Collapse
|
31
|
Shen D, Guo H, Yu P, Li A, Shan S, Chen X, Wu W, Tong X, Li H, Mei S. An ultra-sensitive CRISPR-Cas12a and aptamer-based biosensor utilizing Entropy-driven catalytic DNA networks for precise detection of DNA Methyltransferase 1. Talanta 2024; 276:126267. [PMID: 38762976 DOI: 10.1016/j.talanta.2024.126267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/03/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024]
Abstract
DNA Methyltransferase 1 (DNMT1) serves as a crucial biomarker associated with various diseases and is essential for evaluating DNA methylation levels, diagnosing diseases, and evaluating prognosis. As a result, a convenient, quantitative, and sensitive assay for detecting DNMT1 is in high demand. However, current techniques for DNMT1 detection struggle to balance accuracy, low cost, and high sensitivity, limiting their clinical usefulness. To address this challenge, we have developed a DNMT1 detection method (CAED), which combines aptamer-specific recognition with a highly programmable Entropy-driven catalysis DNA network and is further integrated with the CRISPR-Cas12a system. This innovative approach achieves a detection limit as low as 90.9 fmol/L. To demonstrate the clinical applicability and significance of our CAED method, we successfully measured DNMT1 levels in 10 plasma samples 10 cervical tissue samples. These results underscore the potential of our method as an accurate, affordable, and ultra-sensitive tool for evaluating DNMT1 levels. This innovative method offers a potent means for assessing DNMT1 levels and significantly advances disease diagnosis and health risk prediction. Plus, it establishes an innovative design framework for CRISPR-Cas12a-based biosensors, tailored explicitly for enzyme content quantification.
Collapse
Affiliation(s)
- Dongsheng Shen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji University School of Medicine, No.389 Xincun Road, Shanghai, 200065, China
| | - Hong Guo
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji University School of Medicine, No.389 Xincun Road, Shanghai, 200065, China
| | - Ping Yu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji University School of Medicine, No.389 Xincun Road, Shanghai, 200065, China
| | - Ao Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji University School of Medicine, No.389 Xincun Road, Shanghai, 200065, China
| | - Shu Shan
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji University School of Medicine, No.389 Xincun Road, Shanghai, 200065, China
| | - Xixi Chen
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Wenjun Wu
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Xiaowen Tong
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji University School of Medicine, No.389 Xincun Road, Shanghai, 200065, China
| | - Huaifang Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji University School of Medicine, No.389 Xincun Road, Shanghai, 200065, China.
| | - Shuaikang Mei
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji University School of Medicine, No.389 Xincun Road, Shanghai, 200065, China.
| |
Collapse
|
32
|
Elahi LS, Condro MC, Kawaguchi R, Qin Y, Alvarado AG, Gruender B, Qi H, Li T, Lai A, Castro MG, Lowenstein PR, Garrett MC, Kornblum HI. Valproic acid targets IDH1 mutants through alteration of lipid metabolism. NPJ METABOLIC HEALTH AND DISEASE 2024; 2:20. [PMID: 39149696 PMCID: PMC11321993 DOI: 10.1038/s44324-024-00021-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 07/01/2024] [Indexed: 08/17/2024]
Abstract
Histone deacetylases (HDACs) have a wide range of targets and can rewire both the chromatin and lipidome of cancer cells. In this study, we show that valproic acid (VPA), a brain penetrant anti-seizure medication and histone deacetylase inhibitor, inhibits the growth of IDH1 mutant tumors in vivo and in vitro, with at least some selectivity over IDH1 wild-type tumors. Surprisingly, genes upregulated by VPA showed no enhanced chromatin accessibility at the promoter, but there was a correlation between VPA-downregulated genes and diminished promoter chromatin accessibility. VPA inhibited the transcription of lipogenic genes and these lipogenic genes showed significant decreases in promoter chromatin accessibility only in the IDH1 MT glioma cell lines tested. VPA inhibited the mTOR pathway and a key lipogenic gene, fatty acid synthase (FASN). Both VPA and a selective FASN inhibitor TVB-2640 rewired the lipidome and promoted apoptosis in an IDH1 MT but not in an IDH1 WT glioma cell line. We further find that HDACs are involved in the regulation of lipogenic genes and HDAC6 is particularly important for the regulation of FASN in IDH1 MT glioma. Finally, we show that FASN knockdown alone and VPA in combination with FASN knockdown significantly improved the survival of mice in an IDH1 MT primary orthotopic xenograft model in vivo. We conclude that targeting fatty acid metabolism through HDAC inhibition and/or FASN inhibition may be a novel therapeutic opportunity in IDH1 mutant gliomas.
Collapse
Affiliation(s)
- Lubayna S. Elahi
- Department of Psychiatry and Behavioral Sciences and the UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA USA
| | - Michael C. Condro
- Department of Psychiatry and Behavioral Sciences and the UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA USA
| | - Riki Kawaguchi
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA USA
| | - Yue Qin
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA USA
| | - Alvaro G. Alvarado
- Department of Psychiatry and Behavioral Sciences and the UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA USA
| | - Brandon Gruender
- Department of Psychiatry and Behavioral Sciences and the UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA USA
| | - Haocheng Qi
- Department of Psychiatry and Behavioral Sciences and the UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA USA
| | - Tie Li
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA USA
| | - Albert Lai
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA USA
| | - Maria G. Castro
- Department of Neurosurgery, Department of Cell and Developmental Biology, and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI USA
| | - Pedro R. Lowenstein
- Department of Neurosurgery, Department of Cell and Developmental Biology, and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI USA
| | | | - Harley I. Kornblum
- Department of Psychiatry and Behavioral Sciences and the UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, CA USA
| |
Collapse
|
33
|
Joshi DC, Sharma A, Prasad S, Singh K, Kumar M, Sherawat K, Tuli HS, Gupta M. Novel therapeutic agents in clinical trials: emerging approaches in cancer therapy. Discov Oncol 2024; 15:342. [PMID: 39127974 PMCID: PMC11317456 DOI: 10.1007/s12672-024-01195-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Novel therapeutic agents in clinical trials offer a paradigm shift in the approach to battling this prevalent and destructive disease, and the area of cancer therapy is on the precipice of a trans formative revolution. Despite the importance of tried-and-true cancer treatments like surgery, radiation, and chemotherapy, the disease continues to evolve and adapt, making new, more potent methods necessary. The field of cancer therapy is currently witnessing the emergence of a wide range of innovative approaches. Immunotherapy, including checkpoint inhibitors, CAR-T cell treatment, and cancer vaccines, utilizes the host's immune system to selectively target and eradicate malignant cells while minimizing harm to normal tissue. The development of targeted medicines like kinase inhibitors and monoclonal antibodies has allowed for more targeted and less harmful approaches to treating cancer. With the help of genomics and molecular profiling, "precision medicine" customizes therapies to each patient's unique genetic makeup to maximize therapeutic efficacy while minimizing unwanted side effects. Epigenetic therapies, metabolic interventions, radio-pharmaceuticals, and an increasing emphasis on combination therapy with synergistic effects further broaden the therapeutic landscape. Multiple-stage clinical trials are essential for determining the safety and efficacy of these novel drugs, allowing patients to gain access to novel treatments while also furthering scientific understanding. The future of cancer therapy is rife with promise, as the integration of artificial intelligence and big data has the potential to revolutionize early detection and prevention. Collaboration among researchers, and healthcare providers, and the active involvement of patients remain the bedrock of the ongoing battle against cancer. In conclusion, the dynamic and evolving landscape of cancer therapy provides hope for improved treatment outcomes, emphasizing a patient-centered, data-driven, and ethically grounded approach as we collectively strive towards a cancer-free world.
Collapse
Affiliation(s)
- Deepak Chandra Joshi
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandar Sindri, Dist., Ajmer, Rajasthan, India.
| | - Anurag Sharma
- Invertis Institute of Pharmacy, Invertis University Bareilly Uttar Pradesh, Bareilly, India
| | - Sonima Prasad
- Chandigarh University, Ludhiana-Chandigarh State Highway, Gharuan, Mohali, Punjab, 140413, India
| | - Karishma Singh
- Institute of Pharmaceutical Sciences, Faculty of Engineering and Technology, University of Lucknow, Lucknow, India
| | - Mayank Kumar
- Himalayan Institute of Pharmacy, Road, Near Suketi Fossil Park, Kala Amb, Hamidpur, Himachal Pradesh, India
| | - Kajal Sherawat
- Meerut Institute of Technology, Meerut, Uttar Pradesh, India
| | - Hardeep Singh Tuli
- Department of Bio-Sciences & Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, India
| | - Madhu Gupta
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India.
| |
Collapse
|
34
|
Roth GV, Gengaro IR, Qi LS. Precision epigenetic editing: Technological advances, enduring challenges, and therapeutic applications. Cell Chem Biol 2024; 31:S2451-9456(24)00309-X. [PMID: 39137782 DOI: 10.1016/j.chembiol.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/31/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024]
Abstract
The epigenome is a complex framework through which gene expression is precisely and flexibly modulated to incorporate heritable memory and responses to environmental stimuli. It governs diverse cellular processes, including cell fate, disease, and aging. The need to understand this system and precisely control gene expression outputs for therapeutic purposes has precipitated the development of a diverse set of epigenetic editing tools. Here, we review the existing toolbox for targeted epigenetic editing, technical considerations of the current technologies, and opportunities for future development. We describe applications of therapeutic epigenetic editing and their potential for treating disease, with a discussion of ongoing delivery challenges that impede certain clinical interventions, particularly in the brain. With simultaneous advancements in available engineering tools and appropriate delivery technologies, we predict that epigenetic editing will increasingly cement itself as a powerful approach for safely treating a wide range of disorders in all tissues of the body.
Collapse
Affiliation(s)
- Goldie V Roth
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Isabella R Gengaro
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA; Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Lei S Qi
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA; Department of Bioengineering, Stanford University, Stanford, CA, USA; Chan Zuckerberg Biohub - San Francisco, San Francisco, CA, USA.
| |
Collapse
|
35
|
Zhang J, Zeng X, Guo Q, Sheng Z, Chen Y, Wan S, Zhang L, Zhang P. Small cell lung cancer: emerging subtypes, signaling pathways, and therapeutic vulnerabilities. Exp Hematol Oncol 2024; 13:78. [PMID: 39103941 DOI: 10.1186/s40164-024-00548-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 07/27/2024] [Indexed: 08/07/2024] Open
Abstract
Small cell lung cancer (SCLC) is a recalcitrant cancer characterized by early metastasis, rapid tumor growth and poor prognosis. In recent decades, the epidemiology, initiation and mutation characteristics of SCLC, as well as abnormal signaling pathways contributing to its progression, have been widely studied. Despite extensive investigation, fewer drugs have been approved for SCLC. Recent advancements in multi-omics studies have revealed diverse classifications of SCLC that are featured by distinct characteristics and therapeutic vulnerabilities. With the accumulation of SCLC samples, different subtypes of SCLC and specific treatments for these subtypes were further explored. The identification of different molecular subtypes has opened up novel avenues for the treatment of SCLC; however, the inconsistent and uncertain classification of SCLC has hindered the translation from basic research to clinical applications. Therefore, a comprehensives review is essential to conclude these emerging subtypes and related drugs targeting specific therapeutic vulnerabilities within abnormal signaling pathways. In this current review, we summarized the epidemiology, risk factors, mutation characteristics of and classification, related molecular pathways and treatments for SCLC. We hope that this review will facilitate the translation of molecular subtyping of SCLC from theory to clinical application.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China.
| | - Xiaoping Zeng
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Qiji Guo
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Zhenxin Sheng
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Yan Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Shiyue Wan
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Lele Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Peng Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China.
| |
Collapse
|
36
|
Wang L, Bai Y, Cao Z, Guo Z, Lian Y, Liu P, Zeng Y, Lyu W, Chen Q. Histone deacetylases and inhibitors in diabetes mellitus and its complications. Biomed Pharmacother 2024; 177:117010. [PMID: 38941890 DOI: 10.1016/j.biopha.2024.117010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/29/2024] [Accepted: 06/17/2024] [Indexed: 06/30/2024] Open
Abstract
Diabetes mellitus (DM) is a metabolic disorder characterized by hyperglycemia, with its prevalence linked to both genetic predisposition and environmental factors. Epigenetic modifications, particularly through histone deacetylases (HDACs), have been recognized for their significant influence on DM pathogenesis. This review focuses on the classification of HDACs, their role in DM and its complications, and the potential therapeutic applications of HDAC inhibitors. HDACs, which modulate gene expression without altering DNA sequences, are categorized into four classes with distinct functions and tissue specificity. HDAC inhibitors (HDACi) have shown efficacy in various diseases, including DM, by targeting these enzymes. The review highlights how HDACs regulate β-cell function, insulin sensitivity, and hepatic gluconeogenesis in DM, as well as their impact on diabetic cardiomyopathy, nephropathy, and retinopathy. Finally, we suggest that targeted histone modification is expected to become a key method for the treatment of diabetes and its complications. The study of HDACi offers insights into new treatment strategies for DM and its associated complications.
Collapse
Affiliation(s)
- Li Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 610072, PR China; Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, PR China
| | - Yuning Bai
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, PR China
| | - Zhengmin Cao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, PR China
| | - Ziwei Guo
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, PR China
| | - Yanjie Lian
- Department of Cardiovascular Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, PR China
| | - Pan Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 610072, PR China
| | - Yixian Zeng
- Department of Proctology, Beibei Hospital of Traditional Chinese Medicine, Chongqing 400799, PR China
| | - Wenliang Lyu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, PR China.
| | - Qiu Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 610072, PR China.
| |
Collapse
|
37
|
Meckler JF, Levis DJ, Kong Y, O’Donnell RT, Vang DP, Tuscano JM. Fermented Wheat Germ Protein with Histone Deacetylase Inhibitor AR42 Demonstrates Enhanced Cytotoxicity against Lymphoma Cells In Vitro and In Vivo. Int J Mol Sci 2024; 25:7866. [PMID: 39063110 PMCID: PMC11277024 DOI: 10.3390/ijms25147866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Current treatments for lymphoma are plagued by substantial toxicity and the inability to overcome drug resistance, leading to eventual relapse and rationalizing the development of novel, less toxic therapeutics and drug combinations. Histone deacetylase inhibitors (HDACis) are a broad class of epigenetic modulators that have been studied in multiple tumor types, including lymphoma. Currently, HDACis are FDA-approved for treating relapsed T-cell lymphomas and multiple myeloma, with ongoing trials in other lymphomas and solid tumors. As single agents, HDACis frequently elicit toxic side effects and have limited efficacy; therefore, many current treatment strategies focus on combinations to boost efficacy while attempting to minimize toxicity. Fermented wheat germ extract (FWGE) is a complementary agent that has shown efficacy in several malignancies, including lymphoma. Here, we utilize a more potent FWGE derivative, known as fermented wheat germ protein (FWGP), in combination with the HDACi AR42, to assess for enhanced activity. We report increased in vitro killing, cell cycle arrest, and in vivo efficacy for this combination compared to each agent alone with minimal toxicity, suggesting a potentially new, minimally toxic treatment modality for lymphoma.
Collapse
Affiliation(s)
- Joshua F. Meckler
- Division of Hematology and Oncology, Department of Internal Medicine, University of California Davis School of Medicine, Sacramento, CA 95817, USA; (J.F.M.); (D.J.L.)
| | - Daniel J. Levis
- Division of Hematology and Oncology, Department of Internal Medicine, University of California Davis School of Medicine, Sacramento, CA 95817, USA; (J.F.M.); (D.J.L.)
| | - Yanguo Kong
- Division of Hematology and Oncology, Department of Internal Medicine, University of California Davis School of Medicine, Sacramento, CA 95817, USA; (J.F.M.); (D.J.L.)
| | - Robert T. O’Donnell
- Division of Hematology and Oncology, Department of Internal Medicine, University of California Davis School of Medicine, Sacramento, CA 95817, USA; (J.F.M.); (D.J.L.)
| | - Daniel P. Vang
- Division of Hematology and Oncology, Department of Internal Medicine, University of California Davis School of Medicine, Sacramento, CA 95817, USA; (J.F.M.); (D.J.L.)
| | - Joseph M. Tuscano
- Division of Hematology and Oncology, Department of Internal Medicine, University of California Davis School of Medicine, Sacramento, CA 95817, USA; (J.F.M.); (D.J.L.)
- Department of Veterans Affairs, Northern California Healthcare System, Sacramento, CA 95652, USA
| |
Collapse
|
38
|
Xue Y, Zhai J. Strategy of combining CDK4/6 inhibitors with other therapies and mechanisms of resistance. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2024; 17:189-207. [PMID: 39114502 PMCID: PMC11301413 DOI: 10.62347/hgni4903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/29/2023] [Indexed: 08/10/2024]
Abstract
Cell cycle-dependent protein kinase 4/6 (CDK4/6) is a crucial kinase that regulates the cell cycle, essential for cell division and proliferation. Hence, combining CDK4/6 inhibitors with other anti-tumor drugs is a pivotal clinical strategy. This strategy can efficiently inhibit the growth and division of tumor cells, reduce the side effects, and improve the quality of life of patients by reducing the dosage of combined anticancer drugs. Furthermore, the combination therapy strategy of CDK4/6 inhibitors could ameliorate the drug resistance of combined drugs and overcome the CDK4/6 resistance caused by CDK4/6 inhibitors. Various tumor treatment strategies combined with CDK4/6 inhibitors have entered the clinical trial stage, demonstrating their substantial clinical potential. This study reviews the research progress of CDK4/6 inhibitors from 2018 to 2022, the related resistance mechanism of CDK4/6 inhibitors, and the strategy of combination medication.
Collapse
Affiliation(s)
- Yingfei Xue
- Tianjin University, School of Pharmaceutical Science and Technology (SPST)Tianjin 300072, China
| | - Jie Zhai
- Department of Breast Surgical Oncology, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of SciencesHangzhou 310022, Zhejiang, China
| |
Collapse
|
39
|
Lin W, Wang X, Diao M, Wang Y, Zhao R, Chen J, Liao Y, Long Q, Meng Y. Promoting reactive oxygen species accumulation to overcome tyrosine kinase inhibitor resistance in cancer. Cancer Cell Int 2024; 24:239. [PMID: 38982494 PMCID: PMC11234736 DOI: 10.1186/s12935-024-03418-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 06/22/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND In tumor treatment, protein tyrosine kinase inhibitors (TKIs) have been extensively utilized. However, the efficacy of TKI is significantly compromised by drug resistance. Consequently, finding an effective solution to overcome TKI resistance becomes crucial. Reactive oxygen species (ROS) are a group of highly active molecules that play important roles in targeted cancer therapy including TKI targeted therapy. In this review, we concentrate on the ROS-associated mechanisms of TKI lethality in tumors and strategies for regulating ROS to reverse TKI resistance in cancer. MAIN BODY Elevated ROS levels often manifest during TKI therapy in cancers, potentially causing organelle damage and cell death, which are critical to the success of TKIs in eradicating cancer cells. However, it is noteworthy that cancer cells might initiate resistance pathways to shield themselves from ROS-induced damage, leading to TKI resistance. Addressing this challenge involves blocking these resistance pathways, for instance, the NRF2-KEAP1 axis and protective autophagy, to promote ROS accumulation in cells, thereby resensitizing drug-resistant cancer cells to TKIs. Additional effective approaches inducing ROS generation within drug-resistant cells and providing exogenous ROS stimulation. CONCLUSION ROS play pivotal roles in the eradication of tumor cells by TKI. Harnessing the accumulation of ROS to overcome TKI resistance is an effective and widely applicable approach.
Collapse
Affiliation(s)
- Wei Lin
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue, Jianghan District, Wuhan, Hubei, 430022, P.R. China
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaojun Wang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue, Jianghan District, Wuhan, Hubei, 430022, P.R. China
| | - Mingxin Diao
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue, Jianghan District, Wuhan, Hubei, 430022, P.R. China
| | - Yangwei Wang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue, Jianghan District, Wuhan, Hubei, 430022, P.R. China
| | - Rong Zhao
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue, Jianghan District, Wuhan, Hubei, 430022, P.R. China
| | - Jiaping Chen
- Department of Cardiothoracic Surgery, Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming, Yunnan, China
| | - Yongde Liao
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue, Jianghan District, Wuhan, Hubei, 430022, P.R. China.
| | - Qinghong Long
- Department of Internal Medicine, Renmin Hospital, Wuhan University, Wuhan, 430022, China.
| | - Yunchong Meng
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue, Jianghan District, Wuhan, Hubei, 430022, P.R. China.
| |
Collapse
|
40
|
Du Y, He C, An Y, Huang Y, Zhang H, Fu W, Wang M, Shan Z, Xie J, Yang Y, Zhao B. The Role of Short Chain Fatty Acids in Inflammation and Body Health. Int J Mol Sci 2024; 25:7379. [PMID: 39000498 PMCID: PMC11242198 DOI: 10.3390/ijms25137379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/27/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
Short chain fatty acids (SCFAs), mainly including acetate, propionate and butyrate, are produced by intestinal bacteria during the fermentation of partially digested and indigestible polysaccharides. SCFAs play an important role in regulating intestinal energy metabolism and maintaining the homeostasis of the intestinal environment and also play an important regulatory role in organs and tissues outside the gut. In recent years, many studies have shown that SCFAs can regulate inflammation and affect host health, and two main signaling mechanisms have also been identified: the activation of G-protein coupled receptors (GPCRs) and inhibition of histone deacetylase (HDAC). In addition, a growing body of evidence highlights the importance of every SCFA in influencing health maintenance and disease development. In this review, we summarized the recent advances concerning the biological properties of SCFAs and their signaling pathways in inflammation and body health. Hopefully, it can provide a systematic theoretical basis for the nutritional prevention and treatment of human diseases.
Collapse
Affiliation(s)
- Yuhang Du
- Department of Pharmacology of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Changhao He
- Department of Pharmacology of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yongcheng An
- Department of Pharmacology of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yan Huang
- College of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Huilin Zhang
- Department of Pharmacology of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Wanxin Fu
- College of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Menglu Wang
- Department of Pharmacology of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Ziyi Shan
- College of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jiamei Xie
- Department of Pharmacology of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yang Yang
- Department of Pharmacology of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Baosheng Zhao
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|
41
|
Zhou Y, Han W, Feng Y, Wang Y, Sun T, Xu J. Microbial metabolites affect tumor progression, immunity and therapy prediction by reshaping the tumor microenvironment (Review). Int J Oncol 2024; 65:73. [PMID: 38847233 PMCID: PMC11173369 DOI: 10.3892/ijo.2024.5661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/30/2024] [Indexed: 06/12/2024] Open
Abstract
Several studies have indicated that the gut microbiome and tumor microbiota may affect tumors. Emerging metabolomics research illustrates the need to examine the variations in microbial metabolite composition between patients with cancer and healthy individuals. Microbial metabolites can impact the progression of tumors and the immune response by influencing a number of mechanisms, including modulation of the immune system, cancer or immune‑related signaling pathways, epigenetic modification of proteins and DNA damage. Microbial metabolites can also alleviate side effects and drug resistance during chemotherapy and immunotherapy, while effectively activating the immune system to exert tumor immunotherapy. Nevertheless, the impact of microbial metabolites on tumor immunity can be both beneficial and harmful, potentially influenced by the concentration of the metabolites or the specific cancer type. The present review summarizes the roles of various microbial metabolites in different solid tumors, alongside their influence on tumor immunity and treatment. Additionally, clinical trials evaluating the therapeutic effects of microbial metabolites or related microbes on patients with cancer have been listed. In summary, studying microbial metabolites, which play a crucial role in the interaction between the microbiota and tumors, could lead to the identification of new supplementary treatments for cancer. This has the potential to improve the effectiveness of cancer treatment and enhance patient prognosis.
Collapse
Affiliation(s)
- Yuhang Zhou
- Department of Breast Medicine 1, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, Liaoning 110042, P.R. China
- Department of Pharmacology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, Liaoning 110042, P.R. China
| | - Wenjie Han
- Department of Breast Medicine 1, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, Liaoning 110042, P.R. China
- Department of Pharmacology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, Liaoning 110042, P.R. China
| | - Yun Feng
- Department of Breast Medicine 1, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, Liaoning 110042, P.R. China
- Department of Pharmacology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, Liaoning 110042, P.R. China
| | - Yue Wang
- Department of Breast Medicine 1, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, Liaoning 110042, P.R. China
- Department of Pharmacology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, Liaoning 110042, P.R. China
| | - Tao Sun
- Department of Breast Medicine 1, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, Liaoning 110042, P.R. China
- Department of Oncology Medicine, Key Laboratory of Liaoning Breast Cancer Research, Shenyang, Liaoning 110042, P.R. China
- Department of Breast Medicine, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital, Shenyang, Liaoning 110042, P.R. China
| | - Junnan Xu
- Department of Breast Medicine 1, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, Liaoning 110042, P.R. China
- Department of Pharmacology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, Liaoning 110042, P.R. China
- Department of Breast Medicine, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital, Shenyang, Liaoning 110042, P.R. China
| |
Collapse
|
42
|
Han B, Shi L, Bao MY, Yu FL, Zhang Y, Lu XY, Wang Y, Li DX, Lin JC, Jia W, Li X, Zhang Y. Dietary ellagic acid therapy for CNS autoimmunity: Targeting on Alloprevotella rava and propionate metabolism. MICROBIOME 2024; 12:114. [PMID: 38915127 PMCID: PMC11194905 DOI: 10.1186/s40168-024-01819-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 04/19/2024] [Indexed: 06/26/2024]
Abstract
BACKGROUND Mediterranean diet rich in polyphenolic compounds holds great promise to prevent and alleviate multiple sclerosis (MS), a central nervous system autoimmune disease associated with gut microbiome dysbiosis. Health-promoting effects of natural polyphenols with low bioavailability could be attributed to gut microbiota reconstruction. However, its underlying mechanism of action remains elusive, resulting in rare therapies have proposed for polyphenol-targeted modulation of gut microbiota for the treatment of MS. RESULTS We found that oral ellagic acid (EA), a natural polyphenol rich in the Mediterranean diet, effectively halted the progression of experimental autoimmune encephalomyelitis (EAE), the animal model of MS, via regulating a microbiota-metabolites-immunity axis. EA remodeled the gut microbiome composition and particularly increased the relative abundances of short-chain fatty acids -producing bacteria like Alloprevotella. Propionate (C3) was most significantly up-regulated by EA, and integrative modeling revealed a strong negative correlation between Alloprevotella or C3 and the pathological symptoms of EAE. Gut microbiota depletion negated the alleviating effects of EA on EAE, whereas oral administration of Alloprevotella rava mimicked the beneficial effects of EA on EAE. Moreover, EA directly promoted Alloprevotella rava (DSM 22548) growth and C3 production in vitro. The cell-free supernatants of Alloprevotella rava co-culture with EA suppressed Th17 differentiation by modulating acetylation in cell models. C3 can alleviate EAE development, and the mechanism may be through inhibiting HDAC activity and up-regulating acetylation thereby reducing inflammatory cytokines secreted by pathogenic Th17 cells. CONCLUSIONS Our study identifies EA as a novel and potentially effective prebiotic for improving MS and other autoimmune diseases via the microbiota-metabolites-immunity axis. Video Abstract.
Collapse
Affiliation(s)
- Bing Han
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education; College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Lin Shi
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Ming-Yue Bao
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education; College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Feng-Lin Yu
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education; College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yan Zhang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education; College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xin-Yu Lu
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education; College of Life Sciences, Shaanxi Normal University, Xi'an, China
- School of Medical Technology, Xi'an Medical University, Xi'an, 710021, Shaanxi, China
| | - Yang Wang
- Metabo-Profile Biotechnology (Shanghai) Co. Ltd, Shanghai, 201315, China
| | - Dong-Xiao Li
- Metabo-Profile Biotechnology (Shanghai) Co. Ltd, Shanghai, 201315, China
| | - Jing-Chao Lin
- Metabo-Profile Biotechnology (Shanghai) Co. Ltd, Shanghai, 201315, China
| | - Wei Jia
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | - Xing Li
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education; College of Life Sciences, Shaanxi Normal University, Xi'an, China.
| | - Yuan Zhang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education; College of Life Sciences, Shaanxi Normal University, Xi'an, China.
| |
Collapse
|
43
|
Mongardini FM, Paolicelli M, Catauro A, Conzo A, Flagiello L, Nesta G, Esposito R, Ronchi A, Romano A, Patrone R, Docimo L, Conzo G. Outcomes and Follow-Up Trends in Adrenal Leiomyosarcoma: A Comprehensive Literature Review and Case Report. J Clin Med 2024; 13:3499. [PMID: 38930027 PMCID: PMC11204854 DOI: 10.3390/jcm13123499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/08/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Background: Leiomyosarcoma (LMS) originating from the adrenal gland is exceedingly rare, constituting a minute fraction of soft tissue sarcomas. Due to its rarity, with less than 50 documented cases in English medical literature, the diagnosis and management of adrenal LMS remain challenging. The aim of this study was to perform a review of the literature, in order to evaluate the prognosis of these rare cancers and report our specific case. Methods: A systematic review of the literature was conducted using PubMed, Web of Science, Google Scholar, and Scopus databases, up to December 2020. The search utilized MeSH terms such as "Adrenal Gland Neoplasms," "Leiomyosarcoma," "Adrenalectomy," and "Smooth Muscle Tumor." The inclusion criteria focused on studies reporting patients with a histopathological diagnosis of adrenal leiomyosarcoma. The PRISMA guidelines were followed to ensure a comprehensive analysis. Results: Out of 63 identified studies, 43 met the inclusion criteria and were reviewed. These studies highlighted the rarity and aggressive behavior of adrenal leiomyosarcoma. Surgical excision remains the cornerstone of treatment, often complemented by adjuvant therapies. The reviewed case involved a 52-year-old woman who underwent a right laparoscopic adrenalectomy for a 9 × 7 × 6 cm grade 3 leiomyosarcoma. Despite subsequent adjuvant chemotherapy, hepatic metastases were detected, illustrating the aggressive nature of the disease. The literature underscores the importance of histopathological analysis and long-term surveillance for managing disease progression. Conclusions: Optimal management of adrenal leiomyosarcoma requires a multidisciplinary approach and meticulous follow-up. The rarity of the disease poses challenges for standardizing treatment, but surgical excision and tailored adjuvant therapies show promise. Further research is essential to refine treatment strategies and improve prognosis for this rare malignancy.
Collapse
Affiliation(s)
- Federico Maria Mongardini
- Division of General, Oncological, Mini-Invasive and Obesity Surgery, University of Study of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.P.); (A.C.); (A.C.); (L.F.); (G.N.); (R.E.); (A.R.); (L.D.); (G.C.)
| | - Maddalena Paolicelli
- Division of General, Oncological, Mini-Invasive and Obesity Surgery, University of Study of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.P.); (A.C.); (A.C.); (L.F.); (G.N.); (R.E.); (A.R.); (L.D.); (G.C.)
| | - Antonio Catauro
- Division of General, Oncological, Mini-Invasive and Obesity Surgery, University of Study of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.P.); (A.C.); (A.C.); (L.F.); (G.N.); (R.E.); (A.R.); (L.D.); (G.C.)
| | - Alessandra Conzo
- Division of General, Oncological, Mini-Invasive and Obesity Surgery, University of Study of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.P.); (A.C.); (A.C.); (L.F.); (G.N.); (R.E.); (A.R.); (L.D.); (G.C.)
| | - Luigi Flagiello
- Division of General, Oncological, Mini-Invasive and Obesity Surgery, University of Study of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.P.); (A.C.); (A.C.); (L.F.); (G.N.); (R.E.); (A.R.); (L.D.); (G.C.)
| | - Giusiana Nesta
- Division of General, Oncological, Mini-Invasive and Obesity Surgery, University of Study of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.P.); (A.C.); (A.C.); (L.F.); (G.N.); (R.E.); (A.R.); (L.D.); (G.C.)
| | - Rosetta Esposito
- Division of General, Oncological, Mini-Invasive and Obesity Surgery, University of Study of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.P.); (A.C.); (A.C.); (L.F.); (G.N.); (R.E.); (A.R.); (L.D.); (G.C.)
| | - Andrea Ronchi
- Division of Pathology, Department of Mental Health and Preventive Medicine, Luigi Vanvitelli University of Campania, 80138 Naples, Italy;
| | - Alessandro Romano
- Division of General, Oncological, Mini-Invasive and Obesity Surgery, University of Study of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.P.); (A.C.); (A.C.); (L.F.); (G.N.); (R.E.); (A.R.); (L.D.); (G.C.)
| | - Renato Patrone
- Division of Epatobiliary Surgical Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale-IRCCS di Napoli, 80131 Naples, Italy;
| | - Ludovico Docimo
- Division of General, Oncological, Mini-Invasive and Obesity Surgery, University of Study of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.P.); (A.C.); (A.C.); (L.F.); (G.N.); (R.E.); (A.R.); (L.D.); (G.C.)
| | - Giovanni Conzo
- Division of General, Oncological, Mini-Invasive and Obesity Surgery, University of Study of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.P.); (A.C.); (A.C.); (L.F.); (G.N.); (R.E.); (A.R.); (L.D.); (G.C.)
| |
Collapse
|
44
|
Khatun S, Bhagat RP, Amin SA, Jha T, Gayen S. Density functional theory (DFT) studies in HDAC-based chemotherapeutics: Current findings, case studies and future perspectives. Comput Biol Med 2024; 175:108468. [PMID: 38657469 DOI: 10.1016/j.compbiomed.2024.108468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/26/2024]
Abstract
Density Functional Theory (DFT) is a quantum chemical computational method used to predict and analyze the electronic properties of atoms, molecules, and solids based on the density of electrons rather than wavefunctions. It provides insights into the structure, bonding, and behavior of different molecules, including those involved in the development of chemotherapeutic agents, such as histone deacetylase inhibitors (HDACis). HDACs are a wide group of metalloenzymes that facilitate the removal of acetyl groups from acetyl-lysine residues situated in the N-terminal tail of histones. Abnormal HDAC recruitment has been linked to several human diseases, especially cancer. Therefore, it has been recognized as a prospective target for accelerating the development of anticancer therapies. Researchers have studied HDACs and its inhibitors extensively using a combination of experimental methods and diverse in-silico approaches such as machine learning and quantitative structure-activity relationship (QSAR) methods, molecular docking, molecular dynamics, pharmacophore mapping, and more. In this context, DFT studies can make significant contribution by shedding light on the molecular properties, interactions, reaction pathways, transition states, reactivity and mechanisms involved in the development of HDACis. This review attempted to elucidate the scope in which DFT methodologies may be used to enhance our comprehension of the molecular aspects of HDAC inhibitors, aiding in the rational design and optimization of these compounds for therapeutic applications in cancer and other ailments. The insights gained can guide experimental efforts toward developing more potent and selective HDAC inhibitors.
Collapse
Affiliation(s)
- Samima Khatun
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Rinki Prasad Bhagat
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Sk Abdul Amin
- Department of Pharmaceutical Technology, JIS University, 81, Nilgunj Road, Agarpara, Kolkata, West Bengal, India
| | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Shovanlal Gayen
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
45
|
Fan W, Li W, Li L, Qin M, Mao C, Yuan Z, Wang P, Chu B, Jiang Y. Bifunctional HDAC and DNMT inhibitor induces viral mimicry activates the innate immune response in triple-negative breast cancer. Eur J Pharm Sci 2024; 197:106767. [PMID: 38636781 DOI: 10.1016/j.ejps.2024.106767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/12/2024] [Accepted: 04/13/2024] [Indexed: 04/20/2024]
Abstract
Triple-negative breast cancer (TNBC) is a unique breast cancer subtype characterized by a lack of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) expression. Since TNBC lacks ER, PR, and HER2, there are currently no drugs that specifically target TNBC. Therefore, the development of new drugs or effective treatment strategies to target TNBC has become an urgent clinical need. Research has shown that the application of histone deacetylase (HDAC) inhibitors and DNA methyltransferase (DNMT) inhibitors leads to genomic and epigenomic instability. This, in turn, triggers the activation of pattern recognition receptors (PRRs) and subsequently activates downstream interferon (IFN) signalling pathways. In this study, the bifunctional HDAC and DNMT inhibitor J208 exhibited antitumour activity in TNBC cell lines. J208 effectively induced apoptosis and cell cycle arrest at the G0/G1 phase, inhibiting cell migration and invasion in TNBC. Moreover, this bifunctional inhibitor induced the expression of endogenous retroviruses (ERVs) and elicited a viral mimicry response, which increased the intracellular levels of double-stranded RNA (dsRNA) to activate the innate immune signalling pathway in TNBC. In summary, we demonstrated that the bifunctional inhibitor J208, which is designed to inhibit HDAC and DNMT, has potent anticancer effects, providing a new research basis for reactivating antitumour immunity by triggering innate immune signalling and offering a promising strategy for TNBC treatment.
Collapse
Affiliation(s)
- Weiwen Fan
- Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Wenkai Li
- Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Lulu Li
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
| | - Meirong Qin
- Shenzhen Institute for Drug Control, Shenzhen 518057, China
| | - Chengzhou Mao
- Department of Anatomy and Histology, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Zigao Yuan
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
| | - Ping Wang
- Shenzhen Institute for Drug Control, Shenzhen 518057, China.
| | - Bizhu Chu
- Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China.
| | - Yuyang Jiang
- Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China; State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China.
| |
Collapse
|
46
|
Chen YZ, Zhu XM, Lv P, Hou XK, Pan Y, Li A, Du Z, Xuan JF, Guo X, Xing JX, Liu K, Yao J. Association of histone modification with the development of schizophrenia. Biomed Pharmacother 2024; 175:116747. [PMID: 38744217 DOI: 10.1016/j.biopha.2024.116747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/06/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024] Open
Abstract
Schizophrenia, influenced by genetic and environmental factors, may involve epigenetic alterations, notably histone modifications, in its pathogenesis. This review summarizes various histone modifications including acetylation, methylation, phosphorylation, ubiquitination, serotonylation, lactylation, palmitoylation, and dopaminylation, and their implications in schizophrenia. Current research predominantly focuses on histone acetylation and methylation, though other modifications also play significant roles. These modifications are crucial in regulating transcription through chromatin remodeling, which is vital for understanding schizophrenia's development. For instance, histone acetylation enhances transcriptional efficiency by loosening chromatin, while increased histone methyltransferase activity on H3K9 and altered histone phosphorylation, which reduces DNA affinity and destabilizes chromatin structure, are significant markers of schizophrenia.
Collapse
Affiliation(s)
- Yun-Zhou Chen
- School of Forensic Medicine, China Medical University, PR China; Key Laboratory of Forensic Bio-evidence Sciences, Liaoning Province, PR China; China Medical University Center of Forensic Investigation, PR China
| | - Xiu-Mei Zhu
- School of Forensic Medicine, China Medical University, PR China; Key Laboratory of Forensic Bio-evidence Sciences, Liaoning Province, PR China; China Medical University Center of Forensic Investigation, PR China
| | - Peng Lv
- School of Forensic Medicine, China Medical University, PR China; Key Laboratory of Forensic Bio-evidence Sciences, Liaoning Province, PR China; China Medical University Center of Forensic Investigation, PR China
| | - Xi-Kai Hou
- School of Forensic Medicine, China Medical University, PR China; Key Laboratory of Forensic Bio-evidence Sciences, Liaoning Province, PR China; China Medical University Center of Forensic Investigation, PR China
| | - Ying Pan
- School of Forensic Medicine, China Medical University, PR China; Key Laboratory of Forensic Bio-evidence Sciences, Liaoning Province, PR China; China Medical University Center of Forensic Investigation, PR China
| | - Ang Li
- School of Forensic Medicine, China Medical University, PR China; Key Laboratory of Forensic Bio-evidence Sciences, Liaoning Province, PR China; China Medical University Center of Forensic Investigation, PR China
| | - Zhe Du
- School of Forensic Medicine, China Medical University, PR China; Key Laboratory of Forensic Bio-evidence Sciences, Liaoning Province, PR China; China Medical University Center of Forensic Investigation, PR China
| | - Jin-Feng Xuan
- School of Forensic Medicine, China Medical University, PR China; Key Laboratory of Forensic Bio-evidence Sciences, Liaoning Province, PR China; China Medical University Center of Forensic Investigation, PR China
| | - Xiaochong Guo
- Laboratory Animal Center, China Medical University, PR China
| | - Jia-Xin Xing
- School of Forensic Medicine, China Medical University, PR China; Key Laboratory of Forensic Bio-evidence Sciences, Liaoning Province, PR China; China Medical University Center of Forensic Investigation, PR China.
| | - Kun Liu
- Key Laboratory of Health Ministry in Congenital Malformation, Shengjing Hospital of China Medical University, PR China.
| | - Jun Yao
- School of Forensic Medicine, China Medical University, PR China; Key Laboratory of Forensic Bio-evidence Sciences, Liaoning Province, PR China; China Medical University Center of Forensic Investigation, PR China.
| |
Collapse
|
47
|
Shi MQ, Xu Y, Fu X, Pan DS, Lu XP, Xiao Y, Jiang YZ. Advances in targeting histone deacetylase for treatment of solid tumors. J Hematol Oncol 2024; 17:37. [PMID: 38822399 PMCID: PMC11143662 DOI: 10.1186/s13045-024-01551-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/27/2024] [Indexed: 06/03/2024] Open
Abstract
Histone deacetylase (HDAC) serves as a critical molecular regulator in the pathobiology of various malignancies and have garnered attention as a viable target for therapeutic intervention. A variety of HDAC inhibitors (HDACis) have been developed to target HDACs. Many preclinical studies have conclusively demonstrated the antitumor effects of HDACis, whether used as monotherapy or in combination treatments. On this basis, researchers have conducted various clinical studies to evaluate the potential of selective and pan-HDACis in clinical settings. In our work, we extensively summarized and organized current clinical trials, providing a comprehensive overview of the current clinical advancements in targeting HDAC therapy. Furthermore, we engaged in discussions about several clinical trials that did not yield positive outcomes, analyzing the factors that led to their lack of anticipated therapeutic effectiveness. Apart from the experimental design factors, issues such as toxicological side effects, tumor heterogeneity, and unexpected off-target effects also contributed to these less-than-expected results. These challenges have naturally become significant barriers to the application of HDACis. Despite these challenges, we believe that advancements in HDACi research and improvements in combination therapies will pave the way or lead to a broad and hopeful future in the treatment of solid tumors.
Collapse
Affiliation(s)
- Mu-Qi Shi
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ying Xu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xin Fu
- Shenzhen Chipscreen Biosciences Co., Ltd., Shenzhen, 518055, People's Republic of China
| | - De-Si Pan
- Shenzhen Chipscreen Biosciences Co., Ltd., Shenzhen, 518055, People's Republic of China
| | - Xian-Ping Lu
- Shenzhen Chipscreen Biosciences Co., Ltd., Shenzhen, 518055, People's Republic of China
| | - Yi Xiao
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Yi-Zhou Jiang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
48
|
Barrett AK, Shingare MR, Rechtsteiner A, Rodriguez KM, Le QN, Wijeratne TU, Mitchell CE, Membreno MW, Rubin SM, Müller GA. HDAC activity is dispensable for repression of cell-cycle genes by DREAM and E2F:RB complexes. Nat Commun 2024; 15:4450. [PMID: 38789411 PMCID: PMC11126580 DOI: 10.1038/s41467-024-48724-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Histone deacetylases (HDACs) play a crucial role in transcriptional regulation and are implicated in various diseases, including cancer. They are involved in histone tail deacetylation and canonically linked to transcriptional repression. Previous studies suggested that HDAC recruitment to cell-cycle gene promoters via the retinoblastoma (RB) protein or the DREAM complex through SIN3B is essential for G1/S and G2/M gene repression during cell-cycle arrest and exit. Here we investigate the interplay among DREAM, RB, SIN3 proteins, and HDACs in the context of cell-cycle gene repression. Knockout of SIN3B does not globally derepress cell-cycle genes in non-proliferating HCT116 and C2C12 cells. Loss of SIN3A/B moderately upregulates several cell-cycle genes in HCT116 cells but does so independently of DREAM/RB. HDAC inhibition does not induce general upregulation of RB/DREAM target genes in arrested transformed or non-transformed cells. Our findings suggest that E2F:RB and DREAM complexes can repress cell-cycle genes without relying on HDAC activity.
Collapse
Affiliation(s)
- Alison K Barrett
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, USA
| | - Manisha R Shingare
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, USA
| | - Andreas Rechtsteiner
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, CA, USA
| | - Kelsie M Rodriguez
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, USA
| | - Quynh N Le
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, USA
| | - Tilini U Wijeratne
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, USA
| | - Corbin E Mitchell
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, USA
| | - Miles W Membreno
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, USA
| | - Seth M Rubin
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, USA.
| | - Gerd A Müller
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, USA.
| |
Collapse
|
49
|
Zhou Y, Tao L, Qiu J, Xu J, Yang X, Zhang Y, Tian X, Guan X, Cen X, Zhao Y. Tumor biomarkers for diagnosis, prognosis and targeted therapy. Signal Transduct Target Ther 2024; 9:132. [PMID: 38763973 PMCID: PMC11102923 DOI: 10.1038/s41392-024-01823-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 03/07/2024] [Accepted: 04/02/2024] [Indexed: 05/21/2024] Open
Abstract
Tumor biomarkers, the substances which are produced by tumors or the body's responses to tumors during tumorigenesis and progression, have been demonstrated to possess critical and encouraging value in screening and early diagnosis, prognosis prediction, recurrence detection, and therapeutic efficacy monitoring of cancers. Over the past decades, continuous progress has been made in exploring and discovering novel, sensitive, specific, and accurate tumor biomarkers, which has significantly promoted personalized medicine and improved the outcomes of cancer patients, especially advances in molecular biology technologies developed for the detection of tumor biomarkers. Herein, we summarize the discovery and development of tumor biomarkers, including the history of tumor biomarkers, the conventional and innovative technologies used for biomarker discovery and detection, the classification of tumor biomarkers based on tissue origins, and the application of tumor biomarkers in clinical cancer management. In particular, we highlight the recent advancements in biomarker-based anticancer-targeted therapies which are emerging as breakthroughs and promising cancer therapeutic strategies. We also discuss limitations and challenges that need to be addressed and provide insights and perspectives to turn challenges into opportunities in this field. Collectively, the discovery and application of multiple tumor biomarkers emphasized in this review may provide guidance on improved precision medicine, broaden horizons in future research directions, and expedite the clinical classification of cancer patients according to their molecular biomarkers rather than organs of origin.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lei Tao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiahao Qiu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Xu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinyu Yang
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yu Zhang
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
- School of Medicine, Tibet University, Lhasa, 850000, China
| | - Xinyu Tian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinqi Guan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaobo Cen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yinglan Zhao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
50
|
Naponelli V, Rocchetti MT, Mangieri D. Apigenin: Molecular Mechanisms and Therapeutic Potential against Cancer Spreading. Int J Mol Sci 2024; 25:5569. [PMID: 38791608 PMCID: PMC11122459 DOI: 10.3390/ijms25105569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
Due to its propensity to metastasize, cancer remains one of the leading causes of death worldwide. Thanks in part to their intrinsic low cytotoxicity, the effects of the flavonoid family in the prevention and treatment of various human cancers, both in vitro and in vivo, have received increasing attention in recent years. It is well documented that Apigenin (4',5,7-trihydroxyflavone), among other flavonoids, is able to modulate key signaling molecules involved in the initiation of cancer cell proliferation, invasion, and metastasis, including JAK/STAT, PI3K/Akt/mTOR, MAPK/ERK, NF-κB, and Wnt/β-catenin pathways, as well as the oncogenic non-coding RNA network. Based on these premises, the aim of this review is to emphasize some of the key events through which Apigenin suppresses cancer proliferation, focusing specifically on its ability to target key molecular pathways involved in angiogenesis, epithelial-to-mesenchymal transition (EMT), maintenance of cancer stem cells (CSCs), cell cycle arrest, and cancer cell death.
Collapse
Affiliation(s)
- Valeria Naponelli
- Department of Medicine and Surgery, University of Parma, Plesso Biotecnologico Integrato, Via Volturno 39, 43126 Parma, Italy
| | - Maria Teresa Rocchetti
- Department of Clinical and Experimental Medicine, University of Foggia, Via Pinto 1, 71122 Foggia, Italy;
| | - Domenica Mangieri
- Department of Clinical and Experimental Medicine, University of Foggia, Via Pinto 1, 71122 Foggia, Italy;
| |
Collapse
|