1
|
Dou Y, Zhang M, Zhang H, Zhang C, Feng L, Hu J, Gao Y, Yuan XZ, Zhao Y, Zhao H, Chen ZJ. Lactating exposure to microplastics at the dose of infants ingested during artificial feeding induced reproductive toxicity in female mice and their offspring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:174972. [PMID: 39053555 DOI: 10.1016/j.scitotenv.2024.174972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/17/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024]
Abstract
Microplastics (MPs) pollution poses a global environmental challenge with significant concerns regarding its potential impact on human health. Toxicological investigations have revealed multi-system impairments caused by MPs in various organisms. However, the specific reproductive hazards in human contexts remain elusive, and understanding the transgenerational reproductive toxicity of MPs remains limited. This study delves into the reproductive toxicity resulting from lactational exposure to polystyrene MPs (PS-MPs) in female mice, extending the inquiry to assess the reproductive effects on their offspring bred by rigorous natural mating. The MPs dosage corresponds to the detected concentration in infant formula prepared using plastic bottles. By systematically evaluating the reproductive phenotypes of F0 female mice from birth to adulthood, we found that female mice exposed to PS-MPs exhibited delayed puberty, disturbed estrous cyclicity, diminished fertility, elevated testosterone, abnormal follicle development, disrupted ovarian steroidogenesis, and ovarian inflammation. Importantly, the observed inheritable reproductive toxicity manifested with gender specificity, showcasing more pronounced abnormalities in male offspring. Specifically, reproductive disorders did not manifest in female offspring; however, a significant decrease in sperm count and viability was observed in PS-MPs-exposed F1 males. Testicular transcriptomics analysis of F1 males significantly enriched pathways associated with reproductive system development and epigenetic modification, such as male germ cell proliferation, DNA methylation, and histone modification. In summary, real-life exposure to PS-MPs impaired the reproductive function of female mice and threateningly disrupted the spermatogenesis of their F1 male offspring, which raises serious concerns about inter- and trans-generational reproductive toxicities of MPs in mammals. These findings underscore the potential threats of MPs to human reproductive health, emphasizing the need for continued vigilance and research in this critical area.
Collapse
Affiliation(s)
- Yunde Dou
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong 250012, China; Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Mengge Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong 250012, China
| | - Honghui Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong 250012, China; The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China; Suzhou Municipal Hospital, Suzhou, China; Gusu School, Nanjing Medical University, Suzhou, China
| | - Changlong Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong 250012, China
| | - Lijuan Feng
- College of Geography and Environment, Shandong Normal University, Jinan, Shandong, China
| | - Jingmei Hu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong 250012, China
| | - Yuan Gao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong 250012, China
| | - Xian-Zheng Yuan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, China
| | - Yueran Zhao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong 250012, China; Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China; Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong 250012, China
| | - Han Zhao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong 250012, China; Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China; Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong 250012, China
| | - Zi-Jiang Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong 250012, China; Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China; Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong 250012, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China; Department of Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Dziobak MK, Fahlman A, Wells RS, Takeshita R, Smith C, Gray A, Weinstein J, Hart LB. First evidence of microplastic inhalation among free-ranging small cetaceans. PLoS One 2024; 19:e0309377. [PMID: 39413051 PMCID: PMC11482699 DOI: 10.1371/journal.pone.0309377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/09/2024] [Indexed: 10/18/2024] Open
Abstract
Plastic is a ubiquitous environmental contaminant, resulting in widespread exposure across terrestrial and marine spaces. In the environment, plastics can degrade into microparticles where exposure has been documented in a variety of fauna at all trophic levels. Human epidemiological studies have found relationships between inhaled microplastics and oxidative stress and inflammation. Previous studies of bottlenose dolphins (Tursiops truncatus) have reported prevalent exposure to plasticizing chemicals (e.g., phthalates) as well as particle loads in gastrointestinal tracts, but exposure from inhalation has not yet been studied. The objective of this study was to determine if inhalation is a viable route of microplastic exposure for free-ranging dolphins. Exhalation samples were opportunistically collected from dolphins residing in Sarasota Bay, Florida (n = 5) and Barataria Bay, Louisiana (n = 6) during catch-and-release health assessments to screen for microplastic particles. All dolphin samples contained at least one suspected microplastic particle, and polymer composition was determined for 100% of a subset (n = 17) of samples. Additional studies are warranted to better understand the extent of inhaled microplastics, as well as to explore impacts, given potential risks to lung function and health.
Collapse
Affiliation(s)
- Miranda K. Dziobak
- Department of Health and Human Performance, School of Health Sciences, College of Charleston, Charleston, SC, United States of America
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, United States of America
| | - Andreas Fahlman
- Fundacion Oceanografic, Valencia, Spain
- Global Diving Research, Sanlucar de Barrameda, Spain
- IFM, Linkoping University, Linkoping, Sweden
| | - Randall S. Wells
- Chicago Zoological Society’s Sarasota Dolphin Research Program, ℅ Mote Marine Laboratory, Sarasota, FL, United States of America
| | - Ryan Takeshita
- National Marine Mammal Foundation, San Diego, CA, United States of America
| | - Cynthia Smith
- National Marine Mammal Foundation, San Diego, CA, United States of America
| | - Austin Gray
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States of America
| | - John Weinstein
- Department of Biology, The Citadel, Charleston, SC, United States of America
| | - Leslie B. Hart
- Department of Health and Human Performance, School of Health Sciences, College of Charleston, Charleston, SC, United States of America
| |
Collapse
|
3
|
Liu H, Tan X, Li X, Wu Y, Lei S, Wang Z. Amino-modified nanoplastics at predicted environmental concentrations cause transgenerational toxicity through activating germline EGF signal in Caenorhabditis elegans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174766. [PMID: 39004367 DOI: 10.1016/j.scitotenv.2024.174766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 06/03/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
In the real environment, some chemical functional groups are unavoidably combined on the nanoplastic surface. Reportedly, amino-modified polystyrene nanoparticles (PS-A NPs) exposure in parents can induce severe transgenerational toxicity, but the underlying molecular mechanisms remain largely unclear. Using Caenorhabditis elegans as the animal model, this study was performed to investigate the role of germline epidermal growth factor (EGF) signal on modulating PS-A NPs' transgenerational toxicity. As a result, 1-10 μg/L PS-A NPs exposure transgenerationally enhanced germline EGF ligand/LIN-3 and NSH-1 levels. Germline RNAi of lin-3 and nsh-1 was resistant against PS-A NPs' transgenerational toxicity, implying the involvement of EGF ligand activation in inducing PS-A NPs' transgenerational toxicity. Furthermore, LIN-3 overexpression transgenerationally enhanced EGF receptor/LET-23 expression in the progeny, and let-23 RNAi in F1-generation notably suppressed PS-A NPs' transgenerational toxicity in the exposed worms overexpressing germline LIN-3 at P0 generation. Finally, LET-23 functioned in neurons and intestine for regulating PS-A NPs' transgenerational toxicity. LET-23 acted at the upstream DAF-16/FOXO within the intestine in response to PS-A NPs' transgenerational toxicity. In neurons, LET-23 functioned at the upstream of DAF-7/DBL-1, ligands of TGF-β signals, to mediate PS-A NPs' transgenerational toxicity. Briefly, this work revealed the exposure risk of PS-A NPs' transgenerational toxicity, which was regulated through activating germline EGF signal in organisms.
Collapse
Affiliation(s)
- Huanliang Liu
- Environment and Health research division, Public Health Research Center, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu, China; Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiaochao Tan
- Environment and Health research division, Public Health Research Center, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Xiaona Li
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yu Wu
- Environment and Health research division, Public Health Research Center, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Shuhan Lei
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
4
|
Yang YKX, Ge SJ, Su QL, Chen JJ, Wu J, Kang K. Effects of Polyvinyl Chloride Microplastics on the Reproductive System, Intestinal Structure, and Microflora in Male and Female Mice. Vet Sci 2024; 11:488. [PMID: 39453080 PMCID: PMC11512291 DOI: 10.3390/vetsci11100488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/16/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024] Open
Abstract
The pervasive use of plastics in numerous industrial sectors has resulted in the circulation of microplastics across diverse ecosystems and food chains, giving rise to mounting concerns regarding their potential adverse impacts on biological systems and the environment. The objective of this experiment was to investigate the distinct effects of microplastic-polyvinyl chloride (PVC) exposure on the reproductive system, intestinal tissue structure, and intestinal microbial flora of both male and female mice. A total of 24 4-week-old Kunming mice were randomly assigned to one of four groups: male control group (CM), female control group (CF), male PVC test group (PVCM), and female PVC test group (PVCF) (n = 6). The findings revealed that in terms of the reproductive system, the PVCM group exhibited an impaired testicular structure with an irregular arrangement and a significant reduction in spermatogonia, spermatocytes, and spermatozoa within the seminiferous tubules (p < 0.01). The PVCF group exhibited a notable decrease in ovarian follicles (p < 0.01), accompanied by a reduction in uterus volume, fallopian tube volume, and muscle layer thickness, all of which also decreased significantly (p < 0.01). In comparison to the control groups, exposure to PVC resulted in a reduction in the width and height of the intestinal villi, accompanied by an increase in crypt depth. This led to a significant alteration in the ratio of villus height to crypt depth (V/C) (p < 0.01). Moreover, a reduction in microbial species diversity was observed within both the PVCM and PVCF groups; additionally, it was accompanied by contrasting changes in relative abundance and functional gene profiles among the major intestinal flora constituents. In summary, the findings indicate that PVC induces damage to both male and female mice reproductive and digestive systems, further exhibiting notable sex-dependent effects on mouse intestinal microflora composition, which correlates significantly with its impact on reproductive organs.
Collapse
Affiliation(s)
- Yang-Kai-Xin Yang
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (Y.-K.-X.Y.); (S.-J.G.)
| | - Shu-Jun Ge
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (Y.-K.-X.Y.); (S.-J.G.)
| | - Qi-Ling Su
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (Y.-K.-X.Y.); (S.-J.G.)
| | - Jin-Jun Chen
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (Y.-K.-X.Y.); (S.-J.G.)
| | - Jiang Wu
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Kai Kang
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (Y.-K.-X.Y.); (S.-J.G.)
| |
Collapse
|
5
|
Han H, Zhang Z, Xu B, Ding L, Yang H, He T, Du X, Pei X, Fu X. Integrated transcriptomic and metabolomic analysis reveals the underlying mechanisms for male reproductive toxicity of polystyrene nanoplastics in mouse spermatocyte-derived GC-2spd(ts) cells. Toxicol In Vitro 2024; 100:105893. [PMID: 39002813 DOI: 10.1016/j.tiv.2024.105893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/07/2024] [Accepted: 07/06/2024] [Indexed: 07/15/2024]
Abstract
BACKGROUND Polystyrene nanoplastics (PS-NPs), are ubiquitous pollution sources in human environments, posing significant biosafety and health risks. While recent studies, including our own, have illustrated that PS-NPs can breach the blood-testis barrier and impact germ cells, there remains a gap in understanding their effects on specific spermatogenic cells such as spermatocytes. METHODS AND RESULTS Herein, we employed an integrated approach encompassing phenotype, metabolomics, and transcriptomics analyses to assess the molecular impact of PS-NPs on mouse spermatocyte-derived GC-2spd(ts) cells. Optimal exposure conditions were determined as 24 h with 50 nm PS-NPs at 12.5 μg/mL and 90 nm PS-NPs at 50 μg/mL for subsequent multi-omics analysis. Our findings revealed that PS-NPs significantly influenced proliferation and viability, causing alterations in transcriptome and metabolome profiles. Transcriptomics analysis of GC-2spd(ts) cells exposed to PS-NPs indicated the pivotal involvement of cell proliferation and cycle, autophagy, ferroptosis, and redox reaction pathways in PS-NP-induced effects on the proliferation and viability of GC-2spd(ts) cells. Furthermore, metabolomics analysis identified major changes in amino acid metabolism, cyanoamino acid metabolism, and purine and pyrimidine metabolism following PS-NP exposure. CONCLUSION Our integrated approach, combining metabolomics and transcriptomics profiles with phenotype data, enhances our understanding of the adverse effects of PS-NPs on germ cells.
Collapse
Affiliation(s)
- Hang Han
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China; College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Zhen Zhang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Bo Xu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Liyang Ding
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Hong Yang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Tiantian He
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Xing Du
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Xiuying Pei
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China.
| | - Xufeng Fu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China.
| |
Collapse
|
6
|
Lin Z, Li Z, Ji S, Lo HS, Billah B, Sharmin A, Han X, Lui WY, Tse WKF, Fang JKH, Zhang C, Shang X, Lai KP, Li L. Size-dependent deleterious effects of nano- and microplastics on sperm motility. Toxicology 2024; 506:153834. [PMID: 38763425 DOI: 10.1016/j.tox.2024.153834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/30/2024] [Accepted: 05/15/2024] [Indexed: 05/21/2024]
Abstract
INTRODUCTION Growing concerns regarding the reproductive toxicity associated with daily life exposure to micro-/nano-plastics (abbreviated as MNPs) have become increasingly prevalent. In reality, MNPs exposure involves a heterogeneous mixture of MNPs of different sizes rather than a single size. METHODS In this study, an oral exposure mouse model was used to evaluate the effects of MNPs of four size ranges: 25-30 nm, 1-5 µm, 20-27 µm, and 125-150 µm. Adult male C57BL/6 J mice were administered environmentally relevant concentrations of 0.1 mg MNPs/day for 21 days. After that, open field test and computer assisted sperm assessment (CASA) were conducted. Immunohistochemical analyses of organ and cell type localization of MNPs were evaluated. Testicular transcriptome analysis was carried out to understand the molecular mechanisms. RESULTS Our result showed that MNPs of different size ranges all impaired sperm motility, with a decrease in progressive sperm motility, linearity and straight-line velocity of sperm movement. Alterations did not manifest in animal locomotion, body weight, or sperm count. Noteworthy effects were most pronounced in the smaller MNPs size ranges (25-30 nm and 1-5 µm). Linear regression analysis substantiated a negative correlation between the size of MNPs and sperm curvilinear activity. Immunohistochemical analysis unveiled the intrusions of 1-5 µm MNPs, but not 20-27 µm and 125-150 µm MNPs, into Leydig cells and testicular macrophages. Further testicular transcriptomic analysis revealed perturbations in pathways related to spermatogenesis, oxidative stress, and inflammation. Particularly within the 1-5 µm MNPs group, a heightened perturbation in pathways linked to spermatogenesis and oxidative stress was observed. CONCLUSIONS Our data support the size-dependent impairment of MNPs on sperm functionality, underscoring the pressing need for apprehensions about and interventions against the escalation of environmental micro-/nano-plastics contamination. This urgency is especially pertinent to small-sized MNPs.
Collapse
Affiliation(s)
- Ziyi Lin
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; University of Chinese Academy of Sciences, Beijing, China
| | - Zijie Li
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Shuqin Ji
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hoi Shing Lo
- Department of Environmental Science, Stockholm University, Stockholm, Sweden
| | - Baki Billah
- Department of Zoology, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Ayesha Sharmin
- Department of Chemistry, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| | - Xiaofang Han
- Core Laboratory, Shanxi Provincial People's Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, China
| | - Wing-Yee Lui
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region of China
| | - William Ka Fai Tse
- Laboratory of Developmental Disorders and Toxicology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - James Kar-Hei Fang
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong Special Administrative Region of China; State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong Special Administrative Region of China
| | - Chunqiu Zhang
- Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China
| | - Xuejun Shang
- Department of Urology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China.
| | - Keng Po Lai
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, China.
| | - Lei Li
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; University of Chinese Academy of Sciences, Beijing, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China.
| |
Collapse
|
7
|
Zhang X, Wu Y, Fu X, He S, Shi L, Xu H, Shi X, Yang Y, Zhu Y, Wang Y, Qiu H, Li H, Li J. Toxicity to the Male Reproductive System after Exposure to Polystyrene Nanoplastics: A Macrogenomic and Metabolomic Analysis. TOXICS 2024; 12:531. [PMID: 39195633 PMCID: PMC11360567 DOI: 10.3390/toxics12080531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/09/2024] [Accepted: 07/19/2024] [Indexed: 08/29/2024]
Abstract
Nanoplastics (NPs) cause serious contamination of drinking water and potential damage to human health. This study aimed to investigate the effects of NPs with different particle sizes and concentrations on the reproductive function of male mice. In this study, free drinking water exposure was used to expose male BALB/C mice to PS-NPs (20 nm, 200 nm, and 1000 nm) at 0.1 mg/L, 1 mg/L, and 5 mg/L for 4 months. The male reproductive function of the mice was assessed after NPs exposure, and fecal and blood samples were collected for macrogenomics and metabolomics. The results showed that PS-NPs resulted in mice with reduced testicular organ coefficients, decreased sperm quality, altered testicular tissue structure, disturbed sex hormone levels, and abnormal levels of inflammatory factors and oxidative stress. Furthermore, this study found that NP exposure affected the alteration of gut communities and metabolic pathways related to male reproduction, such as Clostridium and glutathione metabolism. Importantly, we found an effect of NP particle size on reproductive function. In the future, more attention should be paid to the smaller particle sizes of NPs.
Collapse
Affiliation(s)
- Xue Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Ningxia Medical University, Yinchuan 750004, China; (X.Z.); (Y.W.); (S.H.); (L.S.); (X.S.); (Y.Y.); (Y.Z.); (Y.W.); (H.Q.)
| | - Yueping Wu
- Department of Epidemiology and Health Statistics, School of Public Health, Ningxia Medical University, Yinchuan 750004, China; (X.Z.); (Y.W.); (S.H.); (L.S.); (X.S.); (Y.Y.); (Y.Z.); (Y.W.); (H.Q.)
| | - Xufeng Fu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China; (X.F.); (H.L.)
| | - Shulan He
- Department of Epidemiology and Health Statistics, School of Public Health, Ningxia Medical University, Yinchuan 750004, China; (X.Z.); (Y.W.); (S.H.); (L.S.); (X.S.); (Y.Y.); (Y.Z.); (Y.W.); (H.Q.)
| | - Liping Shi
- Department of Epidemiology and Health Statistics, School of Public Health, Ningxia Medical University, Yinchuan 750004, China; (X.Z.); (Y.W.); (S.H.); (L.S.); (X.S.); (Y.Y.); (Y.Z.); (Y.W.); (H.Q.)
| | - Haiming Xu
- Department of Occupational and Environmental Hygiene, School of Public Health, Ningxia Medical University, Yinchuan 750004, China;
| | - Xiaojuan Shi
- Department of Epidemiology and Health Statistics, School of Public Health, Ningxia Medical University, Yinchuan 750004, China; (X.Z.); (Y.W.); (S.H.); (L.S.); (X.S.); (Y.Y.); (Y.Z.); (Y.W.); (H.Q.)
| | - Yue Yang
- Department of Epidemiology and Health Statistics, School of Public Health, Ningxia Medical University, Yinchuan 750004, China; (X.Z.); (Y.W.); (S.H.); (L.S.); (X.S.); (Y.Y.); (Y.Z.); (Y.W.); (H.Q.)
| | - Yongbin Zhu
- Department of Epidemiology and Health Statistics, School of Public Health, Ningxia Medical University, Yinchuan 750004, China; (X.Z.); (Y.W.); (S.H.); (L.S.); (X.S.); (Y.Y.); (Y.Z.); (Y.W.); (H.Q.)
| | - Yanrong Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Ningxia Medical University, Yinchuan 750004, China; (X.Z.); (Y.W.); (S.H.); (L.S.); (X.S.); (Y.Y.); (Y.Z.); (Y.W.); (H.Q.)
| | - Hongyan Qiu
- Department of Epidemiology and Health Statistics, School of Public Health, Ningxia Medical University, Yinchuan 750004, China; (X.Z.); (Y.W.); (S.H.); (L.S.); (X.S.); (Y.Y.); (Y.Z.); (Y.W.); (H.Q.)
| | - Hongmei Li
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China; (X.F.); (H.L.)
| | - Jiangping Li
- Department of Epidemiology and Health Statistics, School of Public Health, Ningxia Medical University, Yinchuan 750004, China; (X.Z.); (Y.W.); (S.H.); (L.S.); (X.S.); (Y.Y.); (Y.Z.); (Y.W.); (H.Q.)
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan 750004, China
| |
Collapse
|
8
|
Wang M, Wu Y, Li G, Xiong Y, Zhang Y, Zhang M. The hidden threat: Unraveling the impact of microplastics on reproductive health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 935:173177. [PMID: 38750730 DOI: 10.1016/j.scitotenv.2024.173177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/20/2024] [Accepted: 05/10/2024] [Indexed: 05/27/2024]
Abstract
Microplastics, with intricate physical and chemical characteristics, infiltrate the food chain and extensively impact ecosystems. Despite acknowledging the link between environmental pollution and declining fertility, the specific mechanisms affecting reproductive health remain to be elucidated. This review emphasizes the global correlation between microplastics and subfertility, focusing on entry pathways and impacts on ecosystems. Research suggests that microplastics disrupt the neuroendocrine system, influencing sex hormone synthesis through the hypothalamic-pituitary-gonadal (HPG) axis. In the reproductive system, microplastics interfere with the blood-testis barrier, impairing spermatogenesis in males, and causing placental dysfunction, ovarian atrophy, endometrial hyperplasia, and fibrosis in females. Moreover, microplastics potentially affect offspring's lipid metabolism and reproductive functions. However, complex microplastic compositions and detection method limitations impede research progress. Mitigation strategies for reproductive effects, combined with addressing microplastic pollution through sustainable practices, are imperative. This review underscores the urgency of global initiatives and collaborative research to safeguard reproductive health amid escalating microplastic contamination.
Collapse
Affiliation(s)
- Mei Wang
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, PR China; Hubei Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health, Wuhan 430071, Hubei, PR China; Wuhan Clinical Research Center for Reproductive Health and Optimal Birth, Wuhan 430071, Hubei, PR China
| | - Ying Wu
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, PR China; Hubei Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health, Wuhan 430071, Hubei, PR China; Wuhan Clinical Research Center for Reproductive Health and Optimal Birth, Wuhan 430071, Hubei, PR China
| | - Guigui Li
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, PR China; Hubei Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health, Wuhan 430071, Hubei, PR China; Wuhan Clinical Research Center for Reproductive Health and Optimal Birth, Wuhan 430071, Hubei, PR China
| | - Yao Xiong
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, PR China; Hubei Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health, Wuhan 430071, Hubei, PR China; Wuhan Clinical Research Center for Reproductive Health and Optimal Birth, Wuhan 430071, Hubei, PR China
| | - Yuanzhen Zhang
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, PR China; Hubei Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health, Wuhan 430071, Hubei, PR China; Wuhan Clinical Research Center for Reproductive Health and Optimal Birth, Wuhan 430071, Hubei, PR China
| | - Ming Zhang
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, PR China; Hubei Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health, Wuhan 430071, Hubei, PR China; Wuhan Clinical Research Center for Reproductive Health and Optimal Birth, Wuhan 430071, Hubei, PR China.
| |
Collapse
|
9
|
Peng Y, He Q. Reproductive toxicity and related mechanisms of micro(nano)plastics in terrestrial mammals: Review of current evidence. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 279:116505. [PMID: 38810287 DOI: 10.1016/j.ecoenv.2024.116505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/18/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024]
Abstract
Micro(nano)plastics (MNPs) have been detected in various ecological environments and are widely used due to their stable properties, raising widespread concern about their potential human reproductive toxicity. Currently, infertility affects approximately 10-30% of couples of reproductive age globally. MNPs, as environmental pollutants, have been shown to exhibit reproductive toxicity through intrinsic mechanisms or as carriers of other hazardous substances. Numerous studies have established that MNPs of varying sizes and types can penetrate biological barriers, and enter tissues and even organelles of organisms through four main routes: dietary ingestion, inhalation, dermal contact, and medical interventions. However, historical research on the toxic effects of MNPs on reproduction mainly focused on lower and aquatic species. We conducted an inclusive review of studies involving terrestrial mammals, revealing that MNPs can induce reproductive toxicity via various mechanisms such as oxidative stress, inflammation, fibrosis, apoptosis, autophagy, disruption of intestinal flora, endocrine disruption, endoplasmic reticulum stress, and DNA damage. In terrestrial mammals, reproductive toxicity predominantly manifests as disruption in the blood-testis barrier (BTB), impaired spermatogenesis, sperm malformation, sperm DNA damage, reduced sperm fertilizing capacity, compromised oocyte maturation, impaired follicular growth, granulosa cell apoptosis, diminished ovarian reserve function, uterine and ovarian fibrosis, and endocrine disruption, among other effects. Furthermore, MNPs can traverse the maternal-fetal interface, potentially impacting offspring reproductive health. To gain a comprehensive understanding of the potential reproductive toxicity and underlying mechanisms of MNPs with different sizes, polymer types, shapes, and carried toxins, as well as to explore effective protective interventions for mitigating reproductive damage, further in-depth animal studies, clinical trials, and large-scale epidemiological studies are urgently required.
Collapse
Affiliation(s)
- Yangyang Peng
- Hunan Provincial Maternal and Child Health Care Hospital, Changsha 410008, China.
| | - Qi He
- Hunan Provincial Maternal and Child Health Care Hospital, Changsha 410008, China
| |
Collapse
|
10
|
Lin Z, Li Z, Ji S, Lo HS, Billah B, Sharmin A, Lui WY, Tse WKF, Fang JKH, Lai KP, Li L. Microplastics from face mask impairs sperm motility. MARINE POLLUTION BULLETIN 2024; 203:116422. [PMID: 38749155 DOI: 10.1016/j.marpolbul.2024.116422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 06/06/2024]
Abstract
The COVID-19 pandemic has resulted in unprecedented plastic pollution from single-used personal protective equipment (PPE), especially face masks, in coastal and marine environments. The secondary pollutants, microplastics from face masks (mask MP), rise concern about their detrimental effects on marine organisms, terrestrial organisms and even human. Using a mouse model, oral exposure to mask MP at two doses, 0.1 and 1 mg MP/day for 21 days, caused no change in animal locomotion, total weight, or sperm counts, but caused damage to sperm motility with increased curvilinear velocity (VCL). The high-dose mask MP exposure caused a significant decrease in linearity (LIN) of sperm motility. Further testicular transcriptomic analysis revealed perturbed pathways related to spermatogenesis, oxidative stress, inflammation, metabolism and energy production. Collectively, our findings substantiate that microplastics from face masks yield adverse effects on mammalian reproductive capacity, highlighting the need for improved plastic waste management and development of environmentally friendly materials.
Collapse
Affiliation(s)
- Ziyi Lin
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; University of Chinese Academy of Sciences, Beijing, China
| | - Zijie Li
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Shuqin Ji
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hoi Shing Lo
- Department of Environmental Science, Stockholm University, Stockholm, Sweden
| | - Baki Billah
- Department of Zoology, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Ayesha Sharmin
- Department of Chemistry, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| | - Wing-Yee Lui
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - William Ka Fai Tse
- Laboratory of Developmental Disorders and Toxicology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - James Kar-Hei Fang
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong; State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Keng Po Lai
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, China.
| | - Lei Li
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; University of Chinese Academy of Sciences, Beijing, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China.
| |
Collapse
|
11
|
Sharma RK, Kumari U, Kumar S. Impact of Microplastics on Pregnancy and Fetal Development: A Systematic Review. Cureus 2024; 16:e60712. [PMID: 38903343 PMCID: PMC11186737 DOI: 10.7759/cureus.60712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2024] [Indexed: 06/22/2024] Open
Abstract
Microplastic (MP) pollution is a growing global concern because of its potential to impair human health, particularly with regard to fetal development. However, the origins of prenatal MP exposure and its effects on fetal development have not been well studied. This study aimed to provide a systematic review of the literature regarding the impact of microplastics on pregnancy and fetal development. PubMed, Embase, ScienceDirect, Web of Science, Scopus, and Google Scholar were searched from 2010 until March 2024. Original publications exploring the impact of microplastics on pregnancy and fetal development were included in the study. After selecting papers, two independent reviewers extracted data regarding study characteristics, microplastics identified, and reproductive impacts. The quality of studies was assessed using the Critical Appraisal Checklists for Studies created by the Joanna Briggs Institute (JBI). Twelve studies, including 234 subjects, were selected from a total of 2,809 citations for the final qualitative analysis. Articles were published between 2021 and 2024, and most were conducted in China. The results of the included studies confirmed the existence of microplastics with varying sizes (2.1 to 100 micrometers) in the placenta and the fetal body. Studies revealed correlations between lifestyle choices and the presence of microplastics in the placenta. They also reported correlations between the level of microplastics and diminished microbiome diversity, reduced birthweights, affected gestational age, and fetal growth and development. Microplastics may be detrimental to a developing fetus during pregnancy. Nonetheless, more thorough research is required to comprehend the impact of microplastic exposure on pregnancy and fetal development.
Collapse
Affiliation(s)
| | - Usha Kumari
- Biochemistry, Indira Gandhi Institute of Medical Sciences, Patna, IND
| | - Sudhir Kumar
- Electrical Engineering, Indian Institute of Technology, Patna, Patna, IND
| |
Collapse
|
12
|
Hunt K, Davies A, Fraser A, Burden C, Howell A, Buckley K, Harding S, Bakhbakhi D. Exposure to microplastics and human reproductive outcomes: A systematic review. BJOG 2024; 131:675-683. [PMID: 38287142 DOI: 10.1111/1471-0528.17756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/23/2023] [Accepted: 12/30/2023] [Indexed: 01/31/2024]
Abstract
BACKGROUND Microplastics, produced through degradation of environmental plastic pollution, have been detected in human tissues including placenta and fetal meconium. Cell culture and animal studies have demonstrated potential reproductive toxicity of these particles; however, their association with adverse fertility or pregnancy outcomes in humans is not known. OBJECTIVES To synthesise evidence for the presence of microplastics in human reproductive tissue and their associations with environmental exposures and reproductive outcomes. SEARCH STRATEGY MEDLINE, Embase, Emcare, CINAHL, ClinicalTrials.gov and ICTRP were searched from inception to 03/02/2023. SELECTION CRITERIA Studies of human participants, assessing presence of microplastics in reproductive tissues, environmental exposures to microplastics, and fertility- or pregnancy-related outcomes. DATA COLLECTION AND ANALYSIS Two independent reviewers selected studies and extracted data on study characteristics, microplastics detected, environmental exposures and reproductive outcomes. Narrative synthesis was performed due to methodological heterogeneity. MAIN RESULTS Of 1094 citations, seven studies were included, covering 96 participants. Microplastics composed of 16 different polymer types were detected in both placental and meconium samples. Two studies reported associations between lifestyle factors (daily water intake, use of scrub cleanser or toothpaste, bottled water and takeaway food) and placental microplastics. One study reported associations between meconium microplastics and reduced microbiota diversity. One reported placental microplastic levels correlated with reduced birthweights and 1-minute Apgar scores. CONCLUSIONS There is a need for high-quality observational studies to assess the effects of microplastics on human reproductive health.
Collapse
Affiliation(s)
- Kathryn Hunt
- Department of Obstetrics and Gynaecology, North Bristol NHS Trust, Bristol, UK
| | - Anna Davies
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Abigail Fraser
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Christy Burden
- Department of Obstetrics and Gynaecology, North Bristol NHS Trust, Bristol, UK
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Amy Howell
- Faculty of Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Kirsten Buckley
- Library and Knowledge Service, North Bristol NHS Trust, Bristol, UK
| | - Sam Harding
- Research and Development, North Bristol NHS Trust, Bristol, UK
| | - Danya Bakhbakhi
- Department of Obstetrics and Gynaecology, North Bristol NHS Trust, Bristol, UK
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| |
Collapse
|
13
|
Fontes BLM, de Souza E Souza LC, da Silva de Oliveira APS, da Fonseca RN, Neto MPC, Pinheiro CR. The possible impacts of nano and microplastics on human health: lessons from experimental models across multiple organs. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2024:1-35. [PMID: 38517360 DOI: 10.1080/10937404.2024.2330962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
The widespread production and use of plastics have resulted in accumulation of plastic debris in the environment, gradually breaking down into smaller particles over time. Nano-plastics (NPs) and microplastics (MPs), defined as particles smaller than 100 nanometers and 5 millimeters, respectively, raise concerns due to their ability to enter the human body through various pathways including ingestion, inhalation, and skin contact. Various investigators demonstrated that these particles may produce physical and chemical damage to human cells, tissues, and organs, disrupting cellular processes, triggering inflammation and oxidative stress, and impacting hormone and neurotransmitter balance. In addition, micro- and nano-plastics (MNPLs) may carry toxic chemicals and pathogens, exacerbating adverse effects on human health. The magnitude and nature of these effects are not yet fully understood, requiring further research for a comprehensive risk assessment. Nevertheless, evidence available suggests that accumulation of these particles in the environment and potential human uptake are causes for concern. Urgent measures to reduce plastic pollution and limit human exposure to MNPLs are necessary to safeguard human health and the environment. In this review, current knowledge regarding the influence of MNPLs on human health is summarized, including toxicity mechanisms, exposure pathways, and health outcomes across multiple organs. The critical need for additional research is also emphasized to comprehensively assess potential risks posed by degradation of MNPLs on human health and inform strategies for addressing this emerging environmental health challenge. Finally, new research directions are proposed including evaluation of gene regulation associated with MNPLs exposure.
Collapse
Affiliation(s)
- Bernardo Lannes Monteiro Fontes
- Laboratório Integrado de Ciências Morfofuncionais (LICM), Instituto de Sustentabilidade e Biodiversidade (NUPEM), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lorena Cristina de Souza E Souza
- Laboratório Integrado de Ciências Morfofuncionais (LICM), Instituto de Sustentabilidade e Biodiversidade (NUPEM), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Paula Santos da Silva de Oliveira
- Núcleo Multidisciplinar de Pesquisas em Biologia - NUMPEX-BIO, Campus Duque de Caxias Geraldo Cidade, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Duque de Caxias, Brazil
| | - Rodrigo Nunes da Fonseca
- Laboratório Integrado de Ciências Morfofuncionais (LICM), Instituto de Sustentabilidade e Biodiversidade (NUPEM), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marinaldo Pacifico Cavalcanti Neto
- Laboratório Integrado de Ciências Morfofuncionais (LICM), Instituto de Sustentabilidade e Biodiversidade (NUPEM), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cintia Rodrigues Pinheiro
- Laboratório Integrado de Ciências Morfofuncionais (LICM), Instituto de Sustentabilidade e Biodiversidade (NUPEM), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
14
|
Covello C, Di Vincenzo F, Cammarota G, Pizzoferrato M. Micro(nano)plastics and Their Potential Impact on Human Gut Health: A Narrative Review. Curr Issues Mol Biol 2024; 46:2658-2677. [PMID: 38534784 PMCID: PMC10968954 DOI: 10.3390/cimb46030168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 03/28/2024] Open
Abstract
Microplastics and nanoplastics (MNPs) are becoming an increasingly severe global problem due to their widespread distribution and complex impact on living organisms. Apart from their environmental impact, the effects of MNPs on living organisms have also continued to attract attention. The harmful impact of MNPs has been extensively documented in marine invertebrates and larger marine vertebrates like fish. However, the research on the toxicity of these particles on mammals is still limited, and their possible effects on humans are poorly understood. Considering that MNPs are commonly found in food or food packaging, humans are primarily exposed to them through ingestion. It would be valuable to investigate the potential harmful effects of these particles on gut health. This review focuses on recent research exploring the toxicological impacts of micro- and nanoplastics on the gut, as observed in human cell lines and mammalian models. Available data from various studies indicate that the accumulation of MNPs in mammalian models and human cells may result in adverse consequences, in terms of epithelial toxicity, immune toxicity, and the disruption of the gut microbiota. The paper also discusses the current research limitations and prospects in this field, aiming to provide a scientific basis and reference for further studies on the toxic mechanisms of micro- and nanoplastics.
Collapse
Affiliation(s)
- Carlo Covello
- Center for Diagnosis and Treatment of Digestive Diseases, Gastroenterology Department, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (C.C.); (F.D.V.)
| | - Federica Di Vincenzo
- Center for Diagnosis and Treatment of Digestive Diseases, Gastroenterology Department, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (C.C.); (F.D.V.)
| | - Giovanni Cammarota
- UOC Gastroenterologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
| | - Marco Pizzoferrato
- UOC Gastroenterologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
| |
Collapse
|
15
|
De Boever S, Devisscher L, Vinken M. Unraveling the micro- and nanoplastic predicament: A human-centric insight. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170262. [PMID: 38253106 DOI: 10.1016/j.scitotenv.2024.170262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/02/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024]
Abstract
Micro- and nanoplastics are vast anthropogenic pollutants in our direct surroundings with a robust environmental stability and a potential for a long-lasting and increasing global circulation. This has raised concerns among the public and policy makers for human health upon exposure to these particles. The micro- and nanoplastic burden on humans is currently under debate, along with criticism on the experimental approaches used in hazard assessment. The present review presents an overview of the human-relevant aspects associated with the current micro-and nanoplastic burden. We focus on environmental circulation and the estimation of exposure quantities to humans, along with a state-of-the-art overview of particle accumulation in over 15 human organs and other specimen. Additionally, data regarding particle characteristics used in toxicity testing was extracted from 91 studies and discussed considering their environmental and human relevance.
Collapse
Affiliation(s)
- Sybren De Boever
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.
| | - Lindsey Devisscher
- Gut-Liver Immunopharmacology Unit, Basic and Applied Medical Sciences, Liver Research Centre Ghent, Faculty of Medicine and Health Sciences, Universiteit Gent, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Mathieu Vinken
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| |
Collapse
|
16
|
Gałęcka I, Szyryńska N, Całka J. Influence of polyethylene terephthalate (PET) microplastic on selected active substances in the intramural neurons of the porcine duodenum. Part Fibre Toxicol 2024; 21:5. [PMID: 38321545 PMCID: PMC10845528 DOI: 10.1186/s12989-024-00566-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 01/29/2024] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND Currently, society and industry generate huge amounts of plastics worldwide. The ubiquity of microplastics is obvious, but its impact on the animal and human organism remains not fully understood. The digestive tract is one of the first barriers between pathogens and xenobiotics and a living organism. Its proper functioning is extremely important in order to maintain homeostasis. The aim of this study was to determine the effect of microplastic on enteric nervous system and histological structure of swine duodenum. The experiment was carried out on 15 sexually immature gilts, approximately 8 weeks old. The animals were randomly divided into 3 study groups (n = 5/group). The control group received empty gelatin capsules once a day for 28 days, the first research group received daily gelatin capsules with polyethylene terephthalate (PET) particles as a mixture of particles of various sizes (maximum particle size 300 µm) at a dose of 0.1 g/animal/day. The second study group received a dose ten times higher-1 g/animal/day. RESULTS A dose of 1 g/day/animal causes more changes in the enteric nervous system and in the histological structure of duodenum. Statistically significant differences in the expression of cocaine and amphetamine regulated transcript, galanin, neuronal nitric oxide synthase, substance P, vesicular acetylcholine transporter and vasoactive intestinal peptide between control and high dose group was noted. The histopathological changes were more frequently observed in the pigs receiving higher dose of PET. CONCLUSION Based on this study it may be assumed, that oral intake of microplastic might have potential negative influence on digestive tract, but it is dose-dependent.
Collapse
Affiliation(s)
- Ismena Gałęcka
- Department of Epizootiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-719, Olsztyn, Poland.
- Deparment of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-719, Olsztyn, Poland.
| | - Natalia Szyryńska
- Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-719, Olsztyn, Poland
| | - Jarosław Całka
- Deparment of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-719, Olsztyn, Poland
| |
Collapse
|
17
|
Santoro A, Marino M, Vandenberg LN, Szychlinska MA, Lamparelli EP, Scalia F, Della Rocca N, D’Auria R, Pastorino GMG, Della Porta G, Operto FF, Viggiano A, Cappello F, Meccariello R. PLASTAMINATION: Outcomes on the Central Nervous System and Reproduction. Curr Neuropharmacol 2024; 22:1870-1898. [PMID: 38549522 PMCID: PMC11284724 DOI: 10.2174/1570159x22666240216085947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/05/2023] [Accepted: 12/13/2023] [Indexed: 07/23/2024] Open
Abstract
BACKGROUND Environmental exposures to non-biodegradable and biodegradable plastics are unavoidable. Microplastics (MPs) and nanoplastics (NPs) from the manufacturing of plastics (primary sources) and the degradation of plastic waste (secondary sources) can enter the food chain directly or indirectly and, passing biological barriers, could target both the brain and the gonads. Hence, the worldwide diffusion of environmental plastic contamination (PLASTAMINATION) in daily life may represent a possible and potentially serious risk to human health. OBJECTIVE This review provides an overview of the effects of non-biodegradable and the more recently introduced biodegradable MPs and NPs on the brain and brain-dependent reproductive functions, summarizing the molecular mechanisms and outcomes on nervous and reproductive organs. Data from in vitro, ex vivo, non-mammalian and mammalian animal models and epidemiological studies have been reviewed and discussed. RESULTS MPs and NPs from non-biodegradable plastics affect organs, tissues and cells from sensitive systems such as the brain and reproductive organs. Both MPs and NPs induce oxidative stress, chronic inflammation, energy metabolism disorders, mitochondrial dysfunction and cytotoxicity, which in turn are responsible for neuroinflammation, dysregulation of synaptic functions, metabolic dysbiosis, poor gamete quality, and neuronal and reproductive toxicity. In spite of this mechanistic knowledge gained from studies of non-biodegradable plastics, relatively little is known about the adverse effects or molecular mechanisms of MPs and NPs from biodegradable plastics. CONCLUSION The neurological and reproductive health risks of MPs/NPs exposure warrant serious consideration, and further studies on biodegradable plastics are recommended.
Collapse
Affiliation(s)
- Antonietta Santoro
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, SA, Italy
| | - Marianna Marino
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, SA, Italy
| | - Laura N. Vandenberg
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Marta Anna Szychlinska
- Faculty of Medicine and Surgery, Kore University of Enna, Cittadella Universitaria 94100 Enna (EN), Italy
| | - Erwin Pavel Lamparelli
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, SA, Italy
| | - Federica Scalia
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Natalia Della Rocca
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, SA, Italy
| | - Raffaella D’Auria
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, SA, Italy
| | - Grazia Maria Giovanna Pastorino
- Child and Adolescence Neuropsychiatry Unit, Department of Medicine, Surgery and Dentistry, University of 84100 Salerno, Salerno, Italy
| | - Giovanna Della Porta
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, SA, Italy
| | - Francesca Felicia Operto
- Department of Science of Health School of Medicine, University Magna Graecia 88100 Catanzaro, Italy
| | - Andrea Viggiano
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, SA, Italy
| | - Francesco Cappello
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, 90127, Italy
| | - Rosaria Meccariello
- Department of Movement and Wellness Sciences, Parthenope University of Naples, 80133 Naples, Italy
| |
Collapse
|
18
|
Cai P, Wang Y, Feng N, Zou H, Gu J, Yuan Y, Liu X, Liu Z, Bian J. Polystyrene nanoplastics aggravate reproductive system damage in obese male mice by perturbation of the testis redox homeostasis. ENVIRONMENTAL TOXICOLOGY 2023; 38:2881-2893. [PMID: 37555767 DOI: 10.1002/tox.23923] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 05/16/2023] [Accepted: 07/22/2023] [Indexed: 08/10/2023]
Abstract
The potential impact of the combination of a high-fat diet (HFD) and polystyrene nanoplastics (PS-NPs) on fertility cannot be ignored, especially when the fertility rate is declining. However, it has not attracted considerable attention. In this study, an obese mouse model was established using an HFD, and the reproductive function of male mice was evaluated after intragastric administration of 100 μL of a 10 mg/mL PS-NP suspension for 4 weeks. By determining the morphology and vitality of sperm and related indicators of testosterone production, it was found that PS-NPs aggravated the destruction of sperm mitochondrial structure, decrease sperm activity, and testosterone production in HFD-fed mice. To comprehensively analyze the injury mechanism, the integrity of the blood testicular barrier (BTB) and the function of Leydig and Sertoli cells were further analyzed. It was found that PS-NPs could destroy BTB, promote the degeneration of Leydig cells, reduce the number of Sertoli cells, and decrease lactate secretion in HFD-fed mice. PS-NPs further interfered with redox homeostasis in the testicular tissues of HFD-fed mice. This study found that PS-NPs could aggravate the damage to the reproductive system of obese male mice by further perturbing its redox homeostasis and revealed the potential health risk of PS-NPs exposure under an HFD.
Collapse
Affiliation(s)
- Peirong Cai
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Yaling Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Nannan Feng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xuezhong Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| |
Collapse
|
19
|
A K P, M M, Rajamanickam S, Sivarethinamohan S, Gaddam MKR, Velusamy P, R G, Ravindiran G, Gurugubelli TR, Muniasamy SK. Impact of climate change and anthropogenic activities on aquatic ecosystem - A review. ENVIRONMENTAL RESEARCH 2023; 238:117233. [PMID: 37793591 DOI: 10.1016/j.envres.2023.117233] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/12/2023] [Accepted: 09/26/2023] [Indexed: 10/06/2023]
Abstract
All living things depend on their natural environment, either directly or indirectly, for their high quality of life, growth, nutrition, and development. Due to the fast emissions of greenhouse gases (GHGs), the Earth's climate system is being negatively impacted by global warming. Stresses caused by climate change, such as rising and hotter seas, increased droughts and floods, and acrid waters, threaten the world's most populated areas and aquatic ecosystems. As a result, the aquatic ecosystems of the globe are quickly reaching hazardous conditions. Marine ecosystems are essential parts of the world's environment and provide several benefits to the human population, such as water for drinking and irrigation, leisure activities, and habitat for commercially significant fisheries. Although local human activities have influenced coastal zones for millennia, it is still unclear how these impacts and stresses from climate change may combine to endanger coastal ecosystems. Recent studies have shown that rising levels of greenhouse gases are causing ocean systems to experience conditions not seen in several million years, which may cause profound and irreversible ecological shifts. Ocean productivity has declined, food web dynamics have changed, habitat-forming species are less common, species ranges have changed, and disease prevalence has increased due to human climate change. We provide an outline of the interaction between global warming and the influence of humans along the coastline. This review aims to demonstrate the significance of long-term monitoring, the creation of ecological indicators, and the applications of understanding how aquatic biodiversity and ecosystem functioning respond to global warming. This review discusses the effects of current climate change on marine biological processes both now and in the future, describes present climate change concerning historical change, and considers the potential roles aquatic systems could play in mitigating the effects of global climate change.
Collapse
Affiliation(s)
- Priya A K
- Department of Chemical Engineering, KPR Institute of Engineering and Technology, Coimbatore, Tamilnadu, India; Centre for Nanoscience and Technology, KPR Institute of Engineering and Technology, Coimbatore, Tamilnadu, India.
| | - Muruganandam M
- Project Prioritization, Monitoring & Evaluation and Knowledge Management Unit, ICAR-Indian Institute of Soil & Water Conservation (ICAR-IISWC), Dehradun, India.
| | - Sivarethinamohan Rajamanickam
- Symbiosis Centre for Management Studies (Constituent of Symbiosis International Deemed University), Bengaluru - 560 100, Karnataka, India.
| | - Sujatha Sivarethinamohan
- Department of Civil Engineering, K. Ramakrishnan College of Technology, Trichy, Tamil Nadu, 621 112, India.
| | | | - Priya Velusamy
- Department of Civil Engineering, GMR Institute of Technology, Rajam, Andhra Pradesh, India.
| | - Gomathi R
- Department of Civil Engineering, KPR Institute of Engineering and Technology, Coimbatore, Tamilnadu, India.
| | - Gokulan Ravindiran
- Department of Civil Engineering, VNR Vignana Jyothi Institute of Engineering and Technology, Hyderabad, 500090, Telangana, India.
| | | | - Senthil Kumar Muniasamy
- Department of Biotechnology, Karpaga Vinayaga College of Engineering and Technology, Chengalpattu, 603308, Tamilnadu, India.
| |
Collapse
|
20
|
Zhou Y, Zhong X, Chen L, Gong L, Luo L, He Q, Zhu L, Tian K. Gut microbiota combined with metabolome dissects long-term nanoplastics exposure-induced disturbed spermatogenesis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115626. [PMID: 37890247 DOI: 10.1016/j.ecoenv.2023.115626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/18/2023] [Accepted: 10/21/2023] [Indexed: 10/29/2023]
Abstract
As the concerned emerging pollutants, several lines of evidence have indicated that nanoplastics (NPs) lead to reproductive toxicity. However, the biological mechanism underlying NPs disturbed spermatogenesis remains largely unknown. Therefore, we aimed to reveal the potential mechanism of impaired spermatogenesis caused by long-term NPs exposure from the perspective of integrated metabolome and microbiome analysis. After 12 weeks of gavage of polystyrene nanoplastics (PS-NPs) and animo-modified polystyrene nanoplastics (Amino-NPs), a well-designed two-exposure stages experimental condition. We found that NPs exposure induced apparent abnormal spermatogenesis, which appeared more severe in the Amino-NPs group. Mechanistically, 14 floras associated with glucose and lipid metabolism were significantly altered, as evidenced by 16 S rRNA sequencing. Testicular metabolome revealed that the Top 50 changed metabolites were also enriched in lipid metabolism. Subsequently, the combined gut microbiome and metabolome analysis uncovered the strong correlations between Klebsiella, Blautia, Parabacteroides, and lipid metabolites (e.g., PC, LysoPC and GPCho). We speculate that the dysbiosis of gut microbiota-related disturbed lipid metabolism may be responsible for long-term NPs-induced damaged spermatogenesis, which provides new insights into NPs-induced dysregulated spermatogenesis.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Occupational and Environmental Health, School of Public Health, Zunyi Medical University, Zunyi 563000, PR China
| | - Xiang Zhong
- Department of Gastroenterology, Affiliated Hang Tian Hospital, Zunyi Medical University, Zunyi 563000, PR China
| | - Liangkai Chen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Liming Gong
- Department of Gynaecology and Obstetrics, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, PR China
| | - Lei Luo
- Department of Occupational and Environmental Health, School of Public Health, Zunyi Medical University, Zunyi 563000, PR China
| | - Qian He
- Department of Gynaecology and Obstetrics, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, PR China
| | - Lin Zhu
- Affiliated Hospital of Shijiazhuang Medical College, Shijiazhuang 050000, PR China
| | - Kunming Tian
- Department of Occupational and Environmental Health, School of Public Health, Zunyi Medical University, Zunyi 563000, PR China; Department of Gynaecology and Obstetrics, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, PR China; Key Laboratory of Maternal& Child Health and Exposure Science of Guizhou Higher Education Institutes, Zunyi Medical University, Zunyi 563000, PR China.
| |
Collapse
|
21
|
Gao L, Xiong X, Chen C, Luo P, Li J, Gao X, Huang L, Li L. The male reproductive toxicity after nanoplastics and microplastics exposure: Sperm quality and changes of different cells in testis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115618. [PMID: 37939553 DOI: 10.1016/j.ecoenv.2023.115618] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 11/10/2023]
Abstract
Nanoplastics (NPs) and Microplastics (MPs) pollution has become a severe threat to the planet and is a growing concern. However, their effects on male reproductive toxicity remain poorly understood. In this study, a series of morphological analyses were completed to explore the influence of NPs and MPs exposure on the testis in mice. After 12-weeks exposure, although both NPs and MPs exposure can lead to reproductive toxicity, compared with NPs exposure, exposure to MPs leads to a more significant increase in reproductive toxicity dependent on some particle size. Moreover, increased reproductive toxicities, including increased spermatogenesis disorders, and sperm physiological abnormality, oxidative stress, testis inflammation was more associated with MPs group than NPs group. Ultra-pathological structure observed by transmission electron microscopy indicated that both NPs and MPs have different effects on spermatogonia, spermatocytes and Sertoli cells. Exposure to MPs resulted in decreased Sertoli cell numbers and reduced Leydig cell area, and showed no effects on differentiation of Leydig cells by the expression level of the Insulin-Like factor 3 (INSL3) in Leydig cells. Transcriptomic sequencing analysis provided valuable insights into the differential effects of NPs and MPs on cellular processes. Specifically, our findings demonstrated that NPs were predominantly involved in the regulation of steroid biosynthesis, whereas MPs primarily influenced amino acid metabolism. This study demonstrates the effect of adult-stage reproductive toxicity in mice after exposure to NPs and MPs, which will deep the understanding of the NPs and MPs induced toxicity.
Collapse
Affiliation(s)
- Likun Gao
- Department of Pathology, Shenzhen People's Hospital, the Second Clinical Medical College of Jinan University, Shenzhen 518020, China
| | - Xi Xiong
- Department of Urology, Wuhan Third Hospital, School of Medicine, Wuhan University of science and Technology, Wuhan 430060, China
| | - Chen Chen
- Department of Urology, Wuhan Third Hospital, School of Medicine, Wuhan University of science and Technology, Wuhan 430060, China
| | - Pengcheng Luo
- Department of Urology, Wuhan Third Hospital, School of Medicine, Wuhan University of science and Technology, Wuhan 430060, China
| | - Jing Li
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xiang Gao
- Central Laboratory, Scientific Research Department, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Lizhi Huang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China.
| | - Lili Li
- Central Laboratory, Scientific Research Department, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
22
|
Ali I, Tan X, Xie Y, Peng C, Li J, Naz I, Duan Z, Wan P, Huang J, Liang J, Rui Z, Ruan Y. Recent innovations in microplastics and nanoplastics removal by coagulation technique: Implementations, knowledge gaps and prospects. WATER RESEARCH 2023; 245:120617. [PMID: 37738942 DOI: 10.1016/j.watres.2023.120617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 08/03/2023] [Accepted: 09/09/2023] [Indexed: 09/24/2023]
Abstract
Recently, microplastics (MPs) and nanoplastics (NPs) contamination is a worldwide problem owing to the immense usage of plastic commodities. Thus, the environmental risks by MPs and NPs demand the application of innovative, efficient, and sustainable technologies to control the pollution of plastic particles. Regarding this, numerous technologies, including adsorption, coagulation, filtration, bioremediation, chemical precipitation, and photocatalysis, have been engaged to eradicate MPs and NPs from contaminated waters. However, the coagulation technique is getting much attention owing to its simplicity, higher removal performance, low carbon footprint, and low operational and maintenance cost. Therefore, this paper has been designed to critically summarize the recent innovations on the application of coagulation process to eradicate MPs and NPs from both synthetic and real sewage. More importantly, the effect of pertinent factors, including characteristics of coagulants, MPs/NPs, and environmental medium on the elimination performances and mechanisms of MPs/NPs have been critically investigated. Further, the potential of coagulation technology in eliminating MPs and NPs from real sewage has been critically elucidated for the first time, for better execution of this technique at commercial levels. Finally, this critical review also presents current research gaps and future outlooks for the improvement of coagulation process for eradicating MPs and NPs from water and real sewage. Overall, the current review will offer valuable knowledge to scientists in selecting a suitable technique for controlling plastic pollution.
Collapse
Affiliation(s)
- Imran Ali
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Xiao Tan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; Anhui Province Agricultural Waste Fertilizer Utilization and Cultivated Land Quality Improvement Engineering Research Center, Chuzhou 233100, China.
| | - Yue Xie
- Anhui Province Agricultural Waste Fertilizer Utilization and Cultivated Land Quality Improvement Engineering Research Center, Chuzhou 233100, China
| | - Changsheng Peng
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China; School of Environment and Chemical Engineering, Zhaoqing University, Zhaoqing 526061, China
| | - Juying Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Iffat Naz
- Department of Biology, Deanship of Educational Services, Qassim University, Buraidah 51452, Saudi Arabia
| | - Zhipeng Duan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Peng Wan
- Shenzhen Water Planning & Design Institute Co., Ltd., Shenzhen 518001, China; Guangdong Provincial Engineering and Technology Research Center for Water Affairs Big Data and Water Ecology, Shenzhen 518001, China
| | - Jiang Huang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Jia Liang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Zhu Rui
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Yinlan Ruan
- Institute for Photonics and Advanced Sensing, The University of Adelaide, SA 5005, Australia
| |
Collapse
|
23
|
Xu W, Yuan Y, Tian Y, Cheng C, Chen Y, Zeng L, Yuan Y, Li D, Zheng L, Luo T. Oral exposure to polystyrene nanoplastics reduced male fertility and even caused male infertility by inducing testicular and sperm toxicities in mice. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131470. [PMID: 37116333 DOI: 10.1016/j.jhazmat.2023.131470] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/31/2023] [Accepted: 04/20/2023] [Indexed: 05/19/2023]
Abstract
Nanoplastics (NPs) are the novel hazardous materials and ubiquitous in environment with different sizes. Although recent studies showed testicular toxicity of PS-NPs, whether and how NPs affect male fertility and whether they have the size-dependent effect remain ambiguous in mammals. In this study, the male mice were orally exposed to 25-, 50-, and 100-nm polystyrene NPs (PS-NPs) for 56 days. All three sized PS-NPs reduced male fertility and even caused male infertility. They accumulated in the testes, induced oxidative stress, affected the expression of apoptosis- and inflammation-related genes, and compromised energy metabolism, resulting in damaged testicular microstructure and functions. PS-NPs caused more severe testicular toxicity in infertile mice than in fertile mice. In addition, PS-NPs inhibited sperm capacitation and capacitation-dependent processes in infertile mice but not in fertile mice. In infertile mice, PS-NPs reduced the sperm levels of two Rho GTPases (RAC1 and CDC42) via increasing their ubiquitination levels and diminished sperm filamentous actin polymerization, thus inhibiting sperm capacitation. However, these testicular and sperm toxicities showed no size-dependent effect among three sized PS-NPs. In conclusion, PS-NPs inhibit male fertility by their multifaceted toxicity on testes and sperm in mice, providing novel insights into reproductive risks of NPs to mammals.
Collapse
Affiliation(s)
- Wenqing Xu
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, Jiangxi 330031, China; Key Laboratory of Reproductive Physiology and Pathology in Jiangxi Province, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Yangyang Yuan
- Key Laboratory of Reproductive Physiology and Pathology in Jiangxi Province, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Yan Tian
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, Jiangxi 330031, China; Key Laboratory of Reproductive Physiology and Pathology in Jiangxi Province, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Cheng Cheng
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, Jiangxi 330031, China; Key Laboratory of Reproductive Physiology and Pathology in Jiangxi Province, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Ying Chen
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, Jiangxi 330031, China; Key Laboratory of Reproductive Physiology and Pathology in Jiangxi Province, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Lianjie Zeng
- Key Laboratory of Reproductive Physiology and Pathology in Jiangxi Province, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Yuan Yuan
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, Jiangxi 330031, China; Key Laboratory of Reproductive Physiology and Pathology in Jiangxi Province, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Dandan Li
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Liping Zheng
- Key Laboratory of Reproductive Physiology and Pathology in Jiangxi Province, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Tao Luo
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, Jiangxi 330031, China; Key Laboratory of Reproductive Physiology and Pathology in Jiangxi Province, Nanchang University, Nanchang, Jiangxi 330031, China.
| |
Collapse
|
24
|
He W, Gu A, Wang D. Sulfonate-Modified Polystyrene Nanoparticle at Precited Environmental Concentrations Induces Transgenerational Toxicity Associated with Increase in Germline Notch Signal of Caenorhabditis elegans. TOXICS 2023; 11:511. [PMID: 37368611 DOI: 10.3390/toxics11060511] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/28/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023]
Abstract
Recently, the transgenerational toxicity of nanoplastics has received increasing attention. Caenorhabditis elegans is a useful model to assess the transgenerational toxicity of different pollutants. In nematodes, the possibility of early-life exposure to sulfonate-modified polystyrene nanoparticle (PS-S NP) causing transgenerational toxicity and its underlying mechanisms were investigated. After exposure at the L1-larval stage, transgenerational inhibition in both locomotion behavior (body bend and head thrash) and reproductive capacity (number of offspring and fertilized egg number in uterus) was induced by 1-100 μg/L PS-S NP. Meanwhile, after exposure to 1-100 μg/L PS-S NP, the expression of germline lag-2 encoding Notch ligand was increased not only at the parental generation (P0-G) but also in the offspring, and the transgenerational toxicity was inhibited by the germline RNA interference (RNAi) of lag-2. During the transgenerational toxicity formation, the parental LAG-2 activated the corresponding Notch receptor GLP-1 in the offspring, and transgenerational toxicity was also suppressed by glp-1 RNAi. GLP-1 functioned in the germline and the neurons to mediate the PS-S NP toxicity. In PS-S NP-exposed nematodes, germline GLP-1 activated the insulin peptides of INS-39, INS-3, and DAF-28, and neuronal GLP-1 inhibited the DAF-7, DBL-1, and GLB-10. Therefore, the exposure risk in inducing transgenerational toxicity through PS-S NP was suggested, and this transgenerational toxicity was mediated by the activation of germline Notch signal in organisms.
Collapse
Affiliation(s)
- Wenmiao He
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
- School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Aihua Gu
- School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
- Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine, Shenzhen 518122, China
| |
Collapse
|
25
|
Song X, Du L, Si M, Zou D, Qiu X. Effects of Micro(nano)plastics on the reproductive system: A review. CHEMOSPHERE 2023:139138. [PMID: 37285987 DOI: 10.1016/j.chemosphere.2023.139138] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/01/2023] [Accepted: 06/03/2023] [Indexed: 06/09/2023]
Abstract
Microplastics (100nm-5 mm) and nanoplastics (1-100 nm) are collectively referred to as micro(nano)plastics (MNPs), which are refractory to degradation, easy to migration, small in size, strong in adsorption, and can widely present in human living environment. A number of studies have confirmed that MNPs can be exposed to the human body through a variety of routes, and can penetrate various barriers to enter the reproductive system, suggesting that MNPs may pose potential harm to human reproductive health. Current studies most were limited to phenotypic studies and their subjects were basically lower marine organisms and mammals. Therefore, in order to provide theoretical base for further exploring the effects of MNPs on the human reproductive system, this paper searched the relevant literature at home and abroad, mainly analyzed rodent experiments, and concluded that the main exposure routes of MNPs are dietary intake, air inhalation, skin contact and medical plastics. After entering the reproductive system, MNPs produce reproductive toxicity mainly through oxidative stress, inflammation, metabolic disorders, cytotoxicity and other mechanisms. More work is required to comprehensively identify the exposure routes, improve the detection methods to evaluate the effective exposure and deeply study the specific mechanisms of toxic effects, withing the aim of conducting relevant studies at the population level in the next step.
Collapse
Affiliation(s)
- Xuan Song
- Center of Reproductive Medicine, Chengdu BOE Hospital, Chengdu, 610219, China.
| | - Lixia Du
- Department of Gastroenterology, Chengdu BOE Hospital, Chengdu, 610219, China
| | - Maling Si
- Center of Reproductive Medicine, Chengdu BOE Hospital, Chengdu, 610219, China
| | - Dan Zou
- Department of Obstetrics and Gynecology, Chengdu BOE Hospital, Chengdu, 610219, China
| | - Xihong Qiu
- Department of Obstetrics and Gynecology, Chengdu BOE Hospital, Chengdu, 610219, China
| |
Collapse
|
26
|
Justo AFO, Toscano ECDB, Farias-Itao DS, Suemoto CK. The action of phosphodiesterase-5 inhibitors on β-amyloid pathology and cognition in experimental Alzheimer's disease: A systematic review. Life Sci 2023; 320:121570. [PMID: 36921685 DOI: 10.1016/j.lfs.2023.121570] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/09/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023]
Abstract
Alzheimer's disease (AD) is the most frequent cause of dementia worldwide. The etiology of AD is partially explained by the deposition of β-amyloid in the brain. Despite extensive research on the pathogenesis of AD, the current treatments are ineffective. Here, we systematically reviewed studies that investigated whether phosphodiesterase 5 inhibitors (PDE5i) are efficient in reducing the β-amyloid load in hippocampi and improving cognitive decline in rodent models with β-amyloid accumulation. We identified ten original studies, which used rodent models with β-amyloid accumulation, were treated with PDE5i, and β-amyloid was measured in the hippocampi. PDE5i was efficient in reducing the β-amyloid levels, except for one study that exclusively used female rodents and the treatment did not affect β-amyloid levels. Interestingly, PDE5i prevented cognitive decline in all studies. This study supports the potential therapeutic use of PDE5i for the reduction of the β-amyloid load in hippocampi and cognitive decline. However, we highlight the importance of conducting additional experimental studies to evaluate the PDE5i-related molecular mechanisms involved in β-amyloid removal in male and female animals.
Collapse
Affiliation(s)
- Alberto Fernando Oliveira Justo
- Physiopathology in Aging Laboratory (LIM-22), Department of Internal Medicine, University of São Paulo Medical School, São Paulo, Brazil.
| | - Eliana Cristina de Brito Toscano
- Physiopathology in Aging Laboratory (LIM-22), Department of Internal Medicine, University of São Paulo Medical School, São Paulo, Brazil; Department of Pathology, Federal University of Juiz de Fora Medical School, Juiz de Fora, Brazil; Post-graduation Program in Health, Federal University of Juiz de Fora Medical School, Juiz de Fora, Brazil.
| | | | - Claudia Kimie Suemoto
- Physiopathology in Aging Laboratory (LIM-22), Department of Internal Medicine, University of São Paulo Medical School, São Paulo, Brazil; Division of Geriatrics, Department of Internal Medicine, University of São Paulo Medical School, São Paulo, Brazil.
| |
Collapse
|
27
|
Contino M, Ferruggia G, Indelicato S, Pecoraro R, Scalisi EM, Bracchitta G, Dragotto J, Salvaggio A, Brundo MV. In Vitro Nano-Polystyrene Toxicity: Metabolic Dysfunctions and Cytoprotective Responses of Human Spermatozoa. BIOLOGY 2023; 12:biology12040624. [PMID: 37106824 PMCID: PMC10136234 DOI: 10.3390/biology12040624] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023]
Abstract
The ubiquitous spread of Polystyrene nanoplastics (PS-NPs) has rendered chronic human exposure an unavoidable phenomenon. The biodistribution of such particles leads to bioaccumulation in target organs including the testis, the site of sperm maturation. The purpose of this research has been to estimate the impact of PS-NPs (50 and 100 nm) on the metabolism of mature spermatozoa. The analysis of the semen parameters has revealed a higher toxicity of the smaller sized PS-NPs, which have negatively affected major organelles, leading to increased acrosomal damage, oxidative stress with the production of ROS, DNA fragmentation, and decreased mitochondrial activity. PS-NPs of 100 nm, on the other hand, have mainly affected the acrosome and induced a general state of stress. An attempt has also been made to highlight possible protective mechanisms such as the expression of HSP70s and their correlation among various parameters. The results have evinced a marked production of HSP70s in the samples exposed to the smaller PS-NPs, negatively correlated with the worsening in oxidative stress, DNA fragmentation, and mitochondrial anomalies. In conclusion, our results have confirmed the toxicity of PS-NPs on human spermatozoa but have also demonstrated the presence of mechanisms capable of counteracting at least in part these injuries.
Collapse
Affiliation(s)
- Martina Contino
- Department of Biological, Geological and Environmental Sciences, University of Catania, 95124 Catania, Italy
| | - Greta Ferruggia
- Department of Biological, Geological and Environmental Sciences, University of Catania, 95124 Catania, Italy
| | - Stefania Indelicato
- Department of Biological, Geological and Environmental Sciences, University of Catania, 95124 Catania, Italy
| | - Roberta Pecoraro
- Department of Biological, Geological and Environmental Sciences, University of Catania, 95124 Catania, Italy
| | - Elena Maria Scalisi
- Department of Biological, Geological and Environmental Sciences, University of Catania, 95124 Catania, Italy
| | - Giovanni Bracchitta
- U.O. Fisiopatologia della Riproduzione Umana-Clinica del Mediterraneo, 97100 Ragusa, Italy
| | - Jessica Dragotto
- U.O. Fisiopatologia della Riproduzione Umana-Clinica del Mediterraneo, 97100 Ragusa, Italy
| | - Antonio Salvaggio
- Experimental Zooprophylactic Institute of Sicily "A. Mirri", 90129 Palermo, Italy
| | - Maria Violetta Brundo
- Department of Biological, Geological and Environmental Sciences, University of Catania, 95124 Catania, Italy
| |
Collapse
|
28
|
Urli S, Corte Pause F, Crociati M, Baufeld A, Monaci M, Stradaioli G. Impact of Microplastics and Nanoplastics on Livestock Health: An Emerging Risk for Reproductive Efficiency. Animals (Basel) 2023; 13:ani13071132. [PMID: 37048387 PMCID: PMC10093235 DOI: 10.3390/ani13071132] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 04/14/2023] Open
Abstract
Pollution due to microplastics and nanoplastics is one of the major environmental issues of the last decade and represents a growing threat to human and animal health. In aquatic species, there is a large amount of information regarding the perturbation of marine organisms; instead, there are only a few studies focusing on the pathophysiological consequences of an acute and chronic exposure to micro- and nanoplastics in mammalian systems, especially on the reproductive system. There are several studies that have described the damage caused by plastic particles, including oxidative stress, apoptosis, inflammatory response, dysregulation of the endocrine system and accumulation in various organs. In addition to this, microplastics have recently been found to influence the evolution of microbial communities and increase the gene exchange, including antibiotic and metal resistance genes. Special attention must be paid to farm animals, because they produce food such as milk, eggs and meat, with the consequent risk of biological amplification along the food chain. The results of several studies indicate that there is an accumulation of microplastics and nanoplastics in human and animal tissues, with several negative effects, but all the effects in the body have not been ascertained, especially considering the long-term consequences. This review provides an overview of the possible adverse effects of the exposure of livestock to micro- and nanoplastics and assesses the potential risks for the disruption of reproductive physiological functions.
Collapse
Affiliation(s)
- Susy Urli
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Delle Scienze 206, 33100 Udine, Italy
| | - Francesca Corte Pause
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Delle Scienze 206, 33100 Udine, Italy
| | - Martina Crociati
- Department of Veterinary Medicine, University of Perugia, Via S. Costanzo 4, 06126 Perugia, Italy
- Centre for Perinatal and Reproductive Medicine, University of Perugia, 06129 Perugia, Italy
| | - Anja Baufeld
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Maurizio Monaci
- Department of Veterinary Medicine, University of Perugia, Via S. Costanzo 4, 06126 Perugia, Italy
- Centre for Perinatal and Reproductive Medicine, University of Perugia, 06129 Perugia, Italy
| | - Giuseppe Stradaioli
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Delle Scienze 206, 33100 Udine, Italy
| |
Collapse
|
29
|
Landrigan PJ, Raps H, Cropper M, Bald C, Brunner M, Canonizado EM, Charles D, Chiles TC, Donohue MJ, Enck J, Fenichel P, Fleming LE, Ferrier-Pages C, Fordham R, Gozt A, Griffin C, Hahn ME, Haryanto B, Hixson R, Ianelli H, James BD, Kumar P, Laborde A, Law KL, Martin K, Mu J, Mulders Y, Mustapha A, Niu J, Pahl S, Park Y, Pedrotti ML, Pitt JA, Ruchirawat M, Seewoo BJ, Spring M, Stegeman JJ, Suk W, Symeonides C, Takada H, Thompson RC, Vicini A, Wang Z, Whitman E, Wirth D, Wolff M, Yousuf AK, Dunlop S. The Minderoo-Monaco Commission on Plastics and Human Health. Ann Glob Health 2023; 89:23. [PMID: 36969097 PMCID: PMC10038118 DOI: 10.5334/aogh.4056] [Citation(s) in RCA: 90] [Impact Index Per Article: 90.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 02/14/2023] [Indexed: 03/29/2023] Open
Abstract
Background Plastics have conveyed great benefits to humanity and made possible some of the most significant advances of modern civilization in fields as diverse as medicine, electronics, aerospace, construction, food packaging, and sports. It is now clear, however, that plastics are also responsible for significant harms to human health, the economy, and the earth's environment. These harms occur at every stage of the plastic life cycle, from extraction of the coal, oil, and gas that are its main feedstocks through to ultimate disposal into the environment. The extent of these harms not been systematically assessed, their magnitude not fully quantified, and their economic costs not comprehensively counted. Goals The goals of this Minderoo-Monaco Commission on Plastics and Human Health are to comprehensively examine plastics' impacts across their life cycle on: (1) human health and well-being; (2) the global environment, especially the ocean; (3) the economy; and (4) vulnerable populations-the poor, minorities, and the world's children. On the basis of this examination, the Commission offers science-based recommendations designed to support development of a Global Plastics Treaty, protect human health, and save lives. Report Structure This Commission report contains seven Sections. Following an Introduction, Section 2 presents a narrative review of the processes involved in plastic production, use, and disposal and notes the hazards to human health and the environment associated with each of these stages. Section 3 describes plastics' impacts on the ocean and notes the potential for plastic in the ocean to enter the marine food web and result in human exposure. Section 4 details plastics' impacts on human health. Section 5 presents a first-order estimate of plastics' health-related economic costs. Section 6 examines the intersection between plastic, social inequity, and environmental injustice. Section 7 presents the Commission's findings and recommendations. Plastics Plastics are complex, highly heterogeneous, synthetic chemical materials. Over 98% of plastics are produced from fossil carbon- coal, oil and gas. Plastics are comprised of a carbon-based polymer backbone and thousands of additional chemicals that are incorporated into polymers to convey specific properties such as color, flexibility, stability, water repellence, flame retardation, and ultraviolet resistance. Many of these added chemicals are highly toxic. They include carcinogens, neurotoxicants and endocrine disruptors such as phthalates, bisphenols, per- and poly-fluoroalkyl substances (PFAS), brominated flame retardants, and organophosphate flame retardants. They are integral components of plastic and are responsible for many of plastics' harms to human health and the environment.Global plastic production has increased almost exponentially since World War II, and in this time more than 8,300 megatons (Mt) of plastic have been manufactured. Annual production volume has grown from under 2 Mt in 1950 to 460 Mt in 2019, a 230-fold increase, and is on track to triple by 2060. More than half of all plastic ever made has been produced since 2002. Single-use plastics account for 35-40% of current plastic production and represent the most rapidly growing segment of plastic manufacture.Explosive recent growth in plastics production reflects a deliberate pivot by the integrated multinational fossil-carbon corporations that produce coal, oil and gas and that also manufacture plastics. These corporations are reducing their production of fossil fuels and increasing plastics manufacture. The two principal factors responsible for this pivot are decreasing global demand for carbon-based fuels due to increases in 'green' energy, and massive expansion of oil and gas production due to fracking.Plastic manufacture is energy-intensive and contributes significantly to climate change. At present, plastic production is responsible for an estimated 3.7% of global greenhouse gas emissions, more than the contribution of Brazil. This fraction is projected to increase to 4.5% by 2060 if current trends continue unchecked. Plastic Life Cycle The plastic life cycle has three phases: production, use, and disposal. In production, carbon feedstocks-coal, gas, and oil-are transformed through energy-intensive, catalytic processes into a vast array of products. Plastic use occurs in every aspect of modern life and results in widespread human exposure to the chemicals contained in plastic. Single-use plastics constitute the largest portion of current use, followed by synthetic fibers and construction.Plastic disposal is highly inefficient, with recovery and recycling rates below 10% globally. The result is that an estimated 22 Mt of plastic waste enters the environment each year, much of it single-use plastic and are added to the more than 6 gigatons of plastic waste that have accumulated since 1950. Strategies for disposal of plastic waste include controlled and uncontrolled landfilling, open burning, thermal conversion, and export. Vast quantities of plastic waste are exported each year from high-income to low-income countries, where it accumulates in landfills, pollutes air and water, degrades vital ecosystems, befouls beaches and estuaries, and harms human health-environmental injustice on a global scale. Plastic-laden e-waste is particularly problematic. Environmental Findings Plastics and plastic-associated chemicals are responsible for widespread pollution. They contaminate aquatic (marine and freshwater), terrestrial, and atmospheric environments globally. The ocean is the ultimate destination for much plastic, and plastics are found throughout the ocean, including coastal regions, the sea surface, the deep sea, and polar sea ice. Many plastics appear to resist breakdown in the ocean and could persist in the global environment for decades. Macro- and micro-plastic particles have been identified in hundreds of marine species in all major taxa, including species consumed by humans. Trophic transfer of microplastic particles and the chemicals within them has been demonstrated. Although microplastic particles themselves (>10 µm) appear not to undergo biomagnification, hydrophobic plastic-associated chemicals bioaccumulate in marine animals and biomagnify in marine food webs. The amounts and fates of smaller microplastic and nanoplastic particles (MNPs <10 µm) in aquatic environments are poorly understood, but the potential for harm is worrying given their mobility in biological systems. Adverse environmental impacts of plastic pollution occur at multiple levels from molecular and biochemical to population and ecosystem. MNP contamination of seafood results in direct, though not well quantified, human exposure to plastics and plastic-associated chemicals. Marine plastic pollution endangers the ocean ecosystems upon which all humanity depends for food, oxygen, livelihood, and well-being. Human Health Findings Coal miners, oil workers and gas field workers who extract fossil carbon feedstocks for plastic production suffer increased mortality from traumatic injury, coal workers' pneumoconiosis, silicosis, cardiovascular disease, chronic obstructive pulmonary disease, and lung cancer. Plastic production workers are at increased risk of leukemia, lymphoma, hepatic angiosarcoma, brain cancer, breast cancer, mesothelioma, neurotoxic injury, and decreased fertility. Workers producing plastic textiles die of bladder cancer, lung cancer, mesothelioma, and interstitial lung disease at increased rates. Plastic recycling workers have increased rates of cardiovascular disease, toxic metal poisoning, neuropathy, and lung cancer. Residents of "fenceline" communities adjacent to plastic production and waste disposal sites experience increased risks of premature birth, low birth weight, asthma, childhood leukemia, cardiovascular disease, chronic obstructive pulmonary disease, and lung cancer.During use and also in disposal, plastics release toxic chemicals including additives and residual monomers into the environment and into people. National biomonitoring surveys in the USA document population-wide exposures to these chemicals. Plastic additives disrupt endocrine function and increase risk for premature births, neurodevelopmental disorders, male reproductive birth defects, infertility, obesity, cardiovascular disease, renal disease, and cancers. Chemical-laden MNPs formed through the environmental degradation of plastic waste can enter living organisms, including humans. Emerging, albeit still incomplete evidence indicates that MNPs may cause toxicity due to their physical and toxicological effects as well as by acting as vectors that transport toxic chemicals and bacterial pathogens into tissues and cells.Infants in the womb and young children are two populations at particularly high risk of plastic-related health effects. Because of the exquisite sensitivity of early development to hazardous chemicals and children's unique patterns of exposure, plastic-associated exposures are linked to increased risks of prematurity, stillbirth, low birth weight, birth defects of the reproductive organs, neurodevelopmental impairment, impaired lung growth, and childhood cancer. Early-life exposures to plastic-associated chemicals also increase the risk of multiple non-communicable diseases later in life. Economic Findings Plastic's harms to human health result in significant economic costs. We estimate that in 2015 the health-related costs of plastic production exceeded $250 billion (2015 Int$) globally, and that in the USA alone the health costs of disease and disability caused by the plastic-associated chemicals PBDE, BPA and DEHP exceeded $920 billion (2015 Int$). Plastic production results in greenhouse gas (GHG) emissions equivalent to 1.96 gigatons of carbon dioxide (CO2e) annually. Using the US Environmental Protection Agency's (EPA) social cost of carbon metric, we estimate the annual costs of these GHG emissions to be $341 billion (2015 Int$).These costs, large as they are, almost certainly underestimate the full economic losses resulting from plastics' negative impacts on human health and the global environment. All of plastics' economic costs-and also its social costs-are externalized by the petrochemical and plastic manufacturing industry and are borne by citizens, taxpayers, and governments in countries around the world without compensation. Social Justice Findings The adverse effects of plastics and plastic pollution on human health, the economy and the environment are not evenly distributed. They disproportionately affect poor, disempowered, and marginalized populations such as workers, racial and ethnic minorities, "fenceline" communities, Indigenous groups, women, and children, all of whom had little to do with creating the current plastics crisis and lack the political influence or the resources to address it. Plastics' harmful impacts across its life cycle are most keenly felt in the Global South, in small island states, and in disenfranchised areas in the Global North. Social and environmental justice (SEJ) principles require reversal of these inequitable burdens to ensure that no group bears a disproportionate share of plastics' negative impacts and that those who benefit economically from plastic bear their fair share of its currently externalized costs. Conclusions It is now clear that current patterns of plastic production, use, and disposal are not sustainable and are responsible for significant harms to human health, the environment, and the economy as well as for deep societal injustices.The main driver of these worsening harms is an almost exponential and still accelerating increase in global plastic production. Plastics' harms are further magnified by low rates of recovery and recycling and by the long persistence of plastic waste in the environment.The thousands of chemicals in plastics-monomers, additives, processing agents, and non-intentionally added substances-include amongst their number known human carcinogens, endocrine disruptors, neurotoxicants, and persistent organic pollutants. These chemicals are responsible for many of plastics' known harms to human and planetary health. The chemicals leach out of plastics, enter the environment, cause pollution, and result in human exposure and disease. All efforts to reduce plastics' hazards must address the hazards of plastic-associated chemicals. Recommendations To protect human and planetary health, especially the health of vulnerable and at-risk populations, and put the world on track to end plastic pollution by 2040, this Commission supports urgent adoption by the world's nations of a strong and comprehensive Global Plastics Treaty in accord with the mandate set forth in the March 2022 resolution of the United Nations Environment Assembly (UNEA).International measures such as a Global Plastics Treaty are needed to curb plastic production and pollution, because the harms to human health and the environment caused by plastics, plastic-associated chemicals and plastic waste transcend national boundaries, are planetary in their scale, and have disproportionate impacts on the health and well-being of people in the world's poorest nations. Effective implementation of the Global Plastics Treaty will require that international action be coordinated and complemented by interventions at the national, regional, and local levels.This Commission urges that a cap on global plastic production with targets, timetables, and national contributions be a central provision of the Global Plastics Treaty. We recommend inclusion of the following additional provisions:The Treaty needs to extend beyond microplastics and marine litter to include all of the many thousands of chemicals incorporated into plastics.The Treaty needs to include a provision banning or severely restricting manufacture and use of unnecessary, avoidable, and problematic plastic items, especially single-use items such as manufactured plastic microbeads.The Treaty needs to include requirements on extended producer responsibility (EPR) that make fossil carbon producers, plastic producers, and the manufacturers of plastic products legally and financially responsible for the safety and end-of-life management of all the materials they produce and sell.The Treaty needs to mandate reductions in the chemical complexity of plastic products; health-protective standards for plastics and plastic additives; a requirement for use of sustainable non-toxic materials; full disclosure of all components; and traceability of components. International cooperation will be essential to implementing and enforcing these standards.The Treaty needs to include SEJ remedies at each stage of the plastic life cycle designed to fill gaps in community knowledge and advance both distributional and procedural equity.This Commission encourages inclusion in the Global Plastic Treaty of a provision calling for exploration of listing at least some plastic polymers as persistent organic pollutants (POPs) under the Stockholm Convention.This Commission encourages a strong interface between the Global Plastics Treaty and the Basel and London Conventions to enhance management of hazardous plastic waste and slow current massive exports of plastic waste into the world's least-developed countries.This Commission recommends the creation of a Permanent Science Policy Advisory Body to guide the Treaty's implementation. The main priorities of this Body would be to guide Member States and other stakeholders in evaluating which solutions are most effective in reducing plastic consumption, enhancing plastic waste recovery and recycling, and curbing the generation of plastic waste. This Body could also assess trade-offs among these solutions and evaluate safer alternatives to current plastics. It could monitor the transnational export of plastic waste. It could coordinate robust oceanic-, land-, and air-based MNP monitoring programs.This Commission recommends urgent investment by national governments in research into solutions to the global plastic crisis. This research will need to determine which solutions are most effective and cost-effective in the context of particular countries and assess the risks and benefits of proposed solutions. Oceanographic and environmental research is needed to better measure concentrations and impacts of plastics <10 µm and understand their distribution and fate in the global environment. Biomedical research is needed to elucidate the human health impacts of plastics, especially MNPs. Summary This Commission finds that plastics are both a boon to humanity and a stealth threat to human and planetary health. Plastics convey enormous benefits, but current linear patterns of plastic production, use, and disposal that pay little attention to sustainable design or safe materials and a near absence of recovery, reuse, and recycling are responsible for grave harms to health, widespread environmental damage, great economic costs, and deep societal injustices. These harms are rapidly worsening.While there remain gaps in knowledge about plastics' harms and uncertainties about their full magnitude, the evidence available today demonstrates unequivocally that these impacts are great and that they will increase in severity in the absence of urgent and effective intervention at global scale. Manufacture and use of essential plastics may continue. However, reckless increases in plastic production, and especially increases in the manufacture of an ever-increasing array of unnecessary single-use plastic products, need to be curbed.Global intervention against the plastic crisis is needed now because the costs of failure to act will be immense.
Collapse
Affiliation(s)
- Philip J. Landrigan
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
- Centre Scientifique de Monaco, Medical Biology Department, MC
| | - Hervé Raps
- Centre Scientifique de Monaco, Medical Biology Department, MC
| | - Maureen Cropper
- Economics Department, University of Maryland, College Park, US
| | - Caroline Bald
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | | | | | | | | | | | - Patrick Fenichel
- Université Côte d’Azur
- Centre Hospitalier, Universitaire de Nice, FR
| | - Lora E. Fleming
- European Centre for Environment and Human Health, University of Exeter Medical School, UK
| | | | | | | | - Carly Griffin
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Mark E. Hahn
- Biology Department, Woods Hole Oceanographic Institution, US
- Woods Hole Center for Oceans and Human Health, US
| | - Budi Haryanto
- Department of Environmental Health, Universitas Indonesia, ID
- Research Center for Climate Change, Universitas Indonesia, ID
| | - Richard Hixson
- College of Medicine and Health, University of Exeter, UK
| | - Hannah Ianelli
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Bryan D. James
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution
- Department of Biology, Woods Hole Oceanographic Institution, US
| | | | - Amalia Laborde
- Department of Toxicology, School of Medicine, University of the Republic, UY
| | | | - Keith Martin
- Consortium of Universities for Global Health, US
| | - Jenna Mu
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | - Adetoun Mustapha
- Nigerian Institute of Medical Research, Lagos, Nigeria
- Lead City University, NG
| | - Jia Niu
- Department of Chemistry, Boston College, US
| | - Sabine Pahl
- University of Vienna, Austria
- University of Plymouth, UK
| | | | - Maria-Luiza Pedrotti
- Laboratoire d’Océanographie de Villefranche sur mer (LOV), Sorbonne Université, FR
| | | | | | - Bhedita Jaya Seewoo
- Minderoo Foundation, AU
- School of Biological Sciences, The University of Western Australia, AU
| | | | - John J. Stegeman
- Biology Department and Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, US
| | - William Suk
- Superfund Research Program, National Institutes of Health, National Institute of Environmental Health Sciences, US
| | | | - Hideshige Takada
- Laboratory of Organic Geochemistry (LOG), Tokyo University of Agriculture and Technology, JP
| | | | | | - Zhanyun Wang
- Technology and Society Laboratory, WEmpa-Swiss Federal Laboratories for Materials and Technology, CH
| | - Ella Whitman
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | | | - Aroub K. Yousuf
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Sarah Dunlop
- Minderoo Foundation, AU
- School of Biological Sciences, The University of Western Australia, AU
| |
Collapse
|
30
|
Malafaia G, Barceló D. Microplastics in human samples: Recent advances, hot-spots, and analytical challenges. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.117016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
31
|
Wang W, Guan J, Feng Y, Liu S, Zhao Y, Xu Y, Xu H, Fu F. Polystyrene Microplastics Induced Ovarian Toxicity in Juvenile Rats Associated with Oxidative Stress and Activation of the PERK-eIF2α-ATF4-CHOP Signaling Pathway. TOXICS 2023; 11:toxics11030225. [PMID: 36976990 PMCID: PMC10057489 DOI: 10.3390/toxics11030225] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 05/31/2023]
Abstract
Numerous reports confirm that microplastics exposure could induce reproductive toxicity in mammals. However, the effects of microplastics exposure during juveniles on ovarian apoptosis through oxidative and endoplasmic reticulum (ER) stresses remains unclear, which is the focus of our study. In the present study, female rats (4 weeks old) were exposed to polystyrene microplastics (PS-MPs, 1 μm) at different dosages (0, 0.5, and 2.0 mg/kg) for 28 days. Findings revealed that 2.0 mg/kg of PS-MPs distinctly increased the atretic follicle ratio in the ovary and dramatically reduced the serum levels of estrogen and progesterone. Additionally, the oxidative stress indicators declined, including the activity of superoxide dismutase and catalase, whereas the malondialdehyde content in the ovary was considerably enhanced in the 2.0 mg/kg PS-MPs group. Furthermore, the expressions of genes related to ER stress (PERK, eIF2α, ATF4, and CHOP) and apoptosis were remarkably elevated in the 2.0 mg/kg PS-MPs group compared with those in the control group. We found that PS-MPs induced oxidative stress and activated the PERK-eIF2α-ATF4-CHOP signaling pathway in juvenile rats. Moreover, with the oxidative stress inhibitor N-acetyl-cysteine and eIF2α dephosphorylation blocker Salubrinal treatment, ovarian damage induced by PS-MPs was repaired and associated enzyme activities were improved. Overall, our results indicated that PS-MPs exposure induced ovarian injury associated with oxidative stress and activation of the PERK-eIF2α-ATF4-CHOP signaling pathway in juvenile rats, providing new prospects for assessing the health risks of children exposed to microplastics.
Collapse
Affiliation(s)
- Wanzhen Wang
- The Second Affiliated Hospital of Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Jiafu Guan
- The Second Affiliated Hospital of Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Yueying Feng
- The Second Affiliated Hospital of Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Shanji Liu
- The Second Affiliated Hospital of Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Yu Zhao
- The Second Affiliated Hospital of Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Yuanyuan Xu
- The Second Affiliated Hospital of Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Fen Fu
- The Second Affiliated Hospital of Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| |
Collapse
|
32
|
Thanigaivel S, Vickram S, Dey N, Jeyanthi P, Subbaiya R, Kim W, Govarthanan M, Karmegam N. Ecological disturbances and abundance of anthropogenic pollutants in the aquatic ecosystem: Critical review of impact assessment on the aquatic animals. CHEMOSPHERE 2023; 313:137475. [PMID: 36528154 DOI: 10.1016/j.chemosphere.2022.137475] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/02/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Anthropogenic toxins are discharged into the environment and distributed through a variety of environmental matrices. Trace contaminant detection and analysis has advanced dramatically in recent decades, necessitating further specialized technique development. These pollutants can be mobile and persistent in small amounts in the environment, and ecological receptors will interact with it. Despite the fact that few researches have been undertaken on invertebrate exposure, accumulation, and biological implications, it is apparent that a wide range of pollutants can accumulate in the tissues of aquatic insects, earthworms, amphipod crustaceans, and mollusks. Due to long-term stability during long-distance transit, a number of chemical and microbiological agents that were not previously deemed pollutants have been found in various environmental compartments. The uptake of such pollutants by the aquatic organism is done through the process of bioaccumulation when dangerous compounds accumulate in living beings while biomagnification is the process of a pollutant becoming more hazardous as it moves up the trophic chain. Organic and metal pollution harms animals of every species studied so far, from bacteria to phyla in between. The environmental protection agency says these poisons harm humans as well as a variety of aquatic organisms when the water quality is sacrificed in typical wastewater treatment systems. Contrary to popular belief, treated effluents discharged into aquatic bodies contain considerable levels of Anthropogenic contaminants. This evolution necessitates a more robust and recent advancement in the field of remediation and their techniques to completely discharge the various organic and inorganic contaminants.
Collapse
Affiliation(s)
- Sundaram Thanigaivel
- Department of Biotechnology, Faculty of Science & Humanities, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603 203, India
| | - Sundaram Vickram
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai, 602 105, Tamil Nadu, India
| | - Nibedita Dey
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai, 602 105, Tamil Nadu, India
| | - Palanivelu Jeyanthi
- Department of Biotechnology, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, 600 062, India
| | - Ramasamy Subbaiya
- Department of Biological Sciences, School of Mathematics and Natural Sciences, The Copperbelt University, Riverside, Jambo Drive, P O Box 21692, Kitwe, Zambia
| | - Woong Kim
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea.
| | - Muthusamy Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Natchimuthu Karmegam
- PG and Research Department of Botany, Government Arts College (Autonomous), Salem, 636 007, Tamil Nadu, India.
| |
Collapse
|
33
|
Pérez-Reverón R, Álvarez-Méndez SJ, González-Sálamo J, Socas-Hernández C, Díaz-Peña FJ, Hernández-Sánchez C, Hernández-Borges J. Nanoplastics in the soil environment: Analytical methods, occurrence, fate and ecological implications. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120788. [PMID: 36481462 DOI: 10.1016/j.envpol.2022.120788] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/19/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Soils play a very important role in ecosystems sustainability, either natural or agricultural ones, serving as an essential support for living organisms of different kinds. However, in the current context of extremely high plastic pollution, soils are highly threatened. Plastics can change the chemical and physical properties of the soils and may also affect the biota. Of particular importance is the fact that plastics can be fragmented into microplastics and, to a final extent into nanoplastics. Due to their extremely low size and high surface area, nanoplastics may even have a higher impact in soil ecosystems. Their transport through the edaphic environment is regulated by the physicochemical properties of the soil and plastic particles themselves, anthropic activities and biota interactions. Their degradation in soils is associated with a series of mechanical, photo-, thermo-, and bio-mediated transformations eventually conducive to their mineralisation. Their tiny size is precisely the main setback when it comes to sampling soils and subsequent processes for their identification and quantification, albeit pyrolysis coupled with gas chromatography-mass spectrometry and other spectroscopic techniques have proven to be useful for their analysis. Another issue as a consequence of their minuscule size lies in their uptake by plants roots and their ingestion by soil dwelling fauna, producing morphological deformations, damage to organs and physiological malfunctions, as well as the risks associated to their entrance in the food chain, although current conclusions are not always consistent and show the same pattern of effects. Thus, given the omnipresence and seriousness of the plastic menace, this review article pretends to provide a general overview of the most recent data available regarding nanoplastics determination, occurrence, fate and effects in soils, with special emphasis on their ecological implications.
Collapse
Affiliation(s)
- Raquel Pérez-Reverón
- Departamento de Biología Animal, Edafología y Geología, Facultad de Ciencias, Universidad de La Laguna (ULL). Avda. Astrofísico Fco. Sánchez, s/n, 38206, San Cristóbal de La Laguna, Spain
| | - Sergio J Álvarez-Méndez
- Departamento de Biología Animal, Edafología y Geología, Facultad de Ciencias, Universidad de La Laguna (ULL). Avda. Astrofísico Fco. Sánchez, s/n, 38206, San Cristóbal de La Laguna, Spain; Instituto Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna (ULL), Avda. Astrofísico Francisco Sánchez, s/n, 38206 La Laguna, Tenerife, Spain; Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL). Avda. Astrofísico Fco. Sánchez, s/n, 38206, San Cristóbal de La Laguna, Spain
| | - Javier González-Sálamo
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL). Avda. Astrofísico Fco. Sánchez, s/n, 38206, San Cristóbal de La Laguna, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206, San Cristóbal de La Laguna, Spain; Department of Chemistry, Sapienza University of Rome, P.le Aldo Moro, 5, 00185, Rome, Italy
| | - Cristina Socas-Hernández
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL). Avda. Astrofísico Fco. Sánchez, s/n, 38206, San Cristóbal de La Laguna, Spain; Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Avenida Catalunya, 21, 46020, Valencia, Spain
| | - Francisco J Díaz-Peña
- Departamento de Biología Animal, Edafología y Geología, Facultad de Ciencias, Universidad de La Laguna (ULL). Avda. Astrofísico Fco. Sánchez, s/n, 38206, San Cristóbal de La Laguna, Spain
| | - Cintia Hernández-Sánchez
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206, San Cristóbal de La Laguna, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Forense y Legal y Parasitología, Área de Medicina Preventiva y Salud Pública, Escuela Politécnica Superior de Ingeniería, Sección de Náutica, Máquinas y Radioelectrónica Naval, Universidad de La Laguna (ULL), Vía Auxiliar Paso Alto 2, 38001, Santa Cruz de Tenerife, Spain
| | - Javier Hernández-Borges
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL). Avda. Astrofísico Fco. Sánchez, s/n, 38206, San Cristóbal de La Laguna, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206, San Cristóbal de La Laguna, Spain.
| |
Collapse
|
34
|
Dong X, Liu X, Hou Q, Wang Z. From natural environment to animal tissues: A review of microplastics(nanoplastics) translocation and hazards studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158686. [PMID: 36099943 DOI: 10.1016/j.scitotenv.2022.158686] [Citation(s) in RCA: 64] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/24/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
Microplastics (MPs) and nanoplastic (NPs) pollution is a global concern due to the massive use of plastic products. Although there have been many studies on the treatments of animals with MPs/NPs, there are few systematic summaries of MPs/NPs translocation and hazards in animals. This review comprehensively summarizes the pathways by which animals are exposed to MPs/NPs in the environment, in particular, to summarize in detail their translocation and hazards in vivo. Studies have shown that MPs/NPs enter the animals' body through water, food, breath and even skin, enter the blood circulation through the lungs and digestive tract, and eventually accumulate in various tissues. After a summary of the studies, we found a high correlation between the tissue accumulation of MPs/NPs and their particle size, with 4-20 μm MPs appearing to be more prone to accumulate in tissues. These MPs/NPs accumulated in animal tissues may be transferred to humans through the food chain. Thus, we summarized the studies on the accumulation of MPs/NPs in livestock and poultry products, showing that MPs/NPs in livestock and poultry products gradually increased with the complexity of processing and packaging processes. There are few reports related to direct contamination of livestock products by MPs/NPs, we hope that this review will bring together the growing body of evidence that MPs/NPs can directly harm human health through the food chain.
Collapse
Affiliation(s)
- Xusheng Dong
- Ruminant Nutrition and Physiology Laboratory, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, PR China
| | - Xinbei Liu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Tai'an, PR China
| | - Qiuling Hou
- Ruminant Nutrition and Physiology Laboratory, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, PR China
| | - Zhonghua Wang
- Ruminant Nutrition and Physiology Laboratory, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, PR China.
| |
Collapse
|
35
|
Gabbrielli S, Colnaghi L, Mazzuoli-Weber G, Redaelli ACL, Gautieri A. In Silico Analysis of Nanoplastics' and β-amyloid Fibrils' Interactions. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010388. [PMID: 36615582 PMCID: PMC9824275 DOI: 10.3390/molecules28010388] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/20/2022] [Accepted: 12/25/2022] [Indexed: 01/04/2023]
Abstract
Plastic pollution has become a global environmental threat, which leads to an increasing concern over the consequences of plastic exposition on global health. Plastic nanoparticles have been shown to influence the folding of proteins and influence the formation of aberrant amyloid proteins, therefore potentially triggering the development of systemic and local amyloidosis. This work aims to study the interaction between nanoplastics and β-amyloid fibrils to better understand the potential role of nanoplastics in the outbreak of neurodegenerative disorders. Using microsecond-long coarse-grained molecular dynamics simulations, we investigated the interactions between neutral and charged nanoparticles made of the most common plastic materials (i.e., polyethylene, polypropylene, and polystyrene) and β-amyloid fibrils. We observe that the occurrence of contacts, region of amyloid fibril involved, and specific amino acids mediating the interaction depend on the type and charge of the nanoparticles.
Collapse
Affiliation(s)
- Silvia Gabbrielli
- Biomolecular Engineering Lab, Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Luca Colnaghi
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano, Italy
- School of Medicine, Vita-Salute San Raffaele University, Via Olgettina 58, 20132 Milano, Italy
| | - Gemma Mazzuoli-Weber
- Center for Systems Neuroscience (ZSN), 30559 Hannover, Germany
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Foundation, 30173 Hannover, Germany
| | - Alberto Cesare Luigi Redaelli
- Biomolecular Engineering Lab, Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Alfonso Gautieri
- Biomolecular Engineering Lab, Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
- Correspondence:
| |
Collapse
|
36
|
Hu R, Yao C, Li Y, Qu J, Yu S, Han Y, Chen G, Tang J, Wei H. Polystyrene nanoplastics promote CHIP-mediated degradation of tight junction proteins by activating IRE1α/XBP1s pathway in mouse Sertoli cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 248:114332. [PMID: 36446169 DOI: 10.1016/j.ecoenv.2022.114332] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/15/2022] [Accepted: 11/22/2022] [Indexed: 06/16/2023]
Abstract
Microplastics (MPs) and nanoplastics (NPs) widely exist in human living environment and enter the body through water, food chain and breathing. Several studies have shown that MPs or NPs disrupt the blood-testis barrier in rodents. However, the molecular mechanism by which MPs and NPs damage the blood-testis barrier remains unclear. In the present study, our aim was to investigate the molecular mechanism of the destruction of blood-testis barrier induced by polystyrene (PS)-NPs. Mice were treated with 50 μg/kg·day PS-NPs by tail vein injection once daily for two consecutive days. The results showed that PS-NPs exposure significantly decreased the levels of tight junction (TJ) proteins ZO-2, occludin and claudin-11 in testis of mice. In vitro, we used TM4 Sertoli cells to explore the underlying mechanism of the decrease in TJ proteins induced by PS-NPs. We found that PS-NPs activated IRE1α and induced its downstream XBP1 splicing, which in turn elevated the expression of the E3 ubiquitin ligase CHIP, then CHIP triggers proteasomal degradation of ZO-2, occludin, and claudin-11 proteins. Our findings suggest that IRE1α/XBP1s/CHIP pathway is a pivotal mechanism of TJ proteins degradation induced by PS-NPs in mouse Sertoli cells. In conclusion, our results reveal that the degradation of TJ proteins is one of the mechanisms of blood-testis barrier destruction caused by acute exposure to PS-NPs.
Collapse
Affiliation(s)
- Runzhi Hu
- Department of Occupational Medicine and Environmental Toxicology, College of Public Health, Nantong University, Nantong, Jiangsu 226019, China
| | - Chenjuan Yao
- Department of Molecular Oral Physiology, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima-Shi, Tokushima 770-8504, Japan
| | - Yanli Li
- Department of Occupational Medicine and Environmental Toxicology, College of Public Health, Nantong University, Nantong, Jiangsu 226019, China
| | - Jianhua Qu
- Department of Occupational Medicine and Environmental Toxicology, College of Public Health, Nantong University, Nantong, Jiangsu 226019, China
| | - Shali Yu
- Department of Occupational Medicine and Environmental Toxicology, College of Public Health, Nantong University, Nantong, Jiangsu 226019, China
| | - Yu Han
- Department of Occupational Medicine and Environmental Toxicology, College of Public Health, Nantong University, Nantong, Jiangsu 226019, China
| | - Gang Chen
- Department of Occupational Medicine and Environmental Toxicology, College of Public Health, Nantong University, Nantong, Jiangsu 226019, China.
| | - Juan Tang
- Department of Occupational Medicine and Environmental Toxicology, College of Public Health, Nantong University, Nantong, Jiangsu 226019, China.
| | - Haiyan Wei
- Department of Occupational Medicine and Environmental Toxicology, College of Public Health, Nantong University, Nantong, Jiangsu 226019, China.
| |
Collapse
|
37
|
Keerthana Devi M, Karmegam N, Manikandan S, Subbaiya R, Song H, Kwon EE, Sarkar B, Bolan N, Kim W, Rinklebe J, Govarthanan M. Removal of nanoplastics in water treatment processes: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157168. [PMID: 35817120 DOI: 10.1016/j.scitotenv.2022.157168] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Nanoplastics are drawing a significant attention as a result of their propensity to spread across the environment and pose a threat to all organisms. The presence of nanoplastics in water is given attention nowadays as the transit of nanoplastics occurs through the aquatic ecosphere besides terrestrial mobility. The principal removal procedures for macro-and micro-plastic particles are effective, but nanoparticles escape from the treatment, increasing in the water and significantly influencing the society. This critical review is aimed to bestow the removal technologies of nanoplastics from aquatic ecosystems, with a focus on the treatment of freshwater, drinking water, and wastewater, as well as the importance of transit and its impact on health concerns. Still, there exists a gap in providing a collective knowledge on the methods available for nanoplastics removal. Hence, this review offered various nanoplastic removal technologies (microorganism-based degradation, membrane separation with a reactor, and photocatalysis) that could be the practical/effective measures along with the traditional procedures (filtration, coagulation, centrifugation, flocculation, and gravity settling). From the analyses of different treatment systems, the effectiveness of nanoplastics removal depends on various factors, source, size, and type of nanoplastics apart from the treatment method adopted. Combined removal methods, filtration with coagulation offer great scope for the removal of nanoplastics from drinking water with >99 % efficiency. The collected data could serve as base-line information for future research and development in water nanoplastics cleanup.
Collapse
Affiliation(s)
- M Keerthana Devi
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai 602 105, Tamil Nadu, India
| | - N Karmegam
- Department of Botany, Government Arts College (Autonomous), Salem 636 007, Tamil Nadu, India.
| | - S Manikandan
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai 602 105, Tamil Nadu, India
| | - R Subbaiya
- Department of Biological Sciences, School of Mathematics and Natural Sciences, The Copperbelt University, Riverside, Jambo Drive, P O Box 21692, Kitwe, Zambia
| | - Hocheol Song
- Department of Environment and Energy, Sejong University, 98 Gunja-Dong, Guangjin-Gu, Seoul, South Korea
| | - Eilhann E Kwon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Binoy Sarkar
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Nanthi Bolan
- School of Agriculture and Environment, The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| | - Woong Kim
- Department of Environmental Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water and Waste Management, Laboratory of Soil and Groundwater Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan 173212, Himachal Pradesh, India; Department of Environment and Energy, Sejong University, 98 Gunja-Dong, Guangjin-Gu, Seoul, South Korea.
| | - M Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu 41566, Republic of Korea; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai 600 077, India.
| |
Collapse
|