1
|
You Y, Zhou Y, Duan X, Mao X, Li Y. Research progress on the application of different preservation methods for controlling fungi and toxins in fruit and vegetable. Crit Rev Food Sci Nutr 2023; 63:12441-12452. [PMID: 35866524 DOI: 10.1080/10408398.2022.2101982] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Fruits and vegetables are susceptible to fungal infections during picking, transportation, storage and processing, which have a high potential to produce toxins. Fungi and toxins can cause acute or chronic poisoning after entering the body. In the field of fruit and vegetable preservation, technologies such as temperature control, modified atmosphere, irradiation, application of natural or chemical preservatives, and edible films are commonly used. In practical applications, according to the types, physiological differences and actual needs of fruits and vegetables, suitable preservation methods can be selected to achieve the effect of preservation and control of fungi and toxins. The starting point of fresh-keeping technology is to delay post-harvest senescence of fruits and vegetables, inhibit the respiratory intensity, and control the reproduction of microorganisms, which is important to control the reproduction of fungi and the production of toxins. From the three directions of physical, chemical and biological means, the article analyses and explores the effects of different external factors on the production of toxins and the effects of different preservation techniques on fungal growth and toxin production in fruits and vegetables, in order to provide new ideas for the preservation of fruits and vegetables and the control of harmful substances in food.
Collapse
Affiliation(s)
- Yanli You
- Yantai University, Yantai, Shandong, People's Republic of China
| | - Yunna Zhou
- Yantai University, Yantai, Shandong, People's Republic of China
| | - Xuewu Duan
- Department of South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, People's Republic of China
| | - Xin Mao
- Yantai University, Yantai, Shandong, People's Republic of China
| | - Yanshen Li
- Yantai University, Yantai, Shandong, People's Republic of China
| |
Collapse
|
2
|
Meléndez-Martínez AJ, Esquivel P, Rodriguez-Amaya DB. Comprehensive review on carotenoid composition: Transformations during processing and storage of foods. Food Res Int 2023; 169:112773. [DOI: 10.1016/j.foodres.2023.112773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 04/08/2023]
|
3
|
Rodrigues JPB, Liberal Â, Petropoulos SA, Ferreira ICFR, Oliveira MBPP, Fernandes Â, Barros L. Agri-Food Surplus, Waste and Loss as Sustainable Biobased Ingredients: A Review. Molecules 2022; 27:molecules27165200. [PMID: 36014439 PMCID: PMC9412510 DOI: 10.3390/molecules27165200] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/02/2022] [Accepted: 08/10/2022] [Indexed: 11/30/2022] Open
Abstract
Ensuring a sustainable supply of food for the world’s fast growing population is a major challenge in today’s economy, as modern lifestyle and increasing consumer concern with maintaining a balanced and nutritious diet is an important challenge for the agricultural sector worldwide. This market niche for healthier products, especially fruits and vegetables, has increased their production, consequently resulting in increased amounts of agri-food surplus, waste, and loss (SWL) generated during crop production, transportation, storage, and processing. Although many of these materials are not utilized, negatively affecting the environmental, economic, and social segments, they are a rich source of valuable compounds that could be used for different purposes, thus preventing the losses of natural resources and boosting a circular economy. This review aimed to give insights on the efficient management of agri-food SWL, considering conventional and emerging recovery and reuse techniques. Particularly, we explored and summarized the chemical composition of three worldwide cultivated and consumed vegetables (carrots, broccoli and lettuce) and evaluate the potential of their residues as a sustainable alternative for extracting value-added ingredients for the development of new biodynamic products.
Collapse
Affiliation(s)
- Joana P. B. Rodrigues
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Ângela Liberal
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Spyridon A. Petropoulos
- Laboratory of Vegetable Production, Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Fytokou Street, N. Ionia, 384 46 Volos, Greece
| | - Isabel C. F. R. Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Maria Beatriz P. P. Oliveira
- REQUIMTE/Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira no. 228, 4050-313 Porto, Portugal
| | - Ângela Fernandes
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Correspondence: (Â.F.); (L.B.)
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Correspondence: (Â.F.); (L.B.)
| |
Collapse
|
4
|
Dias MG, Borge GIA, Kljak K, Mandić AI, Mapelli-Brahm P, Olmedilla-Alonso B, Pintea AM, Ravasco F, Tumbas Šaponjac V, Sereikaitė J, Vargas-Murga L, Vulić JJ, Meléndez-Martínez AJ. European Database of Carotenoid Levels in Foods. Factors Affecting Carotenoid Content. Foods 2021; 10:912. [PMID: 33919309 PMCID: PMC8143354 DOI: 10.3390/foods10050912] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/07/2021] [Accepted: 04/14/2021] [Indexed: 11/16/2022] Open
Abstract
Many studies indicate that diets including carotenoid-rich foods have positive effects on human health. Some of these compounds are precursors of the essential nutrient vitamin A. The present work is aimed at implementing a database of carotenoid contents of foods available in the European market. Factors affecting carotenoid content were also discussed. Analytical data available in peer-reviewed scientific literature from 1990 to 2018 and obtained by HPLC/UHPLC were considered. The database includes foods classified according to the FoodEx2 system and will benefit compilers, nutritionists and other professionals in areas related to food and human health. The results show the importance of food characterization to ensure its intercomparability, as large variations in carotenoid levels are observed between species and among varieties/cultivars/landraces. This highlights the significance of integrating nutritional criteria into agricultural choices and of promoting biodiversity. The uncertainty quantification associated with the measurements of the carotenoid content was very rarely evaluated in the literature consulted. According to the EuroFIR data quality evaluation system for food composition tables, the total data quality index mean was 24 in 35, reflecting efforts by researchers in the analytical methods, and less resources in the sampling plan documentation.
Collapse
Affiliation(s)
- M. Graça Dias
- Food and Nutrition Department, National Institute of Health Doutor Ricardo Jorge, IP, Av. Padre Cruz, 1649-016 Lisboa, Portugal; (M.G.D.); (F.R.)
| | - Grethe Iren A. Borge
- Nofima AS, Norwegian Institute of Food, Fisheries and Aquaculture Research, NO 1433 Ås, Norway;
| | - Kristina Kljak
- Department of Animal Nutrition, Faculty of Agriculture, University of Zagreb, Svetošimunska Cesta 25, 10 000 Zagreb, Croatia;
| | - Anamarija I. Mandić
- Institute of Food Technology in Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia;
| | - Paula Mapelli-Brahm
- Food Colour & Quality Laboratory, Department of Nutrition & Food Science, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain;
| | | | - Adela M. Pintea
- Chemistry and Biochemistry Department, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania;
| | - Francisco Ravasco
- Food and Nutrition Department, National Institute of Health Doutor Ricardo Jorge, IP, Av. Padre Cruz, 1649-016 Lisboa, Portugal; (M.G.D.); (F.R.)
| | - Vesna Tumbas Šaponjac
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (V.T.Š.); (J.J.V.)
| | - Jolanta Sereikaitė
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, 10223 Vilnius, Lithuania;
| | | | - Jelena J. Vulić
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (V.T.Š.); (J.J.V.)
| | - Antonio J. Meléndez-Martínez
- Food Colour & Quality Laboratory, Department of Nutrition & Food Science, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain;
| |
Collapse
|
5
|
Huang X, Zhang X, Jiang X, Huang S, Pang X, Qu H, Zhang Z. Quality retention and selective gene expression of Chinese flowering cabbage as affected by atmosphere gas composition. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14548] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Xuemei Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources College of Horticulture South China Agricultural University Guangzhou China
| | - Xuelian Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources College of Horticulture South China Agricultural University Guangzhou China
- College of Life Sciences South China Agricultural University Guangzhou China
| | - Xiaoyang Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources College of Horticulture South China Agricultural University Guangzhou China
| | - Shuisheng Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources College of Horticulture South China Agricultural University Guangzhou China
| | - Xuequn Pang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources College of Horticulture South China Agricultural University Guangzhou China
- College of Life Sciences South China Agricultural University Guangzhou China
| | - Hongxia Qu
- South China Botanical Garden Chinese Academy of Sciences Guangzhou China
| | - Zhaoqi Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources College of Horticulture South China Agricultural University Guangzhou China
| |
Collapse
|
6
|
Ngamwonglumlert L, Devahastin S, Chiewchan N, Raghavan V. Plant carotenoids evolution during cultivation, postharvest storage, and food processing: A review. Compr Rev Food Sci Food Saf 2020; 19:1561-1604. [DOI: 10.1111/1541-4337.12564] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 04/03/2020] [Accepted: 04/06/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Luxsika Ngamwonglumlert
- Advanced Food Processing Research Laboratory, Department of Food Engineering, Faculty of EngineeringKing Mongkut's University of Technology Thonburi Bangkok Thailand
| | - Sakamon Devahastin
- Advanced Food Processing Research Laboratory, Department of Food Engineering, Faculty of EngineeringKing Mongkut's University of Technology Thonburi Bangkok Thailand
- The Academy of ScienceThe Royal Society of Thailand Bangkok Thailand
| | - Naphaporn Chiewchan
- Advanced Food Processing Research Laboratory, Department of Food Engineering, Faculty of EngineeringKing Mongkut's University of Technology Thonburi Bangkok Thailand
| | - Vijaya Raghavan
- Department of Bioresource Engineering, Faculty of Agricultural and Environmental Sciences, Macdonald CampusMcGill University Montreal Quebec Canada
| |
Collapse
|
7
|
Loi M, Liuzzi VC, Fanelli F, De Leonardis S, Maria Creanza T, Ancona N, Paciolla C, Mulè G. Effect of different light-emitting diode (LED) irradiation on the shelf life and phytonutrient content of broccoli (Brassica oleracea L. var. italica). Food Chem 2019; 283:206-214. [PMID: 30722863 DOI: 10.1016/j.foodchem.2019.01.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/31/2018] [Accepted: 01/01/2019] [Indexed: 01/03/2023]
Abstract
Broccoli (Brassica oleracea L. var. italica) is largely cultivated in southern Italy. It is an important source of phytonutrients, which are partially lost during postharvest storage. The aim of this work was to evaluate the overall effect of five different low-intensity light-emitting diodes (LEDs) on the quality parameters of broccoli florets over 20 d of cold storage. The level of ascorbic acid, chlorophylls, carotenoids, phenolic compounds and soluble proteins, as well as colour analysis, were evaluated. Green LED increased the chlorophyll and ascorbic acid content; white, red and yellow LEDs had a positive effect on the redox status of broccoli. Globally, only green LED had a statistically significant positive effect when considering all analysed parameters and could be proposed to prolong the shelf life of broccoli during cold storage.
Collapse
Affiliation(s)
- Martina Loi
- Institute of Sciences of Food Production, CNR, via G. Amendola 122/O, 70126 Bari, Italy
| | - Vania C Liuzzi
- Institute of Sciences of Food Production, CNR, via G. Amendola 122/O, 70126 Bari, Italy
| | - Francesca Fanelli
- Institute of Sciences of Food Production, CNR, via G. Amendola 122/O, 70126 Bari, Italy
| | - Silvana De Leonardis
- Department of Biology, University of Bari "Aldo Moro", via E. Orabona 4, 70l25 Bari, Italy
| | - Teresa Maria Creanza
- Institute of Intelligent Industrial Systems and Technologies for Advanced Manufacturing, CNR, via G. Amendola 122/D, 70126 Bari, Italy
| | - Nicola Ancona
- Institute of Intelligent Industrial Systems and Technologies for Advanced Manufacturing, CNR, via G. Amendola 122/D, 70126 Bari, Italy
| | - Costantino Paciolla
- Department of Biology, University of Bari "Aldo Moro", via E. Orabona 4, 70l25 Bari, Italy.
| | - Giuseppina Mulè
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, CNR, via G. Amendola 165/A, 70126 Bari, Italy
| |
Collapse
|
8
|
Freezing Efficiency and Quality Attributes as Affected by Voids in Plant Tissues During Ultrasound-Assisted Immersion Freezing. FOOD BIOPROCESS TECH 2018. [DOI: 10.1007/s11947-018-2103-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
9
|
Influence of Modified Atmosphere Packaging (MAP) on the Shelf Life and Quality of Broccoli During Storage. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/s41783-018-0030-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
10
|
Bell L, Wagstaff C. Enhancement Of Glucosinolate and Isothiocyanate Profiles in Brassicaceae Crops: Addressing Challenges in Breeding for Cultivation, Storage, and Consumer-Related Traits. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:9379-9403. [PMID: 28968493 DOI: 10.1021/acs.jafc.7b03628] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Glucosinolates (GSLs) and isothiocyanates (ITCs) produced by Brassicaceae plants are popular targets for analysis due to the health benefits associated with them. Breeders aim to increase the concentrations in commercial varieties; however, there are few examples of this. The most well-known is Beneforté broccoli, which has increased glucoraphanin/sulforaphane concentrations compared to those of conventional varieties. It was developed through traditional breeding methods with considerations for processing, consumption, and health made throughout this process. Many studies presented in the literature do not take a holistic approach, and key points about breeding, cultivation methods, postharvest storage, sensory attributes, and consumer preferences are not properly taken into account. In this review, we draw together data for multiple species and address how such factors can influence GSL profiles. We encourage researchers and institutions to engage with industry and consumers to produce research that can be utilized in the improvement of Brassicaceae crops.
Collapse
Affiliation(s)
- Luke Bell
- Department of Food & Nutritional Sciences, University of Reading , Whiteknights, Reading, Berkshire RG6 6AP, United Kingdom
| | - Carol Wagstaff
- Department of Food & Nutritional Sciences, University of Reading , Whiteknights, Reading, Berkshire RG6 6AP, United Kingdom
| |
Collapse
|
11
|
Fernández-León AM, Fernández-León MF, González-Gómez D, Ayuso MC, Bernalte MJ. Quantification and bioaccessibility of intact glucosinolates in broccoli ‘Parthenon’ and Savoy cabbage ‘Dama’. J Food Compost Anal 2017. [DOI: 10.1016/j.jfca.2016.11.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
12
|
Perini MA, Sin IN, Reyes Jara AM, Gómez Lobato ME, Civello PM, Martínez GA. Hot water treatments performed in the base of the broccoli stem reduce postharvest senescence of broccoli ( Brassica oleracea L. Var italic) heads stored at 20 °C. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2016.11.066] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Radziejewska-Kubzdela E. The effect of pretreatment and modified atmosphere packaging on bioactive compound content in coleslaw mix. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2016.09.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Lv J, Wu J, Zuo J, Fan L, Shi J, Gao L, Li M, Wang Q. Effect of Se treatment on the volatile compounds in broccoli. Food Chem 2016; 216:225-33. [PMID: 27596413 DOI: 10.1016/j.foodchem.2016.08.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 07/06/2016] [Accepted: 08/03/2016] [Indexed: 11/28/2022]
Abstract
Broccoli contains high levels of bioactive compounds but deteriorates and senesces easily. In the present study, freshly harvested broccoli was treated with selenite and stored at two different temperatures. The effect of selenite treatment on sensory quality and postharvest physiology were analyzed. Volatile components were assessed by HS-SPME combined with GC-MS and EN. The metabolism of Se and S was also examined. Results indicated that Se treatment had a significant effect on maintaining the sensory quality, suppressing the respiration intensity and ethylene production, as well as increasing the content of Se and decreasing the content of S. In particular, significant differences in the composition of volatile compounds were present between control and Se-treated. The differences were mainly due to differences in alcohols and sulfide compounds. These results demonstrate that Se treatment can have a positive effect on maintaining quality and enhancing its sensory quality through the release of volatile compounds.
Collapse
Affiliation(s)
- Jiayu Lv
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Key Laboratory of Urban Agriculture (North), Ministry of Agriculture, Beijing 100097, China
| | - Jie Wu
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Key Laboratory of Urban Agriculture (North), Ministry of Agriculture, Beijing 100097, China; Key Laboratory of Agri-Food Safety of Anhui Province and Laboratory of Quality and Safty Risk Assessment for Agricultural Products on Storage and Preservation of the Ministry of Agriculture (Hefei), School of Plant Protection - School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Jinhua Zuo
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Key Laboratory of Urban Agriculture (North), Ministry of Agriculture, Beijing 100097, China
| | - Linlin Fan
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Key Laboratory of Urban Agriculture (North), Ministry of Agriculture, Beijing 100097, China
| | - Junyan Shi
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Key Laboratory of Urban Agriculture (North), Ministry of Agriculture, Beijing 100097, China
| | - Lipu Gao
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Key Laboratory of Urban Agriculture (North), Ministry of Agriculture, Beijing 100097, China
| | - Miao Li
- Key Laboratory of Agri-Food Safety of Anhui Province and Laboratory of Quality and Safty Risk Assessment for Agricultural Products on Storage and Preservation of the Ministry of Agriculture (Hefei), School of Plant Protection - School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China.
| | - Qing Wang
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Key Laboratory of Urban Agriculture (North), Ministry of Agriculture, Beijing 100097, China.
| |
Collapse
|
15
|
Mogren LM, Beacham AM, Reade JPH, Monaghan JM. Moderate water stress prevents the postharvest decline of ascorbic acid in spinach (Spinacia oleracea L.) but not in spinach beet (Beta vulgaris L.). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:2976-2980. [PMID: 26381599 DOI: 10.1002/jsfa.7464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 09/07/2015] [Accepted: 09/15/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND Babyleaf salads such as spinach (Spinacia oleracea L.) and spinach beet (Beta vulgaris L. subsp. cicla var. cicla) are an important dietary source of antioxidants such as ascorbic acid (vitamin C). Such compounds may be important in disease prevention in consumers but the level of these compounds in leaves frequently declines after harvest. As such, methods to maintain antioxidant levels in fresh produce are being sought. RESULTS Irrigation deficits were used to apply water stress to S. oleracea and B. vulgaris plants. This treatment prevented postharvest decline of leaf ascorbic acid content in S. oleracea but not in B. vulgaris. Ascorbic acid levels in leaves at harvest were unaffected by the treatment in both species compared to well-watered controls. CONCLUSION We have shown that restricted irrigation provides a viable means to maintain leaf vitamin content after harvest in S. oleracea, an important finding for producers, retailers and consumers alike. © 2015 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lars M Mogren
- Fresh Produce Research Centre, Crop and Environment Sciences Department, Harper Adams University, Edgmond, Shropshire, TF10 8NB, UK
- Crop and Environment Sciences Department, Harper Adams University, Edgmond, Shropshire, TF10 8NB, UK
| | - Andrew M Beacham
- Fresh Produce Research Centre, Crop and Environment Sciences Department, Harper Adams University, Edgmond, Shropshire, TF10 8NB, UK
| | - John P H Reade
- Crop and Environment Sciences Department, Harper Adams University, Edgmond, Shropshire, TF10 8NB, UK
| | - James M Monaghan
- Fresh Produce Research Centre, Crop and Environment Sciences Department, Harper Adams University, Edgmond, Shropshire, TF10 8NB, UK
| |
Collapse
|
16
|
Sánchez F, García F, Calvo P, Bernalte M, González-Gómez D. Optimization of broccoli microencapsulation process by complex coacervation using response surface methodology. INNOV FOOD SCI EMERG 2016. [DOI: 10.1016/j.ifset.2016.02.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
17
|
Kang JW, Kang DH. Enhanced antimicrobial effect of organic acid washing against foodborne pathogens on broccoli by vacuum impregnation. Int J Food Microbiol 2016; 217:85-93. [DOI: 10.1016/j.ijfoodmicro.2015.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 09/30/2015] [Accepted: 10/04/2015] [Indexed: 10/22/2022]
|
18
|
dos Reis LCR, Pechina M, de Oliveira VR, Hagen MEK, Jablonski A, Flôres SH, de Oliveira Rios A. Effect of Different Thawing Conditions on the Concentration of Bioactive Substances in Broccoli ( B
rassica oleracea
var. A
venger
). J FOOD PROCESS PRES 2015. [DOI: 10.1111/jfpp.12517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Luzia Caroline Ramos dos Reis
- Instituto de Ciência e Tecnologia de Alimentos; Universidade Federal do Rio Grande do Sul (UFRGS); Av. Bento Gonçalves, 9500 Prédio 43.212 Campus do Vale Porto Alegre CEP 91501-970 Rio Grande do Sul Brazil
| | - Matheus Pechina
- Instituto de Ciência e Tecnologia de Alimentos; Universidade Federal do Rio Grande do Sul (UFRGS); Av. Bento Gonçalves, 9500 Prédio 43.212 Campus do Vale Porto Alegre CEP 91501-970 Rio Grande do Sul Brazil
| | - Viviani Ruffo de Oliveira
- Curso de Nutrição; Faculdade de Medicina; Universidade Federal do Rio Grande do Sul (UFRGS); Av. Bento Gonçalves, 9500 Prédio 43.212 Campus do Vale Porto Alegre CEP 91501-970 Rio Grande do Sul Brazil
| | - Martine Elisabeth Kienzle Hagen
- Curso de Nutrição; Faculdade de Medicina; Universidade Federal do Rio Grande do Sul (UFRGS); Av. Bento Gonçalves, 9500 Prédio 43.212 Campus do Vale Porto Alegre CEP 91501-970 Rio Grande do Sul Brazil
| | - André Jablonski
- Departamento de Engenharia de Minas; Universidade Federal do Rio Grande do Sul (UFRGS); Av. Bento Gonçalves, 9500 Prédio 43.212 Campus do Vale Porto Alegre CEP 91501-970 Rio Grande do Sul Brazil
| | - Simone Hickmann Flôres
- Instituto de Ciência e Tecnologia de Alimentos; Universidade Federal do Rio Grande do Sul (UFRGS); Av. Bento Gonçalves, 9500 Prédio 43.212 Campus do Vale Porto Alegre CEP 91501-970 Rio Grande do Sul Brazil
| | - Alessandro de Oliveira Rios
- Instituto de Ciência e Tecnologia de Alimentos; Universidade Federal do Rio Grande do Sul (UFRGS); Av. Bento Gonçalves, 9500 Prédio 43.212 Campus do Vale Porto Alegre CEP 91501-970 Rio Grande do Sul Brazil
| |
Collapse
|
19
|
Bachiega P, Salgado JM, de Carvalho JE, Ruiz ALTG, Schwarz K, Tezotto T, Morzelle MC. Antioxidant and antiproliferative activities in different maturation stages of broccoli (Brassica oleracea Italica) biofortified with selenium. Food Chem 2015. [PMID: 26213037 DOI: 10.1016/j.foodchem.2015.06.024] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In this work, three different broccoli maturity stages subjected to biofortification with selenium were evaluated for antioxidant and antiproliferative activities. Antioxidant trials have shown that the maturation stages biofortified with selenium had significantly higher amounts of phenolic compounds and antioxidant activity, especially seedlings. Although non-polar extracts of all samples show antiproliferative activity, the extract of broccoli seedlings biofortified with selenium stood out, presenting cytocidal activity for a glioma line (U251, GI50 28.5 mg L(-1)).
Collapse
Affiliation(s)
- Patricia Bachiega
- Departamento de Agroindústria, Alimentos e Nutrição, Laboratório de Bromatologia, Escola Superior de Agricultura "Luiz de Queiroz"/Universidade de São Paulo (Esalq/USP), Avenida Pádua Dias, 111, 13418-900 Piracicaba, SP, Brazil.
| | - Jocelem Mastrodi Salgado
- Departamento de Agroindústria, Alimentos e Nutrição, Laboratório de Bromatologia, Escola Superior de Agricultura "Luiz de Queiroz"/Universidade de São Paulo (Esalq/USP), Avenida Pádua Dias, 111, 13418-900 Piracicaba, SP, Brazil
| | - João Ernesto de Carvalho
- Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas, UNICAMP, CP 6171, 13083-970 Paulínia, SP, Brazil
| | - Ana Lúcia T G Ruiz
- Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas, UNICAMP, CP 6171, 13083-970 Paulínia, SP, Brazil
| | - Kélin Schwarz
- Centro de Energia Nuclear na Agricultura (CENA)/Universidade de São Paulo (USP), Avenida Centenário, 303, 13418900 Piracicaba, SP, Brazil
| | - Tiago Tezotto
- Departamento de Produção Vegetal, Laboratório Multiusuário em Produção Vegetal, Escola Superior de Agricultura "Luiz de Queiroz"/Universidade de São Paulo (Esalq/USP), Avenida Pádua Dias, 111, 13418-900 Piracicaba, SP, Brazil
| | - Maressa Caldeira Morzelle
- Departamento de Agroindústria, Alimentos e Nutrição, Laboratório de Bromatologia, Escola Superior de Agricultura "Luiz de Queiroz"/Universidade de São Paulo (Esalq/USP), Avenida Pádua Dias, 111, 13418-900 Piracicaba, SP, Brazil
| |
Collapse
|
20
|
Xin Y, Zhang M, Adhikari B. Ultrasound assisted immersion freezing of broccoli (Brassica oleracea L. var. botrytis L.). ULTRASONICS SONOCHEMISTRY 2014; 21:1728-1735. [PMID: 24746509 DOI: 10.1016/j.ultsonch.2014.03.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 03/16/2014] [Accepted: 03/17/2014] [Indexed: 06/03/2023]
Abstract
OBJECTIVE The aim of this study was to research the ultrasound-assisted freezing (UAF) of broccoli. METHODS CaCl2 solution was used as freezing medium. The comparative advantage of using UAF over normal freezing on the freezing time, cell-wall bound calcium to total calcium ratio, textural properties, color, drip loss and L-ascorbic acid contents was evaluated. RESULTS The application of UAF at selected acoustic intensity with a range of 0.250-0.412 W/cm(2) decreased the freezing time and the loss of cell-wall bound calcium content. Compared to normal freezing, the values of textural properties, color, L-ascorbic acid content were better preserved and the drip loss was significantly minimized by the application of UAF. However, when outside that range of acoustic intensity, the quality of the ultrasound-assisted frozen broccoli was inferior compared to that of the normally frozen samples. CONCLUSIONS Selected the appropriate acoustic intensity was very important for the application of UAF.
Collapse
Affiliation(s)
- Ying Xin
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China.
| | - Benu Adhikari
- School of Health Sciences, University of Ballarat, Mount Helen, Victoria 3353, Australia
| |
Collapse
|
21
|
Freezing Characteristics and Storage Stability of Broccoli (Brassica oleracea L. var. botrytis L.) Under Osmodehydrofreezing and Ultrasound-Assisted Osmodehydrofreezing Treatments. FOOD BIOPROCESS TECH 2013. [DOI: 10.1007/s11947-013-1231-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
22
|
Ares AM, Nozal MJ, Bernal JL, Bernal J. Optimized extraction, separation and quantification of twelve intact glucosinolates in broccoli leaves. Food Chem 2013; 152:66-74. [PMID: 24444907 DOI: 10.1016/j.foodchem.2013.11.125] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 11/18/2013] [Accepted: 11/23/2013] [Indexed: 12/30/2022]
Abstract
A new method has been developed and validated to determine twelve intact glucosinolates (glucoiberin, GIB; glucoraphanin, GRA; glucoerucin GER; gluconapin, GNA; glucotropaeolin, GTL; glucobrassicin, GBC; gluconasturtiin, GST; glucoalyssin, ALY; 4-hydroxyglucobrassicin, 4-OH; 4-metoxyglucobrassicin, 4ME; neoglucobrassicin, NEO; sinigrin, SIN) in broccoli leaves using liquid chromatography (LC) coupled to diode array (DAD) and electrospray ionization mass spectrometry (ESI-MS) detection. An extraction procedure has also been proposed and optimized by means of statistical analysis (the Box-Behnken design and analysis of variance); this is based on the deactivation of myrosinase using a microwave and heated water. Low limits of detection and quantification were obtained, ranging from 10 to 72 μg/g with DAD and 0.01 to 0.23 μg/g with ESI-MS, and the resulting recovery values ranged from 87% to 106% in all cases. Finally, glucosinolates were analyzed in broccoli leaf samples from six different cultivars (Ramoso calabrese Parthenon, Marathon, Nubia, Naxos and Viola).
Collapse
Affiliation(s)
- Ana M Ares
- IU CINQUIMA, Analytical Chemistry Group, University of Valladolid, 47011 Valladolid, Spain
| | - María J Nozal
- IU CINQUIMA, Analytical Chemistry Group, University of Valladolid, 47011 Valladolid, Spain
| | - José L Bernal
- IU CINQUIMA, Analytical Chemistry Group, University of Valladolid, 47011 Valladolid, Spain
| | - José Bernal
- IU CINQUIMA, Analytical Chemistry Group, University of Valladolid, 47011 Valladolid, Spain.
| |
Collapse
|
23
|
Guo Y, Gao Z, Li L, Wang Y, Zhao H, Hu M, Li M, Zhang Z. Effect of controlled atmospheres with varying O2/CO2 levels on the postharvest senescence and quality of broccoli (Brassica oleracea L. var. italica) florets. Eur Food Res Technol 2013. [DOI: 10.1007/s00217-013-2064-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Extraction, chemical characterization and biological activity determination of broccoli health promoting compounds. J Chromatogr A 2013; 1313:78-95. [PMID: 23899380 DOI: 10.1016/j.chroma.2013.07.051] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 06/25/2013] [Accepted: 07/11/2013] [Indexed: 12/11/2022]
Abstract
Broccoli (Brassica oleracea L. var. Italica) contains substantial amount of health-promoting compounds such as vitamins, glucosinolates, phenolic compounds, and dietary essential minerals; thus, it benefits health beyond providing just basic nutrition, and consumption of broccoli has been increasing over the years. This review gives an overview on the extraction and separation techniques, as well as the biological activity of some of the above mentioned compounds which have been published in the period January 2008 to January 2013. The work has been distributed according to the different families of health promoting compounds discussing the extraction procedures and the analytical techniques employed for their characterization. Finally, information about the different biological activities of these compounds has been also provided.
Collapse
|