1
|
Ardali FR, Sharifan A, Mosavi SME, Mortazavian AM, Jannat B. Production of fermented milk analogs using subcritical water extraction of rice by-products and investigation of its physicochemical, microbial, rheological, and sensory properties. FOOD SCI TECHNOL INT 2024; 30:773-787. [PMID: 37424287 DOI: 10.1177/10820132231186170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Rice milling by-products extract and Persian grape syrup (Persian grape molasses), as the proper alternatives for milk ingredients and sucrose, respectively, can be considered a promising way to produce functional milk analogs. In this study, we studied the production of rice milling by-product extracts via the subcritical water extraction method, as a green method. The optimum extract was then fermented by Lactobacillus casei and Lactobacillus plantarum, and the different physicochemical, sensory, and rheological properties and the viability of these lactic acid bacteria were assessed during fermentation and certain intervals of 28-day storage. Considering rheological properties, the optimum rice milling by-product extract was recognized based on DOE analysis and the rheological curves of fermented drinks and Persian grape molasses were fitted by Herschel-Bulkley and Bingham models, respectively. The extract and also milk analog had excellent fitness with Herschel-Bulkley model, and this fermented milk analog showed a drop in the consistency index, flow behavior, and yield stress during the 28-day storage. According to the results, the viable cell count of Lactobacillus plantarum and Lactobacillus casei remained at 106-108 colony forming unit/mL after 28-day storage, which showed a combination of rice milling by-product ingredients and inulin had a positive effect on the survival rate of lactic acid bacteria. An increase in values of total phenolic compounds, as well as antioxidant activity observed during fermentation; however, these compounds dropped considerably during storage as a result of degradation and interaction with other compounds. Moreover, in terms of sensory evaluation, Lactobacillus plantarum drinks provided the highest overall acceptability among other samples on the 28th day.
Collapse
Affiliation(s)
- Fatemeh Raiesi Ardali
- Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Anousheh Sharifan
- Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Seyed M E Mosavi
- Department of Food Science, Engineering and Technology, Faculty of Agricultural Engineering and Technology, University of Tehran, Tehran, Iran
| | - Amir M Mortazavian
- Faculty of Nutrition Sciences, Food Science Technology/National Nutrition and Food Technology Research, Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
2
|
Chan S, Jantama K, Prasitpuriprecha C, Wansutha S, Phosriran C, Yuenyaow L, Cheng KC, Jantama SS. Harnessing Fermented Soymilk Production by a Newly Isolated Pediococcus acidilactici F3 to Enhance Antioxidant Level with High Antimicrobial Activity against Food-Borne Pathogens during Co-Culture. Foods 2024; 13:2150. [PMID: 38998655 PMCID: PMC11241325 DOI: 10.3390/foods13132150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 06/26/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024] Open
Abstract
In this study, a newly isolated Pediococcus acidilactici F3 was used as probiotic starter for producing fermented soymilk to enhance antioxidant properties with high antimicrobial activity against food-borne pathogens. The objectives of this study were to investigate optimized fermentation parameters of soymilk for enhancing antioxidant property by P. acidilactici F3 and to assess the dynamic antimicrobial activity of the fermented soymilk during co-culturing against candidate food-borne pathogens. Based on central composite design (CCD) methodology, the maximum predicted percentage of antioxidant activity was 78.9% DPPH inhibition. After model validation by a 2D contour plot, more suitable optimum parameters were adjusted to be 2% (v/v) inoculum and 2.5 g/L glucose incubated at 30 °C for 18 h. These parameters could provide the comparable maximum percentage of antioxidant activity at 74.5 ± 1.2% DPPH inhibition, which was up to a 23% increase compared to that of non-fermented soymilk. During 20 days of storage at 4 °C, antioxidant activities and viable cells of the fermented soymilk were stable while phenolic and organic contents were slightly increased. Interestingly, the fermented soymilk completely inhibited food-borne pathogens, Salmonella Typhimurium ATCC 13311, and Escherichia coli ATCC 25922 during the co-culture incubation. Results showed that the soymilk fermented by P. acidilactici F3 may be one of the alternative functional foods enriched in probiotics, and the antioxidation and antimicrobial activities may retain nutritional values and provide health benefits to consumers with high confidence.
Collapse
Affiliation(s)
- Sitha Chan
- Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Warinchamrap, Ubon Ratchathani 34190, Thailand
| | - Kaemwich Jantama
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Muang, Nakhon Ratchasima 30000, Thailand
| | - Chutinun Prasitpuriprecha
- Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Warinchamrap, Ubon Ratchathani 34190, Thailand
| | - Supasson Wansutha
- Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Warinchamrap, Ubon Ratchathani 34190, Thailand
- Faculty of Science, Udon Thani Rajabhat University, Udon Thani 41000, Thailand
| | - Chutchawan Phosriran
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Muang, Nakhon Ratchasima 30000, Thailand
| | - Laddawan Yuenyaow
- Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Warinchamrap, Ubon Ratchathani 34190, Thailand
| | - Kuan-Chen Cheng
- Institute of Biotechnology, College of Bioresources and Agriculture, National Taiwan University, Taipei 10617, Taiwan
- Institute of Food Science and Technology, College of Bioresources and Agriculture, National Taiwan University, Taipei 10617, Taiwan
- Department of Optometry, Asia University, 500, Lioufeng Rd., Wufeng, Taichung 41354, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, 91, Hsueh-Shih Road, Taichung 404327, Taiwan
| | - Sirima Suvarnakuta Jantama
- Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Warinchamrap, Ubon Ratchathani 34190, Thailand
| |
Collapse
|
3
|
Hashemi SMB, Jafarpour D. Lactic acid fermentation of guava juice: Evaluation of nutritional and bioactive properties, enzyme (α-amylase, α-glucosidase, and angiotensin-converting enzyme) inhibition abilities, and anti-inflammatory activities. Food Sci Nutr 2023; 11:7638-7648. [PMID: 38107144 PMCID: PMC10724607 DOI: 10.1002/fsn3.3683] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/22/2023] [Accepted: 08/29/2023] [Indexed: 12/19/2023] Open
Abstract
In the present research, the impact of fermentation with two strains of Lactiplantibacillus plantarum subsp. plantarum (PTCC 1896 and PTCC 1745) on physicochemical properties, antioxidant bioactive compounds, and some health-promoting features of guava juice was investigated. Results showed a significant (p < .05) decrease in pH, total soluble solids, glucose and fructose residues, vitamin C, and total carotenoids after 32 h of fermentation. Total phenolic content, free radical scavenging abilities, and ferrous reducing power were markedly enhanced during the fermentation process. Moreover, fermented juice represented good enzyme inhibition abilities (α-amylase and α-glucosidase) and anti-inflammatory activities. The initial amount of angiotensin-converting enzyme inhibitory activity (26.5%) increased to 72.1% and 66.4% in L. plantarum subsp. plantarum 1896 and L. plantarum subsp. plantarum 1745 treatments, respectively. These findings reveal that guava juice fermentation with the studied Lactobacillus strains can be a promising strategy to augment the functional properties of the fruit-based beverage.
Collapse
Affiliation(s)
| | - Dornoush Jafarpour
- Department of Food Science and Technology, Faculty of Agriculture, Fasa BranchIslamic Azad UniversityFasaIran
| |
Collapse
|
4
|
Balmori V, Marnpae M, Chusak C, Kamonsuwan K, Katelakha K, Charoensiddhi S, Adisakwattana S. Enhancing Phytochemical Compounds, Functional Properties, and Volatile Flavor Profiles of Pomelo ( Citrus grandis (L.) Osbeck) Juices from Different Cultivars through Fermentation with Lacticaseibacillus paracasei. Foods 2023; 12:4278. [PMID: 38231752 DOI: 10.3390/foods12234278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 01/19/2024] Open
Abstract
The current study aimed to explore the effects of fermenting five different pomelo cultivars using Lacticaseibacillus paracasei on various physicochemical, phytochemical, and organoleptic attributes. Fermentation led to an increase in viable lactic acid bacteria count (8.80-9.28 log cfu/mL), organic acids, total polyphenols, and flavonoids, resulting in improved antioxidant activity, bile acid binding, cholesterol micellization disruption, and inhibition of pancreatic lipase activity. Additionally, some cultivars displayed higher levels of naringin, naringenin, and hesperetin after fermentation. The levels of volatile compounds were elevated after fermentation. The bitterness and overall acceptability scores were improved in the fermented samples of the Kao Numpueng cultivar. The principal component analysis (PCA) revealed that the Tubtim Siam cultivar demonstrated the highest functionality and health-related benefits among all fermented pomelos. Overall, the study suggests that pomelo exhibits potential as a valuable resource for creating a dairy-free probiotic drink enriched with bioactive phytochemical compounds and beneficial functional attributes.
Collapse
Affiliation(s)
- Vernabelle Balmori
- Center of Excellence in Phytochemical and Functional Food for Clinical Nutrition, Department of Nutrition and Dietetics, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Food Science and Technology, Southern Leyte State University, Sogod 6606, Southern Leyte, Philippines
| | - Marisa Marnpae
- Center of Excellence in Phytochemical and Functional Food for Clinical Nutrition, Department of Nutrition and Dietetics, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- The Halal Science Center, Chulalongkorn University, Bangkok 10330, Thailand
| | - Charoonsri Chusak
- Center of Excellence in Phytochemical and Functional Food for Clinical Nutrition, Department of Nutrition and Dietetics, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kritmongkhon Kamonsuwan
- Center of Excellence in Phytochemical and Functional Food for Clinical Nutrition, Department of Nutrition and Dietetics, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kasinee Katelakha
- The Halal Science Center, Chulalongkorn University, Bangkok 10330, Thailand
| | - Suvimol Charoensiddhi
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand
| | - Sirichai Adisakwattana
- Center of Excellence in Phytochemical and Functional Food for Clinical Nutrition, Department of Nutrition and Dietetics, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
5
|
Xie A, Dong Y, Liu Z, Li Z, Shao J, Li M, Yue X. A Review of Plant-Based Drinks Addressing Nutrients, Flavor, and Processing Technologies. Foods 2023; 12:3952. [PMID: 37959070 PMCID: PMC10650231 DOI: 10.3390/foods12213952] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Plant-based drinks have garnered significant attention as viable substitutes for traditional dairy milk, providing options for individuals who are lactose intolerant or allergic to dairy proteins, and those who adhere to vegan or vegetarian diets. In recent years, demand for plant-based drinks has expanded rapidly. Each variety has unique characteristics in terms of flavor, texture, and nutritional composition, offering consumers a diverse range of choices tailored to meet individual preferences and dietary needs. In this review, we aimed to provide a comprehensive overview of the various types of plant-based drinks and explore potential considerations including their nutritional compositions, health benefits, and processing technologies, as well as the challenges facing the plant-based drink processing industry. We delve into scientific evidence supporting the consumption of plant-based drinks, discuss their potential roles in meeting dietary requirements, and address current limitations and concerns regarding their use. We hope to illuminate the growing significance of plant-based drinks as sustainable and nutritious alternatives to dairy milk, and assist individuals in making informed choices regarding their dietary habits, expanding potential applications for plant-based drinks, and providing necessary theoretical and technical support for the development of a plant-based drink processing industry.
Collapse
Affiliation(s)
- Aijun Xie
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 119077, Singapore;
| | - Yushi Dong
- Department of Nutritional Sciences, King’s College London, London SE19NH, UK;
| | - Zifei Liu
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore;
| | - Zhiwei Li
- Jiangsu Key Laboratory of Oil & Gas Storage and Transportation Technology, Changzhou University, Changzhou 213164, China;
| | - Junhua Shao
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China;
| | - Mohan Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China;
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore;
| | - Xiqing Yue
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China;
| |
Collapse
|
6
|
Letizia F, Fratianni A, Cofelice M, Testa B, Albanese G, Di Martino C, Panfili G, Lopez F, Iorizzo M. Antioxidative Properties of Fermented Soymilk Using Lactiplantibacillus plantarum LP95. Antioxidants (Basel) 2023; 12:1442. [PMID: 37507980 PMCID: PMC10376881 DOI: 10.3390/antiox12071442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/13/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
In recent times, there has been a growing consumer interest in replacing animal foods with alternative plant-based products. Starting from this assumption, for its functional properties, soymilk fermented with lactic acid bacteria is gaining an important position in the food industry. In the present study, soymilk was fermented with Lactiplantibacillus plantarum LP95 at 37 °C, without the use of stabilizers as well as thickeners and acidity regulators. We evaluated the antioxidant capacity of fermented soymilk along with its enrichment in aglycone isoflavones. The conversion of isoflavone glucosides to aglycones (genistein, glycitein, and daidzein) was analyzed together with antioxidant activity (ABTS) measurements, lipid peroxidation measurements obtained by a thiobarbituric acid reactive substance (TBARS) assay, and apparent viscosity measurements. From these investigations, soymilk fermentation using Lp. plantarum LP95 as a starter significantly increased isoflavones' transformation to their aglycone forms. The content of daidzein, glycitein, and genistein increased after 24 h of fermentation, reaching levels of 48.45 ± 1.30, 5.10 ± 0.16, and 56.35 ± 1.02 μmol/100 g of dry weight, respectively. Furthermore, the antioxidant activity increased after 6 h with a reduction in MDA (malondialdehyde). The apparent viscosity was found to increase after 24 h of fermentation, while it slightly decreased, starting from 21 days of storage. Based on this evidence, Lp. plantarum LP95 appears to be a promising candidate as a starter for fermented soymilk production.
Collapse
Affiliation(s)
- Francesco Letizia
- Department of Agriculture, Environmental and Food Sciences, University of Molise, Via De Sanctis, 86100 Campobasso, Italy
| | - Alessandra Fratianni
- Department of Agriculture, Environmental and Food Sciences, University of Molise, Via De Sanctis, 86100 Campobasso, Italy
| | - Martina Cofelice
- Department of Agriculture, Environmental and Food Sciences, University of Molise, Via De Sanctis, 86100 Campobasso, Italy
| | - Bruno Testa
- Department of Agriculture, Environmental and Food Sciences, University of Molise, Via De Sanctis, 86100 Campobasso, Italy
| | - Gianluca Albanese
- Department of Agriculture, Environmental and Food Sciences, University of Molise, Via De Sanctis, 86100 Campobasso, Italy
| | - Catello Di Martino
- Department of Agriculture, Environmental and Food Sciences, University of Molise, Via De Sanctis, 86100 Campobasso, Italy
| | - Gianfranco Panfili
- Department of Agriculture, Environmental and Food Sciences, University of Molise, Via De Sanctis, 86100 Campobasso, Italy
| | - Francesco Lopez
- Department of Agriculture, Environmental and Food Sciences, University of Molise, Via De Sanctis, 86100 Campobasso, Italy
| | - Massimo Iorizzo
- Department of Agriculture, Environmental and Food Sciences, University of Molise, Via De Sanctis, 86100 Campobasso, Italy
| |
Collapse
|
7
|
Knez E, Kadac-Czapska K, Grembecka M. Fermented Vegetables and Legumes vs. Lifestyle Diseases: Microbiota and More. Life (Basel) 2023; 13:life13041044. [PMID: 37109573 PMCID: PMC10141223 DOI: 10.3390/life13041044] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Silages may be preventive against lifestyle diseases, including obesity, diabetes mellitus, or metabolic syndrome. Fermented vegetables and legumes are characterized by pleiotropic health effects, such as probiotic or antioxidant potential. That is mainly due to the fermentation process. Despite the low viability of microorganisms in the gastrointestinal tract, their probiotic potential was confirmed. The modification of microbiota diversity caused by these food products has numerous implications. Most of them are connected to changes in the production of metabolites by bacteria, such as butyrate. Moreover, intake of fermented vegetables and legumes influences epigenetic changes, which lead to inhibition of lipogenesis and decreased appetite. Lifestyle diseases' feature is increased inflammation; thus, foods with high antioxidant potential are recommended. Silages are characterized by having a higher bioavailable antioxidants content than fresh samples. That is due to fermentative microorganisms that produce the enzyme β-glucosidase, which releases these compounds from conjugated bonds with antinutrients. However, fermented vegetables and legumes are rich in salt or salt substitutes, such as potassium chloride. However, until today, silages intake has not been connected to the prevalence of hypertension or kidney failure.
Collapse
Affiliation(s)
- Eliza Knez
- Department of Bromatology, Medical University of Gdańsk, Gen. J. Hallera Aw. 107, 80-416 Gdansk, Poland
| | - Kornelia Kadac-Czapska
- Department of Bromatology, Medical University of Gdańsk, Gen. J. Hallera Aw. 107, 80-416 Gdansk, Poland
| | - Małgorzata Grembecka
- Department of Bromatology, Medical University of Gdańsk, Gen. J. Hallera Aw. 107, 80-416 Gdansk, Poland
| |
Collapse
|
8
|
Ruiz de la Bastida A, Peirotén Á, Langa S, Rodríguez-Mínguez E, Curiel JA, Arqués JL, Landete JM. Fermented soy beverages as vehicle of probiotic lactobacilli strains and source of bioactive isoflavones: A potential double functional effect. Heliyon 2023; 9:e14991. [PMID: 37095934 PMCID: PMC10121624 DOI: 10.1016/j.heliyon.2023.e14991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 02/14/2023] [Accepted: 03/23/2023] [Indexed: 04/05/2023] Open
Abstract
Soy beverages can be a source of bioactive isoflavones, with potential human health benefits. In this work, the suitability of three Lacticaseibacillus and three Bifidobacterium probiotic strains as functional starters for soy beverage fermentation were evaluated, alongside with the effect of refrigerated storage on the viability of the strains and the isoflavone composition of the fermented beverages. The three bifidobacteria strains suffered a decrease in their viability during refrigeration and only Bifidobacterium breve INIA P734 produced high concentrations of bioactive isoflavones. Meanwhile, L. rhamnosus GG and L. rhamnosus INIA P344 produced high levels of aglycones and, with L. paracasei INIA P272, maintained their viability during the refrigeration period, constituting promising starters to obtain functional soy beverages that could gather the benefits of the bioactive isoflavone aglycones and the probiotic strains. Moreover, the three lactobacilli caused an increase in the antioxidant capacity of the fermented beverages, which was maintained over the refrigerated storage.
Collapse
|
9
|
Zheng Z, Zhou Q, Chen Q, Gao J, Wu Y, Yang F, Zhong K, Gao H. Improvement of physicochemical characteristics, flavor profiles and functional properties in Chinese radishes via spontaneous fermentation after drying. J Food Sci 2023; 88:1292-1307. [PMID: 36815393 DOI: 10.1111/1750-3841.16486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 12/13/2022] [Accepted: 01/18/2023] [Indexed: 02/24/2023]
Abstract
Spontaneously dried-fermented radishes have been consumed in China for hundreds of years and are usually fermented for a long time to acquire high quality. In this study, the spontaneously dried-fermented radishes with short-term manufacturing periods were made from five different varieties of radishes that grew in the same environment. In addition, the physicochemical characteristics (i.e., moisture content, soluble solid, and pH value), flavor profiles (i.e., free amino acids, organic acids, and volatile compounds), and functional properties (i.e., total phenolics content, total flavonoids content, sulforaphane content, and γ-aminobutyric acid [GABA] content) of these five raw radishes and spontaneously dried-fermented radishes were analyzed and compared. In detail, the content of volatile and nonvolatile compounds increased, especially in oxalic acid, succinic acid, and umami free amino acids. Furthermore, functional components, such as sulforaphane and GABA, were also enriched via spontaneous fermentation after drying. In addition, the results of principal component analysis, hierarchical clustering analysis, and redundancy analysis showed that there were significant discrepancies appeared when raw radishes were processed via spontaneous fermentation or not. These results suggested that the process of spontaneous fermentation after drying may contribute to improving the quality of fresh radishes. Notably, radishes with red skin and flesh were regarded as exceptional varieties for processing, because of the preferable flavor profiles and affluent functional substances via spontaneous fermentation after drying. Therefore, these findings could deliver a systematical insight into developing processed radishes with high quality. PRACTICAL APPLICATION: The spontaneously dried-fermented radishes were manufactured through the process of spontaneous fermentation after drying, which acquired tasty and healthy characteristics by accumulating the volatile and nonvolatile compounds as well as the functional components, like total phenolics, total flavonoids, sulforaphane, and γ-aminobutyric acid. Importantly, because of the excellent processing properties, the radishes with red skin and flesh could be more appropriate to produce spontaneously dried-fermented radishes. Our findings may provide a practical strategy for developing vegetable relishes with superb flavor profiles and good functional properties in pickled vegetables.
Collapse
Affiliation(s)
- Zimeng Zheng
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Qian Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Qian Chen
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Jia Gao
- Institute of Agro-Products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Yanping Wu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Feng Yang
- Rice and Sorghum Research Institute, Sichuan Academy of Agricultural Sciences, Deyang, Sichuan, China.,Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Kai Zhong
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Hong Gao
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
In vitro evaluation of the anti-diabetic potential of soymilk yogurt and identification of inhibitory compounds on the formation of advanced glycation end-products. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
11
|
Ardali FR, Sharifan A, Mosavi SME, Mortazavian AM, Jannat B. Study on the rice milling byproduct extracted by sub‐critical water extraction and its fermented milk analogs. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Fatemeh Raiesi Ardali
- Department of Food Science and Technology, Science and Research Branch Islamic Azad University Tehran Iran
| | - Anousheh Sharifan
- Department of Food Science and Technology, Science and Research Branch Islamic Azad University Tehran Iran
| | | | - Amir Mohammad Mortazavian
- Faculty of Nutrition Sciences, Food Science Technology/National Nutrition and Food Technology Research, Institute Shahid Beheshti University of Medical Sciences Tehran Iran
| | | |
Collapse
|
12
|
Enhancement of Antioxidant Activities in Black Soy Milk through Isoflavone Aglycone Production during Indigenous Lactic Acid Bacteria Fermentation. FERMENTATION 2022. [DOI: 10.3390/fermentation8070326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Black soybeans contain high antioxidant compounds such as isoflavone but mainly in glucoside form, with low antioxidant activities. Fermentation by lactic acid bacteria (LAB) can enhance the antioxidant properties, but its ability is strain-dependent. This study aims to study the ability of Indonesian indigenous LAB, Lactiplantibacillus plantarum WGK 4, Streptococcus thermophilus Dad 11, and Lactiplantibacillus plantarum Dad 13, to enhance the antioxidant properties during black soy milk fermentation. Fermentation was carried out at 37 °C for 24 h. Viable cell, acid production, Folin–Ciocalteu assay, antioxidant activity (DPPH), isoflavone aglycone daidzein and genistein, and β-glucosidase activity were measured every six hours. All LAB strains could grow well during the fermentation of black soy milk. Lactiplantibacillus plantarum WGK 4 produced the highest acid (1.50%). All three LAB strains could enhance antioxidant activity (DPPH) from 24.90% to 31.22–38.20%, followed by increased isoflavone aglycone. All strains could increase daidzein and genistein content, ranging from 61% to 107% and 81% to 132%, respectively. All three Indonesian indigenous LAB enhanced antioxidant properties of black soy milk relatively at the same level and potentially could be used as a starter culture of black soy milk fermentation.
Collapse
|
13
|
Inulin addition improved probiotic survival in soy-based fermented beverage. World J Microbiol Biotechnol 2022; 38:133. [PMID: 35689148 DOI: 10.1007/s11274-022-03322-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/22/2022] [Indexed: 10/18/2022]
Abstract
Currently, the growing demand for non-dairy functional foods leads to the constant development of new products. The objective of the present work was to obtain a soy-based fermented beverage employing the strains Lactiplantibacillus plantarum CIDCA 8327 or Lacticaseibacillus paracasei BGP1 and to analyze the effect of post-fermentation addition of inulin of low or high average polymerization degree on the bacterial resistance. Also, the antimicrobial and antioxidant activity of the fermented soy-based beverages were analyzed. The soy-based matrix was shown to be a suitable substrate for the growth of both lactic acid bacteria, and the fermented beverages obtained presented bioactive properties such us antioxidant activity and bactericidal effect against pathogen microorganisms. The addition of inulin after the fermentation process avoid the hydrolysis and so, preserve its polymerization degree and thus the potential prebiotic effect. The incorporation of inulin to the soy-based fermented beverages increased the bacterial count after 30 days of refrigerated storage up to 8.71 ± 0.15 and 8.41 ± 0.10 log CFU/mL for L. paracasei and L. planatrum respectively. The resistance to the gastrointestinal conditions of the strain L. paracasei BGP1 in the fermented beverage was improved up to 70% when inulin of high polymerization degree was added. Meanwhile the strain L. plantarum CIDCA 8327 showed a survival of 97 and 94% in the fermented beverage added with inulin of low or high polymerization degree, respectively. These results contribute to the development of non-dairy products containing inulin and probiotics and the diversification agri-based functional foods.
Collapse
|
14
|
Thermosonication of Broccoli Florets Prior to Fermentation Increases Bioactive Components in Fermented Broccoli Puree. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8050236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The aim of this study was to compare the effects of thermosonication (18 kHz at 60 °C for 7 min) pre-treatment with thermal treatment alone (60 °C for 7 min) of broccoli florets prior to pureeing and fermentation on selected bioactive components of fermented broccoli puree. Both thermal and thermosoncation pre-treatments significantly increased the rate of acidification of broccoli puree compared to control untreated broccoli puree, with the time to reach pH 4 being 8.25, 9.9, and 24 h, respectively, for thermally treated, thermosonicated, and control samples. The highest sulforaphane yield of 7268 µmol/kg dry weight (DW) was observed in the thermosonicated samples, followed by 6227 µmol/kg DW and 3180 µmol/kg DW in the thermally treated and untreated samples, respectively. The measurable residual glucoraphanin content was 1642 µmol/kg DW, 1187 µmol/kg DW, and 1047 µmol/kg DW, respectively, in the thermonsonicated, thermally pre-treated, and control fermented samples, indicating that pre-treatment specially by thermosonication increases the extractability of glucoraphanin. The higher sulforaphane yield in the thermosonicated and thermally pre-treated samples could be due to increased extractability and accessibility of glucoraphanin and interaction with myrosinase in addition to the inactivation of epthiospecifier protein (ESP), which directs conversion away from sulforaphane into sulforaphane nitrile.
Collapse
|
15
|
Lancetti RP, Salvucci E, Paesani C, Pérez GT, Sciarini LS. Sourdough on quinoa and buckwheat gluten‐free breads: Evaluation of autochthonous starter fermentation on bread nutritional and technological properties. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Romina Paola Lancetti
- Instituto de Ciencia y Tecnología de Alimentos Córdoba (ICYTAC) Universidad Nacional de Córdoba (UNC) CONICET Juan Filloy s/n Córdoba 5000 Argentina
| | - Emiliano Salvucci
- Instituto de Ciencia y Tecnología de Alimentos Córdoba (ICYTAC) Universidad Nacional de Córdoba (UNC) CONICET Juan Filloy s/n Córdoba 5000 Argentina
| | - Candela Paesani
- Instituto de Ciencia y Tecnología de Alimentos Córdoba (ICYTAC) Universidad Nacional de Córdoba (UNC) CONICET Juan Filloy s/n Córdoba 5000 Argentina
| | - Gabriela Teresa Pérez
- Instituto de Ciencia y Tecnología de Alimentos Córdoba (ICYTAC) Universidad Nacional de Córdoba (UNC) CONICET Juan Filloy s/n Córdoba 5000 Argentina
- Facultad de Ciencias Agropecuarias Universidad Nacional de Córdoba Argentina
| | - Lorena Susana Sciarini
- Instituto de Ciencia y Tecnología de Alimentos Córdoba (ICYTAC) Universidad Nacional de Córdoba (UNC) CONICET Juan Filloy s/n Córdoba 5000 Argentina
| |
Collapse
|
16
|
Elshafei AM, Othman AM, Elsayed MA, Ibrahim GE, Hassan MM, Mehanna NS. A statistical strategy for optimizing the production of α-galactosidase by a newly isolated Aspergillus niger NRC114 and assessing its efficacy in improving soymilk properties. J Genet Eng Biotechnol 2022; 20:36. [PMID: 35212841 PMCID: PMC8881569 DOI: 10.1186/s43141-022-00315-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 02/04/2022] [Indexed: 11/18/2022]
Abstract
Background α-Galactosidase is widely distributed in plants, microorganisms, and animals, and it is produced by different fungal sources. Many studies have confirmed the valuable applications of α-galactosidase enzymes for various biotechnological purposes, like the processing of soymilk. Results Aspergillus niger NRC114 was exploited to produce the extracellular α-galactosidase. One factor per time (OFT) and central composite design (CCD) approaches were applied to determine the optimum parameters and enhance the enzyme production. The CCD model choices of pH 4.73, 1.25% mannose, 0.959% meat extract, and 6-day incubation period have succeeded in obtaining 25.22 U/mL of enzyme compared to the 6.4 U/mL produced using OFT studies. Treatment of soymilk by α-galactosidase caused an increase in total phenols and flavonoids by 27.3% and 19.9%, respectively. Antioxidant measurements revealed a significant increase in the enzyme-treated soymilk. Through HPLC analysis, the appearance of sucrose, fructose, and glucose in the enzyme-treated soymilk was detected due to the degradation of stachyose and raffinose. The main volatile compounds in raw soymilk were acids (45.04%) and aldehydes (34.25%), which showed a remarkable decrease of 7.82% and 20.03% after treatment by α-galactosidase. Conclusions To increase α-galactosidase production, the OFT and CCD approaches were used, and CCD was found to be four times more effective than OFT. The produced enzyme proved potent enough to improve the properties of soymilk, avoiding flatulence and undesirable tastes and odors. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Ali M Elshafei
- Microbial Chemistry Department, Biotechnology Research Institute, National Research Centre, 33 El Bohouth St., Dokki, Giza, 12622, Egypt
| | - Abdelmageed M Othman
- Microbial Chemistry Department, Biotechnology Research Institute, National Research Centre, 33 El Bohouth St., Dokki, Giza, 12622, Egypt.
| | - Maysa A Elsayed
- Microbial Chemistry Department, Biotechnology Research Institute, National Research Centre, 33 El Bohouth St., Dokki, Giza, 12622, Egypt
| | - Gamil E Ibrahim
- Chemistry of Flavor and Aroma Department,
- Food Industries and Nutrition Research Institute, National Research Centre, 33 El Bohouth St., Dokki, Giza, 12622, Egypt
| | - Mohamed M Hassan
- Microbial Chemistry Department, Biotechnology Research Institute, National Research Centre, 33 El Bohouth St., Dokki, Giza, 12622, Egypt
| | - Nayra S Mehanna
- Dairy Sciences Department, Food Industries and Nutrition Research Institute, National Research Centre, 33 El Bohouth St., Dokki, Giza, 12622, Egypt
| |
Collapse
|
17
|
Shudong P, Guo C, Wu S, Cui H, Suo H, Duan Z. Bioactivity and metabolomics changes of plant-based drink fermented by Bacillus coagulans VHProbi C08. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.113030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
18
|
Zhang X, Liu Z, Kang B, Huang Y, Fu C, Li W, Wu Q, Liu Z, Li D, Wang C, Xu N. Effect of
Lactobacillus plantarum
or
Enterococcus faecalis
as co‐inoculants with
Aspergillus oryzae
in koji making on the physicochemical properties of soy sauce. J Food Sci 2022; 87:714-727. [DOI: 10.1111/1750-3841.16035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/10/2021] [Accepted: 12/17/2021] [Indexed: 11/30/2022]
Affiliation(s)
- Xiaolong Zhang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics
| | - Zeping Liu
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics
| | - Bo Kang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics
| | - Yao Huang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics
| | - Caixia Fu
- Hubei Research Center of Food Fermentation Engineering and Technology Hubei University of Technology Wuhan China
| | - Wei Li
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics
| | - Qian Wu
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics
| | - Zhijie Liu
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics
| | - Dongsheng Li
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics
| | - Chao Wang
- Research Center of Fermentation Flavouring Engineering and Technology of Hubei Hubei Tulaohan Flavouring and Food Co., Ltd. Yichang China
| | - Ning Xu
- Research Center of Fermentation Flavouring Engineering and Technology of Hubei Hubei Tulaohan Flavouring and Food Co., Ltd. Yichang China
| |
Collapse
|
19
|
Kumari M, Kokkiligadda A, Dasriya V, Naithani H. Functional relevance and health benefits of soymilk fermented by lactic acid bacteria. J Appl Microbiol 2021; 133:104-119. [PMID: 34724304 DOI: 10.1111/jam.15342] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/04/2021] [Accepted: 10/16/2021] [Indexed: 12/15/2022]
Abstract
The growing interest of consumers towards nutritionally enriched, and health promoting foods, provoke interest in the eventual development of fermented functional foods. Soymilk is a growing trend that can serve as a low-cost non-dairy alternative with improved functional and nutritional properties. Soymilk acts as a good nutrition media for the growth and proliferation of the micro-organism as well as for their bioactivities. The bioactive compounds produced by fermentation of soymilk with lactic acid bacteria (LAB) exhibit enhanced nutritional values, and several improved health benefits including antihypertensive, antioxidant, antidiabetic, anticancer and hypocholesterolaemic effects. The fermented soymilk is acquiring a significant position in the functional food industry due to its increased techno-functional qualities as well as ensuring the survivability of probiotic bacteria producing diverse metabolites. This review covers the important benefits conferred by the consumption of soymilk fermented by LAB producing bioactive compounds. It provides a holistic approach to obtain existing knowledge on the biofunctional attributes of fermented soymilk, with a focus on the functionality of soymilk fermented by LAB.
Collapse
Affiliation(s)
- Manorama Kumari
- Technofunctional Starters Lab, Dairy Microbiology Division, National Dairy Research Institute, Karnal, Haryana, India
| | - Anusha Kokkiligadda
- Department of Dairy Microbiology, College of Dairy Technology, Sri Venkateswara Veterinary University, Tirupti, Andhra Pradesh, India
| | - Vaishali Dasriya
- Technofunctional Starters Lab, Dairy Microbiology Division, National Dairy Research Institute, Karnal, Haryana, India
| | - Harshita Naithani
- Technofunctional Starters Lab, Dairy Microbiology Division, National Dairy Research Institute, Karnal, Haryana, India
| |
Collapse
|
20
|
Penha CB, Santos VDP, Speranza P, Kurozawa LE. Plant-based beverages: Ecofriendly technologies in the production process. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102760] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Potential Functional Snacks: Date Fruit Bars Supplemented by Different Species of Lactobacillus spp. Foods 2021; 10:foods10081760. [PMID: 34441537 PMCID: PMC8391282 DOI: 10.3390/foods10081760] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/20/2021] [Accepted: 07/26/2021] [Indexed: 11/17/2022] Open
Abstract
The influence of the addition of four different potential probiotic strains, Lactiplantibacillus plantarum subsp. plantarum (L. plantarum), Lactobacillus delbruekii subsp. bulgaricus (L. bulgaricus), Lactobacillus acidophilus (L. acidophilus) and Lactinocaseibacillus rhamnosus (L. rhamnosus), in date fruit-based products was investigated in order to evaluate the possibility of producing a functional snack. All bacterial strains tested were able to grow in date fruit palp, reaching probiotic concentrations ranging from 3.1 × 109 to 4.9 × 109 colony-forming units after 48 h of fermentation, and the pH was reduced to 3.5–3.7 or below. The viability of inoculated probiotic bacteria after 4 weeks of storage at 4 °C was slightly reduced. Some biochemical features of the fermented snacks, such as the total phenolic content (TPC), antioxidant activity and detailed polyphenolic profile, were also evaluated. After fermentation, changes in the polyphenol profile in terms of increased free phenolic compounds and related activity were observed. These results may be attributed to the enzymatic activity of Lactobacillus spp. in catalyzing both the release of bioactive components from the food matrix and the remodeling of polyphenolic composition in favor of more bioaccessible molecules. These positive effects were more evident when the snack were fermented with L. rhamnosus. Our results suggest the use of lactic acid fermentation as an approach to enhance the nutritional value of functional foods, resulting in the enhancement of their health-promoting potential.
Collapse
|
22
|
Lu Q, Zuo L, Wu Z, Li X, Tong P, Wu Y, Fan Q, Chen H, Yang A. Characterization of the protein structure of soymilk fermented by Lactobacillus and evaluation of its potential allergenicity based on the sensitized-cell model. Food Chem 2021; 366:130569. [PMID: 34298394 DOI: 10.1016/j.foodchem.2021.130569] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/27/2021] [Accepted: 07/07/2021] [Indexed: 12/23/2022]
Abstract
This study aimed to investigate the effects of fermented soymilk (FSM) with Lactobacillus brevis CICC 23,474 and L. brevis CICC 23,470 on the structural changes and allergenicity of major allergenic proteins in soymilk (SM). Spectroscopy and liquid chromatograph-tandem mass spectrometer (LC-MS/MS) were used to characterize changes in protein spatial structure and epitopes. The antigenicity and potential allergenicity were evaluated by immunoblotting, enzyme-linked immunosorbent assay (ELISA) and KU812 cell degranulation assay. Results suggested that the advanced structure of proteins was destroyed. Antigenicity was also significantly reduced, and five human IgE-binding linear epitopes (i.e., E5-E33, R27-S41, D414-A437, G253-I265 and V449-S471) were destroyed by fermentation. Furthermore, after in vitro simulated gastrointestinal digestion, FSM showed lower IgG/IgE-binding capacity and weaker degranulation ability of KU812 cells. All these findings demonstrated that fermentation with Lactobacillus can destroy the conformational and linear epitopes of proteins and reduce the potential allergenicity of SM.
Collapse
Affiliation(s)
- Qiaoling Lu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - LingLing Zuo
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Zhihua Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Xin Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; School of Food Science and Technology, Nanchang University, Nanchang 330031, China
| | - Ping Tong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yong Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Qingsheng Fan
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Anshu Yang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
23
|
Hashemi SMB, Jafarpour D, Jouki M. Improving bioactive properties of peach juice using Lactobacillus strains fermentation: Antagonistic and anti-adhesion effects, anti-inflammatory and antioxidant properties, and Maillard reaction inhibition. Food Chem 2021; 365:130501. [PMID: 34247050 DOI: 10.1016/j.foodchem.2021.130501] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/21/2021] [Accepted: 06/26/2021] [Indexed: 02/06/2023]
Abstract
The purpose of the current study was to evaluate the antimicrobial activity of Lactobacillus acidophilus PTCC 1643 and Lactobacillus fermentum PTCC 1744 against Shigella flexneri PTCC 1865 in fermented peach juice, as well as the anti-adhesion ability on epithelial Caco-2 cells. Moreover, the biological activities of peach juice were examined. We found that the studied Lactobacillus strains effectively inhibited the growth of S. flexneri during the peach juice fermentation. In addition, L. acidophilus revealed more anti-adhesion ability than L. fermentum. The inhibition of the Maillard reaction increased from 4.10% to 36.70% and 33.00% in L. acidophilus and L. fermentum treatments, respectively. Additionally, the ferrous reducing power, superoxide anion antiradical and anti-inflammatory activities of the beverage augmented during the fermentation period. These findings may be helpful for inhibition of foodborne pathogens by Lactobacillus strains and production of fruit-based fermented beverages with high functional and nutritional value.
Collapse
Affiliation(s)
| | - Dornoush Jafarpour
- Department of Food Science and Technology, Faculty of Agriculture, Fasa Branch, Islamic Azad University, Fasa, Iran.
| | - Mohammad Jouki
- Department of Food Science and Technology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
24
|
Dai Y, Wu H, Liu X, Liu H, Yin L, Wang Z, Xia X, Zhou J. Antioxidant activities and inhibitory effects of blueberry pomace and wine pomace crude extracts on oxidation of oil in water emulsion and fish mince. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yiqiang Dai
- Institute of Agro‐Product Processing Jiangsu Academy of Agricultural Sciences Nanjing China
- College of Food Science and Technology Nanjing Agricultural University Nanjing China
| | - Han Wu
- Institute of Agro‐Product Processing Jiangsu Academy of Agricultural Sciences Nanjing China
| | - Xiaoli Liu
- Institute of Agro‐Product Processing Jiangsu Academy of Agricultural Sciences Nanjing China
- School of Food and Biological Engineering Jiangsu University Zhenjiang China
| | - Hui Liu
- College of Food and Biological Engineering Xuzhou University of Technology Xuzhou China
| | - Liqing Yin
- Institute of Agro‐Product Processing Jiangsu Academy of Agricultural Sciences Nanjing China
- College of Food Science and Technology Nanjing Agricultural University Nanjing China
| | - Zhe Wang
- Institute of Agro‐Product Processing Jiangsu Academy of Agricultural Sciences Nanjing China
- College of Food Science and Technology Nanjing Agricultural University Nanjing China
| | - Xiudong Xia
- Institute of Agro‐Product Processing Jiangsu Academy of Agricultural Sciences Nanjing China
- School of Food and Biological Engineering Jiangsu University Zhenjiang China
| | - Jianzhong Zhou
- Institute of Agro‐Product Processing Jiangsu Academy of Agricultural Sciences Nanjing China
- College of Food Science and Technology Nanjing Agricultural University Nanjing China
- School of Food and Biological Engineering Jiangsu University Zhenjiang China
| |
Collapse
|
25
|
Lodha D, Das S, Hati S. Antioxidant activity, total phenolic content and biotransformation of isoflavones during soy lactic‐fermentations. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15583] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Dikshita Lodha
- Department of Biochemistry St. Xavier’s College (Autonomous) Ahmedabad India
| | - Sujit Das
- Department of Rural Development and Agricultural Production North‐Eastern Hill University, Tura Campus Tura India
| | - Subrota Hati
- Dairy Microbiology Department SMC College of Dairy Science, Anand Agricultural University Anand India
| |
Collapse
|
26
|
Zhao G, Li J, Zheng F, Yao Y. The fermentation properties and microbial diversity of soy sauce fermented by germinated soybean. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:2920-2929. [PMID: 33159694 DOI: 10.1002/jsfa.10924] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 10/21/2020] [Accepted: 11/07/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The quality of commercial soy sauce is variable at present. Technical work is needed to improve the quality and flavor of soy sauce, especially in China. Material is a factor for influencing soy sauce characters in fermentation. RESULTS Germinated soybean sauce (fermented by germinated soybean) had a gamma aminobutyric acid (GABA) concentration of 6.83 μg mL-1 , whereas a control (a soy sauce fermented by soybean) had a GABA concentration of less than 2.42 μg mL-1 . Germinated soybean sauce also contained significantly higher levels of isoflavones, total polyphenol, and amino acid nitrogen than the control soy sauce. Microbial diversity results showed that Bacillus was the dominant bacteria in germinated soy sauce compared with the control. Aldehydes, alcohols, esters, and phenols were the major flavor components of germinated soybean sauce. CONCLUSION A soy sauce with high levels of GABA, isoflavones, and total polyphenol was developed using germinated soybean. Stenotrophomonas, the typical pathogen found in the control, was reduced dramatically and replaced by Bacillus during fermentation with the germinated soybean. The germinated soybean sauce exhibited a better aroma and taste than the control. Soy sauce fermented by soybeans that germinated for 48 h exhibited greater advantages than soy sauce that germinated for 24 and 72 h. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Guozhong Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, China
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| | - Jingjing Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, China
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| | - Fuping Zheng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, China
| | - Yunping Yao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
27
|
Dai Y, Zhou J, Wang L, Dong M, Xia X. Biotransformation of soy whey into a novel functional beverage by Cordyceps militaris SN-18. FOOD PRODUCTION, PROCESSING AND NUTRITION 2021. [DOI: 10.1186/s43014-021-00054-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Abstract
Soy whey, a liquid nutritional by-product of soybean manufacture, is rich in proteins, oligosaccharides and isoflavones. Soy whey can be used to produce functional beverages, instead of discarding it as a waste. In this study, unfermented soy whey (USW) and Cordyceps militaris SN-18-fermented soy whey (FSW) were investigated and compared for their physicochemical and functional properties by high performance liquid chromatography (HPLC) and DNA damage assay. Results show that C. militaris SN-18 fermentation could increase the contents of essential amino acids, total phenolic and flavonoid and isoflavone aglycones and eliminate the oligosaccharides in soy whey. Furthermore, C. militaris SN-18 could significantly enhance the ABTS radical scavenging ability, reducing power and ferric reducing power of soy whey, and its fermented products could prominently attenuate Fenton reaction-induced DNA damage. These findings indicate that soy whey can potentially be converted into a novel soy functional beverage by C. militaris SN-18 fermentation.
Graphical abstract
Collapse
|
28
|
Han H, Choi JK, Park J, Im HC, Han JH, Huh MH, Lee YB. Recent innovations in processing technologies for improvement of nutritional quality of soymilk. CYTA - JOURNAL OF FOOD 2021. [DOI: 10.1080/19476337.2021.1893824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Hwana Han
- Central Research Institute, Dr. Chung’s Food Co. Ltd., Cheongju, Republic of Korea
| | - Jae Kwon Choi
- Central Research Institute, Dr. Chung’s Food Co. Ltd., Cheongju, Republic of Korea
| | - Joheun Park
- Central Research Institute, Dr. Chung’s Food Co. Ltd., Cheongju, Republic of Korea
| | - Hae Cheon Im
- Central Research Institute, Dr. Chung’s Food Co. Ltd., Cheongju, Republic of Korea
| | - Jae Heum Han
- Central Research Institute, Dr. Chung’s Food Co. Ltd., Cheongju, Republic of Korea
| | - Moon Haeng Huh
- Central Research Institute, Dr. Chung’s Food Co. Ltd., Cheongju, Republic of Korea
| | - Yoon-Bok Lee
- Central Research Institute, Dr. Chung’s Food Co. Ltd., Cheongju, Republic of Korea
| |
Collapse
|
29
|
Jiang K, Zhao Y, Liang C, Xu Z, Peng J, Duan C, Yang G. Composition and antioxidant analysis of jiaosu made from three common fruits: watermelon, cantaloupe and orange. CYTA - JOURNAL OF FOOD 2021. [DOI: 10.1080/19476337.2020.1865462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Kangkang Jiang
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha Hunan, China
| | - Yunlin Zhao
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha Hunan, China
| | - Cheng Liang
- College of Foresty, Northwest A&F University, Yangling Shaanxi, China
| | - Zhenggang Xu
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha Hunan, China
- College of Foresty, Northwest A&F University, Yangling Shaanxi, China
| | - Jiao Peng
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha Hunan, China
| | - Choucang Duan
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha Hunan, China
| | - Guiyan Yang
- College of Foresty, Northwest A&F University, Yangling Shaanxi, China
| |
Collapse
|
30
|
Banwo K, Alonge Z, Sanni AI. Binding Capacities and Antioxidant Activities of Lactobacillus plantarum and Pichia kudriavzevii Against Cadmium and Lead Toxicities. Biol Trace Elem Res 2021; 199:779-791. [PMID: 32436065 DOI: 10.1007/s12011-020-02164-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 04/15/2020] [Indexed: 12/11/2022]
Abstract
The cadmium and lead binding capacities and antioxidant activities of Lactobacillus plantarum and Pichia kudriavzevii were evaluated in vitro and in vivo. Lactic acid bacteria and yeasts obtained from fermenting cassava mash and maize slurry were screened for tolerance to cadmium and lead at 500-1050 mg ml-1 screened for probiotic potentials and antioxidant activities such as 2,2-diphenyl-1-picrylhydrazyl and ferric reducing antioxidant properties. The in vivo studies were carried out in male Wistar rats. The strains identified as Lactobacillus plantarum ML05 and Pichia kudriavzevii FY05 demonstrated the best probiotic potentials and antioxidant activities. Alterations in antioxidant capacities were positive in the treatment groups. The histopathology displayed positive changes in the renal tubules and glomeruli, hypertrophy, with normal capsular spaces without inflammation in the kidney, while the liver sinusoids appear normal in the rats administered with L. plantarum ML05 and P. kudriavzevii FY05 while the infected and not treated showed cell necrosis induced by toxicities. Our results provided new evidence that Lactobacillus plantarum and Pichia kudriavzevii have different biological actions on the heavy metals binding capacities and antioxidant activities in experimental animals. This study suggests that these microorganisms can be considered dietary therapeutics against cadmium and lead toxicities.
Collapse
Affiliation(s)
- Kolawole Banwo
- Department of Microbiology, University of Ibadan, Ibadan, Oyo State, Nigeria.
| | - Zainab Alonge
- Department of Microbiology, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Abiodun I Sanni
- Department of Microbiology, University of Ibadan, Ibadan, Oyo State, Nigeria
| |
Collapse
|
31
|
Ahsan S, Khaliq A, Chughtai MFJ, Nadeem M, Tahir AB, Din AA, Ntsefong GN, Shariati MA, Rebezov M, Yessimbekov Z, Thiruvengadam M. Technofunctional quality assessment of soymilk fermented with Lactobacillus acidophilus and Lactobacillus casei. Biotechnol Appl Biochem 2021; 69:172-182. [PMID: 33398897 DOI: 10.1002/bab.2094] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/13/2020] [Indexed: 12/17/2022]
Abstract
The current research work was carried out to evaluate the effect of three different varieties (NARC-II, Williams 82, Ajmeri) of soybean along with single and coculture impact of Lactobacillus acidophilus and Lactobacillus casei on fermented soymilk. The periodically microbial and antioxidative activities of fermented soymilk were analyzed during the storage of 24 days. Moreover, the effect of fermentation on rheological and structural changes was examined along with isoflavone contents in fermented soymilk. Viability of cells and antioxidative activities were found to be significantly (P < 0.05) higher in fermented soymilk using mixed cultures. The rheological attributes demonstrated higher viscosity in coculture fermented soymilk. Scanning electron microscopic examination indicated that the growth characteristic of L. casei has a relatively more uniform texture and smaller pore size in comparison to L. acidophilus. Nevertheless, the combination of cultures exhibited precise pore formation with stronger cross-links of soybean protein throughout the structure. Assessment of isoflavones exhibited higher values, for daidzein (20.87 ppm) in comparison to genistein (6.57 ppm), in Ajmeri-based coculture soymilk. Conclusively, L. casei and L. acidophilous exhibited considerable antioxidant potential in the development of viscous, less porous, and rich in bioactive metabolites fermented soymilk, when used in combination and among varieties Ajmeri results it was the top of all. This suggests that the process evidence in this study could be recommended for high-quality soymilk production.
Collapse
Affiliation(s)
- Samreen Ahsan
- Department of Food Science and Technology, Khawaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Adnan Khaliq
- Department of Food Science and Technology, Khawaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Muhammad Farhan Jahangir Chughtai
- Department of Food Science and Technology, Khawaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Muhammad Nadeem
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Islamabad, Pakistan
| | - Assam Bin Tahir
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
| | - Amir Alaud Din
- Department of Chemical Engineering, Khawaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Godswill Ntsomboh Ntsefong
- Department of Plant Biology, Faculty of Science, University of Yaounde 1 and Institute of Agricultural Research for Development (IRAD), Cameroon
| | - Mohammad Ali Shariati
- Shakarim State University of Semey, Semey, Kazakhstan.,K.G. Razumovsky Moscow State University of technologies and management (the First Cossack University (MSUTM), Russian Federation
| | - Maksim Rebezov
- V.M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences Moscow, Russian Federation.,A. M. Prokhorov General Physics Institute, Russian Academy of Science, Moscow, Russian Federation.,Ural State Agrarian University, Yekaterinburg, Russian Federation
| | | | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, 05029, Republic of Korea
| |
Collapse
|
32
|
Zhu YY, Thakur K, Feng JY, Cai JS, Zhang JG, Hu F, Wei ZJ. B-vitamin enriched fermented soymilk: A novel strategy for soy-based functional foods development. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.08.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
33
|
Zhu YY, Thakur K, Feng JY, Cai JS, Zhang JG, Hu F, Russo P, Spano G, Wei ZJ. Riboflavin-overproducing lactobacilli for the enrichment of fermented soymilk: insights into improved nutritional and functional attributes. Appl Microbiol Biotechnol 2020; 104:5759-5772. [DOI: 10.1007/s00253-020-10649-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 04/13/2020] [Accepted: 04/26/2020] [Indexed: 01/08/2023]
|
34
|
Yang X, Su Y, Li L. Study of soybean gel induced by Lactobacillus plantarum: Protein structure and intermolecular interaction. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108794] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
35
|
Hyeon H, Min CW, Moon K, Cha J, Gupta R, Park SU, Kim ST, Kim JK. Metabolic Profiling-Based Evaluation of the Fermentative Behavior of Aspergillus oryzae and Bacillus subtilis for Soybean Residues Treated at Different Temperatures. Foods 2020; 9:foods9020117. [PMID: 31979021 PMCID: PMC7074079 DOI: 10.3390/foods9020117] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 01/22/2023] Open
Abstract
Soybean processing, e.g., by soaking, heating, and fermentation, typically results in diverse metabolic changes. Herein, multivariate analysis-based metabolic profiling was employed to investigate the effects of fermentation by Aspergillus oryzae or Bacillus subtilis on soybean substrates extracted at 4, 25, or 55 °C. As metabolic changes for both A. oryzae and B. subtilis were most pronounced for substrates extracted at 55 °C, this temperature was selected to compare the two microbial fermentation strategies, which were shown to be markedly different. Specifically, fermentation by A. oryzae increased the levels of most organic acids, γ-aminobutyric acid, and glutamine, which were ascribed to carbohydrate metabolism and conversion of glutamic acid into GABA and glutamine. In contrast, fermentation by B. subtilis increased the levels of most amino acids and isoflavones, which indicated the high activity of proteases and β-glucosidase. Overall, the obtained results were concluded to be useful for the optimization of processing steps in terms of nutritional preferences.
Collapse
Affiliation(s)
- Hyejin Hyeon
- Division of Life Sciences and Bio-Resource and Environmental Center, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea
| | - Cheol Woo Min
- Department of Plant Bioscience, Life and industry Convergence Research Institute, Pusan National University, Miryang 50463, Korea;
| | - Keumok Moon
- Department of Microbiology, College of Natural Sciences, Pusan National University, Busan 46241, Korea; (K.M.); (J.C.)
| | - Jaeho Cha
- Department of Microbiology, College of Natural Sciences, Pusan National University, Busan 46241, Korea; (K.M.); (J.C.)
- Microbiological Resource Research Institute, Pusan National University, Busan 46241, Korea
| | - Ravi Gupta
- Department of Botany, School of Chemical and Life Science, Jamia Hamdard, New Delhi 110062, India;
| | - Sang Un Park
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea;
| | - Sun Tae Kim
- Department of Plant Bioscience, Life and industry Convergence Research Institute, Pusan National University, Miryang 50463, Korea;
- Correspondence: (S.T.K.); (J.K.K.); Tel.: +82-55-350-5505 (S.T.K.); +82-32-835-8241 (J.K.K.); Fax: +82-55-350-5509 (S.T.K.); +82-32-835-0763 (J.K.K.)
| | - Jae Kwang Kim
- Division of Life Sciences and Bio-Resource and Environmental Center, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea
- Correspondence: (S.T.K.); (J.K.K.); Tel.: +82-55-350-5505 (S.T.K.); +82-32-835-8241 (J.K.K.); Fax: +82-55-350-5509 (S.T.K.); +82-32-835-0763 (J.K.K.)
| |
Collapse
|
36
|
Gastrointestinal survival and potential bioactivities of Lactobacillus curieae CCTCC M2011381 in the fermentation of plant food. Process Biochem 2020. [DOI: 10.1016/j.procbio.2019.10.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
37
|
Tangyu M, Muller J, Bolten CJ, Wittmann C. Fermentation of plant-based milk alternatives for improved flavour and nutritional value. Appl Microbiol Biotechnol 2019; 103:9263-9275. [PMID: 31686143 PMCID: PMC6867983 DOI: 10.1007/s00253-019-10175-9] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/21/2019] [Accepted: 10/03/2019] [Indexed: 12/11/2022]
Abstract
Non-dairy milk alternatives (or milk analogues) are water extracts of plants and have become increasingly popular for human nutrition. Over the years, the global market for these products has become a multi-billion dollar business and will reach a value of approximately 26 billion USD within the next 5 years. Moreover, many consumers demand plant-based milk alternatives for sustainability, health-related, lifestyle and dietary reasons, resulting in an abundance of products based on nuts, seeds or beans. Unfortunately, plant-based milk alternatives are often nutritionally unbalanced, and their flavour profiles limit their acceptance. With the goal of producing more valuable and tasty products, fermentation can help to the improve sensory profiles, nutritional properties, texture and microbial safety of plant-based milk alternatives so that the amendment with additional ingredients, often perceived as artificial, can be avoided. To date, plant-based milk fermentation mainly uses mono-cultures of microbes, such as lactic acid bacteria, bacilli and yeasts, for this purpose. More recently, new concepts have proposed mixed-culture fermentations with two or more microbial species. These approaches promise synergistic effects to enhance the fermentation process and improve the quality of the final products. Here, we review the plant-based milk market, including nutritional, sensory and manufacturing aspects. In addition, we provide an overview of the state-of-the-art fermentation of plant materials using mono- and mixed-cultures. Due to the rapid progress in this field, we can expect well-balanced and naturally fermented plant-based milk alternatives in the coming years.
Collapse
Affiliation(s)
- Muzi Tangyu
- Institute of Systems Biotechnology, Saarland University, Campus A1.5, 66123, Saarbrücken, Germany
| | - Jeroen Muller
- Institute of Material Sciences, Department of Biology, Nestlé Research, Lausanne, Switzerland
| | - Christoph J Bolten
- Institute of Material Sciences, Department of Biology, Nestlé Research, Lausanne, Switzerland
| | - Christoph Wittmann
- Institute of Systems Biotechnology, Saarland University, Campus A1.5, 66123, Saarbrücken, Germany.
| |
Collapse
|
38
|
Xia X, Dai Y, Wu H, Liu X, Wang Y, Yin L, Wang Z, Li X, Zhou J. Kombucha fermentation enhances the health-promoting properties of soymilk beverage. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103549] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
39
|
Cai YX, Wang JH, McAuley C, Augustin MA, Terefe NS. Fermentation for enhancing the bioconversion of glucoraphanin into sulforaphane and improve the functional attributes of broccoli puree. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103461] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
40
|
Tonolo F, Moretto L, Folda A, Scalcon V, Bindoli A, Bellamio M, Feller E, Rigobello MP. Antioxidant Properties of Fermented Soy during Shelf Life. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2019; 74:287-292. [PMID: 31098881 DOI: 10.1007/s11130-019-00738-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Glycine max (soybean) is a fundamental food in human nutrition, largely utilized by the consumers, and in particular, fermented soy is mainly used. However, health benefits of the products can change during the shelf life as oxidation processes occur determining alterations of protein and lipid constituents leading to a decrease of nutritional quality. Therefore, the oxidative stability of the fermented soy during the shelf life was studied. The antioxidant potential of this product was evaluated by estimating total phenols, free radical scavenger activity using DPPH and ABTS tests, and the degree of lipid peroxidation, from I up to IX weeks. The antioxidant capacity after an initial decrease, increased again at VII-IX weeks. Lipid peroxidation was evaluated by comparing non fermented and fermented soy. The results disclosed a low amount of peroxides in the fermented soy, suggesting that fermentation brings to an improvement of the product associated to a decreased lipid peroxidation at longer times. Fractions of aqueous extract, obtained at the end of the shelf life from fermented soy, showed an enrichment in antioxidant peptides.
Collapse
Affiliation(s)
- Federica Tonolo
- Department of Biomedical Sciences, University of Padova, via Ugo Bassi 58/b, 35131, Padova, Italy
| | - Laura Moretto
- Department of Biomedical Sciences, University of Padova, via Ugo Bassi 58/b, 35131, Padova, Italy
| | - Alessandra Folda
- Department of Biomedical Sciences, University of Padova, via Ugo Bassi 58/b, 35131, Padova, Italy
| | - Valeria Scalcon
- Department of Biomedical Sciences, University of Padova, via Ugo Bassi 58/b, 35131, Padova, Italy
| | - Alberto Bindoli
- Institute of Neuroscience (CNR), viale G. Colombo 3, 35131, Padova, Italy
| | - Marco Bellamio
- Centrale del Latte di Vicenza s.p.a, via A. Faedo 60, 36100, Vicenza, Italy
| | - Emiliano Feller
- Centrale del Latte di Vicenza s.p.a, via A. Faedo 60, 36100, Vicenza, Italy
| | - Maria Pia Rigobello
- Department of Biomedical Sciences, University of Padova, via Ugo Bassi 58/b, 35131, Padova, Italy.
| |
Collapse
|
41
|
Dai S, Pan M, El-Nezami HS, Wan JMF, Wang MF, Habimana O, Lee JCY, Louie JCY, Shah NP. Effects of Lactic Acid Bacteria-Fermented Soymilk on Isoflavone Metabolites and Short-Chain Fatty Acids Excretion and Their Modulating Effects on Gut Microbiota. J Food Sci 2019; 84:1854-1863. [PMID: 31206699 DOI: 10.1111/1750-3841.14661] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/13/2019] [Accepted: 04/28/2019] [Indexed: 12/26/2022]
Abstract
Lactobacillus rhamnosus strain ASCC 1520 with high soy isoflavone transformation ability was used to ferment soymilk and added to the diet of mice. The impact of L. rhamnosus fermentation on soy isoflavone metabolites and intestinal bacterial community, in conjunction with fecal enzyme activity and short-chain fatty acids (SCFA) excretion was evaluated. Antibiotics intervention resulted in a decrease in fecal enzyme activities and SCFA. Although long-term intake of soymilk or L. rhamnosus-fermented soymilk did not affect the fecal β-glucuronidase and β-galactosidase activities, it improved the β-glucosidase activity when antibiotics were concomitantly administered. Soymilk or fermented soymilk administration increased the isoflavone metabolites (O-DMA and equol) excreted in urine. Antibiotics decreased the daidzein excretion and its metabolites but showed little effect on glycitein and genistein excretion. Principal coordinates analysis (PCoA) of the 16s rRNA gene sequencing data found a remarkable shift in gut microbiota after soymilk administration and antibiotics treatment. Matastats test of the relative abundance of bacterial taxa revealed Odoribacter (Bacteroidales family), Lactobacillus (Lactobacillales order), and Alistipes (Rikenellaceae family) were enriched in soymilk while bacterial taxa from Bacteroides and Lactobacillus were enriched in L. rhamnosus-fermented soymilk. Furthermore, there was less decrease in bacterial taxa with fermented soymilk group even when antibiotics were concomitantly administered. Overall, this study revealed that the gut microbiota of a healthy host is enough for the whole isoflavone metabolism under normal conditions. Feeding mice with L. rhamnosus-fermented soymilk improved fecal enzyme activity and kept the balance of the gut mirobiota when antibiotics were used. PRACTICAL APPLICATION: Feeding mice with L. rhamnosus-fermented soymilk improved fecal enzyme activity and kept the balance of the gut mirobiota when antibiotics were used.
Collapse
Affiliation(s)
- Shuhong Dai
- Dept. of Non-communicable Disease Prevention and Control, Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, Guangdong, P. R. China, 518054.,Food and Nutritional Sciences, School of Biological Sciences, The Univ. of Hong Kong, Pokfulam Road, Hong Kong
| | - Mingfang Pan
- Food and Nutritional Sciences, School of Biological Sciences, The Univ. of Hong Kong, Pokfulam Road, Hong Kong
| | - Hani S El-Nezami
- Food and Nutritional Sciences, School of Biological Sciences, The Univ. of Hong Kong, Pokfulam Road, Hong Kong
| | - Jennifer M F Wan
- Food and Nutritional Sciences, School of Biological Sciences, The Univ. of Hong Kong, Pokfulam Road, Hong Kong
| | - M F Wang
- Food and Nutritional Sciences, School of Biological Sciences, The Univ. of Hong Kong, Pokfulam Road, Hong Kong
| | - Olivier Habimana
- Food and Nutritional Sciences, School of Biological Sciences, The Univ. of Hong Kong, Pokfulam Road, Hong Kong
| | - Jetty C Y Lee
- Food and Nutritional Sciences, School of Biological Sciences, The Univ. of Hong Kong, Pokfulam Road, Hong Kong
| | - Jimmy C Y Louie
- Food and Nutritional Sciences, School of Biological Sciences, The Univ. of Hong Kong, Pokfulam Road, Hong Kong
| | - Nagendra P Shah
- Food and Nutritional Sciences, School of Biological Sciences, The Univ. of Hong Kong, Pokfulam Road, Hong Kong
| |
Collapse
|
42
|
Optimization of soymilk fermentation with kefir and the addition of inulin: Physicochemical, sensory and technological characteristics. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.01.030] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
43
|
Reinforcement of the Antioxidative Properties of Chickpea Beverages Through Fermentation Carried Out by Probiotic Strain Lactobacillus plantarum 299v. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2019. [DOI: 10.22207/jpam.13.1.01] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
44
|
Vong WC, Liu SQ. The effects of carbohydrase, probiotic Lactobacillus paracasei and yeast Lindnera saturnus on the composition of a novel okara (soybean residue) functional beverage. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2018.10.059] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
45
|
Chen W, Zhu J, Niu H, Song Y, Zhang W, Chen H, Chen W. Composition and Characteristics of Yam Juice Fermented by Lactobacillus plantarum and Streptococcus thermophilus. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2018. [DOI: 10.1515/ijfe-2018-0123] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
In this study, Lactobacillus plantarum (LP), alone or in combination with Streptococcus thermophilus, was used to ferment yam juice. Changes in the composition (phenols, organic acids, reducing sugars and volatile substances) and functional characteristics (antioxidative activity and ability to regulate the intestinal flora) of yam juice during fermentation were investigated. The results showed that the total phenolic (TP) content increased from 201.27 to 281.27 and 285.77 μg/mL for LP- and L. plantarum and S. thermophilus (LPST)-fermented yam juice, respectively. The antioxidative activity of yam juice improved significantly after fermentation, highly correlating with its TP content. In addition, LP- or LPST-fermented yam juice had positive effects on members of the human intestinal flora, improving the activity of Bifidobacterium and inhibiting the growth of Escherichia coli. Sensory analysis showed that LPST-fermented yam juice had a highest score. The results of this study showed that fermented yam juice can serve as a healthy beverage for consumers with low immunity or an imbalance of the intestinal flora.
Collapse
|
46
|
Niu KM, Kothari D, Cho SB, Han SG, Song IG, Kim SC, Kim SK. Exploring the Probiotic and Compound Feed Fermentative Applications of Lactobacillus plantarum SK1305 Isolated from Korean Green Chili Pickled Pepper. Probiotics Antimicrob Proteins 2018; 11:801-812. [DOI: 10.1007/s12602-018-9447-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
47
|
Choudhary S, Singh M, Sharma D, Attri S, Sharma K, Goel G. Principal Component Analysis of Stimulatory Effect of Synbiotic Combination of Indigenous Probiotic and Inulin on Antioxidant Activity of Soymilk. Probiotics Antimicrob Proteins 2018; 11:813-819. [DOI: 10.1007/s12602-018-9432-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
48
|
Fei Y, Li L, Chen L, Zheng Y, Yu B. High-throughput sequencing and culture-based approaches to analyze microbial diversity associated with chemical changes in naturally fermented tofu whey, a traditional Chinese tofu-coagulant. Food Microbiol 2018; 76:69-77. [PMID: 30166192 DOI: 10.1016/j.fm.2018.04.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/12/2018] [Accepted: 04/10/2018] [Indexed: 12/11/2022]
Abstract
Naturally fermented tofu whey (NFTW) has been used as traditional tofu coagulant in China for hundreds of years. In this study, the microbial diversity in NFTW was firstly analyzed with high-throughput sequencing and its effect on chemical contents of tofu whey (TW) was investigated. Lactobacillus with 95.31% was the predominant genus in the microbial community of NFTW while Picha, Enterococcus, Bacillus and Acetobacter occupied about only 0.90%, 0.04%, 0.02% and 0.09%, respectively. Besides, Lactobacillus amylolyticus were determined to be one of the dominated species with metagenomic analysis and culture method. Lactobacillus with α-galactosidase activities played leading role in metabolizing the soybean oligosaccharides of TW to produce lactic acid. And acetic acid produced by genus of Acetobacter was another main organic acid attributed to the acidification of TW except lactic acid. Meanwhile, the bioconversion of isoflavone glucosides into aglycones could also be promoted by Lactobacillus with the help of β-glucosidase activity. Moreover, the production of equol in NFTW was confirmed, which might be jointly converted from daidzein by several strains. Therefore, our results indicated that Lactobacillus was the dominated microorganism and mainly affected the chemical changes of NFTW. This study help provide basic theory and technical references for the production of tofu and its derivative products (like sufu) with NFTW as coagulator.
Collapse
Affiliation(s)
- Yongtao Fei
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Li Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China.
| | - Liyan Chen
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Yin Zheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Baoning Yu
- Guangdong Yantang Dairy Co.,Ltd., Guangzhou, 510507, China
| |
Collapse
|
49
|
α-Galactosidase activity and oligosaccharides reduction pattern of indigenous lactobacilli during fermentation of soy milk. FOOD BIOSCI 2018. [DOI: 10.1016/j.fbio.2018.01.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
50
|
Peng M, Liu J, Liu Z, Fu B, Hu Y, Zhou M, Fu C, Gao B, Wang C, Li D, Xu N. Effect of citrus peel on phenolic compounds, organic acids and antioxidant activity of soy sauce. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.01.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|