1
|
Ren X, Qin Y, Zhang Y, Xie J, Diao X, Altaf MM. Regional distribution differences of antibiotics in tropical marine aquaculture area: Insights into antibiotic management and risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176391. [PMID: 39304153 DOI: 10.1016/j.scitotenv.2024.176391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
In recent years, global demand for marine aquaculture products has led to a significant rise in antibiotic use, particularly in tropical coastal aquaculture areas However, research on antibiotic residues in these environments remains limited, hindering a comprehensive understanding of their environmental presence and associated risks. This study investigates the regional distribution, ecological risks, and sources of 44 antibiotics in seawater across four coastal aquaculture areas in Hainan island (Wenchang, Sanya, Danzhou, and Wanning). Among the 44 antibiotics tested across 42 sampling sites, all were detected with a 100 % detection rate. Antibiotics such as Trimethoprim (TMP), Sulfanitran (APNPS), Sulfaquinoxaline (SQ), Sulfadimethoxine (SDT), Chloramphenicol (CHP), and Florfenicol (FLO) were consistently detected across all sampling sites. Total concentrations of detected antibiotics ranged from 0 to 818.79 ng.L-1, with sulfonamide antibiotics ranging from 0 to 629.49 ng.L-1, chloramphenicol antibiotics from 0 to 87.39 ng.L-1, tetracyclines from 0 to 221.39 ng.L-1, and fluoquinolones from 0 to 272.08 ng.L-1. The highest levels of antibiotic pollution were observed at the W5 sampling site in Wenchang, attributed to aquaculture wastewater discharge, while no antibiotics were found at D12 in Danzhou. In these regions, source analysis identified aquaculture and domestic sewage as the primary contributors to antibiotic pollution in these regions. Correlation analysis with environmental factors revealed significant influences of factors such as SAL, kPa, TN, SPC, and pH on sulfonamide and chloramphenicol antibiotics. Health risk assessment indicated moderate to high risks to aquatic organisms from antibiotics like NOR, CIP, ENR, OFL, TMP, and SMX in the study areas, underscoring the need for preventive measures, stricter regulation of antibiotic use, and enhanced ecological risk monitoring in aquaculture regions. This study provides critical insights into antibiotic contamination in Hainan's coastal aquaculture areas, highlighting the urgent need for further research into the occurrence and ecological impacts of these emerging pollutants in marine environments.
Collapse
Affiliation(s)
- Xiaoyu Ren
- School of Ecological, Hainan University, Haikou, Hainan 570228, China
| | - Yongqiang Qin
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Hainan Normal University, Haikou 571158, China
| | - Yankun Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Hainan Normal University, Haikou 571158, China
| | - Jia Xie
- School of Marine Biology and Fisheries, Hainan University, Haikou, Hainan 570228, China
| | - Xiaoping Diao
- State Key Laboratory of Marine Resources Utilization in South China Sea, Haikou, Hainan 570228, China.
| | - Muhammad Mohsin Altaf
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| |
Collapse
|
2
|
Sun P, Tan Y, Zhu Z, Yang T, Thevarajan S, Zhang L. Occurrence, Source Apportionment, and Risk Assessment of Antibiotics in Mangrove Sediments from the Lianzhou Bay, China. Antibiotics (Basel) 2024; 13:820. [PMID: 39334994 PMCID: PMC11429403 DOI: 10.3390/antibiotics13090820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
In recent years, the widespread application of antibiotics has raised global concerns, posing a severe threat to ecological health. In this study, the occurrence, source, and ecological risks of 39 antibiotics belonging to 5 classes in mangrove sediments from Lianzhou Bay, China, were assessed. The total concentrations of the antibiotics (∑39 antibiotics) ranged from 65.45 to 202.24 ng/g dry weight (dw), with an average of 142.73 ± 36.76 ng/g dw. The concentrations of these five classes of antibiotics were as follows: Sulfonamides (SAs) > Tetracyclines (TCs) > Fluoroquinolones (QUs) > Penicillin (PCs) > Macrolides (MLs). The spatial distribution of antibiotics varied as high tidal zone > middle tidal zone > low tidal zone. The total organic carbon (TOC), pH, nitrate (NO3--N), and nitrite (NO2--N) of the sediment significantly influenced the distribution of antibiotics (p < 0.05). A source analysis identified untreated sewage from aquaculture as the primary source of antibiotics in the local mangrove. A risk assessment revealed that ciprofloxacin, norfloxacin, ofloxacin of QUs, and tetracycline of TCs exhibited medium risks to algae in certain sampling sites, while other antibiotics exhibited low or no risks to all organisms. Nevertheless, the total risk of all the detected antibiotics to algae was medium in 95% of the sites. The overall ecological risk level of antibiotics in the middle tidal zone was slightly lower than in the high tidal zone and the lowest in the low tidal zone. In summary, the experimental results provided insights into the fate and transport behaviors of antibiotics in mangrove sediments from Lianzhou Bay.
Collapse
Affiliation(s)
- Pengfei Sun
- Guangxi Beibu Gulf Key Laboratory of Marine Resources, Environment and Sustainable Development, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Yongyu Tan
- Guangxi Beibu Gulf Key Laboratory of Marine Resources, Environment and Sustainable Development, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China
| | - Zuhao Zhu
- Guangxi Beibu Gulf Key Laboratory of Marine Resources, Environment and Sustainable Development, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China
| | - Tinglong Yang
- Guangxi Beibu Gulf Key Laboratory of Marine Resources, Environment and Sustainable Development, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China
| | - Shalini Thevarajan
- Guangxi Beibu Gulf Key Laboratory of Marine Resources, Environment and Sustainable Development, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China
- Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Li Zhang
- Guangxi Beibu Gulf Key Laboratory of Marine Resources, Environment and Sustainable Development, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China
| |
Collapse
|
3
|
Chen C, Tang J, Li F, Xue R, Xiao Y, Chen L, Yu G. Characterization and source apportionment of pharmaceuticals in surface water of the Yangtze Estuary and adjacent sea. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:52171-52180. [PMID: 39141263 DOI: 10.1007/s11356-024-34693-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 08/08/2024] [Indexed: 08/15/2024]
Abstract
Pharmaceuticals, which are closely linked to human activities, have attracted global attention. This study investigated the occurrence characteristics of 20 pharmaceuticals in surface water of the Yangtze Estuary and adjacent sea. A total of 14 targeted pharmaceuticals were detected in both spring and summer sampling campaigns. The mean concentrations of sulfonamides and non-sulfonamides were 36.60 ± 19.43 ng·L-1 and 50.02 ± 41.07 ng·L-1, respectively. As for non-antibiotics, their concentrations were in the range of 24.34 ± 916.8 ng·L-1 with caffeine accounting for 6.17 ~ 86.70% (average percentage of 42.22%). Meanwhile, spatial distribution patterns showed similarities between antibiotics and non-antibiotics, with high levels occurring near the upper estuary, aquaculture areas, wastewater treatment plants, and the maximum turbidity zone. This phenomenon could be related to the sources of pharmaceuticals and the physicochemical properties of water bodies. Obviously, the first three areas are highly impacted by human activities or serve as important sources of terrestrial contaminants entering the East China Sea. The last area retains high amounts of suspended particles which may exert strong trapping effects on hydrophobic chemicals. Principal component analysis revealed the presence of three potential sources for pharmaceuticals in the Yangtze Estuary, with a relatively high percentage originating from incompletely treated municipal sewage. As for the temporal trend, pharmaceutical contamination was found to be higher in spring compared to summer, potentially due to variations in pharmaceutical consumption patterns, local rainfalls, and water temperatures. These findings provide fundamental data support for implementing appropriate local management strategies for pharmaceutical usages.
Collapse
Affiliation(s)
- Chunzhao Chen
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai, 519087, China
| | - Jian Tang
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai, 519087, China
| | - Fei Li
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, New Jersey, NJ, USA
| | - Rui Xue
- Institute of Science and Technology Information, Beijing Academy of Science and Technology, Beijing, 100089, China.
| | - Yihua Xiao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| | - Ling Chen
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Gang Yu
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai, 519087, China
| |
Collapse
|
4
|
Guo C, Lan W, Guo M, Lv X, Xu X, Lei K. Spatiotemporal distribution patterns and coupling effects of aquatic environmental factors in the dry-wet season over a decade from the Beibu Gulf, South China Sea. MARINE POLLUTION BULLETIN 2024; 205:116596. [PMID: 38905738 DOI: 10.1016/j.marpolbul.2024.116596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/23/2024]
Abstract
Since the 21st century, the Beibu Gulf area has been affected by increasing anthropogenic activities, which makes the coastal aquatic ecosystem extremely concerning. However, the comprehensive exploration and analysis of the long-term scale behavior change characteristics of various water quality environment factors is still limited. Through comprehensively detecting coastal surface water environmental behavior information from 33 locations in the Beibu Gulf from 2005 to 2015, we revealed and quantified mutual response characteristics and patterns of various environmental indicators. The main environmental pollution indicators (e.g., COD, NH4+, NO3-, and DIP) showed a gradual decrease in concentration from the coast to the offshore sea area, and significantly increases during the wet season. The semi-enclosed Maowei Sea exhibited the most prominent performance with significant differences compared to other regions in Beibu Gulf. The average Chlorophyll-a (Chla) content in the coastal area of the Beibu Gulf during the wet season was more than twice that of the dry season, yet the interaction pattern between Chla and environmental factors in the two seasons was opposite to its concentration behavior, accompanied by a closely significant relationship with thermohaline structure and the input of nitrogen and phosphorous nutrients. The multivariate statistical analysis results of total nutrient dynamics suggested that the Beibu Gulf was clearly divided into different regions in both dry and wet season clusters. The present study can provide a comprehensive perspective for the spatial and temporal migration patterns and transformation laws of coastal water environmental factor, which should contribute to improve the prevention countermeasure of nutrient pollution in coastal environment.
Collapse
Affiliation(s)
- Chaochen Guo
- State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Wenlu Lan
- Beibu Gulf Marine Ecological Environment Field Observation and Research Station of Guangxi, Marine Environmental Monitoring Center of Guangxi, Beihai 536000, China
| | - Meixiu Guo
- Beibu Gulf Marine Ecological Environment Field Observation and Research Station of Guangxi, Marine Environmental Monitoring Center of Guangxi, Beihai 536000, China
| | - Xubo Lv
- State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiangqin Xu
- State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Kun Lei
- State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
5
|
Tang HZ, Zhao T, Yin QJ, Zheng PF, Zhu FC, Tang HY, Li AQ. A meta-analysis of antibiotic residues in the Beibu Gulf. MARINE ENVIRONMENTAL RESEARCH 2024; 198:106560. [PMID: 38776723 DOI: 10.1016/j.marenvres.2024.106560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/12/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024]
Abstract
Antibiotic residue stands as a significant ongoing environmental issue, with aquaculture being a major source of annual antibiotic discharge into the ocean. Nevertheless, there is still an incomplete evaluation of antibiotic residues in the Beibu Gulf, an area encompassed by two prominent aquaculture nations, China and Vietnam. The present systematic review and meta-analysis was conducted to examine the presence antibiotic residues in the Beibu Gulf based on published studies. Data were obtained through eight databases up to December 19th, 2023, and were updated on April 15th, 2024. The pooled concentration of antibiotic residues in seawater was 5.90 (ng/L), ranging from 5.73 to 6.06 (ng/L), and was 8.03 (ng/g), ranging from 7.77 to 8.28 (ng/g) in sediments. Fluoroquinolones, tetracyclines, and macrolides were identified as the main antibiotics found in both seawater and sediment samples. The Beibu Gulf showed higher antibiotic levels in its western and northeastern areas. Additionally, the nearshore mangrove areas displayed the highest prevalence of antibiotic residues. It is strongly advised to conduct regular long-term monitoring of antibiotic residues in the Beibu Gulf. Collaborative surveys covering the entire Beibu Gulf involving China and Vietnam are recommended.
Collapse
Affiliation(s)
- Hong-Zhi Tang
- Guangxi Key Laboratory of Beibu Gulf Marine Resources, Environment and Sustainable Development, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai, China; Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai, China.
| | - Tianyu Zhao
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Qun-Jian Yin
- Guangxi Key Laboratory of Beibu Gulf Marine Resources, Environment and Sustainable Development, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai, China; Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai, China
| | - Peng-Fei Zheng
- Guangxi Key Laboratory of Beibu Gulf Marine Resources, Environment and Sustainable Development, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai, China; Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai, China
| | - Fang-Chao Zhu
- Guangxi Key Laboratory of Beibu Gulf Marine Resources, Environment and Sustainable Development, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai, China; Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai, China
| | - Hong-Yong Tang
- China Certification & Inspection Group Hunan CO., LTD, Changsha, China
| | - An-Qi Li
- Laboratory of Deep-sea Microbial Cell Biology, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| |
Collapse
|
6
|
Yang W, Bu Q, Shi Q, Zhao R, Huang H, Yang L, Tang J, Ma Y. Emerging Contaminants in the Effluent of Wastewater Should Be Regulated: Which and to What Extent? TOXICS 2024; 12:309. [PMID: 38787088 PMCID: PMC11125804 DOI: 10.3390/toxics12050309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024]
Abstract
Effluent discharged from urban wastewater treatment plants (WWTPs) is a major source of emerging contaminants (ECs) requiring effective regulation. To this end, we collected discharge datasets of pharmaceuticals (PHACs) and endocrine-disrupting chemicals (EDCs), representing two primary categories of ECs, from Chinese WWTP effluent from 2012 to 2022 to establish an exposure database. Moreover, high-risk ECs' long-term water quality criteria (LWQC) were derived using the species sensitivity distribution (SSD) method. A total of 140 ECs (124 PHACs and 16 EDCs) were identified, with concentrations ranging from N.D. (not detected) to 706 μg/L. Most data were concentrated in coastal regions and Gansu, with high ecological risk observed in Gansu, Hebei, Shandong, Guangdong, and Hong Kong. Using the assessment factor (AF) method, 18 high-risk ECs requiring regulation were identified. However, only three of them, namely carbamazepine, ibuprofen, and bisphenol-A, met the derivation requirements of the SSD method. The LWQC for these three ECs were determined as 96.4, 1010, and 288 ng/L, respectively. Exposure data for carbamazepine and bisphenol-A surpassed their derived LWQC, indicating a need for heightened attention to these contaminants. This study elucidates the occurrence and risks of ECs in Chinese WWTPs and provides theoretical and data foundations for EC management in urban sewage facilities.
Collapse
Affiliation(s)
- Weiwei Yang
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing 100083, China (Q.S.)
| | - Qingwei Bu
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing 100083, China (Q.S.)
| | - Qianhui Shi
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing 100083, China (Q.S.)
| | - Ruiqing Zhao
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing 100083, China (Q.S.)
| | - Haitao Huang
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing 100083, China (Q.S.)
| | - Lei Yang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jianfeng Tang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yuning Ma
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
7
|
Wang Q, Zhou X, Jin Q, Zhu F. Effects of the aquatic pollutant sulfamethoxazole on the innate immunity and antioxidant capacity of the mud crab Scylla paramamosain. CHEMOSPHERE 2024; 349:140775. [PMID: 38013024 DOI: 10.1016/j.chemosphere.2023.140775] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 11/01/2023] [Accepted: 11/19/2023] [Indexed: 11/29/2023]
Abstract
Sulfamethoxazole (SMZ) is commonly used in aquaculture to treat bacterial infections, but its long-term residual properties in natural water can pose a direct threat to aquatic animals. This study is to investigate the effects of continuous exposure to SMZ on mud crabs (Scylla paramamosain) at four different concentrations (0, 10, 100, and 1000 ng/L) that reflect the range found in natural aquatic environments. The results confirmed that SMZ exposure reduced the expression levels of genes related to the innate immunity in mud crabs, including JAK, Astakine, TLR, and Crustin. It also stimulated oxidative stress, caused the production of reactive oxygen species and lower activities of antioxidant enzymes such as peroxidase, superoxide dismutase, catalase, and glutathione. SMZ exposure damaged the DNA of crab hemocytes and hepatopancreas tissue, and reduced the phagocytosis, ultimately leading to a decreased survival rates of mud crabs infected with Vibrio alginolyticus. These findings demonstrate that SMZ exposure has immunotoxic effects on mud crabs' innate immunity and reduces the ability to resist pathogen infections.
Collapse
Affiliation(s)
- Qi Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China
| | - Xiujuan Zhou
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China
| | - Qingri Jin
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 311399, China
| | - Fei Zhu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China.
| |
Collapse
|
8
|
Shang J, Huang M, Zhao L, He P, Liu Y, Pan H, Cao S, Liu X. Adsorption Performance and Mechanisms of Tetracycline on Clay Minerals in Estuaries and Nearby Coastal Areas. ACS OMEGA 2024; 9:692-699. [PMID: 38222580 PMCID: PMC10785062 DOI: 10.1021/acsomega.3c06478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 01/16/2024]
Abstract
Clay minerals in sediments have strong adsorption capacities for pollutants, but their role in the distribution of antibiotics in estuaries and nearby coastal areas is unclear. We evaluated the clay mineral montmorillonite (SWy-2) adsorption capacity for tetracycline (TC). We assessed the adsorption capacity of SWy-2 for TC by measuring the removal percentage of 30 mg/L TC over time. The effects of pH and ionic strength on the TC adsorption onto SWy-2 were investigated. We analyzed the kinetics of TC adsorption using a pseudo-second-order model and determined the adsorption isotherm using the Langmuir equation. SWy-2 particles were characterized using zeta potential, Fourier transform infrared (FTIR), and X-ray diffraction (XRD) analyses before and after TC adsorption. The removal percentage of 30 mg/L TC by SWy-2 reached 70.76% within 0.25 h and gradually increased to 78.64% at 6 h. TC adsorption was influenced by pH and ionic strength, where low pH enhanced and high ionic strength reduced the adsorption. The kinetics of TC adsorption followed a pseudo-second-order model, and the adsorption isotherm adhered to the Langmuir equation. The saturated adsorption capacity (qmax) of SWy-2 for TC was 227.27 mg/g. Zeta potential, FTIR, and XRD analyses confirmed that electrostatic interactions and chemical bonds played a significant role in the TC adsorption by SWy-2. SWy-2 clay mineral exhibits a substantial adsorption capacity for TC, indicating its potential as an effective sorbent to mitigate antibiotic contamination in estuaries and nearby coastal areas. The observed effects of pH and ionic strength on TC adsorption have implications for the environmental fate and transport of antibiotics. The pseudo-second-order kinetic model and Langmuir isotherm equation provide valuable insights into the adsorption behavior and capacity of TC on SWy-2. Characterization analyses support the involvement of electrostatic interactions and chemical bonds in the SWy-2-TC adsorption mechanism.
Collapse
Affiliation(s)
- Jiaxiang Shang
- Guangxi
Colleges and Universities Key Laboratory of Environmental-friendly
Materialsand New Technology For Carbon Neutralization, Guangxi Key
Laboratory of Advanced Structural Materials and Carbon Neutralization,
School of Materials and Environment, Guangxi
Minzu University, Nanning 530006, China
| | - Mingjian Huang
- Guangxi
Colleges and Universities Key Laboratory of Environmental-friendly
Materialsand New Technology For Carbon Neutralization, Guangxi Key
Laboratory of Advanced Structural Materials and Carbon Neutralization,
School of Materials and Environment, Guangxi
Minzu University, Nanning 530006, China
| | - Liyang Zhao
- Guangxi
Colleges and Universities Key Laboratory of Environmental-friendly
Materialsand New Technology For Carbon Neutralization, Guangxi Key
Laboratory of Advanced Structural Materials and Carbon Neutralization,
School of Materials and Environment, Guangxi
Minzu University, Nanning 530006, China
| | - Peixi He
- Guangxi
Colleges and Universities Key Laboratory of Environmental-friendly
Materialsand New Technology For Carbon Neutralization, Guangxi Key
Laboratory of Advanced Structural Materials and Carbon Neutralization,
School of Materials and Environment, Guangxi
Minzu University, Nanning 530006, China
| | - Yan Liu
- Guangxi
Colleges and Universities Key Laboratory of Environmental-friendly
Materialsand New Technology For Carbon Neutralization, Guangxi Key
Laboratory of Advanced Structural Materials and Carbon Neutralization,
School of Materials and Environment, Guangxi
Minzu University, Nanning 530006, China
| | - Honghui Pan
- Guangxi
Colleges and Universities Key Laboratory of Environmental-friendly
Materialsand New Technology For Carbon Neutralization, Guangxi Key
Laboratory of Advanced Structural Materials and Carbon Neutralization,
School of Materials and Environment, Guangxi
Minzu University, Nanning 530006, China
| | - Shaohua Cao
- State
Environmental Protection Key Laboratory of Soil Environmental Management
and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing 210042, Jiangsu, China
| | - Xixiang Liu
- Guangxi
Colleges and Universities Key Laboratory of Environmental-friendly
Materialsand New Technology For Carbon Neutralization, Guangxi Key
Laboratory of Advanced Structural Materials and Carbon Neutralization,
School of Materials and Environment, Guangxi
Minzu University, Nanning 530006, China
- Guangxi
Research Institute of Chemical Industry Co., Ltd., Nanning 530001, China
| |
Collapse
|
9
|
Zheng J, Zhang P, Li X, Ge L, Niu J. Insight into typical photo-assisted AOPs for the degradation of antibiotic micropollutants: Mechanisms and research gaps. CHEMOSPHERE 2023; 343:140211. [PMID: 37739134 DOI: 10.1016/j.chemosphere.2023.140211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/15/2023] [Accepted: 09/17/2023] [Indexed: 09/24/2023]
Abstract
Due to the incomplete elimination by traditional wastewater treatment, antibiotics are becoming emerging contaminants, which are proved to be ubiquitous and promote bacterial resistance in the aquatic systems. Antibiotic pollution has raised particular concerns, calling for improved methods to clean wastewater and water. Photo-assisted advanced oxidation processes (AOPs) have attracted increasing attention because of the fast reaction rate, high oxidation capacity and low selectivity to remove antibiotics from wastewater. On the basis of latest literature, we found some new breakthroughs in the degradation mechanisms of antibiotic micropollutants with respect to the AOPs. Therefore, this paper summarizes and highlights the degradation kinetics, pathways and mechanisms of antibiotics degraded by the photo-assisted AOPs, including the UV/O3 process, photo-Fenton technology, and photocatalysis. In the processes, functional groups are attacked by hydroxyl radicals, and major structures are destroyed subsequently, which depends on the classes of antibiotics. Meanwhile, their basic principles, current applications and influencing factors are briefly discussed. The main challenges, prospects, and recommendations for the improvement of photo-assisted AOPs are proposed to better remove antibiotics from wastewater.
Collapse
Affiliation(s)
- Jinshuai Zheng
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Peng Zhang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Xuanyan Li
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Linke Ge
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China; Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, United Kingdom.
| | - Junfeng Niu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China.
| |
Collapse
|
10
|
Delgado N, Orozco J, Zambrano S, Casas-Zapata JC, Marino D. Veterinary pharmaceutical as emerging contaminants in wastewater and surface water: An overview. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132431. [PMID: 37688873 DOI: 10.1016/j.jhazmat.2023.132431] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/24/2023] [Accepted: 08/27/2023] [Indexed: 09/11/2023]
Abstract
Veterinary pharmaceuticals have become of interest due to their indiscriminate use. Thus, this paper compiles studies on detection in surface and wastewater, and the treatment applied for their removal. Additionally, a case study was performed to evaluate its commercialization, as the ecological risk assessment for the most relevant compounds. 241 compounds were detected. The highest concentrations were found for antibiotics such as oxytetracycline, amoxicillin, and monensin, with values up to 3732.4 µg/L. Biological treatments have been mainly reported, obtaining removal greater than 80% for sulfadiazine, sulfamethazine, sulfamethoxazole, enrofloxacin, and oxytetracycline. Considering the case study, enrofloxacin and oxytetracycline were widely commercialized. Finally, there was a low risk for the species exposed to enrofloxacin, in contrast, the species exposed to oxytetracycline presented a high risk of long-term mortality. Concluding that veterinary compounds have emerged as a significant concern regarding water source contamination, owing to their potential adverse effects on aquatic biota and even human. This is particularly relevant because many water bodies that receive wastewater are utilized for drinking water purposes. Consequently, the development of comprehensive, full-scale systems for efficient antibiotic removal before their introduction into water sources becomes imperative. Equally important is the need to reconsider their extensive use altogether.
Collapse
Affiliation(s)
- Nasly Delgado
- Grupo de Ciencia e Ingeniería en Sistemas Ambientales, Facultad de Ingeniería Civil, Universidad del Cauca, Carrera 2# 15N, Popayán 190002, Colombia.
| | - Jessica Orozco
- Grupo de Ciencia e Ingeniería en Sistemas Ambientales, Facultad de Ingeniería Civil, Universidad del Cauca, Carrera 2# 15N, Popayán 190002, Colombia
| | - Santiago Zambrano
- Grupo de Ciencia e Ingeniería en Sistemas Ambientales, Facultad de Ingeniería Civil, Universidad del Cauca, Carrera 2# 15N, Popayán 190002, Colombia
| | - Juan C Casas-Zapata
- Grupo de Ciencia e Ingeniería en Sistemas Ambientales, Facultad de Ingeniería Civil, Universidad del Cauca, Carrera 2# 15N, Popayán 190002, Colombia
| | - Damián Marino
- Centro de Investigaciones del Medio Ambiente, Facultad de Ciencias Exactas, Universidad Nacional de la Plata (UNLP), 47y 115, La Plata 1900, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata, Argentina
| |
Collapse
|
11
|
Li F, Bao Y, Chen L, Su Z, Tang Y, Wen D. Screening of priority antibiotics in Chinese seawater based on the persistence, bioaccumulation, toxicity and resistance. ENVIRONMENT INTERNATIONAL 2023; 179:108140. [PMID: 37595537 DOI: 10.1016/j.envint.2023.108140] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/28/2023] [Accepted: 08/08/2023] [Indexed: 08/20/2023]
Abstract
Antibiotics are emerging pollutants that have detrimental effects on both target and non-target organisms in the environment. However, current methods for environmental risk assessment primarily focus on the risk to non-target organisms in ecosystems, overlooking a crucial risk of antibiotics - the induction of resistance in targeted bacteria. To address this oversight, we have incorporated resistance (R) risk with persistence, bioaccumulation and toxicity (PBT) to establish a more comprehensive PBTR (persistence, bioaccumulation, toxicity, and resistance) framework for antibiotic-specific risk assessment. Using the PBTR framework, we evaluated 74 antibiotics detected in Chinese seawater from 2000 to 2021, and identified priority antibiotics. Our analysis revealed that the priority antibiotics with R risk accounted for the largest proportion (50% to 70%), followed by P risk (40% to 58%), T risk (16% to 35%) and B risk (0 to 13%). To further categorize these priority antibiotics, we assigned them a risk level according to their fulfillment of criteria related to P, B, T, and R. Antibiotics meeting all four indicators were classified as Grade I, representing the highest risk level. Grade II and Grade III were assigned to antibiotics meeting three or two indicators, respectively. Antibiotics meeting only one indicator were classified as Grade IV, representing the lowest risk level. The majority of priority antibiotics fell into Grade IV, indicating low risk (55% to 79%), followed by Grade III (16% to 45%). The highest risk antibiotic identified in this study was clindamycin (CLIN), categorized as Grade II, in the East China Sea. Our findings aligned with previous studies for 25 antibiotics, affirming the validity of the PBTR framework. Moreover, we identified 13 new priority antibiotics, highlighting the advancement of this approach. This study provides a feasible screening strategy and monitoring recommendations for priority antibiotics in Chinese seawater.
Collapse
Affiliation(s)
- Feifei Li
- School of Environment, Tsinghua University, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, China
| | - Yingyu Bao
- College of Environmental Sciences and Engineering, Peking University, China
| | - Lyujun Chen
- School of Environment, Tsinghua University, China
| | - Zhiguo Su
- School of Environment, Tsinghua University, China
| | - Yushi Tang
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, USA
| | - Donghui Wen
- College of Environmental Sciences and Engineering, Peking University, China.
| |
Collapse
|
12
|
Zhang L, Ni L, Wang H, Zhang Z, Wu Y, Jia R, He J, Zhu Z, Jin H, Ren X, Zhang D. Higher ecological risks and lower bioremediation potentials identified for emerging OPEs than legacy PCBs in the Beibu Gulf, China. ENVIRONMENTAL RESEARCH 2023; 231:116244. [PMID: 37245567 DOI: 10.1016/j.envres.2023.116244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/10/2023] [Accepted: 05/25/2023] [Indexed: 05/30/2023]
Abstract
The production and use of organophosphate esters (OPEs) as substitutes for traditional halogenated flame retardants is increasing, resulting in greater global concern related to their ecological risks to marine environments. In this study, polychlorinated biphenyls (PCBs) and OPEs, representing traditional halogenated and emerging flame retardants, respectively, were studied in multiple environmental matrices in the Beibu Gulf, a typical semi-closed bay in the South China Sea. We investigated the differences in PCB and OPE distributions, sources, risks, and bioremediation potentials. Overall, the concentrations of emerging OPEs were much higher than those of PCBs in both seawater and sediment samples. Sediment samples from the inner bay and bay mouth areas (L sites) accumulated more PCBs, with penta- and hexa-CBs as major homologs. Chlorinated OPEs were prevalent in both seawater and sediment samples from the L sites, whereas tri-phenyl phosphate (TPHP) and tri-n-butyl phosphate (TNBP) were predominant at the outer bay (B sites) sediment samples. Source identification via principal component analysis, land use regression statistics, and δ13C analysis indicate that PCBs were mainly sourced from the atmospheric deposition of sugarcane and waste incineration, whereas sewage inputs, aquaculture, and shipping activity were identified as sources of OPE pollution in the Beibu Gulf. A half-year sediment anaerobic culturing experiment was performed for PCBs and OPEs, and the results only exhibited satisfactory dechlorination for PCBs. However, compared with the low ecological risks of PCBs to marine organisms, OPEs (particularly trichloroethyl phosphate (TCEP) and TPHP) exhibited low to medium threats to algae and crustaceans at most sites. Given their increasing usage, high ecological risks, and low bioremediation potential in enrichment cultures, pollution by emerging OPEs warrants close attention.
Collapse
Affiliation(s)
- Li Zhang
- Guangxi Key Laboratory of Beibu Gulf Marine Resources, Environment and Sustainable Development, Fourth Institute of Oceanography, MNR, Beihai, 536000, PR China
| | - Lingfang Ni
- Key Laboratory of Ocean Space Resource Management Technology, And Key Laboratory of Marine Ecosystem Dynamics, MNR, Hangzhou, 310012, PR China; Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, 316021, PR China
| | - Heng Wang
- Zhoushan Municipal Center for Disease Control and Prevention, Zhoushan, 316021, PR China
| | - Zhichao Zhang
- Zhoushan Municipal Center for Disease Control and Prevention, Zhoushan, 316021, PR China
| | - Yichun Wu
- Zhoushan Institute for Food and Drug Control, Zhoushan, 316012, PR China
| | - Renming Jia
- Guangxi Key Laboratory of Beibu Gulf Marine Resources, Environment and Sustainable Development, Fourth Institute of Oceanography, MNR, Beihai, 536000, PR China
| | - Junyu He
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, 316021, PR China
| | - Zuhao Zhu
- Guangxi Key Laboratory of Beibu Gulf Marine Resources, Environment and Sustainable Development, Fourth Institute of Oceanography, MNR, Beihai, 536000, PR China
| | - Haiyan Jin
- Key Laboratory of Ocean Space Resource Management Technology, And Key Laboratory of Marine Ecosystem Dynamics, MNR, Hangzhou, 310012, PR China
| | - Xing Ren
- Guangxi Key Laboratory of Beibu Gulf Marine Resources, Environment and Sustainable Development, Fourth Institute of Oceanography, MNR, Beihai, 536000, PR China
| | - Dongdong Zhang
- Guangxi Key Laboratory of Beibu Gulf Marine Resources, Environment and Sustainable Development, Fourth Institute of Oceanography, MNR, Beihai, 536000, PR China; Key Laboratory of Ocean Space Resource Management Technology, And Key Laboratory of Marine Ecosystem Dynamics, MNR, Hangzhou, 310012, PR China; Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, 316021, PR China.
| |
Collapse
|
13
|
Löffler P, Escher BI, Baduel C, Virta MP, Lai FY. Antimicrobial Transformation Products in the Aquatic Environment: Global Occurrence, Ecotoxicological Risks, and Potential of Antibiotic Resistance. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37335844 DOI: 10.1021/acs.est.2c09854] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
The global spread of antimicrobial resistance (AMR) is concerning for the health of humans, animals, and the environment in a One Health perspective. Assessments of AMR and associated environmental hazards mostly focus on antimicrobial parent compounds, while largely overlooking their transformation products (TPs). This review lists antimicrobial TPs identified in surface water environments and examines their potential for AMR promotion, ecological risk, as well as human health and environmental hazards using in silico models. Our review also summarizes the key transformation compartments of TPs, related pathways for TPs reaching surface waters and methodologies for studying the fate of TPs. The 56 antimicrobial TPs covered by the review were prioritized via scoring and ranking of various risk and hazard parameters. Most data on occurrences to date have been reported in Europe, while little is known about antibiotic TPs in Africa, Central and South America, Asia, and Oceania. Occurrence data on antiviral TPs and other antibacterial TPs are even scarcer. We propose evaluation of structural similarity between parent compounds and TPs for TP risk assessment. We predicted a risk of AMR for 13 TPs, especially TPs of tetracyclines and macrolides. We estimated the ecotoxicological effect concentrations of TPs from the experimental effect data of the parent chemical for bacteria, algae and water fleas, scaled by potency differences predicted by quantitative structure-activity relationships (QSARs) for baseline toxicity and a scaling factor for structural similarity. Inclusion of TPs in mixtures with their parent increased the ecological risk quotient over the threshold of one for 7 of the 24 antimicrobials included in this analysis, while only one parent had a risk quotient above one. Thirteen TPs, from which 6 were macrolide TPs, posed a risk to at least one of the three tested species. There were 12/21 TPs identified that are likely to exhibit a similar or higher level of mutagenicity/carcinogenicity, respectively, than their parent compound, with tetracycline TPs often showing increased mutagenicity. Most TPs with increased carcinogenicity belonged to sulfonamides. Most of the TPs were predicted to be mobile but not bioaccumulative, and 14 were predicted to be persistent. The six highest-priority TPs originated from the tetracycline antibiotic family and antivirals. This review, and in particular our ranking of antimicrobial TPs of concern, can support authorities in planning related intervention strategies and source mitigation of antimicrobials toward a sustainable future.
Collapse
Affiliation(s)
- Paul Löffler
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Uppsala SE-75007, Sweden
| | - Beate I Escher
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research, UZ, 04318 Leipzig, Germany
- Eberhard Karls University Tübingen, Environmental Toxicology, Department of Geosciences, 72076 Tübingen, Germany
| | - Christine Baduel
- Université Grenoble Alpes, IRD, CNRS, Grenoble INP, IGE, 38 050 Grenoble, France
| | - Marko P Virta
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, 00014 Helsinki, Finland
- Multidisciplinary Center of Excellence in Antimicrobial Resistance Research, Helsinki 00100, Finland
| | - Foon Yin Lai
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Uppsala SE-75007, Sweden
| |
Collapse
|
14
|
Zhao J, Li X, Xu Y, Li Y, Zheng L, Luan T. Toxic effects of long-term dual or single exposure to oxytetracycline and arsenic on Xenopus tropicalis living in duck wastewater. J Environ Sci (China) 2023; 127:431-440. [PMID: 36522075 DOI: 10.1016/j.jes.2022.05.049] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 06/17/2023]
Abstract
Direct discharge of aquaculture wastewater may have toxic effects, due to the presence of heavy metals, antibiotics, and even resistant pathogens, but little attention has been given. Here, tanks simulating a wild ecosystem were built to study the effects of long-term exposure to duck wastewater containing oxytetracycline (OTC) and/or arsenic (As) on the growth, physiological function, and gut microbiota evolution of Xenopus tropicalis. The results showed that duck wastewater had no apparent impact on X. tropicalis, but the impact increased significantly (P < 0.05) with exposure to OTC and/or As, especially the impact on body weight and growth rate. Biochemical indicators revealed varying degrees of oxidative stress damage, hepatotoxicity (inflammation, necrosis, and sinusoids), and collagen fibrosis of X. tropicalis in all treated groups after 72 days of exposure, which indirectly inhibited X. tropicalis growth. Moreover, 16S rDNA amplicon sequencing results showed that the gut microbiota structure and metabolic function were perturbed after chronic exposure, which might be the leading cause of growth inhibition. Interestingly, the abundance of intestinal resistance genes (RGs) increased with exposure time owing to the combined direct and indirect effects of stress factors in duck wastewater. Moreover, once the RGs were expressed, the resistance persisted for at least 24 days, especially that conferred by tetA. These results provide evidence of the toxic effects of DW containing OTC (0.1-4.0 mg/L) and/or As (0.3-3.5 µg/L) on amphibians and indicate that it is vital to limit the usage of heavy metals and antibiotics on farms to control the biotoxicity of wastewater.
Collapse
Affiliation(s)
- Jianbin Zhao
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xinyan Li
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yanbin Xu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; Analysis and Test Center, Guangdong University of Technology, Guangzhou 510006, China.
| | - Yuxin Li
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Li Zheng
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Tiangang Luan
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
15
|
Qin Y, Ren X, Ju H, Zhang Y, Liu J, Zhang J, Diao X. Occurrence and Distribution of Antibiotics in a Tropical Mariculture Area of Hainan, China: Implications for Risk Assessment and Management. TOXICS 2023; 11:toxics11050421. [PMID: 37235236 DOI: 10.3390/toxics11050421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/21/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023]
Abstract
With the rapid global demand for mariculture products in recent years, the use of antibiotics has increased intensively in the mariculture area. Current research on antibiotic residues in mariculture environments is limited, and less information is available on the presence of antibiotics in tropical waters, limiting a comprehensive understanding of their environmental presence and risk. Therefore, this study investigated the environmental occurrence and distribution of 50 antibiotics in the near-shore aquaculture waters of Fengjia Bay. A total of 21 antibiotics were detected in 12 sampling sites, including 11 quinolones, 5 sulfonamides, 4 tetracyclines, and 1 chloramphenicol; the quinolones pyrimethamine (PIP), delafloxacin (DAN), flurofloxacin (FLE), ciprofloxacin (CIP), norfloxacin (NOR), pefloxacin (PEF), enrofloxacin (ENO), and minocycline (MNO) of the tetracycline class were detected in all sampling points. The total antibiotic residue concentrations in the study area ranged from 153.6 to 1550.8 ng/L, the tetracycline antibiotics were detected in the range of 10 to 1344.7 ng/L, and the chloramphenicol antibiotics were detected in the range of 0 to 106.9 ng/L. The detected concentrations of quinolones ranged from 81.3 to 136.1 ng/L, and the residual concentrations of sulfonamide antibiotics ranged from 0 to 313.7 ng/L. The correlation analysis with environmental factors revealed that pH, temperature, conductivity, salinity, NH3--N, and total phosphorus had a strong correlation with antibiotics. Based on PCA analysis, the main sources of antibiotic pollution in the area were determined to be the discharge of farming wastewater and domestic sewage. The ecological risk assessment indicated that the residual antibiotics in the water environment of the near-shore waters of Fengjiawan had certain risks to the ecosystem. Among them, CIP, NOR, sulfamethoxazole (TMP), ofloxacin (OFL), enrofloxacin (ENO), sulfamethoxazole (SMX), and FLE showed medium to high risk. Therefore, it is recommended to regulate the use of these antibiotics and the discharge and treatment of culturing wastewater, and measures should be taken to reduce the environmental pollution caused by antibiotics and to monitor the long-term ecological risk of antibiotics in the region. Overall, our results provide an important reference for understanding the distribution and ecological risk of antibiotics in Fengjiawan.
Collapse
Affiliation(s)
- Yongqiang Qin
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Hainan Normal University, Haikou 571158, China
- College of Life Science, Hainan Normal University, Haikou 571158, China
| | - Xiaoyü Ren
- College of Ecology, Environment Hainan University, Haikou 570228, China
- Hainan Research Academy of Environmental Sciences, Haikou 571126, China
| | - Hanye Ju
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Hainan Normal University, Haikou 571158, China
- College of Life Science, Hainan Normal University, Haikou 571158, China
| | - Yankun Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Hainan Normal University, Haikou 571158, China
- College of Life Science, Hainan Normal University, Haikou 571158, China
| | - Jin Liu
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Hainan Normal University, Haikou 571158, China
- College of Life Science, Hainan Normal University, Haikou 571158, China
| | - Jiliang Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Hainan Normal University, Haikou 571158, China
- College of Life Science, Hainan Normal University, Haikou 571158, China
| | - Xiaoping Diao
- College of Ecology, Environment Hainan University, Haikou 570228, China
| |
Collapse
|
16
|
Yang C, Wu T. A comprehensive review on quinolone contamination in environments: current research progress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:48778-48792. [PMID: 36879093 DOI: 10.1007/s11356-023-26263-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/27/2023] [Indexed: 04/16/2023]
Abstract
Quinolone (QN) antibiotics are a kind of broad-spectrum antibiotics commonly used in the treatment of human and animal diseases. They have the characteristics of strong antibacterial activity, stable metabolism, low production cost, and no cross-resistance with other antibacterial drugs. They are widely used in the world. QN antibiotics cannot be completely digested and absorbed in organisms and are often excreted in urine and feces in the form of original drugs or metabolites, which are widely occurring in surface water, groundwater, aquaculture wastewater, sewage treatment plants, sediments, and soil environment, thus causing environmental pollution. In this paper, the pollution status, biological toxicity, and removal methods of QN antibiotics at home and abroad were reviewed. Literature data showed that QNs and its metabolites had serious ecotoxicity. Meanwhile, the spread of drug resistance induced by continuous emission of QNs should not be ignored. In addition, adsorption, chemical oxidation, photocatalysis, and microbial removal of QNs are often affected by a variety of experimental conditions, and the removal is not complete, so it is necessary to combine a variety of processes to efficiently remove QNs in the future.
Collapse
Affiliation(s)
- Chendong Yang
- Water Source Exploration Team, Guizhou Bureau of Coal Geological Exploration, Guiyang, 550000, China
- Guizhou Coal Mine Geological Engineering Consultant and Geological Environmental Monitoring Center, Guiyang, 550000, China
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 550025, China
- Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang, 550025, China
| | - Tianyu Wu
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 550025, China.
- Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang, 550025, China.
| |
Collapse
|
17
|
Williams M, Shamsi S, Williams T, Hernandez-Jover M. Bacteria of Zoonotic Interest Identified on Edible Freshwater Fish Imported to Australia. Foods 2023; 12:foods12061288. [PMID: 36981215 PMCID: PMC10048124 DOI: 10.3390/foods12061288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/06/2023] [Accepted: 03/10/2023] [Indexed: 03/22/2023] Open
Abstract
Previous research has shown that freshwater edible fish imported into Australia are not compliant with Australian importation guidelines and as a result may be high risk for bacterial contamination. In the present study, the outer surface of imported freshwater fish were swabbed, cultured, confirmatory tests performed and antimicrobial patterns investigated. Channidae fish (Sp. A/n = 66) were contaminated with zoonotic Salmonella sp./Staphylococcus aureus (n = 1/66) and other bacteria implicated in cases of opportunistic human infection, these being Pseudomonas sp. (including P. mendocina and P. pseudoalcaligenes (n = 34/66)); Micrococcus sp. (n = 32/66); Comamonas testosteroni (n = 27/66) and Rhizobium radiobacter (n = 3/66). Pangasiidae fish (Species B/n = 47) were contaminated with zoonotic Vibrio fluvialis (n = 10/47); Salmonella sp. (n = 6/47) and environmental bacteria Micrococcus sp. (n = 3/47). One sample was resistant to all antimicrobials tested and is considered to be Methicillin Resistant S. aureus. Mud, natural diet, or vegetation identified in Sp. A fish/or packaging were significantly associated with the presence of Pseudomonas spp. The study also showed that visibly clean fish (Sp. B) may harbour zoonotic bacteria and that certain types of bacteria are common to fish groups, preparations, and contaminants. Further investigations are required to support the development of appropriate food safety recommendations in Australia.
Collapse
Affiliation(s)
- Michelle Williams
- School of Agricultural, Environmental and Veterinary Sciences & Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
- Correspondence: or
| | - Shokoofeh Shamsi
- School of Agricultural, Environmental and Veterinary Sciences & Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
| | - Thomas Williams
- Institute for Future Farming Systems, CQUniversity, Rockhampton, QLD 4701, Australia
| | - Marta Hernandez-Jover
- School of Agricultural, Environmental and Veterinary Sciences & Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
| |
Collapse
|
18
|
Badiger SM, Nidheesh PV. Applications of biochar in sulfate radical-based advanced oxidation processes for the removal of pharmaceuticals and personal care products. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 87:1329-1348. [PMID: 37001152 DOI: 10.2166/wst.2023.069] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Recently, biochar (BC) has been increasingly used as a catalyst for the degradation of 'emerging pollutants' (EPs). Pharmaceuticals and personal care products (PPCPs), which come under 'EPs', can be harmful to the aquatic ecosystem despite being present in very low concentrations (ng/L-μg/L). Advanced oxidation processes (AOPs), which produce sulfate radical (SR-AOPs), show a great potential to degrade PPCPs effectively from wastewater. It is mainly due to the higher stability, long half-lives and better non-selectivity of SO4• - compared with AOPs with •OH generation. Furthermore, research focus is now given on AOPs coupled with BC-supported catalyst to enhance the degradation of PPCPs because of quicker generation of radicals (•OH, SO4•-) by the activation of persulfate (PS) and peroxymonosulfate (PMS). This article sheds light on the catalytic ability of BC after its physical and chemical modifications such as acid/alkali treatment and metal doping. The role of persistent free radicals (PFRs) in the BC for effective removal of PPCPs has been elaborated. Its potential applications in synthetic as well as real wastewater have also been discussed.
Collapse
Affiliation(s)
- Sourabh M Badiger
- CSIR-National Environmental Engineering Research Institute, Nagpur 440020, India E-mail: ; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - P V Nidheesh
- CSIR-National Environmental Engineering Research Institute, Nagpur 440020, India E-mail: ; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
19
|
Chen Y, Tan Y, Wang Y, Ma Y, Li P, Du Z, Yang L, Wu L, Cui S, Ding Y, Qi X, Zhang Z. Estimating Sources, Fluxes, and Ecological Risks of Antibiotics in the Wuhan Section of the Yangtze River, China: A Year-Long Investigation. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:605-619. [PMID: 36582153 DOI: 10.1002/etc.5553] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/05/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
To our knowledge, ours is the first study to investigate the annual fluxes, environmental fate, and ecological risks of five categories of antibiotics from the Wuhan section of the Yangtze River (China). All the 24 antibiotics we tested for were detected in water, with total concentrations of 17.11-867.2 ng/L (mean: 63.69 ng/L), and 19 antibiotics were detected in sediment, at 0.02-287.7 ng/g (mean: 16.54 ng/g). Sulfonamides, amphenicols, and macrolides were the three most prominent antibiotic classes in water, and fluoroquinolones were the most prominent in sediment. Farming activities (animal husbandry and aquaculture) are proposed as the largest contributors to antibiotic pollution in the Wuhan section of the Yangtze River according to the Unmix model, followed by municipal wastewater and mixed sources. Higher pollution levels were observed downstream (combined discharge of these sources). Monthly monitoring data (12 months) were used to estimate antibiotic annual fluxes, with 101.5 t (uncertainty: 5.6%) in the Wuhan section of the Yangtze River. Risk assessments showed that erythromycin, clarithromycin, and azithromycin posed medium and high ecological risks and were found in 9%-35% and 1.8%-3.7% of all water samples, respectively; enrofloxacin, clarithromycin, azithromycin, florfenicol, and thiamphenicol posed medium resistance risks in 1.9%-16.7% of waters in the Wuhan section of the Yangtze River. Our results have filled data gaps on antibiotic sources, annual fluxes, and resistance risk in the Wuhan section of the Yangtze River and demonstrated the importance of further management of antibiotic use in the studied areas. Environ Toxicol Chem 2023;42:605-619. © 2022 SETAC.
Collapse
Affiliation(s)
- Yulin Chen
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, China
| | - Yang Tan
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, China
| | - Yile Wang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, China
| | - Yongfei Ma
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, China
| | - Ping Li
- Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang, China
| | - Zhenjie Du
- Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang, China
| | - Lie Yang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, China
| | - Li Wu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, China
| | - Song Cui
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, China
| | - Yongzhen Ding
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, China
| | - Xuebin Qi
- Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang, China
| | - Zulin Zhang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, China
- The James Hutton Institute, Aberdeen, UK
| |
Collapse
|
20
|
Wu L, Shi G, Liu Y, Li Y, Liu C, Hao Q, Cao W, Li Q. Pharmaceuticals in multi-media environment from the Jin River to adjacent marine embayment in Southeast China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:29909-29920. [PMID: 36418821 DOI: 10.1007/s11356-022-24173-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Multi-media environmental distribution of 21 pharmaceuticals in river water, coastal water, groundwater and sediments from the Jin River to adjacent marine embayment, Southeast China, was reported for the first time. All the detected 10 pharmaceuticals were antibiotics. Oxytetracycline (OTC), ciprofloxacin (CFC) and enrofloxacin (EFC) were the most ubiquitous antibiotics and could be detected in all water samples. EFC also showed the highest detection frequency (100%) in both riverine and coastal sediments. The detected antibiotics were more widely distributed in coastal environment of Asia, especially China, rather than Europe, USA and Australia. Sulfamethoxazole (SMX) showed stronger sorption onto sediments compared with other antibiotics due to its higher pseudo-partitioning coefficients (846-10,786 L kg-1). The discharged wastewater and aquaculture were the main sources of antibiotics in the multi-media environment. Risk assessment indicated that CFC and SMX posed high risks to Microcystis aeruginosa and Synechococcus leopolensis in river water, coastal water and groundwater.
Collapse
Affiliation(s)
- Lin Wu
- Fujian Provincial Key Laboratory of Water Cycling and Eco-Geological Processes, Xiamen, 361021, China
- Key Laboratory of Groundwater Contamination and Remediation of Hebei Province and China Geological Survey, Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, 050061, China
| | - Guowei Shi
- Fujian Provincial Key Laboratory of Water Cycling and Eco-Geological Processes, Xiamen, 361021, China
- Key Laboratory of Groundwater Contamination and Remediation of Hebei Province and China Geological Survey, Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, 050061, China
| | - Yaci Liu
- Fujian Provincial Key Laboratory of Water Cycling and Eco-Geological Processes, Xiamen, 361021, China
- Key Laboratory of Groundwater Contamination and Remediation of Hebei Province and China Geological Survey, Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, 050061, China
| | - Yasong Li
- Fujian Provincial Key Laboratory of Water Cycling and Eco-Geological Processes, Xiamen, 361021, China.
- Key Laboratory of Groundwater Contamination and Remediation of Hebei Province and China Geological Survey, Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, 050061, China.
| | - Chunlei Liu
- Fujian Provincial Key Laboratory of Water Cycling and Eco-Geological Processes, Xiamen, 361021, China
- Key Laboratory of Groundwater Contamination and Remediation of Hebei Province and China Geological Survey, Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, 050061, China
| | - Qichen Hao
- Fujian Provincial Key Laboratory of Water Cycling and Eco-Geological Processes, Xiamen, 361021, China
- Key Laboratory of Groundwater Contamination and Remediation of Hebei Province and China Geological Survey, Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, 050061, China
| | - Wenzhi Cao
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Qingsheng Li
- Fujian Provincial Key Laboratory of Marine Ecological Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| |
Collapse
|
21
|
Chemtai C, Kengara FO, Ngigi AN. Levels and ecological risk of pharmaceuticals in River Sosiani, Kenya. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:431. [PMID: 36849593 DOI: 10.1007/s10661-023-11022-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
The continued frequent detection of pharmaceuticals in the environment is of major concern due to potential human and ecological risks. This study evaluated 30 antibiotics from 8 classes: sulphonamides (SAs), penicillins (PNs), fluoroquinolones (FQs), macrolides (MLs), lincosamides (LINs), nitroimidazoles (NIs), diaminopyrimidines (DAPs), salfones and 4 anthelmintics benzimidazoles (BZs) in surface water and sediments from River Sosiani in Eldoret, Kenya. Samples were collected during the wet and dry seasons and subjected to solid phase extraction using HLB cartridges. A liquid chromatography tandem mass spectrometry (LC-MS/MS) method was used for the simultaneous quantification of the compounds. Chromatographic separation was on a reversed-phase Zorkax Eclipse Plus C18 column eluted in a gradient program and compounds detected by mass spectrometer operated in a positive electrospray ionization (+ ESI) mode. Twenty-eight antibiotics were detected in water where 22 had a 100% detection frequency and the remaining 4 showed detection frequencies ranging from 5 to 47%. Three BZs had a 100% detection frequency. Detectable concentrations of the pharmaceuticals in water ranged between 0.1 and 247 ng L-1 and 0.01 and 974 µg kg-1 in the sediments. The sulfonamide, sulfamethoxazole, had the highest concentration in water (247 ng L-1), whereas penicillin G showed the highest concentrations in sediments (414-974 µg kg-1). Quantified pharmaceuticals decreased in the order SAs > DAPs > FQs > ATs > PNs ≈ MCs ≈ LNs > NIs in water, and followed the order PNs > BZs > FQs > MLs > DAPs ≈ LNs > NIs > SAs in sediments. Risk quotients (RQw) showed that sulfamethoxazole and ciprofloxacin were of high ecological risk in the surface water (RQw values of 1.11 and 3.24, respectively), whereas penicillin V, ampicillin, penicillin G, norfloxacin, enrofloxacin, erythromycin, tylosin, and lincomycin were of medium ecological risk in the aquatic system. The findings show high prevalence of pharmaceuticals in surface water and sediments and are therefore potential ecological hazards. Such information is vital when devising mitigation strategies.
Collapse
Affiliation(s)
- Catherine Chemtai
- School of Sciences and Aerospace Studies, Department of Chemistry & Biochemistry, Moi University, P.O. Box 3900-30100, Eldoret, Kenya
| | - Fredrick O Kengara
- School of Pure and Applied Sciences, Bomet University College, P.O. Box 701-20400, Bomet, Kenya
| | - Anastasiah N Ngigi
- Faculty of Science and Technology, Department of Chemistry, Multimedia University of Kenya, P.O. Box, 15653-00503, Nairobi, Kenya.
| |
Collapse
|
22
|
Jia L, Yang C, Jin X, Wang D, Li F. Direct Z-scheme heterojunction Bi/Bi 2S 3/α-MoO 3 photoelectrocatalytic degradation of tetracycline under visible light. CHEMOSPHERE 2023; 315:137777. [PMID: 36621692 DOI: 10.1016/j.chemosphere.2023.137777] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/15/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
A hot research topic in visible-light-driven photoelectrocatalytic (PEC) oxidation technology is the development of superior photoanode materials. The design of the photoanode system with a direct Z-scheme charge transfer mechanism is crucial to achieving effective charge separation for sustainable photoelectrocatalysis. Here, a novel Bi/Bi2S3/α-MoO3 heterostructure was successfully assembled by a simple and feasible strategy. The direct Z-scheme heterogeneous formed between Bi2S3 and α-MoO3 has the advantages of low resistance, high optical response current and the surface plasmon resonance (SPR) effect of Bi nanoparticles (Bi NPs). Thus, the efficiency of photogenerated carrier separation and transfer is further enhanced, and the catalytic activity is significantly improved. It is impressive that the unique photoanode has achieved a maximum removal efficiency of 85.8% of tetracycline (TC) pollutants under visible light irradiation within 60 min and has excellent stability, which is expected to degrade antibiotics efficiently and environmentally in harsh environments. These characteristics give Bi/Bi2S3/α-MoO3 promising candidates for practical applications in antibiotic degradation.
Collapse
Affiliation(s)
- Litao Jia
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Chenjia Yang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Xiaoyong Jin
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China.
| | - Dan Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Fanghua Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
| |
Collapse
|
23
|
Liu MJ, Guo HY, Gao J, Zhu KC, Guo L, Liu BS, Zhang N, Jiang SG, Zhang DC. Characteristics of microplastic pollution in golden pompano (Trachinotus ovatus) aquaculture areas and the relationship between colonized-microbiota on microplastics and intestinal microflora. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159180. [PMID: 36191704 DOI: 10.1016/j.scitotenv.2022.159180] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/25/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Microplastic (MPs) pollution is a global marine environmental problem. The effects of MPs on the gut microbiota of aquatic organisms have received considerable attention. For example, microbes colonizing MPs in pond cultures alter the structure and function of the intestinal microbes of shrimp and fish. It was hypothesized that bacteria on MPs in natural mariculture areas also interact with the intestinal flora of golden pompano (Trachinotus ovatus) because biofilms can form on the surface of MPs during long-term floating in seawater. To our knowledge, this study is the first to investigate MPs pollution in T. ovatus aquaculture. DNA sequencing and bioinformatics analysis confirmed the effect of microbial colonization of MPs on the intestinal flora of T. ovatus. The MPs detected in the gut wet weight (w.w.) of golden pompano (546 ± 52 items/g) were mainly pellets and fragments of blue or green, whereas the sediment MPs dry weight (d.w.) (4765 ± 116 items/kg) were mainly black fibers. The MPs richness in the sediment gradually increased from the open-sea aquaculture area to the estuarine aquaculture area and was positively correlated with the MPs richness in the intestinal tract of golden pompano. MPs 20-200 μm were the most common in the gut and sediment. The intake of MPs increased the abundance of Proteobacteria and decreased that of Firmicutes in the intestinal flora. The functional compositions of MP-colonizing microbes and gut microbiota were similar, suggesting that the two communities influence each other. Network analysis further confirmed this and revealed that Vibrio plays a key role in the intestinal flora and surface microorganisms of MPs. Overall, the intake of MPs by aquatic animals not only affects the intestinal flora and intestinal microbial function, but also poses potential risks to aquaculture.
Collapse
Affiliation(s)
- Ming-Jian Liu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, Guangdong Province, China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, Guangdong Province, China; College of Fisheries, Tianjin Agricultural University, 300384 Tianjin, China
| | - Hua-Yang Guo
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, Guangdong Province, China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, Guangdong Province, China
| | - Jie Gao
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, Guangdong Province, China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, Guangdong Province, China
| | - Ke-Cheng Zhu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, Guangdong Province, China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, Guangdong Province, China
| | - Liang Guo
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, Guangdong Province, China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, Guangdong Province, China
| | - Bao-Suo Liu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, Guangdong Province, China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, Guangdong Province, China
| | - Nan Zhang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, Guangdong Province, China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, Guangdong Province, China
| | - Shi-Gui Jiang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, Guangdong Province, China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, Guangdong Province, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou 510300, Guangdong Province, China; Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya 572018, China
| | - Dian-Chang Zhang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, Guangdong Province, China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, Guangdong Province, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou 510300, Guangdong Province, China; Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya 572018, China.
| |
Collapse
|
24
|
Wanjeri VOW, Okuku E, Gachanja A, Ngila JC, Ndungu PG. Occurrence, distribution, and environmental risk of pharmaceutical residues in Mombasa peri-urban creeks, Kenya. CHEMOSPHERE 2023; 311:137144. [PMID: 36343733 DOI: 10.1016/j.chemosphere.2022.137144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/14/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
The information on pharmaceutical compounds' distribution and their possible risks in marine ecosystems along the Kenya coast is limited especially in the peri-urban creeks. Hence, this study aimed to determine pharmaceutical residue levels and distribution in selected peri-urban creeks in Mombasa and Gazi bay. The target compounds were analgesic (acetaminophen), antibiotics (trimethoprim and sulfamethoxazole), antiepileptic (carbamazepine), and antiretroviral (nevirapine). Pharmaceutical residues in grab surface seawater in wet and dry seasons ranged from below detection limit (BDL)-1065.6 μg L-1 and BDL-71.3 μg L-1, respectively. The concentration of the pharmaceutical residues was high in Tudor creek in the dry and wet seasons with a mean concentration of 63.3 μg L-1 and 233.1 μg L-1 respectively compared to Makupa creek (dry season, 54.2 μg L-1; wet season 16.2 μg L), and Mtwapa creek (dry season, 43.1 μg L-1; wet season, 15.0 μg L-1). Gazi Bay being used as a control site had a mean concentration of 21.3 μg L-1 and 3.1 μg L-1 during the dry season and wet season respectively. Acetaminophen and nevirapine were the most ubiquitous compounds in seawater since they were found in all seawater samples collected. Risk quotients (RQ) for invertebrates and algae based on the mean concentrations of the analytes were estimated to provide a preliminary environmental risk assessment. The results suggest that the studied acetaminophen, trimethoprim, sulfamethoxazole, and carbamazepine in seawater pose low (0.01 ≤ RQ < 0.1) to medium (0.1 ≤ RQ < 1) ecological risk whereas nevirapine poses medium to high (RQ ≥ 1) ecological risk to the ecosystems of Mombasa periurban creeks and Gazi bay. Further research, however, is encouraged on the distribution of pharmaceuticals in the marine environment and the long-term synergistic effects of mixtures of these compounds on marine biota.
Collapse
Affiliation(s)
- Veronica Ogolla Wayayi Wanjeri
- Department of Chemical Sciences, University of Johannesburg, Johannesburg, South Africa; Kenya Marine and Fisheries Research Institute, P.O. Box 81651, Mombasa, Kenya
| | - Eric Okuku
- Kenya Marine and Fisheries Research Institute, P.O. Box 81651, Mombasa, Kenya
| | - Anthony Gachanja
- Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000, Nairobi, Kenya
| | - Jane Catherine Ngila
- Department of Chemical Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Patrick Gathura Ndungu
- Department of Chemical Sciences, University of Johannesburg, Johannesburg, South Africa; Department of Chemistry, University of Pretoria, Hatfield, Pretoria, South Africa.
| |
Collapse
|
25
|
Wang C, Lu Y, Sun B, Zhang M, Wang C, Xiu C, Johnson AC, Wang P. Ecological and human health risks of antibiotics in marine species through mass transfer from sea to land in a coastal area: A case study in Qinzhou Bay, the South China sea. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120502. [PMID: 36283471 DOI: 10.1016/j.envpol.2022.120502] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Antibiotics have been detected in aquatic environment around the world. Understanding internal concentrations of antibiotics in organisms could further improve risk governance. In this study, we investigated the occurrence of seven sulfonamides, four tetracyclines, five fluoroquinolones, and five macrolides antibiotics in six fish, four crustaceans, and five mollusks species collected from Qinzhou Bay, an important part of the Beibu Gulf in the South China Sea in 2018. 19 of all the 21 target antibiotics were detectable in biota. The total concentrations of the antibiotics ranged from 15.2 to 182 ng/g dry weight in all marine organisms, with sulfonamides and macrolides being the most abundant antibiotics. Mollusks accumulated more antibiotics than fish and crustaceans, implying the species-specific bioaccumulation of antibiotics. The pH dependent partition coefficients of antibiotics exhibited significantly positive correlation with their concentrations in organisms. The ecological risk assessment suggested that marine species in Qinzhou Bay were threatened by azithromycin and norfloxacin. The annual mass loading of antibiotics from Qinzhou Bay to the coastal land area for human ingestion via marine fishery catches was 4.02 kg, with mollusks being the predominant migration contributor. The estimated daily intakes of erythromycin indicated that consumption of seafood from Qinzhou Bay posed considerable risks to children (2-5 years old). The results in this study provide important insights for antibiotics pollution assessment and risk management.
Collapse
Affiliation(s)
- Cong Wang
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian, 361102, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, China; Sino-Danish Center for Education and Research, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yonglong Lu
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian, 361102, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Bin Sun
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, China; Sino-Danish Center for Education and Research, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Meng Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chenchen Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cuo Xiu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Andrew C Johnson
- UK Center for Ecology and Hydrology, Wallingford, Oxon, OX 10 8BB, UK
| | - Pei Wang
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian, 361102, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
26
|
Arun S, Xin L, Gaonkar O, Neppolian B, Zhang G, Chakraborty P. Antibiotics in sewage treatment plants, receiving water bodies and groundwater of Chennai city and the suburb, South India: Occurrence, removal efficiencies, and risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158195. [PMID: 35995170 DOI: 10.1016/j.scitotenv.2022.158195] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
The presence of antibiotics in the aqueous environment can alter the water microbiome, inducing antimicrobial resistance genes. Hence, the occurrence of 18 antibiotics belonging to sulfonamides, fluoroquinolones, tetracyclines, phenicols, and macrolides classes were investigated in surface water, groundwater, and sewage treatment plants in Chennai city and the suburbs. Fluoroquinolones had the maximum detection frequency in both influent and effluent samples of urban and suburban STPs, with ofloxacin and ciprofloxacin showing the highest influent concentrations. Erythromycin was the predominant antibiotic in surface water samples with an average concentration of 194.4 ng/L. All the detected antibiotic concentrations were higher in the Buckingham Canal compared to those in Adyar and Cooum rivers, possibly due to direct sewer outfalls in the canal. In groundwater samples, ciprofloxacin showed the highest levels with an average of 20.48 ng/L and the concentrations were comparable to those of surface water. The average sulfamethazine concentration in groundwater (5.2 ng/L) was found to be slightly higher than that of the surface water and much higher than the STP influent concentrations. High levels of ciprofloxacin and sulfamethazine in groundwater may be because of their high solubility and wide use. Moreover, erythromycin was completely removed after treatment in urban STPs; FQs showed relatively lesser removal efficiency (2.4-54%) in urban STPs and (8-44%) in suburban STP. Tetracyclines and phenicols were not detected in any of the samples. Ciprofloxacin and azithromycin in surface water pose a high risk in terms of estimated antibiotic resistance. This study revealed that the measured surface water concentration of antibiotics were 500 times higher for some compounds than the predicted calculated concentrations from STP effluents. Therefore, we suspect the direct sewage outlets or open drains might play an important role in contaminating surface water bodies in Chennai city.
Collapse
Affiliation(s)
- Sija Arun
- Department of Civil Engineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Liu Xin
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | | | - B Neppolian
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Gan Zhang
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Paromita Chakraborty
- Environmental Science and Technology Laboratory, Department of Chemical Engineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| |
Collapse
|
27
|
Maghsodian Z, Sanati AM, Mashifana T, Sillanpää M, Feng S, Nhat T, Ramavandi B. Occurrence and Distribution of Antibiotics in the Water, Sediment, and Biota of Freshwater and Marine Environments: A Review. Antibiotics (Basel) 2022; 11:antibiotics11111461. [PMID: 36358116 PMCID: PMC9686498 DOI: 10.3390/antibiotics11111461] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 11/30/2022] Open
Abstract
Antibiotics, as pollutants of emerging concern, can enter marine environments, rivers, and lakes and endanger ecology and human health. The purpose of this study was to review the studies conducted on the presence of antibiotics in water, sediments, and organisms in aquatic environments (i.e., seas, rivers, and lakes). Most of the reviewed studies were conducted in 2018 (15%) and 2014 (11%). Antibiotics were reported in aqueous media at a concentration of <1 ng/L−100 μg/L. The results showed that the highest number of works were conducted in the Asian continent (seas: 74%, rivers: 78%, lakes: 87%, living organisms: 100%). The highest concentration of antibiotics in water and sea sediments, with a frequency of 49%, was related to fluoroquinolones. According to the results, the highest amounts of antibiotics in water and sediment were reported as 460 ng/L and 406 ng/g, respectively. In rivers, sulfonamides had the highest abundance (30%). Fluoroquinolones (with an abundance of 34%) had the highest concentration in lakes. Moreover, the highest concentration of fluoroquinolones in living organisms was reported at 68,000 ng/g, with a frequency of 39%. According to the obtained results, it can be concluded that sulfonamides and fluoroquinolones are among the most dangerous antibiotics due to their high concentrations in the environment. This review provides timely information regarding the presence of antibiotics in different aquatic environments, which can be helpful for estimating ecological risks, contamination levels, and their management.
Collapse
Affiliation(s)
- Zeinab Maghsodian
- Department of Environmental Science, Persian Gulf Research Institute, Persian Gulf University, Bushehr 7516913817, Iran
| | - Ali Mohammad Sanati
- Department of Environmental Science, Persian Gulf Research Institute, Persian Gulf University, Bushehr 7516913817, Iran
| | - Tebogo Mashifana
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
| | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
- Zhejiang Rongsheng Environmental Protection Paper Co., Ltd., NO. 588 East Zhennan Road, Pinghu Economic Development Zone, Pinghu 314213, China
- Department of Civil Engineering, University Centre for Research & Development, Chandigarh University, Gharuan, Mohali 140413, Punjab, India
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan 173212, Himachal Pradesh, India
- Correspondence: (M.S.); (B.R.)
| | - Shengyu Feng
- Zhejiang Rongsheng Environmental Protection Paper Co., Ltd., NO. 588 East Zhennan Road, Pinghu Economic Development Zone, Pinghu 314213, China
| | - Tan Nhat
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
- School of Engineering & Technology, Duy Tan University, Da Nang 550000, Vietnam
| | - Bahman Ramavandi
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr 7518759577, Iran
- Correspondence: (M.S.); (B.R.)
| |
Collapse
|
28
|
Zeng H, Li J, Zhao W, Xu J, Xu H, Li D, Zhang J. The Current Status and Prevention of Antibiotic Pollution in Groundwater in China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph191811256. [PMID: 36141524 PMCID: PMC9517307 DOI: 10.3390/ijerph191811256] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 06/01/2023]
Abstract
The problem of environmental pollution caused by the abuse of antibiotics has received increasing attention. However, only in recent years have antibiotic pollution and its risk assessment to the environment been deeply studied. Although there has been a large number of reports about the input, occurrence, destination, and influence of antibiotics in the past 10 years, systemic knowledge of antibiotics in the groundwater environment is still lacking. This review systematically expounds the sources, migration and transformation, pollution status, and potential risks to the ecological environment of antibiotics in groundwater systems, by integrating 10 years of existing research results. The results showed that 47 kinds of antibiotics in four categories, mainly sulfonamides and fluoroquinolones, have been detected; antibiotics in groundwater species will induce the production of resistance genes and cause ecological harm. In view of the entire process of antibiotics entering groundwater, the current antibiotic control methods at various levels are listed, including the control of the discharge of antibiotics at source, the removal of antibiotics in water treatment plants, and the treatment of existing antibiotic contamination in groundwater. Additionally, the future research direction of antibiotics in groundwater is pointed out, and suggestions and prospects for antibiotic control are put forward.
Collapse
Affiliation(s)
- Huiping Zeng
- Key Laboratory of Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Jianxue Li
- Key Laboratory of Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Weihua Zhao
- Key Laboratory of Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Jiaxin Xu
- Key Laboratory of Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - He Xu
- Key Laboratory of Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Dong Li
- Key Laboratory of Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Jie Zhang
- Key Laboratory of Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
29
|
Zhang S, Chen B, Du J, Wang T, Shi H, Wang F. Distribution, Assessment, and Source of Heavy Metals in Sediments of the Qinjiang River, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19159140. [PMID: 35897501 PMCID: PMC9368131 DOI: 10.3390/ijerph19159140] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 02/04/2023]
Abstract
Heavy metals are toxic, persistent, and non-degradable. After sedimentation and adsorption, they accumulate in water sediments. The aim of this study was to assess the extent of heavy metal pollution of Qinjiang River sediments and its effects on the ecological environment and apportioning sources. The mean total concentrations of Mn, Zn, Cr, Cu, and Pb are 3.14, 2.33, 1.39, 5.79, and 1.33 times higher than the background values, respectively. Co, Ni, and Cd concentrations are lower than the background values. Fe, Co, Ni, Cd, Cr, Cu, and Pb are all primarily in the residual state, while Mn and Zn are primarily in the acid-soluble and oxidizable states, respectively. Igeo, RI, SQGs, and RAC together indicate that the pollution status and ecological risk of heavy metals in Qinjiang River sediments are generally moderate; among them, Fe, Co, Ni, Cd, Cr, and Pb are not harmful to the ecological environment of the Qinjiang River. Cu is not readily released because of its higher residual composition, suggesting that Cu is less harmful to the ecological environment. Mn and Zn, as the primary pollution factors of the Qinjiang River, are harmful to the ecological environment. This heavy metal pollution in surface sediments of the Qinjiang River primarily comes from manganese and zinc ore mining. Manganese carbonate and its weathered secondary manganese oxide are frequently associated with a significant amount of residual copper and Cd, as a higher pH is suitable for the deposition and enrichment of these heavy metals. Lead-zinc ore and its weathering products form organic compounds with residual Fe, Co, Cr, and Ni, and their content is related to salinity. The risk assessment results of heavy metals in sediments provide an important theoretical basis for the prevention and control of heavy metal pollution in Qinjiang River.
Collapse
Affiliation(s)
- Shuncun Zhang
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (S.Z.); (T.W.)
| | - Bo Chen
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, Beibu Gulf University, Qinzhou 515000, China; (J.D.); (H.S.)
- Correspondence: (B.C.); (F.W.)
| | - Junru Du
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, Beibu Gulf University, Qinzhou 515000, China; (J.D.); (H.S.)
| | - Tao Wang
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (S.Z.); (T.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haixin Shi
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, Beibu Gulf University, Qinzhou 515000, China; (J.D.); (H.S.)
| | - Feng Wang
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, Beibu Gulf University, Qinzhou 515000, China; (J.D.); (H.S.)
- Correspondence: (B.C.); (F.W.)
| |
Collapse
|
30
|
Sources, Pollution Characteristics, and Ecological Risk Assessment of Steroids in Beihai Bay, Guangxi. WATER 2022. [DOI: 10.3390/w14091399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Steroids are environmental endocrine disruptors that are discharged from vertebrates and are also byproducts of aquaculture. They have strong endocrine disrupting effects and are extremely harmful to the environment. The pollution of steroids in Beihai Bay was assessed through analyzing sources from rivers entering the bay. Six different types of steroids were detected in seagoing rivers, seagoing discharge outlets, and marine aquaculture farms, ranging from 0.12 (methyltestosterone) to 2.88 ng/L (estrone), from 0.11 (cortisol) to 5.41 ng/L (6a-methylprednisone (Dragon)), and from 0.13 (estradiol) to 2.51 ng/L (nandrolone), respectively. Moreover, 5 steroids were detected in 13 of the 19 seawater monitoring stations, accounting for 68.4% of the samples, and their concentrations ranged from 0.18 (methyltestosterone) to 4.04 ng/L (estrone). Furthermore, 7 steroids were detected in 15 of the 19 sediment monitoring stations, accounting for 78.9% of the samples, with concentrations ranging from 26 (estrone) to 776 ng/kg(androsterone). Thus, the main source of marine steroids were the discharging rivers and pollution sources entering the sea. An ecological risk assessment indicated that estrone and methyltestosterone were at high risk in this region; 17β estradiol (E2β) was medium risk, and other steroids were of low or no risk. This study provides a scientific basis for ecological risk assessment and control.
Collapse
|
31
|
Lu H, Su H, Liu Y, Yin K, Wang D, Li B, Wang Y, Xing M. NLRP3 inflammasome is involved in the mechanism of the mitigative effect of lycopene on sulfamethoxazole-induced inflammatory damage in grass carp kidneys. FISH & SHELLFISH IMMUNOLOGY 2022; 123:348-357. [PMID: 35314330 DOI: 10.1016/j.fsi.2022.03.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/17/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Freshwater environmental antibiotic pollution is becoming more severe because of the irregular use of sulfonamide antibiotics. Sulfamethoxazole (SMZ) is a kind of antibiotic that can cause harm to the urinary systems of organisms. However, the toxic impacts of environment-related concentrations of antibiotics in fish have not been thoroughly studied. Lycopene (LYC) has the property of alleviating antibiotic toxicity by diminishing oxidative stress and inflammation. This investigation is intended to examine the instrument of the mitigative part of LYC on SMZ-caused renal inflammatory injury in grass carp. Grass carp were born with SMZ (0. 3 μg L-1) and LYC (10 mg/kg body weight) for 30 days. Serum was used to measure creatinine (CREA) and urea nitrogen (BUN) contents; what is more, kidneys were used to measure histological structure, oxidative stress indicators, relative expressions of cytokines, and inflammatory factors. We found that SMZ exposure significantly increased oxidative stress, characterized by decreased catalase activity (CAT) and superoxide dismutase (SOD). In addition, inflammation-related factors: interleukin (IL-18, IL-6, and IL-1β), an apoptotic speck-containing protein with a card (ASC), NOD-like receptor protein3 (NLRP3), cysteinyl aspartate specific proteinase-1 (caspase-1), tumor necrosis factor-α (TNF-α), and nuclear factor-activated B cells (NF-κB) expression increased significantly contrasted with those control group. Inflammatory reactions and ultrastructural changes accompany. LYC administration alleviated the changes mentioned above. In conclusion, In conclusion, these results suggest a protective effect of LYC dietary supplements against kidney damage caused by SMZ. LYC is expected to prevent and treat oxidative stress and chronic inflammation caused by antibiotics as a critical component in the fish breeding diet.
Collapse
Affiliation(s)
- Hongmin Lu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Heng Su
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China
| | - Yachen Liu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Kai Yin
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Dongxu Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Baoying Li
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Yu Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China.
| | - Mingwei Xing
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China.
| |
Collapse
|
32
|
Li W, Li Y, Zheng N, Ge C, Yao H. Occurrence and distribution of antibiotics and antibiotic resistance genes in the guts of shrimp from different coastal areas of China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152756. [PMID: 34990667 DOI: 10.1016/j.scitotenv.2021.152756] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/24/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
With the continuous increase in shrimp (Litopenaeus vannamei) aquaculture production, the widespread use of antibiotics as a means of preventing and treating diseases has adversely affected the environment, animal health and symbiotic microorganisms in gut environments. At the same time, antibiotic resistance genes (ARGs) are widespread in aquaculture and pose a great threat to aquatic organisms and humans. Therefore, in the present study, the occurrence and distribution of 17 antibiotics, ARGs and mobile genetic elements (MGEs) were detected in the guts of shrimp collected from 12 coastal regions of China. The results showed that sulfadiazine, ciprofloxacin and norfloxacin were detectable in the guts of L. vannamei at all sampling sites. Sul1, sul2, floR and intI-1 were also detected in the guts of L. vannamei at all sampling sites. The total relative abundances of ARGs and MGEs were significantly positively correlated according to Pearson correlation analysis. Sulfonamide resistance genes (sul1 and sul2) were significantly positively correlated with intI-1. These results indicated that MGEs could increase the risk of horizontal gene transfer of ARGs in a gut environment. MGEs are the most important factors promoting the spread of ARGs. Correlation analysis showed that sulfadiazine was significantly positively correlated with sul1 and sul2 and that fluoroquinolone antibiotics were significantly positively correlated with floR, indicating that antibiotics could induce the production of ARGs. Network analysis indicated that Iamia and Alkaliphilus species may harbor the most antibiotic resistance genes, and these bacteria were closely related to the proliferation and spread of ARGs in a gut environment. Antibiotic use and the spread of ARGs in mariculture systems may have negative effects on shrimp and human health. The use of antibiotics should be strictly regulated to control contaminants in mariculture systems, including pathogens and ARGs, thereby reducing potential risks to human health.
Collapse
Affiliation(s)
- Wei Li
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430073, People's Republic of China
| | - Yaying Li
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo 315800, People's Republic of China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China
| | - Ningguo Zheng
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430073, People's Republic of China
| | - Chaorong Ge
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430073, People's Republic of China
| | - Huaiying Yao
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430073, People's Republic of China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo 315800, People's Republic of China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China.
| |
Collapse
|
33
|
Yu C, Pang H, Wang JH, Chi ZY, Zhang Q, Kong FT, Xu YP, Li SY, Che J. Occurrence of antibiotics in waters, removal by microalgae-based systems, and their toxicological effects: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:151891. [PMID: 34826467 DOI: 10.1016/j.scitotenv.2021.151891] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/05/2021] [Accepted: 11/18/2021] [Indexed: 05/27/2023]
Abstract
Global antibiotics consumption has been on the rise, leading to increased antibiotics release into the environment, which threatens public health by selecting for antibiotic resistant bacteria and resistance genes, and may endanger the entire ecosystem by impairing primary production. Conventional bacteria-based treatment methods are only moderately effective in antibiotics removal, while abiotic approaches such as advanced oxidation and adsorption are costly and energy/chemical intensive, and may cause secondary pollution. Considered as a promising alternative, microalgae-based technology requires no extra chemical addition, and can realize tremendous CO2 mitigation accompanying growth related pollutants removal. Previous studies on microalgae-based antibiotics removal, however, focused more on the removal performances than on the removal mechanisms, and few studies have concerned the toxicity of antibiotics to microalgae during the treatment process. Yet understanding the removal mechanisms can be of great help for targeted microalgae-based antibiotics removal performances improvement. Moreover, most of the removal and toxicity studies were carried out using environment-irrelevant high concentrations of antibiotics, leading to reduced guidance for real-world situations. Integrating the two research fields can be helpful for both improving antibiotics removal and avoiding toxicological effects to primary producers by the residual pollutants. This study, therefore, aims to build a link connecting the occurrence of antibiotics in the aquatic environment, the removal of antibiotics by microalgae-based processes, and the toxicity of antibiotics to microalgae. Distribution of various categories of antibiotics in different water environments were summarized, together with the antibiotics removal mechanisms and performances in microalgae-based systems, and the toxicological mechanisms and toxicity of antibiotics to microalgae after either short-term or long-term exposure. Current research gaps and future prospects were also analyzed. The review could provide much valuable information to the related fields, and provoke interesting thoughts on integrating microalgae-based antibiotics removal research and toxicity research on the basis of environmentally relevant concentrations.
Collapse
Affiliation(s)
- Chong Yu
- School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| | - Hao Pang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| | - Jing-Han Wang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China; Dalian SEM Bioengineer and Biotech Co. Ltd., Dalian 116620, PR China.
| | - Zhan-You Chi
- School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| | - Qian Zhang
- Key Laboratory of Environment Controlled Aquaculture, Dalian Ocean University, Dalian 116023, PR China
| | - Fan-Tao Kong
- School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| | - Yong-Ping Xu
- School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China; Dalian SEM Bioengineer and Biotech Co. Ltd., Dalian 116620, PR China
| | - Shu-Ying Li
- Dalian SEM Bioengineer and Biotech Co. Ltd., Dalian 116620, PR China
| | - Jian Che
- Dalian Xinyulong Marine Biological Seed Technology Co. Ltd., Dalian 116222, PR China
| |
Collapse
|
34
|
Adeleye AS, Xue J, Zhao Y, Taylor AA, Zenobio JE, Sun Y, Han Z, Salawu OA, Zhu Y. Abundance, fate, and effects of pharmaceuticals and personal care products in aquatic environments. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127284. [PMID: 34655870 DOI: 10.1016/j.jhazmat.2021.127284] [Citation(s) in RCA: 103] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 09/06/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
Pharmaceuticals and personal care products (PPCPs) are found in wastewater, and thus, the environment. In this study, current knowledge about the occurrence and fate of PPCPs in aquatic systems-including wastewater treatment plants (WWTPs) and natural waters around the world-is critically reviewed to inform the state of the science and highlight existing knowledge gaps. Excretion by humans is the primary route of PPCPs entry into municipal wastewater systems, but significant contributions also occur through emissions from hospitals, PPCPs manufacturers, and agriculture. Abundance of PPCPs in raw wastewater is influenced by several factors, including the population density and demography served by WWTPs, presence of hospitals and drugs manufacturers in the sewershed, disease burden of the population served, local regulations, and climatic conditions. Based on the data obtained from WWTPs, analgesics, antibiotics, and stimulants (e.g., caffeine) are the most abundant PPCPs in raw wastewater. In conventional WWTPs, most removal of PPCPs occurs during secondary treatment, and overall removal exceeds 90% for treatable PPCPs. Regardless, the total PPCP mass discharged with effluent by an average WWTP into receiving waters (7.35-20,160 g/day) is still considerable, because potential adverse effects of some PPCPs (such as ibuprofen) on aquatic organisms occur within measured concentrations found in surface waters.
Collapse
Affiliation(s)
- Adeyemi S Adeleye
- Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697-2175, USA.
| | - Jie Xue
- Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697-2175, USA
| | - Yixin Zhao
- Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697-2175, USA
| | - Alicia A Taylor
- Ecological and Biological Sciences Practice, Exponent, Inc., Oakland, CA 94612, USA
| | - Jenny E Zenobio
- Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697-2175, USA
| | - Yian Sun
- Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697-2175, USA; Water-Energy Nexus Center, University of California, Irvine, CA 92697-2175, USA
| | - Ziwei Han
- Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697-2175, USA
| | - Omobayo A Salawu
- Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697-2175, USA
| | - Yurong Zhu
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA 92697-2580, USA
| |
Collapse
|
35
|
Ling C, Wu S, Dong T, Dong H, Wang Z, Pan Y, Han J. Sulfadiazine removal by peroxymonosulfate activation with sulfide-modified microscale zero-valent iron: Major radicals, the role of sulfur species, and particle size effect. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127082. [PMID: 34488104 DOI: 10.1016/j.jhazmat.2021.127082] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/23/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
Sulfide-modified zero-valent iron (S-Fe0) is regarded as a promising method to enhance the catalytic activity of Fe0 for peroxymonosulfate (PMS) activation. However, the roles of sulfidation and the application of the sulfidation treatment method are worth to further investigation. In our study, the effects of the S/Fe ratio, Fe0 dosage, and initial pH on sulfadiazine (SDZ) removal were investigated. The characterization of S-Fe0 with SEM, XPS, contact angle and Tafel analysis confirmed that the formation of sulfur species on the Fe0 surface could enhance the catalytic performance of Fe0. S2- played the major role and SO32- played the minor role in accelerating the conversion of Fe3+ to Fe2+. EPR tests, radical quenching and quantitative determination experiments identified •OH as playing the major role and SO4•- also playing an important role in SDZ removal in S-Fe0/PMS system. Sulfidation produced no notable change in the role of •OH and SO4•-. A possible degradation pathway of SDZ was proposed. Effect of sulfidation on various sizes of Fe0 was also studied which demonstrated that the smaller sizes of Fe0 (< 8 µm) were more effective in the sulfidation method treatment. S-Fe0/PMS system also showed a good performance in removing antibiotics in natural fresh water.
Collapse
Affiliation(s)
- Chen Ling
- School of the biological and environment, Nanjing Forestry University, Nanjing 210037, PR China
| | - Shuai Wu
- School of the biological and environment, Nanjing Forestry University, Nanjing 210037, PR China
| | - Tailu Dong
- School of the biological and environment, Nanjing Forestry University, Nanjing 210037, PR China
| | - Haifan Dong
- School of the biological and environment, Nanjing Forestry University, Nanjing 210037, PR China
| | - Zhengxiao Wang
- School of the biological and environment, Nanjing Forestry University, Nanjing 210037, PR China
| | - Yuwei Pan
- School of the biological and environment, Nanjing Forestry University, Nanjing 210037, PR China.
| | - Jiangang Han
- School of the biological and environment, Nanjing Forestry University, Nanjing 210037, PR China; Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, PR China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, PR China.
| |
Collapse
|
36
|
Wu Q, Xiao SK, Pan CG, Yin C, Wang YH, Yu KF. Occurrence, source apportionment and risk assessment of antibiotics in water and sediment from the subtropical Beibu Gulf, South China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150439. [PMID: 34597968 DOI: 10.1016/j.scitotenv.2021.150439] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
The widespread use of antibiotics has raised global concerns, but scarce information on antibiotics in the subtropical marine environment is available. In the present study, seawater and sediment samples were collected to investigate the occurrence, spatial distribution, source, and ecological risks of 22 antibiotics in the Beibu Gulf. The total concentrations of target antibiotics (∑antibiotics) were in the range of 1.74 ng/L to 23.83 ng/L for seawater and 1.33 ng/g to 8.55 ng/g dry weight (dw) for sediment. Spatially, a decreasing trend of antibiotic levels from coast to offshore area was observed, with relatively high levels at the sites close to the Qinzhou Bay and Qiongzhou Strait. Sulfamethoxazole (SMX), trimethoprim (TMP), and norfloxacin (NOX) were predominant in seawater, while NOX, enoxacin (ENX), and enrofloxacin (ENR) were the most abundant antibiotics in sediment. In general, the sediment-water partitioning coefficients (Kd) were positively correlated with log molecular weight (MW). Salinity, particle size, and pH of water were predicted to be vital factors influencing the partition of sulfadiazine (SDZ), CIX, and ENR (p < 0.05). Livestock and aquaculture were identified as dominant sources of antibiotics in the Beibu Gulf based on PCA-MLR and Unmix model. Risk assessment revealed that SMX, CIX could pose medium risks to algae in the Beibu Gulf. Overall, our results provided paramount insights into understanding the fate and transport behaviors of antibiotics in the subtropical marine environment.
Collapse
Affiliation(s)
- Qi Wu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China; Coral Reef Research Center of China, Guangxi University, Nanning 530004, China; School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Shao-Ke Xiao
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China; Coral Reef Research Center of China, Guangxi University, Nanning 530004, China; School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Chang-Gui Pan
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China; Coral Reef Research Center of China, Guangxi University, Nanning 530004, China; School of Marine Sciences, Guangxi University, Nanning 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.
| | - Chao Yin
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China; Coral Reef Research Center of China, Guangxi University, Nanning 530004, China; School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Ying-Hui Wang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China; Coral Reef Research Center of China, Guangxi University, Nanning 530004, China; School of Marine Sciences, Guangxi University, Nanning 530004, China.
| | - Ke-Fu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China; Coral Reef Research Center of China, Guangxi University, Nanning 530004, China; School of Marine Sciences, Guangxi University, Nanning 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| |
Collapse
|
37
|
Hossain A, Habibullah-Al-Mamun M, Nagano I, Masunaga S, Kitazawa D, Matsuda H. Antibiotics, antibiotic-resistant bacteria, and resistance genes in aquaculture: risks, current concern, and future thinking. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:11054-11075. [PMID: 35028843 DOI: 10.1007/s11356-021-17825-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/24/2021] [Indexed: 06/14/2023]
Abstract
Aquaculture is remarkably one of the most promising industries among the food-producing industries in the world. Aquaculture production as well as fish consumption per capita have been dramatically increasing over the past two decades. Shifting of culture method from semi-intensive to intensive technique and applying of antibiotics to control the disease outbreak are the major factors for the increasing trend of aquaculture production. Antibiotics are usually present at subtherapeutic levels in the aquaculture environment, which increases the selective pressure to the resistant bacteria and stimulates resistant gene transfer in the aquatic environment. It is now widely documented that antibiotic resistance genes and resistant bacteria are transported from the aquatic environment to the terrestrial environment and may pose adverse effects on human and animal health. However, data related to antibiotic usage and bacterial resistance in aquaculture is very limited or even absent in major aquaculture-producing countries. In particular, residual levels of antibiotics in fish and shellfish are not well documented. Recently, some of the countries have already decided the maximum residue levels (MRLs) of antibiotics in fish muscle or skin; however, many antibiotics are yet not to be decided. Therefore, an urgent universal effort needs to be taken to monitor antibiotic concentration and resistant bacteria particularly multiple antibiotic-resistant bacteria and to assess the associated risks in aquaculture. Finally, we suggest to take an initiative to make a uniform antibiotic registration process, to establish the MRLs for fish/shrimp and to ensure the use of only aquaculture antibiotics in fish and shellfish farming globally.
Collapse
Affiliation(s)
- Anwar Hossain
- Department of Fisheries, Faculty of Biological Sciences, University of Dhaka, Dhaka, 1000, Bangladesh.
| | - Md Habibullah-Al-Mamun
- Department of Fisheries, Faculty of Biological Sciences, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Ichiro Nagano
- Central Research Laboratory, Tokyo Innovation Center, Nippon Suisan Kaisha Ltd, 32-3 Nanakuni 1-Chome, Hacjioji, Tokyo, 192-0991, Japan
| | - Shigeki Masunaga
- Faculty of Environment and Information Sciences, Yokohama National University, Yokohama, 240-8501, Japan
| | - Daisuke Kitazawa
- Center for Integrated Underwater Observation Technology, Institute of Industrial Science, The University of Tokyo, Chiba, 277-8574, Japan
| | - Hiroyuki Matsuda
- Faculty of Environment and Information Sciences, Yokohama National University, Yokohama, 240-8501, Japan
| |
Collapse
|
38
|
Wang X, Lin Y, Zheng Y, Meng F. Antibiotics in mariculture systems: A review of occurrence, environmental behavior, and ecological effects. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 293:118541. [PMID: 34800588 DOI: 10.1016/j.envpol.2021.118541] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
Antibiotics are widely applied to prevent and treat diseases occurred in mariculture. The often-open nature of mariculture production systems has led to antibiotic residue accumulation in the culturing and adjacent environments, which can adversely affect aquatic ecosystems, and even human. This review summarizes the occurrence, environmental behavior, and ecological effects of antibiotics in mariculture systems based on peer-reviewed papers. Forty-five different antibiotics (categorized into ten groups) have been detected in mariculture systems around the world, which is far greater than the number officially allowed. Indiscriminate use of antibiotics is relatively high among major producing countries in Asia, which highlights the need for stricter enforcement of regulations and policies and effective antibiotic removal methods. Compared with other environmental systems, some environmental characteristics of mariculture systems, such as high salinity and dissolved organic matter (DOM) content, can affect the migration and transformation processes of antibiotics. Residues of antibiotics favor the proliferation of antibiotic resistance genes (ARGs). Antibiotics and ARGs alter microbial communities and biogeochemical cycles, as well as posing threats to marine organisms and human health. This review may provide a valuable summary of the effects of antibiotics on mariculture systems.
Collapse
Affiliation(s)
- Xiaotong Wang
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Yufei Lin
- National Marine Hazard Mitigation Service, Ministry of Natural Resource of the People's Republic of China, Beijing, 100194, China
| | - Yang Zheng
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; National Marine Hazard Mitigation Service, Ministry of Natural Resource of the People's Republic of China, Beijing, 100194, China
| | - Fanping Meng
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China.
| |
Collapse
|
39
|
Mello FV, Cunha SC, Fogaça FHS, Alonso MB, Torres JPM, Fernandes JO. Occurrence of pharmaceuticals in seafood from two Brazilian coastal areas: Implication for human risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 803:149744. [PMID: 34482147 DOI: 10.1016/j.scitotenv.2021.149744] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/13/2021] [Accepted: 08/14/2021] [Indexed: 06/13/2023]
Abstract
Pharmaceuticals (PhACs) are considered emerging contaminants with potential accumulation in aquatic organisms. Thus, seafood consumption may cause long-term effects and health risk for consumers. In the present study, the occurrence of PhACs in seafood from two Brazilian coastal areas, Sepetiba Bay (n = 43) and Parnaiba Delta River (n = 48), was determined for the first time, and their potential risk for human health was assessed. An eco-friendly multi-analytes method was used, after being validated for the different types of matrices (mussels, fatty and lean fish). All compounds under study were detected at least in four seafood species, including chloramphenicol, an antibiotic prohibited in animal foods. Most PhACs had mean concentrations below limit of quantification. Ibuprofen and other nonsteroidal anti-inflammatory drugs (NSAIDs), as well as simvastatin and carbamazepine were the main PhACs bioaccumulated in edible parts of seafood species from Brazil. The high trophic level carnivorous species, snook, was the most contaminated by NSAIDs, while bivalves were the seafood more contaminated by lipid regulators. The profile of contamination did not vary among different types of matrix, except in relation to carbamazepine and ketoprofen. These PhACs were more abundant in species from Sepetiba Bay, an area highly impacted by human influence. The estimated daily exposure for Brazilian population that consumes the studied species was up to 20.3 ng/kg bw/day via carib pointed-venus and 25.7 ng/kg bw/day via snooks, lower than acceptable daily intake. Thus, consumption of seafood species from Sepetiba Bay and Parnaiba Delta River seems to be safe to the population in what concerns the PhACs studied.
Collapse
Affiliation(s)
- Flávia V Mello
- Laboratory of Radioisotopes Eduardo Penna Franca, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho 373, G0-61, CCS, RJ 21941-902, Brazil; Laboratory of Micropollutants, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho 373, G0-61, CCS, RJ 21941-902, Brazil; LAQV-REQUIMTE, Laboratory of Bromatology e Hidrology, Facultaty of Pharmacy, University of Porto, Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Sara C Cunha
- LAQV-REQUIMTE, Laboratory of Bromatology e Hidrology, Facultaty of Pharmacy, University of Porto, Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| | - Fabíola H S Fogaça
- Laboratory of Bioacessibility, Embrapa Food Agroindustry, Av. das Américas 29501, 23020-470 Rio de Janeiro, Brazil
| | - Mariana B Alonso
- Laboratory of Radioisotopes Eduardo Penna Franca, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho 373, G0-61, CCS, RJ 21941-902, Brazil
| | - João Paulo M Torres
- Laboratory of Radioisotopes Eduardo Penna Franca, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho 373, G0-61, CCS, RJ 21941-902, Brazil; Laboratory of Micropollutants, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho 373, G0-61, CCS, RJ 21941-902, Brazil
| | - José O Fernandes
- LAQV-REQUIMTE, Laboratory of Bromatology e Hidrology, Facultaty of Pharmacy, University of Porto, Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
40
|
Li Y, Wang S, Xia Y, Gao L. Efficient photocatalytic degradation of tetracycline by Z-scheme CuSnO 3/g-C 3N 4 heterojunctions coupling with H 2O 2 under visible light irradiation. NEW J CHEM 2022. [DOI: 10.1039/d1nj05877k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Possible schemes for electron–hole separation and transport at the 20% CSO–CN composite interface.
Collapse
Affiliation(s)
- Yuzhen Li
- College of Environmental Science and Engineering, Taiyuan University of Technology, 79 Yingze Street, Wanbailin, Taiyuan, 030024, China
| | - Shaojie Wang
- College of Environmental Science and Engineering, Taiyuan University of Technology, 79 Yingze Street, Wanbailin, Taiyuan, 030024, China
| | - Yunsheng Xia
- Department of Chemistry, Bohai University, Jinzhou 121013, China
| | - Lizhen Gao
- College of Environmental Science and Engineering, Taiyuan University of Technology, 79 Yingze Street, Wanbailin, Taiyuan, 030024, China
- School of Mechanical Engineering, University of Western Australia, 35 Stirling Highway, WA 6009, Australia
| |
Collapse
|
41
|
Zhou J, Yun X, Wang J, Li Q, Wang Y. A review on the ecotoxicological effect of sulphonamides on aquatic organisms. Toxicol Rep 2022; 9:534-540. [PMID: 35371922 PMCID: PMC8971571 DOI: 10.1016/j.toxrep.2022.03.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/07/2022] [Accepted: 03/26/2022] [Indexed: 12/25/2022] Open
Abstract
Antibiotics are extensively used to treat human and animal diseases and are especially used in animal production to promote the growth performance of livestock and aquatic animals. Sulphonamides, as important drugs for aquatic animals, are often used in aquaculture to prevent and treat diseases. However, various antibiotics found in the aquatic environment exhibit varying degrees of toxicity to aquatic organisms. Antibiotics in wastewater produced in industrial and agricultural processes are not thoroughly removed by sewage treatment and are released into water, which results in varying degrees of pollution of the surrounding water environment, forcing people to pay attention towards the ecosystem. Several studies have investigated the impact of antibiotics on aquatic organisms in water environment; however, only a few studies have investigated the underlying mechanism. Antibiotics persisting in an aquatic environment for a long time can cause genotoxicity and histopathological changes in various aquatic organisms. Therefore, this paper reviews the sources of antibiotics in aquatic environment, the pollution status of sulfonamides in aquatic environment at home and abroad, and focuses on the research status of ecotoxicological effects of sulfonamides on aquatic organisms. Because there are not only antibiotic pollution, but also many other pollutants, such as heavy metals, micro plastics and other chemicals, it will be a challenge to determine the combined effects of antibiotics or other pollutants on aquatic organisms in future environmental toxicity studies. Sulphonamides are ubiquitously detected in the water environment. Sulfamethoxazole is one of the least efficient antibiotics removed in wastewater treatment plants. Interaction of sulphonamides with other antibiotics needs more attention. Multigeneration studies related to the water environment are needed.
Collapse
|
42
|
Liu D, Xu YY, Junaid M, Zhu YG, Wang J. Distribution, transfer, ecological and human health risks of antibiotics in bay ecosystems. ENVIRONMENT INTERNATIONAL 2022; 158:106949. [PMID: 34710731 DOI: 10.1016/j.envint.2021.106949] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 10/01/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
Antibiotics have been widely detected in bay ecosystems, yet little is known regarding their distribution, composition, sources, ecological and human health risks at the regional scale. We developed a systematic framework to mine data from existing publications and compiled an antibiotic concentration-based dataset containing 439 samples from 30 bays, and compared antibiotics across bays and matrices (water, sediment, and biota). Antibiotic concentrations varied considerably between bays, with hotspots occurring in East Asia. The main categories of antibiotics in waters included sulfonamide and macrolide, while tetracycline, quinolone, and macrolide antibiotics were prevalent in sediments. The main sources of antibiotics in bays included sewage treatment plant effluent, domestic sewage, agriculture runoff, and discharges from mariculture activities. Antibiotics with high ecological risks mainly included sulfamethoxazole, erythromycin, clarithromycin, and oxytetracycline. Erythromycin posed a considerable risk to human health, and the human health risks presented by other antibiotics were negligible. Regional variations of concentrations correspond to the uneven geographic consumption of antibiotics and their removal rate during wastewater treatment. Differences in antibiotics' composition between matrices are associated mainly with the physicochemical properties of antibiotics (e.g., molecular structure, solubility, and stability) and the content of total organic carbon, metal ions, chlorophyll a, and clay minerals in the sediments. To reduce the ecological and human health implications, priority should be given to the removal of erythromycin, sulfamethoxazole, oxytetracycline, and clarithromycin, with a special focus on their treatment in the Asian bay areas.
Collapse
Affiliation(s)
- Dong Liu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yao-Yang Xu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo 315800, China.
| | - Muhammad Junaid
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jun Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| |
Collapse
|
43
|
Ahmad F, Zhu D, Sun J. Environmental fate of tetracycline antibiotics: degradation pathway mechanisms, challenges, and perspectives. ENVIRONMENTAL SCIENCES EUROPE 2021; 33:64. [DOI: 10.1186/s12302-021-00505-y] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/11/2021] [Indexed: 07/23/2024]
Abstract
AbstractTetracycline pollution is a growing global threat to aquatic and terrestrial biodiversity due to its unprecedented use in aquaculture, livestock, and human disease prevention. The influx of tetracycline may annihilate the microbial ecology structure in the environment and pose a severe threat to humans by disturbing the food chain. Although significant research data are available in the literature on various aspects of tetracycline, including detection techniques, degradation mechanisms, degradation products, and policy statements to curtail the issue, there is a scarcity of a report to compile the recent data in the literature for better analysis and comparison by the policymakers. To achieve this paucity in knowledge, the current study aims at collecting data on the available degradation strategies, mechanisms involved in biodegradable and non-biodegradable routes, the main factor affecting degradation strategies, compile novel detection techniques of tetracycline antibiotics in the environment, discuss antibiotic resistance genes and their potential role in degradation. Finally, limitations in the current bioremediation techniques and the future prospects are discussed with pointers for the decision-makers for a safer environment.
Collapse
|
44
|
Peng YP, He YW, Shen YF, Liang AM, Zhang XB, Liu YJ, Lin JH, Wang JP, Li YB, Fu YC. Fluorescence Nanobiosensor for Simultaneous Detection of Multiple Veterinary Drugs in Chicken Samples. JOURNAL OF ANALYSIS AND TESTING 2021. [DOI: 10.1007/s41664-021-00199-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
45
|
Dong J, Xie H, Feng R, Lai X, Duan H, Xu L, Xia X. Transport and fate of antibiotics in a typical aqua-agricultural catchment explained by rainfall events: Implications for catchment management. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 293:112953. [PMID: 34102496 DOI: 10.1016/j.jenvman.2021.112953] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/22/2021] [Accepted: 05/28/2021] [Indexed: 06/12/2023]
Abstract
Antibiotics receive many concerns since their negative environmental impacts are being revealed, especially in aqua-agricultural areas. Rainfall events are responsible for transferring excess contaminants to receiving waters. However, the understanding of antibiotics transport and fate responding to rainfall events was constrained by limited event-based data and lacking integrated consideration of dissolved and particulate forms. We developed an intensive monitoring strategy to capture responses of fourteen antibiotics to different types of rainfall events and inter-event low flow periods. Pollutant-rich suspended particles, as high as 1471 ng/g, were found in low flow periods while the very heavy rainfall events and consecutive rainfall events stimulated the release of antibiotics from eroded soil particles to river water. Therefore, these rainfall events drove radical increase of dissolved antibiotic concentration up to 592 ng/L and total flux up to 25.0 g/d. Sulfonamides were particularly sensitive to rainfall events because of their residues in manure-applied agricultural lands. Transport dynamics of most antibiotics were accretion whereas only clarithromycin exhibited a dilution pattern by concentration-discharge relationships. Aquaculture ponds were inferred to significantly contribute tetracycline, oxytetracycline, and clarithromycin. Conventional contaminants were compared to discriminate potential sources of antibiotics and imply effective catchment management. The results provided novel insights into event-based drivers and dynamics of antibiotics and could lead to appropriate management strategy.
Collapse
Affiliation(s)
- Jianwei Dong
- School of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, China; Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Hui Xie
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Ranran Feng
- Center for Eco-Environmental Research, Nanjing Hydraulic Research Institute, Nanjing, 210029, China
| | - Xijun Lai
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Hongtao Duan
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Ligang Xu
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Xinghui Xia
- School of Environment, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
46
|
Zhang L, Lu L, Zhu W, Yang B, Lu D, Dan SF, Zhang S. Organophosphorus flame retardants (OPFRs) in the seawater and sediments of the Qinzhou Bay, Northern Beibu Gulf: Occurrence, distribution, and ecological risks. MARINE POLLUTION BULLETIN 2021; 168:112368. [PMID: 33901908 DOI: 10.1016/j.marpolbul.2021.112368] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
The occurrence, distributions, and ecological risks of 11 organophosphate flame retardants (OPFRs) were investigated in the seawater and sediment samples from the Qinzhou Bay. The Σ11OPFRs in the surface seawater and sediments ranged from 150 to 885 ng/L and from <the limit of quantification (LOQ) to 32.2 ng/g dw, respectively, with high levels of OPFRs in the industrialized and port areas. Tris (2-chloro-propyl) phosphate (TCIPP), tris (2-chloroethyl) phosphate (TCEP), and tri-n-butyl phosphate (TNBP) were the dominant OPFRs in the surface seawater and sediments. The Σ11OPFRs concentrations in the sediment core ranged 1.2-18.6 ng/g dw and the vertical trends showed a recent increase of OPFRs emissions, especially for TNBP and triphenyl phosphate (TPHP). Risk assessment revealed that individual OPFR could pose low to medium ecological risks, but the risk from the mixture of OPFRs on aquatic organisms requires more attention.
Collapse
Affiliation(s)
- Li Zhang
- Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536007, China.
| | - Lu Lu
- Qinzhou Marine Environmental Monitoring and Forecasting Center, Qinzhou 53500, China
| | - Wenjuan Zhu
- Qinzhou Marine Environmental Monitoring and Forecasting Center, Qinzhou 53500, China
| | - Bin Yang
- Guangxi Key Laboratory of Marine Disaster in the Beibu Gulf, Beibu Gulf University, Qinzhou 535011, China.
| | - Dongliang Lu
- Guangxi Key Laboratory of Marine Disaster in the Beibu Gulf, Beibu Gulf University, Qinzhou 535011, China
| | - Solomon Felix Dan
- Guangxi Key Laboratory of Marine Disaster in the Beibu Gulf, Beibu Gulf University, Qinzhou 535011, China
| | - Shaofeng Zhang
- Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536007, China
| |
Collapse
|
47
|
Ashraf A, Liu G, Yousaf B, Arif M, Ahmed R, Irshad S, Cheema AI, Rashid A, Gulzaman H. Recent trends in advanced oxidation process-based degradation of erythromycin: Pollution status, eco-toxicity and degradation mechanism in aquatic ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:145389. [PMID: 33578171 DOI: 10.1016/j.scitotenv.2021.145389] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/02/2021] [Accepted: 01/19/2021] [Indexed: 05/18/2023]
Abstract
Wide spread documentation of antibiotic pollution is becoming a threat to aquatic environment. Erythromycin (ERY), a macrolide belonging antibiotic is at the top of this list with its concentrations ranging between ng/L to a few μg/L in various global waterbodies giving rise to ERY-resistance genes (ERY-RGs) and ERY- resistance bacteria (ERY-RBs) posing serious threat to the aquatic organisms. ERY seems resistant to various conventional water treatments, remained intact and even increased in terms of mass loads after treatment. Enhanced oxidation potential, wide pH range, elevated selectivity, adaptability and greater efficiency makes advance oxidation processes (AOPs) top priority for degrading pollutants with aromatic rings and unsaturated bonds like ERY. In this manuscript, recent developments in AOPs for ERY degradation are reported along with the factors that affect the degradation mechanism. ERY, marked as a risk prioritized macrolide antibiotic by 2015 released European Union watch list, most probably due to its protein inhibition capability considered third most widely used antibiotic. The current review provides a complete ERY overview including the environmental entry sources, concentration in global waters, ERY status in STPs, as well as factors affecting their functionality. Along with that this study presents complete outlook regarding ERY-RGs and provides an in depth detail regarding ERY's potential threats to aquatic biota. This study helps in figuring out the best possible strategy to tackle antibiotic pollution keeping ERY as a model antibiotic because of extreme toxicity records.
Collapse
Affiliation(s)
- Aniqa Ashraf
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, PR China
| | - Guijian Liu
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, PR China.
| | - Balal Yousaf
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, PR China
| | - Muhammad Arif
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, PR China
| | - Rafay Ahmed
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, PR China
| | - Samina Irshad
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, PR China
| | - Ayesha Imtiyaz Cheema
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, PR China
| | - Audil Rashid
- Botany Department, Faculty of Science, University of Gujrat, Hafiz Hayat Campus, Gujrat 50700, Pakistan
| | - Humaira Gulzaman
- Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS, 32610 Bandar Seri Iskander, Perak, Malaysia
| |
Collapse
|
48
|
Wang L, Li H, Dang J, Guo H, Zhu Y, Han W. Occurrence, distribution, and partitioning of antibiotics in surface water and sediment in a typical tributary of Yellow River, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:28207-28221. [PMID: 33533002 DOI: 10.1007/s11356-021-12634-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
The antibiotic distributions, partitioning, and migration pathways in river basins have withdrawn great attention in the past decades. This study investigates 26 antibiotics of five classifications in surface water and sediment samples at 23 sites in Fenhe River, a typical tributary of Yellow River. There are 21 antibiotics found in the water samples at the concentration from 113.8 to 1106.0 ng/L, in the decreasing order of SAs > QNs > MLs > TCs > CAs. Fifteen antibiotics were detected in the sediment at the concentrations from 25.11 to 73.22 μg/kg following the decreasing order of SAs > MLs > TCs > QNs > CAs. The antibiotic concentrations vary greatly in surface water, generally lower in upstream and in reservoirs, and reaching highest in the midstream of the Fenhe River after passing Taiyuan and Jinzhong, and then lower again in the downstream. The antibiotic concentrations in sediment have a less variation in the entire river basin, but become high in the downstream. The results show the water-sediment partitioning coefficients of antibiotics generally were lower than those in other areas, having a migration path from the water to suspended solids, and then accumulated in sediment. The water-sediment partitioning coefficients also vary across the basin. The water-sediment partitioning coefficients of sulfacetamide and tetracycline are higher than the water-sediment partitioning coefficients of other antibiotics, with less variation across the basin, the water-sediment partitioning coefficients of azithromycin, enrofloxacin, and roxithromycin are low in the midstream of the river, and high at the river source and downstream. The water-sediment partitioning coefficients are significantly affected by the pH of sediment and the particle size of sediment. The prediction models of water-sediment partitioning coefficients for antibiotics are constructed with the selected effecting factors. The simulation values of antibiotics except chlortetracycline and erythromycin are highly consistent with the observed values, indicating that the prediction model is reliable.
Collapse
Affiliation(s)
- Linfang Wang
- School of Environment and Resources, Shanxi University, Taiyuan, 030006, China
- Shanxi Research Academy of Environmental Science, Taiyuan, 030027, China
- Institute of Resources and Environment Engineering, Shanxi University, Taiyuan, 030006, China
| | - Hua Li
- School of Environment and Resources, Shanxi University, Taiyuan, 030006, China.
- Institute of Resources and Environment Engineering, Shanxi University, Taiyuan, 030006, China.
| | - Jinhua Dang
- Shanxi Research Academy of Environmental Science, Taiyuan, 030027, China
| | - Hong Guo
- Shanxi Research Academy of Environmental Science, Taiyuan, 030027, China
| | - Yu'en Zhu
- School of Environment and Resources, Shanxi University, Taiyuan, 030006, China
- Institute of Resources and Environment Engineering, Shanxi University, Taiyuan, 030006, China
| | - Wenhui Han
- Shanxi Research Academy of Environmental Science, Taiyuan, 030027, China
| |
Collapse
|
49
|
Pes K, Friese A, Cox CJ, Laizé V, Fernández I. Biochemical and molecular responses of the Mediterranean mussel (Mytilus galloprovincialis) to short-term exposure to three commonly prescribed drugs. MARINE ENVIRONMENTAL RESEARCH 2021; 168:105309. [PMID: 33798995 DOI: 10.1016/j.marenvres.2021.105309] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/03/2021] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
Pharmaceuticals represent a group of emerging contaminants. The short-term effect (3 and 7 days) of warfarin (1 and 10 mg L-1), dexamethasone (0.392 and 3.92 mg L-1) and imidazole (0.013 and 0.13 mg L-1) exposure was evaluated on mussels (Mytilus galloprovincialis). Total antioxidant status, glutathione reductase, glutathione peroxidase (GPx) and superoxide dismutase enzyme activities, and the expression of genes involved in the xenobiotic response (ATP binding cassette subfamily B member 1 (abcb1) and several nuclear receptor family J (nr1j) isoforms), were evaluated. All nr1j isoforms are suggested to be the xenobiotic receptor orthologs of the NR1I family. All drugs increased GPx activity and altered the expression of particular nr1j isoforms. Dexamethasone exposure also decreased abcb1 expression. These findings raised some concerns regarding the release of these pharmaceuticals into the aquatic environment. Thus, further studies might be needed to perform an accurate environmental risk assessment of these 3 poorly studied drugs.
Collapse
Affiliation(s)
- Katia Pes
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Annika Friese
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Cymon J Cox
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Vincent Laizé
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Ignacio Fernández
- Aquaculture Research Center, Agro-Technological Institute of Castilla y León (ITACyL), Ctra. Arévalo, s/n. 40196 Zamarramala, Segovia, Spain.
| |
Collapse
|
50
|
Ci M, Zhang G, Yan X, Dong W, Xu W, Wang W, Fan Y. Occurrence of antibiotics in the Xiaoqing River basin and antibiotic source contribution-a case study of Jinan city, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:25241-25254. [PMID: 33453030 DOI: 10.1007/s11356-020-12202-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
Twenty antibiotics were investigated to evaluate the degree of antibiotic pollution, the temporal and spatial antibiotic distribution and the ecological risks in the Xiaoqing River basin (main stream). The total antibiotic concentrations in surface water and sediment were 0.99 to 832.4 ng L-1 and 9.71 to 7841.61 ng g-1, respectively, and that ofloxacin was the dominant antibiotic. However, ofloxacin, erythromycin, clarithromycin and sulfamethoxazole posed high risks to algae, among which clarithromycin presented the highest risk quotients (23.8). In addition, there were spatial and temporal differences in the antibiotic concentration distribution. Temporally, the following trend was detected: dry season > normal season > wet season; spatially, the following trend was detected: Jinan > Dongying > Binzhou > Zibo > Weifang. Meanwhile, we used the PCA-MLR model to quantify the contribution rate of the four sewage treatment plants A, B, C and D. Factor 1 (co-sources A, B, C, D) contributed 64.1% of the total antibiotic concentration in the Xiaoqing River. According to the estimated flux into the sea, approximately 972.31 kg of antibiotics were discharged into Bohai Bay in 2017, posing a potential threat to the marine ecosystem. As a comprehensive river channel used for flood control, waterlogging, irrigation and shipping, its water quality safety is of great significance to the surrounding residents and ecological safety. Therefore, further investigations of antibiotic pollution and source contribution are necessary.
Collapse
Affiliation(s)
- Miaowei Ci
- College of Geography and Environment, Shandong Normal University, Jinan, 250358, China
- Institute of Environment and Ecology, Shandong Normal University, Jinan, 250358, China
| | - Guodong Zhang
- College of Geography and Environment, Shandong Normal University, Jinan, 250358, China
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Xianshou Yan
- Heze Zhongkecheng Sewage Purification Co., Ltd., Heze, 274000, China
- Beijing Enterprises Water Group Limited, Beijing, 100000, China
| | - Wenping Dong
- Shandong Academy of Environmental Science Co., Ltd., Jinan, 250013, China
| | - Wenfeng Xu
- Shandong Think-eee Environmental Technology Co., Ltd., Jinan, 250101, China
| | - Weiliang Wang
- College of Geography and Environment, Shandong Normal University, Jinan, 250358, China.
- Institute of Environment and Ecology, Shandong Normal University, Jinan, 250358, China.
| | - Yuqi Fan
- Institute of Environment and Ecology, Shandong Normal University, Jinan, 250358, China.
| |
Collapse
|