1
|
Zito P, Podgorski DC, Tarr MA. Emerging Chemical Methods for Petroleum and Petroleum-Derived Dissolved Organic Matter Following the Deepwater Horizon Oil Spill. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2023; 16:429-450. [PMID: 37314877 DOI: 10.1146/annurev-anchem-091522-110825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Despite the fact that oil chemistry and oils spills have been studied for many years, there are still emerging techniques and unknown processes to be explored. The 2010 Deepwater Horizon oil spill in the Gulf of Mexico resulted in a revival of oil spill research across a wide range of fields. These studies provided many new insights, but unanswered questions remain. Over 1,000 journal articles related to the Deepwater Horizon spill are indexed by the Chemical Abstract Service. Numerous ecological, human health, and organismal studies were published. Analytical tools applied to the spill include mass spectrometry, chromatography, and optical spectroscopy. Owing to the large scale of studies, this review focuses on three emerging areas that have been explored but remain underutilized in oil spill characterization: excitation-emission matrix spectroscopy, black carbon analysis, and trace metal analysis using inductively coupled plasma mass spectrometry.
Collapse
Affiliation(s)
- Phoebe Zito
- Department of Chemistry, University of New Orleans, New Orleans, Louisiana, USA;
- Chemical Analysis and Mass Spectrometry Facility, University of New Orleans, New Orleans, Louisiana, USA
| | - David C Podgorski
- Department of Chemistry, University of New Orleans, New Orleans, Louisiana, USA;
- Chemical Analysis and Mass Spectrometry Facility, University of New Orleans, New Orleans, Louisiana, USA
- Pontchartrain Institute for Environmental Sciences, University of New Orleans, New Orleans, Louisiana, USA
- Department of Chemistry, University of Alaska Anchorage, Anchorage, Alaska, USA
| | - Matthew A Tarr
- Department of Chemistry, University of New Orleans, New Orleans, Louisiana, USA;
| |
Collapse
|
2
|
Chen D, Lawrence KG, Sandler DP. Nontraditional Occupational Exposures to Crude Oil Combustion Disasters and Respiratory Disease Risk: A Narrative Review of Literature. Curr Allergy Asthma Rep 2023; 23:299-311. [PMID: 37166706 PMCID: PMC10330790 DOI: 10.1007/s11882-023-01078-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2023] [Indexed: 05/12/2023]
Abstract
PURPOSE OF REVIEW Burning of petroleum products has been consistently associated with adverse respiratory health effects. Combustion of crude oil, specifically, produces toxic byproducts, but there have been relatively few studies of health effects. Burning of crude oil is increasingly employed as a means of mitigating environmental disasters despite the potential health risks to workers involved in clean-up efforts. Here, we review epidemiological studies of respiratory effects following unique crude oil burning events to (1) characterize respiratory health effects from this nontraditional occupational exposure and (2) identify approaches used to characterize exposures that could be applied to future disaster-related studies. RECENT FINDINGS We searched PubMed and EMBASE for references from inception to January 30, 2023. We also manually screened references cited in eligible articles. We identified 14 eligible publications. Our review suggests that exposure to crude oil combustion has adverse respiratory effects, including reduced lung function and increased occurrence of respiratory symptoms and disease. However, the evidence is inconsistent, and quality of data varied across studies. While some studies used quantitative, modeled exposure estimates, most used self-reported proxies of exposure. Although disasters involving crude oil combustion are relatively rare, limited evidence suggests that some worker populations may be at risk for respiratory effects from burning exposures in disaster settings. Future studies that use improved exposure assessment methods (e.g., personal monitors, remote sensing data) may help further quantify the respiratory risk from crude oil burning exposures.
Collapse
Affiliation(s)
- Dazhe Chen
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Kaitlyn G Lawrence
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA.
| |
Collapse
|
3
|
Ho HH, Nair S, Rangwala AS. Heat release rate of enhanced large-scale open oil slick fires with Outdoor Gas Emission Sampling (OGES) system. MARINE POLLUTION BULLETIN 2023; 192:114987. [PMID: 37163793 DOI: 10.1016/j.marpolbul.2023.114987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/20/2023] [Accepted: 04/22/2023] [Indexed: 05/12/2023]
Abstract
The Outdoor Gas Emission Sampling (OGES) system was developed to serve as an economical alternative to expensive industrial gas monitoring equipment. By establishing a sampling plane with four discrete sampling points along the radial direction of the smoke plume, the heat release rate (HRR) was measured for large-scale open oil slick fires. This newfound technique was particularly noteworthy during enhanced burns involving Flame Refluxer™ technology, where it is believed that partial premixing of the fuel and air by the apparatus resulted in a higher HRR than existing flame height correlations would suggest, evident by the HRR calculated using mass burning rate and gas analysis methods, which were in good agreement. Results from OGES show the potential of using point sampling within the plume regime to measure the HRR of fires that exceed the capabilities of conventional hood-based calorimeters, especially when it pertains to large-scale open burns.
Collapse
Affiliation(s)
- Hsin-Hsiu Ho
- Fire Protection Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA.
| | - Sharanya Nair
- Fire Protection Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
| | - Ali S Rangwala
- Fire Protection Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
| |
Collapse
|
4
|
Chen D, Sandler DP, Keil AP, Heiss G, Whitsel EA, Pratt GC, Stewart PA, Stenzel MR, Groth CP, Banerjee S, Huynh TB, Edwards JK, Jackson WB, Engeda J, Kwok RK, Werder EJ, Lawrence KG, Engel LS. Fine particulate matter and incident coronary heart disease events up to 10 years of follow-up among Deepwater Horizon oil spill workers. ENVIRONMENTAL RESEARCH 2023; 217:114841. [PMID: 36403648 PMCID: PMC9825646 DOI: 10.1016/j.envres.2022.114841] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/05/2022] [Accepted: 11/15/2022] [Indexed: 05/31/2023]
Abstract
BACKGROUND During the 2010 Deepwater Horizon (DWH) disaster, in-situ burning and flaring were conducted to remove oil from the water. Workers near combustion sites were potentially exposed to burning-related fine particulate matter (PM2.5). Exposure to PM2.5 has been linked to increased risk of coronary heart disease (CHD), but no study has examined the relationship among oil spill workers. OBJECTIVES To investigate the association between estimated PM2.5 from burning/flaring of oil/gas and CHD risk among the DWH oil spill workers. METHODS We included workers who participated in response and cleanup activities on the water during the DWH disaster (N = 9091). PM2.5 exposures were estimated using a job-exposure matrix that linked modelled PM2.5 concentrations to detailed DWH spill work histories provided by participants. We ascertained CHD events as the first self-reported physician-diagnosed CHD or a fatal CHD event that occurred after each worker's last day of burning exposure. We estimated hazard ratios (HR) and 95% confidence intervals (95%CI) for the associations between categories of average or cumulative daily maximum PM2.5 exposure (versus a referent category of water workers not near controlled burning) and subsequent CHD. We assessed exposure-response trends by examining continuous exposure parameters in models. RESULTS We observed increased CHD hazard among workers with higher levels of average daily maximum exposure (low vs. referent: HR = 1.26, 95% CI: 0.93, 1.70; high vs. referent: HR = 2.11, 95% CI: 1.08, 4.12; per 10 μg/m3 increase: HR = 1.10, 95% CI: 1.02, 1.19). We also observed suggestively elevated HRs among workers with higher cumulative daily maximum exposure (low vs. referent: HR = 1.19, 95% CI: 0.68, 2.08; medium vs. referent: HR = 1.38, 95% CI: 0.88, 2.16; high vs. referent: HR = 1.44, 95% CI: 0.96, 2.14; per 100 μg/m3-d increase: HR = 1.03, 95% CI: 1.00, 1.05). CONCLUSIONS Among oil spill workers, exposure to PM2.5 from flaring/burning of oil/gas was associated with increased risk of CHD.
Collapse
Affiliation(s)
- Dazhe Chen
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA.
| | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Alexander P Keil
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Gerardo Heiss
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Eric A Whitsel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA; Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Gregory C Pratt
- Division of Environmental Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | | | - Mark R Stenzel
- Exposure Assessment Applications, LLC, Arlington, VA, USA
| | - Caroline P Groth
- Department of Epidemiology and Biostatistics, School of Public Health, West Virginia University, Morgantown, WV, USA
| | - Sudipto Banerjee
- Department of Biostatistics, Fielding School of Public Health, University of California - Los Angeles, Los Angeles, CA, USA
| | - Tran B Huynh
- Department of Environmental and Occupational Health, Dornsife School of Public Health, Drexel University, Philadelphia, PA, USA
| | - Jessie K Edwards
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - W Braxton Jackson
- Social & Scientific Systems, Inc, a DLH Holdings Company, Durham, NC, USA
| | - Joseph Engeda
- Social & Scientific Systems, Inc, a DLH Holdings Company, Durham, NC, USA
| | - Richard K Kwok
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA; Office of the Director, National Institute of Environmental Health Sciences, Bethesda, MD, USA
| | - Emily J Werder
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Kaitlyn G Lawrence
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Lawrence S Engel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA; Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA.
| |
Collapse
|
5
|
Yin F, Gao C, Song Z, Han Y, He Z, Zhang L, Su P, Feng D, Yang T, Fu J. Chemical signatures of polycyclic aromatic hydrocarbons in the emissions from in situ oil burns. MARINE POLLUTION BULLETIN 2022; 184:114194. [PMID: 36208553 DOI: 10.1016/j.marpolbul.2022.114194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
This study characterized the parent and alkylated polycyclic aromatic hydrocarbons (PAHs) in gaseous and particulate emissions from the in situ burning (ISB) of oils. The experimental results indicate that the burning of the heavy oil produced the most PAH emissions because of its longest burning time. In addition, the parent PAHs mainly exist in the particulate phase, while alkylated PAHs mostly accumulate in the gaseous phase. In particular, the diagnostic-ratios of PAHs with great stability in both gaseous and particulate emissions from ISB are identified by comparing the laboratory and field data. The presences of bell-, slope- and V-shaped distribution patterns of alkylated PAHs in the emissions precisely indicate their sources to be petrogenic and pyrogenic processes occurring during ISB. The formation of 2-methylanthracene during ISB is confirmed. The overall findings are expected to provide a prospective protocol to characterize PAH pollution from ISB emissions in case of oil spills.
Collapse
Affiliation(s)
- Fang Yin
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, PR China; International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), Shanghai Maritime University, Shanghai 201306, PR China
| | - Chen Gao
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, PR China
| | - Zhibo Song
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, PR China
| | - Yuling Han
- WuXi Biologics (Shanghai) Co., Ltd., Fengxian District, Shanghai 201403, PR China.
| | - Zhiwei He
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, PR China
| | - Li Zhang
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, PR China
| | - Penghao Su
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, PR China; International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), Shanghai Maritime University, Shanghai 201306, PR China
| | - Daolun Feng
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, PR China; International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), Shanghai Maritime University, Shanghai 201306, PR China
| | - Tao Yang
- East China Sea Environmental Monitoring Center, State Oceanic Administration, Shanghai 201206, PR China
| | - Jie Fu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| |
Collapse
|
6
|
Yin F, He Z, Song Z, Su P, Zhang L, Feng D, Yang T. The fingerprint stability of the biomarker hopanes and steranes in soot emissions from in-situ burning of oil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156273. [PMID: 35643145 DOI: 10.1016/j.scitotenv.2022.156273] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/06/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
The behavior of emissions is an important concern of in-situ burning (ISB) of spilled oils. In particular, the heavy soot originated from ISB can negatively impact the atmospheric environment. To track the behavior of ISB soot, the conservative biomarkers, such as hopanes and steranes, can be potentially used. In this study, the stability of chemical fingerprints of hopanes and steranes in the ISB soot were investigated based on the burning of two different types of oils, including one ultra-light condensate (i.e., surrogate Sanchi condensate) and one heavy oil. The results indicate that the chromatographic patterns and diagnostic ratios of hopanes and steranes in the ISB soot emissions almost remain identical to their corresponding source oils, proving the various oil source identification of ISB soot can be realized. This work attempts to provide novel insights into the application of biomarkers in the management of ISB emissions.
Collapse
Affiliation(s)
- Fang Yin
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, PR China; International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), Shanghai Maritime University, Shanghai 201306, PR China
| | - Zhiwei He
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, PR China
| | - Zhibo Song
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, PR China
| | - Penghao Su
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, PR China; International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), Shanghai Maritime University, Shanghai 201306, PR China
| | - Li Zhang
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, PR China
| | - Daolun Feng
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, PR China; International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), Shanghai Maritime University, Shanghai 201306, PR China
| | - Tao Yang
- East China Sea Environmental Monitoring Center, State Oceanic Administration, Shanghai 201206, PR China.
| |
Collapse
|
7
|
Yin F, Song Z, He Z, Qin B, John GF, Zhang L, Su P, Zhang W, Yang T. Chemical fingerprinting and characterization of spilled oils and burnt soot particles - A case study on the Sanchi oil tanker collision in the East China Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 824:153896. [PMID: 35182621 DOI: 10.1016/j.scitotenv.2022.153896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/11/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
The condensate spill accident from the Sanchi oil tanker collision in the East China Sea is unique in world history. To date, the spilled and burnt amounts of condensate remain unknown. The present study demonstrates the chemical fingerprints of a surrogate condensate (SC) from the same source, and of the carried heavy fuel oil (HFO) of the Sanchi accident. The evaporative features of the condensate are demonstrated by allowing the SC to naturally volatilize in a dark fume hood. In addition, the combustion emission of the SC is characterized by conducting a laboratory-scale combustion experiment. The evaporation experiment suggests that the volatilization process plays a significant role in the weathering of the condensate. The results show that the SC and HFO can be clearly distinguished based on their chemical fingerprints of C27-C35 hopanes and C9-C36 n-alkanes, along with priority polycyclic aromatic hydrocarbons (PAHs) and their alkylated derivatives. The compositional data reveal that the lighter component is predominant in the SC, thereby supporting its high volatility and flammability. The greater amounts of heavier components in the HFO indicate its long-term degradation and potential ecological risks to the environment. Further, the trisnorhopane thermal indicator (Ts/Tm) and C29/C30 ratio of hopanes are validated for identification of the SC and the HFO. More importantly, the changes in the hopane ratios of the soot particles are analyzed for the first time in this study, and the results demonstrate the validity of using hopane ratios to fingerprint the condensate soot particles. The diagnostic ratios of 2-MP/1-MP, 9/4-MP/1-MP, and InP/(InP+BghiP) also show decent performance on source identification after the condensate evaporation and combustion processes.
Collapse
Affiliation(s)
- Fang Yin
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, PR China; International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), Shanghai Maritime University, Shanghai 201306, PR China
| | - Zhibo Song
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, PR China
| | - Zhiwei He
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, PR China
| | - Boyu Qin
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, PR China
| | - Gerald F John
- Environmental Engineering Program, Department of Civil Engineering, Auburn University, AL 36849, USA
| | - Li Zhang
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, PR China
| | - Penghao Su
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, PR China; International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), Shanghai Maritime University, Shanghai 201306, PR China
| | - Wenshu Zhang
- Nantong Marine Environmental Monitoring Center, State Oceanic Administration, Nantong 226002, PR China
| | - Tao Yang
- East China Sea Environmental Monitoring Center, State Oceanic Administration, Shanghai 201206, PR China.
| |
Collapse
|
8
|
Chen D, Lawrence KG, Pratt GC, Stenzel MR, Stewart PA, Groth CP, Banerjee S, Christenbury K, Curry MD, Jackson WB, Kwok RK, Blair A, Engel LS, Sandler DP. Fine Particulate Matter and Lung Function among Burning-Exposed Deepwater Horizon Oil Spill Workers. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:27001. [PMID: 35103485 PMCID: PMC8805798 DOI: 10.1289/ehp8930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 11/01/2021] [Accepted: 01/03/2022] [Indexed: 05/31/2023]
Abstract
BACKGROUND During the 2010 Deepwater Horizon (DWH) disaster, controlled burning was conducted to remove oil from the water. Workers near combustion sites were potentially exposed to increased fine particulate matter [with aerodynamic diameter ≤2.5μm (PM2.5)] levels. Exposure to PM2.5 has been linked to decreased lung function, but to our knowledge, no study has examined exposure encountered in an oil spill cleanup. OBJECTIVE We investigated the association between estimated PM2.5 only from burning/flaring of oil/gas and lung function measured 1-3 y after the DWH disaster. METHODS We included workers who participated in response and cleanup activities on the water during the DWH disaster and had lung function measured at a subsequent home visit (n=2,316). PM2.5 concentrations were estimated using a Gaussian plume dispersion model and linked to work histories via a job-exposure matrix. We evaluated forced expiratory volume in 1 s (FEV1; milliliters), forced vital capacity (FVC; milliliters), and their ratio (FEV1/FVC; %) in relation to average and cumulative daily maximum exposures using multivariable linear regressions. RESULTS We observed significant exposure-response trends associating higher cumulative daily maximum PM2.5 exposure with lower FEV1 (p-trend=0.04) and FEV1/FVC (p-trend=0.01). In comparison with the referent group (workers not involved in or near the burning), those with higher cumulative exposures had lower FEV1 [-166.8mL, 95% confidence interval (CI): -337.3, 3.7] and FEV1/FVC (-1.7, 95% CI: -3.6, 0.2). We also saw nonsignificant reductions in FVC (high vs. referent: -120.9, 95% CI: -319.4, 77.6; p-trend=0.36). Similar associations were seen for average daily maximum PM2.5 exposure. Inverse associations were also observed in analyses stratified by smoking and time from exposure to spirometry and when we restricted to workers without prespill lung disease. CONCLUSIONS Among oil spill workers, exposure to PM2.5 specifically from controlled burning of oil/gas was associated with significantly lower FEV1 and FEV1/FVC when compared with workers not involved in burning. https://doi.org/10.1289/EHP8930.
Collapse
Affiliation(s)
- Dazhe Chen
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Kaitlyn G. Lawrence
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Gregory C. Pratt
- Division of Environmental Health, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Mark R. Stenzel
- Exposure Assessment Applications, LLC, Arlington, Virginia, USA
| | | | - Caroline P. Groth
- Department of Epidemiology and Biostatistics, School of Public Health, West Virginia University, Morgantown, West Virginia, USA
| | - Sudipto Banerjee
- Department of Biostatistics, Fielding School of Public Health, University of California–Los Angeles, Los Angeles, California, USA
| | | | | | | | - Richard K. Kwok
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
- Office of the Director, National Institute of Environmental Health Sciences, Bethesda, Maryland, USA
| | - Aaron Blair
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - Lawrence S. Engel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Dale P. Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| |
Collapse
|
9
|
Aurell J, Holder A, Gullett B, Lamie N, Arsava K, Conmy R, Sundaravadivelu D, Mitchell W, Stone K. Analysis of emissions and residue from methods to improve efficiency of at-sea, in situ oil spill burns. MARINE POLLUTION BULLETIN 2021; 173:113016. [PMID: 34653886 PMCID: PMC8643349 DOI: 10.1016/j.marpolbul.2021.113016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 05/05/2023]
Abstract
The combustion efficiency of simulated at-sea surface oil burns (in situ burns) was determined in a 63 m3 tank while testing varied boom configurations and air-assist nozzles in the presence and absence of waves. Combustion efficiencies of Alaska North Slope oil based on unburned carbon in the plume emissions ranged from 85% to 93% while values based on oil mass loss ranged from 89% to 99%. A four-fold variation in PM2.5 emission factors was observed from the test conditions. The most effective burns in terms of reduced emissions and post-burn residue concentration of total petroleum hydrocarbons were those that had high length to width boom ratios resulting in higher flame front surface area exposure to ambient air. The amount of oil mass lost was not related to any combustion efficiency parameters measured in the plume, representing a potential tradeoff between unburnt oil and air pollution.
Collapse
Affiliation(s)
- Johanna Aurell
- University of Dayton Research Institute, Dayton, OH 45469, USA
| | - Amara Holder
- U.S. Environmental Protection Agency, Office of Research and Development, Research Triangle Park, NC 27711, USA
| | - Brian Gullett
- U.S. Environmental Protection Agency, Office of Research and Development, Research Triangle Park, NC 27711, USA.
| | - Nathan Lamie
- U.S. Army Corps of Engineers, Cold Regions Research Engineering Laboratory, Hanover, NH 03755, USA
| | - Kemal Arsava
- U.S. Army Corps of Engineers, Cold Regions Research Engineering Laboratory, Hanover, NH 03755, USA
| | - Robyn Conmy
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45219, USA
| | | | - William Mitchell
- U.S. Environmental Protection Agency, Office of Research and Development, Research Triangle Park, NC 27711, USA
| | - Karen Stone
- U.S. Department of the Interior, Bureau of Safety and Environmental Enforcement, Sterling, VA 20166, USA
| |
Collapse
|
10
|
Wise JP, Wise JTF, Wise CF, Wise SS, Gianios C, Xie H, Walter R, Boswell M, Zhu C, Zheng T, Perkins C, Wise JP. A three year study of metal levels in skin biopsies of whales in the Gulf of Mexico after the Deepwater Horizon oil crisis. Comp Biochem Physiol C Toxicol Pharmacol 2018; 205:15-25. [PMID: 29277452 PMCID: PMC5825280 DOI: 10.1016/j.cbpc.2017.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 12/13/2017] [Accepted: 12/14/2017] [Indexed: 01/03/2023]
Abstract
In response to the explosion of the Deepwater Horizon and the massive release of oil that followed, we conducted three annual research voyages to investigate how the oil spill would impact the marine offshore environment. Most investigations into the ecological and toxicological impacts of the Deepwater Horizon Oil crisis have mainly focused on the fate of the oil and dispersants, but few have considered the release of metals into the environment. From studies of previous oil spills, other marine oil industries, and analyses of oil compositions, it is evident that metals are frequently encountered. Several metals have been reported in the MC252 oil from the Deepwater Horizon oil spill, including the nonessential metals aluminum, arsenic, chromium, nickel, and lead; genotoxic metals, such as these are able to damage DNA and can bioaccumulate in organisms resulting in persistent exposure. In the Gulf of Mexico, whales are the apex species; hence we collected skin biopsies from sperm whales (Physeter macrocephalus), short-finned pilot whales (Globicephala macrorhynchus), and Bryde's whales (Balaenoptera edeni). The results from our three-year study of monitoring metal levels in whale skin show (1) genotoxic metals at concentrations higher than global averages previously reported and (2) patterns for MC252-relevant metal concentrations decreasing with time from the oil spill.
Collapse
Affiliation(s)
- John Pierce Wise
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, 505 S. Hancock St, Louisville, KY, 40292, USA
| | - James T F Wise
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, 505 S. Hancock St, Louisville, KY, 40292, USA; Department of Pharmacology and Nutritional Sciences, Division of Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Catherine F Wise
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, 505 S. Hancock St, Louisville, KY, 40292, USA
| | - Sandra S Wise
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, 505 S. Hancock St, Louisville, KY, 40292, USA
| | - Christy Gianios
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, 505 S. Hancock St, Louisville, KY, 40292, USA
| | - Hong Xie
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, 505 S. Hancock St, Louisville, KY, 40292, USA
| | - Ron Walter
- Texas State University, Department of Chemistry & Biochemistry, 419 Centennial Hall, 601 University Drive, San Marcos, TX 78666, USA
| | - Mikki Boswell
- Texas State University, Department of Chemistry & Biochemistry, 419 Centennial Hall, 601 University Drive, San Marcos, TX 78666, USA
| | - Cairong Zhu
- West China School of Public Health, Sichuan University, No.17 Section 3, Renmin South Road, Chengdu, Sichuan 610044, China
| | | | - Christopher Perkins
- Center for Environmental Sciences and Engineering, University of Connecticut, Storrs, CT, United States
| | - John Pierce Wise
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, 505 S. Hancock St, Louisville, KY, 40292, USA.
| |
Collapse
|
11
|
Gullett BK, Aurell J, Holder A, Mitchell W, Greenwell D, Hays M, Conmy R, Tabor D, Preston W, George I, Abrahamson JP, Vander Wal R, Holder E. Characterization of emissions and residues from simulations of the Deepwater Horizon surface oil burns. MARINE POLLUTION BULLETIN 2017; 117:392-405. [PMID: 28233527 PMCID: PMC6361108 DOI: 10.1016/j.marpolbul.2017.01.083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 01/13/2017] [Accepted: 01/31/2017] [Indexed: 05/05/2023]
Abstract
The surface oil burns conducted by the U.S. Coast Guard from April to July 2010 during the Deepwater Horizon disaster in the Gulf of Mexico were simulated by small scale burns to characterize the pollutants, determine emission factors, and gather particulate matter for subsequent toxicity testing. A representative crude oil was burned in ocean-salinity seawater, and emissions were collected from the plume by means of a crane-suspended sampling platform. Emissions included particulate matter, aromatic hydrocarbons, polychlorinated dibenzodioxins/dibenzofurans, elements, and others, the sum of which accounted for over 92% by mass of the combustion products. The unburned oil mass was 29% of the original crude oil mass, significantly higher than typically reported. Analysis of alkanes, elements, and PAHs in the floating residual oil and water accounted for over 51% of the gathered mass. These emission factors, along with toxicity data, will be important toward examining impacts of future spill burning operations.
Collapse
Affiliation(s)
- Brian K Gullett
- U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, Research Triangle Park, NC 27711, USA.
| | - Johanna Aurell
- University of Dayton Research Institute, Dayton, OH 45469, USA
| | - Amara Holder
- U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, Research Triangle Park, NC 27711, USA
| | - William Mitchell
- U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, Research Triangle Park, NC 27711, USA
| | - Dale Greenwell
- U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, Research Triangle Park, NC 27711, USA
| | - Michael Hays
- U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, Research Triangle Park, NC 27711, USA
| | - Robyn Conmy
- U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, Cincinnati, OH 45268, USA
| | - Dennis Tabor
- U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, Research Triangle Park, NC 27711, USA
| | | | - Ingrid George
- U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, Research Triangle Park, NC 27711, USA
| | - Joseph P Abrahamson
- The Penn State University, John and Willie Leone Family Dept. of Energy and Mineral Engineering, EMS Energy Institute, University Park, PA 16802, USA
| | - Randy Vander Wal
- The Penn State University, John and Willie Leone Family Dept. of Energy and Mineral Engineering, EMS Energy Institute, University Park, PA 16802, USA
| | - Edith Holder
- Pegasus Technical Services, Inc., 46 E. Hollister St, Cincinnati, OH 45219, USA
| |
Collapse
|
12
|
DeMarini DM, Warren SH, Lavrich K, Flen A, Aurell J, Mitchell W, Greenwell D, Preston W, Schmid JE, Linak WP, Hays MD, Samet JM, Gullett BK. Mutagenicity and oxidative damage induced by an organic extract of the particulate emissions from a simulation of the deepwater horizon surface oil burns. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2017; 58:162-171. [PMID: 28370325 PMCID: PMC6121736 DOI: 10.1002/em.22085] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 02/21/2017] [Accepted: 02/21/2017] [Indexed: 05/22/2023]
Abstract
Emissions from oil fires associated with the "Deepwater Horizon" explosion and oil discharge that began on April 20, 2010 in the Gulf of Mexico were analyzed chemically to only a limited extent at the time but were shown to induce oxidative damage in vitro and in mice. To extend this work, we burned oil floating on sea water and performed extensive chemical analyses of the emissions (Gullett et al., Marine Pollut Bull, in press, ). Here, we examine the ability of a dichloromethane extract of the particulate material with an aerodynamic size ≤ 2.5 µm (PM2.5 ) from those emissions to induce oxidative damage in human lung cells in vitro and mutagenicity in 6 strains of Salmonella. The extract had a percentage of extractable organic material (EOM) of 7.0% and increased expression of the heme oxygenase (HMOX1) gene in BEAS-2B cells after exposure for 4 hr at 20 µg of EOM/ml. However, the extract did not alter mitochondrial respiration rate as measured by extracellular flux analysis. The extract was most mutagenic in TA100 +S9, indicative of a role for polycyclic aromatic hydrocarbons (PAHs), reflective of the high concentrations of PAHs in the emissions (1 g/kg of oil consumed). The extract had a mutagenicity emission factor of 1.8 ± 0.1 × 105 revertants/megajoulethermal in TA98 +S9, which was greater than that of diesel exhaust and within an order of magnitude of open burning of wood and plastic. Thus, organics from PM2.5 of burning oil can induce oxidative responses in human airway epithelial cells and are highly mutagenic. Environ. Mol. Mutagen. 58:162-171, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David M. DeMarini
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina
| | - Sarah H. Warren
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina
| | - Katelyn Lavrich
- Curriculum in Toxicology, University of North Carolina, Chapel Hill, North Carolina
| | - Alexis Flen
- Student Services Contractor, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina
| | | | - William Mitchell
- National Risk Management Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina
| | - Dale Greenwell
- National Risk Management Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina
| | | | - Judith E. Schmid
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina
| | - William P. Linak
- National Risk Management Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina
| | - Michael D. Hays
- National Risk Management Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina
| | - James M. Samet
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina
| | - Brian K. Gullett
- National Risk Management Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina
| |
Collapse
|