1
|
Wang B, Gao X, Wang L, Yu X, Liu Y, Sun X, Zhao J, Xing Q, Yang Y. Regulation of the colloidal organic matter in coastal waters by scallop farming. MARINE ENVIRONMENTAL RESEARCH 2025; 205:106998. [PMID: 39952223 DOI: 10.1016/j.marenvres.2025.106998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/30/2025] [Accepted: 02/03/2025] [Indexed: 02/17/2025]
Abstract
To investigate the influence of scallop farming on the biogeochemical characteristics of colloidal organic matter (COM, 1 kDa-0.7 μm), surface and bottom seawater samples collected from a bay scallop mariculture area (MA) and its adjacent waters were size-fractionated and analyzed for absorption and fluorescence characteristics. Compared to inshore shallow water area and non-mariculture area (NMA), COM in MA exhibited the highest proportion of a350 in bulk dissolved organic matter, while the contribution of its 100 kDa-0.7 μm high molecular weight fraction (HCOM) was the lowest. Protein-like components, including tryptophan-like C1 and tyrosine-like C2, predominated in the fluorescent substances of HCOM; while humic-like components, including microbial humic-like C3 and terrestrial humic-like C4, dominated in the fluorescent substances of 1-3 kDa low molecular weight fraction of COM (LCOM). COM transformation was influenced by scallop farming via selective filter-feeding and enhanced degradation of microorganisms. Compared with NMA, phytoplankton production mainly affected the a350 and protein-like substances of HCOM in the surface seawater of MA, and its contributions increased by 2.4% (a350), 5.6% (C1), and 1.8% (C2) respectively. Meanwhile, microbial degradation significantly influenced component C1 of HCOM in the bottom seawater of MA, reducing its contribution by 33.2%; its impact on the contributions of humic-like fluorescent substances of LCOM were decreased by 2.7% for C3 and 1.1% for C4. These variations suggest that scallop farming promotes the production and transformation of protein-like substances in HCOM (mainly C1), potentially leading to an accumulation of humic-like substances in LCOM due to altered microbial degradation dynamics. Photodegradation, particulate organic matter settling, sediment release and colloidal aggregation/disaggregation also influence the transformation of size-fractionated COM.
Collapse
Affiliation(s)
- Bin Wang
- CAS Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China; Shandong Key Laboratory of Coastal Environmental Processes, Yantai, Shandong, 264003, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuelu Gao
- CAS Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China; Shandong Key Laboratory of Coastal Environmental Processes, Yantai, Shandong, 264003, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong, 266071, China.
| | - Liming Wang
- Shandong Marine Resource and Environment Research Institute, Shandong Key Laboratory of Marine Ecological Restoration, Yantai, Shandong, 264006, China
| | - Xiaoxiao Yu
- Shandong Marine Resource and Environment Research Institute, Shandong Key Laboratory of Marine Ecological Restoration, Yantai, Shandong, 264006, China
| | - Yongliang Liu
- CAS Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong, 266071, China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| | - Xiyan Sun
- CAS Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong, 266071, China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| | - Jianmin Zhao
- CAS Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China; Shandong Key Laboratory of Coastal Environmental Processes, Yantai, Shandong, 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong, 266071, China
| | - Qianguo Xing
- CAS Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China; Shandong Key Laboratory of Coastal Environmental Processes, Yantai, Shandong, 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong, 266071, China
| | - Yuwei Yang
- CAS Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China; Shandong Key Laboratory of Coastal Environmental Processes, Yantai, Shandong, 264003, China
| |
Collapse
|
2
|
Wang B, Gao X, Liu Y, Sun X, Zhao J, Xing Q, Yang Y. Scallop farming impacts on dissolved organic matter cycling in coastal waters: Regulation of the low molecular weight fraction. MARINE ENVIRONMENTAL RESEARCH 2024; 202:106796. [PMID: 39418968 DOI: 10.1016/j.marenvres.2024.106796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/03/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024]
Abstract
To elucidate the impacts of scallop farming on the biogeochemical characteristics of low molecular weight (LMW, <1 kDa) dissolved organic matter (DOM), samples collected from a bay scallop mariculture area (MA) and its surrounding areas were determined for absorption and fluorescence spectroscopy after microfiltration and centrifugal ultrafiltration. The values of absorption coefficient a350 showed a spatial variation trend of inshore area (IA) > MA > non-mariculture area (NMA) for both bulk (<0.7 μm) and LMW fractions. Four fluorescent components, namely two protein-like components (tryptophan-like C1 and tyrosine-like C2) and two humic-like components (microbial humic-like C3 and terrestrial humic-like C4), were identified. Scallop farming influenced DOM transformation by altering phytoplankton abundance and promoting microbial degradation. In July, the net contributions of phytoplankton to the spectroscopy parameters of LMW-DOM in the surface seawater were 11.0% for a350, 4.3% for C1, 0.8% for C2, 0.6% for C3 and 3.0% for C4, respectively; the corresponding values of bulk DOM in the surface seawater were 24.3% for a350, 20.1% for C1, 5.9% for C2, 2.0% for C3, 2.9% for C4, respectively. Compared with NMA, the contributions of microbial degradation to a350 in MA's surface seawater increased by 9.0% for LMW-DOM and 6.9% for bulk DOM in July; however, the effects on different fluorescent components varied. In August, compared with NMA, the contributions of microbial degradation to spectroscopy parameters in the bottom water of MA decreased by 35.7% for a350, 6.3% for C2, 1.3% for C3, and 4.4% for C4 for LMW-DOM fraction; for bulk DOM, the corresponding contribution decreased by 10.8% for C1. These variations indicate that protein-like substances from scallop aquaculture are easily degraded into LMW substances, while humic-like substances degradation diminishes over time.
Collapse
Affiliation(s)
- Bin Wang
- CAS Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China; Shandong Key Laboratory of Coastal Environmental Processes, Yantai, Shandong, 264003, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuelu Gao
- CAS Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China; Shandong Key Laboratory of Coastal Environmental Processes, Yantai, Shandong, 264003, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong, 266071, China.
| | - Yongliang Liu
- CAS Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong, 266071, China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| | - Xiyan Sun
- CAS Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong, 266071, China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| | - Jianmin Zhao
- CAS Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China; Shandong Key Laboratory of Coastal Environmental Processes, Yantai, Shandong, 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong, 266071, China
| | - Qianguo Xing
- CAS Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China; Shandong Key Laboratory of Coastal Environmental Processes, Yantai, Shandong, 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong, 266071, China
| | - Yuwei Yang
- CAS Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China; Shandong Key Laboratory of Coastal Environmental Processes, Yantai, Shandong, 264003, China
| |
Collapse
|
3
|
Zheng X, Liu H, Xing Q, Li Y, Guo J, Tang C, Zou T, Hou C. Key drivers of hypoxia revealed by time-series data in the coastal waters of Muping, China. MARINE ENVIRONMENTAL RESEARCH 2024; 199:106613. [PMID: 38905867 DOI: 10.1016/j.marenvres.2024.106613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/09/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024]
Abstract
Coastal hypoxia (low dissolved oxygen in seawater) is a cumulative result of many physical and biochemical processes. However, it is often difficult to determine the key drivers of hypoxia due to the lack of frequent observational oceanographic and meteorological data. In this study, high-frequency time-series observational data of dissolved oxygen (DO) and related parameters in the coastal waters of Muping, China, were used to analyze the temporal pattern of hypoxia and its key drivers. Two complete cycles with the formation and destruction of hypoxia were captured over the observational period. Persistent thermal stratification, high winds and phytoplankton blooms are identified as key drivers of hypoxia in this region. Hypoxia largely occurs due to persistent thermal stratification in summer, and hypoxia can be noticeably relieved when strong wind mixing weakens thermal stratification. Furthermore, we found that northerly high winds are more efficient at eroding stratification than southerly winds and thus have a greater ability to relieve hypoxia. This study revealed an episodic hypoxic event driven by a phytoplankton bloom that was probably triggered by terrestrial nutrient loading, confirming the causal relationship between phytoplankton blooms and hypoxia. In addition, we found that the lag time between nutrient loading, phytoplankton blooms and hypoxia can be as short as one week. This study could help better understand the development of hypoxia and forecast phytoplankton and hypoxia, which are beneficial for aquaculture in this region.
Collapse
Affiliation(s)
- Xiangyang Zheng
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Yantai, 264003, China; Shandong Key Laboratory of Coastal Environmental Processes, Yantai, Shandong, 264003, China.
| | - Hui Liu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Yantai, 264003, China; Shandong Key Laboratory of Coastal Environmental Processes, Yantai, Shandong, 264003, China
| | - Qianguo Xing
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Yantai, 264003, China; Shandong Key Laboratory of Coastal Environmental Processes, Yantai, Shandong, 264003, China.
| | - Yanfang Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Yantai, 264003, China; Shandong Key Laboratory of Coastal Environmental Processes, Yantai, Shandong, 264003, China
| | - Jie Guo
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Yantai, 264003, China; Shandong Key Laboratory of Coastal Environmental Processes, Yantai, Shandong, 264003, China
| | - Cheng Tang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Yantai, 264003, China; Shandong Key Laboratory of Coastal Environmental Processes, Yantai, Shandong, 264003, China
| | - Tao Zou
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Yantai, 264003, China; Shandong Key Laboratory of Coastal Environmental Processes, Yantai, Shandong, 264003, China
| | - Chawei Hou
- Yantai Marine Environmental Monitoring Central Station, State Oceanic Administration (SOA), Yantai, 265500, China
| |
Collapse
|
4
|
Hou C, Zhao J, Ma Y, Wang Q, Liu Y, Zhang C, Wang L, Zhang W, Sun X, Zhang J, Dong Z, Yuan X. Impact of summer hypoxia on macrobenthic communities in a semi-enclosed bay: A long-term observation in the North Yellow sea of China. ENVIRONMENTAL RESEARCH 2024; 258:119433. [PMID: 38889838 DOI: 10.1016/j.envres.2024.119433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/31/2024] [Accepted: 06/15/2024] [Indexed: 06/20/2024]
Abstract
The O2 content of the global ocean has been declining progressively over the past decades, mainly because of human activities and global warming. Despite this situation, the responses of macrobenthos under hypoxic conditions remain poorly understood. In this study, we conducted a long-term observation (2015-2022) to investigate the intricate impact of summer hypoxia on macrobenthic communities in a semi-enclosed bay of the North Yellow Sea. Comparative analyses revealed higher macrobenthos abundance (1956.8 ± 1507.5 ind./m2 vs. 871.8 ± 636.9 ind./m2) and biomass (8.2 ± 4.1 g/m2 vs. 5.6 ± 3.2 g/m2) at hypoxic sites compared to normoxic sites during hypoxic years. Notably, polychaete species demonstrated remarkable adaptability, dominating hypoxic sites, and shaping community structure. The decline in biodiversity underscored the vulnerability and diminished resilience of macrobenthic communities to hypoxic stressors. Stable isotope analysis provided valuable insights into food web structures. The average trophic level of macrobenthos measured 2.84 ± 0.70 at hypoxic sites, contrasting with the higher value of 3.14 ± 0.74 observed at normoxic sites, indicating the absence of predators at high trophic levels under hypoxic conditions. Moreover, trophic interactions were significantly altered, resulting in a simplified and more vulnerable macrobenthic trophic structure. The findings underscored the importance of comprehensive research to understand the complex responses of macrobenthic communities to hypoxia, thereby informing future conservation efforts in impacted ecosystems.
Collapse
Affiliation(s)
- Chaowei Hou
- Muping Coastal Environment Research Station, Chinese Academy of Sciences, Yantai, 264100, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Jianmin Zhao
- Muping Coastal Environment Research Station, Chinese Academy of Sciences, Yantai, 264100, PR China; Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Yuanqing Ma
- Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resources and Environment Research Institute, Yantai, 264006, Shandong, PR China
| | - Qing Wang
- Muping Coastal Environment Research Station, Chinese Academy of Sciences, Yantai, 264100, PR China; Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Yongliang Liu
- Muping Coastal Environment Research Station, Chinese Academy of Sciences, Yantai, 264100, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Chen Zhang
- Muping Coastal Environment Research Station, Chinese Academy of Sciences, Yantai, 264100, PR China
| | - Lei Wang
- Muping Coastal Environment Research Station, Chinese Academy of Sciences, Yantai, 264100, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Wenjing Zhang
- Muping Coastal Environment Research Station, Chinese Academy of Sciences, Yantai, 264100, PR China
| | - Xiyan Sun
- Muping Coastal Environment Research Station, Chinese Academy of Sciences, Yantai, 264100, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Jinhao Zhang
- Yantai Marine Economic Research Institute, Yantai, 264003, PR China
| | - Zhijun Dong
- Muping Coastal Environment Research Station, Chinese Academy of Sciences, Yantai, 264100, PR China; Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Xiutang Yuan
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China.
| |
Collapse
|
5
|
Lu Y, Wang X, Pan D. The influences of Yellow River input and nutrient dynamics on colloidal Fe migration in the Bohai Sea, China. MARINE ENVIRONMENTAL RESEARCH 2024; 198:106553. [PMID: 38749197 DOI: 10.1016/j.marenvres.2024.106553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/22/2024] [Accepted: 05/10/2024] [Indexed: 06/11/2024]
Abstract
The coupling relationship between the <1 kDa, 1-3 kDa, 3-10 kDa, 10-100 kDa, and 100 kDa-0.45 μm Fe fractions and the environmental factors in the Bohai Sea (BS) was investigated. The 1-100 kDa Fe in the surface water exhibited a non-conservative phenomenon during the river-sea mixing process, which was related to the removal of colloidal Fe via flocculation during this process. For the bottom water, the ligands released by the sediments may form additions to the <100 kDa Fe. The COC and DOC were mainly closely related to the behavior of the Fe in the bottom water. The <1 and 3-10 kDa Fe was mainly significantly positively correlated with the DOC, while the <100 kDa-0.45 μm Fe was significantly negatively correlated with the DOC. <100 kDa LMW colloidal Fe exhibited more synergistic behavior with easily absorbed ammonium salts.
Collapse
Affiliation(s)
- Yuxi Lu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Shandong Key Laboratory of Coastal Environmental Processes, Yantai, 264003, PR China
| | - Xiaofeng Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Shandong Key Laboratory of Coastal Environmental Processes, Yantai, 264003, PR China
| | - Dawei Pan
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Shandong Key Laboratory of Coastal Environmental Processes, Yantai, 264003, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| |
Collapse
|
6
|
Wei H, Pan D, Liang Y, Fan X, Gai G. New insights into estimation of bioavailable inorganic phosphorus in natural coastal seawater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169751. [PMID: 38176548 DOI: 10.1016/j.scitotenv.2023.169751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/26/2023] [Accepted: 12/26/2023] [Indexed: 01/06/2024]
Abstract
Considering the impact of the high salinity and high turbidity of coastal seawater on phosphorus forms, a new method was proposed to determine bioavailable inorganic phosphorus (BIP). The phosphorus most relevant to eutrophication is BIP, and traditional analysis methods may underestimate the degree of eutrophication. In this study, a microelectrode of multigold (AuμE) was fabricated for direct voltammetric determination of BIP without filtration, and BIP environmental characteristics including distribution and correlation relationships with environmental factors in typical coastal seawater of Northern China were analyzed. The proposed AuμE showed a low detection limit of 0.03 μM. The surface and bottom BIP concentrations ranged from 1.00 to 2.13 and from 0.88 to 2.05 μM, respectively. BIP dominated the total P (TP) accounting for 48.5-67.5 % in the surface layer samples, and 32.6-92.7 % in the bottom layer samples, respectively. The concentrations of BIP were obviously higher than those of DIP, indicating that DIP may underestimate the probability of eutrophication occurring. And BIP was positively correlated with dissolved oxygen (DO) (P < 0.05). BIP may be a promising indicator of eutrophication potential in coastal areas with high salinity and high turbidity. The proposed reliable voltammetry method provides a new indicator for environmental assessment and represents a significant step in the comprehensive analysis of P species.
Collapse
Affiliation(s)
- Hong Wei
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Research Center for Coastal Environment Engineering Technology of Shandong Province, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Dawei Pan
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Research Center for Coastal Environment Engineering Technology of Shandong Province, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Yan Liang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Research Center for Coastal Environment Engineering Technology of Shandong Province, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xia Fan
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Research Center for Coastal Environment Engineering Technology of Shandong Province, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Guowei Gai
- Shandong Saline-Alkali Land Modern Agriculture Company, Dongying 257347, PR China
| |
Collapse
|
7
|
Luo M, Zhang Y, Xiao K, Wang X, Zhang X, Li G, Li H. Effect of submarine groundwater discharge on nutrient distribution and eutrophication in Liaodong Bay, China. WATER RESEARCH 2023; 247:120732. [PMID: 37948905 DOI: 10.1016/j.watres.2023.120732] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/31/2023] [Accepted: 10/10/2023] [Indexed: 11/12/2023]
Abstract
Driven by the anthropogenic activities associated with coastal settlements, eutrophication has become a global issue. Submarine groundwater discharge (SGD) is a significant continuous pathway for transporting nutrients from land to coastal waters, but its influence on eutrophication in Liaodong Bay (LDB) has received limited attention. In this study, radium isotopes and nutrient data from coastal waters were analyzed to evaluate the SGD flux and its implications for potential eutrophication in LDB. We found that the mean concentrations of dissolved inorganic nitrogen (DIN), phosphorous (DIP), and silicate (DSi) in groundwater were higher than those of seawater and river water. Based on 223Ra and 228Ra mass balance models, the SGD fluxes were estimated to be (0.53-2.03) × 109 m3/d, of which the fresh SGD accounted for 4 %-15 %. SGD is a vital invisible source of nutrients, contributing more than 79 % of the total inputs of DIN, DIP, and DSi into LDB. With high DIN/DIP ratios (average=85.8) and large nutrient inputs, SGD may significantly drive the phosphorus limitation and eutrophication in LDB. This study shows that SGD-derived nutrient fluxes should be considered in the assessment of water eutrophication for the formulation of future environmental management protocols in coastal systems.
Collapse
Affiliation(s)
- Manhua Luo
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yan Zhang
- MOE Key Laboratory of Groundwater Circulation and Environment Evolution, School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China.
| | - Kai Xiao
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xuejing Wang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Xiaolang Zhang
- Department of Geosciences, Florida Atlantic University, Boca Raton, FL 33431, United States
| | - Gang Li
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hailong Li
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; MOE Key Laboratory of Groundwater Circulation and Environment Evolution, School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China.
| |
Collapse
|
8
|
Shao B, Li Z, Wu Z, Yang N, Cui X, Lin H, Liu Y, He W, Zhao Y, Wang X, Tong Y. Impacts of autochthonous dissolved organic matter on the accumulation of methylmercury by phytoplankton and zooplankton in a eutrophic coastal ecosystem. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122457. [PMID: 37633436 DOI: 10.1016/j.envpol.2023.122457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
The bioaccumulation of methylmercury (MeHg) within the pelagic food webs is a crucial determinant of the MeHg concentration in the organisms at higher trophic levels. Dissolved organic matter (DOM) is recognized for its influence on mercury (Hg) cycling in the aquatic environment because of its role in providing metabolic substrate for heterotrophic organism and serving as a strong ligand for MeHg. However, the impact of DOM on MeHg bioaccumulation in pelagic food chains remain controversial. Here, we explored MeHg bioaccumulation within a pelagic food web in China, in the eutrophic Bohai Sea and adjacent seas, covering a range of DOM concentrations and compositions. Our findings show that elevated concentrations of dissolved organic carbon (DOC) and phytoplankton biomass may contribute to a reduction in MeHg uptake by phytoplankton. Moreover, we observe that a higher level of autochthonous DOM in the water may result in more significant MeHg biomagnification in zooplankton. This can be explained by alterations in the structure of pelagic food webs and/or an increase in the direct consumption of DOM and particulate organic matter (POM) containing MeHg. Our study offers direct field monitoring evidence of dual roles played by DOM in regulating MeHg transfers from water to phytoplankton and zooplankton in coastal pelagic food webs. A thorough understanding of the intricate interactions is essential for a more comprehensive evaluation of ecological risks associated with MeHg exposure in coastal ecosystems.
Collapse
Affiliation(s)
- Bo Shao
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Zhike Li
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Zhengyu Wu
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Ning Yang
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Xiaoyu Cui
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Huiming Lin
- College of Urban & Environmental Sciences, Peking University, Beijing, 100871, China
| | - Yiwen Liu
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Wei He
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Yingxin Zhao
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Xuejun Wang
- College of Urban & Environmental Sciences, Peking University, Beijing, 100871, China
| | - Yindong Tong
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300072, China; School of Ecology and Environment, Tibet University, Lhasa, 850000, China.
| |
Collapse
|
9
|
Guo X, Lv M, Song L, Ding J, Man M, Fu L, Lu S, Hou L, Chen L. Profiling of the spatiotemporal distribution, risks, and prioritization of pharmaceuticals and personal care products in coastal waters of the northern Yellow Sea, China. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132163. [PMID: 37515990 DOI: 10.1016/j.jhazmat.2023.132163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/14/2023] [Accepted: 07/25/2023] [Indexed: 07/31/2023]
Abstract
Pharmaceuticals and personal care products (PPCPs) have aroused global concerns due to their ubiquitous occurrence and detrimental effects. The spatiotemporal distributions of 64 PPCPs and their synergetic ecological risks were comprehensively investigated in the seawater of Yantai Bay, and 1 H-benzotriazole (BT), ethenzamide, phenazone, propyphenazone, 4-hydroxybenzophenone and N, N'-diphenylurea were first determined in the seawater of China. Fifty-six PPCPs were detected and their concentrations were 27.5-182 ng/L, with BT contributing around 58.0%. Higher PPCP concentrations were observed in winter and spring, with the concentrations of antioxidants, analgesic/anti-inflammatory drugs and human-used antibiotics significantly higher in winter, while those of aquaculture-used antibiotics and UV filters significantly higher in summer, which was closely related with their usage patterns. Positive correlations were observed for PPCP concentrations between surface and bottom water, except summer, during which time the weak vertical exchange and varied environmental behaviors among different PPCPs resulted in the distinct compositions and concentrations. Terrestrial inputs and mariculture resulted in higher PPCP concentrations in the area located adjacent to the coast and aquaculture bases. The PPCP mixtures posed medium to high risk to crustaceans, and bisphenol A was identified as a high-risk pollutant that needs special attention.
Collapse
Affiliation(s)
- Xiaotong Guo
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Lv
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China.
| | - Lehui Song
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Jing Ding
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Mingsan Man
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Longwen Fu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Shuang Lu
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Lijun Hou
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
10
|
Alam MJ, Kamal AM, Ahmed MK, Rahman M, Hasan M, Rahman SAR. Nutrient and heavy metal dynamics in the coastal waters of St. Martin's island in the Bay of Bengal. Heliyon 2023; 9:e20458. [PMID: 37810842 PMCID: PMC10556782 DOI: 10.1016/j.heliyon.2023.e20458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/26/2023] [Accepted: 09/26/2023] [Indexed: 10/10/2023] Open
Abstract
Seasonal variation observations were conducted in the coastal waters of St. Martin's Island in the Bay of Bengal to examine the influence of physical processes and the distribution pattern of nutrients in the ocean water. Pollution evaluation indices, health index and statistical techniques were incorporated to assess the heavy metal contamination. Two seasons, cool dry winter and pre-monsoon hot, were considered for sampling from 12 stations around the island. The Cool dry winter season has higher nutrient concentrations than the Pre-monsoon Hot season. The concentration of nutrients appeared as follows: Silicate > Nitrate > Ammonia > Phosphate > Nitrite. PCA and Pearson's Correlation showed that fresh water from nearby rivers, deep water upwelling, and, in some situations, modest anthropogenic sources are crucial. Hence, low DO and phosphate levels during the pre-monsoon hot season indicate there is a planktonic process like photosynthesis prevailing. The island's north-western and south-eastern regions have higher nutrient concentrations, which may be seasonal and due to wind action. Pb, Cu, As, Cr, Cd, and Zn were also considered to comprehend the island's geo-chemical perspectives and ecological and human health risks. The Pre-monsoon Heavy Metal Pollution Index (HPI) and Heavy Metal Evaluation Index (HEI) demonstrated that some places are much higher than the threshold limit, even though no significantly higher value was detected in the cool winter season. The Nemerow Index, the Total Ecological Risk Index (TERI), indicated that heavy metal contamination was severe to moderate and low to moderate. Finally, Pearson's correlation showed the association between physical and chemical characteristics, similar to PCA and Pearson's correlation for nutrients and heavy metals. Thus, this research may help shed light on the state of the seas around St. Martin's Island. This study may also provide explicit insights for the authority to take the necessary measures to preserve marine ecology and the associated terrestrial ecosystem.
Collapse
Affiliation(s)
- Md. Jobaer Alam
- Department of Oceanography, University of Dhaka, Dhaka, 1000, Bangladesh
| | - A.S.M. Maksud Kamal
- Department of Disaster Science and Climate Resilience, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Md. Kawser Ahmed
- Department of Oceanography, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Mahfujur Rahman
- Department of Geology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Mahmudul Hasan
- Department of Oceanography, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Sad Al Rezwan Rahman
- Bangladesh Reference Institute for Chemical Measurements, Dhaka, 1205, Bangladesh
| |
Collapse
|
11
|
Sun X, Gao X, Zhao J, Xing Q, Liu Y, Xie L, Wang Y, Wang B, Lv J. Promoting effect of raft-raised scallop culture on the formation of coastal hypoxia. ENVIRONMENTAL RESEARCH 2023; 228:115810. [PMID: 37011796 DOI: 10.1016/j.envres.2023.115810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/21/2023] [Accepted: 03/29/2023] [Indexed: 05/16/2023]
Abstract
The coastal waters around the Yangma Island are an important mariculture area of raft-raised scallop and bottom-seeded sea cucumber in the North Yellow Sea, China. Large-scale hypoxia in the bottom water of this area has caused the death of a large number of sea cucumbers and heavy economic losses. To find out the formation mechanism of hypoxia, the data obtained in each August during 2015-2018 were analyzed. Compared with the non-hypoxic year (2018), the temperature, trophic index (TRIX) and dissolved organic carbon (DOC) in the bottom water were relatively higher, and the water column was stratified causing by continuous high air temperature and low wind speed meteorological conditions in the hypoxic years (2015-2017). These sites with the coexistence of thermocline and halocline, and the thickness of thermocline >2.5 m and its upper boundary >7.0 m deep, were prone to hypoxia. Spatially, the hypoxic place was highly consistent with the scallop cultivating places, and the DOC, TRIX, NH4+/NO3- and apparent oxygen utilization (AOU) at the culture sites were higher, indicating that organic matter and nutrients released by scallops may lead to local oxygen depletion. In addition, the bottom water of the culture sites had higher salinity, but lower turbidity and temperature, indicating that the slowed water exchange caused by scallop culture was a dynamic factor of hypoxia. All sites with AOU >4 mg/L at the bottom had hypoxia occurrence, even if there was no thermocline. In other words, stratification promoted the formation of hypoxia in coastal bottom water, but it was not indispensable. The raft-raised scallop culture could promote the formation of coastal hypoxia, which should arouse the attention for other coastal areas with intensive bivalve production.
Collapse
Affiliation(s)
- Xiyan Sun
- CAS Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong, 266071, China
| | - Xuelu Gao
- CAS Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong, 266071, China; Shandong Key Laboratory of Coastal Environmental Processes, Yantai, Shandong, 264003, China.
| | - Jianmin Zhao
- CAS Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong, 266071, China.
| | - Qianguo Xing
- CAS Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong, 266071, China; Shandong Key Laboratory of Coastal Environmental Processes, Yantai, Shandong, 264003, China
| | - Yongliang Liu
- CAS Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong, 266071, China
| | - Lei Xie
- CAS Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong, 266071, China
| | - Yongjie Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China; Optoelectronic System Laboratory, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, China
| | - Bin Wang
- CAS Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong, 266071, China
| | - Jiasen Lv
- Biology School of Yantai University, Yantai, Shandong, 264005, China
| |
Collapse
|
12
|
Wang L, Liang Z, Guo Z, Guo T, Song M, Wang Y, Zheng W, Zhang W, Jiang Z. Distribution of nitrogen (N) and phosphorus (P) in seasonal low-oxygen marine ranching in northern Yellow Sea, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:64179-64190. [PMID: 37061637 DOI: 10.1007/s11356-023-26932-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 04/06/2023] [Indexed: 05/11/2023]
Abstract
Seasonal low-oxygen in marine ranching in the northern Yellow Sea has been one of the major environmental problems in coastal waters in recent years. Nitrogen (N) and phosphorus (P) are important nutrients, which are susceptible to the concentration of dissolved oxygen (DO). This article studied the effects of low-oxygen on nutrients represented by N and P fractions in marine ranching in the northern Yellow Sea. The results showed that there were significant layer differences in temperature and salinity during the low-oxygen period. In the seawater, the nutrient distribution in the death disaster zone of sea cucumbers and the non-disaster zone was similar, and DO had a strong positive correlation with dissolved inorganic nitrogen (DIN). In the sediment, significant regional differences existed in nutrient concentration, and the concentration of total phosphorus (TP) decreased significantly with the increase in DO content. The results showed that the sources and sinks of nitrogen and phosphorus nutrients were inconsistent in this zone, and migration and transformation of the existing form of nitrogen with the seasonal changes in the water environment was a main factor for N distribution. This study extended the understanding of the effects of seasonal low-oxygen on N and P.
Collapse
Affiliation(s)
- Lu Wang
- Marine College, Shandong University, Weihai, 264209, Shandong, China
- Key Laboratory of Modern Marine Ranching Technology of Weihai, Weihai, 264209, Shandong, China
| | - Zhenlin Liang
- Marine College, Shandong University, Weihai, 264209, Shandong, China
- Key Laboratory of Modern Marine Ranching Technology of Weihai, Weihai, 264209, Shandong, China
| | - Zhansheng Guo
- Marine College, Shandong University, Weihai, 264209, Shandong, China
- Key Laboratory of Modern Marine Ranching Technology of Weihai, Weihai, 264209, Shandong, China
| | - Tingting Guo
- Marine College, Shandong University, Weihai, 264209, Shandong, China
- Key Laboratory of Modern Marine Ranching Technology of Weihai, Weihai, 264209, Shandong, China
| | - Minpeng Song
- Marine College, Shandong University, Weihai, 264209, Shandong, China
- Key Laboratory of Modern Marine Ranching Technology of Weihai, Weihai, 264209, Shandong, China
| | - Yuxin Wang
- Marine College, Shandong University, Weihai, 264209, Shandong, China
- Key Laboratory of Modern Marine Ranching Technology of Weihai, Weihai, 264209, Shandong, China
| | - Wenmeng Zheng
- Marine College, Shandong University, Weihai, 264209, Shandong, China
- Key Laboratory of Modern Marine Ranching Technology of Weihai, Weihai, 264209, Shandong, China
| | - Wenyu Zhang
- Marine College, Shandong University, Weihai, 264209, Shandong, China
- Key Laboratory of Modern Marine Ranching Technology of Weihai, Weihai, 264209, Shandong, China
| | - Zhaoyang Jiang
- Marine College, Shandong University, Weihai, 264209, Shandong, China.
- Key Laboratory of Modern Marine Ranching Technology of Weihai, Weihai, 264209, Shandong, China.
| |
Collapse
|
13
|
Seasonal Hypoxia Enhances Benthic Nitrogen Fixation and Shapes Specific Diazotrophic Community in the Eutrophic Marine Ranch. Processes (Basel) 2023. [DOI: 10.3390/pr11010138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Recently, a growing number of studies have confirmed that biological nitrogen fixation is also an important reactive nitrogen source in coastal regions. However, how benthic nitrogen fixation and diazotrophic community in coastal regions respond to seasonal hypoxia remains largely unknown. In this study, we investigated the spatiotemporal pattern of potential nitrogen fixation rate and diazotrophic abundance and community in sediments of a eutrophic marine ranch experiencing summer hypoxia using 15N tracing and high throughput sequencing techniques. The results showed that potential nitrogen fixation rates ranged from 0.013 to 10.199 μmol kg−1 h−1, and were significantly enhanced by summer hypoxia (ANOVA, p < 0.05). However, nifH gene abundance peaked in June. The diazotrophic community was dominated by Geobacteraceae (>60%), followed by Desulfobulbaceae (13.61%). Bottom water oxygen, pH, Chl-a concentration, and sediment NH4+ significantly regulated benthic nitrogen fixation, while the variation of diazotrophic community was explained by sediment TOC, TN, and Fe content (p < 0.05). This study highlighted that hypoxia stimulated benthic nitrogen fixation, which counteracted the nitrogen removal by denitrification and anammox, and could further aggregate eutrophication of the coastal marine ranch. Moreover, the result emphasized the importance of nitrogen fixation in coastal regions for the global N budget.
Collapse
|
14
|
Xie L, Gao X, Liu Y, Yang B, Yuan H, Li X, Song J, Zhao J, Xing Q. Atmospheric deposition as a direct source of particulate organic carbon in region coastal surface seawater: Evidence from stable carbon and nitrogen isotope analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158540. [PMID: 36113787 DOI: 10.1016/j.scitotenv.2022.158540] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
To assess the source characteristics of coastal aerosols and evaluate the contribution of atmospheric deposition to particulate organic matter in surface seawater, total suspended particulates (TSP) were collected at a shore-based site on the south coast of North Yellow Sea from December 2019 through November 2020. The samples were analyzed for total organic carbon (TOC) and nitrogen (TN) as well as stable carbon and nitrogen isotope (δ13C and δ15N). The results showed that the annual mean concentrations of TOC and TN were 5.36 ± 4.74 and 5.12 ± 6.52 μg m-3, respectively. δ13C fluctuated between -25.1 ‰ and -19.2 ‰ with an annual mean of -24.0 ± 1.0 ‰ and a significant seasonal variation (P < 0.05) characterizing by the enrichment in winter (-23.4 ± 0.6 ‰) compared to other seasons, which was probably related to the massive coal combustion. Besides, δ15N ranged from 7.9 ‰ to 21.1 ‰ with an annual mean of 12.5 ± 2.9 ‰ and a less pronounced seasonal pattern (P = 0.23). The Bayesian isotope-mixing model showed that, annually, the most important source of TSP was biogenic and biomass source (55.5 ± 10.8 %), followed by fossil fuel combustion (31.9 ± 9.0 %), while the marine contribution was less (12.6 ± 2.3 %). For TOC and TN, the dominated sources were fossil fuel combustion (47.7 ± 3.4 %) and biogenic and biomass source (57.3 ± 11.7 %), respectively. Furthermore, the model results indicated that the contribution of atmospheric deposition to suspended particulate matter in surface seawater was 18.0 ± 11.0 %, 17.1 ± 6.7 % and 10.2 ± 2.0 % in autumn, spring and summer, respectively. For particulate organic carbon in surface seawater, the contribution of atmospheric deposition was 35.2 ± 3.5 % in spring, highlighting the huge impact of atmospheric deposition on particulate carbon cycling in coastal waters.
Collapse
Affiliation(s)
- Lei Xie
- CAS Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China; Shandong Key Laboratory of Coastal Environmental Processes, Yantai, Shandong 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuelu Gao
- CAS Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China; Shandong Key Laboratory of Coastal Environmental Processes, Yantai, Shandong 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong 266071, China.
| | - Yongliang Liu
- CAS Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China; Shandong Key Laboratory of Coastal Environmental Processes, Yantai, Shandong 264003, China
| | - Bo Yang
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong 518114, China
| | - Huamao Yuan
- University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong 266071, China; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong 266071, China; Function Laboratory of Marine Ecology and Environmental Sciences, Qingdao National Laboratory of Marine Science and Technology, Qingdao, Shandong 266237, China
| | - Xuegang Li
- University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong 266071, China; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong 266071, China; Function Laboratory of Marine Ecology and Environmental Sciences, Qingdao National Laboratory of Marine Science and Technology, Qingdao, Shandong 266237, China
| | - Jinming Song
- University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong 266071, China; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong 266071, China; Function Laboratory of Marine Ecology and Environmental Sciences, Qingdao National Laboratory of Marine Science and Technology, Qingdao, Shandong 266237, China
| | - Jianmin Zhao
- CAS Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China; Shandong Key Laboratory of Coastal Environmental Processes, Yantai, Shandong 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong 266071, China
| | - Qianguo Xing
- CAS Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China; Shandong Key Laboratory of Coastal Environmental Processes, Yantai, Shandong 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong 266071, China
| |
Collapse
|
15
|
Ke S, Chen C, Zhang P, Yang B, Sun X, Zhang J. Phosphorus speciation and sedimentary phosphorus release in an urban bay (Dachan Bay, China) impacted by multiple anthropogenic perturbations. MARINE POLLUTION BULLETIN 2022; 185:114310. [PMID: 36368081 DOI: 10.1016/j.marpolbul.2022.114310] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/17/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Sedimentary phosphorus (P) release and retention are important in controlling P dynamics in coastal waters. Here, two sediment cores were analysed to understand the P speciation and sedimentary P release characteristics in Dachan Bay, Shenzhen, where was highly influenced by human activity. Total phosphorus (TP) concentrations, 52.3 to 1119 μg g-1, fluctuated greatly with depth. Four P binding forms were fractionated: iron-bound P (FeP), authigenic apatite (CaP), detrital P (De-P), and organic P (OP) with the following order of concentration: Fe-P > OP > De-P > Ca-P. The P pollution index (PPI) revealed the contamination of sediment with P in recent years. Additionally, the potentially mobile P pools and long-term P release in the sediments were estimated, and the results indicated that, sediment was an important potentially mobile P pools in the water column, especially in nearshore areas, which required the attention of management departments.
Collapse
Affiliation(s)
- Sheng Ke
- Analytical and Testing Centre, Guangdong Ocean University, Zhanjiang 524088, China
| | - Chunliang Chen
- Analytical and Testing Centre, Guangdong Ocean University, Zhanjiang 524088, China
| | - Peng Zhang
- College of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China
| | - Bo Yang
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong 518114, China
| | - Xingli Sun
- Analytical and Testing Centre, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jibiao Zhang
- College of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China.
| |
Collapse
|
16
|
Xie L, Gao X, Liu Y, Yang B, Wang B, Zhao J, Xing Q. Atmospheric wet deposition serves as an important nutrient supply for coastal ecosystems and fishery resources: Insights from a mariculture area in North China. MARINE POLLUTION BULLETIN 2022; 182:114036. [PMID: 35985129 DOI: 10.1016/j.marpolbul.2022.114036] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/31/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
To determine the ecological effects of atmospheric wet deposition of dissolved nutrients on the coastal waters around the Yangma Island, rain and snow samples were collected and analyzed at a shore-based site for one year. The wet deposition fluxes of dissolved inorganic nitrogen and phosphorus (DIN and DIP) and dissolved organic nitrogen and phosphorus were 69.2, 0.136, 13.3 and 0.143 mmol m-2 a-1, respectively. In summer, the new production fueled by wet deposition accounted for 19.3 % of that in seawater and 16.4 % of the amount of particulate organic carbon ingested by the scallops cultivated in the study area, indicating the potential contribution of wet deposition to fishery resources. Meanwhile, precipitation increased the seasonal average DIN/DIP ratios in surface seawater by 17.7 %, 16.3 %, 23.4 % and 6.5 % in spring, summer, autumn and winter, respectively, which could change the composition of ecological community and cause obvious negative impact on the ecosystem and mariculture.
Collapse
Affiliation(s)
- Lei Xie
- CAS Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China; Shandong Key Laboratory of Coastal Environmental Processes, Yantai, Shandong 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuelu Gao
- CAS Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China; Shandong Key Laboratory of Coastal Environmental Processes, Yantai, Shandong 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong 266071, China.
| | - Yongliang Liu
- CAS Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China; Shandong Key Laboratory of Coastal Environmental Processes, Yantai, Shandong 264003, China
| | - Bo Yang
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong 518114, China
| | - Bin Wang
- CAS Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China; Shandong Key Laboratory of Coastal Environmental Processes, Yantai, Shandong 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianmin Zhao
- CAS Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China; Shandong Key Laboratory of Coastal Environmental Processes, Yantai, Shandong 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong 266071, China
| | - Qianguo Xing
- CAS Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China; Shandong Key Laboratory of Coastal Environmental Processes, Yantai, Shandong 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong 266071, China
| |
Collapse
|
17
|
Yang J, Zhao YG, Liu X, Fu Y. Anode modification of sediment microbial fuel cells (SMFC) towards bioremediating mariculture wastewater. MARINE POLLUTION BULLETIN 2022; 182:114013. [PMID: 35939936 DOI: 10.1016/j.marpolbul.2022.114013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/17/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Remediation of mariculture wastewater is of great practical importance. In this study, sediment microbial fuel cells (SMFCs) were adopted and carbon felt anodes were modified to enhance COD and ammonia removal in mariculture system. The results showed that the SMFC anode with 5 % (w/w) graphene oxide (GO) coating performed best in pollutants removal and electricity generation. The maximum power density approached 132 mW/m2, nearly 4.5 times higher than the unmodified anode. The removal efficiency of COD and ammonia reached 82.1 % and 95.8 % respectively, both improved compared with the control and chemical modification. The modified anode effectively enriched the electrogenic Sulfurovum and Lactobacillus and thus led to a significant improvement in the electrochemical performance of SMFC. This study demonstrates the successful application of SMFCs with GO modified anodes in the in-situ removing pollutants and SMFCs present obvious remediation potential on the contaminated mariculture inhabitant.
Collapse
Affiliation(s)
- Jingyue Yang
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yang-Guo Zhao
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Lab of Marine Environmental Science and Ecology (Ocean University of China), Ministry of Education, Qingdao 266100, China.
| | - Xinpei Liu
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yubin Fu
- College of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
18
|
Xie L, Gao X, Liu Y, Yang B, Lv X, Zhao J, Xing Q. Atmospheric dry deposition of water-soluble organic matter: An underestimated carbon source to the coastal waters in North China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151772. [PMID: 34808180 DOI: 10.1016/j.scitotenv.2021.151772] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/24/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
Water-soluble organic matter (WSOM) is a ubiquitous group of organic compounds in the atmosphere, which plays an important role in the biogeochemical cycle. To determine the quantity and chemical composition of the dry deposition of WSOM and assess its ecological effects on the coastal waters around the Yangma Island, North Yellow Sea, total suspended particulates (TSP) samples collected at a coastal site for one year from December 2019 to November 2020 were analyzed. The concentration of water-soluble organic carbon (WSOC) and the spectroscopy of chromophoric dissolvable organic matter (CDOM) and fluorescent dissolvable organic matter (FDOM) in the samples showed highly temporal variability with higher values in winter and spring than in summer and autumn. In addition, the correlation analysis revealed that the content of WSOM in the TSP as well as its chemical composition were greatly influenced by the sources and aging processes of aerosols. Moreover, the dry deposition flux of WSOC to the study area was calculated to be 0.79 ± 0.47 mg C m-2 d-1, namely 1.91 × 108 g C yr-1, which could increase the annual average concentration of dissolved organic carbon in surface seawater by 10.2 μmol L-1, implying that the dry deposition could sustain the secondary production and affect the carbon cycle of the coastal waters. Besides, the complete decomposition of bioavailable WSOC of dry deposition could reduce the annual average concentration of dissolved oxygen in surface seawater by 4.8 μmol L-1, which could contribute partly to the seawater deoxygenation in the coastal area around the Yangma Island.
Collapse
Affiliation(s)
- Lei Xie
- CAS Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuelu Gao
- CAS Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong 266071, China.
| | - Yongliang Liu
- CAS Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Yang
- CAS Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong 266071, China
| | - Xiaoqing Lv
- CAS Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianmin Zhao
- CAS Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong 266071, China
| | - Qianguo Xing
- CAS Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong 266071, China
| |
Collapse
|
19
|
Wang L, Liang Z, Guo Z, Cong W, Song M, Wang Y, Jiang Z. Response mechanism of microbial community to seasonal hypoxia in marine ranching. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 811:152387. [PMID: 34915008 DOI: 10.1016/j.scitotenv.2021.152387] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 12/05/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Seasonal hypoxia, as an increasingly recognized environmental issue, frequently occurred in marine ranching from northern Yellow Sea, China. Although microorganisms play an important ecological role in marine ecosystems, but little is known on the response mechanism of microbial community to seasonal hypoxia in marine ranching. A total of 132 seawater samples and 47 sediment samples were collected from the marine ranching, both in the death disaster zone of sea cucumbers and the non-disaster zone, and in different months. 16S rRNA gene high-throughput sequencing was used to explore the microbial community and its influencing factors. The results showed that the stratification in community composition and dissolved oxygen content appeared in August. The Alpha diversity in seawater was higher in summer than in winter, and significant differences in Beta diversity appeared between the death disaster zone of sea cucumbers and the non-disaster zone in sediments. In addition, environmental effects explained more of the variation in bacterial community composition in seawater as compared with spatial effects did, whereas, sedimentary bacterial communities were more closely related to spatial effects. The present results could provide fundamental data for understanding the response mechanism of the microbial community to seasonal hypoxia in marine ranching and are of great significance for the management and protection of marine ranching.
Collapse
Affiliation(s)
- Lu Wang
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Zhenlin Liang
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Zhansheng Guo
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Wei Cong
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Minpeng Song
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Yuxin Wang
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Zhaoyang Jiang
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| |
Collapse
|
20
|
Yang B, Gao X, Zhao J, Xie L, Liu Y, Lv X, Xing Q. The impacts of intensive scallop farming on dissolved organic matter in the coastal waters adjacent to the Yangma Island, North Yellow Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150989. [PMID: 34656566 DOI: 10.1016/j.scitotenv.2021.150989] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 10/06/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
In-situ field investigations coupled with incubation experiments were conducted in the coastal waters adjacent to the Yangma Island to explore the impacts of intensive bay scallop farming on the quantity and composition of dissolved organic matter (DOM). During the scallop farming period, the values of dissolved organic carbon (DOC), chromophoric dissolved organic matter (CDOM) and fluorescence dissolved organic matter (FDOM) in the mariculture area (MA) were generally higher than those in the non-mariculture area (NMA). Bay scallops released a large amount of DOM with the characteristics of high molecular weight and low degree of humification into the water column through excretion, which altered the DOM biogeochemical cycle. The DOM excretion fluxes by scallop were calculated based on incubation experiments. The results showed that, without considering the DOM transformation in the water, the excretion process of bay scallops in a growth cycle can increase the concentration of DOC, CDOM and fluorescent components C1-C4 in the seawater in MA by 19.7 μmol l-1, 0.048 m-1, 0.065 QSU, 0.164 QSU, 0.017 QSU and 0.015 QSU, respectively. Assuming that the labile part of DOM excreted by scallops was completely aerobic decomposed, it could reduce DO and pH in the seawater by ~13.4 μmol l-1 and ~ 0.018 in MA. This study highlights the impact of human activities (scallop farming activities) on DOM cycle in coastal waters, which can help guide future policy formulating of mariculture and ecological protection.
Collapse
Affiliation(s)
- Bo Yang
- CAS Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong 266071, China
| | - Xuelu Gao
- CAS Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong 266071, China.
| | - Jianmin Zhao
- CAS Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong 266071, China.
| | - Lei Xie
- CAS Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongliang Liu
- CAS Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoqing Lv
- CAS Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qianguo Xing
- CAS Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong 266071, China
| |
Collapse
|
21
|
Sun X, Dong Z, Zhang W, Sun X, Hou C, Liu Y, Zhang C, Wang L, Wang Y, Zhao J, Chen L. Seasonal and spatial variations in nutrients under the influence of natural and anthropogenic factors in coastal waters of the northern Yellow Sea, China. MARINE POLLUTION BULLETIN 2022; 175:113171. [PMID: 34844749 DOI: 10.1016/j.marpolbul.2021.113171] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
Analysis of the common and most influential natural and anthropogenic activities on the spatiotemporal variation in nutrients at a multiannual scale is important. Eleven cruises from 2015 to 2017 were carried out to better elucidate the seasonal and spatial variations in nutrients, as well as the impact factors on dissolved inorganic nitrogen (DIN), phosphorus (DIP) and silicate (DSi). Both nutrient concentrations and forms showed similar and significant seasonal variations over the 3 years, and were closely related to the biomass and species of phytoplankton. Terrestrial inputs had significant effects on the spatial distribution of nutrients throughout the year, especially in the surface water, which showed DIN > DIP>DSi. In summer, shellfish aquaculture and hypoxia jointly affected the spatial distribution of nutrients. The bottom water nutrient concentrations in the aquaculture area were 1.1-2.3 times higher than those outside of the aquaculture area. Seasonal hypoxia can increase the release of DSi and NH4+ from the sediment to the water. In summary, anthropogenic activities and physical conditions jointly influenced the nutrient distributions.
Collapse
Affiliation(s)
- Xiyan Sun
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, P.R. China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong 266071, PR China; Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, PR China
| | - Zhijun Dong
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, P.R. China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong 266071, PR China; Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, PR China
| | - Wenjing Zhang
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, P.R. China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong 266071, PR China; Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiaohong Sun
- Shandong University at Weihai, Marine College, Wenhai, Shandong 264209, PR China
| | - Chaowei Hou
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, P.R. China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong 266071, PR China; Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yongliang Liu
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, P.R. China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong 266071, PR China; Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Chen Zhang
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, P.R. China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong 266071, PR China; Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, PR China
| | - Lei Wang
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, P.R. China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong 266071, PR China; Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, PR China
| | - Yujue Wang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, PR China
| | - Jianmin Zhao
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, P.R. China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong 266071, PR China; Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, PR China
| | - Lingxin Chen
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, P.R. China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong 266071, PR China; Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, PR China.
| |
Collapse
|
22
|
Yang B, Gao X, Zhao J, Liu Y, Xie L, Lv X, Xing Q. Summer deoxygenation in a bay scallop (Argopecten irradians) farming area: The decisive role of water temperature, stratification and beyond. MARINE POLLUTION BULLETIN 2021; 173:113092. [PMID: 34744011 DOI: 10.1016/j.marpolbul.2021.113092] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
During 2015-2020, 26 cruises were carried out in a bay scallop farming area, North Yellow Sea, to study the dissolved oxygen (DO) dynamics and its controlling factors. Significant DO depletion (deoxygenation) was observed in the summertime with the decrease rates of 0.31-0.55 and 0.96-2.10 μmol d-1 in the surface and bottom waters, respectively, which were comprehensively forced by temperature, photosynthesis and microbial respiration. Seasonally, temperature was the main driver of the deoxygenation processes. In the surface water, DO dynamics were dominated by temperature-induced solubility changes, while the photosynthesis offset the effects of physical processes to a certain extent; in the bottom water, its dynamics were mainly attributed to the comprehensive control of temperature-induced solubility changes and biological respiration. Overall, the results suggested that the occurrence of hypoxia and acidification in the coastal waters were highly associated with the formation of temperature-induced stratification under complex hydrodynamic processes.
Collapse
Affiliation(s)
- Bo Yang
- CAS Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong 266071, China
| | - Xuelu Gao
- CAS Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong 266071, China.
| | - Jianmin Zhao
- CAS Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong 266071, China.
| | - Yongliang Liu
- CAS Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Xie
- CAS Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoqing Lv
- CAS Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qianguo Xing
- CAS Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong 266071, China
| |
Collapse
|
23
|
Yang B, Gao X, Zhao J, Liu Y, Lui HK, Huang TH, Chen CTA, Xing Q. Massive shellfish farming might accelerate coastal acidification: A case study on carbonate system dynamics in a bay scallop (Argopecten irradians) farming area, North Yellow Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 798:149214. [PMID: 34333434 DOI: 10.1016/j.scitotenv.2021.149214] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/09/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
Seven cruises were carried out in a bay scallop (Argopecten irradians) farming area and its surrounding waters, North Yellow Sea, from March to November 2017 to study the dynamics of the carbonate system and its controlling factors. Results indicated that the studied parameters were highly variability over a range of spatiotemporal scales, comprehensively forced by various physical and biological processes. Mixing effect and scallop calcification played the most important role in the seasonal variation of total alkalinity (TAlk). For dissolved inorganic carbon (DIC), in addition to mixing, air-sea exchange and microbial activity, e.g. photosynthesis and microbial respiration processes, had more important effects on its dynamics. Different from the former, the changes of water pHT, partial pressure of CO2 (pCO2) and aragonite saturation state (ΩA) were mainly controlled by the combining of the temperature, air-sea exchange, microbial activity and scallop metabolic activities. In addition, the results indicated that massive scallop farming can significantly increase the DIC/TAlk ratio by reducing the TAlk concentration in seawater, thereby reducing the buffering capacity of the carbonate system in seawater especially for ΩA. Preliminary calculated, ~75.7 and ~45.5 μmol kg-1 of TAlk were removed from the surface and bottom waters respectively in one scallop cultivating cycle. If these carbonates cannot be replenished in time, it is likely to accelerate the acidification process of coastal waters. This study highlighted the control mechanism of the carbonate system under the influence of bay scallop farming, and provided useful information for revealing the potential link between human activities (shelled-mollusc mariculture) and coastal acidification.
Collapse
Affiliation(s)
- Bo Yang
- CAS Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong 266071, China
| | - Xuelu Gao
- CAS Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong 266071, China.
| | - Jianmin Zhao
- CAS Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong 266071, China.
| | - Yongliang Liu
- CAS Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hon-Kit Lui
- Department of Oceanography, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Ting-Hsuan Huang
- Department of Oceanography, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Chen-Tung Arthur Chen
- Department of Oceanography, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Qianguo Xing
- CAS Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong 266071, China
| |
Collapse
|
24
|
Xie L, Gao X, Liu Y, Yang B, Lv X, Zhao J. Perpetual atmospheric dry deposition exacerbates the unbalance of dissolved inorganic nitrogen and phosphorus in coastal waters: A case study on a mariculture site in North China. MARINE POLLUTION BULLETIN 2021; 172:112866. [PMID: 34523428 DOI: 10.1016/j.marpolbul.2021.112866] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/06/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
The monthly magnitudes of dissolvable nutrients through atmospheric dry deposition (ADD) and their ecological effects to the coastal waters around the Yangma Island, North Yellow Sea, were investigated for one year. The results indicated that anthropogenic activities were the major sources of dissolvable inorganic and organic nitrogen (DIN and DON); dust events were the major sources of inorganic phosphorus (DIP) and silicate (DSi); however, organic phosphorus (DOP) could be originated from marine biological activities. The annual ADD fluxes of DIN, DON, DIP, DOP and DSi were 21.8, 2.7, 0.10, 0.30 and 0.73 mmol m-2 yr-1, respectively. Overall, the new production supported by the bioavailable nitrogen through ADD in winter was up to 9.14 mg C m-2 d-1. Notably, the annual molar ratio of DIN/DIP through ADD was 216 ± 123, which was much higher than that of the dissolved inorganic nitrogen to phosphorus in seawater and might exacerbate their unbalance in some coastal waters.
Collapse
Affiliation(s)
- Lei Xie
- CAS Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuelu Gao
- CAS Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong 266071, China.
| | - Yongliang Liu
- CAS Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Yang
- CAS Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong 266071, China
| | - Xiaoqing Lv
- CAS Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianmin Zhao
- CAS Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong 266071, China
| |
Collapse
|
25
|
Lu Y, Pan D, Yang T, Wang C. Spatial and environmental characteristics of colloidal trace Cu in the surface water of the Yellow River Estuary, China. MARINE POLLUTION BULLETIN 2021; 168:112401. [PMID: 33910074 DOI: 10.1016/j.marpolbul.2021.112401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/01/2021] [Accepted: 04/16/2021] [Indexed: 06/12/2023]
Abstract
Dynamic variations in chemical composition and size distribution of dissolved copper (Cu) along the river-sea interface in the Yellow River Estuary (China) were investigated. On average, ~64% and ~8% of bulk dissolved Cu (<0.45 μm) were partitioned in the <1 kDa fraction and 1-100 kDa, respectively. The other 28% were in the 100 kDa-0.45 μm colloids, which indicates that this fraction may dominate the overall morphology of colloidal Cu. The <3 kDa Cu fraction was susceptible to environmental parameters and the >3 kDa fraction was related to the behavior of dissolved organic carbon. 1-100 kDa Cu migrated more violently than >100 kDa Cu and tended to be a stable polymer, with stability increasing towards the sea. The source of <1 kDa Cu was complex and may be supplemented by the decomposition of small molecular colloids and the addition of the sediments or particles ligands.
Collapse
Affiliation(s)
- Yuxi Lu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Research Center for Coastal Environment Engineering Technology of Shandong Province, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Dawei Pan
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Research Center for Coastal Environment Engineering Technology of Shandong Province, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Tingting Yang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, PR China
| | - Chenchen Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Research Center for Coastal Environment Engineering Technology of Shandong Province, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| |
Collapse
|
26
|
Li XY, Yu RC, Geng HX, Li YF. Increasing dominance of dinoflagellate red tides in the coastal waters of Yellow Sea, China. MARINE POLLUTION BULLETIN 2021; 168:112439. [PMID: 33993042 DOI: 10.1016/j.marpolbul.2021.112439] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 04/22/2021] [Accepted: 04/24/2021] [Indexed: 06/12/2023]
Abstract
The Yellow Sea (YS) has been subjected to harmful algal blooms (HABs) for several decades. In this study, we compiled and analyzed a dataset of 165 red tides from 1972 to 2017 and a dataset of green tides from 2008 to 2017 in the YS. The most notable feature of red tides in the YS is the increasing dominance of dinoflagellate red tides in terms of frequency, scale, seasonal distribution, spatial coverage, and red tide causative species. The increasing dominance of dinoflagellate red tides is closely related to eutrophication and the development of the mariculture industry in the YS. However, the dinoflagellate red tides in the northern Yellow Sea (NYS) and the southern Yellow Sea (SYS) have different features. The apparent changes in red tides in the SYS in terms of frequency and seasonal patterns might have been caused by recurrent large-scale green tides in the last decade.
Collapse
Affiliation(s)
- Xiao-Yu Li
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ren-Cheng Yu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Hui-Xia Geng
- Changjiang River Estuary Ecosystem Research Station, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Yi-Fan Li
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
27
|
Yang B, Gao X, Zhao J, Liu Y, Xie L, Lv X, Xing Q. Potential linkage between sedimentary oxygen consumption and benthic flux of biogenic elements in a coastal scallop farming area, North Yellow Sea. CHEMOSPHERE 2021; 273:129641. [PMID: 33493818 DOI: 10.1016/j.chemosphere.2021.129641] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/08/2021] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
Surface sediments were collected from a mariculture area adjacent to the Yangma Island suffering from hypoxia in summer, and a laboratory static incubation was conducted to study the sedimentary oxygen consumption (SOC) and the benthic fluxes of nutrients and fluorescent dissolved organic matter (FDOM). Compared with some coastal areas, the SOC of the studied area was relatively low in summer with the value of 2.34-6.03 mmol m-2 d-1. Sediment acted as an important source of nutrients (except for nitrate) and FDOM for the overlying water. Dissolved oxygen (DO) in the overlying water could affect the decomposition mode of sedimentary organic matter (SOM), i.e. aerobic and anaerobic decomposition and subsequently dominated the release of nutrients and FDOM. When DO > 50 μmol l-1, it was beneficial to the release of ammonium, silicate and FDOM. In contrast, low oxygen conditions, i.e. DO < 100 μmol l-1, stimulated sediment phosphate efflux. In addition, scallop farming activities also affected the SOC and benthic flux of nutrients and FDOM mainly through biological deposition.
Collapse
Affiliation(s)
- Bo Yang
- CAS Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong, 266071, China
| | - Xuelu Gao
- CAS Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong, 266071, China.
| | - Jianmin Zhao
- CAS Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong, 266071, China.
| | - Yongliang Liu
- CAS Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Xie
- CAS Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoqing Lv
- CAS Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qianguo Xing
- CAS Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong, 266071, China
| |
Collapse
|
28
|
Zhang P, Dai P, Zhang J, Li J, Zhao H, Song Z. Spatiotemporal variation, speciation, and transport flux of TDP in Leizhou Peninsula coastal waters, South China Sea. MARINE POLLUTION BULLETIN 2021; 167:112284. [PMID: 33765621 DOI: 10.1016/j.marpolbul.2021.112284] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 03/12/2021] [Accepted: 03/14/2021] [Indexed: 06/12/2023]
Abstract
Phosphorus (P) plays key role in phytoplankton primary production in coastal water. In this study, seawater samples collected within China's Leizhou Peninsula coastal waters from October 2017 to July 2018 were examined to determine the seasonal variation, speciation, and transport flux of total dissolved phosphorus (TDP) linked to hydrographic features. TDP concentration and speciation had significant seasonal variations (P < 0.01), and the annual mean TDP concentration was 0.42 ± 0.25 μmol·L-1. High concentrations of TDP occurred in coastal waters adjacent to Zhanjiang Bay and Jianjiang River estuary, whereas low TDP concentrations were found across large offshore areas. Dissolved inorganic and organic P were the main TDP bulk species in different seasons, comprising up to 55.5 ± 7.9% and 46.5 ± 22.6%, respectively. The Beibu Gulf was annually subjected to 3.5 × 109 mol flux of TDP through the Qiongzhou Strait. Coastal currents, river plumes, and human activities were responsible for the dynamic variations in P species.
Collapse
Affiliation(s)
- Peng Zhang
- College of Chemistry and Environmental Science, Guangdong Ocean University, Guangdong, Zhanjiang 524088, China
| | - Peidong Dai
- College of Chemistry and Environmental Science, Guangdong Ocean University, Guangdong, Zhanjiang 524088, China; Guangzhou Chinese Academy of Sciences Test Technical Services, Co., Ltd., Guangdong, Guangzhou 510000, China
| | - Jibiao Zhang
- College of Chemistry and Environmental Science, Guangdong Ocean University, Guangdong, Zhanjiang 524088, China.
| | - Jianxu Li
- College of Chemistry and Environmental Science, Guangdong Ocean University, Guangdong, Zhanjiang 524088, China
| | - Hui Zhao
- College of Chemistry and Environmental Science, Guangdong Ocean University, Guangdong, Zhanjiang 524088, China
| | - Zhiguang Song
- College of Chemistry and Environmental Science, Guangdong Ocean University, Guangdong, Zhanjiang 524088, China
| |
Collapse
|
29
|
Dynamics and Distribution of Marine Synechococcus Abundance and Genotypes during Seasonal Hypoxia in a Coastal Marine Ranch. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2021. [DOI: 10.3390/jmse9050549] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Marine Synechococcus are an ecologically important picocyanobacterial group widely distributed in various oceanic environments. Little is known about the dynamics and distribution of Synechococcus abundance and genotypes during seasonal hypoxia in coastal zones. In this study, an investigation was conducted in a coastal marine ranch along two transects in Muping, Yantai, where hypoxic events (defined here as the dissolved oxygen concentration <3 mg L−1) occurred in the summer of 2015. The hypoxia occurred in the bottom waters from late July and persisted until late August. It was confined at nearshore stations of the two transects, one running across a coastal ranch and the other one outside. During this survey, cell abundance of Synechococcus was determined with flow cytometry, showing great variations ranging from 1 × 104 to 3.0 × 105 cells mL−1, and a bloom of Synechococcus occurred when stratification disappeared and hypoxia faded out outside the ranch. Regression analysis indicated that dissolved oxygen, pH, and inorganic nutrients were the most important abiotic factors in explaining the variation in Synechococcus cell abundance. Diverse genotypes (mostly belonged to the sub-clusters 5.1 and 5.2) were detected using clone library sequencing and terminal restriction fragment length polymorphism analysis of the 16S–23S rRNA internal transcribed spacer region. The richness of genotypes was significantly related to salinity, temperature, silicate, and pH, but not dissolved oxygen. Two environmental factors, temperature and salinity, collectively explained 17% of the variation in Synechococcus genotype assemblage. With the changes in population composition in diverse genotypes, the Synechococcus assemblages survived in the coastal hypoxia event and thrived when hypoxia faded out.
Collapse
|
30
|
Yang B, Gao X, Zhao J, Liu Y, Gao T, Lui HK, Huang TH, Chen CTA, Xing Q. The influence of summer hypoxia on sedimentary phosphorus biogeochemistry in a coastal scallop farming area, North Yellow Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 759:143486. [PMID: 33250257 DOI: 10.1016/j.scitotenv.2020.143486] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/22/2020] [Accepted: 10/25/2020] [Indexed: 06/12/2023]
Abstract
In situ field investigations coupled with laboratory incubations were employed to explore the surface sedimentary phosphorus (P) cycle in a mariculture area adjacent to the Yangma Island suffering from summer hypoxia in the North Yellow Sea. Five forms of P were fractionated, namely exchangeable P (Ex-P), iron-bound P (FeP), authigenic apatite (CaP), detrital P (De-P) and organic P (OP). Total P (TP) varied from 13.42 to 23.88 μmol g-1 with the main form of inorganic P (IP). The benthic phosphate (DIP) fluxes were calculated based on incubation experiments. The results show that the sediment was an important source of P in summer with ~39% of the bioavailable P (BioP) recycled back into the water column. However, the sediment acted a sink of P in autumn. The benthic DIP fluxes were mainly controlled by the remobilizing of FeP, Ex-P and OP under contrasting redox conditions. In August (hypoxia season), ~0.92 μmol g-1 of FeP and ~0.52 μmol g-1 of OP could be transformed to DIP and released into water, while ~0.36 μmol g-1 of DIP was adsorbed to clay minerals. In November (non-hypoxia season), however, ~0.54 μmol g-1 of OP was converted into DIP, while ~0.55 μmol g-1 and ~0.28 μmol g-1 of DIP was adsorbed to clay minerals and bind to iron oxides. Furthermore, scallop farming activities also affected the P mobilization through biological deposition and reduced hydrodynamic conditions. The burial fluxes of P varied from 11.67 to 20.78 μmol cm-2 yr-1 and its burial efficiency was 84.7-100%, which was consistent with that in most of the marginal seas worldwide. This study reveals that hypoxia and scallop farming activities can significantly promote sedimentary P mobility, thereby causing high benthic DIP flux in coastal waters.
Collapse
Affiliation(s)
- Bo Yang
- CAS Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong 266071, China
| | - Xuelu Gao
- CAS Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong 266071, China.
| | - Jianmin Zhao
- CAS Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong 266071, China
| | - Yongliang Liu
- CAS Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianci Gao
- CAS Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hon-Kit Lui
- Department of Oceanography, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Ting-Hsuan Huang
- Department of Oceanography, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Chen-Tung Arthur Chen
- Department of Oceanography, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Qianguo Xing
- CAS Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong 266071, China
| |
Collapse
|
31
|
Zhang W, Dong Z, Zhang C, Sun X, Hou C, Liu Y, Wang L, Ma Y, Zhao J. Effects of physical-biochemical coupling processes on the Noctiluca scintillans and Mesodinium red tides in October 2019 in the Yantai nearshore, China. MARINE POLLUTION BULLETIN 2020; 160:111609. [PMID: 32890961 DOI: 10.1016/j.marpolbul.2020.111609] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/24/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
Red tide has always been an environmental issue with global concern. A Noctiluca scintillans red tide and a Mesodinium red tide occurred successively in Yantai nearshore, China, where is usually oligotrophic, in October 2019. Currents, phytoplankton community composition and nutrients were analyzed to access the driving factors of the red tides. The maximum N. scintillans and Mesodiniium abundance reached 124.92 ± 236.84 × 103 cells/L and 1157.52 ± 1294.16 × 103 cells/L respectively. The fast growth of N. scintillans was due to increasing abundance of phytoplankton. The currents were crucial to the assembly and dispersal of red tides. The red tides significantly redistributed the nutrients in the red tide patches and regulated the dominant species in phytoplankton community. Our study illuminates the influence of physical-biochemical coupling processes on red tides, and suggests that ocean dynamics such as currents and tidal factors deserve more attention when considering the ecosystem health problems of coastal zones.
Collapse
Affiliation(s)
- Wenjing Zhang
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, P.R. China; University of Chinese Academy of Sciences, Beijing 100049, P.R. China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, P.R. China; Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, P.R. China
| | - Zhijun Dong
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, P.R. China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, P.R. China
| | - Chen Zhang
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, P.R. China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, P.R. China.
| | - Xiyan Sun
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, P.R. China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, P.R. China
| | - Chaowei Hou
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, P.R. China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, P.R. China
| | - Yongliang Liu
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, P.R. China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, P.R. China
| | - Lei Wang
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, P.R. China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, P.R. China
| | - Yuanqing Ma
- Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resources and Environment Research Institute, Yantai 264006, Shandong, P.R. China
| | - Jianmin Zhao
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, P.R. China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, P.R. China
| |
Collapse
|
32
|
Zhang H, Wang G, Zhang C, Su R, Shi X, Wang X. Characterization of the development stages and roles of nutrients and other environmental factors in green tides in the Southern Yellow Sea, China. HARMFUL ALGAE 2020; 98:101893. [PMID: 33129451 DOI: 10.1016/j.hal.2020.101893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 08/12/2020] [Accepted: 08/15/2020] [Indexed: 06/11/2023]
Abstract
Large-scale floating green tides in the Southern Yellow Sea (SYS) caused by the macroalgal species Ulva prolifera have been recurring for 13 years and have become one of the greatest marine ecological disasters in the world. In this study, we attempt to explore the development pattern of green tides and find its key environmental influencing factors. The satellite remote sensing data of the development process of green tides fit the logistic growth curve (R2 = 0.93, P < 0.01) well, showing three distinct growth phases (lag, exponential growth, and short plateau phases). Correspondingly, the green tide-drifting area from the coast of Jiangsu to the nearshore waters of the Shandong Peninsula was divided into three sections: the lag phase zone (A), the exponential growth phase zone (B), and the plateau phase zone (C). Zone A in the south of Jiangsu coastal waters had abundant inorganic nutrients that were indispensable to the green tide initiation. Zone B was mainly located out of Haizhou Bay, south of 34.5° N and north of 35.5° N, where approximately 80% of the green tide biomass was generated. The rich bioavailable nutrient sources, suitable temperature, and irradiance in this area were the main promotion factors for the rapid growth and scale expansion of green tides. Wet precipitation in zone B in May and June also played an important role in the final scale of green tides. Zone C had poor nutrients, increasing temperature, and irradiance (high transparency), which limited the continued expansion of green tides, and organic nutrients might be an important support to green tides development in this region. The study based on the growth phases of green tides could help us further understand the eutrophication mechanism in the green tide outbreaks in SYS.
Collapse
Affiliation(s)
- Haibo Zhang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Guoshan Wang
- National Marine Hazard Mitigation Service, Beijing, 100194, China
| | - Chuansong Zhang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Rongguo Su
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China.
| | - Xiaoyong Shi
- National Marine Hazard Mitigation Service, Beijing, 100194, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China.
| | - Xiulin Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| |
Collapse
|