1
|
Morshedi Rad D, Hansen WP, Zhand S, Cranfield C, Ebrahimi Warkiani M. A hybridized mechano-electroporation technique for efficient immune cell engineering. J Adv Res 2024; 64:31-43. [PMID: 37956863 PMCID: PMC11464423 DOI: 10.1016/j.jare.2023.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 10/16/2023] [Accepted: 11/10/2023] [Indexed: 11/15/2023] Open
Abstract
New abstract created by yokesh. Its is unstructured paragraph.
Collapse
Affiliation(s)
- Dorsa Morshedi Rad
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - William P. Hansen
- School of Life Sciences, University of Technology Sydney, Sydney, NSW 2007, Australia
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Sareh Zhand
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Charles Cranfield
- School of Life Sciences, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Majid Ebrahimi Warkiani
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| |
Collapse
|
2
|
Kim YJ, Yun D, Lee JK, Jung C, Chung AJ. Highly efficient CRISPR-mediated genome editing through microfluidic droplet cell mechanoporation. Nat Commun 2024; 15:8099. [PMID: 39284842 PMCID: PMC11405868 DOI: 10.1038/s41467-024-52493-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-based editing tools have transformed the landscape of genome editing. However, the absence of a robust and safe CRISPR delivery method continues to limit its potential for therapeutic applications. Despite the emergence of various methodologies aimed at addressing this challenge, issues regarding efficiency and editing operations persist. We introduce a microfluidic gene delivery system, called droplet cell pincher (DCP), designed for highly efficient and safe genome editing. This approach combines droplet microfluidics with cell mechanoporation, enabling encapsulation and controlled passage of cells and CRISPR systems through a microscale constriction. Discontinuities created in cell and nuclear membranes upon passage facilitate the rapid CRISPR-system internalization into the nucleus. We demonstrate the successful delivery of various macromolecules, including mRNAs (~98%) and plasmid DNAs (~91%), using this platform, underscoring the versatility of the DCP and leveraging it to achieve successful genome engineering through CRISPR-Cas9 delivery. Our platform outperforms electroporation, the current state-of-the-art method, in three key areas: single knockouts (~6.5-fold), double knockouts (~3.8-fold), and knock-ins (~3.8-fold). These results highlight the potential of our platform as a next-generation tool for CRISPR engineering, with implications for clinical and biological cell-based research.
Collapse
Affiliation(s)
- You-Jeong Kim
- Department of Bioengineering, Korea University, Seoul, Republic of Korea
- Interdisciplinary Program in Precision Public Health (PPH), Korea University, Seoul, Republic of Korea
| | - Dayoung Yun
- Department of Biotechnology, Korea University, Seoul, Republic of Korea
| | - Jungjoon K Lee
- Department of Biochemistry, National University of Singapore, Singapore, Singapore
| | - Cheulhee Jung
- Department of Biotechnology, Korea University, Seoul, Republic of Korea.
| | - Aram J Chung
- Department of Bioengineering, Korea University, Seoul, Republic of Korea.
- Interdisciplinary Program in Precision Public Health (PPH), Korea University, Seoul, Republic of Korea.
- School of Biomedical Engineering, Korea University, Seoul, Republic of Korea.
- MxT Biotech, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Zhang MH, Scotland BL, Jiao Y, Slaby EM, Truong N, Cottingham AL, Stephanie G, Szeto GL, Pearson RM. Lipid-Polymer Hybrid Nanoparticles Utilize B Cells and Dendritic Cells to Elicit Distinct Antigen-Specific CD4 + and CD8 + T Cell Responses. ACS APPLIED BIO MATERIALS 2024; 7:4818-4830. [PMID: 37219857 PMCID: PMC10665545 DOI: 10.1021/acsabm.3c00229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Antigen-presenting cells (APCs) are widely studied for treating immune-mediated diseases, and dendritic cells (DCs) are potent APCs that uptake and present antigens (Ags). However, DCs face several challenges that hinder their clinical translation due to their inability to control Ag dosing and low abundance in peripheral blood. B cells are a potential alternative to DCs, but their poor nonspecific Ag uptake capabilities compromise controllable priming of T cells. Here, we developed phospholipid-conjugated Ags (L-Ags) and lipid-polymer hybrid nanoparticles (L/P-Ag NPs) as delivery platforms to expand the range of accessible APCs for use in T cell priming. These delivery platforms were evaluated using DCs, CD40-activated B cells, and resting B cells to understand the impacts of various Ag delivery mechanisms for generation of Ag-specific T cell responses. L-Ag delivery (termed depoting) of MHC class I- and II-restricted Ags successfully loaded all APC types in a tunable manner and primed both Ag-specific CD8+ and CD4+ T cells, respectively. Incorporating L-Ags and polymer-conjugated Ags (P-Ag) into NPs can direct Ags to different uptake pathways to engineer the dynamics of presentation and shape T cell responses. DCs were capable of processing and presenting Ag delivered from both L- and P-Ag NPs, yet B cells could only utilize Ag delivered from L-Ag NPs, which led to differential cytokine secretion profiles in coculture studies. Altogether, we show that L-Ags and P-Ags can be rationally paired within a single NP to leverage distinct delivery mechanisms to access multiple Ag processing pathways in two APC types, offering a modular delivery platform for engineering Ag-specific immunotherapies.
Collapse
Affiliation(s)
- Michael H. Zhang
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD 21250
- Co-first authors
| | - Brianna L. Scotland
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201
- Co-first authors
| | - Yun Jiao
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD 21250
| | - Emily M. Slaby
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD 21250
| | - Nhu Truong
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201
| | - Andrea L. Cottingham
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201
| | - Georgina Stephanie
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD 21250
| | - Gregory L. Szeto
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD 21250
- Allen Institute for Immunology, Seattle, WA 98109
| | - Ryan M. Pearson
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201
| |
Collapse
|
4
|
Modaresi S, Pacelli S, Chakraborty A, Coyle A, Luo W, Singh I, Paul A. Engineering a Microfluidic Platform to Cryopreserve Stem Cells: A DMSO-Free Sustainable Approach. Adv Healthc Mater 2024:e2401264. [PMID: 39152923 DOI: 10.1002/adhm.202401264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/24/2024] [Indexed: 08/19/2024]
Abstract
Human adipose-derived stem cells (hASCs) are cryopreserved traditionally using dimethyl sulfoxide (DMSO) as the cryoprotectant agent. DMSO penetrates cell membranes and prevents cellular damage during cryopreservation. However, DMSO is not inert to cells, inducing cytotoxic effects by causing mitochondrial dysfunction, reduced cell proliferation, and impaired hASCs transplantation. Additionally, large-scale production of DMSO and contamination can adversely impact the environment. A sustainable, green alternative to DMSO is trehalose, a natural disaccharide cryoprotectant agent that does not pose any risk of cytotoxicity. However, the cellular permeability of trehalose is less compared to DMSO. Here, a microfluidic chip is developed for the intracellular delivery of trehalose in hASCs. The chip is designed for mechanoporation, which creates transient pores in cell membranes by mechanical deformation. Mechanoporation allows the sparingly permeable trehalose to be internalized within the cell cytosol. The amount of trehalose delivered intracellularly is quantified and optimized based on cellular compatibility and functionality. Furthermore, whole-transcriptome sequencing confirms that less than 1% of all target genes display at least a twofold change in expression when cells are passed through the chip compared to untreated cells. Overall, the results confirm the feasibility and effectiveness of using this microfluidic chip for DMSO-free cryopreservation of hASCs.
Collapse
Affiliation(s)
- Saman Modaresi
- Department of Chemical and Petroleum Engineering, Bioengineering Graduate Program, School of Engineering, The University of Kansas, Lawrence, KS, 66045, USA
| | - Settimio Pacelli
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, 60616, USA
| | - Aishik Chakraborty
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON, N6A 5B9, Canada
- Collaborative Specialization in Musculoskeletal Health Research and Bone and Joint Institute, The University of Western Ontario, London, ON, N6A 5B9, Canada
| | - Ali Coyle
- School of Biomedical Engineering, The University of Western Ontario, London, ON, N6A 5B9, Canada
| | - Wei Luo
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON, N6A 5B9, Canada
| | - Irtisha Singh
- Department of Cell Biology and Genetics, College of Medicine, Texas A&M University, Bryan, TX, 77807, USA
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, 77843, USA
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, TX, 77840, USA
| | - Arghya Paul
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON, N6A 5B9, Canada
- Collaborative Specialization in Musculoskeletal Health Research and Bone and Joint Institute, The University of Western Ontario, London, ON, N6A 5B9, Canada
- School of Biomedical Engineering, The University of Western Ontario, London, ON, N6A 5B9, Canada
- Department of Chemistry, The Center for Advanced Materials and Biomaterials Research, The University of Western Ontario, London, ON, N6A 5B9, Canada
| |
Collapse
|
5
|
Nguyen HTM, Das N, Ricks M, Zhong X, Takematsu E, Wang Y, Ruvalcaba C, Mehadji B, Roncali E, Chan CKF, Pratx G. Ultrasensitive and multiplexed tracking of single cells using whole-body PET/CT. SCIENCE ADVANCES 2024; 10:eadk5747. [PMID: 38875333 PMCID: PMC11177933 DOI: 10.1126/sciadv.adk5747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 05/13/2024] [Indexed: 06/16/2024]
Abstract
In vivo molecular imaging tools are crucially important for elucidating how cells move through complex biological systems; however, achieving single-cell sensitivity over the entire body remains challenging. Here, we report a highly sensitive and multiplexed approach for tracking upward of 20 single cells simultaneously in the same subject using positron emission tomography (PET). The method relies on a statistical tracking algorithm (PEPT-EM) to achieve a sensitivity of 4 becquerel per cell and a streamlined workflow to reliably label single cells with over 50 becquerel per cell of 18F-fluorodeoxyglucose (FDG). To demonstrate the potential of the method, we tracked the fate of more than 70 melanoma cells after intracardiac injection and found they primarily arrested in the small capillaries of the pulmonary, musculoskeletal, and digestive organ systems. This study bolsters the evolving potential of PET in offering unmatched insights into the earliest phases of cell trafficking in physiological and pathological processes and in cell-based therapies.
Collapse
Affiliation(s)
- Hieu T. M. Nguyen
- School of Medicine, Department of Radiation Oncology and Medical Physics, Stanford University, Stanford, CA 94305, USA
| | - Neeladrisingha Das
- School of Medicine, Department of Radiation Oncology and Medical Physics, Stanford University, Stanford, CA 94305, USA
| | - Matthew Ricks
- School of Medicine, Department of Radiological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Xiaoxu Zhong
- School of Medicine, Department of Radiation Oncology and Medical Physics, Stanford University, Stanford, CA 94305, USA
| | - Eri Takematsu
- School of Medicine, Department of Surgery, Stanford University, Stanford, CA 94305, USA
| | - Yuting Wang
- School of Medicine, Department of Surgery, Stanford University, Stanford, CA 94305, USA
| | - Carlos Ruvalcaba
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616, USA
| | - Brahim Mehadji
- Department of Radiology, University of California, Davis, Davis, CA 95616, USA
| | - Emilie Roncali
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616, USA
- Department of Radiology, University of California, Davis, Davis, CA 95616, USA
| | - Charles K. F. Chan
- School of Medicine, Department of Surgery, Stanford University, Stanford, CA 94305, USA
| | - Guillem Pratx
- School of Medicine, Department of Radiation Oncology and Medical Physics, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
6
|
Wang R, Wang Z, Tong L, Wang R, Yao S, Chen D, Hu H. Microfluidic Mechanoporation: Current Progress and Applications in Stem Cells. BIOSENSORS 2024; 14:256. [PMID: 38785730 PMCID: PMC11117831 DOI: 10.3390/bios14050256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/08/2024] [Accepted: 05/12/2024] [Indexed: 05/25/2024]
Abstract
Intracellular delivery, the process of transporting substances into cells, is crucial for various applications, such as drug delivery, gene therapy, cell imaging, and regenerative medicine. Among the different approaches of intracellular delivery, mechanoporation stands out by utilizing mechanical forces to create temporary pores on cell membranes, enabling the entry of substances into cells. This method is promising due to its minimal contamination and is especially vital for stem cells intended for clinical therapy. In this review, we explore various mechanoporation technologies, including microinjection, micro-nano needle arrays, cell squeezing through physical confinement, and cell squeezing using hydrodynamic forces. Additionally, we highlight recent research efforts utilizing mechanoporation for stem cell studies. Furthermore, we discuss the integration of mechanoporation techniques into microfluidic platforms for high-throughput intracellular delivery with enhanced transfection efficiency. This advancement holds potential in addressing the challenge of low transfection efficiency, benefiting both basic research and clinical applications of stem cells. Ultimately, the combination of microfluidics and mechanoporation presents new opportunities for creating comprehensive systems for stem cell processing.
Collapse
Affiliation(s)
- Rubing Wang
- Zhejiang University-University of Illinois Urbana-Champaign Institute (ZJU-UIUC Institute), International Campus, Haining 314400, China;
| | - Ziqi Wang
- Center for Regeneration and Cell Therapy of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310003, China; (Z.W.); (L.T.)
| | - Lingling Tong
- Center for Regeneration and Cell Therapy of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310003, China; (Z.W.); (L.T.)
| | - Ruoming Wang
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), International Campus, Zhejiang University, Haining 314400, China; (R.W.); (S.Y.)
| | - Shuo Yao
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), International Campus, Zhejiang University, Haining 314400, China; (R.W.); (S.Y.)
| | - Di Chen
- Center for Regeneration and Cell Therapy of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310003, China; (Z.W.); (L.T.)
- Center for Reproductive Medicine, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310003, China
- National Key Laboratory of Biobased Transportation Fuel Technology, Haining 314400, China
| | - Huan Hu
- Zhejiang University-University of Illinois Urbana-Champaign Institute (ZJU-UIUC Institute), International Campus, Haining 314400, China;
| |
Collapse
|
7
|
Liu X, Rong N, Tian Z, Rich J, Niu L, Li P, Huang L, Dong Y, Zhou W, Zhang P, Chen Y, Wang C, Meng L, Huang TJ, Zheng H. Acoustothermal transfection for cell therapy. SCIENCE ADVANCES 2024; 10:eadk1855. [PMID: 38630814 PMCID: PMC11023511 DOI: 10.1126/sciadv.adk1855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 03/19/2024] [Indexed: 04/19/2024]
Abstract
Transfected stem cells and T cells are promising in personalized cell therapy and immunotherapy against various diseases. However, existing transfection techniques face a fundamental trade-off between transfection efficiency and cell viability; achieving both simultaneously remains a substantial challenge. This study presents an acoustothermal transfection method that leverages acoustic and thermal effects on cells to enhance the permeability of both the cell membrane and nuclear envelope to achieve safe, efficient, and high-throughput transfection of primary T cells and stem cells. With this method, two types of plasmids were simultaneously delivered into the nuclei of mesenchymal stem cells (MSCs) with efficiencies of 89.6 ± 1.2%. CXCR4-transfected MSCs could efficiently target cerebral ischemia sites in vivo and reduce the infarct volume in mice. Our acoustothermal transfection method addresses a key bottleneck in balancing the transfection efficiency and cell viability, which can become a powerful tool in the future for cellular and gene therapies.
Collapse
Affiliation(s)
- Xiufang Liu
- CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Ning Rong
- CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Zhenhua Tian
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Joseph Rich
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Lili Niu
- CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Pengqi Li
- CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Laixin Huang
- CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Yankai Dong
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wei Zhou
- CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Pengfei Zhang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Guangdong 518055, China
| | - Yizhao Chen
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Guangdong 518055, China
| | - Congzhi Wang
- National Innovation Center for Advanced Medical Devices, 385 Mintang Road, Shenzhen 518131, China
| | - Long Meng
- CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Tony Jun Huang
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Hairong Zheng
- CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
| |
Collapse
|
8
|
Kim H, Kim S, Lim H, Chung AJ. Expanding CAR-T cell immunotherapy horizons through microfluidics. LAB ON A CHIP 2024; 24:1088-1120. [PMID: 38174732 DOI: 10.1039/d3lc00622k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Chimeric antigen receptor (CAR)-T cell therapies have revolutionized cancer treatment, particularly in hematological malignancies. However, their application to solid tumors is limited, and they face challenges in safety, scalability, and cost. To enhance current CAR-T cell therapies, the integration of microfluidic technologies, harnessing their inherent advantages, such as reduced sample consumption, simplicity in operation, cost-effectiveness, automation, and high scalability, has emerged as a powerful solution. This review provides a comprehensive overview of the step-by-step manufacturing process of CAR-T cells, identifies existing difficulties at each production stage, and discusses the successful implementation of microfluidics and related technologies in addressing these challenges. Furthermore, this review investigates the potential of microfluidics-based methodologies in advancing cell-based therapy across various applications, including solid tumors, next-generation CAR constructs, T-cell receptors, and the development of allogeneic "off-the-shelf" CAR products.
Collapse
Affiliation(s)
- Hyelee Kim
- Department of Bioengineering, Korea University, 02841 Seoul, Republic of Korea
- Interdisciplinary Program in Precision Public Health (PPH), Korea University, 02841 Seoul, Republic of Korea.
| | - Suyeon Kim
- Department of Bioengineering, Korea University, 02841 Seoul, Republic of Korea
- Interdisciplinary Program in Precision Public Health (PPH), Korea University, 02841 Seoul, Republic of Korea.
| | - Hyunjung Lim
- Interdisciplinary Program in Precision Public Health (PPH), Korea University, 02841 Seoul, Republic of Korea.
| | - Aram J Chung
- Department of Bioengineering, Korea University, 02841 Seoul, Republic of Korea
- Interdisciplinary Program in Precision Public Health (PPH), Korea University, 02841 Seoul, Republic of Korea.
- School of Biomedical Engineering, Korea University, 02841 Seoul, Republic of Korea.
- MxT Biotech, 04785 Seoul, Republic of Korea
| |
Collapse
|
9
|
Sevenler D, Toner M. High throughput intracellular delivery by viscoelastic mechanoporation. Nat Commun 2024; 15:115. [PMID: 38167490 PMCID: PMC10762167 DOI: 10.1038/s41467-023-44447-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024] Open
Abstract
Brief pulses of electric field (electroporation) and/or tensile stress (mechanoporation) have been used to reversibly permeabilize the plasma membrane of mammalian cells and deliver materials to the cytosol. However, electroporation can be harmful to cells, while efficient mechanoporation strategies have not been scalable due to the use of narrow constrictions or needles which are susceptible to clogging. Here we report a high throughput approach to mechanoporation in which the plasma membrane is stretched and reversibly permeabilized by viscoelastic fluid forces within a microfluidic chip without surface contact. Biomolecules are delivered directly to the cytosol within seconds at a throughput exceeding 250 million cells per minute. Viscoelastic mechanoporation is compatible with a variety of biomolecules including proteins, RNA, and CRISPR-Cas9 ribonucleoprotein complexes, as well as a range of cell types including HEK293T cells and primary T cells. Altogether, viscoelastic mechanoporation appears feasible for contact-free permeabilization and delivery of biomolecules to mammalian cells ex vivo.
Collapse
Affiliation(s)
- Derin Sevenler
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Mehmet Toner
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
- Shriners Children's, Boston, MA, 02114, USA.
| |
Collapse
|
10
|
Feng J, Sun Q, Chen P, Ren K, Zhang Y, Shi Y, Gao S, Song Z, Wang J, Liao F, Han D. Characterization of Cancer Cell Mechanics by Measuring Active Deformation Behavior. SMALL METHODS 2024; 8:e2300520. [PMID: 37775303 DOI: 10.1002/smtd.202300520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/17/2023] [Indexed: 10/01/2023]
Abstract
Active deformation behavior reflects cell structural dynamics adapting to varying environmental constraints during malignancy progression. In most cases, cell mechanics is characterized by modeling using static equilibrium systems, which fails to comprehend cell deformation behavior leading to inaccuracies in distinguishing cancer cells from normal cells. Here, a method is introduced to measure the active deformation behavior of cancer cells using atomic force microscopy (AFM) and the newly developed deformation behavior cytometry (DBC). During the measurement, cells are deformed and allows a long timescale relaxation (≈5 s). Two parameters are derived to represent deformation behavior: apparent Poisson's ratio for adherent cells, which is measured with AFM and refers to the ratio of the lateral strain to the longitudinal strain of the cell, and shape recovery for suspended cells, which is measured with DBC. Active deformation behavior defines cancer cell mechanics better than traditional mechanical parameters (e.g., stiffness, diffusion, and viscosity). Additionally, aquaporins are essential for promoting the deformation behavior, while the actin cytoskeleton acts as a downstream effector. Therefore, the potential application of the cancer cell active deformation behavior as a biomechanical marker or therapeutic target in cancer treatment should be evaluated.
Collapse
Affiliation(s)
- Jiantao Feng
- Artemisinin Research Center and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Quanmei Sun
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Peipei Chen
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Keli Ren
- The Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yuanyuan Zhang
- Cancer Hospital, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Yahong Shi
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Songkun Gao
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100006, China
| | - Zhiwei Song
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Jigang Wang
- Artemisinin Research Center and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Fulong Liao
- Artemisinin Research Center and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Dong Han
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| |
Collapse
|
11
|
Yu T, Jhita N, Shankles P, Fedanov A, Kramer N, Raikar SS, Sulchek T. Development of a microfluidic cell transfection device into gene-edited CAR T cell manufacturing workflow. LAB ON A CHIP 2023; 23:4804-4820. [PMID: 37830228 PMCID: PMC10701762 DOI: 10.1039/d3lc00311f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Genetic reprogramming of immune cells to recognize and target tumor cells offers a possibility of long-term cure. Cell therapies, however, lack simple and affordable manufacturing workflows, especially to genetically edit immune cells to more effectively target cancer cells and avoid immune suppression mechanisms. Microfluidics is a pathway to improve the manufacturing precision of gene modified cells. However, to date, it remains to be demonstrated that microfluidic treatment preserves the functionality of T cell products in a complete workflow. In this study, we used microfluidics to perform CRISPR/Cas9 gene editing of CD5, a negative T-cell regulator, followed by the insertion of a chimeric antigen receptor (CAR) transgene via lentiviral vector transduction to generate CAR T cells targeted against the B cell antigen CD19. As part of the workflow, we have optimized a microfluidic device that relies on convective volume exchange between cells and surrounding fluid to deliver guide RNA and Cas9 ribonucleoprotein to primary T cells. We comprehensively tested critical design features of the device to improve the gene-edited product yield. By combining high-speed video and cell mechanics measurements using the atomic force microscope, we validate a model that relates the device design features to cell properties. Our findings showed enhanced performance was obtained by focusing the cells to counteract the flow resistance caused by the ridge constrictions, providing a ridge layout that allows sufficient cycles of compression and time for volume recovery, and including a gutter to clear aggregates that could reduce cell viability. The optimized device was used in a workflow to generate CD5-knockout CD19 CAR T cells. The microfluidics approach resulted in >60% CD5 editing efficiency, ≥80% cell viability, similar memory phenotype composition as unprocessed cells, and superior cell growth. The microfluidics workflow yielded 4-fold increase of edited T cells compared to an electroporation workflow post-expansion. The transduced CAR T cells showed similar transduction efficiency and cytotoxicity against CD19-positive leukemia cells. Moreover, patient-derived T cells showed the ability to be similarly edited, though their distinct biomechanics resulted in slightly lower outcomes. Microfluidics-based manufacturing is a promising path towards more productive clinical manufacturing of gene edited CAR T cells.
Collapse
Affiliation(s)
- Tong Yu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, USA
| | - Navdeep Jhita
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Emory University School of Medicine and Children's Healthcare of Atlanta, 1760 Haygood Drive, Health Sciences Research Building, Atlanta, GA 30322, USA.
| | - Peter Shankles
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive, Atlanta, GA 30318, USA.
| | - Andrew Fedanov
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Emory University School of Medicine and Children's Healthcare of Atlanta, 1760 Haygood Drive, Health Sciences Research Building, Atlanta, GA 30322, USA.
| | - Noah Kramer
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, USA
| | - Sunil S Raikar
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Emory University School of Medicine and Children's Healthcare of Atlanta, 1760 Haygood Drive, Health Sciences Research Building, Atlanta, GA 30322, USA.
| | - Todd Sulchek
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive, Atlanta, GA 30318, USA.
| |
Collapse
|
12
|
Frost I, Mendoza AM, Chiou TT, Kim P, Aizenberg J, Kohn DB, De Oliveira SN, Weiss PS, Jonas SJ. Fluorinated Silane-Modified Filtroporation Devices Enable Gene Knockout in Human Hematopoietic Stem and Progenitor Cells. ACS APPLIED MATERIALS & INTERFACES 2023; 15:41299-41309. [PMID: 37616579 PMCID: PMC10485797 DOI: 10.1021/acsami.3c07045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023]
Abstract
Intracellular delivery technologies that are cost-effective, non-cytotoxic, efficient, and cargo-agnostic are needed to enable the manufacturing of cell-based therapies as well as gene manipulation for research applications. Current technologies capable of delivering large cargoes, such as plasmids and CRISPR-Cas9 ribonucleoproteins (RNPs), are plagued with high costs and/or cytotoxicity and often require substantial specialized equipment and reagents, which may not be available in resource-limited settings. Here, we report an intracellular delivery technology that can be assembled from materials available in most research laboratories, thus democratizing access to intracellular delivery for researchers and clinicians in low-resource areas of the world. These filtroporation devices permeabilize cells by pulling them through the pores of a cell culture insert by the application of vacuum available in biosafety cabinets. In a format that costs less than $10 in materials per experiment, we demonstrate the delivery of fluorescently labeled dextran, expression plasmids, and RNPs for gene knockout to Jurkat cells and human CD34+ hematopoietic stem and progenitor cell populations with delivery efficiencies of up to 40% for RNP knockout and viabilities of >80%. We show that functionalizing the surfaces of the filters with fluorinated silane moieties further enhances the delivery efficiency. These devices are capable of processing 500,000 to 4 million cells per experiment, and when combined with a 3D-printed vacuum application chamber, this throughput can be straightforwardly increased 6-12-fold in parallel experiments.
Collapse
Affiliation(s)
- Isaura
M. Frost
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
- UCLA
Medical Scientist Training Program, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department
of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Alexandra M. Mendoza
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los
Angeles, California 90095, United States
- California
NanoSystems Institute, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Tzu-Ting Chiou
- Department
of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Philseok Kim
- John A. Paulson
School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Joanna Aizenberg
- John A. Paulson
School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Donald B. Kohn
- Department
of Molecular and Medical Pharmacology, University
of California, Los Angeles, Los
Angeles, California 90095, United States
- Department
of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California 90095, United States
- Eli
and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Satiro N. De Oliveira
- Department
of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Paul S. Weiss
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los
Angeles, California 90095, United States
- California
NanoSystems Institute, University of California,
Los Angeles, Los Angeles, California 90095, United States
- Department
of Materials Science and Engineering, University
of California, Los Angeles, Los
Angeles, California 90095, United States
| | - Steven J. Jonas
- Department
of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, United States
- California
NanoSystems Institute, University of California,
Los Angeles, Los Angeles, California 90095, United States
- Eli
and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, California 90095, United States
- Children’s
Discovery and Innovation Institute, University
of California, Los Angeles, Los
Angeles, California 90095, United States
| |
Collapse
|
13
|
Nguyen HT, Das N, Wang Y, Ruvalcaba C, Mehadji B, Roncali E, Chan CK, Pratx G. Efficient and multiplexed tracking of single cells using whole-body PET/CT. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.23.554536. [PMID: 37662335 PMCID: PMC10473747 DOI: 10.1101/2023.08.23.554536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
In vivo molecular imaging tools are crucially important for elucidating how cells move through complex biological systems, however, achieving single-cell sensitivity over the entire body remains challenging. Here, we report a highly sensitive and multiplexed approach for tracking upwards of 20 single cells simultaneously in the same subject using positron emission tomography (PET). The method relies on a new tracking algorithm (PEPT-EM) to push the cellular detection threshold to below 4 Bq/cell, and a streamlined workflow to reliably label single cells with over 50 Bq/cell of 18F-fluorodeoxyglucose (FDG). To demonstrate the potential of method, we tracked the fate of over 70 melanoma cells after intracardiac injection and found they primarily arrested in the small capillaries of the pulmonary, musculoskeletal, and digestive organ systems. This study bolsters the evolving potential of PET in offering unmatched insights into the earliest phases of cell trafficking in physiological and pathological processes and in cell-based therapies.
Collapse
Affiliation(s)
- Hieu T.M. Nguyen
- Stanford University, School of Medicine, Department of Radiation Oncology and Medical Physics
| | - Neeladrisingha Das
- Stanford University, School of Medicine, Department of Radiation Oncology and Medical Physics
| | - Yuting Wang
- Stanford University, School of Medicine, Department of Surgery
| | - Carlos Ruvalcaba
- University of California, Davis, Department of Biomedical Engineering
| | - Brahim Mehadji
- University of California, Davis, Department of Radiology
| | - Emilie Roncali
- University of California, Davis, Department of Biomedical Engineering
- University of California, Davis, Department of Radiology
| | | | - Guillem Pratx
- Stanford University, School of Medicine, Department of Radiation Oncology and Medical Physics
| |
Collapse
|
14
|
Hur J, Kim H, Kim U, Kim GB, Kim J, Joo B, Cho D, Lee DS, Chung AJ. Genetically Stable and Scalable Nanoengineering of Human Primary T Cells via Cell Mechanoporation. NANO LETTERS 2023; 23:7341-7349. [PMID: 37506062 DOI: 10.1021/acs.nanolett.3c01720] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Effective tumor regression has been observed with chimeric antigen receptor (CAR) T cells; however, the development of an affordable, safe, and effective CAR-T cell treatment remains a challenge. One of the major obstacles is that the suboptimal genetic modification of T cells reduces their yield and antitumor activity, necessitating the development of a next-generation T cell engineering approach. In this study, we developed a nonviral T cell nanoengineering system that allows highly efficient delivery of diverse functional nanomaterials into primary human T cells in a genetically stable and scalable manner. Our platform leverages the unique cell deformation and restoration process induced by the intrinsic inertial flow in a microchannel to create nanopores in the cellular membrane for macromolecule internalization, leading to effective transfection with high scalability and viability. The proposed approach demonstrates considerable potential as a practical alternative technique for improving the current CAR-T cell manufacturing process.
Collapse
Affiliation(s)
- Jeongsoo Hur
- Department of Bioengineering, Korea University, Seoul 02841, Republic of Korea
| | - Hyelee Kim
- Department of Bioengineering, Korea University, Seoul 02841, Republic of Korea
- Interdisciplinary Program in Precision Public Health (PPH), Korea University, Seoul 02841, Republic of Korea
| | - Uijin Kim
- Department of Life Sciences, University of Seoul, Seoul 02504, Republic of Korea
| | - Gi-Beom Kim
- Department of Bioengineering, Korea University, Seoul 02841, Republic of Korea
- MxT Biotech, Seoul 04785, Republic of Korea
| | - Jinho Kim
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06355, Republic of Korea
| | | | - Duck Cho
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06355, Republic of Korea
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 03063, Republic of Korea
| | - Dong-Sung Lee
- Department of Life Sciences, University of Seoul, Seoul 02504, Republic of Korea
| | - Aram J Chung
- Department of Bioengineering, Korea University, Seoul 02841, Republic of Korea
- Interdisciplinary Program in Precision Public Health (PPH), Korea University, Seoul 02841, Republic of Korea
- MxT Biotech, Seoul 04785, Republic of Korea
- School of Biomedical Engineering, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
15
|
Cardoso BD, Castanheira EMS, Lanceros‐Méndez S, Cardoso VF. Recent Advances on Cell Culture Platforms for In Vitro Drug Screening and Cell Therapies: From Conventional to Microfluidic Strategies. Adv Healthc Mater 2023; 12:e2202936. [PMID: 36898671 PMCID: PMC11468737 DOI: 10.1002/adhm.202202936] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/27/2023] [Indexed: 03/12/2023]
Abstract
The clinical translations of drugs and nanomedicines depend on coherent pharmaceutical research based on biologically accurate screening approaches. Since establishing the 2D in vitro cell culture method, the scientific community has improved cell-based drug screening assays and models. Those advances result in more informative biochemical assays and the development of 3D multicellular models to describe the biological complexity better and enhance the simulation of the in vivo microenvironment. Despite the overall dominance of conventional 2D and 3D cell macroscopic culture methods, they present physicochemical and operational challenges that impair the scale-up of drug screening by not allowing a high parallelization, multidrug combination, and high-throughput screening. Their combination and complementarity with microfluidic platforms enable the development of microfluidics-based cell culture platforms with unequivocal advantages in drug screening and cell therapies. Thus, this review presents an updated and consolidated view of cell culture miniaturization's physical, chemical, and operational considerations in the pharmaceutical research scenario. It clarifies advances in the field using gradient-based microfluidics, droplet-based microfluidics, printed-based microfluidics, digital-based microfluidics, SlipChip, and paper-based microfluidics. Finally, it presents a comparative analysis of the performance of cell-based methods in life research and development to achieve increased precision in the drug screening process.
Collapse
Affiliation(s)
- Beatriz D. Cardoso
- Physics Centre of Minho and Porto Universities (CF‐UM‐UP), Campus de GualtarUniversity of MinhoBraga4710‐057Portugal
- LaPMET‐Laboratory of Physics for Materials and Emergent TechnologiesUniversity of Minho4710‐057BragaPortugal
- Center for MicroElectromechanical Systems (CMEMS‐UMinho)Campus de AzurémUniversity of Minho4800‐058GuimarãesPortugal
- LABBELS‐Associate Laboratory in Biotechnology and Bioengineering and Microelectromechanical SystemsUniversity of MinhoBraga/GuimarãesPortugal
| | - Elisabete M. S. Castanheira
- Physics Centre of Minho and Porto Universities (CF‐UM‐UP), Campus de GualtarUniversity of MinhoBraga4710‐057Portugal
- LaPMET‐Laboratory of Physics for Materials and Emergent TechnologiesUniversity of Minho4710‐057BragaPortugal
| | - Senentxu Lanceros‐Méndez
- Physics Centre of Minho and Porto Universities (CF‐UM‐UP), Campus de GualtarUniversity of MinhoBraga4710‐057Portugal
- LaPMET‐Laboratory of Physics for Materials and Emergent TechnologiesUniversity of Minho4710‐057BragaPortugal
- BCMaterialsBasque Center for MaterialsApplications and NanostructuresUPV/EHU Science ParkLeioa48940Spain
- IKERBASQUEBasque Foundation for ScienceBilbao48009Spain
| | - Vanessa F. Cardoso
- Center for MicroElectromechanical Systems (CMEMS‐UMinho)Campus de AzurémUniversity of Minho4800‐058GuimarãesPortugal
- LABBELS‐Associate Laboratory in Biotechnology and Bioengineering and Microelectromechanical SystemsUniversity of MinhoBraga/GuimarãesPortugal
| |
Collapse
|
16
|
Campelo SN, Huang PH, Buie CR, Davalos RV. Recent Advancements in Electroporation Technologies: From Bench to Clinic. Annu Rev Biomed Eng 2023; 25:77-100. [PMID: 36854260 DOI: 10.1146/annurev-bioeng-110220-023800] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Over the past decade, the increased adoption of electroporation-based technologies has led to an expansion of clinical research initiatives. Electroporation has been utilized in molecular biology for mammalian and bacterial transfection; for food sanitation; and in therapeutic settings to increase drug uptake, for gene therapy, and to eliminate cancerous tissues. We begin this article by discussing the biophysics required for understanding the concepts behind the cell permeation phenomenon that is electroporation. We then review nano- and microscale single-cell electroporation technologies before scaling up to emerging in vivo applications.
Collapse
Affiliation(s)
- Sabrina N Campelo
- Department of Biomedical Engineering and Mechanics, Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, Virginia, USA;
| | - Po-Hsun Huang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Cullen R Buie
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Rafael V Davalos
- Department of Biomedical Engineering and Mechanics, Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, Virginia, USA;
| |
Collapse
|
17
|
Suryadevara V, Hajipour MJ, Adams LC, Aissaoui NM, Rashidi A, Kiru L, Theruvath AJ, Huang C, Maruyama M, Tsubosaka M, Lyons JK, Wu W(E, Roudi R, Goodman SB, Daldrup‐Link HE. MegaPro, a clinically translatable nanoparticle for in vivo tracking of stem cell implants in pig cartilage defects. Theranostics 2023; 13:2710-2720. [PMID: 37215574 PMCID: PMC10196837 DOI: 10.7150/thno.82620] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/20/2023] [Indexed: 05/24/2023] Open
Abstract
Rationale: Efficient labeling methods for mesenchymal stem cells (MSCs) are crucial for tracking and understanding their behavior in regenerative medicine applications, particularly in cartilage defects. MegaPro nanoparticles have emerged as a potential alternative to ferumoxytol nanoparticles for this purpose. Methods: In this study, we employed mechanoporation to develop an efficient labeling method for MSCs using MegaPro nanoparticles and compared their effectiveness with ferumoxytol nanoparticles in tracking MSCs and chondrogenic pellets. Pig MSCs were labeled with both nanoparticles using a custom-made microfluidic device, and their characteristics were analyzed using various imaging and spectroscopy techniques. The viability and differentiation capacity of labeled MSCs were also assessed. Labeled MSCs and chondrogenic pellets were implanted into pig knee joints and monitored using MRI and histological analysis. Results: MegaPro-labeled MSCs demonstrated shorter T2 relaxation times, higher iron content, and greater nanoparticle uptake compared to ferumoxytol-labeled MSCs, without significantly affecting their viability and differentiation capacity. Post-implantation, MegaPro-labeled MSCs and chondrogenic pellets displayed a strong hypointense signal on MRI with considerably shorter T2* relaxation times compared to adjacent cartilage. The hypointense signal of both MegaPro- and ferumoxytol-labeled chondrogenic pellets decreased over time. Histological evaluations showed regenerated defect areas and proteoglycan formation with no significant differences between the labeled groups. Conclusion: Our study demonstrates that mechanoporation with MegaPro nanoparticles enables efficient MSC labeling without affecting viability or differentiation. MegaPro-labeled cells show enhanced MRI tracking compared to ferumoxytol-labeled cells, emphasizing their potential in clinical stem cell therapies for cartilage defects.
Collapse
Affiliation(s)
- Vidyani Suryadevara
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, CA, USA
| | - Mohammad Javad Hajipour
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, CA, USA
| | - Lisa C. Adams
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, CA, USA
| | - Nour Mary Aissaoui
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, CA, USA
| | - Ali Rashidi
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, CA, USA
| | - Louise Kiru
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, CA, USA
| | - Ashok J. Theruvath
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, CA, USA
| | - Ching‐Hsin Huang
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, CA, USA
| | - Masahiro Maruyama
- Department of Orthopedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Masanori Tsubosaka
- Department of Orthopedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Jennifer K. Lyons
- Department of Veterinary Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Wei (Emma) Wu
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, CA, USA
| | - Raheleh Roudi
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, CA, USA
| | - Stuart B. Goodman
- Department of Orthopedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Heike E. Daldrup‐Link
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
18
|
Sevenler D, Toner M. High throughput intracellular delivery by viscoelastic mechanoporation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.24.538131. [PMID: 37163007 PMCID: PMC10168280 DOI: 10.1101/2023.04.24.538131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Brief and intense electric fields (electroporation) and/or tensile stresses (mechanoporation) have been used to temporarily permeabilize the plasma membrane of mammalian cells for the purpose of delivering materials to the cytosol. However, electroporation can be harmful to cells, while efficient mechanoporation strategies have not been scalable due to the use of narrow constrictions or needles which are susceptible to clogging. Here we report a method of mechanoporation in which cells were stretched and permeabilized by viscoelastic flow forces without surface contact. Inertio-elastic cell focusing aligned cells to the center of the device, avoiding direct contact with walls and enabling efficient (95%) intracellular delivery to over 200 million cells per minute. Functional biomolecules such as proteins, RNA, and ribonucleoprotein complexes were successfully delivered to Jurkat cells. Efficient intracellular delivery to HEK293T cells and primary activated T cells was also demonstrated. Contact-free mechanoporation using viscoelastic fluid forces appears to be feasible method for efficient and high throughput intracellular delivery of biomolecules to mammalian cells ex vivo.
Collapse
Affiliation(s)
- Derin Sevenler
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Mehmet Toner
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Shriners Hospitals for Children, Boston, MA, USA
| |
Collapse
|
19
|
Kwon C, Chung AJ. Highly efficient mRNA delivery with nonlinear microfluidic cell stretching for cellular engineering. LAB ON A CHIP 2023; 23:1758-1767. [PMID: 36727443 DOI: 10.1039/d2lc01115h] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In the past few years, messenger RNA (mRNA) has emerged as a promising therapeutic agent for the treatment and prevention of various diseases. Clinically, mRNA-based drugs have been used for cancer immunotherapy, infectious diseases, and genomic disorders. To maximize the therapeutic efficacy of mRNA, the exact amount of mRNAs must be delivered to the target locations without degradation; however, traditional delivery modalities, such as lipid carriers and electroporation, are suboptimal because of their high cost, cell-type sensitivity, low scalability, transfection/delivery inconsistency, and/or loss of cell functionality. Therefore, new effective and stable delivery methods are required. Accordingly, we present a novel nonlinear microfluidic cell stretching (μ-cell stretcher) platform that leverages viscoelastic fluids, i.e., methylcellulose (MC) solutions, and cell mechanoporation for highly efficient and robust intracellular mRNA delivery. In the proposed platform, cells suspended in MC solutions with mRNAs were injected into a microchannel where they rapidly passed through a single constriction. Owing to the use of viscoelastic MC solutions, a high shear force was applied to the cells, effectively creating transient nanopores. This feature allows mRNAs to be effectively internalized through generated membrane discontinuities. Using this platform, high delivery efficiency (∼97%), high throughput (∼3.5 × 105 cells per min), cell-type-/cargo-size-insensitive delivery, simple operation (single-step), low analyte consumption, low-cost operation (<$1), and nearly clogging-free operation were demonstrated, demonstrating the high potential of the proposed platform for application in mRNA-based cellular engineering research.
Collapse
Affiliation(s)
- Chan Kwon
- Department of Bioengineering, Korea University, 02841 Seoul, Republic of Korea
- Interdisciplinary Program in Precision Public Health (PPH), Korea University, 02841 Seoul, Republic of Korea
| | - Aram J Chung
- Department of Bioengineering, Korea University, 02841 Seoul, Republic of Korea
- Interdisciplinary Program in Precision Public Health (PPH), Korea University, 02841 Seoul, Republic of Korea
- School of Biomedical Engineering, Korea University, 02841 Seoul, Republic of Korea.
- MxT Biotech, 04785 Seoul, Republic of Korea
| |
Collapse
|
20
|
Zhang G, Kang D, Zhang Z, Li Y, Jiang J, Tu Q, Du J, Wang J. Verification and Analysis of Filter Paper-Based Intracellular Delivery of Exogenous Substances. Anal Chem 2023; 95:4353-4361. [PMID: 36623324 DOI: 10.1021/acs.analchem.2c04675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The intracellular delivery of exogenous substances is an essential technical means in the field of biomedical research, including cell therapy and gene editing. Although many delivery technologies and strategies are present, each technique has its own limitations. The delivery cost is usually a major limiting factor for general laboratories. In addition, simplifying the operation process and shortening the delivery time are key challenges. Here, we develop a filter paper-syringe (FPS) delivery method, a new type of cell permeation approach based on filter paper. The cells in a syringe are forced to pass through the filter paper quickly. During this process, external pressure forces the cells to collide and squeeze with the fiber matrix of the filter paper, causing the cells to deform rapidly, thereby enhancing the permeability of the cell membrane and realizing the delivery of exogenous substances. Moreover, the large gap between the fiber networks of filter paper can prevent the cells from bearing high pressure, thus maintaining high cell vitality. Results showed that the slow-speed filter paper used can realize efficient intracellular delivery of various exogenous substances, especially small molecular substances (e.g., 3-5 kDa dextran and siRNA). Meanwhile, we found that the FPS method not only does not require a lengthy operating step compared with the widely used liposomal delivery of siRNA but also that the delivery efficiency is similar. In conclusion, the FPS approach is a simple, easy-to-operate, and fast (about 2 s) delivery method and may be an attractive alternative to membrane destruction-based transfection.
Collapse
Affiliation(s)
- Guorui Zhang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Di Kang
- State Key Laboratory of Veterinary Etiological Biology, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, P. R. China
| | - Zhonghui Zhang
- State Key Laboratory of Veterinary Etiological Biology, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, P. R. China
| | - Yuanchang Li
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Jingjing Jiang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Qin Tu
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Junzheng Du
- State Key Laboratory of Veterinary Etiological Biology, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, P. R. China
| | - Jinyi Wang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| |
Collapse
|
21
|
Angolkar M, Paramshetti S, Halagali P, Jain V, Patil AB, Somanna P. Nanotechnological advancements in the brain tumor therapy: a novel approach. Ther Deliv 2023; 13:531-557. [PMID: 36802944 DOI: 10.4155/tde-2022-0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
Nanotechnological advancements over the past few years have led to the development of newer treatment strategies in brain cancer therapy which leads to the establishment of nano oncology. Nanostructures with high specificity, are best suitable to penetrate the blood-brain barrier (BBB). Their desired physicochemical properties, such as small sizes, shape, higher surface area to volume ratio, distinctive structural features, and the possibility to attach various substances on their surface transform them into potential transport carriers able to cross various cellular and tissue barriers, including the BBB. The review emphasizes nanotechnology-based treatment strategies for the exploration of brain tumors and highlights the current progress of different nanomaterials for the effective delivery of drugs for brain tumor therapy.
Collapse
Affiliation(s)
- Mohit Angolkar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, SS Nagar, Mysuru, 570015, India
| | - Sharanya Paramshetti
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, SS Nagar, Mysuru, 570015, India
| | - Praveen Halagali
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, SS Nagar, Mysuru, 570015, India
| | - Vikas Jain
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, SS Nagar, Mysuru, 570015, India
| | - Amit B Patil
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, SS Nagar, Mysuru, 570015, India
| | - Preethi Somanna
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, SS Nagar, Mysuru, 570015, India
| |
Collapse
|
22
|
Alhmoud H, Alkhaled M, Kaynak BE, Hanay MS. Leveraging the elastic deformability of polydimethylsiloxane microfluidic channels for efficient intracellular delivery. LAB ON A CHIP 2023; 23:714-726. [PMID: 36472226 DOI: 10.1039/d2lc00692h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
With the rapid development of microfluidic based cell therapeutics systems, the need arises for compact, modular, and microfluidics-compatible intracellular delivery platforms with small footprints and minimal operational requirements. Physical deformation of cells passing through a constriction in a microfluidic channel has been shown to create transient membrane perturbations that allow passive diffusion of materials from the outside to the interior of the cell. This mechanical approach to intracellular delivery is simple to implement and fits the criteria outlined above. However, available microfluidic platforms that operate through this mechanism are traditionally constructed from rigid channels with fixed dimensions that suffer from irreversible clogging and incompatibility with larger size distributions of cells. Here we report a flexible and elastically deformable microfluidic channel, and we leverage this elasticity to dynamically generate temporary constrictions with any given size within the channel width parameters. Additionally, clogging is prevented by increasing the size of the constriction momentarily to allow clogs to pass. By tuning the size of the constriction appropriately, we show the successful delivery of GFP-coding plasmids to the interior of three mammalian cell lines and fluorescent gold nanoparticles to HEK293 FT cells all the while maintaining a high cell viability rate. We also demonstrate the device capabilities by systematically identifying the optimum constriction size that maximizes the intracellular delivery efficiency of FITC-dextran for three different cell lines. This development will no doubt lead to miniaturized intracellular delivery microfluidic components that can be easily integrated into larger lab-on-a-chip systems for future cell modification devices.
Collapse
Affiliation(s)
- Hashim Alhmoud
- Department of Mechanical Engineering, Bilkent University, 06800 Ankara, Turkey.
- Institute of Materials Science and Nanotechnology (UNAM), Bilkent University, 06800 Ankara, Turkey
| | - Mohammed Alkhaled
- Department of Mechanical Engineering, Bilkent University, 06800 Ankara, Turkey.
- Institute of Materials Science and Nanotechnology (UNAM), Bilkent University, 06800 Ankara, Turkey
| | - Batuhan E Kaynak
- Department of Mechanical Engineering, Bilkent University, 06800 Ankara, Turkey.
- Institute of Materials Science and Nanotechnology (UNAM), Bilkent University, 06800 Ankara, Turkey
| | - M Selim Hanay
- Department of Mechanical Engineering, Bilkent University, 06800 Ankara, Turkey.
- Institute of Materials Science and Nanotechnology (UNAM), Bilkent University, 06800 Ankara, Turkey
| |
Collapse
|
23
|
Hao R, Hu S, Zhang H, Chen X, Yu Z, Ren J, Guo H, Yang H. Mechanical stimulation on a microfluidic device to highly enhance small extracellular vesicle secretion of mesenchymal stem cells. Mater Today Bio 2023; 18:100527. [PMID: 36619203 PMCID: PMC9816961 DOI: 10.1016/j.mtbio.2022.100527] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/26/2022] Open
Abstract
Small extracellular vesicles (sEVs) are recognized as promising detection biomarkers and attractive delivery vehicles, showing great potential in diagnosis and treatment of diseases. However, the applications of sEVs are usually restricted by their poor secretion amount from donor cells under routine cell culture conditions, which is especially true for mesenchymal stem cells (MSCs) due to their limited expansion and early senescence. Here, a microfluidic device is proposed for boosting sEV secretion from MSCs derived from human fetal bone marrow (BM-MSCs). As the cells rapidly pass through a microfluidic channel with a series of narrow squeezing ridges, mechanical stimulation permeabilizes the cell membrane, thus promoting them to secrete more sEVs into extracellular space. In this study, the microfluidic device demonstrates that mechanical-squeezing effect could increase the secretion amount of sEVs from the BM-MSCs by approximately 4-fold, while maintaining cellular growth state of the stem cells. Further, the secreted sEVs are efficiently taken up by immortalized human corneal epithelial cells and accelerate corneal epithelial wound healing in vitro, indicating that this technique wound not affect the functionality of sEVs and demonstrating the application potentials of this technique.
Collapse
Affiliation(s)
- Rui Hao
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Shi Hu
- Laboratory of Biomedical Microsystems and Nano Devices, Center for Bionic Sensing and Intelligence, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Huitao Zhang
- Laboratory of Biomedical Microsystems and Nano Devices, Center for Bionic Sensing and Intelligence, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xi Chen
- Laboratory of Biomedical Microsystems and Nano Devices, Center for Bionic Sensing and Intelligence, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zitong Yu
- Laboratory of Biomedical Microsystems and Nano Devices, Center for Bionic Sensing and Intelligence, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jingyi Ren
- Laboratory of Biomedical Microsystems and Nano Devices, Center for Bionic Sensing and Intelligence, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Hang Guo
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Hui Yang
- Laboratory of Biomedical Microsystems and Nano Devices, Center for Bionic Sensing and Intelligence, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| |
Collapse
|
24
|
Sciolino N, Reverdatto S, Premo A, Breindel L, Yu J, Theophall G, Burz DS, Liu A, Sulchek T, Schmidt AM, Ramasamy R, Shekhtman A. Messenger RNA in lipid nanoparticles rescues HEK 293 cells from lipid-induced mitochondrial dysfunction as studied by real time pulse chase NMR, RTPC-NMR, spectroscopy. Sci Rep 2022; 12:22293. [PMID: 36566335 PMCID: PMC9789524 DOI: 10.1038/s41598-022-26444-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/14/2022] [Indexed: 12/25/2022] Open
Abstract
Analytical tools to study cell physiology are critical for optimizing drug-host interactions. Real time pulse chase NMR spectroscopy, RTPC-NMR, was introduced to monitor the kinetics of metabolite production in HEK 293T cells treated with COVID-19 vaccine-like lipid nanoparticles, LNPs, with and without mRNA. Kinetic flux parameters were resolved for the incorporation of isotopic label into metabolites and clearance of labeled metabolites from the cells. Changes in the characteristic times for alanine production implicated mitochondrial dysfunction as a consequence of treating the cells with lipid nanoparticles, LNPs. Mitochondrial dysfunction was largely abated by inclusion of mRNA in the LNPs, the presence of which increased the size and uniformity of the LNPs. The methodology is applicable to all cultured cells.
Collapse
Affiliation(s)
- Nicholas Sciolino
- Department of Chemistry, State University of New York, Albany, NY, 12222, USA
| | - Sergey Reverdatto
- Department of Chemistry, State University of New York, Albany, NY, 12222, USA
| | - Aaron Premo
- Department of Chemistry, State University of New York, Albany, NY, 12222, USA
| | - Leonard Breindel
- Department of Chemistry, State University of New York, Albany, NY, 12222, USA
| | - Jianchao Yu
- Department of Chemistry, State University of New York, Albany, NY, 12222, USA
| | - Gregory Theophall
- Department of Chemistry, State University of New York, Albany, NY, 12222, USA
| | - David S Burz
- Department of Chemistry, State University of New York, Albany, NY, 12222, USA
| | - Anna Liu
- Georgia Tech, School of Mechanical Engineering, Atlanta, GA, 30332, USA
| | - Todd Sulchek
- Georgia Tech, School of Mechanical Engineering, Atlanta, GA, 30332, USA
| | - Ann Marie Schmidt
- New York University, Grossman School of Medicine, New York, NY, 10016, USA
| | | | - Alexander Shekhtman
- Department of Chemistry, State University of New York, Albany, NY, 12222, USA.
| |
Collapse
|
25
|
Mukherjee P, Park SH, Pathak N, Patino CA, Bao G, Espinosa HD. Integrating Micro and Nano Technologies for Cell Engineering and Analysis: Toward the Next Generation of Cell Therapy Workflows. ACS NANO 2022; 16:15653-15680. [PMID: 36154011 DOI: 10.1021/acsnano.2c05494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The emerging field of cell therapy offers the potential to treat and even cure a diverse array of diseases for which existing interventions are inadequate. Recent advances in micro and nanotechnology have added a multitude of single cell analysis methods to our research repertoire. At the same time, techniques have been developed for the precise engineering and manipulation of cells. Together, these methods have aided the understanding of disease pathophysiology, helped formulate corrective interventions at the cellular level, and expanded the spectrum of available cell therapeutic options. This review discusses how micro and nanotechnology have catalyzed the development of cell sorting, cellular engineering, and single cell analysis technologies, which have become essential workflow components in developing cell-based therapeutics. The review focuses on the technologies adopted in research studies and explores the opportunities and challenges in combining the various elements of cell engineering and single cell analysis into the next generation of integrated and automated platforms that can accelerate preclinical studies and translational research.
Collapse
Affiliation(s)
- Prithvijit Mukherjee
- Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Theoretical and Applied Mechanics Program, Northwestern University, Evanston, Illinois 60208, United States
| | - So Hyun Park
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, Texas 77030, United States
| | - Nibir Pathak
- Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Theoretical and Applied Mechanics Program, Northwestern University, Evanston, Illinois 60208, United States
| | - Cesar A Patino
- Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Gang Bao
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, Texas 77030, United States
| | - Horacio D Espinosa
- Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Theoretical and Applied Mechanics Program, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
26
|
Sciolino N, Liu A, Breindel L, Burz DS, Sulchek T, Shekhtman A. Microfluidics delivery of DARPP-32 into HeLa cells maintains viability for in-cell NMR spectroscopy. Commun Biol 2022; 5:451. [PMID: 35551287 PMCID: PMC9098904 DOI: 10.1038/s42003-022-03412-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 04/26/2022] [Indexed: 11/09/2022] Open
Abstract
High-resolution structural studies of proteins and protein complexes in a native eukaryotic environment present a challenge to structural biology. In-cell NMR can characterize atomic resolution structures but requires high concentrations of labeled proteins in intact cells. Most exogenous delivery techniques are limited to specific cell types or are too destructive to preserve cellular physiology. The feasibility of microfluidics transfection or volume exchange for convective transfer, VECT, as a means to deliver labeled target proteins to HeLa cells for in-cell NMR experiments is demonstrated. VECT delivery does not require optimization or impede cell viability; cells are immediately available for long-term eukaryotic in-cell NMR experiments. In-cell NMR-based drug screening using VECT was demonstrated by collecting spectra of the sensor molecule DARPP32, in response to exogenous administration of Forskolin.
Collapse
Affiliation(s)
- Nicholas Sciolino
- University at Albany, Department of Chemistry, Albany, NY, 12222, USA
| | - Anna Liu
- Georgia Tech, School of Mechanical Engineering, Atlanta, GA, 30332, USA
| | - Leonard Breindel
- University at Albany, Department of Chemistry, Albany, NY, 12222, USA
| | - David S Burz
- University at Albany, Department of Chemistry, Albany, NY, 12222, USA
| | - Todd Sulchek
- Georgia Tech, School of Mechanical Engineering, Atlanta, GA, 30332, USA
| | | |
Collapse
|
27
|
Mukherjee P, Patino CA, Pathak N, Lemaitre V, Espinosa HD. Deep Learning-Assisted Automated Single Cell Electroporation Platform for Effective Genetic Manipulation of Hard-to-Transfect Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107795. [PMID: 35315229 PMCID: PMC9119920 DOI: 10.1002/smll.202107795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/03/2022] [Indexed: 05/03/2023]
Abstract
Genome engineering of cells using CRISPR/Cas systems has opened new avenues for pharmacological screening and investigating the molecular mechanisms of disease. A critical step in many such studies is the intracellular delivery of the gene editing machinery and the subsequent manipulation of cells. However, these workflows often involve processes such as bulk electroporation for intracellular delivery and fluorescence activated cell sorting for cell isolation that can be harsh to sensitive cell types such as human-induced pluripotent stem cells (hiPSCs). This often leads to poor viability and low overall efficacy, requiring the use of large starting samples. In this work, a fully automated version of the nanofountain probe electroporation (NFP-E) system, a nanopipette-based single-cell electroporation method is presented that provides superior cell viability and efficiency compared to traditional methods. The automated system utilizes a deep convolutional network to identify cell locations and a cell-nanopipette contact algorithm to position the nanopipette over each cell for the application of electroporation pulses. The automated NFP-E is combined with microconfinement arrays for cell isolation to demonstrate a workflow that can be used for CRISPR/Cas9 gene editing and cell tracking with potential applications in screening studies and isogenic cell line generation.
Collapse
Affiliation(s)
- Prithvijit Mukherjee
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Theoretical and Applied Mechanics Program, Northwestern University, Evanston, IL, 60208, USA
- iNfinitesimal LLC, Skokie, IL, 60077, USA
| | - Cesar A Patino
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
- iNfinitesimal LLC, Skokie, IL, 60077, USA
| | - Nibir Pathak
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Theoretical and Applied Mechanics Program, Northwestern University, Evanston, IL, 60208, USA
| | | | - Horacio D Espinosa
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Theoretical and Applied Mechanics Program, Northwestern University, Evanston, IL, 60208, USA
- iNfinitesimal LLC, Skokie, IL, 60077, USA
| |
Collapse
|
28
|
Young KM, Shankles PG, Chen T, Ahkee K, Bules S, Sulchek T. Scaling microfluidic throughput with flow-balanced manifolds to simply control devices with multiple inlets and outlets. BIOMICROFLUIDICS 2022; 16:034104. [PMID: 35600502 PMCID: PMC9118023 DOI: 10.1063/5.0080510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 05/02/2022] [Indexed: 05/18/2023]
Abstract
Microfluidics can bring unique functionalities to cell processing, but the small channel dimensions often limit the throughput for cell processing that prevents scaling necessary for key applications. While processing throughput can be improved by increasing cell concentration or flow rate, an excessive number or velocity of cells can result in device failure. Designing parallel channels can linearly increase the throughput by channel number, but for microfluidic devices with multiple inlets and outlets, the design of the channel architecture with parallel channels can result in intractable numbers of inlets and outlets. We demonstrate an approach to use multiple parallel channels for complex microfluidic designs that uses a second manifold layer to connect three inlets and five outlets per channel in a manner that balances flow properties through each channel. The flow balancing in the individual microfluidic channels was accomplished through a combination of analytical and finite element analysis modeling. Volumetric flow and cell flow velocity were measured in each multiplexed channel to validate these models. We demonstrate eight-channel operation of a label-free mechanical separation device that retains the accuracy of a single channel separation. Using the parallelized device and a model biomechanical cell system for sorting of cells based on their viability, we processed over 16 × 106 cells total over three replicates at a rate of 5.3 × 106 cells per hour. Thus, parallelization of complex microfluidics with a flow-balanced manifold system can enable higher throughput processing with the same number of inlet and outlet channels to control.
Collapse
Affiliation(s)
- Katherine M. Young
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Drive, Atlanta, Georgia 30332-0535, USA
| | - Peter G. Shankles
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive, Atlanta, Georgia 30332-0405, USA
| | - Theresa Chen
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive, Atlanta, Georgia 30332-0405, USA
| | - Kelly Ahkee
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Drive, Atlanta, Georgia 30332-0535, USA
| | - Sydney Bules
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Drive, Atlanta, Georgia 30332-0535, USA
| | - Todd Sulchek
- Author to whom correspondence should be addressed:. Phone: (404) 385-1887
| |
Collapse
|
29
|
Jung KO, Theruvath AJ, Nejadnik H, Liu A, Xing L, Sulchek T, Daldrup-Link HE, Pratx G. Mechanoporation enables rapid and efficient radiolabeling of stem cells for PET imaging. Sci Rep 2022; 12:2955. [PMID: 35194089 PMCID: PMC8863797 DOI: 10.1038/s41598-022-06938-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 01/27/2022] [Indexed: 11/09/2022] Open
Abstract
Regenerative medicine uses the patient own stem cells to regenerate damaged tissues. Molecular imaging techniques are commonly used to image the transplanted cells, either right after surgery or at a later time. However, few techniques are fast or straightforward enough to label cells intraoperatively. Adipose tissue-derived stem cells (ADSCs) were harvested from knee joints of minipigs. The cells were labeled with PET contrast agent by flowing mechanoporation using a microfluidic device. While flowing through a series of microchannels, cells are compressed repeatedly by micro-ridges, which open transient pores in their membranes and induce convective transport, intended to facilitate the transport of 68Ga-labeled and lipid-coated mesoporous nanoparticles (MSNs) into the cells. This process enables cells to be labeled in a matter of seconds. Cells labeled with this approach were then implanted into cartilage defects, and the implant was imaged using positron emission tomography (PET) post-surgery. The microfluidic device can efficiently label millions of cells with 68Ga-labeled MSNs in as little as 15 min. The method achieved labeling efficiency greater than 5 Bq/cell on average, comparable to 30 min-long passive co-incubation with 68Ga-MSNs, but with improved biocompatibility due to the reduced exposure to ionizing radiation. Labeling time could also be accelerated by increasing throughput through more parallel channels. Finally, as a proof of concept, ADSCs were labeled with 68Ga-MSNs and quantitatively assessed using clinical PET/MR in a mock transplant operation in pig knee joints. MSN-assisted mechanoporation is a rapid, effective and straightforward approach to label cells with 68Ga. Given its high efficiency, this labeling method can be used to track small cells populations without significant effects on viability. The system is applicable to a variety of cell tracking studies for cancer therapy, regenerative therapy, and immunotherapy.
Collapse
Affiliation(s)
- Kyung Oh Jung
- Division of Medical Physics, Department of Radiation Oncology, School of Medicine, Stanford University, Stanford, CA, 94305, USA.
- Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, CA, 94305, USA.
- Department of Anatomy, College of Medicine, Chung-Ang University, Seoul, Korea.
| | - Ashok Joseph Theruvath
- Molecular Imaging Program at Stanford, Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| | - Hossein Nejadnik
- Molecular Imaging Program at Stanford, Department of Radiology, Stanford University, Stanford, CA, 94305, USA
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Anna Liu
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Lei Xing
- Division of Medical Physics, Department of Radiation Oncology, School of Medicine, Stanford University, Stanford, CA, 94305, USA
- Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, CA, 94305, USA
| | - Todd Sulchek
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Heike E Daldrup-Link
- Molecular Imaging Program at Stanford, Department of Radiology, Stanford University, Stanford, CA, 94305, USA
- Department of Pediatrics, Stanford University, Stanford, CA, 94305, USA
| | - Guillem Pratx
- Division of Medical Physics, Department of Radiation Oncology, School of Medicine, Stanford University, Stanford, CA, 94305, USA.
- Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
30
|
Kiru L, Zlitni A, Tousley AM, Dalton GN, Wu W, Lafortune F, Liu A, Cunanan KM, Nejadnik H, Sulchek T, Moseley ME, Majzner RG, Daldrup-Link HE. In vivo imaging of nanoparticle-labeled CAR T cells. Proc Natl Acad Sci U S A 2022; 119:e2102363119. [PMID: 35101971 PMCID: PMC8832996 DOI: 10.1073/pnas.2102363119] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 12/10/2021] [Indexed: 01/20/2023] Open
Abstract
Metastatic osteosarcoma has a poor prognosis with a 2-y, event-free survival rate of ∼15 to 20%, highlighting the need for the advancement of efficacious therapeutics. Chimeric antigen receptor (CAR) T-cell therapy is a potent strategy for eliminating tumors by harnessing the immune system. However, clinical trials with CAR T cells in solid tumors have encountered significant challenges and have not yet demonstrated convincing evidence of efficacy for a large number of patients. A major bottleneck for the success of CAR T-cell therapy is our inability to monitor the accumulation of the CAR T cells in the tumor with clinical-imaging techniques. To address this, we developed a clinically translatable approach for labeling CAR T cells with iron oxide nanoparticles, which enabled the noninvasive detection of the iron-labeled T cells with magnetic resonance imaging (MRI), photoacoustic imaging (PAT), and magnetic particle imaging (MPI). Using a custom-made microfluidics device for T-cell labeling by mechanoporation, we achieved significant nanoparticle uptake in the CAR T cells, while preserving T-cell proliferation, viability, and function. Multimodal MRI, PAT, and MPI demonstrated homing of the T cells to osteosarcomas and off-target sites in animals administered with T cells labeled with the iron oxide nanoparticles, while T cells were not visualized in animals infused with unlabeled cells. This study details the successful labeling of CAR T cells with ferumoxytol, thereby paving the way for monitoring CAR T cells in solid tumors.
Collapse
Affiliation(s)
- Louise Kiru
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305
| | - Aimen Zlitni
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305
| | | | | | - Wei Wu
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305
| | - Famyrah Lafortune
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305
| | - Anna Liu
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332
| | - Kristen May Cunanan
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305
| | - Hossein Nejadnik
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104
| | - Todd Sulchek
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332
| | - Michael Eugene Moseley
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305
| | - Robbie G Majzner
- Department of Pediatrics, Stanford University, Stanford, CA 94305
- Stanford Cancer Institute, Stanford University, Stanford, CA 94305
| | - Heike Elisabeth Daldrup-Link
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305;
- Department of Pediatrics, Stanford University, Stanford, CA 94305
- Stanford Cancer Institute, Stanford University, Stanford, CA 94305
| |
Collapse
|
31
|
Chakrabarty P, Gupta P, Illath K, Kar S, Nagai M, Tseng FG, Santra TS. Microfluidic mechanoporation for cellular delivery and analysis. Mater Today Bio 2022; 13:100193. [PMID: 35005598 PMCID: PMC8718663 DOI: 10.1016/j.mtbio.2021.100193] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/13/2021] [Accepted: 12/20/2021] [Indexed: 01/08/2023] Open
Abstract
Highly efficient intracellular delivery strategies are essential for developing therapeutic, diagnostic, biological, and various biomedical applications. The recent advancement of micro/nanotechnology has focused numerous researches towards developing microfluidic device-based strategies due to the associated high throughput delivery, cost-effectiveness, robustness, and biocompatible nature. The delivery strategies can be carrier-mediated or membrane disruption-based, where membrane disruption methods find popularity due to reduced toxicity, enhanced delivery efficiency, and cell viability. Among all of the membrane disruption techniques, the mechanoporation strategies are advantageous because of no external energy source required for membrane deformation, thereby achieving high delivery efficiencies and increased cell viability into different cell types with negligible toxicity. The past two decades have consequently seen a tremendous boost in mechanoporation-based research for intracellular delivery and cellular analysis. This article provides a brief review of the most recent developments on microfluidic-based mechanoporation strategies such as microinjection, nanoneedle arrays, cell-squeezing, and hydroporation techniques with their working principle, device fabrication, cellular delivery, and analysis. Moreover, a brief discussion of the different mechanoporation strategies integrated with other delivery methods has also been provided. Finally, the advantages, limitations, and future prospects of this technique are discussed compared to other intracellular delivery techniques.
Collapse
Affiliation(s)
- Pulasta Chakrabarty
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai, India
| | - Pallavi Gupta
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai, India
| | - Kavitha Illath
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai, India
| | - Srabani Kar
- Department of Electrical Engineering, University of Cambridge, Cambridge, CB30FA, UK
| | - Moeto Nagai
- Department of Mechanical Engineering, Toyohashi University of Technology, Aichi, Japan
| | - Fan-Gang Tseng
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Tuhin Subhra Santra
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai, India
| |
Collapse
|
32
|
Rich J, Tian Z, Huang TJ. Sonoporation: Past, Present, and Future. ADVANCED MATERIALS TECHNOLOGIES 2022; 7:2100885. [PMID: 35399914 PMCID: PMC8992730 DOI: 10.1002/admt.202100885] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Indexed: 05/09/2023]
Abstract
A surge of research in intracellular delivery technologies is underway with the increased innovations in cell-based therapies and cell reprogramming. Particularly, physical cell membrane permeabilization techniques are highlighted as the leading technologies because of their unique features, including versatility, independence of cargo properties, and high-throughput delivery that is critical for providing the desired cell quantity for cell-based therapies. Amongst the physical permeabilization methods, sonoporation holds great promise and has been demonstrated for delivering a variety of functional cargos, such as biomolecular drugs, proteins, and plasmids, to various cells including cancer, immune, and stem cells. However, traditional bubble-based sonoporation methods usually require special contrast agents. Bubble-based sonoporation methods also have high chances of inducing irreversible damage to critical cell components, lowering the cell viability, and reducing the effectiveness of delivered cargos. To overcome these limitations, several novel non-bubble-based sonoporation mechanisms are under development. This review will cover both the bubble-based and non-bubble-based sonoporation mechanisms being employed for intracellular delivery, the technologies being investigated to overcome the limitations of traditional platforms, as well as perspectives on the future sonoporation mechanisms, technologies, and applications.
Collapse
Affiliation(s)
- Joseph Rich
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Zhenhua Tian
- Department of Aerospace Engineering, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Tony Jun Huang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
33
|
Advances in engineering and synthetic biology toward improved therapeutic immune cells. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021. [DOI: 10.1016/j.cobme.2021.100342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
34
|
Microfluidic transfection of mRNA into human primary lymphocytes and hematopoietic stem and progenitor cells using ultra-fast physical deformations. Sci Rep 2021; 11:21407. [PMID: 34725429 PMCID: PMC8560772 DOI: 10.1038/s41598-021-00893-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 10/19/2021] [Indexed: 01/22/2023] Open
Abstract
Messenger RNA (mRNA) delivery provides gene therapy with the potential to achieve transient therapeutic efficacy without risk of insertional mutagenesis. Amongst other applications, mRNA can be employed as a platform to deliver gene editing molecules, to achieve protein expression as an alternative to enzyme replacement therapies, and to express chimeric antigen receptors (CARs) on immune cells for the treatment of cancer. We designed a novel microfluidic device that allows for efficient mRNA delivery via volume exchange for convective transfection (VECT). In the device, cells flow through a ridged channel that enforces a series of ultra-fast and large intensity deformations able to transiently open pores and induce convective transport of mRNA into the cell. Here, we describe efficient delivery of mRNA into T cells, natural killer (NK) cells and hematopoietic stem and progenitor cells (HSPCs), three human primary cell types widely used for ex vivo gene therapy applications. Results demonstrate that the device can operate at a wide range of cell and payload concentrations and that ultra-fast compressions do not have a negative impact on T cell function, making this a novel and competitive platform for the development of ex vivo mRNA-based gene therapies and other cell products engineered with mRNA.
Collapse
|
35
|
Stone NE, Voigt AP, Mullins RF, Sulchek T, Tucker BA. Microfluidic processing of stem cells for autologous cell replacement. Stem Cells Transl Med 2021; 10:1384-1393. [PMID: 34156760 PMCID: PMC8459636 DOI: 10.1002/sctm.21-0080] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/10/2021] [Accepted: 05/15/2021] [Indexed: 12/18/2022] Open
Abstract
Autologous photoreceptor cell replacement is one of the most promising approaches currently under development for the treatment of inherited retinal degenerative blindness. Unlike endogenous stem cell populations, induced pluripotent stem cells (iPSCs) can be differentiated into both rod and cone photoreceptors in high numbers, making them ideal for this application. That said, in addition to photoreceptor cells, state of the art retinal differentiation protocols give rise to all of the different cell types of the normal retina, the majority of which are not required and may in fact hinder successful photoreceptor cell replacement. As such, following differentiation photoreceptor cell enrichment will likely be required. In addition, to prevent the newly generated photoreceptor cells from suffering the same fate as the patient's original cells, correction of the patient's disease-causing genetic mutations will be necessary. In this review we discuss literature pertaining to the use of different cell sorting and transfection approaches with a focus on the development and use of novel next generation microfluidic devices. We will discuss how gold standard strategies have been used, the advantages and disadvantages of each, and how novel microfluidic platforms can be incorporated into the clinical manufacturing pipeline to reduce the complexity, cost, and regulatory burden associated with clinical grade production of photoreceptor cells for autologous cell replacement.
Collapse
Affiliation(s)
- Nicholas E. Stone
- The George W. Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaGeorgiaUSA
| | - Andrew P. Voigt
- Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of MedicineUniversity of IowaIowa CityIowaUSA
| | - Robert F. Mullins
- Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of MedicineUniversity of IowaIowa CityIowaUSA
| | - Todd Sulchek
- The George W. Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaGeorgiaUSA
| | - Budd A. Tucker
- Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of MedicineUniversity of IowaIowa CityIowaUSA
| |
Collapse
|
36
|
Hao R, Yu Z, Du J, Hu S, Yuan C, Guo H, Zhang Y, Yang H. A High-Throughput Nanofluidic Device for Exosome Nanoporation to Develop Cargo Delivery Vehicles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102150. [PMID: 34291570 DOI: 10.1002/smll.202102150] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/15/2021] [Indexed: 06/13/2023]
Abstract
Efficient loading of various exogenous cargos into exosomes while not affecting their integrity and functionalities remains a major challenge. Here, a nanofluidic device named "exosome nanoporator (ENP)" is presented for high-throughput loading of various cargos into exosomes. By transporting exosomes through nanochannels with height comparable to their dimension, exosome membranes are permeabilized by mechanical compression and fluid shear, allowing the influx of cargo molecules into the exosomes from the surrounding solution while maintaining exosome integrity. The ENP consisting of an array of 30 000 nanochannels demonstrates a high sample throughput, and the working mechanism of the device is elucidated through experimental and numerical study. Further, the exosomes treated by the ENP can deliver their drug cargos to human non-small cell lung cancer cells and induce cell death, indicating the potential opportunities of the device for developing new exosome-based delivery vehicles for medical and biological applications.
Collapse
Affiliation(s)
- Rui Hao
- Laboratory of Biomedical Microsystems and Nano Devices, Center for Bionic Sensing and Intelligence, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Zitong Yu
- Laboratory of Biomedical Microsystems and Nano Devices, Center for Bionic Sensing and Intelligence, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jing Du
- Laboratory of Biomedical Microsystems and Nano Devices, Center for Bionic Sensing and Intelligence, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Shi Hu
- Laboratory of Biomedical Microsystems and Nano Devices, Center for Bionic Sensing and Intelligence, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Chao Yuan
- Laboratory of Biomedical Microsystems and Nano Devices, Center for Bionic Sensing and Intelligence, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Hang Guo
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Yi Zhang
- Center for Medical AI, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Hui Yang
- Laboratory of Biomedical Microsystems and Nano Devices, Center for Bionic Sensing and Intelligence, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| |
Collapse
|
37
|
Joo B, Hur J, Kim GB, Yun SG, Chung AJ. Highly Efficient Transfection of Human Primary T Lymphocytes Using Droplet-Enabled Mechanoporation. ACS NANO 2021; 15:12888-12898. [PMID: 34142817 DOI: 10.1021/acsnano.0c10473] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Whole-cell-based therapy has been extensively used as an effective disease treatment approach, and it has rapidly changed the therapeutic paradigm. To fully accommodate this shift, advances in genome modification and cell reprogramming methodologies are critical. Traditionally, molecular tools such as viral and polymer nanocarriers and electroporation have been the norm for internalizing external biomolecules into cells for cellular engineering. However, these approaches are not fully satisfactory considering their cytotoxicity, high cost, low scalability, and/or inconsistent and ineffective delivery and transfection. To address these challenges, we present an approach that leverages droplet microfluidics with cell mechanoporation, bringing intracellular delivery to the next level. In our approach, cells and external cargos such as mRNAs and plasmid DNAs are coencapsulated into droplets, and as they pass through a series of narrow constrictions, the cell membrane is mechanically permeabilized where the cargos in the vicinity are internalized via convective solution exchange enhanced by recirculation flows developed in the droplets. Using this principle, we demonstrated a high level of functional macromolecule delivery into various immune cells, including human primary T cells. By utilizing droplets, the cargo consumption was drastically reduced, and near-zero clogging was realized. Furthermore, high scalability without sacrificing cell viability and superior delivery over state-of-the-art methods and benchtop techniques were demonstrated. Notably, the droplet-based intracellular delivery strategy presented here can be further applied to other mechanoporation microfluidic techniques, highlighting its potential for cellular engineering and cell-based therapies.
Collapse
Affiliation(s)
- Byeongju Joo
- School of Biomedical Engineering, Korea University, 02841 Seoul, Republic of Korea
| | - Jeongsoo Hur
- School of Biomedical Engineering, Korea University, 02841 Seoul, Republic of Korea
| | - Gi-Beom Kim
- School of Biomedical Engineering, Korea University, 02841 Seoul, Republic of Korea
- Interdisciplinary Program in Precision Public Health, Korea University, 02841 Seoul, Republic of Korea
| | - Seung Gyu Yun
- Department of Laboratory Medicine, College of Medicine, Korea University, 02841 Seoul, Republic of Korea
| | - Aram J Chung
- School of Biomedical Engineering, Korea University, 02841 Seoul, Republic of Korea
- Interdisciplinary Program in Precision Public Health, Korea University, 02841 Seoul, Republic of Korea
| |
Collapse
|
38
|
Hur J, Chung AJ. Microfluidic and Nanofluidic Intracellular Delivery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2004595. [PMID: 34096197 PMCID: PMC8336510 DOI: 10.1002/advs.202004595] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 04/14/2021] [Indexed: 05/05/2023]
Abstract
Innate cell function can be artificially engineered and reprogrammed by introducing biomolecules, such as DNAs, RNAs, plasmid DNAs, proteins, or nanomaterials, into the cytosol or nucleus. This process of delivering exogenous cargos into living cells is referred to as intracellular delivery. For instance, clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 gene editing begins with internalizing Cas9 protein and guide RNA into cells, and chimeric antigen receptor-T (CAR-T) cells are prepared by delivering CAR genes into T lymphocytes for cancer immunotherapies. To deliver external biomolecules into cells, tools, including viral vectors, and electroporation have been traditionally used; however, they are suboptimal for achieving high levels of intracellular delivery while preserving cell viability, phenotype, and function. Notably, as emerging solutions, microfluidic and nanofluidic approaches have shown remarkable potential for addressing this open challenge. This review provides an overview of recent advances in microfluidic and nanofluidic intracellular delivery strategies and discusses new opportunities and challenges for clinical applications. Furthermore, key considerations for future efforts to develop microfluidics- and nanofluidics-enabled next-generation intracellular delivery platforms are outlined.
Collapse
Affiliation(s)
- Jeongsoo Hur
- School of Biomedical EngineeringKorea UniversitySeoul02841Republic of Korea
| | - Aram J. Chung
- School of Biomedical EngineeringInterdisciplinary Program in Precision Public HealthKorea UniversitySeoul02841Republic of Korea
| |
Collapse
|
39
|
Nikfar M, Razizadeh M, Paul R, Zhou Y, Liu Y. Numerical simulation of intracellular drug delivery via rapid squeezing. BIOMICROFLUIDICS 2021; 15:044102. [PMID: 34367404 PMCID: PMC8331209 DOI: 10.1063/5.0059165] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/19/2021] [Indexed: 05/06/2023]
Abstract
Intracellular drug delivery by rapid squeezing is one of the most recent and simple cell membrane disruption-mediated drug encapsulation approaches. In this method, cell membranes are perforated in a microfluidic setup due to rapid cell deformation during squeezing through constricted channels. While squeezing-based drug loading has been successful in loading drug molecules into various cell types, such as immune cells, cancer cells, and other primary cells, there is so far no comprehensive understanding of the pore opening mechanism on the cell membrane and the systematic analysis on how different channel geometries and squeezing speed influence drug loading. This article aims to develop a three-dimensional computational model to study the intracellular delivery for compound cells squeezing through microfluidic channels. The Lattice Boltzmann method, as the flow solver, integrated with a spring-connected network via frictional coupling, is employed to capture compound capsule dynamics over fast squeezing. The pore size is proportional to the local areal strain of triangular patches on the compound cell through mathematical correlations derived from molecular dynamics and coarse-grained molecular dynamics simulations. We quantify the drug concentration inside the cell cytoplasm by introducing a new mathematical model for passive diffusion after squeezing. Compared to the existing models, the proposed model does not have any empirical parameters that depend on operating conditions and device geometry. Since the compound cell model is new, it is validated by simulating a nucleated cell under a simple shear flow at different capillary numbers and comparing the results with other numerical models reported in literature. The cell deformation during squeezing is also compared with the pattern found from our compound cell squeezing experiment. Afterward, compound cell squeezing is modeled for different cell squeezing velocities, constriction lengths, and constriction widths. We reported the instantaneous cell center velocity, variations of axial and vertical cell dimensions, cell porosity, and normalized drug concentration to shed light on the underlying physics in fast squeezing-based drug delivery. Consistent with experimental findings in the literature, the numerical results confirm that constriction width reduction, constriction length enlargement, and average cell velocity promote intracellular drug delivery. The results show that the existence of the nucleus increases cell porosity and loaded drug concentration after squeezing. Given geometrical parameters and cell average velocity, the maximum porosity is achieved at three different locations: constriction entrance, constriction middle part, and outside the constriction. Our numerical results provide reasonable justifications for experimental findings on the influences of constriction geometry and cell velocity on the performance of cell-squeezing delivery. We expect this model can help design and optimize squeezing-based cargo delivery.
Collapse
Affiliation(s)
- Mehdi Nikfar
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| | - Meghdad Razizadeh
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| | - Ratul Paul
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| | - Yuyuan Zhou
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| | - Yaling Liu
- Author to whom correspondence should be addressed:
| |
Collapse
|
40
|
Uvizl A, Goswami R, Gandhi SD, Augsburg M, Buchholz F, Guck J, Mansfeld J, Girardo S. Efficient and gentle delivery of molecules into cells with different elasticity via Progressive Mechanoporation. LAB ON A CHIP 2021; 21:2437-2452. [PMID: 33977944 PMCID: PMC8204113 DOI: 10.1039/d0lc01224f] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 04/13/2021] [Indexed: 05/08/2023]
Abstract
Intracellular delivery of cargo molecules such as membrane-impermeable proteins or drugs is crucial for cell treatment in biological and medical applications. Recently, microfluidic mechanoporation techniques have enabled transfection of previously inaccessible cells. These techniques create transient pores in the cell membrane by shear-induced or constriction contact-based rapid cell deformation. However, cells deform and recover differently from a given extent of shear stress or compression and it is unclear how the underlying mechanical properties affect the delivery efficiency of molecules into cells. In this study, we identify cell elasticity as a key mechanical determinant of delivery efficiency leading to the development of "progressive mechanoporation" (PM), a novel mechanoporation method that improves delivery efficiency into cells of different elasticity. PM is based on a multistage cell deformation, through a combination of hydrodynamic forces that pre-deform cells followed by their contact-based compression inside a PDMS-based device controlled by a pressure-based microfluidic controller. PM allows processing of small sample volumes (about 20 μL) with high-throughput (>10 000 cells per s), while controlling both operating pressure and flow rate for a reliable and reproducible cell treatment. We find that uptake of molecules of different sizes is correlated with cell elasticity whereby delivery efficiency of small and big molecules is favoured in more compliant and stiffer cells, respectively. A possible explanation for this opposite trend is a different size, number and lifetime of opened pores. Our data demonstrates that PM reliably and reproducibly delivers impermeable cargo of the size of small molecule inhibitors such as 4 kDa FITC-dextran with >90% efficiency into cells of different mechanical properties without affecting their viability and proliferation rates. Importantly, also much larger cargos such as a >190 kDa Cas9 protein-sgRNA complex are efficiently delivered high-lighting the biological, biomedical and clinical applicability of our findings.
Collapse
Affiliation(s)
- Alena Uvizl
- Cell Cycle, Biotechnology Center, Technische Universität Dresden, 01307 Dresden, Germany
| | - Ruchi Goswami
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, 91058 Erlangen, Germany.
| | | | - Martina Augsburg
- Medical Systems Biology, Medical Faculty and University Hospital Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany
| | - Frank Buchholz
- Medical Systems Biology, Medical Faculty and University Hospital Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany
| | - Jochen Guck
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, 91058 Erlangen, Germany.
| | - Jörg Mansfeld
- Cell Cycle, Biotechnology Center, Technische Universität Dresden, 01307 Dresden, Germany and The Institute of Cancer Research, London SW7 3RP, UK.
| | - Salvatore Girardo
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, 91058 Erlangen, Germany.
| |
Collapse
|
41
|
Hur J, Park I, Lim KM, Doh J, Cho SG, Chung AJ. Microfluidic Cell Stretching for Highly Effective Gene Delivery into Hard-to-Transfect Primary Cells. ACS NANO 2020; 14:15094-15106. [PMID: 33034446 DOI: 10.1021/acsnano.0c05169] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Cell therapy and cellular engineering begin with internalizing synthetic biomolecules and functional nanomaterials into primary cells. Conventionally, electroporation, lipofection, or viral transduction has been used; however, these are limited by their cytotoxicity, low scalability, cost, and/or preparation complexity, especially in primary cells. Thus, a universal intracellular delivery method that outperforms the existing methods must be established. Here, we present a versatile intracellular delivery platform that leverages intrinsic inertial flow developed in a T-junction microchannel with a cavity. The elongational recirculating flows exerted in the channel substantially stretch the cells, creating discontinuities on cell membranes, thereby enabling highly effective internalization of nanomaterials, such as plasmid DNA (7.9 kbp), mRNA, siRNA, quantum dots, and large nanoparticles (300 nm), into different cell types, including hard-to-transfect primary stem and immune cells. We identified that the internalization mechanism of external cargos during the cell elongation-restoration process is achieved by both passive diffusion and convection-based rapid solution exchange across the cell membrane. Using fluidic cell mechanoporation, we demonstrated a transfection yield superior to that of other state-of-the-art microfluidic platforms as well as current benchtop techniques, including lipofectamine and electroporation. In summary, the intracellular delivery platform developed in the present study enables a high delivery efficiency (up to 98%), easy operation (single-step), low material cost (<$1), high scalability (1 × 106 cells/min), minimal cell perturbation (up to 90%), and cell type/cargo insensitive delivery, providing a practical and robust approach anticipated to critically impact cell-based research.
Collapse
Affiliation(s)
- Jeongsoo Hur
- School of Biomedical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Inae Park
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Kyung Min Lim
- Department of Stem Cell and Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Republic of Korea
| | - Junsang Doh
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Ssang-Goo Cho
- Department of Stem Cell and Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Republic of Korea
| | - Aram J Chung
- School of Biomedical Engineering, Korea University, Seoul 02841, Republic of Korea
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
42
|
Belling JN, Heidenreich LK, Park JH, Kawakami LM, Takahashi J, Frost IM, Gong Y, Young TD, Jackman JA, Jonas SJ, Cho NJ, Weiss PS. Lipid-Bicelle-Coated Microfluidics for Intracellular Delivery with Reduced Fouling. ACS APPLIED MATERIALS & INTERFACES 2020; 12:45744-45752. [PMID: 32940030 PMCID: PMC8188960 DOI: 10.1021/acsami.0c11485] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Innovative technologies for intracellular delivery are ushering in a new era for gene editing, enabling the utilization of a patient's own cells for stem cell and immunotherapies. In particular, cell-squeezing platforms provide unconventional forms of intracellular delivery, deforming cells through microfluidic constrictions to generate transient pores and to enable effective diffusion of biomolecular cargo. While these devices are promising gene-editing platforms, they require frequent maintenance due to the accumulation of cellular debris, limiting their potential for reaching the throughputs necessary for scalable cellular therapies. As these cell-squeezing technologies are improved, there is a need to develop next-generation platforms with higher throughput and longer lifespan, importantly, avoiding the buildup of cell debris and thus channel clogging. Here, we report a versatile strategy to coat the channels of microfluidic devices with lipid bilayers based on noncovalent lipid bicelle technology, which led to substantial improvements in reducing cell adhesion and protein adsorption. The antifouling properties of the lipid bilayer coating were evaluated, including membrane uniformity, passivation against nonspecific protein adsorption, and inhibition of cell attachment against multiple cell types. This surface functionalization approach was applied to coat constricted microfluidic channels for the intracellular delivery of fluorescently labeled dextran and plasmid DNA, demonstrating significant reductions in the accumulation of cell debris. Taken together, our work demonstrates that lipid bicelles are a useful tool to fabricate antifouling lipid bilayer coatings in cell-squeezing devices, resulting in reduced nonspecific fouling and cell clogging to improve performance.
Collapse
Affiliation(s)
- Jason N Belling
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Liv K Heidenreich
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Jae Hyeon Park
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Lisa M Kawakami
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Jack Takahashi
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Isaura M Frost
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Yao Gong
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Thomas D Young
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Joshua A Jackman
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- SKKU-UCLA-NTU Precision Biology Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Steven J Jonas
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, United States
- Children's Discovery and Innovation Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research, California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Nam-Joon Cho
- SKKU-UCLA-NTU Precision Biology Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Paul S Weiss
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
- SKKU-UCLA-NTU Precision Biology Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
43
|
Ding S, Khan AI, Cai X, Song Y, Lyu Z, Du D, Dutta P, Lin Y. Overcoming blood-brain barrier transport: Advances in nanoparticle-based drug delivery strategies. MATERIALS TODAY (KIDLINGTON, ENGLAND) 2020; 37:112-125. [PMID: 33093794 PMCID: PMC7575138 DOI: 10.1016/j.mattod.2020.02.001] [Citation(s) in RCA: 185] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The Blood-Brain Barrier (BBB), a unique structure in the central nervous system (CNS), protects the brain from bloodborne pathogens by its excellent barrier properties. Nevertheless, this barrier limits therapeutic efficacy and becomes one of the biggest challenges in new drug development for neurodegenerative disease and brain cancer. Recent breakthroughs in nanotechnology have resulted in various nanoparticles (NPs) as drug carriers to cross the BBB by different methods. This review presents the current understanding of advanced NP-mediated non-invasive drug delivery for the treatment of neurological disorders. Herein, the complex compositions and special characteristics of BBB are elucidated exhaustively. Moreover, versatile drug nanocarriers with their recent applications and their pathways on different drug delivery strategies to overcome the formidable BBB obstacle are briefly discussed. In terms of significance, this paper provides a general understanding of how various properties of nanoparticles aid in drug delivery through BBB and usher the development of novel nanotechnology-based nanomaterials for cerebral disease therapies.
Collapse
Affiliation(s)
| | | | - Xiaoli Cai
- School of Mechanical and Materials Engineering, Washington State University, PO Box 642920 Pullman, Washington 99164, United States
| | - Yang Song
- School of Mechanical and Materials Engineering, Washington State University, PO Box 642920 Pullman, Washington 99164, United States
| | - Zhaoyuan Lyu
- School of Mechanical and Materials Engineering, Washington State University, PO Box 642920 Pullman, Washington 99164, United States
| | - Dan Du
- School of Mechanical and Materials Engineering, Washington State University, PO Box 642920 Pullman, Washington 99164, United States
| | - Prashanta Dutta
- School of Mechanical and Materials Engineering, Washington State University, PO Box 642920 Pullman, Washington 99164, United States
| | - Yuehe Lin
- School of Mechanical and Materials Engineering, Washington State University, PO Box 642920 Pullman, Washington 99164, United States
| |
Collapse
|
44
|
Liu J, Fraire JC, De Smedt SC, Xiong R, Braeckmans K. Intracellular Labeling with Extrinsic Probes: Delivery Strategies and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2000146. [PMID: 32351015 DOI: 10.1002/smll.202000146] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/29/2020] [Accepted: 03/16/2020] [Indexed: 06/11/2023]
Abstract
Extrinsic probes have outstanding properties for intracellular labeling to visualize dynamic processes in and of living cells, both in vitro and in vivo. Since extrinsic probes are in many cases cell-impermeable, different biochemical, and physical approaches have been used to break the cell membrane barrier for direct delivery into the cytoplasm. In this Review, these intracellular delivery strategies are discussed, briefly explaining the mechanisms and how they are used for live-cell labeling applications. Methods that are discussed include three biochemical agents that are used for this purpose-purpose-different nanocarriers, cell penetrating peptides and the pore-foraming bacterial toxin streptolysin O. Most successful intracellular label delivery methods are, however, based on physical principles to permeabilize the membrane and include electroporation, laser-induced photoporation, micro- and nanoinjection, nanoneedles or nanostraws, microfluidics, and nanomachines. The strengths and weaknesses of each strategy are discussed with a systematic comparison provided. Finally, the extrinsic probes that are reported for intracellular labeling so-far are summarized, together with the delivery strategies that are used and their performance. This combined information should provide for a useful guide for choosing the most suitable delivery method for the desired probes.
Collapse
Affiliation(s)
- Jing Liu
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ghent, B-9000, Belgium
| | - Juan C Fraire
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ghent, B-9000, Belgium
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ghent, B-9000, Belgium
- Centre for Advanced Light Microscopy, Ghent University, Ghent, B-9000, Belgium
- Joint Laboratory of Advanced Biomedical Technology (NFU-UGent), College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing, 210037, P. R. China
| | - Ranhua Xiong
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ghent, B-9000, Belgium
| | - Kevin Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ghent, B-9000, Belgium
- Centre for Advanced Light Microscopy, Ghent University, Ghent, B-9000, Belgium
| |
Collapse
|
45
|
Nejadnik H, Jung KO, Theruvath AJ, Kiru L, Liu A, Wu W, Sulchek T, Pratx G, Daldrup-Link HE. Instant labeling of therapeutic cells for multimodality imaging. Theranostics 2020; 10:6024-6034. [PMID: 32483435 PMCID: PMC7255004 DOI: 10.7150/thno.39554] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 03/03/2020] [Indexed: 12/21/2022] Open
Abstract
Autologous therapeutic cells are typically harvested and transplanted in one single surgery. This makes it impossible to label them with imaging biomarkers through classical transfection techniques in a laboratory. To solve this problem, we developed a novel microfluidic device, which provides highly efficient labeling of therapeutic cells with imaging biomarkers through mechanoporation. Methods: Studies were performed with a new, custom-designed microfluidic device, which contains ridges, which compress adipose tissue-derived stem cells (ADSCs) during their device passage. Cell relaxation after compression leads to cell volume exchange for convective transfer of nanoparticles and nanoparticle uptake into the cell. ADSCs were passed through the microfluidic device doped with iron oxide nanoparticles and 18F-fluorodeoxyglucose (FDG). The cellular nanoparticle and radiotracer uptake was evaluated with DAB-Prussian blue, fluorescent microscopy, and inductively coupled plasma spectrometry (ICP). Labeled and unlabeled ADSCs were imaged in vitro as well as ex vivo in pig knee specimen with magnetic resonance imaging (MRI) and positron emission tomography (PET). T2 relaxation times and radiotracer signal were compared between labeled and unlabeled cell transplants using Student T-test with p<0.05. Results: We report significant labeling of ADSCs with iron oxide nanoparticles and 18F-FDG within 12+/-3 minutes. Mechanoporation of ADSCs with our microfluidic device led to significant nanoparticle (> 1 pg iron per cell) and 18F-FDG uptake (61 mBq/cell), with a labeling efficiency of 95%. The labeled ADSCs could be detected with MRI and PET imaging technologies: Nanoparticle labeled ADSC demonstrated significantly shorter T2 relaxation times (24.2±2.1 ms) compared to unlabeled cells (79.6±0.8 ms) on MRI (p<0.05) and 18F-FDG labeled ADSC showed significantly higher radiotracer uptake (614.3 ± 9.5 Bq / 1×104 cells) compared to controls (0.0 ± 0.0 Bq/ 1×104 cells) on gamma counting (p<0.05). After implantation of dual-labeled ADSCs into pig knee specimen, the labeled ADSCs revealed significantly shorter T2 relaxation times (41±0.6 ms) compared to unlabeled controls (90±1.8 ms) (p<0.05). Conclusion: The labeling of therapeutic cells with our new microfluidic device does not require any chemical intervention, therefore it is broadly and immediately clinically applicable. Cellular labeling using mechanoporation can improve our understanding of in vivo biodistributions of therapeutic cells and ultimately improve long-term outcomes of therapeutic cell transplants.
Collapse
Affiliation(s)
- Hossein Nejadnik
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, CA, 94305, USA
| | - Kyung Oh Jung
- Department of Radiation Oncology, Stanford University, CA, 94305, USA
| | - Ashok J. Theruvath
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, CA, 94305, USA
- Department of Diagnostic and Interventional Radiology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Louise Kiru
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, CA, 94305, USA
| | - Anna Liu
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Wei Wu
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, CA, 94305, USA
| | - Todd Sulchek
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Guillem Pratx
- Department of Radiation Oncology, Stanford University, CA, 94305, USA
| | - Heike E. Daldrup-Link
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, CA, 94305, USA
- Department of Pediatrics, Stanford University, CA, 94305, USA
| |
Collapse
|
46
|
Kang G, Carlson DW, Kang TH, Lee S, Haward SJ, Choi I, Shen AQ, Chung AJ. Intracellular Nanomaterial Delivery via Spiral Hydroporation. ACS NANO 2020; 14:3048-3058. [PMID: 32069037 DOI: 10.1021/acsnano.9b07930] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In recent nanobiotechnology developments, a wide variety of functional nanomaterials and engineered biomolecules have been created, and these have numerous applications in cell biology. For these nanomaterials to fulfill their promises completely, they must be able to reach their biological targets at the subcellular level and with a high level of specificity. Traditionally, either nanocarrier- or membrane disruption-based method has been used to deliver nanomaterials inside cells; however, these methods are suboptimal due to their toxicity, inconsistent delivery, and low throughput, and they are also labor intensive and time-consuming, highlighting the need for development of a next-generation, intracellular delivery system. This study reports on the development of an intracellular nanomaterial delivery platform, based on unexpected cell-deformation phenomena via spiral vortex and vortex breakdown exerted in the cross- and T-junctions at moderate Reynolds numbers. These vortex-induced cell deformation and sequential restoration processes open cell membranes transiently, allowing effective and robust intracellular delivery of nanomaterials in a single step without the aid of carriers or external apparatus. By using the platform described here (termed spiral hydroporator), we demonstrate the delivery of different nanomaterials, including gold nanoparticles (200 nm diameter), functional mesoporous silica nanoparticles (150 nm diameter), dextran (hydrodynamic diameters between 2-55 nm), and mRNA, into different cell types. We demonstrate here that the system is highly efficient (up to 96.5%) with high throughput (up to 1 × 106 cells/min) and rapid delivery (∼1 min) while maintaining high levels of cell viability (up to 94%).
Collapse
Affiliation(s)
- GeoumYoung Kang
- Department of Bio-convergence Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Daniel W Carlson
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa 904-0495, Japan
| | - Tae Ho Kang
- Department of Life Science, University of Seoul, Seoul 02504, Republic of Korea
| | - Seungki Lee
- Department of Life Science, University of Seoul, Seoul 02504, Republic of Korea
| | - Simon J Haward
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa 904-0495, Japan
| | - Inhee Choi
- Department of Life Science, University of Seoul, Seoul 02504, Republic of Korea
| | - Amy Q Shen
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa 904-0495, Japan
| | - Aram J Chung
- Department of Bio-convergence Engineering, Korea University, Seoul 02841, Republic of Korea
- Department of Bioengineering, Korea University, Seoul 02841, Republic of Korea
- School of Biomedical Engineering, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
47
|
Zheng Y, Wu Y, Zhou Y, Wu J, Wang X, Qu Y, Wang Y, Zhang Y, Yu Q. Photothermally Activated Electrospun Nanofiber Mats for High-Efficiency Surface-Mediated Gene Transfection. ACS APPLIED MATERIALS & INTERFACES 2020; 12:7905-7914. [PMID: 31976653 DOI: 10.1021/acsami.9b20221] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Although electrospun nanofibers have been used to deliver functional genes into cells attached to the surface of the nanofibers, the controllable release of genes from nanofibers and the subsequent gene transfection with high efficiency remain challenging. Herein, photothermally activated electrospun hybrid nanofibers are developed for high-efficiency surface-mediated gene transfection. Nanofibers with a core-sheath structure are fabricated using coaxial electrospinning. Plasmid DNA (pDNA) encoding basic fibroblast growth factor is encapsulated in the fiber core, and gold nanorods with photothermal properties are embedded in the fiber sheath composed of poly(l-lactic acid) and gelatin. The nanofiber mats show excellent and controllable photothermal response under near-infrared irradiation. The permeability of the nanofibers is thereby enhanced to allow the rapid release of pDNA. In addition, transient holes are formed in the membranes of NIH-3T3 fibroblasts attached to the mat, thus facilitating delivery and transfection with pDNA and leading to increased proliferation and migration of the transfected cells in vitro. This work offers a facile and reliable method for the regulation of cell function and cell behavior via localized gene transfection, showing great potential for application in tissue engineering and cell-based therapy.
Collapse
Affiliation(s)
- Yanjun Zheng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , P. R. China
| | - Yong Wu
- Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital , Soochow University , Suzhou 215007 , P. R. China
| | - Yang Zhou
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , P. R. China
| | - Jingxian Wu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , P. R. China
| | - Xiaoyu Wang
- Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital , Soochow University , Suzhou 215007 , P. R. China
| | - Yangcui Qu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , P. R. China
| | - Yaran Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , P. R. China
| | - Yanxia Zhang
- Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital , Soochow University , Suzhou 215007 , P. R. China
| | - Qian Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , P. R. China
| |
Collapse
|
48
|
Liu A, Yu T, Young K, Stone N, Hanasoge S, Kirby TJ, Varadarajan V, Colonna N, Liu J, Raj A, Lammerding J, Alexeev A, Sulchek T. Cell Mechanical and Physiological Behavior in the Regime of Rapid Mechanical Compressions that Lead to Cell Volume Change. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1903857. [PMID: 31782912 PMCID: PMC7012384 DOI: 10.1002/smll.201903857] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 11/05/2019] [Indexed: 04/14/2023]
Abstract
Cells respond to mechanical forces by deforming in accordance with viscoelastic solid behavior. Studies of microscale cell deformation observed by high speed video microscopy have elucidated a new cell behavior in which sufficiently rapid mechanical compression of cells can lead to transient cell volume loss and then recovery. This work has discovered that the resulting volume exchange between the cell interior and the surrounding fluid can be utilized for efficient, convective delivery of large macromolecules (2000 kDa) to the cell interior. However, many fundamental questions remain about this cell behavior, including the range of deformation time scales that result in cell volume loss and the physiological effects experienced by the cell. In this study, a relationship is established between cell viscoelastic properties and the inertial forces imposed on the cell that serves as a predictor of cell volume loss across human cell types. It is determined that cells maintain nuclear envelope integrity and demonstrate low protein loss after the volume exchange process. These results define a highly controlled cell volume exchange mechanism for intracellular delivery of large macromolecules that maintains cell viability and function for invaluable downstream research and clinical applications.
Collapse
Affiliation(s)
- Anna Liu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Drive, Atlanta, GA, 30332-0535, USA
| | - Tong Yu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Drive, Atlanta, GA, 30332-0535, USA
| | - Katherine Young
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Drive, Atlanta, GA, 30332-0535, USA
| | - Nicholas Stone
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive, Atlanta, GA, 30332-0405, USA
| | - Srinivas Hanasoge
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive, Atlanta, GA, 30332-0405, USA
| | - Tyler J. Kirby
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Vikram Varadarajan
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Drive, Atlanta, GA, 30332-0535, USA
| | - Nicholas Colonna
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Drive, Atlanta, GA, 30332-0535, USA
| | - Janet Liu
- Aragon High School, 900 Alameda de las Pulgas, San Mateo, CA, 94402, USA
| | - Abhishek Raj
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive, Atlanta, GA, 30332-0405, USA
| | - Jan Lammerding
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Alexander Alexeev
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive, Atlanta, GA, 30332-0405, USA
| | - Todd Sulchek
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive, Atlanta, GA, 30332-0405, USA
| |
Collapse
|
49
|
Modaresi S, Pacelli S, Subham S, Dathathreya K, Paul A. Intracellular Delivery of Exogenous Macromolecules into Human Mesenchymal Stem Cells by Double Deformation of the Plasma Membrane. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900130] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Saman Modaresi
- Department of Chemical and Petroleum EngineeringBioIntel Research LaboratoryUniversity of Kansas Lawrence KS 66045 USA
| | - Settimio Pacelli
- Department of Chemical and Petroleum EngineeringBioIntel Research LaboratoryUniversity of Kansas Lawrence KS 66045 USA
| | - Siddharth Subham
- Department of Chemical and Petroleum EngineeringBioIntel Research LaboratoryUniversity of Kansas Lawrence KS 66045 USA
| | - Kavya Dathathreya
- Department of Chemical and Petroleum EngineeringBioIntel Research LaboratoryUniversity of Kansas Lawrence KS 66045 USA
| | - Arghya Paul
- Department of Chemical and Petroleum EngineeringBioIntel Research LaboratoryUniversity of Kansas Lawrence KS 66045 USA
| |
Collapse
|
50
|
Kizer ME, Deng Y, Kang G, Mikael PE, Wang X, Chung AJ. Hydroporator: a hydrodynamic cell membrane perforator for high-throughput vector-free nanomaterial intracellular delivery and DNA origami biostability evaluation. LAB ON A CHIP 2019; 19:1747-1754. [PMID: 30964485 DOI: 10.1039/c9lc00041k] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The successful intracellular delivery of exogenous macromolecules is crucial for a variety of applications ranging from basic biology to the clinic. However, traditional intracellular delivery methods such as those relying on viral/non-viral nanocarriers or physical membrane disruptions suffer from low throughput, toxicity, and inconsistent delivery performance and are time-consuming and/or labor-intensive. In this study, we developed a single-step hydrodynamic cell deformation-induced intracellular delivery platform named "hydroporator" without the aid of vectors or a complicated/costly external apparatus. By utilizing only fluid inertia, the platform focuses, guides, and stretches cells robustly without clogging. This rapid hydrodynamic cell deformation leads to both convective and diffusive delivery of external (macro)molecules into the cell through transient plasma membrane discontinuities. Using this hydroporation approach, highly efficient (∼90%), high-throughput (>1 600 000 cells per min), and rapid delivery (∼1 min) of different (macro)molecules into a wide range of cell types was achieved while maintaining high cell viability. Taking advantage of the ability of this platform to rapidly deliver large molecules, we also systematically investigated the temporal biostability of vanilla DNA origami nanostructures in living cells for the first time. Experiments using two DNA origami (tube- and donut-shaped) nanostructures revealed that these nanostructures can maintain their structural integrity in living cells for approximately 1 h after delivery, providing new opportunities for the rapid characterization of intracellular DNA biostability.
Collapse
Affiliation(s)
- Megan E Kizer
- Department of Chemistry and Chemical Biology, Centre for Biotechnology and Interdisciplinary Studies (CBIS), Rensselaer Polytechnic Institute (RPI), Troy, NY 12180, USA.
| | | | | | | | | | | |
Collapse
|