1
|
O'Sullivan CC, Larson NL, Vierkant RA, Smith ML, Chauhan C, Couch FJ, Olson JE, Loprinzi CL, Ruddy KJ. Advocate-BREAST: advocates and patients' advice to enhance breast cancer care delivery, patient experience and patient centered research by 2025. Arch Public Health 2024; 82:119. [PMID: 39113124 PMCID: PMC11308547 DOI: 10.1186/s13690-024-01351-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 07/31/2024] [Indexed: 08/10/2024] Open
Abstract
PURPOSE The aims of the Advocate-BREAST project are to study and improve the breast cancer (BC) patient experience through education and patient-centered research. METHODS In December 2021, an electronic REDCap survey was circulated to 6,918 BC survivors (stage 0-4) enrolled in the Mayo Clinic Breast Disease Registry. The questionnaire asked about satisfaction with BC care delivery, and education and support receive(d) regarding BC linked concerns. Patients also ranked Quality Improvement (QI) proposals. RESULTS The survey received 2,437 responses. 18% had Ductal Carcinoma in Situ, 81% had early breast cancer (EBC), i.e. stage 1-3, and 2% had metastatic breast cancer (MBC). Mean age was 64 (SD 11.8), and mean time since diagnosis was 93 months (SD 70.2). 69.3% of patients received all care at Mayo Clinic. The overall experience of care was good (> 90%). The main severe symptoms recalled in year 1 were alopecia, eyebrow/eyelash thinning, hot flashes, sexual dysfunction, and cognitive issues. The main concerns recalled were fear of BC recurrence/spread; loved ones coping; fear of dying, and emotional health. Patients were most dissatisfied with information regarding sexual dysfunction, eyebrow/eyelash thinning, peripheral neuropathy, and on side effects of immunotherapy/targeted therapies. Top ranking QI projects were: i) Lifetime access to concise educational resources; ii) Holistic support programs for MBC and iii) Wellness Programs for EBC and MBC. CONCLUSIONS Patients with early and advanced BC desire psychological support, concise educational resources, and holistic care. IMPLICATIONS Focused research and QI initiatives in these areas will improve the BC patient experience.
Collapse
Affiliation(s)
- Ciara C O'Sullivan
- Department of Oncology, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA.
| | - Nicole L Larson
- Department of Quantitative Health Sciences, Mayo Clinic College of Medicine and Science, Mayo Clinic, Rochester, MN, USA
| | - Robert A Vierkant
- Department of Quantitative Health Sciences, Mayo Clinic College of Medicine and Science, Mayo Clinic, Rochester, MN, USA
| | - Mary Lou Smith
- Research Advocacy Network, Plano, TX, USA
- Patient Advocate, Mayo Clinic Breast Cancer Specialized Program of Research Excellence (SPORE), Mayo Clinic, Rochester, MN, USA
| | - Cynthia Chauhan
- Patient Advocate, Mayo Clinic Breast Cancer Specialized Program of Research Excellence (SPORE), Mayo Clinic, Rochester, MN, USA
| | - Fergus J Couch
- Department of Experimental Pathology & Laboratory Medicine, Mayo Clinic, Rochester, MN, USA
| | - Janet E Olson
- Department of Quantitative Health Sciences, Mayo Clinic College of Medicine and Science, Mayo Clinic, Rochester, MN, USA
| | - Charles L Loprinzi
- Department of Oncology, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
| | - Kathryn J Ruddy
- Department of Oncology, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
| |
Collapse
|
2
|
Tseng LM, Chen FM, Chen ST, Cheng FTF, Chao TY, Dai MS, Kao WY, Yeh MH, Chen DR, Liu LC, Wang HC, Chang HT, Wang BW, Yu JC, Chen SC, Liao GS, Hou MF. Comparison of the Efficacy, Safety, and Quality of Life of Pegylated Liposomal Doxorubicin-Cyclophosphamide versus Epirubicin-Cyclophosphamide in Patients with Early-Stage HER2-Negative Breast Cancer: A Prospective, Randomized, Multicenter, Phase II Study. Oncol Res Treat 2024; 47:484-495. [PMID: 39033747 DOI: 10.1159/000540369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/10/2024] [Indexed: 07/23/2024]
Abstract
INTRODUCTION This multicenter, phase II randomized, non-inferiority study reports from the first prospective two-armed randomized control trial that compared the efficacy, safety, and quality of life (QoL) of pegylated liposomal doxorubicin (PLD)-based and epirubicin-based as adjuvant chemotherapy for stage I-II human epidermal growth factor receptor 2 (HER2)-negative breast cancer. METHODS Patients with stage I/II HER2-negative breast cancer received PLD (37.5 mg/m2, Q3W, 5 cycles, LC arm) plus cyclophosphamide (600 mg/m2) or epirubicin (90 mg/m2, Q3W, 4 cycles, EC arm) plus cyclophosphamide (600 mg/m2). Randomization was stratified by lymph node and ER and PR status. The primary endpoint was disease-free survival (DFS), and secondary endpoints were overall survival (OS), safety profiles, and QoL. QoL was assessed using the EORTC-QLQ-C30 and QLQ-BR23 questionnaires. RESULTS A total of 256 patients were assigned to LC (n = 148) and EC (n = 108). There was no difference in 5-year DFS and OS rate between the two groups. LC-based adjuvant regimens had significantly less alopecia and low-grade 3-4 hematologic adverse events (AEs). Significantly improved QoL was observed in the LC arm during and after treatment for symptoms including fatigue, nausea and vomiting, and systemic therapy side effects. CONCLUSION Comparable efficacy and safety between adjuvant PLD and epirubicin for stage I-II HER2-negative breast cancer was observed. There was no difference in the 5-year DFS and OS rates between the two treatment arms. However, low-grade 3-4 AEs and a trend of favorable QoL symptom scales were observed in the LC arm, suggesting that PLD-containing regimen could become a new standard treatment for early-stage HER2-negative breast cancer patients.
Collapse
Affiliation(s)
- Ling-Ming Tseng
- Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Fang Ming Chen
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Chun-Ho Memorial Hospital, Kaohsiung, Taiwan
- Department of Surgery, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
- Department of Surgery, Faculty and College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shou-Tung Chen
- Comprehensive Breast Cancer Center, Changhua Christian Hospital, Changhua City, Taiwan
| | - Fiona Tsui-Fen Cheng
- Breast Cancer Center, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
- Fu Jen Catholic University, School of Medicine, Taipei, Taiwan
| | - Tsu-Yi Chao
- Division of Hematology/Oncology, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan
| | - Ming-Shen Dai
- Hematology/Oncology Department, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Woei-Yau Kao
- Division of Hematology-Oncology, Department of Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Ming-Hsin Yeh
- Institute of Medicine, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Surgery, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Dar-Ren Chen
- Comprehensive Breast Cancer Center, Changhua Christian Hospital, Changhua City, Taiwan
| | - Liang-Chih Liu
- Department of Surgery, China Medical University Hospital, Taichung, Taiwan
- School of Medicine College of Medicine, China Medical University, Taichung, Taiwan
| | - Hewi Chung Wang
- Department of Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Hong-Tai Chang
- Department of Surgery, Shin-Huey-Shin Hospital, Kaohsiung, Taiwan
| | - Being Whey Wang
- Division of General Surgery, Department of Surgery, Veteran General Hospital-Kaohsiung, Kaohsiung, Taiwan
| | - Jyh-Cherng Yu
- General Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shin Cheh Chen
- Breast Surgery Division, Department of Surgery, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Guo-Shiou Liao
- General Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Ming-Feng Hou
- Division of Breast Oncology and Surgery, Kaohsiung Medical University Chung-Ho Memorial Hospital, Kaohsiung, Taiwan
| |
Collapse
|
3
|
Wang Y, Sun Y, Wang F, Wang H, Hu J. Ferroptosis induction via targeting metabolic alterations in triple-negative breast cancer. Biomed Pharmacother 2023; 169:115866. [PMID: 37951026 DOI: 10.1016/j.biopha.2023.115866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/04/2023] [Accepted: 11/07/2023] [Indexed: 11/13/2023] Open
Abstract
Triple-negative breast cancer (TNBC), the most aggressive form of breast cancer, presents severe threats to women's health. Therefore, it is critical to find novel treatment approaches. Ferroptosis, a newly identified form of programmed cell death, is marked by the buildup of lipid reactive oxygen species (ROS) and high iron concentrations. According to previous studies, ferroptosis sensitivity can be controlled by a number of metabolic events in cells, such as amino acid metabolism, iron metabolism, and lipid metabolism. Given that TNBC tumors are rich in iron and lipids, inducing ferroptosis in these tumors is a potential approach for TNBC treatment. Notably, the metabolic adaptability of cancer cells allows them to coordinate an attack on one or more metabolic pathways to initiate ferroptosis, offering a novel perspective to improve the high drug resistance and clinical therapy of TNBC. However, a clear picture of ferroptosis in TNBC still needs to be completely revealed. In this review, we provide an overview of recent advancements regarding the connection between ferroptosis and amino acid, iron, and lipid metabolism in TNBC. We also discuss the probable significance of ferroptosis as an innovative target for chemotherapy, radiotherapy, immunotherapy, nanotherapy and natural product therapy in TNBC, highlighting its therapeutic potential and application prospects.
Collapse
Affiliation(s)
- Yaru Wang
- The Department of Breast Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Yue Sun
- The Department of Breast Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Feiran Wang
- The Department of Breast Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Hongyi Wang
- The Department of Breast Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Jing Hu
- The Department of Breast Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China.
| |
Collapse
|
4
|
Qiao L, Dong C, Jia W, Ma B. NAA20 recruits Rin2 and promotes triple-negative breast cancer progression by regulating Rab5A-mediated activation of EGFR signaling. Cell Signal 2023; 112:110922. [PMID: 37827343 DOI: 10.1016/j.cellsig.2023.110922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/25/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype with poor prognosis and high mortality. To improve the prognosis and survival of TNBC patients, it is necessary to explore new targets and signaling pathways to develop novel therapies for TNBC treatment. N-α-acetyltransferase 20 (NAA20) is one of the catalytic subunits of N-terminal acetyltransferase (NatB). It has been reported that NAA20 played a critical role in cancer progression. In this study, we found that NAA20 expression was markedly higher in TNBC tissues than in paracancerous normal tissues using The Cancer Genome Atlas (TCGA) analysis. This result was further confirmed by qRT-PCR and immunohistochemistry (IHC). Knockdown of NAA20 significantly inhibited TNBC cell viability by CCK8 and colony formation assays and cell migration and invasion by Transwell assays. Additionally, NAA20 knockdown decreased the expression of EGFR in TNBC cells. Upon stimulation with EGF and knockdown of NAA20, EGFR internalization and degradation were observed by confocal microscopy. The western blot results showed that NAA20 knockdown down-regulated PI3K, AKT, and mTOR phosphorylation. Next, we further explored the underlying molecular mechanisms of NAA20 by co-immunoprecipitation (Co-IP). The results suggested that there was an interacting relationship between NAA20 and Rab5A. Over-expression of NAA20 could potentiate the expression of Rab5A. Furthermore, the knockdown of Rab5A inhibited EGFR expression and the phosphorylation of downstream signaling targets. NAA20 over-expression offset the knockdown effect of Rab5A and activated EGFR signaling. Finally, we constructed a xenograft mouse model transfected TNBC cells to investigate the role of NAA20 in vivo. NAA20 knockdown markedly suppressed tumor growth and decreased tumor volume and weight. In conclusion, our study demonstrated that NAA20, a novel target of TNBC, could promote TNBC progression by regulating Rab5A-mediated activation of EGFR signaling.
Collapse
Affiliation(s)
- Lei Qiao
- Department of Breast and Thyroid Surgery, Xinjiang Medical University affiliated Tumor Hospital, Urumqi, Xinjiang Uygur Autonomous Region 830000, China
| | - Chao Dong
- Department of Breast and Thyroid Surgery, Xinjiang Medical University affiliated Tumor Hospital, Urumqi, Xinjiang Uygur Autonomous Region 830000, China
| | - Wenlei Jia
- Department of Breast and Thyroid Surgery, Xinjiang Medical University affiliated Tumor Hospital, Urumqi, Xinjiang Uygur Autonomous Region 830000, China
| | - Binlin Ma
- Department of Breast and Thyroid Surgery, Xinjiang Medical University affiliated Tumor Hospital, Urumqi, Xinjiang Uygur Autonomous Region 830000, China.
| |
Collapse
|
5
|
Thuc Nguyen TM, Dinh Le R, Nguyen CV. Breast cancer molecular subtype and relationship with clinicopathological profiles among Vietnamese women: A retrospective study. Pathol Res Pract 2023; 250:154819. [PMID: 37748212 DOI: 10.1016/j.prp.2023.154819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/27/2023]
Abstract
BACKGROUND Molecular subtypes play an important role in predicting prognosis and guiding treatment for breast cancer. Having a better knowledge of ethnic molecular features is essential. OBJECTIVES Determining the distribution of various breast cancer molecular subtypes and investigating the relationship between these subtypes and clinicopathological features. METHODS Retrospective data was collected from Hanoi National Cancer Hospital and Bach Mai Hospital that included 274 women diagnosed with invasive breast cancer between January 2017 and June 2019. Patients were categorized into five subtypes according to the 2015 St. Gallen molecular classification. The variables analyzed were molecular subtypes and tumor-related characteristics. To evaluate the relationship between these subtypes and clinicopathological features, a Chi-squared test and Fisher exact test were performed. RESULTS The most prominent subtype was Luminal A (33.2%), followed by Luminal B/Her2- (19.7%) and Luminal B/Her2 + (17.5%), then HER2 overexpression (16.4%), whereas triple negative was the least popular subtype (13.1%). Particularly, 33.9% of all patients, including the Luminal B/Her2 + and the HER2 overexpressing groups, were Her2 positive. There was a statistically significant difference between molecular subtypes and histological type (p = 0.01), tumor grade (p < 0.001), but it was independent of age, tumor size, lymph node metastasis, and lymphovascular invasion. CONCLUSIONS In contrast to the triple negative variant, the Luminal A variant is the most common among Vietnamese women. The rate of positive tests for HER2 was rather high. These subtypes were closely related to tumor grade and histopathological type. Understanding the molecular subtypes and their relation to clinicopathological features helps clinicians with patient treatment, and prognosis. The application of the 2015 St. Gallen molecular classification should be recommended for use in clinical practice.
Collapse
Affiliation(s)
| | | | - Chu Van Nguyen
- Ha Noi Medical University, Viet Nam; National Cancer Hospital, Ha Noi, Viet Nam
| |
Collapse
|
6
|
Sadeghi M, Sadeghi S, Naghib SM, Garshasbi HR. A Comprehensive Review on Electrochemical Nano Biosensors for Precise Detection of Blood-Based Oncomarkers in Breast Cancer. BIOSENSORS 2023; 13:bios13040481. [PMID: 37185556 PMCID: PMC10136762 DOI: 10.3390/bios13040481] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023]
Abstract
Breast cancer (BC), one of the most common and life-threatening cancers, has the highest incidence rate among women. Early diagnosis of BC oncomarkers is considered the most effective strategy for detecting and treating BC. Finding the type and stage of BC in women as soon as possible is one of the greatest ways to stop its incidence and negative effects on medical treatment. The development of biosensors for early, sensitive, and selective detection of oncomarkers has recently attracted much attention. An electrochemical nano biosensor (EN) is a very suitable option for a powerful tool for cancer diagnosis. This comprehensive review provides information about the prevalence and pathobiology of BC, recent advances in clinically available BC oncomarkers, and the most common electrochemical nano biosensors for point-of-care (POC) detection of various BC oncomarkers using nanomaterial-based signal amplification techniques.
Collapse
Affiliation(s)
- Mahdi Sadeghi
- Biomaterials and Tissue Engineering Research Group, Interdisciplinary Technologies Department, Breast Cancer Research Center (BCRC), Motamed Cancer Institute, ACECR, Tehran 1517964311, Iran
| | - Somayeh Sadeghi
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran
| | - Hamid Reza Garshasbi
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran
| |
Collapse
|
7
|
Rafik ST, Vaidya JS, MacRobert AJ, Yaghini E. Organic Nanodelivery Systems as a New Platform in the Management of Breast Cancer: A Comprehensive Review from Preclinical to Clinical Studies. J Clin Med 2023; 12:jcm12072648. [PMID: 37048731 PMCID: PMC10095028 DOI: 10.3390/jcm12072648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/05/2023] [Accepted: 03/20/2023] [Indexed: 04/05/2023] Open
Abstract
Breast cancer accounts for approximately 25% of cancer cases and 16.5% of cancer deaths in women, and the World Health Organization predicts that the number of new cases will increase by almost 70% over the next two decades, mainly due to an ageing population. Effective diagnostic and treatment strategies are, therefore, urgently required for improving cure rates among patients since current therapeutic modalities have many limitations and side effects. Nanomedicine is evolving as a promising approach for cancer management, including breast cancer, and various types of organic and inorganic nanomaterials have been investigated for their role in breast cancer diagnosis and treatment. Following an overview on breast cancer characteristics and pathogenesis and challenges of the current treatment strategies, the therapeutic potential of biocompatible organic-based nanoparticles such as liposomes and polymeric micelles that have been tested in breast cancer models are reviewed. The efficacies of different drug delivery and targeting strategies are documented, ranging from synthetic to cell-derived nanoformulations together with a summary of the interaction of nanoparticles with externally applied energy such as radiotherapy. The clinical translation of nanoformulations for breast cancer treatment is summarized including those undergoing clinical trials.
Collapse
Affiliation(s)
- Salma T. Rafik
- Division of Surgery and Interventional Science, Faculty of Medical Sciences, University College London (UCL), London W1W 7TY, UK
- Department of Clinical Pharmacology, Faculty of Medicine, Alexandria University, Alexandria 21516, Egypt
| | - Jayant S. Vaidya
- Division of Surgery and Interventional Science, Faculty of Medical Sciences, University College London (UCL), London W1W 7TY, UK
| | - Alexander J. MacRobert
- Division of Surgery and Interventional Science, Faculty of Medical Sciences, University College London (UCL), London W1W 7TY, UK
| | - Elnaz Yaghini
- Division of Surgery and Interventional Science, Faculty of Medical Sciences, University College London (UCL), London W1W 7TY, UK
| |
Collapse
|
8
|
Long Non-coding RNA LINC01224 Promotes the Malignant Behaviors of Triple Negative Breast Cancer Cells via Regulating the miR-193a-5p/NUP210 Axis. Mol Biotechnol 2023; 65:624-636. [PMID: 36127622 DOI: 10.1007/s12033-022-00555-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 08/19/2022] [Indexed: 10/14/2022]
Abstract
Triple negative breast cancer (TNBC) is a prevalent malignant tumor in women and is characterized by high incidence and mortality. Current evidence has suggested that multiple long noncoding RNAs (lncRNAs) play regulatory roles in TNBC, while the specific mechanism of LINC01224 in TNBC remains unclear. In this study, LINC01224 was highly expressed in TNBC cells. Moreover, LINC01224 downregulation inhibited TNBC cell proliferation, migration, and invasion, and promoted cell apoptosis. Additionally, LINC01224 stabilized NUP210 mRNA through interaction with miR-193a-5p, thereby aggravating the malignant phenotypes of TNBC. Overall, LINC01224 functions as a tumor promoter for TNBC.
Collapse
|
9
|
Inhibition of cannabinoid receptor type 1 sensitizes triple-negative breast cancer cells to ferroptosis via regulating fatty acid metabolism. Cell Death Dis 2022; 13:808. [PMID: 36130940 PMCID: PMC9492666 DOI: 10.1038/s41419-022-05242-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/27/2022] [Accepted: 09/06/2022] [Indexed: 01/23/2023]
Abstract
Triple-negative breast cancer (TNBC) is a heterogeneous subtype of breast cancer that displays highly aggressive with poor prognosis. Owing to the limited targets and drugs for TNBC clinical therapy, it is necessary to investigate the factors regulating cancer progression and develop novel therapies for cancer treatment. Ferroptosis, a nonapoptotic form of programmed cell death characterized by accumulation of iron-dependent peroxidation of phospholipids, is regulated by cellular metabolism, redox homeostasis, and various cancer-related signaling pathways. Recently, considerable progress has been made in demonstrating the critical role of lipid metabolism in regulating ferroptosis, indicating potential combinational therapeutic strategies for cancer treatment. In this study, by drug combination screen of lipid metabolism compounds with ferroptosis inducers in decreasing TNBC cell viability, we found potent synergy of the CB1 antagonist rimonabant with erastin/(1 S, 3 R)-RSL3 (RSL3) in inhibiting TNBC cell growth both in vitro and in vivo via promoting the levels of lipid peroxides, malondialdehyde (MDA), 4-hydroxynonenal (4-HNE) and cytosolic reactive oxygen species (ROS) production, enhancing intracellular glutathione (GSH) depletion and inducing G1 cell cycle arrest. We identified that inhibition of CB1 promoted the effect of erastin/RSL3 on inducing ferroptosis and enhanced their inhibitory effect on tumor growth. Using RNA-Seq, fatty acid analyses and functional assays, we found that CB1 regulated stearoyl-CoA desaturase 1 (SCD1)- and fatty acyl desaturase 2 (FADS2)-dependent fatty acid metabolism via phosphatidylinositol 3 kinase (PI3K)-AKT and mitogen-activated protein kinase (MAPK) signaling pathways to modulate ferroptosis sensitivity in TNBC cells. These data demonstrate that dual targeting of CB1 and ferroptosis could be a promising therapeutic strategy for TNBC.
Collapse
|
10
|
Yang C, Liu L, Gao C, Zhang G, Zhang Y, Zhang S, Li J, Liu Y. Circ_0,007,331 Promotes the PTX Resistance and Progression of Breast Cancer via miR-200b-3p/ANLN. J Surg Res 2022; 279:619-632. [PMID: 35926312 DOI: 10.1016/j.jss.2022.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 10/31/2022]
Abstract
INTRODUCTION The objective of our study was to explore the expression pattern of circular ribonucleic acid (RNA)_0,007,331 (circ_0,007,331) in breast cancer (BC) and its functional association with cellular paclitaxel (PTX) resistance and proliferation, migration, invasion and apoptosis. METHODS Real-time quantitative polymerase chain reaction was applied to measure RNA expression. The PTX resistance of BC cells was analyzed by cell counting kit-8 assay. Flow cytometry was applied to assess cell cycle progression and cell apoptosis. Transwell assays were utilized to analyze cell migration and invasion abilities. Protein expression was determined by Western blot assay. The target relationship between microRNA-200b-3p (miR-200b-3p) and circ_0,007,331 or Anillin (ANLN) was verified by dual-luciferase reporter assay and RNA-pull down assay. The in vivo role of circ_0,007,331 was analyzed using xenograft tumor model. RESULTS Circ_0,007,331 expression was elevated in PTX-resistant BC cell lines relative to parental BC cell lines. Circ_0,007,331 contributed to the PTX resistance, proliferation, migration, invasion and suppressed the apoptosis of BC cells. Circ_0,007,331 interacted with miR-200b-3p in BC cells. Circ_0,007,331 silencing-mediated effects in BC cells were largely overturned by the knockdown of miR-200b-3p. ANLN was a target of miR-200b-3p in BC cells. Circ_0,007,331 silencing reduced ANLN expression partly through upregulating miR-200b-3p in BC cells. miR-200b-3p overexpression-induced effects in BC cells were largely counteracted by the accumulation of ANLN. Circ_0,007,331 silencing aggravated PTX-mediated inhibitory effect on tumor growth in vivo. CONCLUSIONS Circ_0,007,331 contributed to the PTX resistance, proliferation and motility and inhibited the apoptosis of BC cells through mediating miR-200b-3p/ANLN signaling.
Collapse
Affiliation(s)
- Chao Yang
- Department of Breast Cancer, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Liang Liu
- Department of Tumor Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Chao Gao
- Department of Radiotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Geng Zhang
- Department of Breast Cancer, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yanshou Zhang
- Department of Breast Cancer, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Shuo Zhang
- Department of Breast Cancer, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jingping Li
- Department of Breast Cancer, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yunjiang Liu
- Department of Breast Cancer, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| |
Collapse
|
11
|
Khandalavala B, Khandalavala J. Breast Cancer. Fam Med 2022. [DOI: 10.1007/978-3-030-54441-6_152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Development of Breast Cancer Spheroids to Evaluate Cytotoxic Response to an Anticancer Peptide. Pharmaceutics 2021; 13:pharmaceutics13111863. [PMID: 34834277 PMCID: PMC8619419 DOI: 10.3390/pharmaceutics13111863] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 12/13/2022] Open
Abstract
Breast cancer (BC) is the most commonly diagnosed cancer in women and one of the most common causes of cancer-related deaths. Despite intense research efforts, BC treatment still remains challenging. Improved drug development strategies are needed for impactful benefit to patients. Current preclinical studies rely mostly on cell-based screenings, using two-dimensional (2D) cell monolayers that do not mimic in vivo tumors properly. Herein, we explored the development and characterization of three-dimensional (3D) models, named spheroids, of the most aggressive BC subtypes (triple-negative breast cancer-TNBC; and human-epidermal growth receptor-2-HER2+), using the liquid overlay technique with several selected cell lines. In these cell line-derived spheroids, we studied cell density, proliferation, ultrastructure, apoptosis, reactive oxygen species (ROS) production, and cell permeabilization (live/dead). The results showed a formation of compact and homogeneous spheroids on day 7 after seeding 2000 cells/well for MDA-MB-231 and 5000 cells/well for BT-20 and BT-474. Next, we compared the efficacy of a model anticancer peptide (ACP) in cell monolayers and spheroids. Overall, the results demonstrated spheroids to be less sensitive to treatment than cell monolayers, revealing the need for more robust models in drug development.
Collapse
|
13
|
A novel chemical inhibitor suppresses breast cancer cell growth and metastasis through inhibiting HPIP oncoprotein. Cell Death Discov 2021; 7:198. [PMID: 34326318 PMCID: PMC8322322 DOI: 10.1038/s41420-021-00580-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/07/2021] [Accepted: 07/03/2021] [Indexed: 11/09/2022] Open
Abstract
Increasing evidence suggests the pivotal role of hematopoietic pre-B-cell leukemia transcription factor (PBX)-interacting protein (HPIP/PBXIP1) in cancer development and progression, indicating that HPIP inhibition may be a promising target for cancer therapy. Here, we screened compounds inhibiting breast cancer cell proliferation with HPIP fused with green fluorescent protein as a reporter. A novel agent named TXX-1-10 derived from rimonabant, an antagonist of cannabinoid receptor 1 with anticancer effects, has been discovered to reduce HPIP expression and has greater inhibitory effects on breast cancer cell growth and metastasis in vitro and in vivo than rimonabant. TXX-1-10 regulates HPIP downstream targets, including several important kinases involved in cancer development and progression (e.g., AKT, ERK1/2, and FAK) as well as cell cycle-, apoptosis-, migration-, and epithelial-to-mesenchymal transition (EMT)-related genes. Consistent with the results of anticancer effects, genome-wide RNA sequencing indicated that TXX-1-10 has more significant effects on regulation of the expression of genes related to DNA replication, cell cycle, apoptosis, cell adhesion, cell migration, and invasion than rimonabant. In addition, TXX-1-10 significantly regulated genes associated with the cell growth and extracellular matrix organization, many of which were shown to be regulated by HPIP. Moreover, compared with rimonabant, TXX-1-10 greatly reduces blood-brain barrier penetrability to avoid adverse central depressive effects. These findings suggest that HPIP inhibition may be a useful strategy for cancer treatment and TXX-1-10 is a promising candidate drug for cancer therapy.
Collapse
|
14
|
HELVACI N, SARAÇOĞLU H, YILDIZ OG, KILIÇ E. The study of sirtuins in breast cancer patients before and after radiotherapy. Turk J Med Sci 2021; 51:1354-1359. [PMID: 33705642 PMCID: PMC8283445 DOI: 10.3906/sag-2012-195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/04/2021] [Indexed: 11/29/2022] Open
Abstract
Background/aim Targeting the new and unique proteins is an important medical strategy for treating breast cancer. It is quite important to find out proteins that have a role in the development of cancer. Sirtuins (SIRT) are well related in different physiological activities and connected with cancer. We aimed to determine the effect of radiotherapy on SIRT1 and SIRT2, which have not been yet been clarified as a tumor suppressor or promoter. Materials and methods Twenty-two women with nonmetastatic breast cancer enrolled in the study. Blood samples were taken before and after radiotherapy, soluble SIRT1 and SIRT2 levels were determined with ELISA kits. Results There was no difference in SIRT1 levels before and after radiotherapy (p = 0.548). SIRT2 levels were significantly found to be decreased after radiotherapy (p = 0.042). There was a strong and positive correlation before radiotherapy (p < 0.001), and a moderate and positive correlation after radiotherapy (p = 0.007) between SIRT1 and SIRT2. Conclusion These results suggest that SIRT2 may provide a new strategy for follow-up of breast cancer treatment. Additionally, by emphasizing the importance of SIRT2 in breast cancer, it opens ways to provide grounds for the development of the next generation of SIRT2-specific radiotracers. Finally, the most important thing, in fact, the positive correlation between SIRT1 and SIRT2 both before and after radiotherapy, appears to be clear evidence suggesting more oncogenic roles of sirtuins.
Collapse
Affiliation(s)
- Nazlı HELVACI
- Health Sciences Institute, Erciyes University, KayseriTurkey
| | - Hatice SARAÇOĞLU
- Department of Medical Biochemistry, Faculty of Medicine, Erciyes University, KayseriTurkey
| | - Oğuz Galip YILDIZ
- Department of Radiation Oncology, Faculty of Medicine, Erciyes University, KayseriTurkey
| | - Eser KILIÇ
- Department of Medical Biochemistry, Faculty of Medicine, Erciyes University, KayseriTurkey
| |
Collapse
|
15
|
Albakr L, Alqahtani FY, Aleanizy FS, Alomrani A, Badran M, Alhindas H, Al-Mohanna F. Improved delivery of miR-1296 loaded cationic nanoliposomes for effective suppression of triple negative breast cancer. Saudi Pharm J 2021; 29:446-455. [PMID: 34135670 PMCID: PMC8180610 DOI: 10.1016/j.jsps.2021.04.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 04/13/2021] [Indexed: 12/23/2022] Open
Abstract
Nowadays, microRNA is considered an attractive strategy for the effective treatment of cancer. A significant delivery of microRNA for cancer therapy remains a significant obstacle to target cancer cells. The restoring microRNA-1296 (miR-1296) has immense therapeutic efficacy in triple-negative breast cancer (TNBC). TNBC is an aggressive subtype of breast tumors with the progression of malignant transformation. This study aimed to develop a cationic nanoliposome that can serve as a miR-1296 carrier and studied its efficiency in TNBC. The efficacy of miR-1296 liposomes was evaluated on its apoptotic effect, cellular uptake, and potential chemotherapy sensitization in the TNBC cell line (MDA-MB-231). For in vitro viability study, the apoptotic effect was performed to validate protein expression using Alamar blue kit and western blot. The transfection of miR-1296 into TNBC cells was also investigated using cisplatin as a TNBC resistance drug. The fluorescent miR-1296-cy3 liposome was used for cellular uptake study. The miR-liposome was successfully prepared with a particle size of 123.6 ± 1.3 nm and encapsulation efficiency of 94.33%. A dose of 0.5 uM has significantly reduced the viability of MDA-MB-231 to be 33.45%±5.29 (P < 0.001). This result was validated by down-expression of CCND1, and PARP1, the miR-1296 receptor, and apoptosis marker. The image of the miR-1296-cy3 liposome showed cytoplasmic intracellular localization. It was found high sensitization of TNBC cell line for miR-1296 liposome compared to cisplatin (P < 0.001). Future in vivo research may answer questions concerning safety and stability. This study demonstrates that miR-191 liposomes may have promising clinical applications for TNBC therapy.
Collapse
Affiliation(s)
- Lamyaa Albakr
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Fulwah Yahya Alqahtani
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Fadilah Sfouq Aleanizy
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah Alomrani
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Badran
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hussein Alhindas
- Department of Cell Biology, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Futwan Al-Mohanna
- Department of Cell Biology, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| |
Collapse
|
16
|
Xie L, Feng G, Zhu P, Xie J. The effects of LncRNA PVT1 on clinical characteristics and survival in breast cancer patients: A protocol for systematic review and meta analysis. Medicine (Baltimore) 2021; 100:e24774. [PMID: 33663093 PMCID: PMC7909102 DOI: 10.1097/md.0000000000024774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 01/26/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Currently, an increasing number of long noncoding RNAs (LncRNAs) have been reported to be abnormally expressed in human carcinomas and play a vital role in tumourigenesis. Some studies were carried out to investigate the influence of the expression of plasmacytoma variant translocation 1 (PVT1) on prognosis and its clinical significance in patients with breast cancer, while the results were contradictory and uncertain. A meta-analysis was conducted with controversial data to accurately assess the issue. METHODS A detailed search of relevant researches was performed in Wanfang, Chinese Biomedical Literature Database, Chinese National Knowledge Infrastructure, Chongqing VIP Chinese Science and Technology Periodical Database, PubMed, Embase, and Web of Science. Two reviewers independently conducted data extraction and literature quality evaluation. Odd ratio and its 95% confidence intervals were applied to evaluate the relationship between PVT1 and clinicopathological characteristics of breast cancer patients. Hazard ratios and its 95% confidence intervals were adopted to assess the prognostic effects of PVT1 on overall survival and disease-free survival. Meta-analysis was conducted with Stata 14.0 software. RESULTS This study will provide high-quality evidence-based medical evidence for the correlation between PVT1 expression and overall survival, and disease-free survival and clinicopathological features. CONCLUSION The study will provide updated evidence to evaluate whether the expression of PVT1 is in association with poor prognosis in patients with breast cancer. OSF REGISTRATION NUMBER DOI 10.17605/OSF.IO/C2TYE.
Collapse
Affiliation(s)
- Li Xie
- Department of Thyroid Breast Surgery
| | - Gang Feng
- Department of Thyroid Breast Surgery
| | - Ping Zhu
- Department of Nephrology, The First College of Clinical Medical Science, ChinaThree Gorges University, Yichang Central People's Hospital, Yichang
| | - Jiang Xie
- Department of Hepatological surgery, China Resources Wisco General Hospital, Wuhan, China
| |
Collapse
|
17
|
Breast Cancer. Fam Med 2021. [DOI: 10.1007/978-1-4939-0779-3_152-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Coppola A, Ilisso CP, Stellavato A, Schiraldi C, Caraglia M, Mosca L, Cacciapuoti G, Porcelli M. S-Adenosylmethionine Inhibits Cell Growth and Migration of Triple Negative Breast Cancer Cells through Upregulating MiRNA-34c and MiRNA-449a. Int J Mol Sci 2020; 22:ijms22010286. [PMID: 33396625 PMCID: PMC7795242 DOI: 10.3390/ijms22010286] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/19/2020] [Accepted: 12/25/2020] [Indexed: 12/12/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is one of the most common malignancies worldwide and shows maximum invasiveness and a high risk of metastasis. Recently, many natural compounds have been highlighted as a valuable source of new and less toxic drugs to enhance breast cancer therapy. Among them, S-adenosyl-L-methionine (AdoMet) has emerged as a promising anti-cancer agent. MicroRNA (miRNA or miR)-based gene therapy provides an interesting antitumor approach to integrated cancer therapy. In this study, we evaluated AdoMet-induced modulation of miRNA-34c and miRNA-449a expression in MDA-MB-231 and MDA-MB-468 TNBC cells. We demonstrated that AdoMet upregulates miR-34c and miR-449a expression in both cell lines. We found that the combination of AdoMet with miR-34c or miR-449a mimic strongly potentiated the pro-apoptotic effect of the sulfonium compound by a caspase-dependent mechanism. For the first time, by video time-lapse microscopy, we showed that AdoMet inhibited the in vitro migration of MDA-MB-231 and MDA-MB-468 cells and that the combination with miR-34c or miR-449a mimic strengthened the effect of the sulfonium compound through the modulation of β-catenin and Small Mother Against Decapentaplegic (SMAD) signaling pathways. Our results furnished the first evidence that AdoMet exerts its antitumor effects in TNBC cells through upregulating the expression of miR-34c and miR-449a.
Collapse
Affiliation(s)
- Alessandra Coppola
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy; (A.C.); (C.P.I.); (M.C.); (M.P.)
| | - Concetta Paola Ilisso
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy; (A.C.); (C.P.I.); (M.C.); (M.P.)
| | - Antonietta Stellavato
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy; (A.S.); (C.S.)
| | - Chiara Schiraldi
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy; (A.S.); (C.S.)
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy; (A.C.); (C.P.I.); (M.C.); (M.P.)
| | - Laura Mosca
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy; (A.C.); (C.P.I.); (M.C.); (M.P.)
- Correspondence: (L.M.); (G.C.)
| | - Giovanna Cacciapuoti
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy; (A.C.); (C.P.I.); (M.C.); (M.P.)
- Correspondence: (L.M.); (G.C.)
| | - Marina Porcelli
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy; (A.C.); (C.P.I.); (M.C.); (M.P.)
| |
Collapse
|
19
|
Crandall CJ, Diamant AL, Maglione M, Thurston RC, Sinsheimer J. Genetic Variation and Hot Flashes: A Systematic Review. J Clin Endocrinol Metab 2020; 105:dgaa536. [PMID: 32797194 PMCID: PMC7538102 DOI: 10.1210/clinem/dgaa536] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/10/2020] [Indexed: 12/26/2022]
Abstract
CONTEXT Approximately 70% of women report experiencing vasomotor symptoms (VMS, hot flashes and/or night sweats). The etiology of VMS is not clearly understood but may include genetic factors. EVIDENCE ACQUISITION We searched PubMed and Embase in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidance. We included studies on associations between genetic variation and VMS. We excluded studies focused on medication interventions or prevention or treatment of breast cancer. EVIDENCE SYNTHESIS Of 202 unique citations, 18 citations met the inclusion criteria. Study sample sizes ranged from 51 to 17 695. Eleven of the 18 studies had fewer than 500 participants; 2 studies had 1000 or more. Overall, statistically significant associations with VMS were found for variants in 14 of the 26 genes assessed in candidate gene studies. The cytochrome P450 family 1 subfamily A member 1 (CYP1B1) gene was the focus of the largest number (n = 7) of studies, but strength and statistical significance of associations of CYP1B1 variants with VMS were inconsistent. A genome-wide association study reported statistically significant associations between 14 single-nucleotide variants in the tachykinin receptor 3 gene and VMS. Heterogeneity across trials regarding VMS measurement methods and effect measures precluded quantitative meta-analysis; there were few studies of each specific genetic variant. CONCLUSIONS Genetic variants are associated with VMS. The associations are not limited to variations in sex-steroid metabolism genes. However, studies were few and future studies are needed to confirm and extend these findings.
Collapse
Affiliation(s)
- Carolyn J Crandall
- David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California
| | - Allison L Diamant
- David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California
| | | | - Rebecca C Thurston
- University of Pittsburgh School of Medicine & Graduate School of Public Health, Pittsburgh, Pennsylvania
| | - Janet Sinsheimer
- David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California
| |
Collapse
|
20
|
Wang D, Wang Z, Zhang L, Sun S. LncRNA PDCD4-AS1 alleviates triple negative breast cancer by increasing expression of IQGAP2 via miR-10b-5p. Transl Oncol 2020; 14:100958. [PMID: 33248413 PMCID: PMC7704410 DOI: 10.1016/j.tranon.2020.100958] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/23/2020] [Accepted: 11/13/2020] [Indexed: 01/04/2023] Open
Abstract
Down-regulated expressions of PDCD4-AS1 and IQGAP2were observed in TNBC. Over-expressed miR-10b-5p was detected in TNBC. PDCD4-AS1/IQGAP2 inhibits proliferation, migration and invasion of TNBC cells. miR-10b-5p increases proliferation, migration and invasion of TNBC cells. PDCD4-AS1 inhibits TNBC via acting as a ceRNA for miR-10b-5p.
Objective Mounting evidence demonstrates that long non-coding RNA (lncRNA) is dysregulated in breast cancers. This study was designed to detect the influences and regulatory mechanism of lncRNA PDCD4-AS1 in triple-negative breast cancer (TNBC). Methods qRT-PCR and Western blot were utilized to investigate the expression levels of PDCD4-AS1, miR-10b-5p and IQGAP2 in TNBC tissues and cells. Online software and luciferase reporter gene system were employed to testify the interactions among these molecules. Loss and gain of function of PDCD4-AS1, miR-10b-5p or IQGAP2 were performed before MTT and colony formation assay, TUNEL staining in addition to Transwell and scratch assays were applied to measure the cell biological functions. Results In this work, PDCD4-AS1 and IQGAP2 were lowly expressed while miR-10b-5p was strongly expressed in TNBC tissues and cells. PDCD4-AS1 or IQGAP2 overexpression effectively attenuated TNBC cell proliferation, migration and invasion, and increased the apoptosis rate, while this effect was abandoned in response to miR-10b-5p mimics transfection. miR-10b-5p bound to IQGAP2 and acted as a downstream target of PDCD4-AS1. Conclusion Our findings identified lncRNA PDCD4-AS1 as a tumor suppressor in TNBC by regulating IQGAP2 expression via miR-10b-5p, giving a novel insight into the regulatory mechanism of PDCD4-AS1 in the pathogenesis of TNBC.
Collapse
Affiliation(s)
- Daoliang Wang
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No. 238 of Jiefang Road, No. 99 of Zhangzhidong Road, Wuchang District, Wuhan, Hubei 430060, PR China
| | - Zhuo Wang
- Department of Breast Surgery, the First People's Hospital of Jingzhou City, Jingzhou, Hubei 434000, PR China
| | - Lijun Zhang
- Department of Breast Surgery, the First People's Hospital of Jingzhou City, Jingzhou, Hubei 434000, PR China
| | - Shengrong Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No. 238 of Jiefang Road, No. 99 of Zhangzhidong Road, Wuchang District, Wuhan, Hubei 430060, PR China.
| |
Collapse
|
21
|
Zhu M, Wang F, Mi H, Li L, Wang J, Han M, Gu Y. Long noncoding RNA MEG3 suppresses cell proliferation, migration and invasion, induces apoptosis and paclitaxel-resistance via miR-4513/PBLD axis in breast cancer cells. Cell Cycle 2020; 19:3277-3288. [PMID: 33121324 DOI: 10.1080/15384101.2020.1839700] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Breast cancer remains a general-threat event in the health of women. Currently, increasing records indicate that long non-coding RNA maternally expressed 3 (MEG3) plays a central role in breast cancer. The current research focused on the function of MEG3 in paclitaxel (PTX)-resistance and human breast cancer growth. Levels of MEG3, microRNA (miR)-4513, and phenazine biosynthesis-like domain-containing protein (PBLD) were evaluated using quantitative real-time polymerase chain reaction (qRT-PCR) or western blot assays. 3-(4.5-dimethylghiazol-2-yl)-2,5-diphenyltetrazolium Bromide (MTT) assay was performed to examine the IC50 of PTX and cell proliferation in breast cancer cells. In addition, cell apoptosis was determined utilizing flow cytometry. Transwell was conducted to assay cell migration and invasion in MCF-7 and MDA-MB-231 cells. The interaction between miR-4513 and MEG3 or PBLD was expounded via dual-luciferase reporter assay. Levels of MEG3 and PBLD were decreased, but miR-4513 level was triggered in breast cancer tissues and cell lines. Overexpression of MEG3 could reinforce cell apoptosis, impede proliferation, migration, invasion, and the IC50 of PTX in breast cancer cells. Moreover, the impact of miR-4513 inhibitor on cell progression and PTX-resistance was overturned by MEG3 deficiency. Interestingly, miR-4513 mimic could abolish the role of PBLD upregulation in cell behaviors and PTX-resistance in MCF-7 and MDA-MB-231 cells. Finally, the expression of PBLD was co-modulated by miR-4513 and MEG3 in vitro. MEG3/miR-4513/PBLD axis modulated PTX-resistance and the development of breast cancer cells, which might provide a promising therapeutic strategy for breast cancer.
Collapse
Affiliation(s)
- Mingzhi Zhu
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University , Zhengzhou, Henan, China
| | - Fang Wang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University , Zhengzhou, Henan, China
| | - Hailong Mi
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University , Zhengzhou, Henan, China
| | - Lin Li
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University , Zhengzhou, Henan, China
| | - Jing Wang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University , Zhengzhou, Henan, China
| | - Mingli Han
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University , Zhengzhou, Henan, China
| | - Yuanting Gu
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University , Zhengzhou, Henan, China
| |
Collapse
|
22
|
He LJ, Yang DL, Chen HY, Huang JH, Zhang YJ, Qin HX, Wang JL, Tang DY, Chen ZZ. A Novel Imidazopyridine Derivative Exhibits Anticancer Activity in Breast Cancer by Inhibiting Wnt/β‑catenin Signaling. Onco Targets Ther 2020; 13:10111-10121. [PMID: 33116593 PMCID: PMC7553630 DOI: 10.2147/ott.s266752] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/01/2020] [Indexed: 12/13/2022] Open
Abstract
Background Breast cancer exhibits poor prognosis and high relapse rates following chemotherapy therapeutics. Thus, this study aims to develop effective novel agents regulating the core molecular pathway of breast cancer such as Wnt/β-catenin signaling. Methods The present study screened a novel inhibitor, called “C188”, using MTT assay. The molecular formula of C188 is C21H15FN4O3 and the molecular weight is 390. Flow cytometry and Western blotting were employed to assess cell cycle arrest after treatment with C188. Wound-healing and transwell assays were applied to measure the cell migration and invasion viability. The regulatory effects of C188 on Wnt/β‑catenin signaling and localization of β‑catenin in the nucleus were investigated by Western blotting and immunofluorescence. Results We found that C188 significantly suppressed proliferation and growth in a dose- and time-dependent manner in breast cancer cells, but not in normal breast cells. The inhibitory effect was caused by cell cycle arrest at the G1-phase which is induced by C188 treatment. Additionally, C188 dramatically inhibited cell migration of breast cancer cells in a dose-dependent manner. The migration inhibition was attributed to the suppression of Wnt/β‑catenin signaling and localization of β‑catenin in the nucleus mediated by regulating phosphorylation of β‑catenin and its subsequent stability. Furthermore, the target genes, including Axin 2, c-JUN, and c-Myc, were downregulated due to the decrease of β‑catenin in the nucleus after exposure to C188. Conclusion C188 treatment resulted in the downregulation of cyclin D which led to cell cycle arrest at the G1 phase, and the inhibition of cell migration, indicating that C188 may be an effective novel therapeutic candidate as a potential treatment for human breast cancer.
Collapse
Affiliation(s)
- Liu-Jun He
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing Collaborative Innovation Center of Targeted and Innovative Therapeutics, College of Pharmacy & International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and Sciences, Chongqing 402160, People's Republic of China
| | - Dong-Lin Yang
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing Collaborative Innovation Center of Targeted and Innovative Therapeutics, College of Pharmacy & International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and Sciences, Chongqing 402160, People's Republic of China
| | - He-Ying Chen
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing Collaborative Innovation Center of Targeted and Innovative Therapeutics, College of Pharmacy & International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and Sciences, Chongqing 402160, People's Republic of China.,Division of Molecular Nephrology and the Creative Training Center for Undergraduates, The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, People's Republic of China.,The Undergraduates Class of 2016 Entry the College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Jiu-Hong Huang
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing Collaborative Innovation Center of Targeted and Innovative Therapeutics, College of Pharmacy & International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and Sciences, Chongqing 402160, People's Republic of China
| | - Ya-Jun Zhang
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing Collaborative Innovation Center of Targeted and Innovative Therapeutics, College of Pharmacy & International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and Sciences, Chongqing 402160, People's Republic of China
| | - Hong-Xia Qin
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing Collaborative Innovation Center of Targeted and Innovative Therapeutics, College of Pharmacy & International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and Sciences, Chongqing 402160, People's Republic of China
| | - Juan-Li Wang
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing Collaborative Innovation Center of Targeted and Innovative Therapeutics, College of Pharmacy & International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and Sciences, Chongqing 402160, People's Republic of China
| | - Dian-Yong Tang
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing Collaborative Innovation Center of Targeted and Innovative Therapeutics, College of Pharmacy & International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and Sciences, Chongqing 402160, People's Republic of China
| | - Zhong-Zhu Chen
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing Collaborative Innovation Center of Targeted and Innovative Therapeutics, College of Pharmacy & International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and Sciences, Chongqing 402160, People's Republic of China
| |
Collapse
|
23
|
Wang R, Yang Y, Yang M, Yuan D, Huang J, Chen R, Wang H, Hu L, Di L, Li J. Synergistic inhibition of metastatic breast cancer by dual-chemotherapy with excipient-free rhein/DOX nanodispersions. J Nanobiotechnology 2020; 18:116. [PMID: 32847586 PMCID: PMC7449082 DOI: 10.1186/s12951-020-00679-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 08/17/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The management of metastatic cancer remains a major challenge in cancer therapy worldwide. The targeted delivery of chemotherapeutic drugs through rationally designed formulations is one potential therapeutic option. Notably, excipient-free nanodispersions that are entirely composed of pharmaceutically active molecules have been evaluated as promising candidates for the next generation of drug formulations. Formulated from the self-assembly of drug molecules, these nanodispersions enable the safe and effective delivery of therapeutic drugs to local disease lesions. Here, we developed a novel and green approach for preparing nanoparticles via the self-assembly of rhein (RHE) and doxorubicin (DOX) molecules, named RHE/DOX nanoparticles (RD NPs); this assembly was associated with the interaction force and did not involve any organic solvents. RESULTS According to molecular dynamics (MD) simulations, DOX molecules tend to assemble around RHE molecules through intermolecular forces. This intermolecular retention of DOX was further improved by the nanosizing effect of RD NPs. Compared to free DOX, RD NPs exerted a slightly stronger inhibitory effect on 4T1 cells in the scratch healing assay. As a dual drug-loaded nanoformulation, the efficacy of RD NPs against tumor cells in vitro was synergistically enhanced. Compared to free DOX, the combination of DOX and RHE in nanoparticles exerted a synergistic effect with a combination index (CI) value of 0.51 and showed a stronger ability to induce cell apoptosis. Furthermore, the RD NP treatment not only effectively suppressed primary tumor growth but also significantly inhibited tumor metastasis both in vitro and in vivo, with a better safety profile. CONCLUSIONS The generation of pure nanodrugs via a self-assembly approach might hold promise for the development of more efficient and novel excipient-free nanodispersions, particularly for two small molecular antitumor drugs that potentially exert synergistic antiproliferative effects on metastatic breast cancer.
Collapse
Affiliation(s)
- Ruoning Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing, China
| | - Yujie Yang
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing, China
| | - Mengmeng Yang
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing, China
| | - Dandan Yuan
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China
| | - Jinyu Huang
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing, China
| | - Rui Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China
| | - Honglan Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing, China
| | - Lihong Hu
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Nanjing, China
| | - Liuqing Di
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing, China
| | - Junsong Li
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China.
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing, China.
| |
Collapse
|
24
|
Fang X, Zhang J, Li C, Liu J, Shi Z, Zhou P. Long non-coding RNA SNHG22 facilitates the malignant phenotypes in triple-negative breast cancer via sponging miR-324-3p and upregulating SUDS3. Cancer Cell Int 2020; 20:252. [PMID: 32565736 PMCID: PMC7302359 DOI: 10.1186/s12935-020-01321-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/03/2020] [Indexed: 02/07/2023] Open
Abstract
Background Increasing evidence has indicated the important role of long non-coding RNAs (lncRNAs) in regulating the development and progression of cancers, including triple-negative breast cancer (TNBC). Small nucleolar RNA host gene 22 (SNHG22) is a novel lncRNA that has been identified as tumor-contributor in ovarian carcinoma. However, its function has not been explored in TNBC. Methods qRT-PCR was used to identify gene expression at mRNA level while western blot was utilized to analyze the protein level. Functional assays were implemented to identify changes on the proliferation, apoptosis and motility of TNBC cells under different conditions. Additionally, mechanistic assays, such as RIP assay, RNA pull down assay and luciferase reporter assay, were applied to assess relationships between molecules. Results SNHG22 represented a high expression level in TNBC tissues and cells. Besides, SNHG22 silencing restrained the proliferation, migration and invasion of TNBC cells. Furthermore, miR-324-3p that was lowly expressed in TNBC cells was conformed to be sponged by SNHG22. Moreover, upregulated miR-324-3p inhibited cell proliferation and motility in TNBC. Subsequently, we identified that SUDS3, a tumor-facilitator with elevated expression in TNBC, was the downstream target of SNHG22/miR-324-3p axis. Of note, miR-324-3p repression or SUDS3 overexpression could rescue the anti-tumor effect of SNHG22 silencing on the malignant phenotypes of TNBC cells. Conclusion LncRNA SNHG22 facilitated cell growth and motility in TNBC via sponging miR-324-3p and upregulating SUDS3, highlighting a new promising road for TNBC treatment development.
Collapse
Affiliation(s)
- Xuan Fang
- The Third Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, West Huan-Hu Rd., Ti Yuan Bei, Hexi District, Tianjin, 300060 People's Republic of China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, People's Republic of China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, People's Republic of China.,Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Jin Zhang
- The Third Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, West Huan-Hu Rd., Ti Yuan Bei, Hexi District, Tianjin, 300060 People's Republic of China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, People's Republic of China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, People's Republic of China.,Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Chunyan Li
- The Third Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, West Huan-Hu Rd., Ti Yuan Bei, Hexi District, Tianjin, 300060 People's Republic of China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, People's Republic of China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, People's Republic of China.,Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Jinjin Liu
- The Third Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, West Huan-Hu Rd., Ti Yuan Bei, Hexi District, Tianjin, 300060 People's Republic of China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, People's Republic of China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, People's Republic of China.,Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Zhendong Shi
- The Third Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, West Huan-Hu Rd., Ti Yuan Bei, Hexi District, Tianjin, 300060 People's Republic of China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, People's Republic of China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, People's Republic of China.,Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Peng Zhou
- The Third Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, West Huan-Hu Rd., Ti Yuan Bei, Hexi District, Tianjin, 300060 People's Republic of China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, People's Republic of China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, People's Republic of China.,Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| |
Collapse
|
25
|
Decker T, Söling U, Hahn A, Maintz C, Kurbacher CM, Vehling-Kaiser U, Sent D, Klare P, Hagen V, Chiabudini M, Falkenstein J, Indorf M, Runkel E, Potthoff K. Final results from IMPROVE: a randomized, controlled, open-label, two-arm, cross-over phase IV study to determine patients' preference for everolimus in combination with exemestane or capecitabine in combination with bevacizumab in advanced HR-positive, HER2-negative breast cancer. BMC Cancer 2020; 20:286. [PMID: 32252684 PMCID: PMC7137210 DOI: 10.1186/s12885-020-06747-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 03/12/2020] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND The objective of the IMPROVE study was patients' preference for either endocrine-based therapy or combined chemo- and anti-angiogenic therapy in advanced HR-positive/HER2-negative breast cancer. METHODS In this randomized, cross-over phase IV study, 77 patients were recruited in 26 sites in Germany. Patients were randomized 1:1 to receive either capecitabine plus bevacizumab (Cap+Bev) as first-line therapy followed by cross-over to everolimus plus exemestane (Eve+Exe) as second-line therapy (Arm A) or the reverse sequence (Arm B). The primary endpoint was patients' preference for either regimen, assessed by the Patient Preference Questionnaire 12 weeks after cross-over. Key secondary endpoints included progression-free survival (PFS), overall survival (OS), safety, and quality of life (QoL). RESULTS 61.5% of patients preferred Cap+Bev (p = 0.1653), whereas 15.4% preferred Eve+Exe and 23.1% were indecisive. Physicians showed a similar tendency towards Cap+Bev (58.1%) as the preferred regimen versus Eve+Exe (32.3%). Median first-line PFS was longer for Cap+Bev than for Eve+Exe (11.1 months versus 3.5 months). Median second-line PFS was similar between Cap+Bev and Eve+Exe (3.6 months versus 3.7 months). Median OS was comparable between Arm A (28.8 months) and Arm B (24.7 months). 73.0% and 52.6% (first-/second-line, Cap+Bev) and 54.1% and 52.9% (first-/second-line, Eve+Exe) of patients experienced grade 3/4 TEAEs. No treatment-related deaths occurred. QoL and treatment satisfaction were not significantly different between arms or treatment lines. CONCLUSIONS Patients tended to favor Cap+Bev over Eve+Exe, which was in line with physicians' preference. Cap+Bev showed superior first-line PFS, while QoL was similar in both arms. No new safety signals were reported. TRIAL REGISTRATION EudraCT No: 2013-005329-22. Registered on 19 August 20.
Collapse
Affiliation(s)
- Thomas Decker
- Gemeinschaftspraxis für Hämatologie und Onkologie GbR, Elisabethenstrasse 19, 88212, Ravensburg, Germany
| | - Ulrike Söling
- Onkologische Gemeinschaftspraxis, Goethestrasse 47, 34119, Kassel, Germany
| | - Antje Hahn
- Klinikum Mittelbaden Baden-Baden Bühl, Balger Strasse 50, 76532, Baden-Baden Weststadt, Germany
| | - Christoph Maintz
- Hämatologisch-Onkologische Praxis, Mauerfeldchen 72, 52146, Würselen, Germany
| | | | | | - Dagmar Sent
- Klinikum Leverkusen gGmbH, Am Gesundheitspark 11, 51375, Leverkusen, Germany
| | - Peter Klare
- MediOnko-Institut GbR, Möllendorffstr. 52, 10367, Berlin, Germany
| | - Volker Hagen
- St.-Johannes-Hospital, Johannesstr. 9-17, 44137, Dortmund, Germany
| | - Marco Chiabudini
- iOMEDICO AG, Ellen-Gottlieb-Straße 19, 79106, Freiburg im Breisgau, Germany
| | - Julia Falkenstein
- iOMEDICO AG, Ellen-Gottlieb-Straße 19, 79106, Freiburg im Breisgau, Germany
| | - Martin Indorf
- iOMEDICO AG, Ellen-Gottlieb-Straße 19, 79106, Freiburg im Breisgau, Germany
| | - Eva Runkel
- iOMEDICO AG, Ellen-Gottlieb-Straße 19, 79106, Freiburg im Breisgau, Germany
| | - Karin Potthoff
- iOMEDICO AG, Ellen-Gottlieb-Straße 19, 79106, Freiburg im Breisgau, Germany.
| |
Collapse
|
26
|
Abstract
Each year, more than 250,000 women in the United States are diagnosed with invasive breast cancer. Although overall mortality for breast cancer patients has declined, it is still the second most common cause of cancer death in women. This article provides an overview of nonmetastatic breast cancer in women, including general features, diagnostic considerations, and treatments for the most common breast cancer subtypes.
Collapse
|
27
|
PIK3CA gene aberrancy and role in targeted therapy of solid malignancies. Cancer Gene Ther 2020; 27:634-644. [PMID: 31988478 DOI: 10.1038/s41417-020-0164-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/07/2020] [Accepted: 01/14/2020] [Indexed: 01/03/2023]
Abstract
Phosphoinositide kinases (PIKs) are a group of lipid kinases that are important upstream activators of various signaling pathways that drive oncogenesis. Hyperactivation of the PI3K/AKT/mTOR pathways-either via mutations or genomic amplification-confers key oncogenic activity, essential for the development and progression of several solid tumors. Alterations in the PIK3CA gene are associated with poor prognosis of solid malignancies. Contradictory reports exist in the literature regarding the prognostic value of PIK3CA in aggressive cancers, but most available data highlights an important role of PIK3CA mutation in mediating tumorigenesis via increased signaling of the PI3K/AKT/mTOR survival pathway. Several inhibitors of PI3K/AKT/mTOR pathways have been investigated as potential therapeutic options in solid malignancies. This article reviews the role of PIK3CA mutations and inhibitors of the PI3K/AKT/mTOR pathway in cancer and examines association with the clinico-pathological parameters and prognosis.
Collapse
|
28
|
Naimo GD, Gelsomino L, Catalano S, Mauro L, Andò S. Interfering Role of ERα on Adiponectin Action in Breast Cancer. Front Endocrinol (Lausanne) 2020; 11:66. [PMID: 32132979 PMCID: PMC7041409 DOI: 10.3389/fendo.2020.00066] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/31/2020] [Indexed: 12/17/2022] Open
Abstract
Obesity is characterized by an excess of adipose tissue, due to adipocyte hypertrophy and hyperplasia. Adipose tissue is an endocrine organ producing many bioactive molecules, called adipokines. During obesity, dysfunctional adipocytes alter adipokine secretion, contributing to pathophysiology of obesity-associated diseases, including metabolic syndrome, type 2-diabetes, cardiovascular diseases and many types of malignancies. Circulating adiponectin levels are inversely correlated with BMI, thus adiponectin concentrations are lower in obese than normal-weight subjects. Many clinical investigations highlight that low adiponectin levels represent a serious risk factor in breast carcinogenesis, and are associated with the development of more aggressive phenotype. A large-scale meta-analysis suggests that BMI was positively associated with breast cancer mortality in women with ERα-positive disease, regardless menopausal status. This suggests the importance of estrogen signaling contribution in breast tumorigenesis of obese patients. It has been largely demonstrated that adiponectin exerts a protective role in ERα-negative cells, promoting anti-proliferative and pro-apoptotic effects, while controversial data have been reported in ERα-positive cells. Indeed, emerging data provide evidences that adiponectin in obese patients behave as growth factor in ERα-positive breast cancer cells. This addresses how ERα signaling interference may enhance the potential inhibitory threshold of adiponectin in ERα-positive cells. Thus, we may reasonably speculate that the relatively low adiponectin concentrations could be still not adequate to elicit, in ERα-positive breast cancer cells, the same inhibitory effects observed in ERα-negative cells. In the present review we will focus on the molecular mechanisms through which adiponectin affects breast cancer cell behavior in relationship to ERα expression.
Collapse
Affiliation(s)
- Giuseppina Daniela Naimo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata, Italy
| | - Luca Gelsomino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata, Italy
| | - Stefania Catalano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata, Italy
| | - Loredana Mauro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata, Italy
- *Correspondence: Loredana Mauro
| | - Sebastiano Andò
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata, Italy
- Health Center, University of Calabria, Arcavacata, Italy
- Sebastiano Andò
| |
Collapse
|
29
|
Long noncoding RNA CASC2 promotes paclitaxel resistance in breast cancer through regulation of miR-18a-5p/CDK19. Histochem Cell Biol 2019; 152:281-291. [DOI: 10.1007/s00418-019-01794-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2019] [Indexed: 12/14/2022]
|
30
|
Zhang H, Zhao B, Wang X, Zhang F, Yu W. LINC00511 knockdown enhances paclitaxel cytotoxicity in breast cancer via regulating miR-29c/CDK6 axis. Life Sci 2019; 228:135-144. [DOI: 10.1016/j.lfs.2019.04.063] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/12/2019] [Accepted: 04/28/2019] [Indexed: 01/23/2023]
|
31
|
Fu J, Dong G, Shi H, Zhang J, Ning Z, Bao X, Liu C, Hu J, Liu M, Xiong B. LncRNA MIR503HG inhibits cell migration and invasion via miR-103/OLFM4 axis in triple negative breast cancer. J Cell Mol Med 2019; 23:4738-4745. [PMID: 31062436 PMCID: PMC6584514 DOI: 10.1111/jcmm.14344] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/15/2019] [Accepted: 04/04/2019] [Indexed: 01/03/2023] Open
Abstract
Long non‐coding RNA MIR503 host gene (MIR503HG) is located on chromosome Xq26.3, and has been found to be deregulated in many types of human malignancy and function as tumour suppressor or promoter based on cancer types. The role of MIR503HG in breast cancer was still unknown. In our study, we found MIR503HG expression was significantly decreased in triple‐negative breast cancer tissues and cell lines. Furthermore, we observed low MIR503HG expression was correlated with late clinical stage, lymph node metastasis and distant metastasis. In the survival analysis, we observed that triple‐negative breast cancer patients with low MIR503HG expression had a statistically significant worse prognosis compared with those with high MIR503HG expression, and low MIR503HG expression was a poor independent prognostic factor for overall survival in triple‐negative breast cancer patients. The study in vitro suggested MIR503HG inhibits cell migration and invasion via miR‐103/OLFM4 axis in triple negative breast cancer. In conclusion, MIR503HG functions as a tumour suppressive long non‐coding RNA in triple negative breast cancer.
Collapse
Affiliation(s)
- Jia Fu
- Academy of Basic Medicine, Jining Medical University, Jining, China
| | - Guanjun Dong
- Academy of Basic Medicine, Jining Medical University, Jining, China
| | - Hui Shi
- Academy of Basic Medicine, Jining Medical University, Jining, China
| | - Junfeng Zhang
- Academy of Basic Medicine, Jining Medical University, Jining, China
| | - Zhaochen Ning
- Academy of Basic Medicine, Jining Medical University, Jining, China
| | - Xingna Bao
- Academy of Basic Medicine, Jining Medical University, Jining, China
| | - Chenjie Liu
- Academy of Basic Medicine, Jining Medical University, Jining, China
| | - Jing Hu
- Academy of Basic Medicine, Jining Medical University, Jining, China
| | - Minghui Liu
- Academy of Basic Medicine, Jining Medical University, Jining, China
| | - Bin Xiong
- Clinical Medical School, Jining Medical University, Jining, China
| |
Collapse
|
32
|
Andò S, Gelsomino L, Panza S, Giordano C, Bonofiglio D, Barone I, Catalano S. Obesity, Leptin and Breast Cancer: Epidemiological Evidence and Proposed Mechanisms. Cancers (Basel) 2019; 11:cancers11010062. [PMID: 30634494 PMCID: PMC6356310 DOI: 10.3390/cancers11010062] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/20/2018] [Accepted: 01/08/2019] [Indexed: 02/07/2023] Open
Abstract
The prevalence of obesity has been steadily increasing over the past few decades in several developed and developing countries, with resultant hazardous health implications. Substantial epidemiological evidence has shown that excessive adiposity strongly influences risk, prognosis, and progression of various malignancies, including breast cancer. Indeed, it is now well recognized that obesity is a complex physiologic state associated with multiple molecular changes capable of modulating the behavior of breast tumor cells as well of the surrounding microenvironment. Particularly, insulin resistance, hyperactivation of insulin-like growth factor pathways, and increased levels of estrogen due to aromatization by the adipose tissue, inflammatory cytokines, and adipokines contribute to breast cancerogenesis. Among adipokines, leptin, whose circulating levels increase proportionally to total adipose tissue mass, has been identified as a key member of the molecular network in obesity. This review summarizes the current knowledge on the epidemiological link existing between obesity and breast cancer and outlines the molecular mechanisms underlying this connection. The multifaceted role of the obesity adipokine leptin in this respect is also discussed.
Collapse
Affiliation(s)
- Sebastiano Andò
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy.
- Centro Sanitario, University of Calabria, Via P Bucci, 87036 Arcavacata di Rende (CS), Italy.
| | - Luca Gelsomino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy.
| | - Salvatore Panza
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy.
| | - Cinzia Giordano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy.
- Centro Sanitario, University of Calabria, Via P Bucci, 87036 Arcavacata di Rende (CS), Italy.
| | - Daniela Bonofiglio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy.
| | - Ines Barone
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy.
| | - Stefania Catalano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy.
| |
Collapse
|
33
|
Han J, Han B, Wu X, Hao J, Dong X, Shen Q, Pang H. Knockdown of lncRNA H19 restores chemo-sensitivity in paclitaxel-resistant triple-negative breast cancer through triggering apoptosis and regulating Akt signaling pathway. Toxicol Appl Pharmacol 2018; 359:55-61. [DOI: 10.1016/j.taap.2018.09.018] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/14/2018] [Accepted: 09/16/2018] [Indexed: 12/11/2022]
|
34
|
Khazayel S, Mokarram P, Mohammadi Z, Ramezani F, Dayong Z. Derivative of Stevioside; CPUK02; Restores ESR1 Gene Methylation in MDA-MB 231. Asian Pac J Cancer Prev 2018; 19:2117-2123. [PMID: 30139210 PMCID: PMC6171390 DOI: 10.22034/apjcp.2018.19.8.2117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Background: CPUK02 (15-Oxosteviol benzyl ester) is a new ent-kaurenoid derivative of stevioside and exhibits strong anti-cancer activity. Nowadays, the pattern of epigenetic in cancer has been topic of many studies and DNA methylation targeting represents a relevant strategy for cancer treatment. Since, no study conducted to this mechanism, we attempt to evaluate whether CPUK02 induce its anti-cancer effects via alteration the level of mRNA DNMT3B, DNMT3A expression and ESR1 methylation pattern in breast cancer cells line. Methods: MCF-7 (ER +) and MDA-MB231 (ER-) cell lines were treated for 24, 48 hours with 1 µM CPUK02 and 5-AZA-CdR (DNA methyltransferase inhibitor). Quantitative expression of DNMT3B and DNMT3A genes and ESR1 promoter methylation was assessed by Real-Time PCR and MS-PCR, respectively. Results: CPUK02 restored ESR1 promoter unmethylated allele in MDA-MB 231 cells. Also treatment with CPUK02 decreased the expression of both DNMT3A and DNMT3B genes like 5-AZA. The expression of DNMT genes were diminished by half compared with control cells. Conclusions: These results showed that CPUK02 has an anticancer effect on MDA-MB 231 cells which this effect can be done through several pathways.
Collapse
Affiliation(s)
- Saeed Khazayel
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran. ,
| | | | | | | | | |
Collapse
|