1
|
Bourque M, Morissette M, Di Paolo T. Neuroactive steroids and Parkinson's disease: Review of human and animal studies. Neurosci Biobehav Rev 2024; 156:105479. [PMID: 38007170 DOI: 10.1016/j.neubiorev.2023.105479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/13/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
The greater prevalence and incidence of Parkinson's disease (PD) in men suggest a beneficial effect of sex hormones. Neuroactive steroids have neuroprotective activities thus offering interesting option for disease-modifying therapy for PD. Neuroactive steroids are also neuromodulators of neurotransmitter systems and may thus help to control PD symptoms and side effect of dopamine medication. Here, we review the effect on sex hormones (estrogen, androgen, progesterone and its metabolites) as well as androstenediol, pregnenolone and dehydroepiandrosterone) in human studies and in animal models of PD. The effect of neuroactive steroids is reviewed by considering sex and hormonal status to help identify specifically for women and men with PD what might be a preventive approach or a symptomatic treatment. PD is a complex disease and the pathogenesis likely involves multiple cellular processes. Thus it might be useful to target different cellular mechanisms that contribute to neuronal loss and neuroactive steroids provide therapeutics options as they have multiple mechanisms of action.
Collapse
Affiliation(s)
- Mélanie Bourque
- Centre de Recherche du CHU de Québec-Université Laval, Axe Neurosciences, 2705, Boulevard Laurier, Québec G1V4G2, Canada
| | - Marc Morissette
- Centre de Recherche du CHU de Québec-Université Laval, Axe Neurosciences, 2705, Boulevard Laurier, Québec G1V4G2, Canada
| | - Thérèse Di Paolo
- Centre de Recherche du CHU de Québec-Université Laval, Axe Neurosciences, 2705, Boulevard Laurier, Québec G1V4G2, Canada; Faculté de pharmacie, Pavillon Ferdinand-Vandry, 1050, avenue de la Médecine, Université Laval, Québec G1V 0A6, Canada.
| |
Collapse
|
2
|
Verdoorn TA, Parry TJ, Pinna G, Lifshitz J. Neurosteroid Receptor Modulators for Treating Traumatic Brain Injury. Neurotherapeutics 2023; 20:1603-1615. [PMID: 37653253 PMCID: PMC10684848 DOI: 10.1007/s13311-023-01428-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2023] [Indexed: 09/02/2023] Open
Abstract
Traumatic brain injury (TBI) triggers wide-ranging pathology that impacts multiple biochemical and physiological systems, both inside and outside the brain. Functional recovery in patients is impeded by early onset brain edema, acute and chronic inflammation, delayed cell death, and neurovascular disruption. Drug treatments that target these deficits are under active development, but it seems likely that fully effective therapy may require interruption of the multiplicity of TBI-induced pathological processes either by a cocktail of drug treatments or a single pleiotropic drug. The complex and highly interconnected biochemical network embodied by the neurosteroid system offers multiple options for the research and development of pleiotropic drug treatments that may provide benefit for those who have suffered a TBI. This narrative review examines the neurosteroids and their signaling systems and proposes directions for their utility in the next stage of TBI drug research and development.
Collapse
Affiliation(s)
- Todd A Verdoorn
- NeuroTrauma Sciences, LLC, 2655 Northwinds Parkway, Alpharetta, GA 30009, USA.
| | - Tom J Parry
- NeuroTrauma Sciences, LLC, 2655 Northwinds Parkway, Alpharetta, GA 30009, USA
| | - Graziano Pinna
- Psychiatric Institute, Department of Psychiatry, University of Illinois at Chicago College of Medicine, 1601 W. Taylor Street, Chicago, IL 60612, USA
| | - Jonathan Lifshitz
- Department of Psychiatry, University of Arizona College of Medicine - Phoenix, 475 N. 5th Street, Phoenix, AZ 85004, USA
| |
Collapse
|
3
|
Yuk JS, Jeong SH. Association Between Menopausal Hormone Therapy and Risk for Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2023; 13:1357-1367. [PMID: 37980684 PMCID: PMC10741322 DOI: 10.3233/jpd-230230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/18/2023] [Indexed: 11/21/2023]
Abstract
BACKGROUND The relationship between menopausal hormone therapy (MHT) and risk of Parkinson's disease (PD) remains controversial. OBJECTIVE This nationwide population-based cohort study investigated the association between MHT and PD development. METHODS Data from the National Health Insurance System of South Korea from 2007 to 2020 were used. The MHT group included women who underwent MHT for the first time between 2011-2014, while the non-MHT group included women who visited a healthcare provider for menopause during the same period but never received hormonal therapy. We used propensity score matching (1 : 1) to adjust for potential confounders, and Cox regression models to assess the association between MHT and PD. RESULTS We selected 303,260 female participants (n = 151,630 per MHT and non-MHT groups). The median age of the participants was 50 (48-54) years, and the follow-up period lasted 7.9 (6.9-8.9) years. Cox regression analysis revealed an increased risk of PD with MHT (hazard ratio [HR] 1.377, 95% confidence interval [CI] 1.184-1.602), particularly with tibolone (HR 1.554, 95% CI 1.297-1.861) and estrogen alone (HR 1.465, 95% CI 1.054-2.036). Tibolone and estrogen alone were linked to PD within three years; however, no association was observed after three years. In contrast, the use of combined estrogen-progesterone was linked to a higher risk of PD, which increased with the duration of MHT (HR 1.885, 95% CI 1.218-2.918 for over five years). CONCLUSIONS This study demonstrated that the MHT is closely associated with the risk of PD in a regimen- and duration-specific manner.
Collapse
Affiliation(s)
- Jin-Sung Yuk
- Department of Obstetrics and Gynecology, Inje University Sanggye Paik Hospital, Seoul, Republic of Korea
| | - Seong Ho Jeong
- Department of Neurology, Inje University Sanggye Paik Hospital, Seoul, Republic of Korea
| |
Collapse
|
4
|
Castelnovo LF, Thomas P. Progesterone exerts a neuroprotective action in a Parkinson's disease human cell model through membrane progesterone receptor α (mPRα/PAQR7). Front Endocrinol (Lausanne) 2023; 14:1125962. [PMID: 36967764 PMCID: PMC10036350 DOI: 10.3389/fendo.2023.1125962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/24/2023] [Indexed: 03/12/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease worldwide, and current treatment options are unsatisfactory on the long term. Several studies suggest a potential neuroprotective action by female hormones, especially estrogens. The potential role of progestogens, however, is less defined, and no studies have investigated the potential involvement of membrane progesterone receptors (mPRs). In the present study, the putative neuroprotective role for mPRs was investigated in SH-SY5Y cells, using two established pharmacological treatments for cellular PD models, 6-hydroxydopamine (6-OHDA) and 1-methyl-4-phenylpyridinium (MPP+). Our results show that both the physiologic agonist progesterone and the specific mPR agonist Org OD 02-0 were effective in reducing SH-SY5Y cell death induced by 6-OHDA and MPP+, whereas the nuclear PR agonist promegestone (R5020) and the GABAA receptor agonist muscimol were ineffective. Experiments performed with gene silencing technology and selective pharmacological agonists showed that mPRα is the isoform responsible for the neuroprotective effects we observed. Further experiments showed that the PI3K-AKT and MAP kinase signaling pathways are involved in the mPRα-mediated progestogen neuroprotective action in SH-SY5Y cells. These findings suggest that mPRα could play a neuroprotective role in PD pathology and may be a promising target for the development of therapeutic strategies for PD prevention or management.
Collapse
Affiliation(s)
| | - Peter Thomas
- *Correspondence: Luca F. Castelnovo, ; Peter Thomas,
| |
Collapse
|
5
|
Zalewska T, Pawelec P, Ziabska K, Ziemka-Nalecz M. Sexual Dimorphism in Neurodegenerative Diseases and in Brain Ischemia. Biomolecules 2022; 13:26. [PMID: 36671411 PMCID: PMC9855831 DOI: 10.3390/biom13010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022] Open
Abstract
Epidemiological studies and clinical observations show evidence of sexual dimorphism in brain responses to several neurological conditions. It is suggested that sex-related differences between men and women may have profound effects on disease susceptibility, pathophysiology, and progression. Sexual differences of the brain are achieved through the complex interplay of several factors contributing to this phenomenon, such as sex hormones, as well as genetic and epigenetic differences. Despite recent advances, the precise link between these factors and brain disorders is incompletely understood. This review aims to briefly outline the most relevant aspects that differ between men and women in ischemia and neurodegenerative disorders (AD, PD, HD, ALS, and SM). Recognition of disparities between both sexes could aid the development of individual approaches to ameliorate or slow the progression of intractable disorders.
Collapse
Affiliation(s)
- Teresa Zalewska
- NeuroRepair Department, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 A. Pawinskiego Str., 02-106 Warsaw, Poland
| | | | | | | |
Collapse
|
6
|
Zolotarev YA, Shram SI, Dadayan AK, Dolotov OV, Markov DD, Nagaev IY, Kudrin VS, Narkevich VB, Sokolov OY, Kost NV. HLDF-6 peptides exhibit neuroprotective effects in the experimental model of preclinical Parkinson's disease. Neuropeptides 2022; 96:102287. [PMID: 36280440 DOI: 10.1016/j.npep.2022.102287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/05/2022] [Accepted: 09/10/2022] [Indexed: 10/14/2022]
Abstract
The mechanisms of the neuroprotective action of the hexapeptides HLDF-6 encoded by the amino acid sequence 41-46 of Human Leukemia Differentiation Factor and its homoserine derivative HLDF-6H were studied in an experimental 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced model of Parkinson's disease (PD). C57Bl/6 mice received two intraperitoneal injections of 18 mg/kg MPTP-HCl, with an interval of 2 hours. MPTP-induced motor dysfunction was assessed using horizontal grid test. Our data show that chronic intranasal administration of peptides (3 weeks, 300 μg/kg/day) restored normal levels of dopamine and improved its turnover rates in the striatum. Furthermore, peptide administration increased serum estradiol levels and led to a significant improvement in motor functions in MPTP-treated mice. Additionally, peptide treatment increased the levels of mRNA encoding neurotrophin BDNF, but normalized the levels of mRNA encoding the inflammatory mediators TGFβ1, IL1β and IFNγ in the brain. Collectively, our behavioral and biochemical studies demonstrate that HLDF-6 peptides have a therapeutic potential for treating PD. We propose that HLDF-6 peptides may exert their neuroprotective mechanism, at least in part, by normalizing estradiol levels and modulating the expression of key factors involved in neurotrophic support and neuroinflammation.
Collapse
Affiliation(s)
- Yurii A Zolotarev
- Institute of Molecular Genetics of National Research Center «Kurchatov Institute», Moscow, Russia.
| | - Stanislav I Shram
- Institute of Molecular Genetics of National Research Center «Kurchatov Institute», Moscow, Russia
| | - Aleksandr K Dadayan
- Institute of Molecular Genetics of National Research Center «Kurchatov Institute», Moscow, Russia
| | - Oleg V Dolotov
- Institute of Molecular Genetics of National Research Center «Kurchatov Institute», Moscow, Russia; Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Dmitriy D Markov
- Institute of Molecular Genetics of National Research Center «Kurchatov Institute», Moscow, Russia
| | - Igor Yu Nagaev
- Institute of Molecular Genetics of National Research Center «Kurchatov Institute», Moscow, Russia
| | | | | | | | | |
Collapse
|
7
|
Mehanna R, Smilowska K, Fleisher J, Post B, Hatano T, Pimentel Piemonte ME, Kumar KR, McConvey V, Zhang B, Tan E, Savica R. Age Cutoff for Early-Onset Parkinson's Disease: Recommendations from the International Parkinson and Movement Disorder Society Task Force on Early Onset Parkinson's Disease. Mov Disord Clin Pract 2022; 9:869-878. [PMID: 36247919 PMCID: PMC9547138 DOI: 10.1002/mdc3.13523] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 11/09/2022] Open
Abstract
Background Early-onset Parkinson's disease (EOPD)/young-onset Parkinson's disease (YOPD) is defined as Parkinson's disease (PD) with an age at onset (AAO) after age 21 years but before the usual AAO for PD. Consensus is lacking, and the reported maximal age for EOPD/YOPD has varied from 40 to 60 years, leading to a lack of uniformity in published studies and difficulty in harmonization of data. EOPD and YOPD have both been used in the literature, somewhat interchangeably. Objective To define the nomenclature and AAO cutoff for EOPD/YOPD. Methods An extensive review of the literature and task force meetings were conducted. Conclusions were reached by consensus. Results First, the literature has seen a shift from the use of YOPD toward EOPD. This seems motivated by an attempt to avoid age-related stigmatization of patients. Second, in defining EOPD, 56% of the countries use 50 or 51 years as the cutoff age. Third, the majority of international genetic studies in PD use an age cutoff of younger than 50 years to define EOPD. Fourth, many studies suggest that changes in the estrogen level can affect the predisposition to develop PD, making the average age at menopause of 50 years an important factor to consider when defining EOPD. Fifth, considering the differential impact of the AAO of PD on professional and social life, using 50 years as the upper cutoff for the definition of EOPD seems reasonable. Conclusions This task force recommends the use of EOPD rather than YOPD. It defines EOPD as PD with AAO after 21 years but before 50 years.
Collapse
Affiliation(s)
- Raja Mehanna
- UTMove, Departement of NeurologyUniversity of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Katarzyna Smilowska
- Department of NeurologySilesian Center of NeurologyKatowicePoland
- Department of Neurology5th Regional HospitalSosnowiecPoland
| | - Jori Fleisher
- Department of Neurological SciencesRush University School of MedicineChicagoIllinoisUSA
| | - Bart Post
- Department of NeurologyRadboudumcNijmegenThe Netherlands
| | - Taku Hatano
- Department of NeurologyJuntendo University School of MedicineTokyoJapan
| | - Maria Elisa Pimentel Piemonte
- Physical Therapy, Speech Therapy, and Occupational TherapyDepartment, Medical School, University of São PauloSão PauloBrazil
| | - Kishore Raj Kumar
- Molecular Medicine Laboratory and Department of Neurology, Concord Repatriation General Hospital, Faculty of Medicine and HealthUniversity of SydneySydneyNew South WalesAustralia
- Kinghorn Centre for Clinical GenomicsGarvan Institute of Medical ResearchDarlinghurstNew South WalesAustralia
| | | | - Baorong Zhang
- Department of NeurologyThe Second Affiliated HospitalHangzhouChina
| | - Eng‐King Tan
- Department of NeurologyNational Neuroscience InstituteSingaporeSingapore
| | | |
Collapse
|
8
|
Xavier J, Singh S, Kumari P, Ravichandiran V. Neurological repercussions of neonatal nicotine exposure: A review. Int J Dev Neurosci 2021; 82:3-18. [PMID: 34913189 DOI: 10.1002/jdn.10163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 12/25/2022] Open
Abstract
Smoking during pregnancy is hazardous to both the mother and the foetus, according to a substantial amount of recorded data. Exposure to nicotine and other compounds in cigarette smoke increases the risk of sudden infant death syndrome (SIDS) by two to five times during pregnancy. Serotonergic abnormalities have been discovered in SIDS infants in the zone of the medulla oblongata, which is known to control cardio-respiratory function. SIDS establishes a connection between depression, learning difficulties and behavioural disorders. Prenatal nicotine intake during the second trimester affects the dopaminergic neurological system, making the foetal brain more susceptible to nicotine and developing ADHD symptoms not just in a foetus but in adolescents also. Prenatal nicotine exposure alters the neurological route of neurotransmitters, acetylcholine and dopamine. Nicotine enhances neuronal activity in adults but desensitizes these processes in babies and young children exposed prenatally. The impact of a neurotoxin like nicotine is determined by the amount and duration of exposure. Continued exposure throughout pregnancy will influence a wide range of activities in the neurodevelopment, whereas exposure confined to a single stage of pregnancy may only affect the processes that are forming at that stage. To decrease the effect of nicotine on neonates due to maternal smoking strategies like nicotine replacement therapy (NRT), folic acid treatment and other behavioural treatments have been studied. Hence, this review focuses on the impact of exposure to nicotine on neonates, which results in various neurological consequences and smoking cessation therapies.
Collapse
Affiliation(s)
- Joyal Xavier
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park (EPIP), Hajipur, India
| | - Sanjiv Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park (EPIP), Hajipur, India
| | - Priyanka Kumari
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park (EPIP), Hajipur, India
| | - V Ravichandiran
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park (EPIP), Hajipur, India
| |
Collapse
|
9
|
Lima AC, Meurer YSR, Bioni VS, Cunha DMG, Gonçalves N, Lopes-Silva LB, Becegato M, Soares MBL, Marinho GF, Santos JR, Silva RH. Female Rats Are Resistant to Cognitive, Motor and Dopaminergic Deficits in the Reserpine-Induced Progressive Model of Parkinson's Disease. Front Aging Neurosci 2021; 13:757714. [PMID: 34759815 PMCID: PMC8573221 DOI: 10.3389/fnagi.2021.757714] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/27/2021] [Indexed: 11/13/2022] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disease. The main symptoms are motor signs such as resting tremor and difficulty in initializing movements. Non-motor alterations, such as cognitive deficits, can precede the motor symptoms. PD is more frequent in men than women. The mechanisms related to this difference are not completely understood. There is evidence that females present distinct characteristics in dopaminergic function compared to males. While the severity of motor impairments is often compared between sexes, little is known about sex differences in the prodromal stage. Most animal models of PD present acute severe motor impairment, which precludes the study of non-motor symptoms. Our research group have proposed an adaptation of the classic reserpine protocol, using low doses in a chronic treatment. This method allows the observation of progressive motor impairment as well as premotor deficits. Here we investigate possible behavioral and neuronal sex differences in the effects of the repeated treatment with a low dose of reserpine in rats. Male and female Wistar rats received 10–15 injections of reserpine (0.1 mg/kg) or vehicle, on alternate days. We followed-up the estrous cycle phases and conducted motor and cognitive assessments (catalepsy, open field, oral movements and object recognition tests). The euthanasia occurred 48 h after the 10th or 15th injections, with the collection of blood for the quantification of sex hormones and brains for tyrosine hydroxylase (TH) immunohistochemistry in the substantia nigra pars compact (SNpc). Reserpine induced progressive catalepsy, involuntary oral movements and cognitive deficits in male rats. The behavioral effects of reserpine were attenuated (motor) or absent (cognitive) in females. Reserpine decreased TH immunoreactivity in males, but not in females. Estrogen levels in females negatively correlated with catalepsy duration. Our findings show that females present a delay and/or a prevention in the reserpine-induced motor alterations in the progressive PD model, compatible with the lower prevalence of this disease in women. Further, females were protected from the deficit in object recognition at the prodromal stage. The absence of reserpine-induce decrease in TH immunoreactivity suggests that differences in dopaminergic function/plasticity are related to this protection in female sex.
Collapse
Affiliation(s)
- Alvaro C Lima
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ywlliane S R Meurer
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil.,Memory and Cognition Studies Laboratory, Department of Psychology, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Vinicius S Bioni
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Débora M G Cunha
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Narriman Gonçalves
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Leonardo B Lopes-Silva
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Marcela Becegato
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Manuela B L Soares
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Gabriela F Marinho
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - José R Santos
- Behavioral and Evolutionary Neurobiology Laboratory, Department of Biosciences, Universidade Federal de Sergipe, Itabaiana, Brazil
| | - Regina H Silva
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
10
|
Kusters CDJ, Paul KC, Folle AD, Keener AM, Bronstein JM, Bertram L, Hansen J, Horvath S, Sinsheimer JS, Lill CM, Ritz BR. Increased Menopausal Age Reduces the Risk of Parkinson's Disease: A Mendelian Randomization Approach. Mov Disord 2021; 36:2264-2272. [PMID: 34426982 PMCID: PMC8530889 DOI: 10.1002/mds.28760] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 07/15/2021] [Accepted: 07/26/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Studies of Parkinson's disease (PD) and the association with age at menarche or menopause have reported inconsistent findings. Mendelian randomization (MR) may address measurement errors because of difficulties accurately reporting the age these life events occur. OBJECTIVE We used MR to assess the association between age at menopause and age at menarche with PD risk. METHODS We performed inverse variant-weighted (IVW) MR analysis using external genome-wide association study (GWAS) summary data from the United Kingdom biobank, and the effect estimates between genetic variants and PD among two population-based studies (Parkinson's disease in Denmark (PASIDA) study, Denmark, and Parkinson's Environment and Gene study [PEG], United States) that enrolled 1737 female and 2430 male subjects of European ancestry. We, then, replicated our findings for age at menopause using summary statistics from the PD consortium (19 773 women), followed by a meta-analysis combining all summary statistics. RESULTS For each year increase in age at menopause, the risk for PD decreased (odds ration [OR], 0.84; 95% confidence interval [CI], 0.73-0.98; P = 0.03) among women in our study, whereas there was no association among men (OR, 0.98; 95% CI, 0.85-1.11; P = 0.71). A replication using summary statistics from the PD consortium estimated an OR of 0.94 (95% CI, 0.90-0.99; P = 0.01), and we calculated a meta-analytic OR of 0.93 (95% CI, 0.89-0.98; P = 0.003). There was no indication for an association between age at menarche and PD (OR, 0.75; 95% CI, 0.44-1.29; P = 0.29). CONCLUSIONS A later age at menopause was associated with a decreased risk of PD in women, supporting the hypothesis that sex hormones or other factors related to late menopause may be neuroprotective in PD. © 2021 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Cynthia DJ Kusters
- Department of Human Genetics, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Kimberly C Paul
- Department of Neurology, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Aline Duarte Folle
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA
| | - Adrienne M Keener
- Department of Neurology, David Geffen School of Medicine, Los Angeles, CA, USA,Parkinson’s Disease Research, Education, and Clinical Center, Greater Los Angeles Veterans Affairs Medical Center, Los Angeles, California, USA
| | - Jeff M. Bronstein
- Department of Neurology, David Geffen School of Medicine, Los Angeles, CA, USA,Brain Research Institute, University of California, Los Angeles, CA, USA
| | - Lars Bertram
- Lübeck Interdisciplinary Platform for Genome Analytics, University of Lübeck, Lübeck, Germany,Department of Psychology, Centre for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo, Norway
| | - Johnni Hansen
- Danish Cancer Society Research Center, Danish Cancer Society, Copenhagen, Denmark
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, Los Angeles, CA, USA,Department of Biostatistics, School of Public Health, University of California, Los Angeles, Los Angeles, CA, USA
| | - Janet S. Sinsheimer
- Department of Human Genetics, David Geffen School of Medicine, Los Angeles, CA, USA,Department of Biostatistics, School of Public Health, University of California, Los Angeles, Los Angeles, CA, USA,Department of Computational Medicine, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Christina M. Lill
- Translational Epidemiology Group, Lübeck Interdisciplinary Platform for Genome Analytics, University of Lübeck, Lübeck, Germany,Ageing Epidemiology Research Unit, School of Public Health, Imperial College, London, United Kingdom
| | - Beate R. Ritz
- Department of Neurology, David Geffen School of Medicine, Los Angeles, CA, USA,Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA,Department of Environmental Health, UCLA Fielding School of Public Health, Los Angeles, CA, USA
| |
Collapse
|
11
|
Willems S, Zaienne D, Merk D. Targeting Nuclear Receptors in Neurodegeneration and Neuroinflammation. J Med Chem 2021; 64:9592-9638. [PMID: 34251209 DOI: 10.1021/acs.jmedchem.1c00186] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nuclear receptors, also known as ligand-activated transcription factors, regulate gene expression upon ligand signals and present as attractive therapeutic targets especially in chronic diseases. Despite the therapeutic relevance of some nuclear receptors in various pathologies, their potential in neurodegeneration and neuroinflammation is insufficiently established. This perspective gathers preclinical and clinical data for a potential role of individual nuclear receptors as future targets in Alzheimer's disease, Parkinson's disease, and multiple sclerosis, and concomitantly evaluates the level of medicinal chemistry targeting these proteins. Considerable evidence suggests the high promise of ligand-activated transcription factors to counteract neurodegenerative diseases with a particularly high potential of several orphan nuclear receptors. However, potent tools are lacking for orphan receptors, and limited central nervous system exposure or insufficient selectivity also compromises the suitability of well-studied nuclear receptor ligands for functional studies. Medicinal chemistry efforts are needed to develop dedicated high-quality tool compounds for the therapeutic validation of nuclear receptors in neurodegenerative pathologies.
Collapse
Affiliation(s)
- Sabine Willems
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | - Daniel Zaienne
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | - Daniel Merk
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| |
Collapse
|
12
|
Echeverria V, Echeverria F, Barreto GE, Echeverría J, Mendoza C. Estrogenic Plants: to Prevent Neurodegeneration and Memory Loss and Other Symptoms in Women After Menopause. Front Pharmacol 2021; 12:644103. [PMID: 34093183 PMCID: PMC8172769 DOI: 10.3389/fphar.2021.644103] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 04/15/2021] [Indexed: 12/11/2022] Open
Abstract
In mammals, sexual hormones such as estrogens play an essential role in maintaining brain homeostasis and function. Estrogen deficit in the brain induces many undesirable symptoms such as learning and memory impairment, sleep and mood disorders, hot flushes, and fatigue. These symptoms are frequent in women who reached menopausal age or have had ovariectomy and in men and women subjected to anti-estrogen therapy. Hormone replacement therapy alleviates menopause symptoms; however, it can increase cardiovascular and cancer diseases. In the search for therapeutic alternatives, medicinal plants and specific synthetic and natural molecules with estrogenic effects have attracted widespread attention between the public and the scientific community. Various plants have been used for centuries to alleviate menstrual and menopause symptoms, such as Cranberry, Ginger, Hops, Milk Thistle, Red clover, Salvia officinalis, Soy, Black cohosh, Turnera diffusa, Ushuva, and Vitex. This review aims to highlight current evidence about estrogenic medicinal plants and their pharmacological effects on cognitive deficits induced by estrogen deficiency during menopause and aging.
Collapse
Affiliation(s)
- Valentina Echeverria
- Facultad de Ciencias de la Salud, Universidad San Sebastian, Concepcion, Chile
- Research and Development Service, Bay Pines VA Healthcare System, Bay Pines, FL, Unites States
| | | | - George E. Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
- Health Research Institute, University of Limerick, Limerick, Ireland
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Cristhian Mendoza
- Facultad de Ciencias de la Salud, Universidad San Sebastian, Concepcion, Chile
| |
Collapse
|
13
|
Tremblay C, Abbasi N, Zeighami Y, Yau Y, Dadar M, Rahayel S, Dagher A. Sex effects on brain structure in de novo Parkinson's disease: a multimodal neuroimaging study. Brain 2021; 143:3052-3066. [PMID: 32980872 DOI: 10.1093/brain/awaa234] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 05/06/2020] [Accepted: 06/10/2020] [Indexed: 02/07/2023] Open
Abstract
Parkinson's disease varies in severity and age of onset. One source of this variability is sex. Males are twice as likely as females to develop Parkinson's disease, and tend to have more severe symptoms and greater speed of progression. However, to date, there is little information in large cohorts on sex differences in the patterns of neurodegeneration. Here we used MRI and clinical information from the Parkinson Progression Markers Initiative to measure structural brain differences between sexes in Parkinson's disease after regressing out the expected effect of age and sex. We derived atrophy maps from deformation-based morphometry of T1-weighted MRI and connectivity from diffusion-weighted MRI in de novo Parkinson's disease patients (149 males: 83 females) with comparable clinical severity, and healthy control participants (78 males: 39 females). Overall, even though the two patient groups were matched for disease duration and severity, males demonstrated generally greater brain atrophy and disrupted connectivity. Males with Parkinson's disease had significantly greater tissue loss than females in 11 cortical regions including bilateral frontal and left insular lobe, right postcentral gyrus, left inferior temporal and cingulate gyrus and left thalamus, while females had greater atrophy in six cortical regions, including regions in the left frontal lobe, right parietal lobe, left insular gyrus and right occipital cortex. Local efficiency of white matter connectivity showed greater disruption in males in multiple regions such as basal ganglia, hippocampus, amygdala and thalamus. These findings support the idea that development of Parkinson's disease may involve different pathological mechanisms and yield distinct prognosis in males and females, which may have implications for research into neuroprotection, and stratification for clinical trials.
Collapse
Affiliation(s)
- Christina Tremblay
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Nooshin Abbasi
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Yashar Zeighami
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Yvonne Yau
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Mahsa Dadar
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Shady Rahayel
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.,Centre for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Montreal, Canada
| | - Alain Dagher
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
14
|
Feng SH, Huang YP, Yeh KC, Pan SL. Osteoporosis and the Risk of Parkinson's Disease: A Nationwide, Propensity Score-Matched, Longitudinal Follow-up Study. J Clin Endocrinol Metab 2021; 106:e763-e771. [PMID: 33236101 DOI: 10.1210/clinem/dgaa864] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Indexed: 12/30/2022]
Abstract
CONTEXT Osteoporosis and Parkinson's disease (PD) often co-occur, and even patients with early-stage PD may have reduced bone-mineral density levels. This may imply that osteoporosis is associated with a higher risk of PD. OBJECTIVES This work aimed to determine whether patients with osteoporosis are at a higher risk of subsequently developing PD. DESIGN AND SETTING A retrospective cohort study was conducted using Taiwan's National Health Insurance Research Database. PARTICIPANTS A total of 23 495 individuals age 50 to 80 years who had osteoporosis between 2002 and 2006 were enrolled in the osteoporosis group. The comparison group comprised 23 495 propensity score-matched patients without osteoporosis. Their propensity scores were computed using a logistic regression model that included age, sex, comorbid conditions, and socioeconomic status. RESULTS The hazard ratio (HR) of PD for the osteoporosis group was 1.31 times larger than that of the comparison group (95% CI, 1.13-1.50, P < .001). The PD-free survival rate of the osteoporosis group was also significantly lower than that of the comparison group (P < .001). The analyses stratified by sex showed that women with osteoporosis appeared to have a higher magnitude of PD HR (HR 1.50; 95% CI, 1.27-1.77, P < .001) than their male counterparts (HR 1.23; 95% CI, 0.93-1.64, P = .15). CONCLUSIONS The present study's results suggest that osteoporosis is related to an increased risk of PD, especially among women.
Collapse
Affiliation(s)
- Shih-Hao Feng
- Departments of Physical Medicine and Rehabilitation, National Taiwan University Hospital, Chu-Tung branch, Hsin-Chu County, Taiwan
| | - Ya-Ping Huang
- Departments of Physical Medicine and Rehabilitation, National Taiwan University Hospital, Yun-Lin branch, Yun-Lin County, Taiwan
| | - Kuo-Cheng Yeh
- Departments of Physical Medicine and Rehabilitation, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei City, Taiwan
| | - Shin-Liang Pan
- Departments of Physical Medicine and Rehabilitation, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei City, Taiwan
| |
Collapse
|
15
|
Flores-Cuadrado A, Saiz-Sanchez D, Mohedano-Moriano A, Lamas-Cenjor E, Leon-Olmo V, Martinez-Marcos A, Ubeda-Bañon I. Astrogliosis and sexually dimorphic neurodegeneration and microgliosis in the olfactory bulb in Parkinson's disease. NPJ PARKINSONS DISEASE 2021; 7:11. [PMID: 33479244 PMCID: PMC7820595 DOI: 10.1038/s41531-020-00154-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 12/01/2020] [Indexed: 02/07/2023]
Abstract
Hyposmia is prodromal, and male sex is a risk marker for an enhanced likelihood ratio of Parkinson’s disease. The literature regarding olfactory bulb volume reduction is controversial, although the olfactory bulb has been largely reported as an early and preferential site for α-synucleinopathy. These pathological deposits have been correlated with neural loss in Nissl-stained material. However, microgliosis has rarely been studied, and astrogliosis has been virtually neglected. In the present report, α-synucleinopathy (α-synuclein), neurodegeneration (Neu-N), astrogliosis (GFAP), and microgliosis (Iba-1) were quantified, using specific markers and stereological methods. Disease, sex, age, disease duration, and post-mortem interval were considered variables for statistical analysis. No volumetric changes have been identified regarding disease or sex. α-Synucleinopathy was present throughout the OB, mainly concentrated on anterior olfactory nucleus. Neurodegeneration (reduction in Neu-N-positive cells) was statistically significant in the diseased group. Astrogliosis (increased GFAP labeling) and microgliosis (increased Iba-1 labeling) were significantly enhanced in the Parkinson’s disease group. When analyzed per sex, neurodegeneration and microgliosis differences are only present in men. These data constitute the demonstration of sex differences in neurodegeneration using specific neural markers, enhanced astrogliosis and increased microgliosis, also linked to male sex, in the human olfactory bulb in Parkinson’s disease.
Collapse
Affiliation(s)
- Alicia Flores-Cuadrado
- Neuroplasticity & Neurodegeneration Laboratory, Ciudad Real Medical School, CRIB, University of Castilla-La Mancha, 13071, Ciudad Real, Spain
| | - Daniel Saiz-Sanchez
- Neuroplasticity & Neurodegeneration Laboratory, Ciudad Real Medical School, CRIB, University of Castilla-La Mancha, 13071, Ciudad Real, Spain
| | - Alicia Mohedano-Moriano
- Faculty of Health Sciences, University of Castilla-La Mancha, 45600, Talavera de la Reina, Spain
| | - Elena Lamas-Cenjor
- Neuroplasticity & Neurodegeneration Laboratory, Ciudad Real Medical School, CRIB, University of Castilla-La Mancha, 13071, Ciudad Real, Spain
| | - Victor Leon-Olmo
- Neuroplasticity & Neurodegeneration Laboratory, Ciudad Real Medical School, CRIB, University of Castilla-La Mancha, 13071, Ciudad Real, Spain
| | - Alino Martinez-Marcos
- Neuroplasticity & Neurodegeneration Laboratory, Ciudad Real Medical School, CRIB, University of Castilla-La Mancha, 13071, Ciudad Real, Spain
| | - Isabel Ubeda-Bañon
- Neuroplasticity & Neurodegeneration Laboratory, Ciudad Real Medical School, CRIB, University of Castilla-La Mancha, 13071, Ciudad Real, Spain.
| |
Collapse
|
16
|
Avram CM, Brumbach BH, Hiller AL. A Report of Tamoxifen and Parkinson's Disease in a US Population and a Review of the Literature. Mov Disord 2021; 36:1238-1242. [PMID: 33449420 DOI: 10.1002/mds.28471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 11/08/2020] [Accepted: 12/09/2020] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Tamoxifen, a selective estrogen receptor modulator, has been shown to variably affect Parkinson's disease (PD) risk. OBJECTIVE The aim of this study was to review epidemiological literature and evaluate the rate of PD in women with breast cancer with tamoxifen exposure in a US population. METHODS A literature search was conducted to identify relevant studies. We performed a retrospective cohort analysis using the Nurses' Health Study Version One to report descriptive statistics. RESULTS Most studies suggest there may be a time-dependent effect of tamoxifen on PD risk, with the risk increasing with time from exposure. However, rates of PD in persons exposed to tamoxifen overall appear to be low. In our cohort, PD was evident in 6.2 per 1,000 of those with tamoxifen use and 3.6 per 1,000 of those without tamoxifen use. Time from breast cancer to PD diagnosis was 9.7 years among women with tamoxifen exposure and 11.7 among women without. CONCLUSIONS Tamoxifen may be associated with an increased risk for PD. Further research is needed to elucidate the role of estrogen and selective estrogen antagonism in PD. © 2021 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Carmen M Avram
- Duke University Medical Center, Durham, North Carolina, USA
| | | | - Amie L Hiller
- Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
17
|
Jarras H, Bourque M, Poirier AA, Morissette M, Coulombe K, Di Paolo T, Soulet D. Neuroprotection and immunomodulation of progesterone in the gut of a mouse model of Parkinson's disease. J Neuroendocrinol 2020; 32:e12782. [PMID: 31430407 DOI: 10.1111/jne.12782] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 08/16/2019] [Accepted: 08/16/2019] [Indexed: 12/24/2022]
Abstract
Gastrointestinal symptoms appear in Parkinson's disease patients many years before motor symptoms, suggesting the implication of dopaminergic neurones of the gut myenteric plexus. Inflammation is also known to be increased in PD. We previously reported neuroprotection with progesterone in the brain of mice lesioned with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and hypothesised that it also has neuroprotective and immunomodulatory activities in the gut. To test this hypothesis, we investigated progesterone administered to adult male C57BL/6 mice for 10 days and treated with MPTP on day 5. In an additional experiment, progesterone was administered for 5 days following MPTP treatment. Ilea were collected on day 10 of treatment and microdissected to isolate the myenteric plexus. Dopaminergic neurones were reduced by approximately 60% and pro-inflammatory macrophages were increased by approximately 50% in MPTP mice compared to intact controls. These changes were completely prevented by progesterone administered before and after MPTP treatment and were normalised by 8 mg kg-1 progesterone administered after MPTP. In the brain of MPTP mice, brain-derived neurotrophic peptide (BDNF) and glial fibrillary acidic protein (GFAP) were associated with progesterone neuroprotection. In the myenteric plexus, increased BDNF levels compared to controls were measured in MPTP mice treated with 8 mg kg-1 progesterone started post MPTP, whereas GFAP levels remained unchanged. In conclusion, the results obtained in the present study show neuroprotective and anti-inflammatory effects of progesterone in the myenteric plexus of MPTP mice that are similar to our previous findings in the brain. Progesterone is non-feminising and could be used for both men and women in the pre-symptomatic stages of the disease.
Collapse
Affiliation(s)
- Hend Jarras
- Axe Neurosciences, Centre de Recherche du CHU de Québec (Pavillon CHUL), Quebec, Canada
- Faculty of Pharmacy, Laval University, Quebec, Canada
| | - Mélanie Bourque
- Axe Neurosciences, Centre de Recherche du CHU de Québec (Pavillon CHUL), Quebec, Canada
| | - Andrée-Anne Poirier
- Axe Neurosciences, Centre de Recherche du CHU de Québec (Pavillon CHUL), Quebec, Canada
- Faculty of Pharmacy, Laval University, Quebec, Canada
| | - Marc Morissette
- Axe Neurosciences, Centre de Recherche du CHU de Québec (Pavillon CHUL), Quebec, Canada
| | - Katherine Coulombe
- Axe Neurosciences, Centre de Recherche du CHU de Québec (Pavillon CHUL), Quebec, Canada
| | - Thérèse Di Paolo
- Axe Neurosciences, Centre de Recherche du CHU de Québec (Pavillon CHUL), Quebec, Canada
- Faculty of Pharmacy, Laval University, Quebec, Canada
| | - Denis Soulet
- Axe Neurosciences, Centre de Recherche du CHU de Québec (Pavillon CHUL), Quebec, Canada
- Faculty of Pharmacy, Laval University, Quebec, Canada
| |
Collapse
|
18
|
Pajarillo E, Rizor A, Lee J, Aschner M, Lee E. The role of astrocytic glutamate transporters GLT-1 and GLAST in neurological disorders: Potential targets for neurotherapeutics. Neuropharmacology 2019; 161:107559. [PMID: 30851309 PMCID: PMC6731169 DOI: 10.1016/j.neuropharm.2019.03.002] [Citation(s) in RCA: 217] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 02/28/2019] [Accepted: 03/02/2019] [Indexed: 12/12/2022]
Abstract
Glutamate is the primary excitatory neurotransmitter in the central nervous system (CNS) which initiates rapid signal transmission in the synapse before its re-uptake into the surrounding glia, specifically astrocytes. The astrocytic glutamate transporters glutamate-aspartate transporter (GLAST) and glutamate transporter-1 (GLT-1) and their human homologs excitatory amino acid transporter 1 (EAAT1) and 2 (EAAT2), respectively, are the major transporters which take up synaptic glutamate to maintain optimal extracellular glutamic levels, thus preventing accumulation in the synaptic cleft and ensuing excitotoxicity. Growing evidence has shown that excitotoxicity is associated with various neurological disorders, including amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), Parkinson's disease (PD), manganism, ischemia, schizophrenia, epilepsy, and autism. While the mechanisms of neurological disorders are not well understood, the dysregulation of GLAST/GLT-1 may play a significant role in excitotoxicity and associated neuropathogenesis. The expression and function of GLAST/GLT-1 may be dysregulated at the genetic, epigenetic, transcriptional or translational levels, leading to high levels of extracellular glutamate and excitotoxicity. Consequently, understanding the regulatory mechanisms of GLAST/GLT-1 has been an area of interest in developing therapeutics for the treatment of neurological disorders. Pharmacological agents including β-lactam antibiotics, estrogen/selective estrogen receptor modulators (SERMs), growth factors, histone deacetylase inhibitors (HDACi), and translational activators have shown significant efficacy in enhancing the expression and function of GLAST/GLT-1 and glutamate uptake both in vitro and in vivo. This comprehensive review will discuss the regulatory mechanisms of GLAST/GLT-1, their association with neurological disorders, and the pharmacological agents which mediate their expression and function. This article is part of the issue entitled 'Special Issue on Neurotransmitter Transporters'.
Collapse
Affiliation(s)
- Edward Pajarillo
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, FL, 32301, USA
| | - Asha Rizor
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, FL, 32301, USA
| | - Jayden Lee
- Department of Speech, Language & Hearing Sciences, Boston University, Boston, MA, 02215, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Eunsook Lee
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, FL, 32301, USA.
| |
Collapse
|
19
|
The Role of Signaling Pathways of Inflammation and Oxidative Stress in Development of Senescence and Aging Phenotypes in Cardiovascular Disease. Cells 2019; 8:cells8111383. [PMID: 31689891 PMCID: PMC6912541 DOI: 10.3390/cells8111383] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/24/2019] [Accepted: 10/28/2019] [Indexed: 12/28/2022] Open
Abstract
The ASK1-signalosome→p38 MAPK and SAPK/JNK signaling networks promote senescence (in vitro) and aging (in vivo, animal models and human cohorts) in response to oxidative stress and inflammation. These networks contribute to the promotion of age-associated cardiovascular diseases of oxidative stress and inflammation. Furthermore, their inhibition delays the onset of these cardiovascular diseases as well as senescence and aging. In this review we focus on whether the (a) ASK1-signalosome, a major center of distribution of reactive oxygen species (ROS)-mediated stress signals, plays a role in the promotion of cardiovascular diseases of oxidative stress and inflammation; (b) The ASK1-signalosome links ROS signals generated by dysfunctional mitochondrial electron transport chain complexes to the p38 MAPK stress response pathway; (c) the pathway contributes to the sensitivity and vulnerability of aged tissues to diseases of oxidative stress; and (d) the importance of inhibitors of these pathways to the development of cardioprotection and pharmaceutical interventions. We propose that the ASK1-signalosome regulates the progression of cardiovascular diseases. The resultant attenuation of the physiological characteristics of cardiomyopathies and aging by inhibition of the ASK1-signalosome network lends support to this conclusion. Importantly the ROS-mediated activation of the ASK1-signalosome p38 MAPK pathway suggests it is a major center of dissemination of the ROS signals that promote senescence, aging and cardiovascular diseases. Pharmacological intervention is, therefore, feasible through the continued identification of potent, non-toxic small molecule inhibitors of either ASK1 or p38 MAPK activity. This is a fruitful future approach to the attenuation of physiological aspects of mammalian cardiomyopathies and aging.
Collapse
|
20
|
Rehman MU, Wali AF, Ahmad A, Shakeel S, Rasool S, Ali R, Rashid SM, Madkhali H, Ganaie MA, Khan R. Neuroprotective Strategies for Neurological Disorders by Natural Products: An update. Curr Neuropharmacol 2019; 17:247-267. [PMID: 30207234 PMCID: PMC6425075 DOI: 10.2174/1570159x16666180911124605] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 08/02/2018] [Accepted: 09/05/2018] [Indexed: 01/30/2023] Open
Abstract
Nature has bestowed mankind with surplus resources (natural products) on land and water. Natural products have a significant role in the prevention of disease and boosting of health in humans and animals. These natural products have been experimentally documented to possess various biological properties such as antioxidant, anti-inflammatory and anti-apoptotic activities. In vitro and in vivo studies have further established the usefulness of natural products in various preclinical models of neurodegenerative disorders. Natural products include phytoconstituents, like polyphenolic antioxidants, found in herbs, fruits, nuts, vegetables and also in marine and freshwater flora. These phytoconstituents may potentially suppress neurodegeneration and improve memory as well as cognitive functions of the brain. Also, they are known to play a pivotal role in the prevention and cure of different neurodegenerative diseases, such as Alzheimer's disease, epilepsy, Parkinson's disease and other neuronal disorders. The large-scale neuro-pharmacological activities of natural products have been documented due to the result of either the inhibition of inflammatory processes, or the up-regulation of various cell survival proteins or a combination of both. Due to the scarcity of human studies on neuroprotective effects of natural products, this review focuses on the various established activities of natural products in in vitro and in vivo preclinical models, and their potential neuro-therapeutic applications using the available knowledge in the literature.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Rehan Khan
- Address correspondence to this author at the Department of Nano-Therapeutics, Institute of Nano Science & Technology, Habitat Centre, Phase X, Mohali-160062, Punjab, India; E-mail:
| |
Collapse
|
21
|
Martin-Jiménez C, Gaitán-Vaca DM, Areiza N, Echeverria V, Ashraf GM, González J, Sahebkar A, Garcia-Segura LM, Barreto GE. Astrocytes Mediate Protective Actions of Estrogenic Compounds after Traumatic Brain Injury. Neuroendocrinology 2019; 108:142-160. [PMID: 30391959 DOI: 10.1159/000495078] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 11/02/2018] [Indexed: 11/19/2022]
Abstract
Traumatic brain injury (TBI) is a serious public health problem. It may result in severe neurological disabilities and in a variety of cellular metabolic alterations for which available therapeutic strategies are limited. In the last decade, the use of estrogenic compounds, which activate protective mechanisms in astrocytes, has been explored as a potential experimental therapeutic approach. Previous works have suggested estradiol (E2) as a neuroprotective hormone that acts in the brain by binding to estrogen receptors (ERs). Several steroidal and nonsteroidal estrogenic compounds can imitate the effects of estradiol on ERs. These include hormonal estrogens, phytoestrogens and synthetic estrogens, such as selective ER modulators or tibolone. Current evidence of the role of astrocytes in mediating protective actions of estrogenic compounds after TBI is reviewed in this paper. We conclude that the use of estrogenic compounds to modulate astrocytic properties is a promising therapeutic approach for the treatment of TBI.
Collapse
Affiliation(s)
- Cynthia Martin-Jiménez
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Diana Milena Gaitán-Vaca
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Natalia Areiza
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Valentina Echeverria
- Universidad San Sebastián, Fac. Cs de la Salud, Concepción, Chile
- Research and Development Service, Bay Pines VA Healthcare System, Bay Pines, Florida, USA
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Janneth González
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Luis Miguel Garcia-Segura
- Instituto Cajal, CSIC, Madrid, Spain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias Pontificia Universidad Javeriana, Bogotá, Colombia,
| |
Collapse
|
22
|
Varmazyar R, Noori-Zadeh A, Rajaei F, Darabi S, Bakhtiyari S. 17 β-Estradiol Oxidative Stress Attenuation and Autophagy-Induced Dopaminergic Neuroprotection. CELL JOURNAL 2018; 21:1-6. [PMID: 30507082 PMCID: PMC6275422 DOI: 10.22074/cellj.2019.5799] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 05/16/2018] [Indexed: 12/13/2022]
Abstract
Objective Degeneration of dopaminergic neurons in the substantia nigra of the brain stem is the main pathological
aspect of Parkinson’s disease (PD). 17 β-estradiol (E2) has neuroprotective effects on substantia nigra, however, the
underlined mechanism is not well-known. In this study, we evaluated the neuroprotective effects of E2 in the ovariectomized
6-hydroxydopamine- (6-OHDA) rat model of PD.
Materials and Methods In this experimental study, all animals were ovariectomized to avoid any further bias in E2 levels
and then these ovariectomized rats were randomly assigned into three experimental groups (10 rats in each group):
ovariectomized control group (OCG), ovariectomized degeneration group receiving 25 μg of 6-OHDA into the left corpus
striatum (ODG), and ovariectomized E2 pretreatment group pretreated with 0.1 mgkg-1of 17 β-estradiol for three days prior
to the destruction of corpus striatum with 6-OHDA (OE2PTG). The apomorphine behavioral test and Nissl staining were
performed in all experimental groups. The expressions of Sequestosome-1 (P62), Unc- 51 like autophagy activating kinase
(Ulk1), and microtubule-associated proteins 1A/1B light chain 3B (Lc3) genes were evaluated using reverse transcription-
polymerase chain reaction (RT-PCR).
Results E2 administration reduced the damages to the dopaminergic neurons of the substantia nigra. The motor
behavior, the number of rotations, and histological tests in the treatment group showed the cell survival improvement in
comparison with the control groups indicating that E2 can inhibit the neurodegeneration. P62 and Lc3 were expressed
in all experimental groups while Ulk1 was not expressed in ODG group. Moreover, Ulk1 was expressed after the
treatment with E2 in OE2PTG group.
Conclusion E2 prevents neurodegeneration in dopaminergic neurons of the midbrain by over-expression of Ulk1 gene and
augmenting the induction of autophagy.
Collapse
Affiliation(s)
- Roya Varmazyar
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Ali Noori-Zadeh
- Department of Clinical Biochemistry, Faculty of Allied Medical Sciences, Ilam University of Medical Sciences, Ilam, Iran
| | - Farzad Rajaei
- Cellular and Molecular Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Shahram Darabi
- Cellular and Molecular Research Center, Qazvin University of Medical Sciences, Qazvin, Iran. Electronic Address:
| | - Salar Bakhtiyari
- Department of Clinical Biochemistry, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| |
Collapse
|
23
|
MacKenzie‐Graham A, Brook J, Kurth F, Itoh Y, Meyer C, Montag MJ, Wang H, Elashoff R, Voskuhl RR. Estriol-mediated neuroprotection in multiple sclerosis localized by voxel-based morphometry. Brain Behav 2018; 8:e01086. [PMID: 30144306 PMCID: PMC6160650 DOI: 10.1002/brb3.1086] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/05/2018] [Accepted: 07/08/2018] [Indexed: 11/11/2022] Open
Abstract
INTRODUCTION Progressive gray matter (GM) atrophy is a hallmark of multiple sclerosis (MS). Cognitive impairment has been observed in 40%-70% of MS patients and has been linked to GM atrophy. In a phase 2 trial of estriol treatment in women with relapsing-remitting MS (RRMS), higher estriol levels correlated with greater improvement on the paced auditory serial addition test (PASAT) and imaging revealed sparing of localized GM in estriol-treated compared to placebo-treated patients. To better understand the significance of this GM sparing, the current study explored the relationships between the GM sparing and traditional MRI measures and clinical outcomes. METHODS Sixty-two estriol- and forty-nine placebo-treated RRMS patients underwent clinical evaluations and brain MRI. Voxel-based morphometry (VBM) was used to evaluate voxelwise GM sparing from high-resolution T1-weighted scans. RESULTS A region of treatment-induced sparing (TIS) was defined as the areas where GM was spared in estriol- as compared to placebo-treated groups, localized primarily within the frontal and parietal cortices. We observed that TIS volume was directly correlated with improvement on the PASAT. Next, a longitudinal cognitive disability-specific atlas (DSA) was defined by correlating voxelwise GM volumes with PASAT scores, that is, areas where less GM correlated with less improvement in PASAT scores. Finally, overlap between the TIS and the longitudinal cognitive DSA revealed a specific region of cortical GM that was preserved in estriol-treated subjects that was associated with better performance on the PASAT. CONCLUSIONS Discovery of this region of overlap was biology driven, not based on an a priori structure of interest. It included the medial frontal cortex, an area previously implicated in problem solving and attention. These findings indicate that localized GM sparing during estriol treatment was associated with improvement in cognitive testing, suggesting a clinically relevant, disability-specific biomarker for clinical trials of candidate neuroprotective treatments in MS.
Collapse
Affiliation(s)
- Allan MacKenzie‐Graham
- Department of NeurologyAhmanson‐Lovelace Brain Mapping CenterDavid Geffen School of Medicine at UCLALos AngelesCalifornia
- UCLA Multiple Sclerosis ProgramDepartment of NeurologyDavid Geffen School of Medicine at UCLALos AngelesCalifornia
| | - Jenny Brook
- Department of BiomathematicsDavid Geffen School of Medicine at UCLALos AngelesCalifornia
| | - Florian Kurth
- Department of NeurologyAhmanson‐Lovelace Brain Mapping CenterDavid Geffen School of Medicine at UCLALos AngelesCalifornia
- UCLA Multiple Sclerosis ProgramDepartment of NeurologyDavid Geffen School of Medicine at UCLALos AngelesCalifornia
| | - Yuichiro Itoh
- UCLA Multiple Sclerosis ProgramDepartment of NeurologyDavid Geffen School of Medicine at UCLALos AngelesCalifornia
| | - Cassandra Meyer
- Department of NeurologyAhmanson‐Lovelace Brain Mapping CenterDavid Geffen School of Medicine at UCLALos AngelesCalifornia
- UCLA Multiple Sclerosis ProgramDepartment of NeurologyDavid Geffen School of Medicine at UCLALos AngelesCalifornia
| | - Michael J. Montag
- UCLA Multiple Sclerosis ProgramDepartment of NeurologyDavid Geffen School of Medicine at UCLALos AngelesCalifornia
| | - He‐Jing Wang
- Department of BiomathematicsDavid Geffen School of Medicine at UCLALos AngelesCalifornia
| | - Robert Elashoff
- Department of BiomathematicsDavid Geffen School of Medicine at UCLALos AngelesCalifornia
| | - Rhonda R. Voskuhl
- UCLA Multiple Sclerosis ProgramDepartment of NeurologyDavid Geffen School of Medicine at UCLALos AngelesCalifornia
| |
Collapse
|
24
|
Raloxifene, a promising estrogen replacement, limits TDP-25 cell death by enhancing autophagy and suppressing apoptosis. Brain Res Bull 2018; 140:281-290. [DOI: 10.1016/j.brainresbull.2018.05.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/29/2018] [Accepted: 05/21/2018] [Indexed: 12/11/2022]
|
25
|
Bourque M, Morissette M, Di Paolo T. Repurposing sex steroids and related drugs as potential treatment for Parkinson's disease. Neuropharmacology 2018; 147:37-54. [PMID: 29649433 DOI: 10.1016/j.neuropharm.2018.04.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/27/2018] [Accepted: 04/05/2018] [Indexed: 01/19/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder for which a greater prevalence and incidence is described in men. This suggests a protective effect of sex hormones in the brain. Therefore, steroids and drugs to treat endocrine conditions could have additional application for PD. Here, we review the protective effect of sex hormones, particularly estrogens, progesterone, androgens and dehydroepiandrosterone, in animal models of PD and also in human studies. Data also support that drugs affecting estrogen neurotransmission such as selective estrogen receptor modulators or affecting steroid metabolism with 5α-reductase inhibitors could be repositioned for treatment of PD. Sex steroids are also modulator of neurotransmission, thus they could repurposed to treat PD motor symptoms and to modulate the response to PD medication. No drug is yet available to limit PD progression. PD is a complex disease implicating multiple pathological processes and a therapeutic strategy using drugs with several mechanisms of action, such as sex steroids and endocrine drugs are interesting repositioning options for symptomatic treatment and disease-modifying activity for PD. This article is part of the Special Issue entitled 'Drug Repurposing: old molecules, new ways to fast track drug discovery and development for CNS disorders'.
Collapse
Affiliation(s)
- Mélanie Bourque
- Neuroscience Research Unit, Centre Hospitalier Universitaire de Québec, CHUL, Quebec City, G1V 4G2, Canada; Faculty of Pharmacy, Université Laval, Quebec City, G1K 7P4, Canada
| | - Marc Morissette
- Neuroscience Research Unit, Centre Hospitalier Universitaire de Québec, CHUL, Quebec City, G1V 4G2, Canada
| | - Thérèse Di Paolo
- Neuroscience Research Unit, Centre Hospitalier Universitaire de Québec, CHUL, Quebec City, G1V 4G2, Canada; Faculty of Pharmacy, Université Laval, Quebec City, G1K 7P4, Canada.
| |
Collapse
|
26
|
Rzemieniec J, Litwa E, Wnuk A, Lason W, Kajta M. Bazedoxifene and raloxifene protect neocortical neurons undergoing hypoxia via targeting ERα and PPAR-γ. Mol Cell Endocrinol 2018; 461:64-78. [PMID: 28859903 DOI: 10.1016/j.mce.2017.08.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 07/04/2017] [Accepted: 08/28/2017] [Indexed: 12/12/2022]
Abstract
Selective estrogen receptor modulators (SERMs) such as bazedoxifene and raloxifene are recognized to mainly act via estrogen receptors (ERs), but there is no study examining the involvement of PPAR-γ in their actions, especially in neurons undergoing hypoxia. Little is also known about age-dependent actions of the SERMs on neuronal tissue challenged with hypoxia. In this study, bazedoxifene and raloxifene protected neocortical cells against hypoxia at early and later developmental stages. Both SERMs evoked caspase-3-independent neuroprotection and increased protein levels of ERα (66 and 46 kDa isoforms) and PPAR-γ. In addition, bazedoxifene enhanced expression of ERα-regulated Cyp19a1 mRNA. Using double siRNA silencing, for the first time we demonstrated a key role of ERα and PPAR-γ in the neuroprotective action of the SERMs in neocortical neurons undergoing hypoxia. This study provides prospects for the development of a new therapeutic strategies against hypoxic brain injury that selectively target ERα and/or PPAR-γ.
Collapse
Affiliation(s)
- J Rzemieniec
- Institute of Pharmacology, Polish Academy of Sciences, Department of Experimental Neuroendocrinology, 31-343 Krakow, Smetna Street 12, Poland
| | - E Litwa
- Institute of Pharmacology, Polish Academy of Sciences, Department of Experimental Neuroendocrinology, 31-343 Krakow, Smetna Street 12, Poland
| | - A Wnuk
- Institute of Pharmacology, Polish Academy of Sciences, Department of Experimental Neuroendocrinology, 31-343 Krakow, Smetna Street 12, Poland
| | - W Lason
- Institute of Pharmacology, Polish Academy of Sciences, Department of Experimental Neuroendocrinology, 31-343 Krakow, Smetna Street 12, Poland
| | - M Kajta
- Institute of Pharmacology, Polish Academy of Sciences, Department of Experimental Neuroendocrinology, 31-343 Krakow, Smetna Street 12, Poland.
| |
Collapse
|
27
|
Wnuk A, Kajta M. Steroid and Xenobiotic Receptor Signalling in Apoptosis and Autophagy of the Nervous System. Int J Mol Sci 2017; 18:ijms18112394. [PMID: 29137141 PMCID: PMC5713362 DOI: 10.3390/ijms18112394] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 11/06/2017] [Accepted: 11/09/2017] [Indexed: 12/15/2022] Open
Abstract
Apoptosis and autophagy are involved in neural development and in the response of the nervous system to a variety of insults. Apoptosis is responsible for cell elimination, whereas autophagy can eliminate the cells or keep them alive, even in conditions lacking trophic factors. Therefore, both processes may function synergistically or antagonistically. Steroid and xenobiotic receptors are regulators of apoptosis and autophagy; however, their actions in various pathologies are complex. In general, the estrogen (ER), progesterone (PR), and mineralocorticoid (MR) receptors mediate anti-apoptotic signalling, whereas the androgen (AR) and glucocorticoid (GR) receptors participate in pro-apoptotic pathways. ER-mediated neuroprotection is attributed to estrogen and selective ER modulators in apoptosis- and autophagy-related neurodegenerative diseases, such as Alzheimer’s and Parkinson’s diseases, stroke, multiple sclerosis, and retinopathies. PR activation appeared particularly effective in treating traumatic brain and spinal cord injuries and ischemic stroke. Except for in the retina, activated GR is engaged in neuronal cell death, whereas MR signalling appeared to be associated with neuroprotection. In addition to steroid receptors, the aryl hydrocarbon receptor (AHR) mediates the induction and propagation of apoptosis, whereas the peroxisome proliferator-activated receptors (PPARs) inhibit this programmed cell death. Most of the retinoid X receptor-related xenobiotic receptors stimulate apoptotic processes that accompany neural pathologies. Among the possible therapeutic strategies based on targeting apoptosis via steroid and xenobiotic receptors, the most promising are the selective modulators of the ER, AR, AHR, PPARγ agonists, flavonoids, and miRNAs. The prospective therapies to overcome neuronal cell death by targeting autophagy via steroid and xenobiotic receptors are much less recognized.
Collapse
Affiliation(s)
- Agnieszka Wnuk
- Institute of Pharmacology, Polish Academy of Sciences, Department of Experimental Neuroendocrinology, Smetna Street 12, 31-343 Krakow, Poland.
| | - Małgorzata Kajta
- Institute of Pharmacology, Polish Academy of Sciences, Department of Experimental Neuroendocrinology, Smetna Street 12, 31-343 Krakow, Poland.
| |
Collapse
|
28
|
Aguirre-Vidal Y, Monroy-Noyola A, Anaya-Ramos L, Arteaga-Silva M, Mendez-Armenta M, Ostoa-Saloma P, Díaz-Zaragoza M, Morales-Montor J, Ríos C, Montes S. β-Estradiol-3-benzoate confers neuroprotection in Parkinson MPP + rat model through inhibition of lipid peroxidation. Steroids 2017; 126:7-14. [PMID: 28827046 DOI: 10.1016/j.steroids.2017.08.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/27/2017] [Accepted: 08/02/2017] [Indexed: 12/20/2022]
Abstract
Estradiol (E2), in addition to its known hormone function, is a neuroactive steroid that has shown neuroprotective profile in several models of neurological diseases. The present study explores the antioxidant effect of β-estradiol-3-benzoate (EB) on the neurotoxicity elicited by MPP+ in rat striatum. Male Wistar rats, that were gonadectomized 30days prior to EB, were given 100µgEB per rat every 48h for 11days and animals were infused with MPP+ via intrastriatal at day six after beginning EB treatment. EB treatment completely prevented the fall in dopamine caused by MPP+, such result was related with decreased lipid peroxidation, a marker of oxidative stress; diminished number of ipsilateral-to-lesion turns and increased signal of the dopamine-synthesizing enzyme Tyrosin Hydroxylase in substantia nigra. The protection elicited by EB was not related to Mn or Cu-Zn superoxide dismutase enzymatic activities or glutathione modulation since none of these parameters were influenced by EB at the times assayed. Whereas, increased expression of PON2 as a result of EB treatment was observed, this phenomenon could be one of the mechanism by which the steroid conferred protection to dopaminergic cells against MPP+ injury.
Collapse
Affiliation(s)
- Yoshajandith Aguirre-Vidal
- Laboratorio de Neuroprotección, Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Antonio Monroy-Noyola
- Laboratorio de Neuroprotección, Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Laura Anaya-Ramos
- Laboratorio de Neuroprotección, Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Marcela Arteaga-Silva
- Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México, Mexico
| | - Marisela Mendez-Armenta
- Laboratorio de Neuropatologia experimental, Instituto Nacional de Neurología y Neurocirugía, Dr. Manuel Velasco Suárez, Ciudad de México, Mexico
| | - Pedro Ostoa-Saloma
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP 70228, 04510 Ciudad de México, Mexico
| | - Mariana Díaz-Zaragoza
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP 70228, 04510 Ciudad de México, Mexico
| | - Jorge Morales-Montor
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP 70228, 04510 Ciudad de México, Mexico
| | - Camilo Ríos
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía, Dr. Manuel Velasco Suárez, Ciudad de México, Mexico
| | - Sergio Montes
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía, Dr. Manuel Velasco Suárez, Ciudad de México, Mexico.
| |
Collapse
|
29
|
Androgen deprivation therapy and the risk of parkinsonism in men with prostate cancer. World J Urol 2017; 35:1417-1423. [DOI: 10.1007/s00345-017-2010-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 01/24/2017] [Indexed: 01/03/2023] Open
|
30
|
Litim N, Morissette M, Di Paolo T. Effects of progesterone administered after MPTP on dopaminergic neurons of male mice. Neuropharmacology 2017; 117:209-218. [PMID: 28192111 DOI: 10.1016/j.neuropharm.2017.02.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 02/06/2017] [Accepted: 02/08/2017] [Indexed: 11/18/2022]
Abstract
Progesterone neuroprotection of striatal dopamine (DA) in male mice lesioned with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) was previously reported when administered before MPTP or an hour after. A dose of MPTP to induce a partial lesion was used to model early stages or prodromal Parkinson. We hypothesized that brain DA can be restored by progesterone administered early (24 h) or later (5 days) after MPTP. Male mice received 4 injections of MPTP (8 mg/kg) and progesterone (8 mg/kg) once daily for 5 days started 24 h or 5 days after MPTP. The lesion decreased striatal DA and its metabolites but not serotonin contents. MPTP mice treated with progesterone starting 24 h but not 5 days after MPTP had higher striatal DA and its metabolites content than vehicle-treated MPTP mice. Striatal DA transporter (DAT) and vesicular monoamine transporter 2 (VMAT2) specific binding decreased in lesioned mice and were corrected with progesterone treatment starting 24 h but not 5 days after MPTP. Striatal glial fibrillary acidic protein (GFAP) levels, a marker of activated astrocytes, were elevated by the MPTP lesion and were corrected with progesterone treatment starting 24 h after MPTP. Striatal brain derived neurotrophic factor (BDNF) levels were decreased by the MPTP lesion and were prevented by progesterone treatments whereas no change of Akt, GSK3β, ERK1 and 2 and their phosphorylated forms were observed. Thus, progesterone administered after MPTP in mice protected dopaminergic neurons through modulation of neuroinflammation and BDNF. In humans, progesterone could possibly be used as a disease-modifying drug in prodromal Parkinson.
Collapse
Affiliation(s)
- Nadhir Litim
- Neuroscience Research Unit, Centre Hospitalier Universitaire de Québec, CHUL, Quebec City, Canada; Faculty of Pharmacy, Laval University, Quebec City, Canada
| | - Marc Morissette
- Neuroscience Research Unit, Centre Hospitalier Universitaire de Québec, CHUL, Quebec City, Canada
| | - Thérèse Di Paolo
- Neuroscience Research Unit, Centre Hospitalier Universitaire de Québec, CHUL, Quebec City, Canada; Faculty of Pharmacy, Laval University, Quebec City, Canada.
| |
Collapse
|
31
|
Segura-Uribe JJ, Pinto-Almazán R, Coyoy-Salgado A, Fuentes-Venado CE, Guerra-Araiza C. Effects of estrogen receptor modulators on cytoskeletal proteins in the central nervous system. Neural Regen Res 2017; 12:1231-1240. [PMID: 28966632 PMCID: PMC5607812 DOI: 10.4103/1673-5374.213536] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Estrogen receptor modulators are compounds of interest because of their estrogenic agonistic/antagonistic effects and tissue specificity. These compounds have many clinical applications, particularly for breast cancer treatment and osteoporosis in postmenopausal women, as well as for the treatment of climacteric symptoms. Similar to estrogens, neuroprotective effects of estrogen receptor modulators have been described in different models. However, the mechanisms of action of these compounds in the central nervous system have not been fully described. We conducted a systematic search to investigate the effects of estrogen receptor modulators in the central nervous system, focusing on the modulation of cytoskeletal proteins. We found that raloxifene, tamoxifen, and tibolone modulate some cytoskeletal proteins such as tau, microtuble-associated protein 1 (MAP1), MAP2, neurofilament 38 (NF38) by different mechanisms of action and at different levels: neuronal microfilaments, intermediate filaments, and microtubule-associated proteins. Finally, we emphasize the importance of the study of these compounds in the treatment of neurodegenerative diseases since they present the benefits of estrogens without their side effects.
Collapse
Affiliation(s)
- Julia J Segura-Uribe
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico.,Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Rodolfo Pinto-Almazán
- Unidad de Investigación Hospital Regional de Alta Especialidad Ixtapaluca, Ixtapaluca, Mexico.,Institute for the Developing Mind, Children's Hospital Los Angeles, Los Angeles, CA, USA.,Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Angélica Coyoy-Salgado
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico.,Consejo Nacional de Ciencia y Tecnología, Mexico City, Mexico
| | - Claudia E Fuentes-Venado
- Clínica de Trastornos del Sueño, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico.,Servicio de Medicina Física y Rehabilitacion, Hospital General de Zona No. 197, Texcoco, Mexico.,Unidad de Investigación Médica en Farmacología, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Christian Guerra-Araiza
- Unidad de Investigación Médica en Farmacología, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| |
Collapse
|
32
|
Multiple Forms of Glutamate Dehydrogenase in Animals: Structural Determinants and Physiological Implications. BIOLOGY 2016; 5:biology5040053. [PMID: 27983623 PMCID: PMC5192433 DOI: 10.3390/biology5040053] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 11/26/2016] [Accepted: 12/07/2016] [Indexed: 11/17/2022]
Abstract
Glutamate dehydrogenase (GDH) of animal cells is usually considered to be a mitochondrial enzyme. However, this enzyme has recently been reported to be also present in nucleus, endoplasmic reticulum and lysosomes. These extramitochondrial localizations are associated with moonlighting functions of GDH, which include acting as a serine protease or an ATP-dependent tubulin-binding protein. Here, we review the published data on kinetics and localization of multiple forms of animal GDH taking into account the splice variants, post-translational modifications and GDH isoenzymes, found in humans and apes. The kinetic properties of human GLUD1 and GLUD2 isoenzymes are shown to be similar to those published for GDH1 and GDH2 from bovine brain. Increased functional diversity and specific regulation of GDH isoforms due to alternative splicing and post-translational modifications are also considered. In particular, these structural differences may affect the well-known regulation of GDH by nucleotides which is related to recent identification of thiamine derivatives as novel GDH modulators. The thiamine-dependent regulation of GDH is in good agreement with the fact that the non-coenzyme forms of thiamine, i.e., thiamine triphosphate and its adenylated form are generated in response to amino acid and carbon starvation.
Collapse
|
33
|
Acaz-Fonseca E, Avila-Rodriguez M, Garcia-Segura LM, Barreto GE. Regulation of astroglia by gonadal steroid hormones under physiological and pathological conditions. Prog Neurobiol 2016; 144:5-26. [DOI: 10.1016/j.pneurobio.2016.06.002] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 06/05/2016] [Indexed: 01/07/2023]
|
34
|
Khan MM. Neurocognitive, Neuroprotective, and Cardiometabolic Effects of Raloxifene: Potential for Improving Therapeutic Outcomes in Schizophrenia. CNS Drugs 2016; 30:589-601. [PMID: 27193386 DOI: 10.1007/s40263-016-0343-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Raloxifene is a selective estrogen receptor modulator that has been approved for treating osteoporosis and breast cancer in high-risk postmenopausal women. However, recent evidence suggests that raloxifene adjunct therapy improves cognition and reduces symptom severity in men and women with schizophrenia. In animal models, raloxifene increases forebrain neurogenesis and enhances working memory and synaptic plasticity. It may consequently repair the neuronal and synaptic connectivity that is disrupted in schizophrenia. It also reduces oxidative stress and neuroinflammation, which are potent etiological factors in the neuropathology of schizophrenia. Furthermore, in postmenopausal women, raloxifene reduces the risks for atherosclerosis, diabetes mellitus, and weight gain, which are serious adverse effects associated with long-term antipsychotic treatment in schizophrenia; therefore, it may improve the safety and efficacy of antipsychotic drugs. In this review, recent insights into the neurocognitive, neuroprotective, and cardiometabolic effects of raloxifene in relation to therapeutic outcomes in schizophrenia are discussed.
Collapse
Affiliation(s)
- Mohammad M Khan
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Zawia, Jamal Abdul Nassre Street, P.O. Box 16418, Az-Zawiyah, Libya.
| |
Collapse
|
35
|
Menze ET, Esmat A, Tadros MG, Khalifa AE, Abdel-Naim AB. Genistein improves sensorimotor gating: Mechanisms related to its neuroprotective effects on the striatum. Neuropharmacology 2016; 105:35-46. [PMID: 26764242 DOI: 10.1016/j.neuropharm.2016.01.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 12/21/2015] [Accepted: 01/04/2016] [Indexed: 12/15/2022]
Abstract
Huntington's disease (HD) is a neurodegenerative disorder, characterized by selective atrophy in the striatum, particularly the medium spiny GABAergic efferent neurons. This results in striatal sensorimotor gating deficits. Systemic administration of 3-nitropropionic acid (3-NPA) produces selective lesions mimicking those of HD. Males were found to be more susceptible to 3-NPA-induced neurotoxicity than females, suggesting neuroprotective effects of estrogens. Phytoestrogens, including genistein, are good estrogenic alternatives that keep their beneficial effects on non-reproductive organs and lack the potential hazardous side effects. The current study was designed to investigate the potential beneficial effects of genistein in 3-NPA-induced HD in ovariectomized rats. Results showed that 3-NPA (20 mg/kg) administration caused significant disruption of the rats' locomotor activity and prepulse inhibition. In addition, it decreased striatal ATP levels and increased oxidative stress, inflammatory and apoptotic markers with striatal focal hemorrhage and gliosis. Pretreatment with 17β-estradiol (2.5 mg/kg) or genistein (20 mg/kg) led to a significant improvement of behavioral parameters, increased ATP production, decreased oxidative stress, attenuated inflammation and apoptosis. Therefore, this study suggests potential neuroprotective effects of genistein in ovariectomized rats challenged with 3-NPA.
Collapse
Affiliation(s)
- Esther T Menze
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Ahmed Esmat
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mariane G Tadros
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Amani E Khalifa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Ashraf B Abdel-Naim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
36
|
Botsakis K, Theodoritsi S, Grintzalis K, Angelatou F, Antonopoulos I, Georgiou C, Margarity M, Matsokis N, Panagopoulos N. 17β-Estradiol/N-acetylcysteine interaction enhances the neuroprotective effect on dopaminergic neurons in the weaver model of dopamine deficiency. Neuroscience 2016; 320:221-9. [DOI: 10.1016/j.neuroscience.2016.01.068] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 01/26/2016] [Accepted: 01/30/2016] [Indexed: 11/28/2022]
|
37
|
Vacca V, Marinelli S, Pieroni L, Urbani A, Luvisetto S, Pavone F. 17beta-estradiol counteracts neuropathic pain: a behavioural, immunohistochemical, and proteomic investigation on sex-related differences in mice. Sci Rep 2016; 6:18980. [PMID: 26742647 PMCID: PMC4705539 DOI: 10.1038/srep18980] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 09/02/2015] [Indexed: 01/31/2023] Open
Abstract
Sex differences play a role in pain sensitivity, efficacy of analgesic drugs and prevalence of neuropathic pain, even if the underlying mechanisms are far from being understood. We demonstrate that male and female mice react differently to structural and functional changes induced by sciatic nerve ligature, used as model of neuropathic pain. Male mice show a gradual decrease of allodynia and a complete recovery while, in females, allodynia and gliosis are still present four months after neuropathy induction. Administration of 17β-estradiol is able to significantly attenuate this difference, reducing allodynia and inducing a complete recovery also in female mice. Parallel to pain attenuation, 17β-estradiol treated-mice show a functional improvement of the injured limb, a faster regenerative process of the peripheral nerve and a decreased neuropathy-induced gliosis. These results indicate beneficial effects of 17β-estradiol on neuropathic pain and neuronal regeneration and focuses on the importance of considering gonadal hormones also in clinical studies.
Collapse
Affiliation(s)
- Valentina Vacca
- CNR-National Research Council, Institute of Cell Biology and Neurobiology, 00143 Roma, Italy.,IRCCS Fondazione Santa Lucia, 00143 Roma, Italy
| | - Sara Marinelli
- CNR-National Research Council, Institute of Cell Biology and Neurobiology, 00143 Roma, Italy.,IRCCS Fondazione Santa Lucia, 00143 Roma, Italy
| | - Luisa Pieroni
- IRCCS Fondazione Santa Lucia, 00143 Roma, Italy.,Department of Experimental Medicine and Surgery, Division of Biochemistry, University of "Tor Vergata", 00133 Roma, Italy
| | - Andrea Urbani
- IRCCS Fondazione Santa Lucia, 00143 Roma, Italy.,Department of Experimental Medicine and Surgery, Division of Biochemistry, University of "Tor Vergata", 00133 Roma, Italy
| | - Siro Luvisetto
- CNR-National Research Council, Institute of Cell Biology and Neurobiology, 00143 Roma, Italy.,IRCCS Fondazione Santa Lucia, 00143 Roma, Italy
| | - Flaminia Pavone
- CNR-National Research Council, Institute of Cell Biology and Neurobiology, 00143 Roma, Italy.,IRCCS Fondazione Santa Lucia, 00143 Roma, Italy
| |
Collapse
|
38
|
Litim N, Bourque M, Al Sweidi S, Morissette M, Di Paolo T. The 5α-reductase inhibitor Dutasteride but not Finasteride protects dopamine neurons in the MPTP mouse model of Parkinson's disease. Neuropharmacology 2015; 97:86-94. [PMID: 26006269 DOI: 10.1016/j.neuropharm.2015.05.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 04/17/2015] [Accepted: 05/11/2015] [Indexed: 11/25/2022]
Abstract
Finasteride and Dutasteride are 5α-reductase inhibitors used in the clinic to treat endocrine conditions and were recently found to modulate brain dopamine (DA) neurotransmission and motor behavior. We investigated if Finasteride and Dutasteride have a neuroprotective effect in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) male mice as a model of Parkinson's disease (PD). Experimental groups included saline treated controls and mice treated with saline, Finasteride (5 and 12.5 mg/kg) or Dutasteride (5 and 12.5 mg/kg) for 5 days before and 5 days after MPTP administration (4 MPTP injections, 6.5 mg/kg on day 5 inducing a moderate DA depletion) and then they were euthanized. MPTP administration decreased striatal DA contents measured by HPLC while serotonin contents remained unchanged. MPTP mice treated with Dutasteride 5 and 12.5 mg/kg had higher striatal DA and metabolites (DOPAC and HVA) contents with a decrease of metabolites/DA ratios compared to saline-treated MPTP mice. Finasteride had no protective effect on striatal DA contents. Tyrosine hydroxylase (TH) mRNA levels measured by in situ hybridization in the substantia nigra pars compacta were unchanged. Dutasteride at 12.5 mg/kg reduced the effect of MPTP on specific binding to striatal DA transporter (DAT) and vesicular monoamine transporter 2 (VMAT2) measured by autoradiography. MPTP reduced compared to controls plasma testosterone (T) and dihydrotestosterone (DHT) concentrations measured by liquid chromatography-tandem mass spectrometry; Dutasteride and Finasteride increased plasma T levels while DHT levels remained low. In summary, our results showed that a 5α-reductase inhibitor, Dutasteride has neuroprotective activity preventing in male mice the MPTP-induced loss of several dopaminergic markers.
Collapse
Affiliation(s)
- Nadhir Litim
- Neuroscience Research Unit, Centre Hospitalier Universitaire de Québec, CHUL, Quebec City, Canada; Faculty of Pharmacy, Laval University, Quebec City, Canada
| | - Mélanie Bourque
- Neuroscience Research Unit, Centre Hospitalier Universitaire de Québec, CHUL, Quebec City, Canada; Faculty of Pharmacy, Laval University, Quebec City, Canada
| | - Sara Al Sweidi
- Neuroscience Research Unit, Centre Hospitalier Universitaire de Québec, CHUL, Quebec City, Canada; Faculty of Pharmacy, Laval University, Quebec City, Canada
| | - Marc Morissette
- Neuroscience Research Unit, Centre Hospitalier Universitaire de Québec, CHUL, Quebec City, Canada
| | - Thérèse Di Paolo
- Neuroscience Research Unit, Centre Hospitalier Universitaire de Québec, CHUL, Quebec City, Canada; Faculty of Pharmacy, Laval University, Quebec City, Canada.
| |
Collapse
|
39
|
Menze ET, Esmat A, Tadros MG, Abdel-Naim AB, Khalifa AE. Genistein improves 3-NPA-induced memory impairment in ovariectomized rats: impact of its antioxidant, anti-inflammatory and acetylcholinesterase modulatory properties. PLoS One 2015; 10:e0117223. [PMID: 25675218 PMCID: PMC4326416 DOI: 10.1371/journal.pone.0117223] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 12/20/2014] [Indexed: 12/21/2022] Open
Abstract
Huntington's disease (HD) is a progressive neurodegenerative disorder. The pre-motor symptomatic stages of the disease are commonly characterized by cognitive problems including memory loss. 3-Nitropropionic acid (3-NPA) is a mitochondrial toxin that produces selective lesions in the brain similar to that of HD and was proven to cause memory impairment in rodents. Phytoestrogens have well-established neuroprotective and memory enhancing effects with fewer side effects in comparison to estrogens. This study investigated the potential neuroprotective and memory enhancing effect of genistein (5, 10 and 20 mg/kg), a phytoestrogen, in ovariectomized rats challenged with 3-NPA (20 mg/kg). These potential effects were compared to those of 17β-estradiol (2.5 mg/kg). Systemic administration of 3-NPA for 4 consecutive days impaired locomotor activity, decreased retention latencies in the passive avoidance task, decreased striatal, cortical and hippocampal ATP levels, increased oxidative stress, acetylcholinesterase (AChE) activity, cycloxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) expressions. Pretreatment with genistein and 17β-estradiol attenuated locomotor hypoactivity, increased retention latencies in the passive avoidance task, increased ATP levels, improved the oxidative stress profile, attenuated the increase in AChE activity and decreased the expression of COX-2 and iNOS. Overall, the higher genistein dose (20 mg/kg) was the most effective. In conclusion, this study suggests neuroprotective and memory enhancing effects for genistein in a rat model of HD. These effects might be attributed to its antioxidant, anti-inflammatory and cholinesterase inhibitory activities.
Collapse
Affiliation(s)
- Esther T. Menze
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Ahmed Esmat
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mariane G. Tadros
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Ashraf B. Abdel-Naim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Amani E. Khalifa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
40
|
Khan MM, Wakade C, de Sevilla L, Brann DW. Selective estrogen receptor modulators (SERMs) enhance neurogenesis and spine density following focal cerebral ischemia. J Steroid Biochem Mol Biol 2015; 146:38-47. [PMID: 24815952 PMCID: PMC4419701 DOI: 10.1016/j.jsbmb.2014.05.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/23/2014] [Accepted: 05/02/2014] [Indexed: 12/23/2022]
Abstract
Selective estrogen receptor modulators (SERMs) have been reported to enhance synaptic plasticity and improve cognitive performance in adult rats. SERMs have also been shown to induce neuroprotection against cerebral ischemia and other CNS insults. In this study, we sought to determine whether acute regulation of neurogenesis and spine remodeling could be a novel mechanism associated with neuroprotection induced by SERMs following cerebral ischemia. Toward this end, ovariectomized adult female rats were either implanted with pellets of 17β-estradiol (estrogen) or tamoxifen, or injected with raloxifene. After one week, cerebral ischemia was induced by the transient middle-cerebral artery occlusion (MCAO) method. Bromodeoxyuridine (BrdU) was injected to label dividing cells in brain. We analyzed neurogenesis and spine density at day-1 and day-5 post MCAO. In agreement with earlier findings, we observed a robust induction of neurogenesis in the ipsilateral subventricular zone (SVZ) of both the intact as well as ovariectomized female rats following MCAO. Interestingly, neurogenesis in the ipsilateral SVZ following ischemia was significantly higher in estrogen and raloxifene-treated animals compared to placebo-treated rats. In contrast, this enhancing effect on neurogenesis was not observed in tamoxifen-treated rats. Finally, both SERMs, as well as estrogen significantly reversed the spine density loss observed in the ischemic cortex at day-5 post ischemia. Taken, together these results reveal a profound structural remodeling potential of SERMs in the brain following cerebral ischemia. This article is part of a Special Issue entitled "Sex steroids and brain disorders".
Collapse
Affiliation(s)
- Mohammad M Khan
- Department of Biochemistry, Faculty of Medicine, Zaiwa University, AZ-Zawia, Libya
| | - Chandramohan Wakade
- Department of Physical Therapy, Georgia Regents University, Augusta, GA 30912, USA; Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA
| | - Liesl de Sevilla
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA
| | - Darrell W Brann
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA.
| |
Collapse
|
41
|
Rzemieniec J, Litwa E, Wnuk A, Lason W, Gołas A, Krzeptowski W, Kajta M. Neuroprotective action of raloxifene against hypoxia-induced damage in mouse hippocampal cells depends on ERα but not ERβ or GPR30 signalling. J Steroid Biochem Mol Biol 2015; 146:26-37. [PMID: 24846829 DOI: 10.1016/j.jsbmb.2014.05.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 05/07/2014] [Accepted: 05/11/2014] [Indexed: 01/03/2023]
Abstract
Raloxifene is the selective estrogen receptor modulator (SERM) currently used in clinical practice to activate estrogen receptors (ERs) in bone tissue and to antagonise ERs in breast and uterine cancers. Little is known, however, about mechanisms of action of raloxifene on hypoxia-induced neuronal cell damage. The aim of the present study was to investigate the neuroprotective potential of raloxifene against hypoxia-induced damage of mouse hippocampal cells in primary cultures, with a particular focus on raloxifene interactions with the classical nuclear ERs (ERα, ERβ) and the recently identified membrane ER G-protein-coupled receptor 30 (GPR30). In this study, 18 h of hypoxia increased hypoxia inducible factor 1 alpha (Hif1α) mRNA expression and induced apoptotic processes, such as loss of the mitochondrial membrane potential, activation of caspase-3 and fragmentation of cell nuclei based on Hoechst 33342 staining. These effects were accompanied by reduced ATPase and intracellular esterase activities as well as substantial lactate dehydrogenase (LDH) release from cells exposed to hypoxia. Our study demonstrated strong neuroprotective and anti-apoptotic caspase-3-independent actions of raloxifene in hippocampal cells exposed to hypoxia. Raloxifene also inhibited the hypoxia-induced decrease in Erα mRNA expression and attenuated the hypoxia-induced rise in Erβ and Gpr30 mRNA expression levels. Impact of raloxifene on hypoxia-affected Erα mRNA was mirrored by fluctuations in the protein level of the receptor as demonstrated by Western blot and immunofluorescent labelling. Raloxifene-induced changes in Erβ mRNA expression level were in parallel with ERβ immunofluorescent labeling. However, changes in Gpr30 mRNA level were not reflected by changes in the protein levels measured either by ELISA, Western blot or immunofluorescent staining at 24h post-treatment. Using specific siRNAs, we provided evidence for a key involvement of ERα, but not ERβ or GPR30 in neuroprotective action of raloxifene against hypoxia-induced cell damage. This study may have implications for the treatment or prevention of hypoxic brain injury and the administration of current or new generations of SERMs specific to ERα. This article is part of a Special Issue entitled "Sex steroids and brain disorders".
Collapse
Affiliation(s)
- J Rzemieniec
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Krakow, Poland
| | - E Litwa
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Krakow, Poland
| | - A Wnuk
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Krakow, Poland
| | - W Lason
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Krakow, Poland
| | - A Gołas
- Department of Genetics and Evolution, Institute of Zoology, Jagiellonian University, 9 Gronostajowa Street, 30-387 Krakow, Poland
| | - W Krzeptowski
- Department of Cell Biology and Imaging, Confocal Microscopy Laboratory, Institute of Zoology, Jagiellonian University, 9 Gronostajowa Street, 30-387 Krakow, Poland
| | - M Kajta
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Krakow, Poland.
| |
Collapse
|
42
|
Arevalo MA, Azcoitia I, Garcia-Segura LM. The neuroprotective actions of oestradiol and oestrogen receptors. Nat Rev Neurosci 2014; 16:17-29. [PMID: 25423896 DOI: 10.1038/nrn3856] [Citation(s) in RCA: 305] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hormones regulate homeostasis by communicating through the bloodstream to the body's organs, including the brain. As homeostatic regulators of brain function, some hormones exert neuroprotective actions. This is the case for the ovarian hormone 17β-oestradiol, which signals through oestrogen receptors (ERs) that are widely distributed in the male and female brain. Recent discoveries have shown that oestradiol is not only a reproductive hormone but also a brain-derived neuroprotective factor in males and females and that ERs coordinate multiple signalling mechanisms that protect the brain from neurodegenerative diseases, affective disorders and cognitive decline.
Collapse
Affiliation(s)
- Maria-Angeles Arevalo
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, E-28002 Madrid, Spain
| | - Iñigo Azcoitia
- Department of Cell Biology, Faculty of Biology, Universidad Complutense, E-28040 Madrid, Spain
| | - Luis M Garcia-Segura
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, E-28002 Madrid, Spain
| |
Collapse
|
43
|
Rekkas PV, Wilson AA, Lee VWH, Yogalingam P, Sacher J, Rusjan P, Houle S, Stewart DE, Kolla NJ, Kish S, Chiuccariello L, Meyer JH. Greater monoamine oxidase a binding in perimenopausal age as measured with carbon 11-labeled harmine positron emission tomography. JAMA Psychiatry 2014; 71:873-9. [PMID: 24898155 PMCID: PMC4942269 DOI: 10.1001/jamapsychiatry.2014.250] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
IMPORTANCE Perimenopause is a period of high risk for mood disorders, and it has been proposed that perimenopause is also a window of risk for processes linked to later dementia. However, in human perimenopause, the neurobiological changes implicated in the genesis of mood disorders or dementia have not been identified. Monoamine oxidase A (MAO-A) is an important brain enzyme that creates oxidative stress, influences apoptosis, and metabolizes monoamines. After declines in estrogen level, MAO-A density may be elevated for a month or longer, and repeated declines in estrogen level occur with greater magnitude during perimenopause. OBJECTIVE To investigate whether MAO-A total distribution volume (VT), an index of MAO-A density, is elevated in women of perimenopausal age (41-51 years). DESIGN, SETTING, AND PARTICIPANTS In a cross-sectional study at a tertiary care psychiatric hospital, 58 women underwent carbon 11-labeled harmine positron emission tomography. These included 19 young women of reproductive age (mean [SD], 28.26 [5.05] years), 27 women of perimenopausal age (mean [SD] age, 45.21 [3.41] years; including 14 women with change in menstrual cycle length with a mean [SD] age of 45.50 [4.00] years and 13 women with no change in menstrual cycle length with a mean [SD] age of 44.92 [2.81] years), and 12 women in menopause (mean [SD] age, 56.25 [3.19] years). MAIN OUTCOMES AND MEASURES Values of MAO-A VT in the prefrontal cortex, anterior cingulate cortex, dorsal striatum, ventral striatum, thalamus, hippocampus, and midbrain. RESULTS On average, MAO-A VT in perimenopausal age was elevated by 34% compared with reproductive age and by 16% compared with menopause (multivariate analysis of variance, group effect, F16,94 = 3.03; P < .001). Within the perimenopausal age group, meeting Stages of Reproductive Aging Workshop criteria for perimenopause, which is mainly based on menstrual cycle length, was not associated with MAO-A VT (F8,18 = 0.548; P = .81) but tendency to cry was positively correlated with MAO-A VT in the prefrontal cortex (r = 0.54; P = .008). CONCLUSIONS AND RELEVANCE To our knowledge, this is the first report of a change in a central biomarker during perimenopausal age that is also present during major depressive episodes and high-risk states for major depressive episodes. The functions of MAO-A influence oxidative stress and apoptosis, 2 processes implicated as excessive in both mood disorders and dementia. Hence, greater MAO-A VT during perimenopause may represent a new target for assessing novel interventions to prevent mood disorders and reduce longer-term risk of neurodegenerative disease.
Collapse
Affiliation(s)
- Paraskevi Vivien Rekkas
- Research Imaging Centre and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Alan A. Wilson
- Research Imaging Centre and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Vivian Wai Han Lee
- Research Imaging Centre and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Priyanga Yogalingam
- Research Imaging Centre and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Julia Sacher
- Max Planck Institute for Human Cognitive and Brain Sciences and Clinic of Cognitive Neurology, University of Leipzig, Leipzig, Germany
| | - Pablo Rusjan
- Research Imaging Centre and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Sylvain Houle
- Research Imaging Centre and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Donna E. Stewart
- Department of Psychiatry, Women’s Health Program, and Toronto General Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Nathan J. Kolla
- Research Imaging Centre and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Stephen Kish
- Research Imaging Centre and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Lina Chiuccariello
- Research Imaging Centre and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Jeffrey H. Meyer
- Research Imaging Centre and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
44
|
Smith KM, Dahodwala N. Sex differences in Parkinson's disease and other movement disorders. Exp Neurol 2014; 259:44-56. [PMID: 24681088 DOI: 10.1016/j.expneurol.2014.03.010] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 03/07/2014] [Accepted: 03/19/2014] [Indexed: 12/29/2022]
Abstract
Movement disorders including Parkinson's disease (PD), Huntington's disease (HD), chorea, tics, and Tourette's syndrome (TS) display sex differences in disease susceptibility, disease pathogenesis, and clinical presentation. PD is more common in males than in females. Epidemiologic studies suggest that exposure to endogenous and exogenous estrogen contributes to these sex differences. There is extensive evidence that estrogen prevents dopaminergic neuron depletion induced by neurotoxins in PD animal models and therefore is neuroprotective. Estrogen may also decrease the efficacy of other neuroprotective substances such as caffeine in females but not males. Sex chromosomes can exert effects independent of sex steroid hormones on the development and maintenance of the dopamine system. As a result of hormone, chromosome and other unknown effects, there are sexual dimorphisms in the basal ganglia, and at the molecular levels in dopaminergic neurons that may lead to distinct mechanisms of pathogenesis in males and females. In this review, we summarize the evidence that estrogen and selective estrogen receptor modulators are neuroprotective in PD and discuss potential mechanisms of action. We also briefly review how sex differences in basal ganglia function and dopaminergic pathways may impact HD, chorea, and tics/Tourette's syndrome. Further understanding of these sex differences may lead to novel therapeutic strategies for prevention and treatment of these diseases.
Collapse
Affiliation(s)
- Kara M Smith
- Parkinson's Disease and Movement Disorders Center, 330 S. 9th St, 2nd Floor, Philadelphia, PA 19107, USA.
| | - Nabila Dahodwala
- Parkinson's Disease and Movement Disorders Center, 330 S. 9th St, 2nd Floor, Philadelphia, PA 19107, USA
| |
Collapse
|
45
|
Dos Santos Pereira RT, Porto CS, Abdalla FMF. Ovariectomy and 17β-estradiol replacement play a role on the expression of Endonuclease-G and phosphorylated cyclic AMP response element-binding (CREB) protein in hippocampus. Mol Cell Endocrinol 2014; 382:227-233. [PMID: 24121025 DOI: 10.1016/j.mce.2013.09.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 09/16/2013] [Accepted: 09/30/2013] [Indexed: 11/19/2022]
Abstract
The aim of the present study was to investigate the effects of different periods of ovariectomy and 17β-estradiol (E2) replacement on the expression of Cytochrome C, apoptosis inducing factor (AIF) and Endonuclease-G (Endo-G) in mitochondrial and cytosolic fractions obtained from hippocampus of the adult female rats. In addition, the expression of phosphorylated CREB (phospho-CREB) was also analyzed in hippocampus. Ovariectomy or E2 treatment did not change the expression of Cytochrome C and AIF. Ovariectomy (15, 21 and 36 days) decreased the expression of Endo-G in the mitochondrial fractions and increased it in the cytosolic fractions obtained from hippocampus. The treatment with E2 after 15 days of ovariectomy for 7 days or 21 days, and throughout the post-ovariectomy period prevented the effects of ovariectomy on Endo-G expression. Our results suggest that ovariectomy-induced apoptotic cell death in hippocampal tissue could be mediated by Endo-G, but not by AIF, via a caspase-independent apoptotic pathway. Furthermore, ovariectomy decreased the expression of phospho-CREB and the treatment with E2 prevented these effects. In conclusion, E2 may help maintain long-term neuronal viability by regulating the expression of members of the Bcl-2 family. Regulation of Endo-G released from mitochondria, but not of Cytochrome C and AIF, is also involved in the neuroprotective actions of E2. Furthermore, CREB may be involved in the expression of Bcl-2. These data provide new understanding into the mechanisms involved in the neuroprotective role of estrogen.
Collapse
Affiliation(s)
| | - Catarina Segreti Porto
- Section of Experimental Endocrinology, Department of Pharmacology, Escola Paulista de Medicina-Universidade Federal de São Paulo, São Paulo, Brazil
| | | |
Collapse
|
46
|
Wang M, Li F, Shi Z, Liu Y, Wang X, Li L, Gao D. N-cadherin is a novel ERα anchor that protects against 6-OHDA damage to dopaminergic cells. Cell Mol Neurobiol 2014; 34:123-31. [PMID: 24254198 DOI: 10.1007/s10571-013-9993-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 09/24/2013] [Indexed: 12/28/2022]
Abstract
Parkinson's disease is a neurodegenerative disorder caused by the selective loss of dopaminergic (DA) neurons. In this study, we investigated the protective roles of glial cell line-derived neurotrophic factor (GDNF) and 17β-estradiol (E2) in the neuron cell line MN9D following treatment with 6-hydroxydopamine. This result showed that phosphorylation of protein kinase B (Akt) was significantly increased in treated MN9D cells following co-application of GDNF and E2 compared with only GDNF or E2. Moreover, GDNF enhanced the E2-induced translocation of estrogen receptor α (ERα) from the cytosol to the membrane. Immunoprecipitation experiments showed that the translocated ERα interacted with neural cadherin (N-cadherin) in the membrane. Site-directed mutagenesis of Tyr860 (Y860) in N-cadherin inhibited its interaction with ERα. Combined with the fact that GDNF can stimulate N-cadherin Y860 phosphorylation, we hypothesize that N-cadherin is a novel anchor for ERα, and phosphorylation at Y860 further increases ER's capacity to activate the neuroprotective phosphatidyl inositol-3 kinase/Akt pathway. This study provides evidence that co-application of GDNF and E2 exert important protective effects on DA neurons by increasing the interaction between ERα and N-cadherin.
Collapse
Affiliation(s)
- Meng Wang
- Department of Neurobiology & Anatomy, Xuzhou Medical College, Xuzhou Tongshanlu No. 209, Xuzhou, Jiangsu, China
| | | | | | | | | | | | | |
Collapse
|
47
|
Marin R, Casañas V, Pérez JA, Fabelo N, Fernandez CE, Diaz M. Oestrogens as modulators of neuronal signalosomes and brain lipid homeostasis related to protection against neurodegeneration. J Neuroendocrinol 2013; 25:1104-15. [PMID: 23795744 DOI: 10.1111/jne.12068] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 05/22/2013] [Accepted: 06/18/2013] [Indexed: 12/19/2022]
Abstract
Oestrogens trigger several pathways at the plasma membrane that exert beneficial actions against neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease. Part of these actions takes place in lipid rafts, which are membrane domains with a singular protein and lipid composition. These microdomains also represent a preferential site for signalling protein complexes, or signalosomes. A plausible hypothesis is that the dynamic interaction of signalosomes with different extracellular ligands may be at the basis of neuronal maintenance against different neuropathologies. Oestrogen receptors are localised in neuronal lipid rafts, taking part of macromolecular complexes together with a voltage-dependent anion channel (VDAC), and other molecules. Oestradiol binding to its receptor at this level enhances neuroprotection against amyloid-β degeneration through the activation of different signal transduction pathways, including VDAC gating modulation. Moreover, part of the stability and functionality of signalling platforms lays on the distribution of lipid hallmarks in these microstructures, which modulate membrane physicochemical properties, thus favouring molecular interactions. Interestingly, recent findings indicate a potential role of oestrogens in the preservation of neuronal membrane physiology related to lipid homeostasis. Thus, oestrogens and docosahexaenoic acid may act synergistically to stabilise brain lipid structure by regulating neuronal lipid biosynthetic pathways, suggesting that part of the neuroprotective effects elicited by oestrogens occur through mechanisms aimed at preserving lipid homeostasis. Overall, oestrogen mechanisms of neuroprotection may occur not only by its interaction with neuronal protein targets through nongenomic and genomic mechanisms, but also through its participation in membrane architecture stabilisation via 'lipostatic' mechanisms.
Collapse
Affiliation(s)
- R Marin
- Department of Physiology, Laboratory of Cellular Neurobiology, University of La Laguna, La Laguna, Tenerife, Spain
| | | | | | | | | | | |
Collapse
|
48
|
Sun H, Zheng X, Zhou Y, Zhu W, Ou Y, Shu M, Gao X, Leng T, Qiu P, Yan G. Alphaxalone inhibits growth, migration and invasion of rat C6 malignant glioma cells. Steroids 2013; 78:1041-5. [PMID: 23831782 DOI: 10.1016/j.steroids.2013.06.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 06/05/2013] [Accepted: 06/19/2013] [Indexed: 01/07/2023]
Abstract
Malignant gliomas are the most devastating and aggressive brain tumors affecting the central nervous system. The insidious growth and infiltration are the most prominent characteristics of malignant gliomas, which render the current therapies for malignant gliomas including surgery, radiation and chemotherapy unsuccessful. Inhibition of infiltration as well as proliferation in combination with surgery might be more effective in the treatment of malignant gliomas. In the current study, we demonstrate the alphaxalone (3-hydroxypregnane-11,20-dione) could effectively inhibit the proliferation of C6 glioma cells in a concentration dependent manner. Moreover, this compound could also suppress the migration and invasion of C6 glioma cells at a concentration without causing significant cytotoxicity. Except the in vitro anti-glioma activity, alphaxalone effectively delayed the growth of rat C6 malignant glioma xenografts in vivo. Together, these findings suggest alphaxalone might be a promising candidate for the treatment of malignant gliomas and may also provide helpful clues for anti-glioma drugs development in future.
Collapse
Affiliation(s)
- Huawei Sun
- Department of Cardiology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
di Michele F, Luchetti S, Bernardi G, Romeo E, Longone P. Neurosteroid and neurotransmitter alterations in Parkinson's disease. Front Neuroendocrinol 2013; 34:132-42. [PMID: 23563222 DOI: 10.1016/j.yfrne.2013.03.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 02/17/2013] [Accepted: 03/25/2013] [Indexed: 01/13/2023]
Abstract
Parkinson's disease (PD) is associated with a massive loss of dopaminergic cells in the substantia nigra leading to dopamine hypofunction and alteration of the basal ganglia circuitry. These neurons, are under the control, among others, of the excitatory glutamatergic and inhibitory γ-aminobutyric acid (GABA) systems. An imbalance between these systems may contribute to excitotoxicity and dopaminergic cell death. Neurosteroids, a group of steroid hormones synthesized in the brain, modulate the function of several neurotransmitter systems. The substantia nigra of the human brain expresses high concentrations of allopregnanolone (3α, 5αtetrahydroprogesterone), a neurosteroid that positively modulates the action of GABA at GABAA receptors and of 5α-dihydroprogesterone, a neurosteroid acting at the genomic level. This article reviews the roles of NS acting as neuroprotectants and as GABAA receptor agonists in the physiology and pathophysiology of the basal ganglia, their impact on dopaminergic cell activity and survival, and potential therapeutic application in PD.
Collapse
|
50
|
Ding H, Wang Q, Liu J, Qian W, Wang W, Wang J, Gao R, Xiao H. Alterations of gene expression of sodium channels in dorsal root ganglion neurons of estrogen receptor knockout (ERKO) mice induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Endocrine 2012; 42:118-24. [PMID: 22371119 DOI: 10.1007/s12020-012-9637-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 02/14/2012] [Indexed: 12/28/2022]
Abstract
Estrogen receptors (ERα and ERβ) mediate the neuroprotection of estrogens against MPTP-induced striatal dopamine (DA) depletion. Pain is an important and distressing symptom in Parkinson's disease (PD). Voltage-gated sodium channels in sensory neurons are involved in the development of neuropathic pain. In this study, MPTP caused changes in nociception and alterations of gene expression of voltage-gated sodium channels in dorsal root ganglion (DRG) neurons in ER knockout (ERKO) mice were investigated. We found that administration of MPTP (11 mg/kg) to WT mice led to an extensive depletion of DA and its two metabolites, αERKO mice were observed to be more susceptible to MPTP toxicity than βERKO or WT mice. In addition, we found that the mRNA levels of TTX-S and TTX-R sodium channel subtypes were differentially affected in MPTP-treated WT animals. The MPTP-induced up-regulation of Nav1.1 and Nav1.9, down-regulation of Nav1.6 in DRG neurons may be through ERβ, up-regulation of Nav1.7 and down-regulation of Nav1.8 are dependent on both ERα and ERβ. Therefore, the MPTP-induced alterations of gene expression of sodium channels in DRG neurons could be an important mechanism to affect excitability and nociceptive thresholds, and the ERs appear to play a role in nociception in PD.
Collapse
Affiliation(s)
- Haixia Ding
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | | | | | | | | | | | | | | |
Collapse
|